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Chapter 5

Using stability information
for solving the k-best TSP

In this chapter it is investigated to what extent information concern-
ing the stability of optimal solutions can be used to solve the k-best
problem. Since k-best problems are at least as hard as their correspond-
ing optimization problems, it is especially of interest to see whether the
k-best problems for A'P-hard combinatorial optimization problems can
be solved more efficiently when having stability information. In this
chapter the k-best Traveling Salesman Problem (TSP) is studied for the
case that an optimal solution together with all its tolerances (the max-
imum perturbations of single edge lengths preserving the optimality of
the given tour) are given. We focus on the following three issues. The
first issue concerns the determination of a partial ordering of the tours
based on the optimal solution of the TSP and its tolerances. The second
one deals with the determination of polynomial algorithms for solving
the 2-best TSP. Finally, it is shown that the k-best TSP is A/P-hard for
k > 3 even if an optimal tour and its tolerances are known.

5.1 Introduction

In this chapter the relationship between the stability and k-best prob-
lems is studied for the TSP. The TSP is the problem of determining a
round trip on which a number of cities is visited exactly once, and such
that its length is minimal with respect to a given length vector. The
stability problem for the TSP is the problem of determining the extent to
which the length vector can be changed while preserving the optimality
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106 CHAPTER 5. USING STABILITY INFORMATION FOR SOLVING THE K-BEST TSP

of a given optimal round trip. In the case that the lengths of single edges
are subject to change, we are interested in the so-called tolerances, these
being the maximum perturbations preserving the optimality of a given
optimal solution. The k-best TSP is the problem of determining a set
of round trips of cardinality k such that any round trip not in this set
is not shorter than the longest round trip in the set.

Obviously, the stability and k-best problems are related in the sense
that the solution to one of the problems also contains information about
the solution to the other problem. For instance, if stability information
is available one might be able to deduct information on the second-best
solution, third-best solution, et cetera. Conversely, if the k-best solutions
to the problem are known, one might be able to conclude some stability
information on the optimal solution from that. Therefore, rather than
solving the two problems separately from scratch, it makes sense to use
knowledge of the solution to one of the two problems to solve the other
one, at least partially.

In this chapter we investigate whether information on the stability
of optimal solutions for the TSP can be used to solve the k-best TSP
more efficiently. The opposite question, i.e. how to use a set of k-best
solutions in order to determine stability information for a given optimal
solution of the TSP, is considered in Chapter 6. The main question
addressed in this chapter is the following. Assume that an optimal tour
and its tolerances are known, what can we say about the set of k-best
tours? First, we will show that, based on a given optimal tour and
its tolerances, a partial ordering of the tours can be determined (see
Section 5.3). Next, we will show that the length of a second-best tour
can be determined in polynomial time, and that the 2-best TSP given
an optimal tour and its tolerances is polynomially solvable when the
set of 2-best tours is unique. Unfortunately, the 2-best TSP with given
optimal tour and tolerances may take exponential time in the general
case (see Section 5.4). Furthermore, it will be shown that the k-best
TSP is N'P-hard for k > 3, even if an optimal tour and its tolerances
are known (see Section 5.5). Finally, we investigate the possibilities of
solving the k-best TSP by using tolerances with respect to a transformed
length vector (see Section 5.6).
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5.2 Definitions and basic results

For n > 3 and 1 < m < (), consider the graph G = (V, E) with the
set of vertices V- = {1,...,n} and the set of edges E = {e1,...,en} C
{{i,j} : 4,5 € V,i # j}. The length of edge e is a real number denoted
by d(e). The vector d = [d(e1),...,d(en)]T € R™ is called the length
vector of the graph G and the pair (G, d) a weighted graph. The length
of an edge set S with respect to d is given by L4(S) := > .cgd(e). A
Hamiltonian tour (a tour for short) in the graph G is a subset of F that
forms a cycle containing each vertex in V exactly once. By H we denote
the set of all tours in G. The TSP is defined as the problem of finding
a tour in argmin {Ly(H) : H € H}.

Let 1 <k < [H|. A set H(k)={H),-..,H)} of different tours in
‘H satisfying

Ld(H(l)) < Ld(H(Q)) <...< Ld(H(k)) < Ld(H) for all H € H\H(k’)

is called a set of k-best tours. The k-best TSP is defined as the problem
of finding a set H(k) in (G,d). Throughout this chapter we assume,
without loss of generality, that G contains at least k£ tours. This is no
restriction as we may assume that all edges not in E have a sufficiently
large length. Obviously, H(k) is in general not uniquely determined.
In the extreme case, the so-called constant TSP (see e.g. Gilmore et
al. [26] and Chapter 3 of this thesis), all tours have the same length,
so that any subset of H of cardinality k is a set of k-best tours. The
difference in length between a longest and a shortest tour in H(k) is
denoted by Ly, i.e. L := Ld(H(k)) — Ld(H(l)). Note that, unlike H(k),
Ly, is uniquely determined by (G, d). Any ordered pair of tours 71,75 €
‘H will be called consecutive when there is no tour 7" in ‘H such that
Ly(Th) < Lg(T) < Lg(T3). For any S C H, define US := U{H: H € S}
and NS := N{H:H € S}. Hence, N"H(k) is the set of edges that are in
all tours of H(k), and UH(k) is the set of edges that are in at least one
of the tours in H(k).
Throughout this chapter we use the following example.

Example. Figure 5.1 shows a weighted graph (G, d) with all its tours
listed in order of length. Note that all tours have different length. This
implies that the set H(k) is unique, for & = 1,...,5. For instance,
H(S) = {H(l),H(Q),H(g)} with L3 = 2, ﬂH(g) = {{2,3},{5,6}}, and
UH(3) = E. O
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Figure 5.1: A weighted graph (G, d) with all its tours.

The tolerance problem for the TSP is to determine by how much the
length of a single edge can be changed while preserving the optimality of
the tour H(y). In other words, the tolerance problem is the problem of
finding, for each e € E, the maximum increase u(e) and the maximum
decrease [(e) in the edge length d(e) while preserving the optimality of
H (1), under the assumption that the lengths of all other edges remain
unchanged (cf. Libura [53]). For each e € E, u(e) and I(e) are called the
upper and lower tolerances of edge e with respect to H(;) and d. Note
that u(e) and {(e) may be infinite. Also note that u(e) and i(e) depend
on Hy), i.e. if multiple optimal solutions exist then u(e) and [(e) are
only valid for the H(;) selected. In Chapter 2 it has been shown that
edge tolerances are “hard” to compute, even if an optimal solution is
given.

In Libura [53] it is shown that for each edge one of its tolerances is
infinite and the other one can be calculated by determining the optimal
value of an auxiliary instance of the TSP defined on a restricted set of
tours. Note that this result is an instance of Theorem 2.2. This fact is
restated in the following theorem.

Theorem 5.1 (Libura [53]).
For e € Hy) it holds that l(e) = co and that

u(e) = min{Ld(H) :HeH,e ¢ H} - Ld(H(l)),
For e € E\H(yy it holds that u(e) = co and that

l(e) = min{Ly(H): HEH , e € H}=Ly(Hp)). O
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The following corollary identifies the set of edges for which only one
of the tolerances is finite as the set of edges that occur in at least one
tour but not in all of them.

Corollary 5.2 {e € E :u(e) < oo orl(e) < oo} = UH\ NH.

Proof. It follows from Theorem 5.1 that {e € E : u(e) < oo or l(e) <
oo} = {e € Hyy : u(e) < oof U{e € E\Hpy) : l(e) < oo}. We have
that {e € Hyyy @ u(e) < oo} = {e € Hyy: {H € H:e ¢ H} #
0} = {e € Hyy : e ¢ "H} = Hp)\ N'H. Tt can be shown in a similar
way that {e € E\H(y : l(e) < co} = UH\H(y). Hence, we have that
{e € H(l) cule) < oo UA{e € E\H(l) cl(e) < o0} = (H(l)\ NH)U
(UH\H (1)) = UK\ N'H. O
Example (continued). Figure 5.2 gives the lower and upper tolerances

with respect to H(;y and (G, d) in Figure 5.1. For instance, I({1,4}) = 1
and u({2,3}) = 4. O

Figure 5.2: Lower (first number) and upper tolerances (second number).

As mentioned earlier, we assume throughout this chapter that for
a given weighted graph (G, d), with the set of tours denoted by H, an
optimal tour H(;) and all its tolerances are given. For convenience, we
will use a shorthand notation for the various problems that will be dis-
cussed in this chapter. We therefore denote the k-best TSP with known
optimal tour and tolerances by k-best TSP[H, (1) tolerances], where the
“[-]-part” denotes the known information. Similar problems are denoted
under the same convention.
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5.3 A partial ordering of the tours based on the
optimal tour and its tolerances

In this section a partial ordering of the tours in (G, d) will be determined
based on the knowledge of an optimal solution and all its tolerances.
Let 7 denote the set of finite different tolerance values with respect

to (G,d) and H(y), i.e.
T :={ule) : e € Hpyy,u(e) < oo} U{l(e) : e € E\Hy),l(e) < oo}

Note that |7| < |UH\ NH|. In the following theorem it is shown that
the set 7 is empty if and only if G contains exactly one tour.

Theorem 5.3 7 = () if and only if |H| = 1.

Proof. We first prove the -if- part. Let H = {H(y)}. Then, ("H) U
(E\UH) = Hqy U (E\H(y)) = E. Recall from Corollary 5.2 that the
set of edges for which one of the tolerances is finite is equal to UH\ N'H.
Consequently, the lower and upper tolerances for all edges in F are
infinite. Hence 7 = (). Consider now the -only if- part. Suppose, to
the contrary, that 7 = () and |H| # 1. Since, by assumption, G is
Hamiltonian, it follows that [H| > 2. Let {H(), H2)} be a set of 2-
best tours in (G,d). Clearly, Hi)\H 1y # 0. Take any e € H)\H(y).
Then, obviously, min{L4(H) : H € H,e € H} = min{L4(H) : H €
H\{H1)},e € H} = La(H2)). We therefore obtain, from Theorem 5.1,
that I(e) = La(H)) — La(H 1)) = L2 < co. Hence, 7 # {), which gives
a contradiction. U

Let the elements in 7 be ordered in such a way that 7 = {t1,...,t7|}
and 0 <t <ty <... < i) i.e. t; denotes the j-th smallest tolerance
value with respect to H(jy and (G,d). In the following theorem it is
shown that ?; is at least equal to the difference in length between a
longest and a shortest tour in a set of (j + 1)-best tours.

Theorem 5.4 Forall j=1,...,|T|, t; > Lj1.

Proof. The proof is by induction. We first prove that ¢; > Lo. Take
any e € Hyy. Since min{L4(H) : H € H,e ¢ H} = min{Lq(H) :
H e H\{H(l)},e ¢ H} > min{Ly(H): H € H\{H(l)}} = Ld(H(Q)), it
follows from Theorem 5.1 that u(e) > Lo. Similarly, for each e € E\Hy),
it holds that I(e) > L. Since t; is the smallest tolerance value, we have
that 151 Z LQ.
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Next, assume that t; > L1 for j=1,...,i—1andi € {2,...,|T|}. It
has to be shown that ¢; > L;+1. Since ¢; > t;—1, we have that t; > L;.
Assume, to the contrary, that t; < L;;1. Recall from the definition of ¢;
that there is some e € E such that either ¢; = u(e) or t; = l(e). Moreover,
Theorem 5.1 implies that there is some H € H such that ¢t; = Lq(H) —
Ld(H(l)) Then, Ld(H(z)) — Ld(H(l)) =L; <t = Ld(H) — Ld(H(l)) <
Liy1 = Ld(H(i-H)) — Ld(H(l)). Consequently, Ld(H(Z)) < Ld(H) <
La(H(j41y) which is impossible since H(;y and H(;; 1) are consecutive
tours in the ordering of the tours in H. This proves that ¢; > L;11,
which completes the proof. O

Example (continued). Consider (G,d) in Figure 5.1. The tolerances
with respect to H() and d are given in Figure 5.2. We have that 7 =
{1,3,4}, ie. t1 = 1, to = 3, and t3 = 4. Note that t; = Ly = 1,
to > L3 =2, and t3 > Ly = 3. [l

For each tour H in 'H satisfying Lq(H) = Lq(H (1)) +1;, we say that
H corresponds to t;. In the following theorem it is shown that there is
at least one tour corresponding to each finite tolerance value.

Theorem 5.5 For each j = 1,...,|T|, there is at least one tour H in
(G,d) that corresponds to t;.

Proof. By definition, for each j = 1,...,|7|, there is an e € E such
that either t; = u(e) or t; = l(e). Consider the case that t; = u(e).
From Theorem 5.1, it follows that t; = min{L4;(H): H € H,e ¢ H} —
Lq(Hyy). Let H; € argmin{Ly(H) : H € H,e ¢ H}. Then, clearly
Ld(Hj) = mln{Ld(H) : H € H,e §é H} = Ld(H(l)) +tj, i.e. Hj
corresponds to t;. The case that t; = [(e) can be proven similarly. [

For j =1,...,|T], let H; denote a tour that corresponds to ¢;. Since

0 <t <ty <...<t, we obtain the following partial ordering of the
tours in (G, d)

Ld(H(l)) < Ld(Hl) < Ld(HQ) < ... < Ld(H\T\)

Note that the tours Hy), H1, H, ..., Hi7| need not be (pairwise) con-
secutive in (G,d), even if all tours in H have different length. This is
demonstrated in the following example.

Example (continued). Consider (G, d) in Figure 5.1 with |UH\NH| =
10 and |7| = 3. It holds that ¢; = Ld(H(Q)) — Ld(H(l))7 to = Ld(H(4)) —
Ld(H(l)), and t3 = Ld(H(5)) - Ld(H(l)). Hence, H(Q), H(4), and H(5)
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correspond to t1, to and t3, respectively. Hence, from the finite toler-
ances the partial ordering Lq(H (1)) < La(H2)) < Lq(H 1)) < La(H(z))
can be determined. Clearly, the tours H; and Hs are not consecutive in
(G,d) since Ld(Hl) < Ld(H(g)) < Ld(HQ). O

In Theorem 5.5, we have shown the existence of tours corresponding
to the finite tolerance values with respect to (G,d) and H1). We now
turn to the question whether it is possible to actually construct tours H;,
still assuming that H(;) and its tolerances are known. In the following
theorem, it is shown that tours H; can be determined partly from H )
and its tolerances.

Theorem 5.6 Foreachj=1,...,|T|, let H; be a tour that corresponds
to tj. It holds that

{6 S H(l) : u(e) > tj} - Hj and {6 S E\H(l) : l(e) > tj} N Hj = @,
Moreover, if H; is the unique tour corresponding to tj then also
{6 € E\H(l) : l(e) = tj} - Hj and {6 c H(l) : u(e) = tj} M Hj = @

Proof. Let j € {1,...,|7|}, and take any H; € H satisfying Ly(H;) =
La(H1)) + tj. We first show that {e € H(y) : u(e) > t;} C H;. Take
any e € H(jy such that u(e) > t;. Suppose, to the contrary, that e ¢
Hj;. Then, min{L,(H) : H € H,e ¢ H} < Ly(H;), and consequently
applying Theorem 5.1 gives that u(e) < Lq(Hj) — Lq(H(1)) = t;j, which
is a contradiction. The proof that {e € E\H(y : l(e) > t;} N H; =0 is
similar and therefore omitted here.

Now, assume that Hj is determined uniquely in (G,d). We first show
that {e € E\H(y) : l(e) = t;} C H;. Take any e € E\H(;) such that
l(e) = t;. Recall, from Theorem 5.5, that there is a H € H such that
e € H and l(e) = Lq(H) — La(H(y)). Since l(e) = t;, we have that
Lq(H)—Lq(H(1)) = Lqg(Hj) — La(H(1y). However, Hj is unique in (G, d),
meaning that I = Hj, and hence, e € H;. Finally, we show that
{e € Hyy :u(e) = t;} N Hy = (). Take any e € H(y) such that u(e) = t;.
Again, there is a H € 'H such that e ¢ H and u(e) = Lqg(H) — Lqg(H 1))
Since u(e) = t;, it follows that Lq(H) = Lq(H (1)) +t; = La(H;). Then,
from the assumption that H; is unique in (G, d), we obtain that H = H;.
Hence, e ¢ H;, which completes the proof. O

Example (continued). Consider (G,d) in Figure 5.1. Recall that the
tours H(g), H4, and H(s) correspond uniquely to {1 = 1, t2 = 3, and
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t3 = 4, respectively. The sets of edges that are to be included in the
tours H; and the sets of edges that are to be excluded from the tours

Hj are given in Table 5.1. U
J |t {BGH(U : u(e) >tj}U {GEE\H(D :l(e) >tj}U
{6 S E\H(l) : l(e) = tj} {6 S H(l) : u(e) = tj}
11 |{{2,3},{5,6}}U DU {{1,2},{3,4},{6,1},{4,5}}
{{1,3},{2,5},{1,4}, {4,6}}
213 [{{2,3}} U0 DU {{5,6}}
50U DU {{2,3}}

Table 5.1: Subsets of edges (not) being included in tour H;.

The example shows that, in general, the tours H; can only be deter-
mined partly from H(;) and its tolerances by using Theorem 5.6. Using
Theorem 5.6 it is undecided whether edges e with u(e) < t; or i(e) <,
are in H; or not, and if H; is not unique the same holds for edges with
u(e) = t; or l(e) = t;. However, in the case that H; is the unique tour
corresponding to £1, we have the following result.

Corollary 5.7 If |7| > 1 and H; is the unique tour corresponding to
t1 then

Hy={e€ Hpy:ule) >t1yU{e € E\H) :l(e) =t1}.
Proof. It follows from Theorem 5.6 that

{e€ Hpyy :ule) > t1} U{e € ENHy) : l(e) =t1} € Hy
and that

H C E\({e € H(l) : u(e) = 151} U {6 € E\H(l) : l(e) > 151})
= {ee H(l) cule) >t U{ee E\H(l) :l(e) =t}

Hence, H; = {6 € H(l) : u(e) > tl} U {6 € E\H(l) : l(e) = tl}. O

Note that the opposite of Corollary 5.7 does not hold, i.e. the fact
that H := {6 S H(l) : u(e) > tl} U {6 S E\H(l) : l(e) = 151} is a
tour in (G, d) does not imply that H corresponds to t;. For example,
consider (G,d) in Figure 5.3(a) with H(;y indicated by the bold lines.
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The tolerances as well as the tour H, indicated by the bold lines, are
given in Figure 5.3(b). Note that Lq(H) — Lg(Hy)) = 2 > t1 = 1,
meaning that H does not correspond to #;.

This completes the discussion on the partial ordering of the tours
that can be obtained from a given optimal tour and its tolerances. In

the following section we will show that the smallest tolerance value 4
corresponds to the difference in length between an optimal and a second-
best tour and that Hp is a second-best tour in the case that the set of
2-best tours is unique.

Figure 5.3: (a) (G,d) with H(y indicated by the bold lines and (b) the

lower and upper tolerances.

5.4 The 2-best TSP with given optimal tour
and tolerances

In this section we consider the 2-best TSP for the case that an optimal
tour and its tolerances are given, i.e. the 2-best TSP[H(l),tolerances]. It
will be shown that the length of a second-best tour can be determined in
polynomial time and that if H(2) is unique in (G, d) then also the 2-best
TSP[H (1),tolerances} can be solved in polynomial time. Furthermore, it
will be argued that, in general, solving the 2-best TSP[H, (1),tolerances]
may take exponential time.

We start this section by showing that the difference in length between
H(;) and a second-best tour is equal to the smallest value of both the
upper and the lower tolerances.
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Theorem 5.8 If |T| > 1 then
Ly = min{U(e) rec H(l)} = min{l(e) ec E\H(l)} =11.

Proof. Recall from Theorem 5.3 that |7| > 1 implies that [H| > 2.
Hence, Ly is well defined. We first show that Ly = min{u(e) : e € H(y)}.
Recall from Theorem 5.1 that, for each e € H(yy, u(e) = min{L4(H) :
HeH,e §§ H} _Ld(H(l)) Since H\{H(l)} = U{{H c€H:e §é H} e c
H(y}, it follows that

min{u(e) : e € Hp)}
= min{min{Lq(H) : H € H,e ¢ H} : e € Hy)} — La(H 1))
=min{Lq(H) : H € H\{H1)}} — La(H(1)),

which, according to the definition of L4(H(z)), is equal to Lg(Hg)) —
Lq(H(1)) = La. It can be shown in a similar way that Ls = min{l(e) :
e € E\H(}. Finally, note that ?; is the smallest tolerance value in
(G,d) with respect to H(;). Hence, min{u(e) : e € H(y)} = min{l(e) :
ec E\H(l)} =1. [l

Let H be any tour that corresponds to t1. As a corollary of Theorem
5.8, it follows that H is a second-best tour.

Corollary 5.9 For each H € 'H, it holds that {H),H} is a set of
2-best tours in (G,d) if and only if La(H) = La(Hq)) +t1.

Proof. The —only if- part is straightforward. Now consider the —if-
part. Take any Hy € H satisfying Lq(H1) = La(H 1)) +t1. Then, it fol-
lows from Theorem 5.8 that Lq(H1) = Lq(H(1))+Le = min{Ly(H) : H €
H\{H 1)} }, which proves that Lq(H) < Lq(H) for all H € H\{H)}.
Hence, {H(1), H1} is a set of 2-best tours in (G, d). O

Note that, by Corollary 5.9, in order to find a set of 2-best tours, it
is sufficient to find a tour corresponding to ¢;. In the remainder of this
section, we distinguish between the cases that H(2) is unique and that
H(2) is not unique.

First consider the case that H(2) is unique. As a corollary of
Theorem 5.8, we have the following result.

Corollary 5.10 If H(2) is unique then

H(Q) = {6 € H(l) : u(e) > tl} U {6 € E\H(l) : l(e) = tl}-
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Proof. Follows directly from Corollaries 5.7 and 5.9. U

Example (continued). Consider (G,d) in Figure 5.1 with the toler-
ances given in Figure 5.2. Since all tours in (G, d) have different length,
H(2) is clearly uniquely determined in (G,d). We have that ¢; = 1,
so that H(Q) = {6 € H(l) : u(e) > 1} U {6 € E\H(l) : l(e) = 1} =
{{2,3}, {56} U {{1,3},{1,4},{2,5}, {4,6}}. O

Now consider the case that H(2) is not unique, i.e. there are several
tours corresponding to £; in G. Our aim is to construct at least one such
a tour. Unfortunately, the fact that there is more than one second-best
tour does not make it easier to find one. As far as we know for these cases
there is no polynomial algorithm for finding a second-best tour (still
assuming that an optimal tour and its tolerances are known). In order
to make the situation clear, let us summarize. According to Corollary
5.9, starting from an optimal tour and its tolerances, the length of a
second-best tour Hy) can be computed by Lq(H(3)) = La(H1)) + t1.
By using Theorem 5.6, we also know that if e € H(;) and u(e) > ty
then e € Hy) and that if e ¢ Hy) and l(e) > t; then e ¢ H(y). So,
we can always determine the length of a second-best tour, but the more
edges have tolerance value equal to t; the less we know about the tour
H o) itself. Obviously, the more tours there are that together with Hy)
constitute a set of 2-best tours, the more edges have tolerance value equal
to t1. This implies that, roughly speaking, the more second-best tours
there are, the less we can say about them. For example, in the special
case that all tours have the same length, i.e. all edges have tolerance
value equal to zero, then no information about a second-best tour can
be derived form Theorem 5.6. Another, less trivial, example for which
a similar result holds is given in Papadimitriou & Steiglitz [68] where a
graph (G, d) is presented on n = 8k vertices with one optimal tour and
2F=1(} — 1)! second-best tours.

With the above remarks in mind we formulate the following conjec-
ture.

Conjecture 5.11 There is no polynomial time algorithm for solving the
2-best TSP[H y),tolerances] unless P = N'P.

Although we are not able to prove the above statement, we have
several reasons to believe that it is true. In the remainder of this section,
we state several facts that support this conjecture.

First of all, note that the 2-best TSP with known optimal tour, i.e.
the 2-best TSP[H ()], is N’P-hard. This follows immediately from the
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fact that the Second Hamiltonian Cycle Problem, i.e. the problem of
determining whether a given graph with a tour contains a second tour,
is N"P-complete; see Johnson & Papadimitriou [40].

As we discussed before, by knowing an optimal tour and its toler-
ances, we are able to derive two additional pieces of information:

1. The length of a second-best tour, i.e. Lg(H(y)), and

2. Some information about which edges are and which edges are not
contained in a second-best tour (by using Theorem 5.6).

It will be shown that having this information is not enough to solve the
2-best TSP[H (1),tolerances| in polynomial time.

First, we consider the complexity of the 2-best TSP[H1),La(H a))],
i.e. the 2-best TSP with given optimal tour and length of a second-best
tour. Clearly, the problem here is only to construct the second-best
tour, i.e. there is no corresponding decision problem (the existence
of a second-best tour is given). In Papadimitriou [67] such problems
are called total functions. In the following theorem it is shown that
the existence of a polynomial time algorithm for solving the 2-best
TSP[H(1),La(H2))] is very unlikely.

Theorem 5.12 The 2-best TSP[H 1y,Lq(H 2))] cannot be solved in poly-
nomial time unless P = NP.

Proof. We will show that the existence of a polynomial time al-
gorithm for solving the 2-best TSP[H(),La(H ()] would imply that
P = N'P. Suppose that there exists such a polynomial time algorithm,
say A, whose running time is bounded by some polynomial p(n). Take
an instance of the Second Hamiltonian Cycle Problem, i.e. a graph
G = (V,E) with a tour H € H, and reduce it to the 2-best TSP with a
given optimal tour in the standard way, i.e. every vertex in V becomes a
city, every edge in E gets length 1, and every edge not in £ gets length
2. Let A’ denote the modification of algorithm A such that it counts
each elementary operation and stops when either A’ finds a solution or
the number of elementary operations exceeds p(n). Apply algorithm A’
to this instance of the 2-best TSP with the length of the second-best
tour being equal to n.

Now there are two possibilities. Firstly, assume that the graph G has a
second tour. Then, algorithm A’ receives a feasible input with the correct
length n. Consequently, algorithm A’ will come up with a set of 2-best
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tours in (G,d) with Ly = 0 using at most p(n) operations. Secondly,
assume that the graph does not have a second tour. Then, it can either
happen that algorithm A’ stops because the number of elementary oper-
ations exceeds p(n) or algorithm A’ produces some (unspecified) output.
In the latter case, it can be easily checked in polynomial time whether
the output is a set of 2-best tours in (G, d) with Ls = 0. So, algorithm A’
either finds a second tour with length n, or we know from the behavior
of algorithm A’ that G does not contain a second tour with length n.

Since the Second Hamiltonian Cycle Problem is N'P-complete, the ex-
istence of such an algorithm would imply that P = N'P. O

In Theorem 5.12 it has been shown that in order to solve the 2-best
TSP[H(I),tolerances} in polynomial time, the knowledge of the length
of a second-best tour is not sufficient. This implies that more informa-
tion is required, i.e. also the second piece of information (the knowledge
about which edges to include and which edges to exclude from Hy))
has to be used in order to be able to find a polynomial time algorithm.
However, as we have already discussed, it might turn out that this piece
of information is very limited, and consequently does not provide addi-
tional clues. This gives us yet another reason to believe that Conjecture
5.11 is true.

We close this section by presenting some results from looking at the
2-best TSP[H(l),tolerances} from a different angle. Again, recall from
Theorem 5.6 that some edges are to be included and some edges are
to be excluded from Hg. In fact, the crux of the problem is that we
do not know which of the edges having tolerance value equal to t; are
to be included in H(y) and which not. However, for a given set S in
{e € E\H(y) : l(e) = t1}, the set of tours on the edge set Hy) U S
that contain S can be determined in polynomial time. Moreover, since
the length of a second-best tour is known, it can also be checked in
polynomial time whether this set of tours contains a second-best tour.
We have the following result.

Theorem 5.13 Assume that an optimal tour Hyy, ils tolerances, and
the length of a second-best tour Laq(Hy)) are known.  For each
S C {e € E\Hpy : l(e) = t1}, the problem of determining the set
{H € H: H\Hqyy = S,Lq(H) = La(H)) + t1} is solvable in O(m)

time.

Proof. See Appendix 5.A. U
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Note that if {H € H : H\H(1y = S, Lq(H) = Lq(H(1)) +t1} is non-
empty, each tour contained in it is a second-best tour. Furthermore,
note that Theorem 5.13 implies an algorithm for solving the 2-best
TSP[H y),tolerances|; namely the following: First determine Lq(H(y))
and {e € E\H(y) : l(e) = t1}. Then pick a subset S C {e € E\H(y) :
l(e) = t1} and determine {H € ‘H : H\H(yy = S, Lqy(H) = Lq(H 1)) +t1}.
If this set is nonempty then a second-best tour has been found. Oth-
erwise, select another subset S and continue doing so until the set
{H € H: H\Hyy = S,Li(H) = La(Hp)) + t1} is nonempty. Un-
fortunately, this algorithm is, in general, not polynomial because in the
worst case all possible subsets S in {e € E\H(j : l(e) = 1} are to be
considered. Actually, this is in line with Conjecture 5.11. In conclu-
sion we can say that having the set S is a vital piece of information
in order to solve the 2-best TSP[H(l),tolerances} in polynomial time.
However, there is no way to obtain S from the tolerances, so that the
above discussion provides another reason to believe that Conjecture 5.11
is true.

5.5 The k-best TSP with given optimal tour
and tolerances is N'P-hard for k > 3

In this section we will show that the problem of solving the k-best TSP
is NP-hard for k > 3 even if an optimal tour and its tolerances are
given.

Throughout this section it will be assumed that H(2) is uniquely de-
termined. Obviously, if this assumption does not hold then the problem
of finding a third-best tour is more or less the same problem as finding
a second-best tour.

Unfortunately, the length of a third-best tour cannot be determined
in a similar way as the length of a second-best tour. The reason is that,
in general, the equality Lq(H(3)) = Lq(H(1))+t2 does not hold even if all
tours in H have different length. This is demonstrated in the following
example.

Example (continued). Consider (G,d) in Figure 5.1. Recall that all
tours have different length. We have that to = Lq(H)) — La(H(1)) =
3. Consequently, H(4) in (G,d) corresponds to ta, so that Lg(Hz)) —
Ld(H(l)) 75 to. [

The above example shows that there may exist tours in (G,d) for
which the tolerances do not provide any information about their length.



120 CHAPTER 5. USING STABILITY INFORMATION FOR SOLVING THE K-BEST TSP

Further analysis shows that this is the case for all tours H in H for which
all edges that are both in H(;) and H(y) are also in H and that all other
edges in H are either in H(y) or in H(y). The set of all such tours will
be denoted by Hs, i.e.

Hs :={H e H\H(2):"H(2) CHCUH(2)}.

The following theorem gives an expression for the length of a third-best
tour.

Theorem 5.14 Let H(2) be the unique set of 2-best tours in (G,d). If
|7| > 2 then

Lq(H3)) = min {Ly(H 1)) + to, min{Lq(H) : H € H3}}.
Otherwise, Lqy(H3)) = min{Ly(H) : H € Hs}.

Proof. We first consider the case that |7| > 2. By the assumption
that H(2) is unique, it follows from Theorem 5.1 that u(e) > t; for all
e € NH(2) and l(e) > ¢; for each F\ UH(2). Hence, we have that

to = min{min{u(e) : e € NH(2)}, min{l(e) : e € E\ UH(2)}}.
It follows from Theorem 5.1 that

min{u(e) : e € NH(2)} (5.1)
= min{min{Ly(H):H € H,e ¢ H}:e € "H(2)}—La(H 1))

Tt can be shown in a similar way that
min{l(e) : e € B\ UH(2)} (5.2)
— min{Ly(H) : H € H\H(2), H ¢ UH(2)} — La(Hy)).
Combining (5.1) and (5.2) gives that
ty = min{Ly(H) : H € H\H(2),"H(2) ¢ H or H ¢ UH(2)}—La(Hy)).

So, it holds that min { Lq(H1)) 4 t2, min{ Lq(H): H € H3} } = La(H 3)).
If 7] < 2 then u(e) > oo for all e € NH(2) and I(e) > oo for
each E\ U H(2). Consequently, Ly(H)) = min{Lq(H) : H € H\
H(2),"H(2) C H CUH(2)}} = min{Lq4(H) : H € H3}. O
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Example (continued). Consider (G,d) in Figure 5.1, we have that
H(2) = {{2,3},{5,6}}, UN(2) = E, and H3 = {H(3)}. Furthermore,
to = Ld(H(4)) — Ld(H(l))- Hence, Ld(H(3)) = min{Ld(H) :H e Hg} [
It follows from Theorem 5.14 that in order to find the length of the
third-best tour, we need to solve the problem min{L4(H) : H € Hs}.
Before discussing the computational complexity of this problem, we will
first develop some intuition with respect to the set Hs, and therefore of
the sets MH(2) and UH(2).
We first show that MH(2) is nonempty.

Theorem 5.15 If'H(2) = {H(y), H(g)} is uniquely determined in (G, d)
then Hyy and Hyy are not edge-disjoint (i.e. WH(2) #0).

Proof. Suppose, to the contrary, that NH(2) = 0. Let xz,y € F be
arbitrary edges such that @ € H(;y and y € H(y). In Thomason [95]
it is proven that the graph formed by the edge-disjoint tours H ;) and
H y) contains an even number of pairs of edge disjoint tours with  and
y in the same tour. Let H, H' be one such a pair, and assume that
{z,y} € H. Hence, the tours H and H’ are pairwise different with
Hqy and H(y), because neither H(1) or H() contains both the edges
x and y. Since H(2) is uniquely determined in (G, d), it holds that
La(Hpy) + La(Hg)) < La(H) 4 Lq(H'). Furthermore, it follows from
HUH' = H(l)UH(Q) that Ld(H(l))+Ld(H(2)) = Ly(H)+Lg(H'). Hence,
we have a contradiction. O

In the following theorem a sufficient condition is given for Hs being
the empty set. In contrast to Theorem 5.15, the fact that {Hy), H(2)}
is set of 2-best tours will not be used in this result.

Theorem 5.16 If |NH(2)| > n— 3 then Hz = 0.

Proof. The proof is based on Sierksma [83]. Note that we only have to
consider the cases that | N H(2)| = n — 3,n — 2. First consider the case
that |H1yNH )| = n—2,i.e. Hp) is obtained from H(jy as the result of
a 2-edge interchange. In a 2-edge interchange two edges, say {a,b} and
{¢,d}, are replaced by two new edges, {a,c} and {b,d}, such that H )
is again a tour in G, i.e. Hy) = (Hq)\ {{a,b},{c,d}})U{{a,c},{b,d}}.
We will show that H3 is empty. Suppose, to the contrary, that Hsz # 0,
say H € Hs. If {a,b} € H then {a,c},{b,d} ¢ H. Hence, {c,d} € H,
and consequently H = H(y), which is a contradiction. If {a,c} € H
then {a,b},{c,d} ¢ H. Hence, {b,d} € H, and consequently H = Hy),
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which again gives a contradiction. This proves that Hz = () for the case
|H(1) N H(2)| =n—-2.

Now consider the case that |H )y N Hp)| = n — 3, i.e. H(y) is obtained
from H(;) by applying a 3-edge interchange. In a 3-edge interchange
three edges, say {a,b}, {c,d} and {e, f}, are replaced by three new
edges such that H,) is again a tour in G. If no two edges of {a, b}, {c,d}
and {e, f} are adjacent, then the edge set H(y) \ {{a,b},{c,d},{e, f}}
can be extended into a tour in four ways, schematically depicted in
Figure 5.4, labeled from (1),...,(4). If two of the edges {a,b}, {c,d}
and {e, f} are adjacent, then the edge set H(y) \ {{a,b},{c,d},{e, f}}
can be extended into a tour in three ways, shown in Figure 5.4, labeled
from (5),...,(7). For each form of H ), one can easy check that Hs =
(). Consider for instance (1), i.e. Hy) = Hp\{{a,b},{c,d},{e, f}} U
{{a,c},{b,e},{d, f}}. Suppose, to the contrary, that Hs # (), say H €
Hs. If {a,b} € H then {a,c},{b,e} ¢ H. Hence, {c,d},{e, f} € H, so
that {d, f} ¢ H. Consequently, H = H(yy, which yields a contradiction.
If {a,b} ¢ H then {a,c},{b,e} € H. Hence, {c,d},{e, f} ¢ H, so that
{d, f} € H. So, H = H(3), which yields a contradiction and proofs that

Hs = O
4
i no two edges of {{a,b}, {c d} {e,f}} are adjacent
f e /\
Ha
®) (6)

Two edges of {{a,b},{c,d}{e,f}} are adjacent

Figure 5.4: All possible 3-edge interchanges.

Note that according to the Theorems 5.14 and 5.16, it follows that if
H () and H 9 differ in either a 2 or 3-edge interchange, then H(3) = Ho.
However, if H() and H() differ by a k-edge interchange with 4 < k <
n — 2 then Hs need not be the empty set, and consequently the problem
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of finding a third-best tour might be more complex. Figure 5.1 shows an
example with a nonempty set Hs for the case that H(y and H o differ
in a 4-edge interchange.

From Theorem 5.14 it is clear that the complexity of finding a third-
best tour is determined by the complexity of finding a shortest tour in
‘Hs. It will be shown that this problem is in fact N"P-hard. In order to
do so, it will first be shown that the following problem is N"P-complete.

Restricted 3"¢ tour problem
Instance: A pair of tours 77 and 75 in a graph on n > 3 vertices.
Question: Is there a tour H such that H ¢ {T1,7T»} and

N1, CHCTyUTY?

We establish a reduction from the

374 tour problem

Instance: A pair of tours 77 and 75 in a graph on n > 3 vertices.

Question: Is there a tour H such that H ¢ {T1,T»} and
HCTHUIy?

which was proven to be N'P-complete in Papadimitriou [66]. In that pa-
per the problem was formulated as: Does a given graph that is restricted
to the union of two tours contain a third tour?

Note that the 3"¢ tour problem and the restricted 3" tour problem
are really different. For instance, the graph of Figure 5.5, which is formed
by the tours 17 and 715, contains one more tour denoted by 73. It holds
that T3 C Ty UT5, but 11 N1, SZ Ts.

0 D@ O ®
NN
® 5@ % @\ .e
9 6@ 60 5 G
T, T, T,

Figure 5.5: A graph that is both a “yes-instance” of the 3" tour problem
and a “no-instance” of the restricted 3" tour problem.
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In the following theorem it is shown that the restricted 3™ tour
problem is as hard as the 3¢ tour problem.

Theorem 5.17 The restricted 3" tour problem is N'P-complete.

Proof. We give a reduction from the 3™ tour problem to the restricted
37 tour problem. Take an instance of the 3¢ tour problem, i.e. tours
Ty and Tb such that T # 1% and T3 NT% # (. The set of edges that
are in both 17 and T5 can be partitioned in a number of paths. Clearly,
every path in 77 N T4y of length larger than 1 is contained in all tours
of G =1T1 U T3, because such a path contains vertices that only can be
visited by traversing it. Now consider the paths in 77 NT5 of length 1,
i.e. edges {7, 7} that are both contained in T} and T3 which are not ad-
jacent to other edges in 71 NT,. Let z,y,2z,w be vertices such that
the edges {w,},{j,2},{=,i},{4,y},{é,j} are pairwise different, with
{w, i}, {i,5}, {4, 2} € Th, and {z,i},{4,5},{j,y} € Ta. Construct a
graph G’ from G as follows. Remove the edge {j,y} and add a new
vertex ij together with the edges {i,ij},{ij,y},{ij,7}; see Figure 5.6
where G and G’ are shown as multi-graphs.

Figure 5.6: Reducing the 3™ tour problem to the restricted 3¢ tour
problem.

Note that the graph G’ is formed by the tours 7] = (..., w,i,ij,5,2,...)
and Té =(...,7,1,7,15,Y,...). Also note that, apart from the paths of
length larger than 1, {éj,7} is the only edge that is contained in both
tours. It is now easy to see that there is a tour 1" in H if and only if
there is a tour 77 in G’. The corresponding tours are as follows:

T=(..,w0i74,2...) < T =(..,wi1j7j2,...)
T={(..,24,59,...) < T =(..,2,47159,...)
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T:("'7w7/l:7j7y7"') — T,:("'7w7i7j7ij7y7"')
T={(..,2,0,5,2,...) < T =(..,2,4,ij,j,2,...)
T:("'7:'677:7/1'[]7'"7y7j7z7"') s T,:("'7I77:7w7'"7y7ij7j7z7"')'

The left side shows the ways a tour T in H can traverse the vertices
x,Yy,1%,j,w, 2z, and the right side shows the ways a tour 7" in G’, con-
taining the edge {ij,j}, can traverse the vertices z,y,1,7,4j,w, 2. For
each form of T, the < symbol indicates the corresponding from of 17,
and vice versa. Note that the edges {i,4j},{ij,y},{ij,7} in G’ can be
traversed in one more way, namely by (...,y,ij,%,7,2,...). However,
this is not a “yes-instance” of the restricted 3"¢ tour problem, because
this tour does not contain the edge {ij,j}.

So, in conclusion, the given instance of the 3"¢ tour problem is a “yes-

instance” if and only if the corresponding instance of the restricted 37
tour problem is a “yes-instance”. Since the3™® tour problem is N'P-
complete, it follows that the restricted 3™ tour problem is N'P-complete
as well. O

We now turn our attention to the complexity of the 3-best TSP with

given optimal tour and tolerances. It will be shown that the decision
version of the k-best TSP[H(l),tolerances], namely

k-best TSP decision[H ;) tolerances| (k > 1)

Instance: A weighted graph (G,d) with a given optimal tour Hy)
and its tolerances. A number B € TR.
Question: Is there a set H(k) in (G, d) such that Ly < B?

is N"P-complete for k = 3.

Theorem 5.18 The k-best TSP decision[H y,tolerances] is N'P-com-
plete for k = 3.

Proof. We give a reduction from the restricted 3" tour problem to the
3-best TSP decision|[H y),tolerances]. Take an instance of the restricted
37 tour problem, i.e. tours T} and T such that T} # Tp. Assume, with-
out loss of generality, that T3 NT, # (). Recall that the set of edges that
are both in 77 and 7% can be partitioned in a number of paths. Let p
denote the number of paths in T3 N7, i.e. p > 1. Fori=1,... p, let s;
and f; denote the endpoints of path ¢. The transformation is as follows.

Step 1. Let G' = (V/,E'") with V! =V and E' :=T1 U T>.
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Step 2. Remove the vertices and edges of path 1, except for the ver-
tices s1 and f1. Add new vertices | and f] together with the edges
{s1, 81}, {s1. fih, {Uf1s fido {s1, fid {1, fi} See Figure 5.7.

Step 3. For ¢ =2 ..., p, remove the vertices and edges of path ¢, except
for the vertices s; and f;. Add the new vertex v; and the new edges
{si,vit {vi, fi}

Step 4. Let d'(s1, f1) := 1, and d'(e) := 0 for all e € E"\{{s1, f1}}-

Figure 5.7: Reducing the restricted 3" tour problem to the 3-best TSP
decision|H 1),tolerances].

Note that for each tour in G = 11 U T, there are precisely two corre-
sponding tours in G’, one with length 0 containing the edges {s1, s},
{1, fit, {f1, fi}, and an other with length 1 containing the edges
{s1, f1}, {f1.1}, {fi.s1}. Let T and T} denote the tours in (G',d’)
with length 0 that correspond to the tours 77 and 75, respectively. Note
that T} and T} contain the edges {s1,s)},{s}, f1},{fi, fi} and are both
optimal tours in (G’,d"). Furthermore, it is easy to see (by applying
Theorem 5.1) that the finite tolerances with respect to 77 and d’' are
given by l(e) = 0 for each e € T)\T7, u(e) = 0 for each e € T{\T3,
and u({s1,54}) = u({fi fi}) = U({s1. f1}) = U({sh, f1}) = 1. Hence,
t1 = 0 and t2 = 1. Note that T5\T] = {e € E\T; : l(e) = t1} and
ToNT] ={e €Ty :ule) >t1}.Let B:=0. We will show that there is a
third tour H in H such that T3NTy, € H C Ty UT5 if and only if there is
a set H(3) in (G', d’) such that Lz < 0. (—only if—) Let H be a third tour
in G = T1UTy such that T1NTy, € H C Ty UT,. Let H' denote the corre-
sponding tour in (G',d’) containing the edges {s1, ¢}, {s}, fi},{f1, f1}-
Hence, Ly (H') = 0. Consequently, {77,735, H'} is a set of 3 best tours
with L3 = 0. (—if— ) Assume that there is a set H(3) in (G',d’) such
that Lg < 0. Then, there is tour H in G = T7 U715 such that the cor-
responding tour H' in G’ with length 0 is not equal to 7] or 7. Since
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Ly (H') =0, it follows from Theorem 5.14 that T/ NT) C H' C T U Ty.
Hence, we have that also 171 N1 € H C 11 U15. So, there is a third
tour H in G =T7 UT5 such that Th N1, C H C Ty UTs.

So, in conclusion, the given instance of the restricted 3¢ tour prob-
lem is a “yes-instance” if and only if the corresponding instance of the
3-best TSP decision|H 1) tolerances| is a “yes-instance”. Since the re-
stricted 3¢ tour problem is N'P-complete, it follows that the 3-best TSP
decision[H yy,tolerances] is N'P-complete as well. O

Note that if the k-best TSP decision[Hy),tolerances| is polynomi-
ally solvable for k > 3, then the 3-best TSP decz’sion[H(l),tolerances} is
polynomially solvable as well. Hence, we have the following corollary of
Theorem 5.18.

Corollary 5.19 The 3-best TSP decisz’on[H(l),tolemnces] is N'P-com-
plete.

Following the same reasoning as for the TSP and its decision version
(see e.g. Johnson & Papadimitriou [40]), there is a polynomial-time
algorithm for the k-best TSP[H(yy,tolerances| if and only if there is a
polynomial time algorithm for the k-best TSP decision|H, (1),t01erances}.
Hence, as a corollary of Theorem 5.18, we obtain the main result in this
section.

Corollary 5.20 The k-best TSP is N'P-hard for k > 3, even if an
optimal tour and its tolerances are given.

5.6 Tolerances with respect to a transformed
length vector

In this section we present a transformation of the length vector such
that all tours get a different length and a tour can be easily constructed
from its length. It will be shown that if the transformation is used,
then stronger results can be derived than the ones given in the previous
sections. In particular, it will be shown that if an optimal tour and
its tolerances are given with respect to the transformed length vector,
then all tours H; can be determined and the 2-best TSP is polynomially
solvable.
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We assume throughout this section that all edge lengths d(e) are
integer-valued and that the edges in E are labeled from e; up to ep,.
Define the vector ' € Q™, for i =1,...,m, by

d'(e;) := d(e;) + 107" (5.3)

Note that each subset of edges S in E can be determined uniquely from
the decimal part of the length Ly (S).

In the following theorem it is shown that d’ preserves the partial
ordering in (G,d), that all tours in (G,d’) have different lengths, and
that each tour can be determined from its length.

Theorem 5.21 For all tours H and H' in (G,d') with H # H', the
following assertions hold.

1. Ly(H) # La(H').
2. Ide(H) < Ld(H/) then Ld/(H) < Ld/(H/).

3. If L is the length of a tour in (G,d’), then a tour H with Ly (H) =
L can be determined in O(m) time.

Proof. In the proof we will use the following claim.

Claim: For all subsets S, 5" in (G, d'), it holds that

1. Ly _q(S) = Ly _q(5) if and only if S =5,

2. —1< Ld/_d(S) — Ld/_d(S,) < 1.

The proof of the claim is straightforward and therefore omitted here.

(1) Note that Lg(H) = Lg(H') if and only if both the integer and
the decimal parts of Ly (H) and Ly (H') are equal. We have that
Ld/(H) = Ld(H) —+ Ld/,d(H) and Ly (H’) = Ld(H/) + Ld/,d(Hl). It fol-
lows, from the assumption that all edge lengths d(e) are integer-valued,
that Lq(H),Lq(H') € Z. Hence, Ly_q(H) and Ly_q(H') are the deci-
mal parts of Ly (H) and Ly (H'), respectively. Now recall from Claim 1.
that Ly _¢(H) = Ly_q(H') if and only if H = H'. So, H # H' implies
that Ldl (H) 75 Ld/ (HI)

(2) ‘We have that Ld/ (H) - Ld/(H,) = (Ld(H) + Ld/_d(H)) - (Ld(H,) +
La-4(H")) = La(H) — Ly(H') — (Lar—a(H') — La—q(H)). Since, by
assumption, L4(H) and Lg(H') are integer-valued, it follows from
Lqy(H) < Ly(H') that Lgy(H) — Lg(H') < —1. Furthermore, recall from
Claim 2. that (Ldl_d(H/) —Ldl_d(H)) > —1. Hence, (Ld(H) —Ld(H/)) —
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(La—a(H') = La—a(H)) < =1 = (Lo—4(H') = Ly—a(H)) <O0.

(3) Given Ly (H) for some H € 'H, the edges of H can be determined by
considering the decimal part of the tour length. For¢ =1,...,m, edge
e; is contained in H if and only if the i-th decimal in Ly (H) is equal to
one. Hence, in the worst case all decimals in Ly (H) have to be scanned
in order to determine H from its length, which takes O(m) time. O

Example (continued). Consider again (G,d) of Figure 5.1. The la-
beling of the edges is shown in Figure 5.8. For instance, Ly (H (1)) =
11.0010101111. U

Figure 5.8: Labeling of the edges.

Now, we will investigate how the tolerances with respect to the trans-
formed length vector can be used for solving the k-best TSP. Here we
assume that the optimal tour and its tolerances are determined with
respect to the length vector d’. We like to stress that knowing an opti-
mal tour and its tolerances with respect to (G, d) does not imply that
we are able to determine the tolerances with respect to (G,d’). Fur-
thermore, note that the number of finite tolerances does not change. In
other words, it is necessary to first apply the transformation and then
determine the optimal tour and its tolerances.

As a corollary of the Theorems 5.5 and 5.21, we have that the tours
Hj in (G,d') can be determined in polynomial time.

Corollary 5.22 For j = 1,...,|T|, each tour H; in (G,d') is unique
and can be determined in O(m) time.

Proof. Since all tours in (G,d’) have different length (cf. Theorem
5.21), it follows from Theorem 5.5 that, for each j = 1,...,|7|, there
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is an unique tour H; € H such that Lq(Hj;) = Lq(H(1)) +t;. Applying
Theorem 5.21 gives the corresponding set of edges. [l

Furthermore, as a corollary of the Theorems 5.8 and 5.21, we have
that the 2-best T'SP in (G, d’) with given optimal tour and tolerances is
polynomially solvable.

Corollary 5.23 For (G,d') with |T| > 1, the 2-best TSP with given
optimal tour and tolerances is solvable in O(m) time.

Proof. Recall from Theorem 5.8 that Lo = ¢;. Applying Theorem 5.21
to Lq(H(1)) +t1 gives the corresponding set of edges. O

In contrast to this “good” news, the next Corollary of Theorem
5.18 shows that the k-best TSP for (G,d’) with given optimal tour and
tolerances remains NP-hard for k > 3.

Corollary 5.24 For (G,d'), the k-best TSP[H y),tolerances] is N'P-
hard for k > 3.

Proof. Again, we first show that the 3-best TSP decision[H(l), toler-
ances| for (G, d') with given optimal tour and tolerances is N'P-complete.
We therefore again use the reduction given in the proof of Theorem 5.18.
We only have to modify the tolerance values used in the reduction. This
is straightforward and therefore omitted here. Consequently, the k-best
TSP decision[H ), tolerances| is N"P-complete for k > 3, so that the
k-best TSP is N'P-hard for k > 3. O

Example (continued). Consider (G,d) in Figure 5.1 with the labeling
of the edges given in Figure 5.8. The tolerances with respect to Hy)
and d' are given in Figure 5.9. We have that Lq(H(;)) = 11.0010101111,
t; = 1.1101008889, to = 3.00910089, and t3 = 4.0100909989. Hence,
Ld(Hl) = Ld(H(l)) + ¢ = 12.1111110000, Ld(HQ) = Ld(H(l)) + 1o =
14.0101110011, and Lg4(Hs) = La(H 1)) + t3 = 15.0111011100. Apply-
ing Theorem 5.21 gives that Hy = {e1,eq,e3,¢e4,€5,66} = H(y), Ha =
{62,64,65,66, €9, 610} = H(4), and Hg = {62,63, €4, 66,67,68} = H(5) O

5.7 Conclusion

In this chapter the k-best TSP (k > 2) is considered for the case that an
optimal tour and all its tolerances are given. Firstly, the extra informa-
tion is used to determine a partial ordering of the tours in the weighted



5.7. CONCLUSION 131

graph (G, d). As a second point of interest, the complexity of the k-best
TSP is studied for the case that an optimal tour and all its tolerances
are given. It is shown that the length of a second-best tour can be de-
termined in polynomial time and that the 2-best TSP is polynomially
solvable in the case that the set of 2-best tours in (G, d) is unique. It is
conjectured that the 2-best TSP is NP-hard in the other case. Further-
more, it is shown the k-best TSP with given optimal tour and tolerances
is N'P-hard for k& > 3. Finally, a transformation of the length vector
is presented such that, given an optimal tour and the tolerances with
respect to the transformed length vector, all tours in the partial ordering
can be determined exactly and the 2-best TSP is polynomially solvable.
In conclusion, the knowledge of an optimal tour and its tolerances does,
in general, not provide sufficient information for solving the k-best TSP.

An obvious point for further research is to study the computational
complexity of the 2-best TSP for the case that an optimal tour and all
its tolerances are given and the set of 2-best tours in (G, d) is not unique.
Furthermore, it is of interest to apply the idea of using stability informa-
tion for solving the k-best problem to other combinatorial optimization
problems.

t; =1.1101008889
t, = 3.00910089

t; =4.0100909989

Figure 5.9: Lower (first number) and upper (second number) tolerances.
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Appendix 5.A: The proof of Theorem 5.13

In this appendix we give the proof of Theorem 5.13. We first discuss
two “elementary” results. In the following lemma it will be shown for
each tour H in H and subset S in E\ H that there are at most two tours
on the edge set H U S each containing the edge set S.

Lemma 5.25 For each H € H and S C E\H,{T € H:T\H = S}|<2.

Proof. Take any H € H and S C E\H. We first show that it is
sufficient to consider only graphs with each vertex being incident to
one edge in S. Clearly, there is no tour T in H such that T\H = §
when there is some vertex being incident to more than two edges in
S. Consider therefore graphs with vertices being incident to 0, 1, or
2 edges in S. Assume that the vertices of G are ordered according to
H. First, consider a vertex u in G being incident to two edges in S,
say {u,v} and {w,w}. Hence, each tour T' € H such that T\H = §
does not contain the edges {u — 1,u},{u,u + 1}, so that by removing
the edges {u,w},{u,u + 1} and by introducing a new vertex u’ and
new edges {u,u'}, {v/,w},{v',u+ 1} the number of tours 77 in H' such
that T"\H' = 8’ will not decrease, where 7", H', H', and S’ denote the
corresponding sets in the new graph. Now, consider vertices u,v in G
such that u + 1 < v, u and v being incident to at least one edge in S,
and all vertices w, with u < w < v, not being incident to S. Again, by
removing the verticesu+1,...,v—1 and edges {u,u+1},...,{v—1,v},
and adding the new edge {u,v}, the number of tours 7" in H' such
that T"\H' = S’ will not decrease, where T, H', H', and S’ denote the
corresponding sets in the new graph. This proves that we only need to
consider graphs with each vertex being incident to one edge in S.

In the case that each vertex in G is incident to one edge in .S, we have
that G is cubic and that n = 2|S|. Let H :={e1,...,e,} with ¢, =
{i,(imodn) + 1} for i = 1,...,n. Define Hygg:={e; : i = 1,...,m;1
is odd} U S and Hepen, := {€; : 7 = 1,...,n;i is even} U S. Note that
H,gq and Heyep, are perfect 2-matchings in G. (Recall that any set of
edges M in G is called a perfect 2-matching when each vertex in G is
incident to precisely two edges of M.) We will prove that H,gy and
Heyer, are the only perfect 2-matchings 7' in G such that T\H = S.
Suppose, to the contrary, that there is another perfect 2-matching 7" in
G such that T\H = S. Since T # Hyqq and T # Heyen, it follows that
there is some ¢ € {1,...,n} such that e ;12 modn)+1,€i € T. But,
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then the assumption that each vertex of (G is incident to precisely one
edge in S implies that vertex ¢ is incident to three edges in 1. Hence,
T is no perfect 2-matching, and consequently we have a contradiction.
Hence, Hoqq and Heyen are the only perfect 2-matchings T in G such
that T\H = S. Since both H,4q and Heyep, can be tours, it follows that
HT e H:T\H =S5} <2. O

Figure 5.10 shows a cubic graph G = (V, E), with a tour H indicated
by the bold lines and S = E\H, for which there are two tours in G
containing S. Similarly, Figure 5.11 shows a cubic graph G for which
there is only one tour containing .S.

%@% Q@?; %

H even

Figure 5.10: Graph G with two tours containing 5.

Sifse
¢35 %

even

Figure 5.11: Graph GG with only one tour containing S.

For each H € H and S C E\H, the set of all tours T in H such that
T\H = S can be determined by applying Algorithm 5.1 below.
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Algorithm 5.1: Determining tours 7" in G such that T\H = S.

Input: The graph G = (V, E) where H denotes the set of
tours in G. A tour H in G and a set S C E\H.
Output: Theset {T'e H:T\H = S}.

¢ Label the vertices in such a way that vertex 1 is incident to S ’;
u:=1;2:=0;
while v < |V| do
begin
if ¢ vertex u is incident to two edges in S’
then begini:=i+ 1; F; := () end;
‘ Let v be the next vertex that is incident to S ’;
ui=v;1:=1+1;
E;:= {u,u+1},...,{v—1,v}}
end;
Hogqg =U{E; :j=1,...,4;jis odd} U S
Heven :=U{E;:j=1,...,i;jis even} U S
{TeH:T\H =S5} :=HN{Hoid, Heven }-

The correctness of Algorithm 5.1 will be established in the following
lemma.

Lemma 5.26 For each H € H and S C E\H, Algorithm 5.1 deter-
mines the set {T' € H : T\H = S} in O(m) time.

Proof. Take any H € ‘H and § C E\H. Assume that the vertices
are labeled as in Algorithm 5.1, and let Ej;, for j =1,...,7, be the sets
determined by Algorithm 5.1. Determine the corresponding cubic graph
G' = (V',E') by applying the constructions described in the proof of
Lemma 5.25. Let S” denote the set of edges in G’ that corresponds to
S in G. The tour H in G corresponds to the tour H' = {ej,...,e;} in
G, with e; = {7, (jmodi) 4+ 1} for j = 1,...,47. Note that edge e; in
G’ corresponds to the edge set Ej in G. Furthermore, each tour in G
corresponds to a tour in G’, but not the other way around.

Now, recall from Lemma 5.25 that there are at most two tours 7" in

G’ such that T'"\H' = 5', defined by H_,;, = U{e; : j = 1,...,% j
is odd} US" and H,,,, := U{ej : j = 1,...,i;j is even} U S". The

even

corresponding perfect 2-matchings in G are defined by Hyqq := U{E} :
j=1,...,4;jisodd}US and Heypen, := U{E; : j =1,...,4;j is even}US.
Since each tour T"in ‘H such that T\ H = S corresponds to either H] ,; or
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7

H,,.,, only the corresponding perfect 2-matchings Hygq and Heyen can

be tours 7" in H such that T\H = S. Hence, theset {T' € H: T\H = S}
can be determined by taking the intersection of { Hogq, Heven } and H.

In the worst case, all vertices and edges in G need to be considered
by Algorithm 5.1 taking O(m) time. Furthermore, checking whether
H,gq and Heyer, are tours in G can also be done in O(m) time, so that
{T' € H:T\H = S} can be determined in O(m) time. O

Now we are ready to prove Theorem 5.13.
Proof of Theorem 5.13. First, apply Algorithm 5.1 with H = H(y)
in order to determine {H € ‘H : H\H) = S}. Next, for each tour
in {H € H: H\Hy = S} check whether it has length Lg(H 1)) + t1.
Since Algorithm 5.1 runs in O(m) time, the set {H € ‘H : H\H;) =
S, Ly(H) = Lq(H(1)) +t1} can be determined in O(m) time. O
Example (continued). Consider (G, d) in Figure 5.1 with the tolerances
given in Figure 5.2. Applying Algorithm 5.1 to H = H(;) and S = {e €
E\Hqyy : l(e) = t1} = {{1,3},{1,4},{2,5},{4,6}} gives that F = 0,
Ey = {{172}}7 B3 = {{273}}7 Ey = {{374}}7 Es = ®7 Ee = {{475}}7
E; = {{5,6}}, and Eg = {{1,6}}. The sets Hyqq and Heye, are shown
in Figure 5.12. Note that only H,g4g is a tour in G. Since Ly(Hogqq) =
La(H(1)) +t1, it follows that Hygq is a second-best tour in (G,d). O

Figure 5.12: H,4q and Heyen in (G, d).
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