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1. Introduction

Using the supersymmetry algebra, there is a standard procedure to construct the super-

gravity multiplets of IIA and IIB supersymmetry. Naturally, the field content of these

multiplets is such that there is an equal number of (on-shell) bosonic and fermionic degrees

of freedom. However, it turns out that additional bosonic spacetime fields, which do not

describe propagating degrees of freedom, can be added to these multiplets. They play an

important role in describing the coupling of supergravity to branes.

An example of this phenomenon is the addition of a nine-form potential to the IIA

supergravity multiplet [1] which couples to a D8-brane. Integrating out this potential leads

to an integration constant that can be identified as the cosmological constant parameter of

massive IIA supergravity [2]. Another example is the addition of a RR ten-form potential

to the IIB supergravity multiplet that couples to a D9-brane [3]. From a string theory

point of view, D9-branes take part in obtaining ten-dimensional type-I string theory from

type-IIB. Indeed, in the closed sector the orientifold projection [4] generates a tadpole,

and tadpole cancellation, i.e. cancellation of the overall RR charge and tension, requires

the introduction of an open sector, corresponding to D9-branes. The ten-form potential

corresponding to these branes does not have any field strength, and therefore there is

no supergravity solution corresponding to the D9-brane. Nevertheless, the RR ten-form

potential can consistently be included in the supersymmetry algebra, and its gauge and

supersymmetry transformations formally determine the world volume action of the D9-

brane, from which the open sector of the low-energy action of the type-I theory is obtained

after truncation. In [5] it was shown that the IIB algebra can be extended in order to

include the RR ten-form and a second ten-form potential. Somewhat surprisingly, it has

been pointed out that these potentials cannot be related by an SL(2, R) transformation [6].
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Recently, these issues were sorted out when it was shown that the ten-form that couples

to the D9-brane transforms as a component of a quadruplet representation under the duality

group SL(2, R) [7] whereas the second ten-form potential of [5] transforms as the component

of a separate doublet representation.

Each of these ten-form potentials couples to a nine-brane. It is the purpose of this letter

to calculate which of these nine-branes correspond to half-supersymmetric BPS objects and

to calculate their tensions.

2. Brane tensions and BPS conditions

To calculate the tension of a single p-brane and to determine the BPS condition it is

convenient to consider the leading terms of the full kappa-symmetric brane action, assuming

that such an action exists. To be precise we consider (in static gauge) the Nambu-Goto

term and the term that describes the coupling of a (p + 1)-form potential A(p+1) to the

p-brane:

Lbrane = τbrane
√−g + εµ1···µp+1 Aµ1···µp+1

. (2.1)

Here τbrane is the brane tension which in general is a function of the scalars at hand (a

dilaton for IIA and a dilaton plus axion for IIB).

We now consider the supersymmetry variation of the brane action (2.1), but keep only

terms linear in the gravitino1. In this letter we restrict ourselves to the IIB theory. We will

consider the IIA case in an upcoming work [10]. The relevant supersymmetry variations of

the spacetime metric gµν and the (p + 1)-form A(p+1) are given by2

δ gµν = 2iε̄γ(µψν) + h.c. , δAµ1···µp+1
∼ f ε̄γ[µ1···µp

σψµp+1] , (2.2)

where f is a function of the dilaton plus axion and σ is one of the three Pauli-matrices3. For

a half-supersymmetric p-brane we require that the brane action is invariant under 16 of the

32 linear IIB supersymmetries (in addition there will be 16 nonlinear supersymmetries).

For this to happen it is mandatory that the supersymmetry variation of the brane action

is proportional to a projection operator that projects away half of the supersymmetry

parameters. In general we find

δLbrane ∼
(
τbrane

�
+ fγ01···p σ

)
ε . (2.3)

This variation is proportional to a projection operator provided

τbrane = f . (2.4)

1A similar variation was considered in [8] in the context of a supersymmetric Randall-Sundrum scenario,

and was also discussed in [9].
2We work with real spinors in string frame, see section 6 of [7]. All spinors are two-component vectors,

with each component being a 16-component Majorana-Weyl spinor.
3This is not the generic situation. Sometimes we are dealing, in the same supersymmetry variation, with

two terms each containing a different Pauli matrix and a different dependence on the scalars. In that case

the formulae below need a slight modification. As an example of such a situation, see the discussion of the

D1-brane below.
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We conclude that requiring supersymmetry in this sector not only determines the brane

tension, via (2.4), but also fixes the BPS condition on the supersymmetry parameter, via

(2.3) and (2.4). Note that, in order to have a projection operator in (2.3) we must have

σ = σ1 or σ = σ3 for p = 1, 5, 9 and σ = iσ2 for p = 3, 7.

Instead of terms linear in the gravitino, one can also consider terms linear in the

dilatino. This requires varying the brane tension in front of the Nambu-Goto term. In all

cases, except for nine-branes (see section 5) we find that all dilatino terms cancel provided

that the same projection operator and the same brane tension is used that follows from

requiring the cancellation of the gravitino terms. This provides a non-trivial check on our

calculations.

3. Strings, three-branes and five-branes

As a key example we consider the fundamental string F1 and the Dirichlet brane D1. These

branes form a doublet under SL(2, R) in which D1 is the S-dual of F1 4.

In a formulation where the world volume vector field has been integrated out5 for both

the F1 and the D1 [11], the Nambu-Goto and Wess-Zumino terms are given by (φ is the

dilaton and ` is the axion):6

LD1 = τD1
√−g +

1

4
εµνCµν , (3.1)

LF1 = τF1
√−g +

1

4
εµνBµν . (3.2)

Here Cµν and Bµν are two-form potentials that transform as a doublet under SL(2, R).

The relevant supersymmetry rules of these potentials are given by

δBµν = 8iε̄ σ3γ[µψν] , δCµν = −8ie−φε̄σ1γ[µψν] + `δBµν . (3.3)

This can be used to determine the tensions and the BPS conditions of the F1- and D1-

branes, as explained above. In this way we find for the fundamental string:

τF1 = 1 ,
1

2

(�
+ σ3γ01

)
ε = 0 . (3.4)

The analysis of the D1-brane is slightly more subtle because, due to the `δBµν term in the

variation of Cµν , the variation of the D1 Wess-Zumino term contains both terms with a σ1

and a σ3 matrix:

δLD1 ∼
(
τD1

�
+ (fσ1 + gσ3)γ01

)
ε , (3.5)

with f = −e−φ and g = `. Since σ1 and σ3 anticommute we find instead of (2.4):

τD1 =
√

f2 + g2 =
√

e−2φ + `2 . (3.6)

Our results so far are summarized in table 1. The table also contains the results for the 3-

and 5-branes which can be derived similarly.

4In this paper we mean by S-duality the discrete Z2 transformation.
5Integrating out the worldvolume vector field is optional. However, to preserve SL(2, R) symmetry one

should do this for both or none of the two branes.
6In this letter all p-forms are real. With respect to [7] in some cases the p-form is multiplied by a factor

of i. In the present case C = iCold.
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potential brane tension projection operator

C(2) D1
√

e−2φ + `2 1
2

(�
+ −e−φσ1+`σ3√

e−2φ+`2
γ01

)

B(2) F1 1 1
2

(�
+ σ3γ01

)

C(4) D3 e−φ 1
2(
�

+ iσ2γ0123)

C(6) D5 e−φ 1
2(
�

+ σ1γ01···5)

B(6) NS5 e−φ
√

e−2φ + `2 1
2

(�
+ e−φσ3+`σ1√

e−2φ+`2
γ01···5

)

Table 1: The two 2-, 4- and 6-form potentials of IIB supergravity and the corresponding branes

in string frame.

We now consider a (p, q)-string (see [12]) where F1 denotes a (1, 0)-string and D1 a

(0, 1)-string:

L(p,q) = τ(p,q)

√−g +
1

4
εµν

(
p Bµν + q Cµν

)
. (3.7)

Again we find in the variation of L(p,q) a combination of two Pauli matrices:

δL(p,q) ∼
(
τ(p,q)

�
+ ((p + `q)σ3 − e−φqσ1)γ01

)
ε . (3.8)

The tension now becomes

τp,q =
√

(p + `q)2 + e−2φq2 , (3.9)

which reproduces the tension formula of [12]. Using Einstein frame this tension formula

can be rewritten in the manifest SL(2, R)-invariant form7

τE
(p,q) =

√
qαqβMαβ , (3.10)

with

qα =

(
q

p

)
and M = eφ

(
`2 + e−2φ `

` 1

)
. (3.11)

4. Seven-branes

Before considering nine-branes, it is instructive to first consider seven-branes. There are

three eight-form potentials8 C(8),D(8) and B(8) that transform as a triplet under SL(2, R),

see table 2. They correspond to the three seven-branes D7, I7 and D̃7, where D̃7 is minus

the S-dual of D7 and I7 changes sign under under S-duality. Note that all seven-branes have

the same projection operator and hence correspond to the single 3-form (or, equivalently,

7-form) central charge in the IIB supersymmetry algebra. This shows that a single central

charge that is invariant under S-duality may correspond to different branes that transform

non-trivially under S-duality.

7Note that τstring = e
−

p+1

4
φ
τEinstein for a p-brane.

8There is a constraint on the nine-form field strengths (see [13, 14, 7]), such that the three eight-forms

describe the same two propagating degrees of freedom as the dilaton and axion.
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potential brane tension projection operator

C(8) D7 e−φ 1
2

(�
+ iγ01···7σ2

)

D(8) I7 `e−φ 1
2

(�
+ iγ01···7σ2

)

B(8) D̃7 e−3φ + `2e−φ 1
2

(�
+ iγ01···7σ2

)

Table 2: The three eight-form potentials of IIB supergravity and the corresponding seven-branes.

Consider now a combination of seven-branes:

L(p,r,q) ∼ τ(p,r,q)

√−g + εµ1···µ8
(
p Cµ1···µ8

+ rDµ1···µ8
+ qBµ1···µ8

)
. (4.1)

The D7-brane corresponds to (p, r, q) = (1, 0, 0), the others accordingly. We find that in

the supersymmetry variation the terms linear in the gravitino are proportional to

δL(p,r,q) ∼
(
τ(p,r,q)

�
+ i

(
p e−φ + r `e−φ + q (e−3φ + `2e−φ)

)
γ01···7σ2

)
ε . (4.2)

This is proportional to a projection operator provided that

τ(p,r,q) = |p e−φ + r `e−φ + q (e−3φ + `2e−φ)| . (4.3)

Using Einstein frame this formula can be written in manifest SL(2, R)-invariant form as

follows:

τE
(p,r,q) = |qαβMαβ| , (4.4)

with

qαβ =

(
q r/2

r/2 p

)
. (4.5)

In contrast to strings we can impose an SL(2, R)-invariant constraint on the matrix qαβ :

det [qαβ ] = −α2 or pq − r2

4
= −α2 , (4.6)

for some α. We see that the D7-brane and the D̃7-brane belong to the α = 0 conjugacy

class but that I7 belongs to the α2 > 0 conjugacy classes. The constraint (4.6) defines co-

dimension 1 surfaces in R
2,1. For α 6= 0 they are hyperboloids and for α = 0 a cone. These

hypersurfaces are homogeneous spaces9, and, therefore, all of them can be constructed as

coset spaces SL(2, R)/Hα where Hα is the isotropy group for a given α. For instance, for

α = 0, we find that H0 is the subgroup of matrices of the form

Λ =

(
1 b

0 1

)
(4.7)

that shift the value of ` by a real constant, which is isomorphic to R.

9We thank Patrick Meessen for discussions of this point.
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potential brane tension projection operator

D(10) S9 e−2φ 1
2 (
�

+ σ3)

E(10) S̃9 e−2φ
√

e−2φ + `2 1
2

(�
+ −e−φσ1+`σ3√

e−2φ+`2

)

Table 3: The doublet of 10-form potentials, their tensions and their projection operators.

We can use the constraint (4.6) to solve for r in terms of p and q:

r(p, q) = ±2
√

pq + α2 . (4.8)

This provides us with a set of (p, q) seven-branes that define a two-dimensional manifold.

For α2 = 0 this manifold is parametrized by

(p, r, q) = (b2, 2bd, d2) , b, d ∈ � . (4.9)

The α2 > 0 and α2 < 0 (p, q) seven-branes form distinct conjugacy classes whose

elements cannot be obtained by any SL(2, R) transformation of the D7-brane which belongs

to the α2 = 0 conjugacy classes. Nevertheless, for each α they represent supersymmetric

seven-branes whose solutions have been constructed [15]. Using a basis with r = 0 and

restricting ourselves to α2 = 0,±1 we can write a representative for each conjugacy class

as follows:

α2 = 0 :




1

0

0


 , α2 = −1 :




1

0

1


 , α2 = 1 :




1

0

−1


 , (4.10)

where the 3-vector indicates a vector with components (p, r, q). This shows that elements

of the α2 = 1 and α2 = −1 conjugacy class correspond to duality transformations of bound

states of D7 branes with D̃7 branes and D̃7 branes (anti S-dual D7-branes), respectively.

5. Nine-branes

We now consider the main topic of this letter: nine-branes. As explained in [7] the ten-form

potentials of IIB supergravity organize themselves in a doublet and quadruplet representa-

tion of SL(2, R). Note that the 10-form potential C(10) that couples to the D9-brane is in

the quadruplet representation. Using the supersymmetry rules given in [7] it is straightfor-

ward to determine the tensions and BPS conditions of the different nine-branes by requiring

the cancellation of all terms linear in the gravitino in the supersymmetry variation of the

different 9-brane actions. The results for the doublet and quadruplet are summarized in

tables 3 and 4, respectively.

The discussion of the doublet of nine-branes is rather similar to that of the doublet of

strings. We find that the tension of a (p, q) nine-brane is given by

τ(p,q) = e−2φ
√

(p + `q)2 + e−2φq2 . (5.1)

– 6 –
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potential brane tension τ and projection operator P

C(10) D9
τ = e−φ

P = 1
2(
�

+ σ1)

D(10) –
τ = e−φ

√
1
9 e−2φ + `2

P = 1
2

(
�

+
` σ1+

1
3 e−φσ3

q

1
9 e−2φ+`2

)

E(10) –
τ = e−φ

√
(1
3e−2φ + `2)2 + 4

9 `2e−2φ

P = 1
2

(
�− (

1
3 e−2φ+`2)σ1+

2
3 `e−φσ3

q

(
1
3 e−2φ+`2)2+

4
9 `2e−2φ

)

B(10) D̃9
τ = e−φ

(
e−2φ + `2

)3/2

P = 1
2

(�− `σ1+e−φσ3√
e−2φ+`2

)

Table 4: The quadruplet of 10-form potentials, their tensions and their projection operators. Note

that there is no half-supersymmetric nine-brane that couples to D(10) or E(10).

In Einstein frame the tension is given by the manifest SL(2, R)-invariant tension-formula

(3.10).

The discussion of the quadruplet of nine-branes is more subtle. We first consider

(p, r, s, q)-branes

L(p,r,s,q) ∼ τ(p,r,s,q)

√−g + εµ1···µ10
(
pCµ1···µ10

+ rDµ1···µ10
+ sEµ1···µ10

+ qBµ1···µ10

)
, (5.2)

in which the (1, 0, 0, 0)-brane represents the D9-brane etc. We find that the tension of a

(p, r, s, q)-brane is given by

τ(p,r,s,q) =

[{
e−φp + `e−φr −

(
1

3
e−3φ + `2e−φ

)
s −

(
`3e−φ + `e−3φ

)
q

}2

+

{
1

3
e−2φr − 2

3
`e−2φs −

(
e−4φ + `2e−2φ

)
q

}2]1/2

. (5.3)

In Einstein frame the manifest SL(2, R)-invariant tension is given by

τE
(p,r,s,q) =

√
qαβγqδεζMαβMδεMγζ , (5.4)

where

q222 = p , q122 = −1

3
r , q112 = −1

3
s , q111 = q . (5.5)

So far we have only achieved the cancellation of the gravitino terms. These cancella-

tions merely serve to derive the tension formulae and the BPS conditions. A first nontrivial

check on supersymmetry is the cancellation of the dilatino terms. Unlike the previous cases

we find that these dilatino terms only cancel provided that

3qr + s2 = 0 , 3ps + r2 = 0 , 9pq − rs = 0 . (5.6)

– 7 –
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Note that these constraints are satisfied by the D9-brane and its S-dual but not by the

other two 9-branes. For generic points (p, r, s, q) the last constraint follows from the first

two but not for special cases. Therefore, it cannot be omitted. For instance, the points

(p, 0, 0, q) solve the first two constraints for general p, q but solving the third constraint

requires p = 0 or q = 0.

To understand the SL(2, R) properties of the constraints (5.6) it is convenient to in-

troduce the matrix Qαβ ≡ qαγδqβεζεγεεδζ or

Qαβ =
1

9

(
2(3qr + s2) 9pq − rs

9pq − rs 2(3ps + r2)

)
. (5.7)

The constraints (5.6) can then be written as Qαβ = 0 and transform manifestly as a triplet

of SL(2, R). Using the constraints (5.6) to solve for r, s in terms of p, q we end up with a

set of (p, q) 9-branes that define a two-dimensional manifold in a four-dimensional space

parametrized by

(p, r, s, q) = (d3,−3bd2,−3b2d, b3) , b, d ∈ R . (5.8)

This manifold can be identified as the SL(2, R) orbit of the D9-brane. It has the isotropy

group (4.7). We thus end up with the same homogeneous space that we encountered for

the orbit of the D7-brane. Unlike the case of seven-branes there are no other conjugacy

classes of half-supersymmetric nine-branes.

Finally, we consider the ”quantized” duality group SL(2, Z). We assume that the brane

charges are quantized. We first consider the linear doublet. The orbit of the S9-brane is

given by: (
a b

c d

)(
1

0

)
=

(
a

c

)
, ad − bc = 1. (5.9)

For any pair a, c of co-prime integers10 we can use the extended Euclidean algorithm to

solve for integers b and d. This shows that if we restrict the duality group to SL(2, Z), all

branes are in the orbit of the S9-brane. Note that the same argument applies to (p, q)-

strings and (p, q) 5-branes. The case of (p, q) 7-branes, where different classes of constraints

appear, is more complex and was treated in [16].

We next consider the non-linear doublet, where we find a similar result: all 9-branes lie

in the SL(2, Z) orbit of a single D9-brane, if we do not count multiple branes of the same

type as independent. This can be seen as follows11 . All 9-branes lie in the SL(2, R) orbit

of the D9-brane, given by the charges (d3,−3bd2,−3b2d, b3). To verify our claim we have to

check that all SL(2, R) transformations of the D9-brane which lead to integer charges are

also elements of SL(2, Z). To obtain integer charges, we must have d3 = u, d2b = v for some

integers u, v. If d and b are not integers themselves, then without loss of generality this

implies b = nd for some integer n 12. Any transformation of that kind, however, leads to a

10If a, c are not co-prime we consider them as multiple copies of a fundamental brane, see [12].
11A similar analysis, with a similar result, can be made of the α2 = 0 conjugacy class of seven-branes,

which contains the D7-brane.
12If only one of them is not an integer, then we do not get integer charges and if both are integers, then

there is either an SL(2, Z) transformation which generates this brane from the D9-brane, or we are dealing

with a multiple brane.
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brane D1 F1 D3 D5 NS5 D7 D̃7 D9 D̃9 S9 S̃9

tension g−1
s 1 g−1

s g−1
s g−2

s g−1
s g−3

s g−1
s g−4

s g−2
s g−3

s

Table 5: The tensions of the basic half-supersymmetric IIB branes, with vanishing axion. In the

case of seven-branes we have not indicated the half-supersymmetric branes corresponding to the

α2 > 0 and α2 < 0 conjugacy classes of SL(2, R).

”multiple” brane with charges u(1,−3n,−3n2, n3), which we do not consider independent,

unless u = d = 1, b = n. In the latter case the brane is connected to the D9-brane by a

SL(2, Z) transformation13. This verifies our claim.

6. Discussion

In this work we have determined the tensions of all half-supersymmetric branes of IIB string

theory, including a linear and nonlinear doublet of (p, q) nine-branes. A brief summary of

the results is given in table 5.

There are some surprises for the nine-branes. The standard D9-brane is part of a

nonlinear doublet. This nonlinear doublet is expected to play a role in the construction

of strings with sixteen supercharges, along the lines of refs. [17 – 19].14 We find an ad-

ditional linear doublet of nine-branes that contains a S9-brane whose tension scales as

g−2
s , i.e. a soliton. An obvious question to ask is: what is the world-volume dynamics

of the S9-brane? We hope to report in this direction in a forthcoming paper [10]. The

precise role of the S9-brane in IIB string theory is still unclear. Perhaps it has a role to

play in the recently proposed non-perturbative open SO(32) heterotic string construction

of [20].15
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