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Chapter 8

Discussion

The primary objective of this thesis is to develop a new method, the latent in-

strumental variables (LIV) method, to solve and test for regressor-error depen-

dencies in linear models. The traditional instrumental variables (IV) method

is limited in its use because it requires the availability of instruments of de-

cent quality. In many situations such instruments are not available. Besides,

in applications where instruments are available, the performance of inferential

procedures critically depends on the quality of such variables, and results have

to be interpreted with caution. The proposed LIV method allows for consis-

tent estimation in the presence of regressor-error dependencies and testing for

such dependencies without having observed instrumental variables at hand. In

this chapter we present the conclusions of our findings. Table 8.1 gives an

overview of the main topics and findings of the chapters. Furthermore, we

provide a discussion of the LIV model and suggest steps for further research.

8.1 Summary and conclusions

An important assumption in the linear regression model is independence of

the regressors and the error term. In chapter 2 we presented five situations

in which this assumption is questionable: (i) relevant omitted variables, (ii)

measurement error, (iii) self-selection, (iv) simultaneous equation models, and

(v) lagged dependent variables and autocorrelation. In many empirical ap-

plications one or more of these situations may apply and standard estimation
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8.1 Summary and conclusions 221

procedures for the linear regression model are known to give biased and incon-

sistent results. Important examples are, for instance, estimating the effect of

marketing mix variables in sales response models and estimating the return to

education on income. Studies in marketing and industrial economics (Berry,

Levinsohn and Pakes, 1995, or Besanko, Gupta and Jain, 1998) find that the

estimated price response parameter in choice models is biased towards zero

when endogeneity of prices is ignored. Managerial decisions based on price

response measures that are not corrected for endogeneity are likely to have un-

derestimated the effect of a price change on sales or market share. Similarly,

policy makers that rely on the OLS estimates for the return to education (Card,

1999) find themselves over-ambitious because the true effect of education on

wages can be expected to be lower. Hence, ignoring endogeneity leads to false

conclusions and erroneous decision making.

The ‘classical’ instrumental variables (IV) method can be used to estimate

models where regressor-error dependencies may be present. This method as-

sumes that an additional set of instruments is available that can be used to

separate the endogenous regressors into an exogenous part and an endogenous

part. If the instruments are of good quality, then the IV estimates are known to

be consistent. However, the literature review given in chapter 2 points out two

problems with classical IV estimation: (i) instruments need to be available, and

(ii) performance of the IV method critically relies on the quality of the instru-

ments used. Despite (ii), these variables are often chosen on basis of ad-hoc

arguments or convenience, as in many empirical applications instruments are

not readily available. Several studies in econometrics have proposed solutions

to the problem of weak instruments (Stock, Wright and Yogo, 2002, and Hahn

and Hausman, 2003). The results from these studies present a toolbox with

methods and tests to improve on classical IV inference in presence of weak

instruments. Most of these studies, however, do not address instrument endo-

geneity and are conditional on the availability of a set of instrumental variables.

For empirical problems the question how and where to find instruments is still

open. The latent instrumental variables (LIV) method presented in chapter 3
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addresses this issue right at the heart. We propose a new method that doesnot

require the availability of observed instrumental variables. We prove that the

LIV model parameters can be identified through the likelihood and we illus-

trate the method on synthetic data. The simulation studies show that the LIV

model gives consistent results for the regression parameters and the proposed

test to test for regressor-error dependencies has a reasonable power across a

wide variety of settings. These results are obtainedwithout having observed

instrumental variables at hand. In addition, the LIV model gives identical re-

sults to classical IV estimation for a measurement error application where a

laboratory dummy instrumental variable is available. Furthermore, we show

that the LIV results are rather insensitive to misspecification of the true number

of categories of the discrete instrument. These results are important for em-

pirical researchers because our ‘instrument-free’ approach does not require the

necessity of first finding good quality instrumental variables when regressor-

error dependencies are suspected.

In chapter 4 we extend the simple LIV model by allowing for additional exoge-

nous regressors and possible available instruments. Furthermore, we discuss

several implementation issues that complete an LIV analysis. The results of the

identification proof for the more general LIV model suggest two procedures to

investigate the validity of instrumental variables: (i) a test for a zero effect

of the instrument on the endogenous variable (i.e. whether the instrument is

‘weak’), (ii) a test for a direct effect of the instrument on the dependent vari-

able (i.e. whether the instrument is exogenous). Our synthetic data results

show that the proposed procedures have a reasonable power to detect ‘bad’

quality instruments. Furthermore, our results indicate that the LIV estimates

for the regression parameters are rather insensitive to misspecification of the

true distribution of the error terms. This can be expected, since the LIV model

belongs to the class of mixture models, that are known to be flexible in adapt-

ing to a broad range of distributions.

The literature review in chapter 5 illustrates the difficulties in estimating the

return to education on income due to potential ability bias and the lack of good
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quality instrumental variables. The LIV results for three empirical datasets in-

dicate an upward ability bias of approximately 7%. This number is close to

recent results from twin studies (Card, 1999). On the contrary, the classical

IV results are highly unstable, inconsistent with the traditional ability bias crit-

icism, and suffer from large standard deviations. We investigate the quality

of the available instrumental variables in the three datasets and compare them

with the ‘optimal’ LIV instruments. We find in two of the three applications

that the available instruments are weak and/or exogenous. In all cases the opti-

mal LIV instruments are found to be much stronger and, hence, the LIV results

are more efficient than the classical IV results. The results that we find are con-

vergent and lend credibility to the usefulness of the LIV method in empirical

settings.

Chapters 6 and 7 consider endogeneity problems in multilevel models. In many

applications data has an hierarchical structure, which introduces additional er-

ror terms and possible endogeneity-relations in the model. The model we con-

sider in chapter 6 has two levels, and endogeneity may arise at the individual-

specific level (level-one) or at the group level (level-two). In this chapter we

review previous literature on estimating random intercept models in presence

of regressor-error dependencies. Traditional methods (fixed-effects estima-

tion, the Hausman-Taylor approach, Mundlak’s approach) to solve for level-

two dependencies are shown to be limited in their use in presence of level-one

dependencies. Our results reveal that even small violations of level-one in-

dependence may lead to fallacious conclusions in applying these traditional

methods. Besides, we provide evidence that the problem of weak instruments

also applies to multilevel applications, in particular to multilevel methods that

solve for level-one dependencies, but also to the Hausman-Taylor approach to

address level-two dependencies. We argue that much work needs to be done

before problems of endogeneity in multilevel models can be adequately ad-

dressed and we present a list of open problems.

In chapter 7 we address two issues. Firstly, we present a solution for two

multilevel models discussed in chapter 6 that may suffer from regressor error-
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dependencies: the standard (random-intercept) multilevel model and the ran-

dom coefficient regression model with individual-level covariates to explain

part of the heterogeneity-variance. Furthermore, we suggest how our results

may improve on the standard Hausman-Taylor approach. Secondly, we pro-

pose a nonparametric Bayesian method to alleviate the discreteness assump-

tion of the unobserved instrument. The model can be estimated using Markov

Chain Monte Carlo methods. The advantage of a Bayesian approach is that it

provides a general framework that can be extended easily to incorporate more

general models (e.g. choice models or models with several endogenous vari-

ables). Besides, a Bayesian analysis facilitates exact small sample inference.

By assuming that the unobserved instrument has a Dirichlet prior process, the

unobserved distribution of the instrument can adapt to any distribution. As op-

posed to the LIV model, it is not necessary to specify the number of support

points of the mixture distribution since the model estimates the distribution

from the available data. We present several simulation studies and show that

the results are promising, yet several issues are still open for future research.

8.2 Limitations and future research

There are several issues concerning the LIV method that we did not address in

this thesis. We will discuss the following issues in more detail below:

• Methodological (technical) issues

– Large sample results
– Identification in more general settings
– Testing for a discrete instrument
– Relation with classical IV estimation

• Substantive issues

– Extensions to more than one endogenous variable
– Choice models and more general GLM
– Self-selection problems
– Comparison to Lewbel’s approach and heterogenous LIV
– Straightforward testing for endogeneity
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– Generalizing the unobserved instrument

These issues mostly apply to the standard LIV model introduced in chapters 3

and 4. A discussion on and steps for further research for the Bayesian approach

in chapter 7 was given in section 7.5.

8.2.1 Methodological (technical) issues

Large sample results.Two technical issues that we did not address in this the-

sis are the consistency and the asymptotic distribution, that approximates the

finite sample distribution, of the LIV estimator. The simulation studies pre-

sented in this thesis indicate that the LIV estimates are consistent, but we have

not yet proven this.

The LIV estimates are maximum-likelihood (ML) estimates and consistency

can be examined using basic results from maximum likelihood theory (e.g.

Ferguson, 1996). Redner and Walker (1984), and Titterington, Smith and

Makov (1985) summarize large sample results for ML estimation in mixture

models, the class to which the LIV model belongs. They find that asymptotic

theory for mixtures is not always straightforward because of possible singu-

larities in the likelihood surface. Besides, the likelihood may be unbounded.

However, Titterington, Smith and Makov (1985) state that the regularity con-

ditions for consistency and asymptotic normality are satisfied in many well

known and commonly occurring cases.

It may be more interesting, however, to investigate whether the regression pa-

rameterβ, which is not a mixing parameter in the LIV model, can be estimated

consistently by maximum likelihood when the model fitted has fewer compo-

nents than the actual model. In other words, can consistency be proven for

m = 2, regardless of whether the true value form is larger than two. The

simulation studies in section 3.5 suggest a positive answer to this question.

Besides, if one has a set of strong instruments at hand, then adding a few ad-

ditional instruments does not change the asymptotic results in a classical IV

framework.
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Two recent articles (Cheng and Liu, 2001, and Zhu and Zhang, 2004) estab-

lish asymptotic theory for comparing nested mixture models in which case the

distribution is represented by a subset in the parameter space. Their results

suggest that under certain regularity conditions the ML estimator converges

to an arbitrary point in this subset, and quantities of interest such as means

or variances may be estimated consistently even though the distribution is not

uniquely represented. These results are supported by our simulation results in

section 3.5. Andrews (1999) considers asymptotic theory for extremum esti-

mators (e.g. ML) when a parameter is on the boundary. His results are inter-

esting because he establish conditions under which the asymptotic distribution

of a subvector of the parameter is not affected by the true values of another

sub-vector being on a boundary of a parameter space. For instance, he shows

that for a random coefficient model, the quasi-ML estimator for the regression

coefficients are asymptotically normal whether or not some of the random co-

efficient variances are zero. His theory appears to be very general and may be

applicable to the LIV model. The conditions he establishes, however, may be

difficult to verify.

The LIV model in reduced form is quite similar to measurement error models,

although standard measurement error models assume zero covariance between

the errors. As mentioned in section 2.4, the grouping results of Wald (1940)

and Madansky (1959) are similar in thought to the grouping idea of the LIV

model. Wald and Madansky assume that a grouping of the data into two groups

exists, or can be constructed. Once a ‘valid’ grouping is available, a line can

be drawn, because it is determined by two points. This line is estimated con-

sistently under certain conditions (e.g. Neymann and Scott, 1951). Madansky

also considers another grouping method from an ANOVA point of view, where

ki observations forXi , i = 1, ..., k, are available. He shows that the within

mean square error and between mean square error can be used to obtain a con-

sistent estimate forβ when the grouping is independent of the model error1,

hence, consistency is independent ofk. The LIV model does not assume prior

1See also his discussion on the Housner-Brennan estimate (p. 189 - p. 191).
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existence of such a grouping and uses mixture methodologies to classify the

sample into groups. The results that we found using synthetic data also suggest

that consistency of the LIV estimate forβ does not depend on the number of

categories chosen for the discrete instrument.

Another model closely related to the LIV model is a measurement error model

considered by Kiefer and Wolfowitz (1956), who prove the consistency of the

ML estimator in the presence of infinitely many incidental parameters. The

model considered is

Xi 1 = αi + ui

Xi 2 = θ01+ θ20αi + νi , (8.1)

where(νi ,ui ) have a bivariate normal distribution with mean zero and a co-

variance matrix consisting of the elements{d11,d12,d22}. They find that the

maximum-likelihood estimates for(θ1, θ2) are strongly consistent, given that

d11, d22, and d11d22 − d2
12 are bounded away from zero. Reiersøl (1950)

proves for normally distributed errors thatθ1 andθ2 are nonidentifiable if and

only if X1, X2 are constants or normally distributed (cf. Madansky, 1959, p.

180). Something similar was observed in chapter 7 using the nonparametric

Bayesian LIV model. Furthermore, the mixture approach for measurement

error models advocated by Carroll, Roeder and Wasserman (1999), and their

discussion, may be applicable to our framework as well.

Although we have not proven consistency of the maximum-likelihood esti-

mates for the LIV model introduced in chapters 3 and 4, the simulation studies

presented in this thesis suggest that they are. Furthermore, the articles cited

above consider similar models, and provide intuition for the simulation results

found, and a possible starting point to formally prove consistency and asymp-

totic normality ofβ̂LIV
n .

Identification in more general settings.Identification of all LIV model param-

eters was proven in chapters 3 and 4 assuming a bivariate normal distribution
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for the error terms(ε, ν). Although a mixture of normals can adapt to a broad

class of distributions (Kim, Menzefricke and Feinberg, 2004), it is desirable

to generalize the LIV model to allow for non-normally distributed error terms.

In some applications, for instance, the normality assumption may be too re-

strictive and a more robust or general specification (e.g.t , gamma, logistic, or

Gumbel distributions) may be desirable. We found in subsection 4.5.2 that the

LIV model appears to be fairly robust against misspecified errors, although in

case of severe misspecification of the error distribution of the regression equa-

tion this may present a problem. In such a case, a more robust distribution for

the errors may circumvent this.

The existence of a discrete instrument.Identification of the LIV model re-

quires the existence of a discrete instrument with at least two categories. Sub-

sequently, a likelihood-framework can be used to estimate the regression pa-

rameters. Two important questions that were not considered in this thesis are:

(i) is it possible to test for the existence of a discrete instrument, and (ii) what

happens if the category meansπ in (3.1) for k = 2 are not very distinct, i.e.

||π2− π1|| is small?

Recent studies (Cheng and Liu, 2003, and Zhu and Zhang, 2004) have devel-

oped tests to test for a simpler mixture model versus a full mixture model, i.e.

tests of the formH0 : λ(1−λ)||π1−π2|| = 0 versusH1 : λ(1−λ)||π1−π2|| 6=
0. These tests may be applicable to the LIV model to investigate the assump-

tion of the existence of a discrete instrument. However, given that mixture

models are often used to approximate continuous distributions, we feel that

the discreteness assumption, which does not imply thatx is discrete, is not

limiting in most empirical applications. Besides, many classical IV studies

rely on discrete instruments.

The second question is an important issue in the mixture model literature and

is closely related to the information matrix and the Mahalanobis distance be-

tween mixture components. It is known that if the mixture components do not

separate well, large sample sizes may be required to obtain precise maximum-
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likelihood estimates (e.g. Redner and Walker, 1984, or Titterington, Smith,

and Makov, 1985). Something similar was observed in subsection 3.5.3 where

we found for synthetic data that usingm > 2 in the LIV model, increases the

occurrence of degenerate solutions. This is not much of an issue in most ap-

plications since the latent category instrument is a ‘nuisance’ parameter rather

than of theoretical interest. However, estimation may be problematic if the true

distribution of the unobserved instrument consists of only two groups that are

not well separated. In this case the model is weakly identified and this issue is

related to (i). The distribution of the latent instrument is now very close to a

normal distribution, or a constant. Deriving the actual information matrix may

give some insights in these issues. Furthermore, increasing the sample size and

EM-algorithm estimation may improve estimation results in such situations.

Relation with classical IV estimation. The basic LIV model does not as-

sume the existence of observed instrumental variables, and identification is

established through the likelihood. The classical IV approach assumes the ex-

istence of good quality instrumental variables and the model parameters can

be identified via the first two moments or via the likelihood. Although we ar-

gued and showed in both synthetic and real data examples that the LIV model

results are rather insensitive to the different choices form, to different shapes

of the distribution ofx, or to a modest misspecification of the likelihood, re-

searchers who have been using the traditional instrumental variables approach

(i.e. identification via theory and observed data) may be skeptical in adopting

the latent instrumental variables approach. In this research we have not ex-

plicitly pursued the relation with classical instrumental variables, because the

main goal is to formulate a new method that does not require such instruments

(an exception is the study in section 3.6). However, in order to introduce the

LIV method to more traditional IV users, we feel that future research should

emphasize the relation between LIV and classical IV. This can be done in one

or more of the following four ways.

Firstly, as was shown before, the LIV estimates can be used to obtain an a pos-

teriori clustering of the data using Bayes’ rule, which gives the ‘optimal’ LIV



230 Chapter 8 Discussion

instrumentZ̃, an×m matrix. This instrument matrix can be used to compute

a 2SLS estimate for the regression parameters. In a simulation study the fol-

lowing questions can be investigated: (1) are the 2SLS estimates forβ usingZ̃

similar to the LIV estimates, (2) is the optimal LIV instrumentZ̃ uncorrelated

with ε, (3) what is theR2 of a regression ofx on Z̃ compared to theR2 of a

regression ofx on the true (discrete)Z, and (4) what is the relation betweenx

andx̂ = Z̃π̂LIV . For the simulation results presented in section 3.5 we find that

the 2SLS estimate, based on LIV instruments, yields approximately similar

results (means and standard deviations) to the maximum likelihood (LIV) esti-

mate ofβ (in most cases the values are exactly identical, but for the unimodel

case with eight instruments there are small differences). We also examined the

correlation between̂x andε, and the correlation between̂x andx. We found,

on average, that the correlation betweenx̂ and the true errors is approximately

zero, while the correlation betweenx̂ andx was found to be much larger than

zero. Although these preliminary findings suggest that the LIV predicted in-

struments are possibly ‘optimal’, because they are not correlated withε and

are of considerable strength, future research is needed to give more conclusive

results.

Secondly, in empirical applications the LIV instrumentsZ̃ can be profiled us-

ing (additional) observed data. The results in section 3.6, for instance, illustrate

that the predicted LIV instrument is identical to the laboratory temperature ef-

fect. We have not yet found interpretations for the predicted instruments for

‘schooling’ in chapter 5. However, if an instrument can be given a sensible

interpretation, it may inspire confidence in the results found, or even point out

new theories that can be used in subsequent studies to obtain instrumental vari-

ables.

Thirdly, another empirical validation of the LIV model for schooling applica-

tions (chapter 5) can be obtained using twin or sibling data. In twin or sibling

studies the schooling parameter is estimated using a fixed-effects estimator be-

cause unobserved ‘ability’ cancels out within families (see also section 5.3.3

and chapter 6). Ideally, both methods should give similar results. In addition,
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the predictive validity of the estimated LIV model can be examined using the

transformed ‘within-family’ data, since differences in years of schooling of

twins or siblings is exogenous, because the effect of omitted ability is elimi-

nated. However, to assess predictive validity, the schooling variable has to be

measured without error, which is questionable, see recent results on twin stud-

ies (e.g. Bonjour et al., 2003, Hertz, 2003, Isacsson, 2004).

Finally, it is interesting to investigate in what situations the LIV model can

be used to improve efficiency in standard IV models if ‘valid’ observed in-

struments are available. Since IV estimates often suffer from large standard

deviations, addition of an unobserved discrete instrument may improve on ef-

ficiency. Furthermore, the more traditional IV users are now still identifying

the model through a priori formed theories or reasoning. The simulation study

in section 4.4 indirectly addresses this issue and we found that combining ob-

served instruments with a latent discrete instrument may be beneficial.

8.2.2 Substantive issues

Extensions to more than one endogenous variable.Although one right-hand

side endogenous variable is the most commonly occurring situation (cf. Hanh

and Hausman, 2003), applications may suffer from two or more endogenous

regressors. For instance, marketing managers not only set prices based on

unobserved information, but also other marketing mix variables like advertis-

ing or shelf-space location (Chintagunta, Kadiyali, and Vilcassim, 2003, Man-

chanda, Rossi, and Chintagunta, 2004). Furthermore, in estimating the return

to schooling it is common to include measures for experience and squared

experience that are constructed from ‘years of schooling’, and hence also en-

dogenous (Verbeek, 2000).

The nonparametric Bayes approach in chapter 7 is applicable to problems with

more than one endogenous variable. The standard LIV model in (3.1) can

be extended to (say)l endogenous variables by taking forxi a (l × 1)-vector

and extending the variance-covariance matrix6 to a(l + 1)× (l + 1) matrix.

Hence, the more general LIV model is a mixture of(l + 1)-dimensional mul-
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tivariate normal distributions. The identification proof has to be modified and

we suspect that a discrete instrument with at least two categories has to exist

for each endogenous variable. Consequently, the resulting mixture LIV model

hasm ≥ 2l categories. Simulation studies and theoretical results need to be

obtained prior to applying the outlined approach to empirical applications.

Choice models and more general linear models (GLM).The models consid-

ered in this thesis are simple linear models. However, for many applications

the linearity assumption is too restrictive whereas endogeneity may be present.

For instance, most studies cited in subsection 2.1.4 and section 2.3 (methods

that model demand, cost, and competition) are choice models. An interesting

and important extension of the simple LIV model is a generalization to this

class of models.

Observed choices can be modeled using a random utility framework. It is as-

sumed that the alternative with the highest utility is chosen. Lety j denote the

(unobserved) utility derived from choosing alternativej = 1, ...,m, and letc

be the observed choice. Thenc = j if y j = maxl=1,...,m yl . The model for the

unobserved utility is just a standard linear model. If the errors are assumed to

have a normal distribution and one of the explanatory variables is endogenous,

then model (3.1) can be augmented with the maximum utility framework to

obtain a ‘LIV-probit’ model. Furthermore, the LIV approach can be applied

to the type of problems and the linearization of choice models introduced by

Berry (1994) and Berry, Levinsohn, and Pakes (1995), that has recently gener-

ated a stream of subsequent research.

However, extending endogeneity issues to general nonlinear models is not

straightforward. Dub́e and Chintagunta (2003) argue that “Characterizing [en-

dogeneity] bias is not straightforward in the context of non-linear models [...]

it is unclear how strong the correlation between prices and [the errors] must

be to generate statistical bias. [...] It is also unclear how the endogeneity bias

will manifest itself in the estimates”. Cramer (2004) considers omitted vari-

ables bias in discrete models. He observes that “Even if the omitted variable
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is orthogonal to the other regressors, its effect shows up in the variance of

the disturbance. Since the slope coefficients of discrete models are scaled by

the standard deviation, [...] the remaining coefficients are depressed towards

zero”. Furthermore, he finds that the omitted variables bias may be larger be-

cause of a misspecification of the disturbances. Mullahy (1997) considers de-

pendence of covariates and unobservables in count data models. He observes

that the standard assumption of separable additivity of the unobservables from

the parametric structural model does generally not hold. Hence, even certain

nonlinear IV estimators (e.g. Bowden and Turkington, 1984) may not be con-

sistent. He proposes an alternative approach based on transforming the basic

model that may be more appropriate to use. Foster (1997) also notes that tra-

ditional instrumental variables estimation does not simply extend to non-linear

models. He proposes a non-linear two stage least squares estimator for a logit

model, but the comments made by Mullahy (1997) may still apply. See also

Blundell and Powell (2001a,b) for a more detailed discussion. From this dis-

cussion it becomes clear that extending the LIV approach to general nonlinear

model is of great importance, yet nontrivial because researchers do not agree

on how to model endogeneity in such models.

Self-selection problems.As discussed before, self-selection issues arise when

an individual tends to select itself in a certain state (treated vs. non-treated,

internet user vs. non-user) in a non-random way. A simple self-selection model

is given byyi = β0 + β1di + εi , wheredi is zero or one, depending on the

‘state’ of individual i . This model is similar to (3.1) with a single discrete

endogenous regressor. The LIV model, however, assumes that the endogenous

regressor is a continuous variable. But, using similar arguments as above for

choice models, the LIV approach can possible be extended by incorporating a

probit model forxi to handle self-selection problems.

Comparison to Lewbel’s approach and heterogenous LIV.As mentioned in

section 2.3, Lewbel’s approach (Lewbel, 1997, Erickson and Whited, 2002)

is in spirit similar to the LIV approach in the sense that Lewbel’s approach

also does not require the availability of observed instrumental variables. In-
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stead, Lewbel proposes to construct instruments from the available data based

on higher-order moment restrictions. Subsequently, 2SLS or GMM estimates

can be computed to estimate the regression parameters. The identifying condi-

tions for Lewbel’s approach are not similar to the conditions for the LIV model

(see also appendix 6C). Hence, it is interesting to compare the performance of

the LIV- and Lewbel estimates forβ under the different identifying conditions

using synthetic data.

For instance, identification for the Lewbel estimator requires that the distribu-

tion of the unobserved instrument is non-symmetric. The LIV model, however,

is not restricted to non-symmetric distributions, as was shown in (e.g.) section

3.5. Secondly, as opposed to the LIV model, Lewbel’s approach requiresβ1 in

(3.1) to be nonzero, and situations where it is close to zero are weakly iden-

tified. On the other hand, the LIV model assumes the existence of a discrete

unobserved instrument. If, for instance, the true distribution of the instrument

is a skewed gamma distribution, Lewbel’s method can be used, whereas the

LIV model is ‘technically’ not identified, because all observations belong to

the same group (m= 1). However, as stated before, mixture models are gener-

ally used to approximate continuous distributions, a property that also extends

to the LIV model. This was illustrated for the nonparametric Bayes model in

chapter 7, and the standard LIV model was estimated for a situation where the

latent instrument had a skewed gamma distribution. The LIV model in chap-

ters 3 and 4 assumes that the mixture components forx have equal variances.

This assumption may be too restrictive to approximate general continuous bi-

variate densities of(y, x). Hence, an interesting development is to extend the

LIV model to the class of heterogenous mixture models where the varianceσ 2
ν

in (3.2) can be different for each groupj = 1, ...,m. This model may be very

robust in adapting to any distribution.

We emphasize that Lewbel’s method for measurement error models has not

yet been extended to models with general regressor-error dependencies. The

results presented in appendix 6C for a general multilevel model have, to the

best of our knowledge, not appeared in the literature before.
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Straightforward testing for endogeneity without having instruments.We pro-

posed two tests to test for endogeneity in standard linear models without hav-

ing observed instruments at hand: a Hausman test (section 3.4) and a Wald

test (section 4.6). Both were shown to have a reasonable power to detect an

endogenous regressor. Another asymptotical equivalent test is a Lagrange-

multiplier test (e.g. Greene, 2000). The potential advantage of this test is that

it operates under the restricted model, i.e. whenσεν = 0 (x is endogenous). As

such, the model parametersβ andσ 2
ε can be estimated by OLS in a standard

statistical package, and estimates for the group meansπ , the group sizesλ, and

σ 2
ν , can be obtained using standard software for mixture models. Subsequently,

the estimated values can be substituted in the gradient vector (evaluated at the

restricted parameter vector), which should give a vector of zeros, at least within

the range of sample variability, if the restrictions are valid.

The only complicated step is to evaluate the score vector, that is based on the

first-order derivatives in appendix 3B. However, once these derivatives are

programmed, this test is potentially easy to apply, because it does not require

the availability of observed instrumental variables, and may serve as a standard

diagnostic tool to investigate endogeneity in linear regression estimation.

Generalizing the unobserved instrument.Finally, an interesting empirical ques-

tion is whether the exogenous part (i.e. the unobserved discrete instrument) of

the endogenous regressor can be profiled and given an interpretation. We elab-

orated on this before and suggested to examine the posterior classifications.

Alternatively, one can investigate this formally by using a concomitant mix-

ture model (Wedel and Kamakura, 2000) in which case the prior group sizesλ

are made dependent on individual level covariates, i.e.

λ j |i =
exp

(
γ0 j + v′i γ j

)
∑k

l=1 exp
(
γ0l + v′i γl

) , (8.2)

for j = 1, ..., k. The parameterγ j represents the effect of the concomitant

variablesvi on the prior probabilitiesλ j . As such, each observation has its
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own prior probabilityλ j |i of belonging to thej -th group of the discrete instru-

ment. This generalizes the standard LIV model where the observations have

the same prior probabilitiesλ j . An important question is to investigate under

which conditions inclusion of concomitant variables yields improved results.

For instance, if thevi are observed instrumental variables, this approach may

give more efficient results than classical IV estimation and simple LIV estima-

tion.

Furthermore, it is interesting to investigate whether a generalization of the prior

distribution of the latent instrument can identify patters of endogeneity. For in-

stance, Dub́e and Chintagunta (2003) observe for the results obtained by Yang,

Chen and Allenby (2003), that the pattern of endogeneity is most pronounced

at the lower price levels. In other applications similar observations can possi-

bly be made and the pattern of endogeneity may depend on certain covariates.

In summary, we believe that the LIV method is a powerful approach to address

endogeneity issues, it is simple to implement, and it presents an avenue for

further research and future applications that can shed light on the issues raised

in this discussion.




