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A methodology of modelling

In this chapter, we will focus on the methodology that is being used in scientific models.
We will first present an inventory of the metaphors that underlie scientific models. These
form the necessary basis to describe the various modelling paradigms that are being used
in the social sciences. Because agent-based modelling offers a methodology to model the
dynamics of interacting agents, we will focus on the conceptual tools that are being used in
that modelling paradigm. This chapter will conclude with a discussion on the application
of models.

In Chapter 1 we stated that scientific models can be conceived as formal
descriptions of systems. The development of scientific models usually proceeds through
isomorphisms. These isomorphisms can be considered as general metaphors, which
implies that the modelling of a certain system is based on the formal description that is
available of another system (e.g., Khalil, 1992). For example, a better formal understanding
of chemical processes also triggered the development of analogous economic models. On
the basis of formal models it is possible to develop simulation models that to a certain
extent behave like real-world systems. Doran and Gilbert (1994) argue that the technique
of computer simulation is an appropriate methodology to study social phenomena that are
not directly accessible for research in the classical tradition, as is the case with man-
environment interaction. Such a lack of accessibility may be due to the complexity of a
phenomenon, which does not allow for understanding it on the basis of observational
data, or because the phenomenon in question does not exist anymore, as is the case with
historical processes.

Modelling as a metaphor

Considering a simulation model (computerised or not) as a metaphor of a real-world
process yields the question ‘To what extent can a certain metaphor capture a real-world
process?’ To answer this question, it is first necessary to realise that different types of
metaphors exist, and that the type of metaphor underlying a simulation model has
consequences for the applicability and outcomes of simulations with it.

According to Khalil (1992) there are at least four types of metaphors. The superficial
metaphor refers to an observed similarity but is not meant to indicate any functional
likeness. An example is ‘He’s got a head like a potato’. Superficial metaphors may be used
as illustrations, but, because they do not refer to a deeper similarity (e.g., at the functional
level), it is not recommendable to use them in a scientific context.

The heterologous (or analogous) metaphor refers to a similarity of analytical functions.
Khalil (1996) mentions as an example the comparison of the wings of a bat with the wings
of a butterfly, which perform the same function but which have totally different
(evolutionary) origins. The previously mentioned example of economic models that were
developed analogous to chemical processes is one example of this type of metaphor that is
being widely used in science.
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The homologous metaphor designates a similarity from the resemblance of contexts.
An example is the similar origin of the forelimbs of the bat and the mouse, which have the
same origins but have different functions. This type of metaphor may be describing the
similarity between e.g., fighter-jet training simulators and flight-simulator games, which
have the same origin, but have been developed to fit very different functions. This type of
metaphor is hardly relevant for the formalisation of scientific models.

The unificational metaphor expresses similarities arising from the same law. For
example, Newton’s law of gravitation can be understood as a metaphor that expressed
celestial movement (Kepler’s laws) and terrestrial gravity (Galileo’s laws) in terms of the
same law or principle. The genetic algorithms used in simulating processes of adaptive
behaviour (e.g., Holland, 1975) can also be understood as an unificational metaphor, being
isomorpheous to the principles underlying the genetic recombination of DNA (Watson
and Crick, 1953), which explains the laws of heredity as formulated by Mendel (1865).

Regarding the degree to which a scientific model captures real-world processes the
relevant question becomes ‘What type of metaphor underlies a particular simulation of a
real world system?’ Regarding the development of scientific simulation models, we
concluded that both the heterologous and the unificational metaphor play an important role,
whereas the superficial and homologous metaphors are unimportant. In developing simulation
models, scientists may use different theories, laws and appropriate insights as metaphors to
formalise a system to be studied. It should therefore come as no surprise that various
modelling approaches exist. Whereas all these approaches use some basic common
concepts, such as a mathematical basis, they differ regarding the theories and procedures
for constructing and testing models. These differences can partly be attributed to the
metaphors used in modelling. A major source of metaphors is provided by the natural
sciences, a discipline that was among the first to apply mathematics in practical settings.
According to Meadows and Robinson (1985), all mathematical models share a general
biased starting point by assuming that the world is not only knowable by a rational process
of observation and reflection, but is also assumed to be controllable. Of course, this holds
in different degrees for various modelling approaches, as system dynamical models are
assuming a much larger controllability than e.g. models of adaptive systems using genetic
algorithms. Because these differences stem from different (implicit) assumptions of how
the real world system works, these various modelling approaches seem to fit the concept
of paradigm (Kuhn, 1970). New insights in principles of system behaviour may cause a
paradigmatic change, thereby disqualifying an ‘old unificational metaphor’ as a
heterologous metaphor. This implies that the scientific usefulness of metaphors depends
on one’s paradigmatic perspective. In the following section some important modelling
paradigms and the underlying assumptions will be discussed.

Metaphors as modelling paradigms

The developments in the natural sciences influenced the number and nature of modelling
paradigms to a large extent. The start of mathematical modelling can be dated to the 17th
century, in which physical science developed a mechanistic, reversible, reductionistic and
equilibrium-based explanation of the world. This proved to be very successful in
calculating trajectories of moving objects (e.g. cannon balls) and predicting the positions of
celestial bodies. Especially the work of Newton, culminating in the Principia Mathematica
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Philosophiae Naturalis (1687), was and still is very influencing. The associated rational and
mathematical way of describing the world around us was also applied in social science,
economics and biology. Despite the fact that later developments in the natural sciences
seriously constrained the applicability of the mechanistic paradigm, its relative simplicity
had a large appeal on scientists from various disciplines working with models. However,
despite the wide-spread use of this approach, the mechanistic paradigm becomes
increasingly criticised. The foundations of the mechanistic view: reversibility,
reductionistic, equilibrium-based and controllable experiments fade away in the light of a
number of ‘new’ scientific insights.

First, the discovery of the Second Law of Thermodynamics brought down the
notion of reversibility. The Second Law states that the entropy of a closed system is
increasing. This means that heat flows from hot to cold, so that less useful energy remains.
One of the consequences of the Second Law is the irreversibility of system behaviour and
the single direction of time. Changes within systems cannot reverse back just like that
(irreversible). This is in contrast to many mechanistic models, in which the time can easily
be reversed to calculate previous conditions.

Second, the equilibrium view on species was brought down by Darwin’s (1859)
book on the origin of species. The static concept of unchanging species was replaced by a
dynamic concept of an evolution by natural selection and adaptation of species, thereby
fundamentally changing our view of nature. Natural systems are in continuous
disequilibrium, being interdependent and constantly adapting to changing circumstances.

Third, the theories of quantum mechanics confronted us with a fundamental
uncertainty regarding knowledge about systems, especially on the level of atoms and
particles. Well known is the uncertainty theorem of Heisenberg (1927), stating that it is
impossible to simultaneously measure the position in space and momentum (mass times
velocity) of any particle. The statement by Laplace (1805 –1825) that if every position of
every atom was known, the future might be predicted exactly, became therefore a lost
illusion. Moreover, the notion of fundamental uncertainty implied that fully controlled
experiments are strictly spoken not possible.

Notwithstanding the fact that the just described developments in the natural
sciences changed our perception of the world, mathematical models are still mainly based
on a mechanistic view on systems. However, the rapid growth of computing power and
the increase in simulation research has also yielded a new modelling paradigm and
associated tools. This new paradigm uses the metaphor of the organism, including notions
of adaptability and learning. Whereas the computer is a typical product of the mechanistic
worldview, it allows to model irreversible, non-equilibrium, unpredictable and
uncontrollable processes that are typical for organic systems. Because no organic
counterpart of mechanistic mathematics exists, special tools have been developed to
simulate organic processes using mechanistic model rules. Agent-based modelling, which
implies formalising a multitude of relatively autonomous agents that interact, proved to be
a successful approach within this organic modelling paradigm. The associated notion of
distributed intelligence is being used in a rising number of simulations of complex adaptive
systems.

For further reading on the gap between mechanistic and organic views on systems,
see e.g., Allen (1990), Toulmin (1990), Geels (1996) and Janssen (1998). In the following
section various modelling approaches that are used nowadays within integrated modelling
will be discussed.
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Multiple regression models
Many scientists in the social sciences are developing models using the statistical technique
of multiple regression analysis to discover systematic patterns of relations in large data sets.
In this line of modelling, scientists describe the system of interest in terms of simultaneous
equations, linear relations, many exogenous driving variables, and observable statistics. The
multiple regression model is based upon the significant relations that have been found
between variables, emphasising the p < .05 criterion of chance occurrence. Empirical data
are rigorously used to determine model parameters, while frequently less effort is spent on
estimating the relevance and representativeness of the data. For example, often the
reliability of (historical) data is unknown. Because of the correlational basis of the multiple
regression modelling approach, no causal relations can be inferred between variables.
Often theoretical models (or less formalised mental maps) are being used to interpret
relations between variables as a means to introduce causality in the models.

Multiple regression models can be used to extrapolate tends of past developments.
Despite the fact that quite complex extrapolation techniques have been developed, the fact
remains that the relations between model variables are treated as static, whereas in the real
world these relations may be dynamically changing. This implies that multiple regression
models are not capable of reflecting the dynamical processes of real world systems.
Because multiple regression models do not allow for assessing processes of structural
changes or adaptation, the use of most multiple regression models is limited to the short-
term precise forecasting of developments and the exploration of possible future
developments in scenarios. Because multiple regression models do not capture real world
dynamics, it can be said that multiple regression models constitute a heterologous
metaphor of real world systems.

Optimisation
Models that involve the optimisation of behaviour are widely used in economics, as has
been noted in Chapter 2. In this modelling approach, rational agents are assumed that have
perfect foresight and that are maximising their discounted sum of utility of consumption.
Hence, the question is one of how much to consume now, and how much to invest in
capital goods to increase consumption later. Maximising such a single utility function over
finite time reflects the supposed existence of a single generation, or even a single
individual, which exists forever. Regarding the modelling of human behaviour, the general
critique on using optimisation models is that real people do not always optimise their
outcomes, but rather use more simple heuristics to manage their limited cognitive
resources. Consequently, the optimisation approach does not deal with behavioural
processes such as habit formation, imitation and social comparison. Gintis (1998)
mentions four postulates on rational-actor behaviour and explains why this approach
entails a limited description of human behaviour. First, the rational-actor approach
postulates that people have outcome-regarding preferences, which apply to the quantity of
goods and services that are produced, consumed and exchanged. However, people also
have process-regarding preferences, which are related to the distribution of these goods
and services (thinking about fairness, reciprocity).

Second, the rational-actor approach postulates that self-regarding preferences
reflect the potential contribution of opportunities to the own level of need satisfaction.
However, people are also other-regarding, deliberately performing behaviour to affect the
wellbeing of other persons, which also relates to the concept of social value orientation
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(see Chapter 2 on personal factors influencing behaviour in a dilemma). For example,
rewarding and punishing other people may go against one’s self-interest.

Third, the rational-actor approach postulates that the well-being of an individual
depends on the degree to which his/her preferences are satisfied.  However, often people
perform behaviours that decrease their level of need satisfaction, for example, drug abuse
and obsessive status seeking. Also people may change their preferences to obtain a higher
level of need-satisfaction. This can be considered as changing ones perspective on what is
perceived as satisfying.

Fourth, the rational-actor approach postulates that the preferences are exogenous,
which implies that peoples’ preferences are not determined and affected by economic
policy and institutions. However, the preferences of people are often affected by their own
experiences, by what other people do (e.g., high-status examples) and by other social
forces such as advertisement (endogenous preferences).

Because the optimisation approach describes the principles of deliberate decision-
making (outcome optimising), this approach can be considered as an unificational
metaphor. The optimisation approach is also being used to explain non-outcome-
optimising behaviours that save cognitive effort, such as habit formation, imitation and
social comparison. These strategies are aimed at balancing the outcomes of the behaviour
and the amount of cognitive processing. Optimisation often correctly describes the
outcomes of such behaviour, provided that large groups of people are taken into
consideration. However, the fact remains that the processes that guide the behaviour of
real people differ from the rational actor being formalised in the model. As such, when
applied to the non-outcome-maximising behaviours as mentioned above, the optimisation
approach can be considered to be a heterologous metaphor. Many discussions between
mainstream economists and psychologists who study behavioural processes originate from
the use of different types of metaphors about human behaviour.

System Dynamics
In the system-dynamic modelling paradigm, processes of the real world are represented in
terms of conglomerations of interacting feedback loops. Stocks of material and
information and flows between these stocks are being modelled using non-linear equations
and time-delays. This implies that a model gives a precise description of a system’s
behaviour, which can be compared with the behaviour of the real world system. An
example is the use of Lotka-Volterra equations to simulate a predator-prey system (Lotka,
1925; Volterra, 1931). Lotka and Volterra independently developed the necessary
manipulation of logistic equations that constitute one of the stock phrases of ecological
modelling.

Many natural processes involve flows of materials, which can be adequately
described using a system dynamic approach. This holds that the same mechanism
underlies both the real world processes and the model, implying that the model constitutes
an unificational metaphor. However, the (adaptive) processes that govern human
behaviour (and many ecological systems involving behaving organisms) can not be
captured fully in terms of stocks and flows. Therefore, behavioural (economic) models
that are based on a system dynamical framework can be considered as heterologous
metaphors. In many situations the behaviour of the real system can be mimicked quite well
using a system dynamical model. However, because the laws and principles that lie behind
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the real world and the simulated system differ, this type of simulations can hardly be used
to test hypotheses regarding the laws and dynamics of the simulated system3.

Because system-dynamic models are very suitable for studying long-term system
behaviour, this approach is frequently being used to model issues like population growth,
biochemical cycles, economic processes, land-use and ecological systems. Moreover, in
integrated assessment models, simple versions of such expert models are being integrated
in a system-dynamic framework (see also Chapter 1 on Integrated models).

Despite the fact that more realistic simulations of e.g. fish stock systems may be
available, many researchers prefer to use system dynamical simulations because they
guarantee efficient programming and they offer a good experimenting tool to study e.g.,
the way in which people manage resources. In such experimenting tools the processes
behind the simulation are not important for the research, as long as the output is
mimicking the real world system in a convincing manner. Consequently, within such a
‘mimicking context’ simulations are being used as an experimental tool, not as an object of
scientific study in themselves.

In the development of system dynamical models, usually much effort is spent on
the development of a model structure that resembles the stocks and flows in the real
world. Here, the multiple regression of empirical data can be helpful in validating the
outcomes of system dynamical models. The estimation of parameter values in the model
often gets less attention. This is partly due to the difficulty of formulating parameter values
on the aggregated level of a model on the basis of disaggregated, not suitable or even
missing data.

  Important studies employing a system-dynamical modelling approach are the
Club of Rome models of the early seventies (Forrester 1971; Meadows, Meadows,
Randers and Behrens, 1972; Meadows, Behrens, Meadows, Naill, Randers, and Zahn,
1974). Some models include insights from psychology/cultural anthropology to include
adaptive agents (Bossel and Strobel, 1978), although these more advanced descriptions of
behaviour remain exceptions. Later integrated assessment models using a system-dynamic
framework are IMAGE1 (Rotmans, 1990) and TARGETS (Rotmans and De Vries, 1997).

Stochastic simulation models
Due to the complexity of the real world, many processes are unpredictable, and hence
uncertain. To capture this notion of uncertainty in simulation models, system dynamical
models have been equipped with stochastic variables. Instead of using fixed values to
describe certain relations in the model, events and/or parameter values are being
formalised as probability distributions. These distributions are frequently based on
empirical data or educated guesses from scientists. The introduction of a stochastic
element in a simulation model implies that model-runs that start with identical initial
settings may yield very different outcomes. Therefore, usually many runs are being
performed, and means and reliability intervals are being reported.

Because a ‘stochast’ is being used to model the unpredictability following from the
complexity of real world systems, it can be said that the stochastic simulation approach is a
heterologous metaphor. Instead of studying system characteristics, this modelling

                                                          
3 However, this type of simulations may be useful to demonstrate the behaviour of a system, as is

clearly demonstrated with e.g., the relation between predators and prey described by  Lotka-Volterra
equations.
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approach is mostly fit to develop research tools as mentioned under system dynamic
simulation models.

Agent-based models
Many macro-level processes that can be observed in social systems, such as crowding,
over-harvesting and stock-market dynamics, emerge from the interactions between a
multitude of individual agents. Here, an agent is being considered as a system that tries to
fulfil a set of goals in a complex, dynamic environment, and ‘agent’ thus may refer to e.g.,
bacteria, plants, insects, fish, mammals, humans households, firms and nations. Agent-
based modelling implies that agents are being formalised as making decisions on the basis
of their own goals, the information they have about the environment and their
expectations regarding the future. The goals, information and expectations an agent has
are being affected by interactions with other agents. Usually, agents are adaptive, which
implies that they are capable of changing their decision strategies and consequently their
behaviour.

The multi-agent simulation approach allows formalising several interacting agents
in a model, and thus provides a tool to study how processes at the micro-level may affect
macro-level dynamics. Many multi-agent simulations have been developed, which are
focussed on a variety of social processes (see e.g., Conte, Hegselmann and Terna, 1997).
These simulations differ with respect to the level of detail in the agent rules. Many
researchers apply very simple agent rules to study how macro-level behaviour emerges
from very simple micro-level rules. An example is the ‘Tit-for-Tat’ rule (Axelrod, 1980a,
1980b) that is being used to study the emergence of cooperation in large-scale prisoners’
dilemmas (see Chapter 4 for examples). Simulations using such simple agents are being
used to formulate (mathematical) theories on social system behaviour. However, it is often
questioned to what extent such theories are validly describing real-world processes,
because they are based on agent rules that lack psychological validation. Yet, these theories
are aimed at describing the basic micro-level processes that guide the macro-behaviour of
real world systems, and consequently such models constitute a homologous metaphor.

If the simulated processes are not intended to resemble a real world process, the
simulation forms a world in itself, and there is no metaphor at all. However, sometimes
such simulations lie at the basis of the discovery of new laws that appear to be valid in
both the simulated and real world systems. Phenomena that were observed in simulations
as well as in the real world, e.g., swarms, self-organisation, emergent behaviour, then
appear to be understandable from the same principle. Here, simulations of artificial
societies that were not (directly) meant as metaphors for real world processes helped to
discover laws and principles that hold both in real and in simulated worlds. Examples of
such laws and principles are the importance of diversity (e.g., why is a ‘rich’ forest more
viable in times of change), how lock-in effects work (e.g., how VHS video became the
standard, why most people use Microsoft software) and the importance of contingency
(e.g., small causes may breed large effects, and the fundamental unpredictability of
complex systems). It is important to realise that these dynamics are not programmed
explicitly in the simulation as laws or principles, but emerge from the simulations. Once
such laws and principles have been identified, they often can be recognised in real world
systems. With respect to the discovery of such ‘laws of complex systems’, the unificational
metaphor adequately describes the relation between a simulation model and the real world
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Researchers that develop more complex agents clearly consider their simulations as
a metaphor, as their goal is to enhance the mundane realism and hence the practical
relevance of their simulation models. Here, it is important that the rules of the agents are
being modelled after valid theory or data, so as to obtain at least some valid resemblance
with the behaviour of real world social systems. This usually results in a more complex set
of agent rules. Ernst (1998), who employs theory on attitude formation in developing
agent rules, provides a representative example of such a simulation. This example will be
discussed in the next chapter. Here, the agent rules are carefully designed on the basis of
valid behavioural theory. However, because of the lack of suitable meta-models of
behaviour, many simulation models lack such a theory-based validation of agent rules. This
causes many simulation models to lack ecological validity, which makes them less
convincing tools for studying real world systems.

Conclusions
It appears that several modelling approaches exist, and that questioning the
appropriateness of these approaches for developing a simulation model directly relates to
the goals one has with simulation. In general it can be stated that if the purpose of a
simulation model resides in the study of how people or agents interact with it, it is
sufficient that the simulation model mimics the behaviour of the real world system, e.g. a
fish-stock. The simpler the model, the better it is, as this makes the model easier to
program and to work with. A researcher may prefer a system dynamical approach to
simulate a fish stock as a tool to investigate people’s harvesting behaviour, being aware of
the fact that a multi-agent model would more correctly describe the dynamics of a real fish
stock. However, if one is mainly interested in mimicking the natural fluctuations of a fish
stock, it may even be the case that a simple equation-based model yields more realistic
outcomes than a badly formalised multi-agent model. A more realistic modelling of the
processes does not guarantee that the outcomes of the model are more realistic as well.
However, if one intends to use simulation techniques to study the behavioural dynamics of
a system, it is essential to choose a paradigm that is capable of capturing the processes of
interest. For example, in modelling a macro-economic system it seems appropriate to use a
system-dynamical modelling framework, whereas the modelling of processes that involve
social interactions requires a multi-agent framework.

This monograph is focussing on human behaviour in changing environmental
systems. Although the modelling approach will contain elements of all the above-
mentioned paradigms, it will mainly be based on elements from agent-based modelling and
system dynamics. Being focussed at the behavioural dynamics that affect the resource
management of agents, it is necessary to use a multi-agent modelling approach to allow for
the simulation of interdependent agents in a commons dilemma situation. Moreover, this
multi-agent approach is also necessary to allow for the simulation of processes such as
social comparison and imitation. The agents’ behaviour will be studied in a changing
environment. The agents' activities may change the environment, which in turn may
change the abilities and opportunities of the agents. The system-dynamical approach will
be used for the modelling of the environment the agents behave in. As such, the resulting
integrated model combines modelling techniques originating from different paradigms.

Because the modelling of behaviour is the central issue of this monograph, the next
section will be focussed at the tools that are being used in agent-based modelling.
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Conceptual tools for agent-based modelling

The modelling of autonomous agents has become increasingly popular in the last decade.
Along with this increase, also the variety of tools to model such agents by software
(computer-programs) and hardware (robots) has increased. The tools that are currently
being used in this field are neural networks, cellular automata, fuzzy logic, genetic
algorithms, cybernetics, artificial intelligence and sets of non-linear differential equations
(chaos and catastrophe theories). Within the scope of this monograph it is not possible to
discuss all these tools in detail. Therefore, only the tools that are most common in social-
scientific research are being discussed: genetic algorithms, cellular automata and artificial
intelligence. Those readers interested to learn more about other kinds of modelling tools
are referred to, e.g., Langton (1989; 1995), Holland (1995), Goldberg (1989), Rietman
(1994) and Sigmund (1993).

Genetic Algorithms
In the sixties John Holland and colleagues developed the concept of genetic algorithms by
means of trying to abstract and explain the adaptive processes of natural systems (e.g.
Holland, 1975, 1992a, 1992b, 1995; Goldberg, 1989). The basic notion is to consider each
agent in a population as a solution to a problem. Technically, a binary bit string of fixed
length represents an agent. The sequence of 0s and 1s can be recoded into decimal
numbers that represent a solution, for example, the value of a decision variable of a
problem. The bit-string length depends on the number of possible solutions taken into
consideration. The relative success of each agent to solve the problem is considered to be
its fitness. A higher fitness increases the chances that the agent produces offspring that
constitutes the next generation. This offspring (child) is identical to the parent agent, as
graphically depicted in Figure 3.1.

Figure 3.1: Identical offspring

This rule follows the principle of natural selection (survival of the fittest), and causes that
an original population, consisting of many agents differing in abilities and fitness, will in a
number of generations result in a much more homogeneous population. A major risk here
is that when the circumstances change, it may be so that other abilities become important,
and these may have been lost in the natural selection process. A homogeneous population
lacks the adaptive capacities that are required to cope with changing environments. The
identical offspring population lacks the necessary capacity to adapt.

To include adaptation, and to prevent a population to end up with a small set of
unchangeable solutions, the mutation rule can be included. This rule implies that in the
reproduction process each bit has a small chance of flipping, as is depicted in Figure 3.2.

Figure 3.2: Mutation
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The process of mutation can produce new genetic information and is a powerful operator
in finding ways to adapt to a changing environment. Even if a homogeneous population
exists, the mutation rule guarantees that new types of solutions will emerge, which, if their
fitness is high, may be very successful in reproducing.

However, the mutation rule is working randomly, and is relative slow in finding
successful solutions. A much faster strategy is provided by sexual reproduction, where the
principle of crossing-over is being used to create new kinds of solutions. Here, the bit-
string of two parent agents is being cut at a random point, which is the same for both
parents, and the two fitting pieces are being pasted in the child, as is depicted in Figure 3.3.

Figure 3.3: Crossing-over

Combination of crossing-over and selective reproduction on the basis of fitness yields a
powerful tool to find effective solutions in a very complex environment. However, to
avoid the risk of ending up with a homogeneous population it remains necessary to
include a small chance of mutation.

Examples of integrated models that employ the genetic algorithm tool are the work
of Janssen and De Vries (1998a) and Janssen and Carpenter (1999), who developed a
model for the climate change issue with agents that change their behaviour if their
observations differ significantly from what they expect, and Janssen and Martens (1997)
who assess the integrated impact of changes of climate and policy control on the malaria
problem.

Cellular Automata
A cellular automaton consists of an array of cells in which each cell can assume one of a
predefined number of discrete states at any one time. Figure 3.4 shows such a small
checkerboard type of cellular automaton, in which the black automaton in the centre can
only observe its eight direct neighbours (Moore environment), which are coloured grey.
Each cell in the grid represents an agent.

Figure 3.4: A small cellular automaton consisting of 25 cells
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When the checkerboard is formalised so that the edges are fixed, the world is a so-called
island model. This kind of ‘world’ is very suitable to represent a physical environment such
as a square or a region. When the checkerboard is formalised so that the edges are being
pasted together (e.g., moving left from the left border brings you to the right border), the
resulting world is a torus, as is being shown in Figure 3.5. The torus shape is very suitable
for the study of more abstract systems, because possible disturbing effects caused by the
fixed border can be ruled out.

Figure 3.5: A cellular automaton with the edges pasted (Hegselmann and Flache, 1998)

In a cellular automata-based simulation, time progresses in discrete steps, and all cells
change state simultaneously. The changing (or not) of the cell state depends on the specific
function underlying the cell state. Usually, this function consists of a specified set of
transition rules that use historic information on the own state together with the states of
the neighbouring cells (e.g. Gardner, 1970; Tobler, 1979). A famous example that uses very
simple rules is the LIFE algorithm (Gardner, 1970). Consider a torus-like world. Each cell
has eight neighbours, and a cell has only two states: empty or occupied. If a cell happens to
be empty, it remains empty in the next generation (i.e. time-step), except if exactly three of
its neighbouring cells are occupied: in that case, it will be occupied in the next generation.
Conversely, if a cell happens to be occupied already, then it remains occupied whenever
two or three of its neighbours are occupied. If not, the cell becomes empty in the next
generation. This simple set of rules already leads to processes of self-reproduction and
complex self-organising structures.

Applications of the cellular automata in the field of sustainable development
involve more complex rules, and more possible states of the cells. The cellular automata
tool is very suitable to model issues in which spatial relations play a role. Examples are the
ISLAND model (Engelen et al., 1995), which is a demonstration version of a framework
capable of modelling a complete island or part of a coastal zone in an explicitly dynamic
and spatial manner, and Sugarscape (Epstein and Axtell, 1996), which will be discussed in
Chapter 4.

Artificial Intelligence
Currently, the autonomous agents research or behaviour-based artificial intelligence (AI)
dominates the study of Artificial Intelligence. This approach, which is highly inspired by
biology (e.g., Wilson, 1991), studies the behaviour of adaptive autonomous agents in the
physical world (robots) or in cyberspace (software agents). The phenomena of interest are
those traditionally covered by biology and ecology (in the case of plants and animals) or
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psychology, sociology and ethnology (in the case of humans). The agents are usually
equipped with sensors to perceive the environment (e.g., constructing a map of the
environment). In order to behave efficiently, the agents are equipped with intelligent
functions such as perception, planning, and learning. This approach is usually being used
to study the dynamics following from the interaction between agents and environment.
Here, researchers have a powerful tool to experiment with a wide variety of characteristics
and processes of both the agents and the environment.

The use of several interacting agents is a recent development within the study of
artificial intelligence (Bond and Gasser, 1988). For an overview of this field see for
example Steels (1995) and Maes (1995). Research employing such a ‘distributed artificial
intelligence’ approach is focussing on the properties of sets of communicating agents
existing in a common environment. This research pursues different goals. First, it may be
aimed at studying the properties of such systems in an abstract way. An example is the
work of Steels (1995, see also Chapter 4), who studies emergent behaviour in a group of
electric-powered robots that ‘live’ together in a physical environment and that have to
cooperate every now and then in order to reload energy. A second aim is to design systems
of immediate practical use, such as expert systems or training simulations for the
management of complex environments. An example is the Driving Simulator of the
Centre for Environment and Traffic Psychology (Van Wolffelaar and Van Winsum, 1996,
see also Chapter 4), which contains a traffic system consisting of a multitude of interacting
cars. A third aim is the development of a programmed multi-agent system as a model of a
human or other real-world system. This third aim is the central aim of the model that is
being developed and applied in this dissertation.

The aims that one has with a simulation model also confront the researcher with
the application of the model. Sometimes very sophisticated models are being built, but
hardly being used because the researchers did not deliberated much on the use of the
model. The next section is focussed on the use of simulation models.

The application of models

Simulation models are frequently being used in a passive way, presenting only the results
of experiments performed with the model. Regarding the application of a model on a well-
defined topic this may be a good strategy. Here, presenting a series of experiments leading
to a set of clear conclusions may be a good strategy to make a convincing point. However,
when the simulation models are being used as a common language to exchange knowledge
from different disciplines, it is usually better to use models in a more active manner, letting
people experiment with the settings of the model themselves. Especially when the topic of
research involves a complex system, which implies that the predictive value of a model is
very low, people who experience the system dynamics will yield a better understanding of
the model than people who more passively read about a series of experiments. Therefore,
gaming and policy exercises are being developed and used to communicate the knowledge
of the researchers on the processes which they put into the model. This requires the
models to be relatively simple.

Policy exercises have the goal to let people experience the problem in a virtual
world, thereby offering a situation to learn about the complexities that determine the
developments in the real world system. In a simulation game like Fishbanks (Meadows,
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1989) the different interdependent players in the game make decisions about fishing
strategies (how many boats and of what type) and the computer computes the fish catch.
Therefore, a computer model represents the environment of the players, and the players
have only limited control over the state of the environment. Another game is SusClime
(De Vries, 1998) where different players representing governments control two or more
countries. Climate change may occur as a consequence of their decisions. The countries
have to negotiate what kind of control strategy to implement. Here, the players are
confronted with a commons dilemma, in which the consequences of their behaviour refer
to climate change in a computer simulation model of the world climate. Another
interactive model in the climate change debate is the Interactive Scenario Scanner
developed by Berk and Janssen (1997). They built a very simple model around the key
issues of the climate change negotiations and held interactive sessions with policy makers
where the software functions as a communication tool to facilitate discussion.

Another way of interactively using computer models is the use of microworlds to
study how people achieve control over some aspects of a complex system (Brehmer, 1992;
Brehmer and Dörner, 1993; Dörner and Schaub, 1994). The computer simulations
provide interactive and dynamic scenarios of complex problems that allow for repeated
and detailed observations. These simulation models of real world systems condense time
such that the participants are being confronted with the long-term effects of their
decisions. Consequently, the players have to cope with the emotional strains of failures and
have to adjust their strategies. This kind of studies performed by applied psychologists may
help to discover systematic mistakes and biases that affect human decision-making in
complex situations.

The simulation model of human behaviour that is being developed and tested in
this monograph is being presented in a rather passive way. A large number of experiments
have been performed with the simulation model, and the results are presented in graphs
and tables. When it comes to validation of the simulation model this presentation has
some advantages, as it is possible to systematically present results in comparison to other
experiments that have been performed. However, when the behavioural model is being
applied in the context of an integrated assessment model, it would be worthwhile to let
various scientists and policy makers work with the model. This would provide them with
more knowledge regarding the behavioural dynamics behind environmental issues.
Moreover, it would confront them with outcomes that are relevant in the context of
human existence, such as level of need satisfaction and (in)equality, instead of focussing at
macro-level indicators of economy and ecology.

Chapter 4 will provide an overview of a number of representative simulation
models that are being used within psychology.
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