A new catalytic and enantioselective desymmetrization of symmetrical methylidene cycloalkene oxides

Bertozzi, F.; Crotti, P.; Macchia, F.; Pineschi, M.; Arnold, L.A.; Feringa, B.L.

Published in:
Organic letters

DOI:
10.1021/ol005584o

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bertozzi, F., Crotti, P., Macchia, F., Pineschi, M., Arnold, L. A., \& Feringa, B. L. (2000). A new catalytic and enantioselective desymmetrization of symmetrical methylidene cycloalkene oxides. Organic letters, 2(7), 933-936. https://doi.org/10.1021/ol005584o

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A New Catalytic and Enantioselective Desymmetrization of Symmetrical Methylidene Cycloalkene Oxides.

Fabio Bertozzi, Paolo Crotti, Franco Macchia, Mauro Pineschi*
Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy

Alexander Arnold and Ben L. Feringa*
Department of Organic and Molecular Inorganic Chemistry, University of Groningen, Nijenborgh 4, NL9747 AG Groningen, The Netherlands.

General. All reactions were conducted in flame dried glassware with magnetic stirring under an atmosphere of argon. Toluene and diethyl ether were distilled from sodium/benzophenone ketyl and stored under argon. THF and Diisopropylamine were distilled from LiAlH_{4} and CaH_{2} respectively and stored under argon. $\mathrm{Et}_{2} \mathrm{Zn}(1.1 \mathrm{M}$ solution in toluene), EtMgCl (2.0 M solution in THF) and Butyllithium (1.6 M solution in hexanes) were purchased from Aldrich. Methyl-triphenyl-phosphoniumbromide (98\%) and 2-Methyl-1,3-cyclopentanedione (99\%) were purchased from Aldrich. Analytical TLC were performed on Alugram SIL G/UV254 silica gel sheets (Macherey-Nagel) with detection by 0.5% phosphomolybdic acid solution in 95% EtOH. Silica gel 60 (Macherey-Nagel 230-400 mesh) was used for flash chromatography. Solvents for extraction and chromatography were HPLC grade.

Optical rotation were measured on a Perkin-Elmer 241 digital polarimeter with a 1 dm cell. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC-200 spectrometer on CDCl_{3} solution. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 7.26$). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-200 (50 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: $\delta 77.7$). Gas chromatography was performed on a Perkin-Elmer 8420 apparatus (FI detector) using a Chromopak fused silica 25 m X 0.25 mm column, coated with CP-Cyclodextrin-B-236-M-19). In all cases, the
injector and detector temperature was $250^{\circ} \mathrm{C}$ and a $1.8 \mathrm{~mL} / \mathrm{min}$ helium flow was employed. Analytical high performance liquid chromatography (HPLC) was performed on a Waters 600E equipped with a Waters 990 photodiode array detector using a Daicel Chiralcel OD-H column.

1,4-Dimethylidene-2,3-epoxy-2,3-dihydro-naphthalene (8). Typical Procedure for Wittig Olefination. Accordingly to a previously described procedure, ${ }^{1}$ to a stirring suspension of $\mathrm{MePh}_{3} \mathrm{PBr}(8.21 \mathrm{~g}, 23 \mathrm{mmol})$ in anhydrous THF (20 ml) is added by a cannula at $0^{\circ} \mathrm{C}$ a solution of LDA (23 mmol) in anhydrous THF (10 ml). After the reaction mixture was stirred for 1.5 h at $0^{\circ} \mathrm{C}, 2,3$-epoxy-2,3-dihydro-1,4naphthoquinone ${ }^{2}(1.0 \mathrm{~g}, 5.75 \mathrm{mmol})$ in anhydrous THF (5 ml) was added and the mixture was vigorously stirred for 1.5 h at room temperature. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with petroleum ether. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase gave a crude product which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with $20 \% \mathrm{EtOAc}$: hexanes to give 0.745 g (77\%) of pure 8, as a solid. M.p. $=37-39^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.22-7.27 (m, 2H, Ar-H), 5.67 (s, 2H, methylidene-H), 5.45 (s, 2H, methylidene-H), 3.95 (s, 2H, $\mathrm{C}_{2}-\mathrm{H}$ and $\mathrm{C}_{3}-\mathbf{H}$). ${ }^{13} \mathrm{C}$ NMR $\delta 141.29,131.81,129.48,126.04,116.02$, 57.98. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 84.67$; H, 5.93. Found : C, 84.38; H, 5.96.

3,6-Dimethylidene-1,2-epoxy-cyclohexane (7). Following the above described typical procedure 2,3-epoxy-cyclohexan-1,4-dione ${ }^{3}$ (0.160 g , 1.27 mmol) in anhydrous THF (3 ml) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}(4.0 \mathrm{eq})$ in anhydrous THF (8 ml). After 1 h at room temperature the usual work-up afforded a crude product which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with 8% diisopropyl ether: petroleum ether to give 72 mg of pure $7(47 \%)$ as a liquid. ${ }^{1} \mathrm{H}$ NMR $\delta 5.26(\mathrm{~s}, 2 \mathrm{H}$, methylidene- H$), 5.14(\mathrm{~s}, 2 \mathrm{H}$, methylidene-H), $3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{1}-\mathbf{H}\right.$ and $\left.\mathrm{C}_{2}-\mathbf{H}\right), 2.32-2.47\left(\mathrm{~m}, 2 \mathrm{H}\right.$, one of $\mathrm{C}_{4}-\mathrm{H}_{2}$ and one of $\left.\mathrm{C}_{5}-\mathrm{H}_{2}\right), 2.07-2.23\left(\mathrm{~m}, 2 \mathrm{H}\right.$, one of $\mathrm{C}_{4}-\mathrm{H}_{2}$ and one of $\left.\mathrm{C}_{5}-\mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR δ 142.65, 116.63, 58.18, 29.28. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 78.64 ; \mathrm{H}, 8.26$. Found : C, 78.37; H, 8.39.

[^0]

3,6-Dimethylidene-1,2-epoxy-4-cyclohexene (6). Following the typical procedure, 2,3-epoxy-1,4-benzoquinone ${ }^{2}(0.180 \mathrm{~g}, 1.47 \mathrm{mmol})$ in anhydrous THF (4 ml) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}(4.0 \mathrm{eq})$ in anhydrous THF (10 ml). After 45 min at room temperature the usual work-up afforded a crude product which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with 8% diisopropyl ether: petroleum ether to give 67 mg of pure $6(39 \%)$, as a liquid. ${ }^{1} \mathrm{H}$ NMR $\delta 6.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 5.49(\mathrm{~s}, 2 \mathrm{H}$, methylidene-H), 5.38 (s, 2 H , methylidene-H), $3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{1}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{2}-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 139.09,127.02$, 120.0, 56.01. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 79.96 ; \mathrm{H}, 6.72$. Found : C, 79.77; H, 6.69.

1,4-Dimethylidene-2,3-epoxy-cis-2,3,4a,5,8,8a-

hexahydronapthalene (9). Following the typical procedure 2,3-epoxy-2,3,4a,5,8,8a-hexahydro-1,4-naphtoquinone ${ }^{4}(0.712 \mathrm{~g}, \quad 4.0$ mmol) in anhydrous THF (15 ml) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ (4.0 eq) in anhydrous THF (30 ml). After 1.5 h at room temperature the usual work-up afforded a crude product which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with 8% diisopropyl ether: petroleum ether to give 397 mg of pure $9(57 \%)$ as a liquid. ${ }^{1} \mathrm{H}$ NMR $\delta 5.52-5.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{7}-\mathrm{H}\right), 5.37(\mathrm{~s}, 2 \mathrm{H}$, methylidene-H), $5.10\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylidene-H), $3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{3}-\mathrm{H}\right)$, 2.66$2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4 \mathrm{a}}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{8 \mathrm{a}}-\mathbf{H}\right), 1.94-2.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}_{2}\right.$ and $\left.\mathrm{C}_{8}-\mathrm{H}_{2}\right) .{ }^{13} \mathrm{C}$ NMR δ $144.43,125.46,117.23,58.00,36.08,28.87$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 82.71 ; \mathrm{H}$, 8.1. Found : C, 82.93; H, 8.26.

2,2-Dimethyl-4,5-epoxy-cyclopentan-1,3-dione (16). Typical
Procedure for Alkaline Epoxidation. According to a previously described procedure, ${ }^{2}$ to a solution of 2,2-dimethyl-4-cyclopenten-1,3dione ${ }^{5}(400 \mathrm{mg}, 3.22 \mathrm{mmol})$ in acetone $(10 \mathrm{ml})$, at $0^{\circ} \mathrm{C}$, under vigorous strirring, were added $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \%)(120 \mathrm{mg}, 1.12 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)(1.1 \mathrm{ml}$, $9.67 \mathrm{mmol})$. After 1.5 h at room temperature the reaction was quenched with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%)$ and $\mathrm{H}_{2} \mathrm{O}$ (reaction kept cold with ice-water bath), and gave 348 mg of pure $16(78 \%)$, as a pale yellow solid. M.p. $=37-39^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\delta 3.94$ (s, $2 \mathrm{H}, \mathrm{C}_{4}{ }^{-}$ \mathbf{H} and $\left.\mathrm{C}_{5}-\mathrm{H}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H}\right.$, one of $\left.\mathrm{C}_{2}-\mathrm{CH}_{3}\right), 1.11\left(\mathrm{~s}, 3 \mathrm{H}\right.$, one of $\left.\mathrm{C}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR δ 207.57, 57.52, 48.31, 24.05, 20.53. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3}$: C, 59.98; H, 5.76. Found : C, 59.74; H, 5.59.

[^1]Following the typical procedure for Wittig olefination, 5,5-Dimethyl-2,3-epoxy-cyclopentan-1,4-dione $16(0.348 \mathrm{~g}, 2.48 \mathrm{mmol})$ in anhydrous THF $(10 \mathrm{ml})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}(4.0$ eq) in anhydrous THF (20 ml). After 1 h at room temperature the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and the usual work-up afforded a crude product which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with petroleum ether:diethyl ether: $\mathrm{Et}_{3} \mathrm{~N}(95: 5: 1)$ to give 158 mg of $\mathbf{1 0}$ (47\%), as an oil (contaminated with $4 \% \mathrm{PPh}_{3}$). ${ }^{1} \mathrm{H}$ NMR $\delta 5.32$ (s, 2 H , methylidene-H), $5.12\left(\mathrm{~s}, 2 \mathrm{H}\right.$, methylidene-H), $3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{1}-\mathrm{H}\right.$ and $\mathrm{C}_{2}-\mathrm{H}$), 1.17 ($\mathrm{s}, 3 \mathrm{H}$, one of $\mathrm{C}_{4}-\mathrm{CH}_{3}$), $1.15\left(\mathrm{~s}, 3 \mathrm{H}\right.$, one of $\left.\mathrm{C}_{4}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR δ 156.57, 110.71, 61.36, 42.96, 33.66, 28.61. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}: \mathrm{C}, 79.36$; H, 8.89. Found : C, 79.55; H, 8.81.

Determination of Absolute Configurations. The absolute configurations of all 1,4-addiction products $\mathbf{4}, \mathbf{1 7 - 2 0}$ were determined on compound $\mathbf{4}$ by means of the known diastereofacial selectivity of 1 -substituted allylic alcohols with titanium/tartrate/TBHP (Sharpless kinetic resolution AE). ${ }^{6}$ This inherently reliable procedure had been applied quite recently to the related (\pm)-3-methyl-2-cyclohexen-1ol to give optically active products with a known absolute configuration. ${ }^{7}$ Also the comparison of the optical rotation of optically active seudenol $[R-(+)$ and $S-(-)-3-$ methyl-2-cyclohexen-1-ol], 8 an aggregation pheromone from Dendroctonus pseudotsugae, bearing a methyl instead of propyl in the 3 position of compound $\mathbf{4}$, gave us the same indication obtained with the kinetic resolution strategy (see below).

Titanium Tartrate Catalytic Asymmetric Epoxidation of 4. Following the original procedure, ${ }^{9}$ an oven-dried 25 mL two-necked round-bottomed flask was charged with 30 mg of $4 \AA$ powdered activated molecular sieves and with 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an argon atmosphere. The flask was cooled to $-20^{\circ} \mathrm{C}$ and $D-(-)-$ DIPT (10 mg dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6 \mathrm{~mol} \%$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(10.6$ $\mu \mathrm{l}, 5 \mathrm{~mol} \%$) and anhydrous TBHP (0.47 mL of a 3.0 M solution in isooctane, 2 eq.) were added sequentially with stirring. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min . and (\pm)-3-propyl-2-cyclohexen-1-ol (4) ($100 \mathrm{mg}, 0.714 \mathrm{mmol}$) dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added dropwise and the reaction temperature was maintained between $-20^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$. The reaction was monitored by GC and quenched (Ferrous sulfate/tartaric acid work-up) after 2 h (60% conversion). The

[^2]enantiomeric excess of unreacted 4 (35\%) was determined by chiral GC (CP-cyclodex- β-column), programmed temperature rate: $100^{\circ} \mathrm{C} / 7.0 \mathrm{~min}+3^{\circ} / \mathrm{min}$ up to $120^{\circ} \mathrm{C}, S-(-)($ major $) \mathrm{t}_{\mathrm{R}} 17.79 \mathrm{~min}, R-(+)($ minor $) \mathrm{t}_{\mathrm{R}} 18.36 \mathrm{~min}$. The same reaction was also carried out with enantiomeric $L-(+)$-DIPT, affording $R-(+)$ as the major enantiomer of the unreacted substrate 4.

General Procedure for the Enantioselective Ring-Opening of Vinyloxiranes

3 and $\mathbf{6 - 1 0}$ with $\mathrm{Et}_{2} \mathbf{Z n}$. A solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(2.70 \mathrm{mg}, 0.0075 \mathrm{mmol})$ and chiral ligand $(S, S, S) \mathbf{- 1}$ or $(S, R, R)-\mathbf{2}(8.1 \mathrm{mg}, 0.015 \mathrm{mmol})$ in anhydrous toluene $(1.5 \mathrm{~mL})$ was stirred at r.t. for 40 min . The colorless solution was cooled to $-70^{\circ} \mathrm{C}$, additioned with a solution of the epoxide $(0.5 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ and then with 0.68 mL (0.75 mmol) of a 1.1 M solution of $\mathrm{Et}_{2} \mathrm{Zn}$ in toluene $(0.23 \mathrm{~mL}$ for the kinetic resolution protocol, see Table 1). For all reactions, the temperature was allowed to warm slowly to $0^{\circ} \mathrm{C}(3 \mathrm{~h})$ and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$. Extraction with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase gave a crude product which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$.

\boldsymbol{S}-(-)-3-Propyl-2-cyclohexen-1-ol (4). The general procedure was followed, in accordance with a kinetic resolution protocol, employing 55 mg of racemic vinyloxirane $\mathbf{3}^{10}(0.5 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(2.70 \mathrm{mg}, 0.0075$ $\mathrm{mmol})$, chiral ligand $2(8.1 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{Zn}(0.23 \mathrm{~mL})$. The usual workup afforded a crude reaction mixture which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with 10% EtOAc: hexanes to give 18 mg of pure 4 (76% based on unreacted $\mathbf{3}$), as a liquid. TLC ($15 \% \mathrm{EtOAc} /$ hexanes) $\mathrm{R} f=0.14$. $[\alpha]_{\mathrm{D}}=-45.9\left(c=1.08, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR δ 5.41-5.49 (m, 1H, C2-H), 4.15-4.22 (m, 1H, CH-OH), 1.90-1.98 (m, 4H), 1.37-1.84 $(\mathrm{m}, 6 \mathrm{H}), 0.88\left(\mathrm{t}, 3 \mathrm{H}, J=7.32 \mathrm{~Hz}, \mathrm{C}_{3}{ }^{\prime}-\mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 143.15,124.47,66.69,40.41$, 32.73, 29.20, 21.35, 19.84, 14.53. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 77.08$; H, 11.51. Found: C, 77.29 ; H, 11.62. The enantiomeric excess of $4(85 \%)$ was determined by chiral GC (CP-cyclodex- β-column), programmed temperature rate: $100^{\circ} \mathrm{C} / 7.0 \mathrm{~min}+$ $3^{\circ} /$ min up to $120^{\circ} \mathrm{C}, S-(-)\left(\right.$ major) $\mathrm{t}_{\mathrm{R}} 17.79 \mathrm{~min}, R-(+)($ minor $) \mathrm{t}_{\mathrm{R}} 18.36 \mathrm{~min}$.

3-Methylidene-2-ethyl-1-cyclohexanol (5). The first eluting fractions of the above flash chromatography afforded 3 mg of pure 5 (9% based on unreacted 3). TLC ($15 \% \mathrm{EtOAc} /$ hexanes) $\mathrm{R}_{f}=0.20 .{ }^{1} \mathrm{H}$ NMR $\delta 4.83-4.87$ $(\mathrm{m}, 1 \mathrm{H}$, methylidene-H), 4.69-4.74 (m, 1 H , methylidene-H), 3.65-3.74 (m, $1 \mathrm{H}, \mathrm{CH}-$
10) Tanis, S.P.; Herrinton, P.M. J. Org. Chem. 1985, 50, 3988.

OH), 2.02-2.13 (M, 1H, $\left.\mathrm{C}_{2}-\mathrm{H}\right), 1.44-1.85\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 148.5,111.6,73.1,54.1,32.5,30.4,23.5,23.3,12.7$.

\boldsymbol{R}-(-)-4-propyl-1-methylidene-(2H)-2-naphthol (17) The general procedure was followed employing 85 mg of symmetrical vinyloxirane 8 (2.0 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(10.8 \mathrm{mg}, 0.03 \mathrm{mmol})$, chiral ligand 1 ($32.4 \mathrm{mg}, 0.06 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{Zn}(2.70 \mathrm{~mL})$. The usual work-up afforded a crude reaction mixture which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with $20 \% \mathrm{EtOAc}$: hexanes, to give 366 mg of pure 17 (92\%), as a liquid. $[\alpha]_{D}=-172.8\left(c=1.31, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.47-7.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathbf{H}), 7.11-7.21(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.86\left(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 5.48(\mathrm{~s}, 1 \mathrm{H}$, methylidene-H), $5.34(\mathrm{~s}, 1 \mathrm{H}$, methylidene-H), 4.63-4.75 (m, 1H, CH-OH), 2.28-2.38 (m, $2 \mathrm{H}, \mathrm{C}_{1}{ }^{1}-\mathrm{H}_{2}$), 1.34-1.53 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{2}{ }^{\prime} \mathrm{H}_{2}\right), 0.87\left(\mathrm{t}, 3 \mathrm{H}, J=7.32 \mathrm{~Hz}, \mathrm{C}_{3^{\prime}} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 138.43,133.40,129.01$, 128.26, 126.79, 125.86, 124.13, 114.80, 107.44, 69.29, 35.25, 21.85, 14.57. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 83.95 ; \mathrm{H}, 8.06$. Found : C, 83.77; H, 8.04. The enantiomeric excess (66%) was determined on the purified product $\left(\mathrm{SiO}_{2}\right)$ by chiral HPLC (Daicel Chiralcel OD-H column), hexanes / 2-propanol 97:3, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, R-(-)$ $\mathrm{t}_{\mathrm{R}} 19.98, S-(+) \mathrm{t}_{\mathrm{R}} 20.94 \mathrm{~min}$.

\boldsymbol{R}-(-)-3-propyl-6-methylidene-2-cyclohexen-1-ol (19) The general procedure was followed employing 56 mg of symmetrical vinyloxirane 7 (0.46 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}(2.49 \mathrm{mg}, 0.0069 \mathrm{mmol})$, chiral ligand $\mathbf{1}(7.5 \mathrm{mg}$, $0.0138 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{Zn}(0.63 \mathrm{~mL})$. The usual work-up afforded a crude reaction mixture which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with $20 \% \mathrm{EtOAc}$: hexanes, to give 63 mg of pure $\mathbf{1 9}(90 \%)$, as a liquid. $[\alpha]_{D}=-110\left(c=0.96, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR δ 5.47-5.51 (m, $1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}$), $5.01(\mathrm{~s}, 1 \mathrm{H}$, methylidene-H), $4.89(\mathrm{~s}, 1 \mathrm{H}$, methylidene-H), 4.48-4.55 (m, 1H, CH-OH), 2.40-2.53 (m, 1H), 2.21-2.33 (m, 1H), 1.92-2.17 (m, 4H), 1.34-1.52 (m, 2H, C ${ }_{2}{ }^{\prime}-\mathbf{H}_{2}$), $0.88\left(\mathrm{t}, 3 \mathrm{H}, J=7.32 \mathrm{~Hz}, \mathrm{C}_{3}{ }^{\prime} \mathbf{H}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\delta 149.41,143.63,124.11,109.06,69.85,40.02,31.76,29.82,21.37,14.52$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 78.89 ; \mathrm{H}, 10.6$. Found : C, 78.56; H, 10.48. The enantiomeric excess (97%) was determined by chiral GC (CP-cyclodex- β-column), programmed temperature rate: $100^{\circ} \mathrm{C} / 3.0 \mathrm{~min}+3^{\circ} / \mathrm{min}$ up to $120^{\circ} \mathrm{C}, S(+) \mathrm{t}_{\mathrm{R}} 17.89$, $R(-) \mathrm{t}_{\mathrm{R}} 18.09 \mathrm{~min}$.

(4aS, 8aR, 2R)-(+)-4-Propyl-1-methylidene-cis-,5,4a,8,8a-tetrahydro-(2H)-naphthalen-2-ol (18) The general procedure was followed employing 87 mg of symmetrical vinyloxirane $9(0.5 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OTf})_{2}(2.70 \mathrm{mg}, 0.0075 \mathrm{mmol})$, chiral ligand $\mathbf{1}(8.1 \mathrm{mg}, 0.015$ $\mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{Zn}(0.68 \mathrm{~mL})$. The usual work-up afforded a crude reaction mixture
which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with $20 \% \mathrm{EtOAc}$: hexanes, to give 80 mg of pure $18(78 \%)$, a solid. M.p. $=35-38^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=+20.96\left(c=1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 5.52-5.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right.$ and $\left.\mathrm{C}_{7}-\mathbf{H}\right), 5.48\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 5.15(\mathrm{~s}$, 1 H , methylidene-H), $4.84(\mathrm{~s}, 1 \mathrm{H}$, methylidene-H), $4.44(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}, \mathrm{CH}-\mathrm{OH})$, 2.82-2.92 (m, 1H), 1.93-2.42 (m, 7H), 1.33-1.55 (m, 2H, C $\left.2^{\prime}-\mathrm{H}_{2}\right), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.33$ $\mathrm{Hz}, \mathrm{C}_{3}{ }^{\prime}-\mathrm{H}_{3}$). ${ }^{13} \mathrm{C}$ NMR $\delta 149.69,149.08,125.89,125.17,122.08,111.51,70.74$, $39.14,37.76,34.32,28.37,27.07,21.38,14.48$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 82.29$; H, 9.87. Found : C, 82.12; H, 9.86. The enantiomeric excess of $\mathbf{1 8}$ (71%) was determined by chiral HPLC analysis (Daicel Chiralcel OD-H column), hexanes / 2propanol 99:1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}} 7.14 \mathrm{~min}$ (major), $\mathrm{t}_{\mathrm{R}} 8.89 \mathrm{~min}$ (minor) on the corresponding (R)-MTPA ester obtained using a three fold excess of the corresponding (R)-MTPA chloride in anhydrous pyridine in the presence of catalytic amounts of DMAP.

\boldsymbol{R}-(-)-4,4-Dimethyl-3-propyl-5-methylidene-2-cyclopenten-1-ol (20) The general procedure was followed employing 34 mg of symmetrical vinyloxirane 10 (0.25 mmol$), \mathrm{Cu}(\mathrm{OTf})_{2}(1.35 \mathrm{mg}, 0.0037 \mathrm{mmol})$, chiral ligand $\mathbf{1}(4.1 \mathrm{mg}, 0.0075 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{Zn}(0.34 \mathrm{~mL})$. Usual work-up afforded a crude reaction mixture which was subjected to chromatography $\left(\mathrm{SiO}_{2}\right)$ with 10% EtOAc: hexanes, to give 33 mg of pure 20 (80%), as a liquid. $[\alpha]_{\mathrm{D}}=-125.9$ $\left(c=0.52, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 5.44-5.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{2}-\mathrm{H}\right), 5.28(\mathrm{~d}, 1 \mathrm{H}, J=1.71 \mathrm{~Hz}$, methylidene-H), $5.09(\mathrm{~d}, 1 \mathrm{H}, J=1.71 \mathrm{~Hz}$, methylidene-H), 4.96-5.04 (m, $1 \mathrm{H}, \mathrm{CH}-$ OH), 1.92-2.02 (m, 2H, $\mathrm{C}_{1^{\prime}}-\mathrm{H}_{2}$), 1.47-1.65 (m, $2 \mathrm{H}, \mathrm{C}_{2^{\prime}}-\mathrm{H}_{2}$), $1.16\left(\mathrm{~s}, 3 \mathrm{H}\right.$, one of $\mathrm{C}_{4}{ }^{-}$
 164.42, 156.73, 123.96, 107.93, 48.73, 30.39, 29.30, 28.49, 28.35, 21.39, 14.92. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 79.45 ; \mathrm{H}, 10.92$. Found : C, 79.28; H, 10.98. The enantiomeric excess (85%) was determined after chromatography $\left(\mathrm{SiO}_{2}\right)$ by chiral GC (CP-cyclodex- β-column), isothermal $110^{\circ} \mathrm{C}, R-(-) \mathrm{t}_{\mathrm{R}} 33.55, S-(+) \mathrm{t}_{\mathrm{R}} 35.44 \mathrm{~min}$.

Synthesis of Racemic $\mathbf{S}_{\mathbf{N}} \mathbf{2}^{\prime}$ (Conjugate) Adducts 4, 17-20. To a stirring suspension of $\mathrm{CuCN}(9.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, at $-40^{\circ} \mathrm{C}$, was added dropwise $\mathrm{EtMgCl}(2.0 \mathrm{M}$ in THF) ($0.38 \mathrm{~mL}, 0.75 \mathrm{mmol}$). The heterogeneous mixture was allowed to stir for 30 min at the same temperature and was then cooled up to $-65^{\circ} \mathrm{C}$. A solution of the vinyloxirane (0.5 mmol) in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was slowly added and the resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$. The reaction was followed with analytical TLC and was quenched at $0^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Extraction with $\mathrm{Et}_{2} \mathrm{O}$ and evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase gave almost exclusively the corresponding racemic $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ adduct $\mathbf{4 , 1 7 - 2 0}$ for all the employed vinyloxiranes.

[^0]: 1) Marino, J.P.; Abe, H. Synthesis, 1980, 872.
 2) Alder, K.; Flock, F.H.; Beumling, H. Chem. Ber. 1960, 93, 1896.
 3) Abbulut, N.; Balci, M. J. Org. Chem. 1988, 53, 3338.
[^1]: 4) Herz, W.; Iyer, V.S.; Nair, M.G. J. Org. Chem. 1975, 40, 3519.
 5) Agosta, W.C.; Smith, A.B. III. J. Org. Chem. 1970, 35, 3856.
[^2]: 6) Johnson, R.A.; Sharpless, K.B. In Catalytic Asymmetric Synthesis; Ojima, I, Ed.; VCH: New York, 1993; pp 104-108.
 7) Brown, S.M.; Davies, S.G.; Sousa, J.A.A. Tetrahedron: Asymm. 1991, $2,511$.
 8) Mori, K.; Tamada, S.; Uchida, M.; Mizumachi, N.; Tachibana, Y.; Matsui, M. Tetrahedron 1978, 34, 1901.
 9) Gao, Y.; Hanson, R.M.; Klunder, J.M.; Ko, S.Y.; Masamune, H.; Sharpless, K.B. J. Am. Chem. Soc. 1988, 109, 5765.
