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Ferroelectric ceramics are broadly used in applications including actuators, 

sensors and information storage.  An understanding of the microstructual evolution and 

domain dynamics is vital for predicting the performance and reliability of such devices.  

The underlying mechanism responsible for ferroelectric constitutive response is 

ferroelectric domain wall motion, domain switching and the interactions of domain 

walls with other material defects. 

In this work, a combined theoretical and numerical modeling framework is 

developed to investigate the nucleation and growth of domains in a single crystal of 

ferroelectric material.  The phase-field approach, applying the material electrical 

polarization as the order parameter, is used as the theoretical modeling framework to 

allow for a detailed accounting of the electromechanical processes.  The finite element 

method is used for the numerical solution technique.  In order to obtain a better 

understanding of the energetics of fracture within the phase-field setting, the J-integral is 

modified to include the energies associated with the order parameter.  Also, the J-

integral is applied to determine the crack-tip energy release rate for common sets of 

electromechanical crack-face boundary conditions.  The calculations confirm that only 

true equilibrium states exhibit path-independence of J, and that domain structures near 
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crack tips may be responsible for allowing positive energy release rate during purely 

electrical loading. 

The small deformation assumption is prevalent in the phase-field modeling 

approach, and is used in the previously described calculations.  The analysis of large 

deformations will introduce the concept of Maxwell stresses, which are assumed to be 

higher order effects that can be neglected in the small deformation theory.  However, in 

order to investigate the material response of soft dielectric elastomers undergoing large 

mechanical deformation and electric field, which are employed in electrically driven 

actuator devices, manipulators and energy harvesters, a finite deformation theory is 

incorporated in the phase-field model.  To describe the material free energy, 

compressible Neo-Hookean and Gent models are used.  The Jaumann rate of the 

polarization is used as the objective polarization rate to make the description of the 

dissipation frame indifferent.  To illustrate the theory, electromechanical instabilities in 

composite materials with different inclusions will be studied using the finite element 

methods. 
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Chapter I  Introduction 

Ferroelectric materials are used in a broad range of applications due to their 

extraordinary dielectric properties and strong electro-mechanical coupling performance.  

The main applications of ferroelectric ceramics have been for capacitors; ferroelectric 

thin films for nonvolatile memories, pyroelectric sensors, surface acoustic wave 

substrates; and piezoelectric ceramics for medical ultrasound applications.  Ferroelectric 

materials can be categorized into (Kaltenbacher et al., 2011): single crystals; ferroelectric 

ceramics, such as barium titanate ( BaTiO3) and lead zirconate titanate (PZT); and 

polymers, such as polyvinylidenfluoride (PVDF).  The piezoelectric effects in quartz 

and polymers are normally weak in comparison with perovskite structural ferroelectrics, 

which are often used in sensor applications.  Ferroelectric ceramics has strong 

electromechanical coupling performance that is used in actuator applications.  For 

further development of the micro ferroelectric device technology and improvement of 

their performance and reliability, a fundamental understanding of the mechanics and 

physics governing the ferroelectric materials response is vital. 

In general there are four distinct size scales existing in a ferroelectric ceramic: 

atomic, domain, grain and polycrystal.  At the smallest scale, the atomic or lattice scale, 

essentially no phenomenological assumptions need to be made and electronic structure 

calculations have been applied to predict the properties of ferroelectric material (Cohen 

and Krakauer, 1992; Belliache et al., 2000).  Single crystal grains contain many domains 

and are generally larger than one micron, and polycrystals contain many grains and are 

usually hundreds of microns or larger.  At the single crystal grain and polycrystal size 

scales, phenomenological models dominate the constitutive descriptions (Hwang et al., 

1995 and 1998; Chen and Lynch, 1998; Chan and Hagood, 1994; Kamlah and 
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Tsakmakis, 1999; Kamlah and Jiang, 1999; Huber et al., 1999; Landis 2002a and 2003), 

and the effect of domain switching is accounted for in an averaged sense.  Between 

these scales, to simulate the microstructural evolution and domain dynamics, two models 

of domain evolution are usually used: sharp interface models and diffuse interface 

models.  The diffuse interface approach is also called the phase-field modeling 

approach, which allows for a detailed accounting of the electromechanical processes that 

occur during domain nucleation and growth.  

In this dissertation, the phase-field modeling approach is applied to investigate the 

nucleation and growth of domains in a single crystal of ferroelectric material.  In order 

to obtain a better understanding of the energetics of fracture within the phase-field 

setting, we propose a modified J-integral form to include the energies associated with the 

polarization order parameter, and also demonstrate how the J-integral can be applied to 

determine the crack-tip energy release rate for common sets of electromechanical crack-

face boundary conditions.  

The small deformation assumption is prevalent in the phase-field modeling 

approach.  The analysis of large deformations will introduce the concept of Maxwell 

stresses, which are assumed to be higher order effects that are often neglected.  

However, in order to investigate the material response of soft dielectric elastomers 

undergoing large mechanical deformations, which are widely employed to manufacture 

devices as electrically driven actuators, manipulators and energy harvesters, the finite 

deformation theory will be incorporated in the phase-field model.  First we develop 

finite deformation phase-field theory, and then we investigate the instabilities in dielectric 

elastomer composites. 

Some background and features of ferroelectric materials will be introduced in the 

next sections, and then the outline of this dissertation will be listed. 
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1.1 BACKGROUND 

Ferroelectrics are the materials which possess a spontaneous electric polarization 

which can be reversed in direction or reoriented by applying an external electric field that 

is larger than the coercive field.  This process is known as “switching”, and is 

accompanied by hysteresis.  This behavior is mainly observed below the transition 

temperature or Curie point, and above this critical point the material will show normal 

dielectric/paraelectric behavior.  The name “ferroelectrics” is due to a formal analogy 

between ferroelectric phenomenon and ferromagnetism, however, there is no iron in 

ferroelectrics as the prefix “ferro-” might seem to imply.  The phenomenological 

similarity is, ferroelectric materials show a spontaneous electric polarization and 

hysteresis effects in the relation between electric polarization and electric field, just as 

ferromagnetic materials exhibit a spontaneous magnetization and hysteresis in the 

relationship between magnetization and magnetic field.  Ferroelectric materials have 

properties that are an indirect consequence of ferroelectricity, such as piezoelectric and 

pyroelectric properties.  

In 1824, Brewster observed the pyroelectric effect from various kinds of crystals. 

Pyroelectric crystals show a spontaneous polarization in a certain temperature range.  

The value of the spontaneous polarization depends on the temperature, and this 

phenomenon is called the pyroelectric effect.  All single crystals and successfully poled 

ceramics which show ferroelectric behavior are pyroelectric, but not necessarily vice 

versa.  

In 1880, Pierre and Jacques Curie discovered the piezoelectric effect by showing 

that Rochelle salt crystals demonstrate electric polarization when mechanically 

compressed and change shape when an electric field is applied.  The name 

“piezoelectricity” was proposed by Hankel.  Piezoelectricity is a linear interaction 
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between mechanical and electrical behaviors.  The direct piezoelectric effect is where 

electric polarization is produced by mechanical stress, and the converse effect is when 

mechanical strain is generated by the application of a voltage.  The direct piezoelectric 

effect is used to make sensors, and the converse piezoelectric effect is used for actuation.  

In 1921, ferroelectricity was first discovered by Joseph Valsek in the investigation 

of the Rochelle salt.  Seignette or Rochelle Salt was the first material found to show 

ferroelectric properties such as a spontaneous electric polarization, ferroelectric domains 

and a ferroelectric hysteresis loop (Valasek, 1921).  The spontaneous electric 

polarization is defined by the value of the dipole moment per unit volume or by the value 

of the charge per unit area on the surface perpendicular to the axis of polarization.  

Ferroelectric materials are piezoelectric and have an intrinsic dipole moment or remanent 

polarization (Jona and Shirane, 1962; Lines and Glass, 1977). 

In the 1950’s, a large amount of research was done on ferroelectric materials, 

leading to a widespread use of barium titanate ( BaTiO3) based ceramics in capacitor and 

transducer devices.  Since then, many other ferroelectric ceramics including lead titanate 

( PbTiO3), lead zirconate titanate (PZT) and lead lanthanum zirconate titanate (PLZT) 

have been developed and utilized for a variety of applications (Buchanan, 1986).  

 

1.2 FEATURES OF FERROELECTRICITY 

Perovskite ceramics, such as lead and barium titanate, exhibit ferroelectricity 

below a Curie temperature Tc.  Above this critical temperature, the material has a cubic 

structure and is paraelectric, while below Tc the structure is tetragonal and the material 

is ferroelectric.  The chemistry of a material can be manipulated such that other 

structures, e.g. rhombohedral or orthorhombic, may also be present.  To better 
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understand the material properties of ferroelectrics, such as remanent electric 

polarization, piezoelectricity, ferroelectricity, and ferroelasticity, a simplified and 

exaggerated schematic of the microscopic crystal structure of barium titanate is illustrated 

in Figure 1.2.1.  

 

 

Figure 1.2.1:  A simplified schematic of the crystal structure of barium titanate is 

illustrated above.  The crystal illustrations include lead or barium ions 

(+2,blue), oxygen ions (-2, green), and a titanium ion (+4, red).  As in other 

ferroelectric materials, this material demonstrates interesting physical 

behaviors including temperature, stress and electric field induced phase 

transitions, pyroelectricity, and domain switching.  (Adapted from Landis: 

http://www.ae.utexas.edu/~landis/Landis/Research.html) 

As shown in the figure, when the temperature is higher than the Curie point, the 

unit cell is cubic.  The positively charged titanium ion (Ti, +4) is in the center of the 

cell, eight positively charged barium ions (Ba, +2) are at the cube corners, and six 
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negatively charged oxygen ions (O, -2) are in the center of the cube faces.  In this cubic 

state, the center of the positive charges and negative charges coincide with each other, 

such that the unit cell possesses no polarization.  In this state called the paraelectric 

phase, no ferroelectricity exists in the material.  When the material is cooled down 

below the Curie temperature Tc, the cubic configuration becomes unstable, and the 

crystal undergoes a phase transition from the paraelectric phase to a ferroelectric phase, 

and the unit cell changes from high symmetry to a lower symmetry.  For a tetragonal 

cell the central ion is displaced parallel to one of the edges, such that the titanium ion will 

shift away from the center of the unit cell.  The positions of the centers of the positive 

and negative charges no longer overlap, which leads to a polarization dipole.  Now the 

unit cell possesses spontaneous polarization, and consequently piezoelectric properties.  

When a relatively small electric field is applied to the unit cell with spontaneous 

electric polarization, the ions tend to move along with the electric field, which changes 

the relative position of the centers of positive charges and negative charges.  The 

movement gives rise to the change of electric polarization, and this is cause of the 

dielectric effect in ferroelectric materials.  At the same time, when the ions change their 

position, the unit cell is elongated or shortened, which leads to mechanical strain.  This 

is called the converse piezoelectric effect.  Similarly, when a small stress is applied, the 

unit cell is elongated or shortened, which changes the relative positions of the centers of 

positively and negatively charged ions, giving rise to the change of the electric 

polarization.  This effect is called the direct piezoelectric effect.  Finally the geometric 

change of the unit cell induced by the stress field is observed as mechanical strain, and 

this effect is the elastic material response.  
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        (a)     (b)    (c) 

Figure 1.2.2:  The perovskite crystal structure of lead or barium titanate and a schematic 

of the free energy of the material associated with the high temperature cubic 

phase (a) and the low temperature tetragonal phase (b) and (c).  The crystal 

illustrations include lead or barium ions (+2, blue), oxygen ions (-2, green), 

and a titanium ion (+4, red).  (a) Above the Curie temperature Tc the 

material resides in the cubic phase and the material free energy ψ  is 

convex with a single well at zero polarization.  (b) Below Tc a cubic to 

tetragonal phase transition occurs and the material free energy becomes non-

convex with multiple wells associated with the possible spontaneous 

polarization states.  (c) Under the application of a strong electric field, the 

material energy barrier can be overcome and the polarization can switch to 

another variant. 

If a large electric field or stress field larger than the coercive strength is applied, 

the material response is nonlinear.  For example, when a large electric field with the 

direction opposite to the material spontaneous electric polarization is applied, the central 

titanium ion will move back towards the center of the cell and eventually shift towards 

the opposite direction to the initial polarization.  This phenomenon is called 180° 

switching, since the direction of electric polarization is reversed with the application of 

the large electric field.  This switching behavior is the fundamental mechanism 

associated with ferroelectricity.  When the direction of applied electric field is 

perpendicular to the initial electric polarization, and the electric field is large enough, the 
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titanium ion will ultimately shift toward in the direction of the electric field.  In this 

case, the direction of polarization changes by 90° and is called 90° switching.  When a 

large stress field is applied in a direction aligned with the initial polarization, 90° 

switching can also occur, and the switching is equally likely to occur in each of the four 

directions perpendicular to the original polarization.  This behavior is called 

ferroelasticity since the switching is induced by stress. 

If one considers of the material free energy, the spontaneous polarization and 

180° switching can be explained from the illustrations in Figure 1.2.2.  In Figure 

1.2.2(a), the temperature is above the Curie temperature Tc, where the material resides in 

the cubic phase and the material free energy ψ  is convex with a single well at zero 

polarization.  Here, the cubic state is the stable state.  When the temperature is below 

the Curie temperature, a cubic to tetragonal phase transition occurs and the material free-

energy becomes non-convex with multiple wells associated with the possible spontaneous 

polarization states as in Figure 1.2.2(b).  The zero-polarization state is still an 

equilibrium state but it is no longer stable, and the phase transition will occur due to any 

small perturbation.  If a ferroelectric state, as shown in Figure 1.2.2(b), is under the 

application of a strong electric field, the energy barrier between equilibrium states can be 

overcome and the polarization can switch to another variant, which means, switching 

from one energy well to another.  Such 180° switching is depicted in Figure 1.2.2(c).   
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Figure 1.2.3:  The polarization and strain as the function of the electric field below the 

Curie temperature Tc.  The red portions of the curves correspond to 

unstable states, and the crystal jumps directly along the dashed line. 

Figure 1.2.3 illustrates the polarization and strain derived from the free-energy as 

the function of electric field below the Curie temperature Tc.  The polarization versus 

electric field curve is obtained as PE ∂∂= /ψ , and the strain is obtained from the 
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electrostrictive relationship 2P∝ε .  For the two the curves the portions marked as red 

correspond to the unstable states that are “passed over” during the switching process.  

These curves represent the fundamental dielectric hysteresis and the electromechanical 

“butterfly” loops for the unit cell. 

 

1.3 DOMAIN STRUCTURE IN FERROELECTRIC MATERIALS 

In the previous section, the electromechanical properties of an individual unit cell 

are discussed.  However, typical materials such as barium titanate ( BaTiO3) and lead 

zironate titanate (PZT) are usually not produced as ideal single crystals. Instead, a 

polycrystalline structure of single crystal grains with different orientation is usually 

generated using ceramics processing techniques.  The direction of the lattice axes are 

fixed within a grain, however, the orientation of the spontaneous polarization within a 

given grain is not necessarily unique.  Instead, each grain may be divided into domains.  

Domains are regions with uniform spontaneous polarization, which means that the 

individual electric dipoles of the unit cells are pointing in the same direction within a 

single domain.  The existence of grains and domains enriches the material constitutive 

response and integrates the properties arising from the unit cell.  A set of domains with 

different polarization direction represents the domain structure.  The non-linear 

ferroelectric material response and switching processes, as well as other properties are 

determined to a large degree by the state and mobility of the domain structure.  

The change of material polarization in ferroelectric materials takes place by 

means of the displacement of boundaries between domains.  The interface separating 

different domains is called a domain wall.  The primary mechanism responsible for 

nonlinear ferroelectric constitutive response is the motion of domain walls.  The 
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attractive and useful linear properties of many ferroelectrics, such as high piezoelectric 

constants and large dielectric constants, are primarily due to anelastic (i.e. recoverable) 

domain wall motion (Xu et al., 2005).  The nature of domain walls and their interactions 

with other material defects is crucial for the understanding of the physical phenomena 

associated with the finite coercive strength of ferroelectrics, fracture toughening 

associated with domain switching (Wang and Landis, 2004), and electrical fatigue 

associated with pining of domain walls by migrating charge carriers (Warren et al., 1994; 

Xiao et al., 2005).  

 

 

Figure 1.3.1:  Plane view of a crystal aggregate with domains as subregions of equal 

spontaneous polarization after cooling below the Curie temperature Tc.  

The bold black lines represent the boundaries of different grains.  And the 

fine grey lines inside each grain represent the boundary of different 

domains, which are also called domain walls. (Adapted from Kamlah, 2001) 



 12 

A plane view of a crystal aggregated with domains as subregions of equal 

spontaneous polarization after cooling below the Curie temperature Tc is shown in Figure 

1.3.1.  The bold black lines represent the boundaries of different grains.  And the fine 

grey lines inside each grain represent the boundary of different domains, which are also 

called domain walls.  

As Figure 1.3.2 indicates, when the strength of applied electric field increases, the 

formerly random polarization orientation state becomes aligned towards the direction of 

the poling field.  When the applied electric field becomes very high, the polarization 

reaches a saturation value when the unit cells that are able to switch is exhausted.  After 

the external field is removed, the polarization does not return to zero, and the 

macroscopic average of the spontaneous polarization of the unit cells remains finite and 

is called the remanent polarization. 

 

 

 

Figure 1.3.2:  After unloading, the domain structure remains in the switched state, now 

possessing a resultant macroscopic polarization and thus, a macroscopic 

piezoelectric effect (Adapted from Kamlah, 2001). 
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Within a crystal, models of domain evolution at sub-micron size scales can be 

classified as sharp interface or diffuse interface (also called phase-field modeling) 

approaches.  A schematic representation of these two different modeling approaches is 

shown in Figure 1.3.3.   

 

 

Figure 1.3.3:  A schematic diagram of two different modeling approaches for 180° 

domain walls: the sharp interface model, and the diffuse interface model (or 

phase-field model).  Py represents the y-component of material 

polarization, and x represents dimension along the x-direction.  In the 

diffuse interface model, t is the thickness of domain wall.  The sharp 

interface model assumes zero thickness of the domain wall.  

The sharp interface approach assumes the thickness of domain wall is zero, and 

the domain wall can move throughout the material.  Given the location of the domain 

walls, the electromechanical fields in the material can be computed using linear 

piezoelectric theory.  Essentially, the structure can be thought of as a composite where 

each domain is a different piezoelectric phase.  Then the computation of thermodynamic 

driving forces on the domain walls is obtained by computing the jump in the Eshelby 

energy-momentum tensor across the domain wall interfaces (Loge and Suo, 1996; Jiang, 

1994).  The evolution of the domain structure is then carried out using a 
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x
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t
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phenomenological kinetic law which accounts for the dissipation that occurs as the 

domain wall traverses through the material.  However, the sharp interface approach has 

to assume ad-hoc rules for the nucleation of new domains and disappearance of existing 

domains, and there are also some numerical issues associated with the changes in 

topology due to the merging of domains.  On the contrary, diffuse interface or phase-

field approaches allow for the nucleation of domains naturally without any specific rules, 

which is accomplished by defining a material free energy that depends on the mechanical 

strain, the electric field and the electric polarization in the material (such a free-energy is 

shown schematically in Figure 1.2.2).  Employing the material polarization as the order 

parameter, the phase-field approach allows for a detailed accounting of the 

electromechanical processes that occur during the nucleation and growth of domains.  

Such approaches are useful in uncovering the coupled processes that occur during the 

fracture of ferroelectric crystals. 

 

1.4 FRACTURE STUDIES OF FERROELECTRIC MATERIALS 

Most ferroelectric ceramics exhibit a fracture toughness on the order of 1 

MPa m .  This brittleness makes fracture an important consideration in the design of 

ferroelectric devices.  Due to the strong electro-mechanical coupling properties of 

ferroelectric materials, it is a challenge to understand the details of the fracture process in 

these materials, especially when domain switching occurs near the crack tip.  

One step in understanding the fracture of ferroelectrics is to investigate the details 

of the energy release rate for different loading scenarios.  The energy release rate is the 

reduction in the potential energy per unit increase in the crack area, and can be 

interpreted as the energy flux to the crack front in a reversible system.  In fracture 
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mechanics, understanding the energy release rate is important since it can provide a 

simple picture of the energetics of crack growth.  Many researchers have investigated 

the energy release rate for cracks within the context of linear piezoelectricity, e.g. (Suo et 

al., 1992; McMeeking, 1999; Landis, 2004a; Landis, 2004b).  These studies have shown 

that the evaluation of the energy release rate can be significantly affected by different 

electrical boundary conditions on the crack faces.  These boundary conditions can be 

classified into three categories:  

(1) Permeable boundary conditions, first proposed by Parton (Parton, 1976).  

This model assumes there is no distinction between deformed and undeformed 

configurations of the material within the assumptions of linear piezoelectricity.  The 

electric potential and the normal component of the electric displacement are then 

continuous across the crack.  

(2) Impermeable boundary conditions, proposed by Deeg (Deeg, 1980).  Due to 

the fact that the permittivity of the medium within the crack gap is usually much lower 

than that of material, it is assumed that the permittivity of the medium can be 

approximated as zero.  This assumption then implies that the normal components of 

electric displacement on both crack faces are zero.  

(3) Semi-permeable boundary conditions, proposed by Hao and Shen (Hao and 

Shen, 1994).  In order to address the facts that cracks are actually open and electric 

fields can permeate the crack gap, the crack faces are treated as an aggregate of tiny 

parallel plate capacitors.  

All of these models assume traction free conditions on the crack faces, however, 

McMeeking (McMeeking, 2004) showed that this assumption can lead to a discrepancy 

between local and global energy release rates.  To address this discrepancy, Landis 

(Landis, 2004b) proposed the so-called energetically consistent boundary conditions. 
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From his derivation, an additional closing traction is added to the semi-permeable 

boundary conditions in order to make the crack tip energy release rate and the total 

energy release rate equivalent to one another.  

In addition to these, in this dissertation a modified impermeable boundary 

conditions is used when the direction of the initial polarization is perpendicular to the 

crack faces.  The impermeable boundary conditions are generally too strong in 

situations where the single crystal has some initial polarization with a component normal 

to the crack faces.  In such situations, a modified form of the impermeable boundary 

conditions will allows for a charge layer to reside on the crack faces to balance the 

normal component of the polarization.  

 

1.5 OUTLINE 

In Chapter 2, the governing equations for the phase-field modeling will be 

presented within a thermodynamically consistent framework, including a micro-force 

balance.  Then a numerical method to solve the governing partial differential equations 

of the theory is presented.  Here, the finite element method will be implemented using 

mechanical displacements, electric potential, and polarization components as nodal 

degrees of freedom.  Some simulation results for the nucleation and growth of a domain 

from a crack tip will be given under different combinations of electrical and mechanical 

boundary conditions.  In Chapter 3, a finite deformation theory of the phase-field model 

will be given.  Here, the Jaumann rate of the polarization is used as the objective rate to 

make the description of the dissipation frame indifferent.  Lastly, some 

electromechanical instabilities in dielectric elastomer composites are studied in Chapter 

4. 
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Chapter II  Phase-Field Modeling of Domain Evolution 

In this chapter, a thermodynamic framework based on a modern continuum 

mechanics approach that distinguishes the fundamental balance laws which are universal 

from the material constitutive response will be devised for a phase-field model of domain 

structure evolution in ferroelectrics.  Next, in order to solve the governing partial 

differential equations, a finite element method for the solution of the theory will be 

formulated and implemented using mechanical displacements, electric potential and 

electric polarization components as nodal degrees of freedom.  Then, for the study of 

fracture problems the electromechanical form of the J-integral is modified to account for 

the polarization gradient energy terms, and analyzed to illustrate the amount of shielding, 

or lack thereof, due to domain switching at the crack tip.  Finally the simulation results 

for the nucleation and growth of domains in ferroelectrics under different combinations 

of electrical and mechanical loading conditions will be presented and discussed. 

 

2.1 PHASE-FIELD THEORY 

Given a static domain structure, the equations governing the distributions of 

electromechanical fields in materials based on linear piezoelectricity are well established 

(Xu, 1991; Jona and Shirane, 1962; Lines and Glass, 1977), and there exists several 

different techniques that can be applied to solve for these fields (Allik and Hughes, 1970; 

Landis, 2002b).  However, we are not only interested in the distribution of the fields, but 

also in how these fields cause the domain structure to evolve.  Hence, this problem falls 

into a broader class of free boundary problems where the locations of the interfaces must 

also be determined as part of the solution.  Two modeling approaches can be applied: 

the sharp interface approach or the diffuse interface approach.  A sharp interface 



 18 

approach includes physical questions associated with rules for domain nucleation, and 

numerical concerns associated with how to handle changes in topology of the domain 

structure.  In order to avoid these challenges, we choose to implement a diffuse interface 

or phase-field approach. 

Historically, the phase-field equations governing the evolution of the domain 

configurations have been derived from a simple and physically justifiable set of 

assumptions based on energy minimization/reduction concepts.  While this approach is 

certainly sound, it obscures the modern continuum physics distinction between 

fundamental balance laws, which are applicable to a wide range of materials, and the 

constitutive equations that are valid for a specific material (Fried and Gurtin, 1993; Fried 

and Gurtin, 1994; Gurtin, 1996).  Next the fundamental governing phase-field equations 

are reviewed (Su and Landis, 2007).  

Here, a small deformation non-equilibrium thermodynamics framework for 

ferroelectric domain evolution is presented.  The small deformation assumption is 

prevalent throughout most phase-field modeling studies.  The analysis of large 

deformation would introduce the concept of Maxwell stresses (McMeeking and Landis, 

2005), which are assumed to be higher order effects that can be neglected.  In the next 

chapter the effect of large deformations will be considered and incorporated within the 

phase-field theory.  Now we begin with the fundamental equations governing the 

electromechanical fields under the assumption of small deformations and rotations.  It is 

also assumed that the fields vary very slowly with respect to the speed of light in the 

material, i.e. the quasi-static field approximation, but not necessarily with respect to the 

speed of sound, i.e. inertial effects are considered within the general derivation.  

Standard index notation is used with summation implied over repeated indices, the single 
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and double overdots represent first and second derivatives with respect to time, and ,j 

represents partial differentiation with respect to the 
jx  coordinate direction. 

Balances of linear and angular momentum in any arbitrary volume V  and its 

bounding surfaces S  yield 

 

,, Vinub iijji
��ρσ =+                  (2.1) 

,Vinijji σσ =               (2.2) 

,Sontn ijji =σ               (2.3) 

 

where 
jiσ  are the Cartesian components of the Cauchy stress, 

ib  the components of a 

body force per unit volume, ρ  the mass density, iu  the mechanical displacements, in  

the components of a unit vector normal to a surface element, and 
it  the tractions applied 

to the surface. 

Under the assumptions of linear kinematics, the strain components 
ijε  are 

related to the displacements as 

 

,)(
2

1
,, Vinuu ijjiij +=ε               (2.4) 

 

The electrical quantities of electric field, iE , electric potential, φ , electric 

displacement, 
iD , volume charge density, q , and surface charge density, ω , are 

governed by the quasi-static forms of Maxwell’s equations.  Specifically, in any 

arbitrary volume V  (including the region of free space) and its bounding surface S ,  

 

,0, VinqD ii =−               (2.5) 
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,SonnD ii ω−=           (2.6) 

,, VinE ii φ−=           (2.7) 

 

Within the theory of linear piezoelectricity, the equations above (2.1)-(2.7) 

represent the fundamental balance laws and kinematic relationships, and the constitutive 

laws required to close the loop on the equations relate the stress and electric field to the 

strain and electric displacement.  Such constitutive relationships can be derived from 

thermodynamic considerations using a material free energy that depends on the 

components of the strain and electric displacement (Nye, 1957).  However, within the 

phase-field modeling approach the free energy will also be required to depend on an 

order parameter and its gradient.  Mathematically, the order parameter is used to 

describe the different material variant types, i.e. the spontaneous states that are possible 

in a crystal.  For the case of ferroelectrics, the physically natural order parameter is the 

electric polarization iP .  

The relationship between electric field, electric displacement and material 

polarization is given as 

 

,0 VinEPD iii κ+=          (2.8) 

 

Here κ0  is the permittivity of free space.  The full forms of linear piezoelectric 

constitutive law about a fixed remanent strain and polarization state can be found in 

Appendix A. 

Given that the free energy is permitted to depend on a new order parameter, a set 

of micro-forces are introduced that are work-conjugate to the order parameter and its 

gradient.  Following the work of Fried and Gurtin (Fried and Gurtin, 1993; Fried and 
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Gurtin, 1994; Gurtin, 1996) we introduce a micro-force tensor 
jiξ  such that ijji Pn �ξ  

represents the power density expended across surfaces by neighboring configurations, an 

internal micro-force vector 
iπ  such that 

iiP
�π  is the power density expended by the 

material internally, e.g. in the ordering of atoms within unit cells of the lattice (this 

micro-force accounts for dissipation in the material), and an external micro-force vector 

iγ  such that 
ii P
�γ  is the power density expended by external sources.  This micro-force 

is akin to the mechanical body force ib  and the electrical charge density q .  The 

integral balance of this set of configurational forces leads to the differential balance law  
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The Helmholtz free energy of the material including the free space occupied by 

the material is assumed to take the general form: 

 

),,,,( , ijiiiij PPPD �εψψ =         (2.10) 

 

We note that near Curie temperature, where ferroelectric phase transitions happen, 

temperature plays a key role.  However, for isothermal behavior, the Helmholtz free 

energy remains the appropriate energy functional with the additional complication that 

the material parameters of free energy are temperature dependent (Devonshire, 1985; 

Jona and Shirane, 1962).  Here we will deal only with isothermal behavior below the 

Curie temperature, but recognize that the extension to spatially homogeneous temperature 

dependent behavior can be readily included within the present framework by specifying 

the temperature at which the material properties must be evaluated.  The inclusion of 
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inhomogeneous temperature dependent behavior and the associated heat transfer will 

requires an analysis of the second law of thermodynamics including such effects.  In the 

following, we will only deal with the isothermal case. 

Considering isothermal processes below the Curie temperature, the second law of 

thermodynamics is written as the Clausius-Duhem inequality as 
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Here the left hand side represents the rate of stored plus kinetic energy in the material and 

the right hand side represents the power expended by external sources on the body.  

Note that the internal micro-force 
 
π

i
 does not contribute to this external power term.  

Substitution into (2.11) of the balance laws of Equations (2.1)-(2.9), along with a liberal 

application of the divergence theorem yields 
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Note that the assumption implicit to Equation (2.10) is that the stress, electric 

field, micro-force tensor, and internal micro-force each are allowed to depend on 

ijiiiij PPPD �and,,, ,ε .  The question is usually raised as to why the free energy must be 

allowed to depend on 
iP� .  The answer is that since the internal micro-force 

 
π

i
 is 

allowed to depend on 
iP� , then all of the thermodynamic forces must also potentially 

have such dependence (Fried and Gurtin, 1993; Fried and Gurtin, 1994).  It will be 

shown that the second law inequality ultimately allows only 
 
π

i
 to depend on 

iP�  (see 
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Equations 2.13 and 2.14).  For a given thermodynamic state, it is assumed that arbitrary 

levels of ijiiiij PandPPD ������ ,,,, ,ε  are permissible through the appropriate control of the 

external sources 
ib , q , and 

iγ .  Then, an analysis of the dissipation inequality of 

Equation (2.12) implies that 
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Finally, after defining 

 

η
i

≡
∂ψ

∂P
i

, the internal micro-force 
 
π

i
 must satisfy 
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If the tensor β  is constant and the high-temperature phase is cubic then 
ijij βδβ =  

where 0≥β .  This is the simplest and most widely applied form for 
ijβ .  

Substitution of Equations (2.14c) and (2.15) into the micro-force balance of 

Equation (2.9) yields a generalized form of the Ginzburg-Landau equation governing the 

evolution of the material polarization in a ferroelectric material. 
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Therefore, our postulated set of micro-forces (2.9) is justified by the fact that their 

existence implies the accepted form of the phase-field equations.  The primary 

differences between the present derivation of Equation (2.16) and the historical approach 
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is that a new balance law for micro-forces is introduced, and a distinction is made 

between the fundamental balance laws that must be applicable to all materials and the 

constitutive laws that are material specific. 

Here, the Helmholtz free energy introduced in (2.10) and further constrained in 

(2.13) includes both energy stored in the material and the energy stored in the free space 

occupied by the material.  Specifically, the free energy must be decomposed into the 

free energy of the material and the free energy of the free space such that 
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We now proceed to the specification of the material free energy.  The goal for 

this task is that the general form of the free energy must contain a sufficient set of 

parameters such that for a given material these parameters can be fit to the spontaneous 

polarization, spontaneous strain, dielectric permittivity, piezoelectric coefficients and the 

elastic properties near the zero stress and zero electric field free spontaneous polarization 

and strain states.  To accomplish this task we introduce the following form for the free 

energy, 
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First note that each of the newly introduced material tensors must contain the 

symmetry of the high temperature phase, which for most ferroelectrics of interest is 

cubic.  The first term of the free energy penalizes large gradients of polarization and 

gives domain walls thickness within the model.  The four terms on the second line are 

used to create the non-convex energy landscape of the free energy with minima located at 

the spontaneous polarization states.  The four terms on the third line are then used to fit 

the material’s spontaneous strain along with the dielectric, elastic and piezoelectric 

properties about the spontaneous state.  Note that the elastic, dielectric and piezoelectric 

properties are nonlinear, and therefore the tensor components are fit to the tangent 

material properties at the spontaneously polarized state.  The final term represents the 

energy stored within the free space occupied by the material, and according to equation 

(2.8) is equivalent to 2/0 iiEEκ . 

The eighth rank term on the second line was introduced in order to allow for 

adjustments of the dielectric properties and the energy barriers for 90° switching 

reference.  The sixth rank terms introduced on the third line allow us to fit the elastic, 

piezoelectric and dielectric properties of the low symmetry phase in the spontaneous 

state.  Without these terms the elastic properties of the material arise only from the 
ijklc  

tensor, which must have the symmetry of the high temperature phase.  Hence, the phase-

field modeling that has been performed to date assumes that the elastic properties of 

tetragonal phase perovskites are both cubic and homogeneous, when in fact the elastic 

properties have tetragonal symmetry and can have different orientations across a 90° 

domain wall, i.e. they are inhomogeneous.  With regard to the piezoelectric coefficients, 

ijklb  is used to fit the spontaneous strain components associated with the stress and 

electric field free spontaneous polarization state.  By introducing the 
ijklmnf  and 

ijklmng  

tensors, this general form of the free energy will be able to fit the magnitudes of the 
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spontaneous polarization and strain components, and the elastic, piezoelectric and 

dielectric constants near the spontaneous state.  This allows for a relatively accurate 

representation of material properties and comparison of the behaviors of different 

material compositions. 

 

2.2 FINITE ELEMENT FORMULATION 

The governing equations for the phase-field model include Equations (2.1)-(2.9), 

(2.14), (2.15) and (2.18).  When formulating a finite element method to solve these 

equations we must first identify the field quantities that will be used as nodal degrees of 

freedom.  The simplest formulation would implement the components of mechanical 

displacement from which strain is derived, the components of electric polarization from 

which the polarization gradient is derived, and the electric potential or voltage from 

which electric field is derived.  In order to implement such a formulation, the 

constitutive equations must take 
ijiiij EandPP ,,,ε as the independent variables.  

However, the Helmholtz free energy has iD  instead of iE  as the independent variable.   

To address this difficulty, the following Legendre transformation is required to derive the 

electrical enthalpy h , 
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where the stresses, electric displacements, micro-forces, 
ijξ  and iη , are derived as 
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Then, given Equations (2.2), (2.4), (2.7) and (2.15), Equations (2.1), (2.3), (2.5), (2.6) and 

(2.9) can be derived from the following variational statement or principle of virtual work 
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Equation (2.21) is the foundation for the derivation of the finite element equations for the 

phase-field model.  Again, the components of mechanical displacement, electric 

polarization and the electric potential are used as nodal degrees of freedom.  The strain, 

electric field and polarization gradient are derived within the elements, and finally the 

stress, electric displacement and micro-forces are computed via Equation (2.20).  We 

note that even though polarization gradient appears in the free energy, 0C  continuous 

elements are in fact suitable for the solution.  This is a fortuitous consequence of 
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Equation (2.8), given that both electric field and polarization can be taken as independent 

variables.  Therefore, the polarization components take the same status as mechanical 

displacement and electric potential and the polarization gradient takes the same status as 

strain and electric field.  If, for example, the electric field were the order parameter, then 

higher order elements would be required in the formulation. 

Again, each node in the finite element mesh has mechanical displacement, 

polarization and electric potential degrees of freedom.  Then, defining the array of 

degrees of freedom as d , each of the field quantities are interpolated from the nodal 

quantities with the same set of shape functions such that 
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The shape function matrix N  must meet all of the requirements for standard 0C  

continuous elements.  Hence, the displacements, electric potential and polarization 

components are approximated by continuous functions throughout the mesh, but strains, 

electric fields, and polarization gradients will have jumps in certain components along 

element boundaries 
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Here, the superscript indicates the time step at which the field is evaluated and α  

is a parameter between 0 and 1 that describes how the solution fields are interpolated in 
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time during a given time step.  When 0=α  the first order accurate forward Euler 

integration scheme is recovered, 1=α  represents the first order accurate backward 

Euler scheme that allows for enhanced numerical stability with larger time increments, 

and 5.0=α  is the second order accurate Crank-Nicholson method. 

Given a known set of nodal degrees of freedom at time  t , when the finite element 

interpolations of Equation (2.2) and the time integration approximations of Equations 

(2.23) and (2.24) are substituted into Equation (2.21), a set of nonlinear algebraic 

equations results for the nodal degrees of freedom at tt ∆+  that can be written in the 

form 

 

( ) FdB =∆+ tt           (2.25) 

 

These equations are solved with the Newton-Raphson method: 
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where  i  is the current step counter in the Newton-Raphson sequence and  id∆  is the 

increment computed for tt

i

∆+d  such that 
i

tt

i

tt

i ddd ∆+= ∆+
−

∆+
1 .  The Newton-Raphson 

procedure is carried out until a suitable level of convergence is obtained yielding a 

solution for the displacement, electric potential, and polarization fields at time step 

tt ∆+ .  With this new set of known nodal degrees of freedom in hand, the next time 

increment is computed by solving the updated form of Equation (2.25). 
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2.3 J-INTEGRAL 

 

We now proceed to the specification of the J-integral (for two-dimensional crack 

problems) for materials described with this phase-field theory. J  is given as, 

 

Γ−+−= ∫Γ dPnEnDunhnJ ijjiiiijji )( 1,11,1 ξσ      (2.27) 

 

 

 

Figure 2.3.1:  The closed contour used to evaluate the crack tip energy release rate. 

Here we have introduced the electrical enthalpy h which can be related to the 

Helmholtz free energy through the Legendre transformation 
iiijiiij DEEPPh −=ψε ),,,( , .   

Recall that through h the constitutive relationships are, 
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We first demonstrate that J  is equal to zero around any closed contour not 

enclosing a singularity, 
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Note that this result only holds under the conditions where 0=ib , 0=q , and 

0=iP�  in A .  Most notably this implies that the micro-force balance associated with 

the order parameter must be in equilibrium and specifically the “viscous” term jijP
�β  

must vanish. 

Next, we recognize and state without proof that the crack tip energy release rate 

G is equal to the J-integral for an infinitesimally small contour about the crack tip.  This 

statement is supported by the fact that J  provides the energy flux into the contour for a 

virtual motion of the contour in the 1x -direction.  Then, by computing J  about the 

contour illustrated in Figure 2.3.1, it can be shown that, 
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The assumption of 0=jjinξ  is a reasonable assumption on any free surface as it 

assumes that no micro-forces are applied to the surface by external agencies.  The 

remaining crack face boundary conditions are less well-defined.  Two very popular sets 

of linear crack face boundary conditions are the permeable and impermeable boundary 

conditions.  Both of these sets of boundary conditions assume that the crack faces are 

traction free.  For the impermeable boundary conditions it is assumed that the normal 

component of the electric displacement is zero, and for the permeable boundary 

conditions it is assumed that both the electric potential and the normal component of the 

electric displacement are continuous across the crack.  For the impermeable boundary 

conditions 0
21

== ΓΓ JJ  and for the permeable boundary conditions 0
21

=+ ΓΓ JJ  if 

Γ−+ == 111 xxx .  In either case the J-integral around any contour is equal to the crack tip 

energy release rate, Γ= JG . 

The impermeable boundary conditions are generally too strong in situations where 

the single crystal has some initial polarization with a component normal to the crack 

faces.  In such situations it is possible and perhaps likely that charge layers will reside 

on the crack faces to balance the normal component of the polarization.  Hence, a 

modified form of the impermeable boundary conditions would allow for these charge 

layers such that 
02 ω=±

D , where S
P20 =ω  is the surface charge density required to 

balance the initial spontaneous polarization in the material.  For the sake of simplicity 

we will assume that this spontaneous polarization is homogeneous throughout the crystal 

(or at least on the crack faces), although more complicated distributions could also be 
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envisioned and analyzed.  We will also retain the traction free conditions.  Under these 

conditions we can show that 
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Then, the crack tip energy release rate is,  

 

( ) ( )[ ]0,0, 110

−+
Γ −−= xxJG φφω            (2.35) 

 

In addition to the types of linear boundary conditions, there have also been two 

sets of non-linear crack-face boundary conditions.  The semi-permeable boundary 

conditions due to Hao and Shen (Hao and Shen, 1994; Dunn, 1994; McMeeking, 1999; 

McMeeking, 2004), and the energetically consistent boundary conditions due to Landis 

(Landis, 2004b; Li et al., 2008; Motola and Banks-Sills, 2009; Motola et al., 2009).  

Since it has been shown that the semi-permeable boundary conditions lead to a 

discrepancy between the total and crack-tip energy release rates (McMeeking, 2004; 

Landis, 2004b), we will focus only on the energetically consistent boundary conditions 

here.  The energetically consistent boundary conditions postulate that the medium 

within the crack gap can be described by an electrical enthalpy )( ccc Ehh = , where cE  

is the electric field within the crack gap.  This approximation assumes that the crack gap 

can be treated as a one-dimensional capacitor where the tangential components of the 

electric field can be neglected. Then cE  is given as, 
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where −+ −=∆ 222 uuu  is the crack opening displacement and −+ −=∆ φφφ  is the 

electric potential jump across the crack faces.  The electric displacement and the stress 

within the crack gap are derived from the crack gap electrical enthalpy as, 
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Allowing for the initial charge layers on the crack faces the energetically 

consistent crack-face boundary conditions become 
cc DD +=== ±±±

022221 and,,0 ωσσσ . 

Then, using Γ−+ == 111 xxx  the analysis of the crack-face J  paths follows as, 
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Hence, the crack-tip energy release rate is, 

 

ΓΓΓ
Γ ∆−∆−= φω02uhJG c

             (2.38) 

 

We note that there are limiting representations of ch  that can be used to reproduce both 

the impermeable and permeable boundary conditions.  Notably, when the dielectric 

breakdown strength of the crack gap medium is small (rigorously in the limit as this 

strength goes to zero) the permeable boundary conditions are recovered, giving a possible 

physical mechanism for this model of the crack-face boundary conditions. 

 

2.4 SIMULATION RESULTS 

In this section, first, we present the simulation results to demonstrate under what 

conditions a remote J  path can be used to determine the crack tip energy release rate.  

The governing equations in Section 2.1 were solved using the finite element method 

described in Section 2.2 (Su and Landis, 2007).  Next, the domain nucleation criteria at 

a crack tip under the combination of KI-KD fields are studied.  Then, the nucleation and 

growth of domains during different combinations of mechanical and electrical loadings 

are simulated.  Finally, the results are discussed.  The material properties used here are 

characteristic of barium titanate ( BaTiO3) and are listed in Appendix B.  

 

2.4.1 Energy Release Rate and J-integral 

We studied two-dimensional square geometries, and the crack length equal to one 

half of the length of the side of this square region.  The characteristic thickness of 

domain wall within the theory is 0l2 .  Here we use the generalized impermeable 
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boundary conditions on the crack faces such that the crack faces are traction free and 

there is a fixed surface charge density on the crack faces that exactly balances the normal 

component of the initial spontaneous polarization. 

The first simulation is for a material with initial spontaneous polarization 0P  

normal to the crack faces in a 00 l200l200 ×  domain.  The entire boundary of the 

square region is traction free, and the left and right sides of the region have no surface 

charge density.  The top and bottom surfaces have an applied surface charge density of 

)( 0 AP ωω −=±
∓  as shown in Figure 2.4.1.  Note that when the surface charge 

increment Aω  is equal to zero, the stresses and electric fields in the sample are also 

equal to zero, and this is the initial state of this simulation with 0=Aω  and 0=ijσ , 

0=iE , 1/ 0 =PPy
 in the body.  

 

 

Figure 2.4.1:  A schematic plot of the specimen.  In this 00 l200l200 ×  domain, the 

entire boundary is traction free, and the left and right sides of the region 

have no surface charge density.  The top and bottom surfaces have an 

applied surface charge density of )( 0 AP ωω −=±
∓ . 

Here we increase Aω  to apply the charge loading on the top and bottom surfaces 

with different 
0/ EAωβ �  rates.  For the tensor 

ijβ , we always take the form of 

ijij βδβ = .  Note that 0/ 0 =EAωβ �  corresponds to equilibrium calculations.  The 

parameter 
0E  used for normalization is the characteristic level of electric field required 
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to cause homogeneous 180° switching of a spontaneously polarized sample.  Before any 

domain switching, we investigated the normalized rates of charge loading with 

1and,1.0,0/ 0 =EAωβ �  at the same accumulated charge loading level, and the energy 

release rate is calculated from the J-integral and the results from different normalized 

rates of charge loading are compared.  

 

 

Figure 2.4.2:  The apparent crack-tip energy release rate computed using 

( ) ( )[ ]0,0, 110

−+
ΓΓ −−= xxJG φφω   at a charge loading level of 05.0/ 0 =PAω .  

The J-contour used to compute ΓG  is a square contour with sides of length 
Γ
12x . 

Figure 2.4.2 illustrates the path-dependence of the apparent energy release rate 

computed from ( ) ( )[ ]0,0, 110

−+
ΓΓ −−= xxJG φφω  (Equation (2.35)) for a small charge load 

level 05.0/ 0 =PAω  for the three different loading rates 1and,1.0,0/ 0 =EAωβ � .  The 

far-field value of ΓG  is =00095 / lPEG -1.8, -3.5 and -18.2 for 1and,1.0,0/ 0 =EAωβ �  

respectively.  Note that for the equilibrium case 0/ 0 =EAωβ � , the calculation of ΓG  is 

path-independent and a valid result for the crack-tip energy release rate is obtained for 
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any path.  For the two non-equilibrium cases 1and1.0/ 0 =EAωβ � , the calculation is not 

path-independent and cannot be interpreted as the crack-tip energy release rate except in 

the limit as 01 →Γx .  This path-dependent behavior in non-equilibrium cases cannot be 

interpreted as shielding due to domain switching since no domain switching has occurred 

in these calculations yet.  The path-dependence is due to the dissipative behavior of the 

term 
iP�β  in the micro-force balance. 

In summary, the J-integral is only path-independent in the equilibrium case where 

0/ 0 =EAωβ � , and can be used to determine the crack-tip energy release rate from 

( ) ( )[ ]0,0, 110

−+
ΓΓ −−= xxJG φφω , with the modified impermeable boundary conditions 

when the initial polarization is perpendicular to the crack surfaces. 

 

2.4.2 Domain Nucleation with KI-KD Loading 

Note that generating domain switching zones in these simulations for the 

equilibrium case with 0/ 0 =EAωβ �  is not a trivial task.  For the 00 l200l200 ×  

region it is not possible to find equilibrium solutions for charge loading level 

08.0/ 0 >PAω  by simply incrementing the electrical loading with 0=β .  This 

suggests an instability in the solution which is due to a new domain structure nucleating 

at the crack tip.  Such conditions for domain nucleation can be studied under small-

scale-switching conditions where the material region near the crack tip experiences 

loadings of sufficient magnitude to cause considerable non-linear response is small in 

comparison to any other length scales associated with the specimen, such as crack or 

ligament length.  For such situations, the electromechanical fields in a so-called K-

annulus will be dominated by the linear piezoelectric DI KK −  fields.  The DI KK −  

fields are generated with the Stroh formalism (see Appendix C) and the mechanical 
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displacements and electric potential associated with these fields are applied to the outer 

boundary of the 00 l200l200 ×  region as sketched in Figure 2.4.3(a).  

The electric displacement intensity factor DK , is defined similarly as IK , 

 

)0,(2lim 22
0

==
→

θσπ rrK
r

I , )0,(2lim 2
0

==
→

θπ rDrK
r

D     (2.39) 

 

Here, θ,r  are the distance from the crack tip and the angle from the positive 1x  axis 

respectively as shown in Figure 2.4.3(b). 

 

                

      (a)          (b) 

Figure 2.4.3:  (a) A schematic of the semi-infinite crack loaded by a combination of 

electrical and mechanical loads characterized by the mode I stress intensity 

factor, IK , and the electric displacement mode intensity factor, DK .  (b) 

A schematic of the semi-infinite crack. The mode I stress intensity factor, 

IK , and the electric displacement mode intensity factor, DK , are defined as 

)0,(2lim 22
0

==
→

θσπ rrK
r

I , )0,(2lim 2
0

==
→

θπ rDrK
r

D .  Here, θ,r  are 

the distance from the crack tip and the angle from the positive 1x  axis 

respectively. 

In the simulation, the mode I stress intensity factor, IK , and the electric 

displacement intensity factor, 
DK , are increased proportionally until an instability in the 

2x

1x

r

θ
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solution is found.  This instability is associated with the nucleation of a new domain 

from the crack tip.  The growth of such a domain will be presented in the next section. 

Figure 2.4.3(a) shows a schematic of the crack loaded by DI KK −  fields. A plot of the 

critical combinations of DI KK and  required to nucleate a new domain in a material 

with initial polarization perpendicular to the crack faces is shown in Figure 2.4.4.  The 

generalized impermeable crack-face boundary conditions are applied in these 

simulations.  

First note that the orientation of the 
DK  fields plotted in Figure 2.4.4 is such that 

the initial spontaneous polarization in the sample tends to be reversed.  Also note that 

the intensity factors are normalized by material specific properties including the domain 

wall length scale 0l .   

 

 

Figure 2.4.4:  The graph plots the critical combination of mode I stress intensity factor 

and electric displacement intensity factor required to nucleate a new domain 

at the crack tip.  The solid line is calculated from the full model equations 

and the dashed line is from equation (2.39) with the numerical constant fit to 

the point at 0=IK .  Note that the mechanical stress intensity has a mild 

effect on the nucleation process for this configuration of crack orientation 

and spontaneous polarization orientation. 
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The results displayed in Figure 2.4.4 show that the mechanical loading plays a 

limited role in the nucleation of a new domain from the crack tip for these material 

properties.  These results are in qualitative agreement with theories based upon 

energetic considerations which postulate that 90° switching occurs when the work due to 

the applied stresses and electric fields on the switching process attain a critical level.  

Roughly, without accounting for all of the details of the near-tip fields, such an 

approximation yields, 

 

.constant
0

0

0000

=+
E

P

lP

K

l

K DI

κσ
       (2.40) 

 

The dashed line in Figure 2.4.4 shows this approximation when the constant is fit 

to the point when 0=IK .  When considering equation (2.40), note that 0E  is the 

critical field for homogeneous 180° switching, not the field required to move existing 

domain walls which is considerably smaller. 

 

 

Figure 2.4.5:  The energy release rate G calculated from applied 
DI KK −  loading using 

the Irwin matrix as shown in Appendix C, is compared to J-integral which is 

path-independent for the equilibrium states.  The left figure is for pure 
IK  

loading and the right figure is for pure 
DK  loading. 
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In Figure 2.4.5, the applied energy release rate appG  calculated from applied 

DK  loading using the Irwin matrix as shown in Appendix C, is compared to the J-

integral which is path-independent for these equilibrium states.  The left figure is for 

pure IK  loading and the right figure is for pure DK  loading.  The crack-tip energy 

release rate with pure electrical loading is negative for impermeable crack-face boundary 

conditions, which is accordance with linear piezoelectric fracture mechanics. 

 

 

Figure 2.4.6:  Two contour plots of the x and y-components of the polarization 

normalized by 0P  in the vicinity of the crack tip when a new domain 

structure is nucleated under K-field loading. Due to symmetry, only the 

upper half of the model is displayed.  The x and y distances are normalized 

as 0/ lx  and 0/ ly , and the polarization scale is normalized by the 

spontaneous polarization 0P . 

To demonstrate the material polarization at the nucleation, Figure 2.4.6 shows 

contour plots of the x and y-components of the polarization normalized by 
0P  in the 

vicinity of the crack tip when a new domain structure is nucleated under K field loading.  

Due to symmetry, only the upper half of the 00 l200l200 ×  region is plotted.  The x 

and y distances are normalized as 
0/ lx  and 

0/ ly , and the polarization scale is 

normalized by the spontaneous polarization 
0P  
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2.4.3 Purely Electrical Loading: Charge Load 

In this section, the growth of a new domain from a crack tip during purely 

electrical loading: charge loading is simulated.  We studied a two-dimensional square 

geometry with the length of the side of the square equal to 0l60 , and the crack length 

equal to 0l30 .  The characteristic thickness of domain wall within the theory is 0l2 .   

The generalized impermeable boundary conditions on the crack faces are used here such 

that the crack faces are traction free and there is a fixed surface charge density on the 

crack faces that exactly balances the normal component of the initial spontaneous 

polarization.  

As shown in Figure 2.4.1, the initial spontaneous polarization 0P  is normal to the 

crack faces.  The entire boundary of the square region is traction free, and the left and 

right sides of the region have no surface charge density.  The top and bottom surfaces 

have an applied surface charge density of )( 0 AP ωω −=±
∓ .  Note that when the surface 

charge increment Aω  is equal to zero, this is the initial state of the simulation with 

0=Aω  and 1/,0,0 0 === PPE yiijσ  in the body.  Then 
Aω  is increased to apply 

the charge loading on the top and bottom surfaces.  

To generate the solution for a final equilibrium domain configuration, the domain 

was nucleated at the crack tip and allowed to evolve with a non-zero polarization 

viscosity term.  The loading is applied by first ramping up a uniform charge load on the 

top and bottom surfaces with a charging rate of 1.0/ 0 =EAωβ �  to a total charge of 

12.0/ 0 =PAω  in the 00 l60l60 ×  domain.  The charge was then fixed at 

12.0/ 0 =PAω  and the domain structure was allowed to evolve until the solution was 

sufficiently close to the equilibrium configuration, at which point the polarization 

viscosity term was set to 0=β , to find the final equilibrium solution (Figure 2.4.7a).  
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Thereafter the additional charge is applied to the surface to a final value of 2.0/ 0 =PAω  

and lastly the charge is removed from the surface to return to the initial uncharged state.  

 

 

  
 Domain Nucleation at 12.0/ 0 =PAω  

  
Domain Evolution at 12.0/ 0 =PAω  

Figure 2.4.7a: Contour plots of the x and y-components of the polarization normalized by 

0P  in the vicinity of the crack tip during the evolution of the domain 

structure with the fixed charge loading 12.0/ 0 =PAω  at different times, 

from the nucleation of the domain to the final equilibrium configuration.  

Due to symmetry, only the upper half of the model is displayed. The x and y 

distances are normalized as 
0/ lx  and 

0/ ly , and the polarization scale is 

normalized by the spontaneous polarization 
0P .  The arrows represent the 

nominal direction of the polarization in different regions.  
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Domain Evolution at 12.0/ 0 =PAω  

  
Domain Evolution at 12.0/ 0 =PAω  

  
Final Equilibrium State at 12.0/ 0 =PAω  

Figure 2.4.7a: Cont’d. 

Note that in order to ensure accuracy of the computations at lease five finite 

element nodes span any domain wall, and the path-independence of the J-integral is 

verified for all cases of equilibrium.  If the mesh is too coarse then mesh-pinning of the 

domains occurs and significant but artificial path-dependence appears at equilibrium in 

the J-integral.  When the charge is fixed at 12.0/ 0 =PAω , the evolution of the domain 

structure at different times, from the nucleation of the domain to the final equilibrium 
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configuration, is shown in Figure 2.4.7a.  Figure 2.4.7a shows contour plots of the x and 

y-components of the polarization normalized by 0P  in the vicinity of the crack tip.  

Figure 2.4.7b shows contour plots of the y-component of the polarization distributions at 

four different times in the domain evolution. The arrows represent the nominal 

polarization in different regions.  This simulation illustrates that the 90° domain needle 

is nucleated at the crack tip and propagates through the entire domain until it reaches the 

charged boundary.  

 

 
          (A)        (B) 

 
          (C)        (D) 

Figure 2.4.7b: Contour plots of the y-component of the polarization normalized by 0P  in 

the vicinity of the crack tip for (A) 12.0/ 0 =PAω  during the non-

equilibrium evolution of the domain, (B) 12.0/ 0 =PAω  at the final 

equilibrium state for the domain, (C) equilibrium at 2.0/ 0 =PAω , and (D) 

equilibrium at 11.0/ 0 =PAω .  Only the upper half of the model is 

displayed due to symmetry.  The x and y distances are normalized as 0/ lx  

and 0/ ly , and the polarization scale is normalized by the spontaneous 

polarization 0P .  The arrows represent the nominal direction of the 

polarization in different regions. 
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This non-equilibrium propagation of the domain supports the hypothesis that an 

instability in the equilibrium solution exists at the domain nucleation threshold.  

Additionally, the equilibrium configurations just prior to the domain nucleation with no 

domain and that shown in Figure 2.4.7b (B) both occur at a charge level of 

12.0/ 0 =PAω , and are sufficiently distinct from one another.  This unstable growth of 

domains is in contrast to domain switching zones predicted using phenomenological 

constitutive laws (Landis, 2002a, 2003; Landis et al., 2004c; Wang and Landis, 2004, 

2006) where the switching zones can grow in a stable fashion.  The explanation for the 

difference is that these phase-field simulations assume a defect-free material.  In such a 

material domain walls do not become pinned and are free to move at vanishingly small 

levels of electromechanical driving force (Xiao et al., 2005).  The existence of defects 

and grain boundaries will likely act to hinder the propagation of domain needles. 

Next, results for the crack-tip energy release rate calculation are presented.  

Figure 2.4.8 (a) plots the energy release rate as a function of the applied charge loading 

for the sample.  Note that points A-D in Figure 2.4.8 (a) correspond to the domain 

structures illustrated in Figure 2.4.7b (A)-(D) respectively.  Initially, as the charge is 

applied the energy release rate is negative and approximately quadratic in the applied 

charge.  These features of the energy release rate are in accord with linear piezoelectric 

fracture mechanics solutions (Sosa, 1992; Pak, 1992; Suo et al., 1992). 

  Specifically, path-dependence of the energy release rate calculation for domain 

structure A is plotted as the blue curve in Figure 2.4.8 (b).  Domain structure B is again 

an equilibrium configuration and the energy release rate calculation is path-independent. 

After domain structure B stabilizes, additional charge is applied and the domain structure 

is allowed to evolve at equilibrium to domain structure C.   
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                          (a) 

 

 

     (b) 

Figure 2.4.8:  (a) The crack-tip energy release rate as a function of the applied charge. 

Points A-D correspond to the domain structures illustrated in Figure 2.4.7b 

(A)-(D) respectively.  (b) The apparent energy release rate as calculated 

by ( ) ( )[ ]0,0, 110

−+
ΓΓ −−= xxJG φφω  for domain structures A (blue, non-

equilibrium) and D (red, equilibrium). 

During this loading process, the energy release rate increases in an approximately 

linear fashion.  Upon reaching structure C the applied charge is removed and the domain 

structures and the energy release rate “unload” along their original loading paths to 

structure B.  At this point, the unloading path diverges from the original loading path 
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and a hysteresis appears in the energy release rate versus applied charge response.  

Domain structure D is arrived at during the equilibrium unloading process and the energy 

release rate calculation is path-independent as shown by the red curve in Figure 2.4.8 (b).  

Further unloading of the charge causes the domain to vanish and the original negative 

quadratic branch of the energy release rate response is recovered. 

The most interesting aspect of this simulation is the departure from the results of 

linear piezoelectric fracture mechanics.  Specifically, this calculation is the first that we 

are aware of that predicts that the crack-tip energy release rate can be positive under 

purely electrical loading for impermeable crack-face boundary conditions.  Furthermore, 

the calculation shows that an existing domain structure near the crack tip can cause a 

qualitatively different behavior for the energy release rate, positive and increasing with 

applied charge, from what is expected in linear piezoelectricity, negative and decreasing 

with applied charge.  A negative energy release rate implies that the energy is supplied 

by the crack tip fracture process when the crack propagates.  Such a scenario is difficult 

to envision physically. 

Since the domain structure introduces spatial dependence in the material 

properties its effect on the energy release rate is to some degree connected with the 

results generated by Oates (Oates, 2005).  Oates found that by introducing a 

heterogeneity near the crack and using the semi-permeable crack-face boundary 

conditions (Hao and Shen, 1994), a positive crack-tip energy release rate could be 

generated by purely electrical loading when the heterogeneity is close the crack tip. In the 

work presented here the domain is such a heterogeneity and it is located at the crack tip.  

We do note that large scale switching does occur in this simulation and so a direct 

comparison to linear piezoelectric fracture mechanics concepts is tenuous.  However, 

these simulations demonstrate the effects that near tip domain structures can have on the 
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fracture process in ferroelectric crystals.  Specifically, the negative contribution of the 

energy release rate from applied electric fields may in fact be positive for certain domain 

structures near crack tips.  Hence, the modeling of crack tip domain structures and large 

scale domain switching behavior in facture specimens may be a key to understanding the 

plethora of seemingly disparate experimental observations on the electromechanical 

fracture of ferroelectric material.  

We also investigated another unloading case where charge is applied to the 

surface first, then electric potential is set to be zero to unload the specimen rather than 

reducing the charge.  Here, we studied a two-dimensional 
00 l60l40 ×  region, where 

0l40  is the height and 0l60  is the width.  The characteristic length of domain wall is 

still 0l2 , and the modified impermeable crack face boundary conditions are used.  The 

crack tip is located at )0,10()/,/( 00 −=lylx  instead of the origin.  First, the charge 

load is applied on the top surface as before, then a new domain structure is nucleated at 

the crack tip when 16.0/ 0 =PAω .  Then we fix the load and let the domain evolve with 

a positive viscosity term, until it is very close to equilibrium.  Then the viscosity term is 

turned off and final equilibrium state is reached.  Similar as the previous simulation, the 

domain grows, expands, moves towards right boundary and stops by the charge layer on 

the top surface.  Instead of unloading the specimen by reducing the charge load on the 

top surface, we set the electric potential on the top surface to be zero, and let the domain 

evolve with a viscosity term, until the equilibrium state without viscosity term.  This 

procedure is shown in Figure 2.4.9, in which contour plots of the x (left) and y (right) 

component of the polarization normalized by 0P  is drawn.  In the unloading procedure 

by reducing charge, we can see the domain needle reduces its size and moves towards left 

boundary, which is exactly the reverse process of the charge loading.  For the zero 
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electric potential unloading, the domain needle stays where it was, and shrinks until 

finally vanishing, then the configuration is back to the initial configuration. 

 

   
 Domain Nucleation at 16.0/ 0 =PAω  

  
Domain Evolution at 16.0/ 0 =PAω  

 
 

Final Equilibrium State at 16.0/ 0 =PAω  

Figure 2.4.9:  Contour plots of the x (left) and y (right) components of the polarization 

normalized by 
0P  in the vicinity of the crack tip during the evolution of the 

domain structure with the fixed charge loading 16.0/ 0 =PAω  at different 

times, from the nucleation of the domain to the final equilibrium 

configuration, and then the electric potential on the top surface is set to be 

zero.  Due to symmetry, only the upper half of the model is displayed. The 

x and y distances are normalized as 
0/ lx  and 

0/ ly , and the polarization 

scale is normalized by the spontaneous polarization 
0P . The arrows 

represent the nominal direction of the polarization in different regions.  
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Domain Evolution at 0=topφ  

  
Domain Evolution at 0=topφ  

  
Domain Evolution at 0=topφ  

  
Final Equilibrium State at 0=topφ : Initial State 

Figure 2.4.9:  Cont’d.  

 

2.4.4 Purely Electrical Loading: Controlled Electric Potential Load 

In this section, the nucleation and evolution of the new domains from a crack tip 

during purely electrical loading, where the electric potential load on the top and bottom 
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surfaces is monotonically increased and then decrease is simulated.  Though charge load 

and electric potential load are both purely electrical loading, the domain structure 

evolution for these two different loadings leads to different domain patterns.  We still 

study the two-dimensional 00 l60l60 ×  and the crack length is equal to 0l30 .  The 

characteristic thickness of the domain wall is again 0l2 , and the generalized 

impermeable boundary conditions are applied.  

 

 

 

Figure 2.4.10: A schematic plot of the specimen. In this 00 l60l60 ×  domain, the entire 

boundary is traction free, and the left and right sides of the region have no 

surface charge density.  The top and bottom surfaces have an applied 

electric potential of φ∆ . 

As shown in Figure 2.4.10, the initial spontaneous polarization 0P  is normal to 

the crack faces.  The entire boundary of the square region is traction free, and the left 

and right sides of the region have no surface charge density.  The top and bottom 

surfaces are loaded by electric potential φ∆ .  Note that when φ∆  is equal to zero, it is 

the initial state of this simulation with 0=∆φ , and 1/,0,0 0 === PPE yiijσ  in the 

body.  Then φ∆  is increased to apply the electric potential loading on the top and 

bottom surfaces. 

φ∆0P
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When the loading is increased, the new domain is nucleated at the crack tip, 

similar to the case when charge is applied.  Then it is allowed to evolve with a non-zero 

polarization viscosity term.  The loading is applied by first ramping up a uniform 

electric potential load on top and bottom surfaces to the level 32/ 0 =∆ LEφ  in a 

00 l 60l 60 ×  domain (Point O-A in Figure 2.4.11(a)), where L  is the vertical length of 

the specimen.  Then the load is fixed at 32/ 0 =∆ LEφ , and the domain structure is 

allowed to evolve until the solution is sufficiently close to the equilibrium configuration, 

at which point the polarization viscosity term is set to 0/ 0 =EAωβ � , to find the final 

equilibrium solution (Point A-G in Figure 2.4.11(a)).  Thereafter, additional potential is 

applied to the surface to a final value of 50/ 0 =∆ LEφ  (Point G-H in Figure 2.4.11(a))  

and finally the loading is removed from the surface (Point H-O’ in Figure 2.4.11(a)).  In 

Figure 2.4.11(b), the plot from O to A is presented alone to show that the apparent crack-

tip energy release rate is negative and approximately quadratic in the applied electric 

potential as the loading is applied before the new domain is nucleated.  Also, prior to the 

nucleation of the new domain, the solutions are for equilibrium states and the J-integral is 

path-independent. 

As shown in Figure 2.4.11, the energy release rate remains negative under purely 

electrical loading when electric potential is applied to the surfaces.  Prior to the 

nucleation of the new domain (point A), the apparent energy release rate is nearly 

quadratic in applied electric potential.  When the domain is nucleated, polarization 

viscosity is introduced with fixed applied loading at 32/ 0 =∆ LEφ .  During the domain 

growth process the J-integral is not path-independent, and it cannot be used to calculate 

the crack tip energy release rate. 



 55 

 

(a) 

 

(b) 

Figure 2.4.11:  (a) The crack-tip energy release rate as a function of the applied electric 

potential.  The loading path is O-A-G-H-O’.  Points A-G correspond to 

the domain structures illustrated in Figure 2.4.11 A-G respectively.  (b) 

The O-A segment is plotted alone to show the quadratic dependence. 

When the solution is close to the final equilibrium configuration, the polarization 

viscosity is set to zero, and the final equilibrium state at 32/ 0 =∆ LEφ  is reached (point 

G).  At this point, the energy release rate is still negative, and its value is much larger 
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than the value just prior to the nucleation of new domain.  From this new domain 

structure, when additional electric potential is applied until 50/ 0 =∆ LEφ  (point H), the 

energy release rate will be approximately linear in the applied load.  Finally, when the 

load is removed from the surface (point O’), the energy release rate remains a nearly 

linear function of the applied electric potential and returns to zero. 

This simulation illustrates at the applied load level 32/ 0 =∆ LEφ , the new 

domain structure is nucleated at the crack tip, then propagates up to the upper boundary 

and spreads over the electroded surface.  The contour plot of the evolution of domain 

structure is shown in Figure 2.4.12 for (A) the nucleation state through (G) the final 

equilibrium state with 32/ 0 =∆ LEφ .  The arrows represent the nominal direction of 

the polarization in different regions.  

In Figure 2.4.12 (A), the new domain structure is nucleated, and then grows (B).  

Unlike the controlled charge loading on the top surface in section 2.4.3 which prevents 

the new domain needle from intersecting the top surface due to the charge layer enforcing 

non-zero 
yP  on the top surface, the electric potential load does allow the domain needle 

to intersect and spread over the top surface since the electrode is able to redistribute the 

charges on it.  In (C)-(F), we can observe that 90° domain walls and 180° domain walls 

both exist in the evolution of the domain structure with the fixed electric potential load.  

In the final equilibrium state (G) at 32/ 0 =∆ LEφ , only 90° domain walls exists.  
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 (A): Domain Nucleation 

  
 (B) 

  
 (C) 

Figure 2.4.12:  Contour plots of the x-component (left) and y-component (right) of the 

polarization normalized by 0P  in the vicinity of the crack tip for (A) the 

nucleation state -- (G) the final equilibrium state at fixed electric potential 

load level 32/ 0 =∆ LEφ .  (A)-(F) are not equilibrium states as they are 

obtained using a non-zero viscous term.  Only the upper half of the model 

is displayed due to symmetry.  The x and y distances are normalized as 

0/ lx  and 
0/ ly , and the polarization scale is normalized by the spontaneous 

polarization 
0P .  The arrows represent the nominal direction of the 

polarization in different regions. 
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 (D) 

  
 (E) 

  
 (F) 

  
 (G): Final Equilibrium State at 32/ 0 =∆ LEφ  

Figure 2.4.12:  Cont’d. 
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(G): 32/ 0 =∆ LEφ  

 
(H): 50/ 0 =∆ LEφ  

 
(O’): 0/ 0 =∆ LEφ  

Figure 2.4.13:  Contour plots of the x-component (left) and the y-component (right) of 

the polarization normalized by 
0P  in the vicinity of the crack tip for three 

equilibrium states at the electric potential loads: (G) 32/ 0 =∆ LEφ , (H) 

50/ 0 =∆ LEφ , and (O’) 0/ 0 =∆ LEφ .  Only the upper half of the model 

is displayed due to symmetry.  The x and y distances are normalized as 

0/ lx  and 
0/ ly , and the polarization scale is normalized by the spontaneous 

polarization 
0P .  The arrows represent the nominal direction of the 

polarization in different regions. 

In Figure 2.4.13, contour plots of the x-component (left) and the y-component 

(right) of the polarization normalized by 0P  in the vicinity of the crack tip for three 



 60 

equilibrium states at the following loads are plotted: (G) 32/ 0 =∆ LEφ , (H) 

50/ 0 =∆ LEφ , and (O’) 0/ 0 =∆ LEφ .  The domain structure remains approximately 

fixed, however, for larger φ∆ , the region of 1/ 0 −=PPy
 becomes slightly wider, which 

is consistent with the level of the load.  At (O’), 0/ 0 =∆ LEφ , the regions of 

1/ 0 −=PPy
 and 1/ 0 =PPy

 are approximately the same and at this state, the energy 

release rate is very close to zero.  

 

2.4.5 Purely Electrical Loading: Controlled Charge Load on an Electrode 

To further illustrate the point that different approaches to electrical loading on the 

top surface will give rise to different domain structures, we look at yet another type of 

electrical loading.  Due to symmetry, we only consider the upper half region here.  In 

section 2.4.3, a charge layer with uniform charge density resides on the top surface and 

the magnitude of the charge density is controlled, which requires the y-component of the 

electric displacement to be positive along the entire top surface; in section 2.4.4, the 

electric potential is controlled on the top surface, which allows any possible state of the 

y-component of the polarization to exist on the top surface, so that the domain needle is 

able to intersect the top surface and spread.  In this section, the electric potential is 

required to be constant across the top surface, but the total surface charge instead of the 

potential on the top surface is controlled.  This implies that the charge density can be 

non-uniform on the surface, which allows the domain needle to intersect the surface, 

while stabilizing the widening of the domain.  This also implies that during the 

evolution of the domain structure the total charge on the electrodes must remain fixed, 

but they are able to move along the electrode, which in turn can cause the potential on the 

electrode to decrease. 



 61 

Again, we still study the two-dimensional square geometry with the length of the 

side of the square equal to 0l60 , and the crack length equal to 0l30 .  Again the 

characteristic thickness of a domain wall within the theory is 
0l2 .  The generalized 

impermeable boundary conditions on the crack faces are still applied here.  As shown in 

Figure 2.4.1, the initial polarization 0P  is normal to the crack faces.  The entire 

boundary of the square region is traction free, and the left and right sides of the region 

have no surface charge density.  The top and bottom surfaces have an applied total 

surface charge of )60()( 00 lPQ A •−=± ω∓ , where  060l  is the length of the top 

surface, and the electric potential on the top surface is forced to be uniform.  The initial 

state is 0=Aω , and then Aω  is increased to apply the loading on the top and bottom 

surfaces.  Here 
Aω  is the average charge density increment. 

When the loading reaches 13.0/ 0 =PAω , the domain was nucleated at the crack 

tip as shown in Figure 2.4.14 (A), then allowed to evolve with a non-zero polarization 

viscosity term (Figure 2.4.14 (B)-(E)) with charge fixed at 13.0/ 0 =PAω , until the 

solution was sufficiently close to the equilibrium configuration.  Then the polarization 

viscosity term was set to 0=β , to find the final equilibrium solution (Figure 2.4.14 (F)).  

Thereafter, additional charge is applied to the surface to a final value of 76.0/ 0 =PAω  

(Figure 2.4.15 (F)-(K)).  

Figure 2.4.14 shows contour plots of the x and y-components of the polarization 

distribution at different times during the domain evolution in the upper half of the 

specimen with fixed net electric charge load.   
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 (A): Domain Nucleation at 13.0/ 0 =PAω  

 

  
 (B): Domain Evolution at 13.0/ 0 =PAω  

 

  
 (C) : Domain Evolution at 13.0/ 0 =PAω  

Figure 2.4.14:  Contour plots of the x-component (left) and the y-component (right) of 

the polarization normalized by 
0P  in the vicinity of the crack tip for (A) the 

nucleation state -- (F) the final equilibrium state at fixed total charge load 

level 13.0/ 0 =PAω .  (A)-(E) are not equilibrium states as they are 

obtained using a non-zero viscous term.  Only the upper half of the model 

is displayed due to symmetry.  The x and y distances are normalized as 

0/ lx  and 0/ ly , and the polarization scale is normalized by the spontaneous 

polarization 0P .  The arrows represent the nominal direction of the 

polarization in different regions. 
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 (D) : Domain Evolution at 13.0/ 0 =PAω  

 

  
 (E) : Domain Evolution at 13.0/ 0 =PAω  

 

 
 

 (F): Equilibrium State at 13.0/ 0 =PAω  

 

Figure 2.4.14:  Cont’d. 

Note that during the evolution the electric potential on the surface is allowed to 

change while the net charge on the surface is held fixed.  The arrows represent the 

nominal polarization directions in different regions.  The figure shows that the 90° 

domain needle is nucleated at the crack tip and propagates through the entire domain, and 

finally intersects the top boundary.  In contrast to the fixed potential case, the width of 

the domain needle is effectively restricted by the fixed net charge loading level.  After 
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the domain intersects the top boundary, the domain moves away from the crack tip 

towards the right boundary, and ultimately stops at the equilibrium state.  During this 

process the apparent energy release rate changes significantly from initial nucleation to 

final equilibrium state.  Before the domain is nucleated, the energy release rate is 

negative and shows a quadratic dependence on the applied electrical load, which is 

consistent with linear piezoelectricity.  As the domain grows at fixed load, the J-integral 

is not path-independent during the non-equilibrium evolution.  After the final 

equilibrium configuration is reached, the energy release rate jumps from a negative value 

to a positive value, in the same fashion as the uniform charge loading case density.  

Figure 2.4.15 shows contour plots of the normalized x and y-components of the 

polarization distribution at different electrical load levels during the domain evolution in 

the upper half of the specimen.  The arrows represent the nominal polarization in 

different regions.  After the domain structure reaches equilibrium the configuration at 

13.0/ 0 =PAω , if the 0/ PAω  continues increasing, the enforcement of the positive y-

component of the polarization is weaken, the domain needle with nominal 

0/,1/ 00 == PPPP yx
 will become wider and shift more to the right.  Finally, the 

expanded needle reaches the right boundary, and another 90° domain wall is formed. 

During this process, the energy release remains positive and increasing. 
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 (F): 13.0/ 0 =PAω  

 

  
 (G): 19.0/ 0 =PAω  

 

  
 (H): 26.0/ 0 =PAω  

Figure 2.4.15:  Contour plots of the x-component (left) and the y-component (right) of 

the polarization normalized by 0P  in the vicinity of the crack tip for three 

equilibrium states at the total charge loads: (F) 13.0/ 0 =PAω , (G) 

19.0/ 0 =PAω , (H) 26.0/ 0 =PAω , (I) 40.0/ 0 =PAω , (J) 50.0/ 0 =PAω , 

and (K) 76.0/ 0 =PAω .  Only the upper half of the model is displayed due 

to symmetry.  The x and y distances are normalized as 0/ lx  and 0/ ly , 

and the polarization scale is normalized by the spontaneous polarization 0P .  

The arrows represent the nominal direction of the polarization in different 

regions. 
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 (I): 40.0/ 0 =PAω  

 

  
 (J): 50.0/ 0 =PAω  

 

  
 (K): 76.0/ 0 =PAω  

Figure 2.4.15:  Cont’d. 

The energy release rate is plotted as the function of the applied charge as shown 

in the Figure 2.4.16.  When the applied charge increases from zero, the energy release 

rate is negative for purely electrical loading, and after the new domain is nucleated, the 

energy release rate becomes positive and increasing with the applied load, which are 

similar to the applied charge density loading in Section 2.4.3.  As charge is removed 

from the surface, the energy release rate remains positive but decreases.  When the 

energy release rate approaches zero, the domain structure reaches another instability point 
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and cannot achieve equilibrium without the non-zero polarization viscosity term.  Here 

again, the polarization viscosity term is introduced and the domain structure evolves until 

the final equilibrium is reached.  This process allows the domain structure to return back 

to the initial loading state and the remaining dependence of the energy release on the 

charge during unloading process is indistinguishable from the energy release rate during 

the loading process.   

 

 

Figure 2.4.16: The energy release rate as the function of applied charge.  

Comparing the response of the energy release rates with purely electrical loading 

for different ways of loading, we can conclude that the control of total net charge will 

generate a positive energy release rate after the new domain structure is formed, while the 

control of electric potential introduces an energy release rate that is always negative for 

this crack specimen geometry.  

 

2.4.6 Combined Mechanical and Electrical Loading 

The previous calculations focus on the specimen with the initial polarization 

perpendicular to the crack surfaces, and with purely electrical loading.  In this section, 

we study the case with the initial polarization parallel to the crack surfaces, and the 
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combination of mechanical and electrical loading.  Figure 2.4.17 shows a schematic plot 

of a two dimensional 00 l60l60 ×  domain, and the crack length is equal to 0l30 .  The 

characteristic thickness of a domain wall is 
0l2 .  The top & bottom sides of the region 

have no surface charge density. The left surface has zero electric potential and the right 

surface has an applied surface charge density of 0 APω ω= − .  The crack surfaces are 

charge free and traction free.  

First, the mechanical displacement is applied on the top surface of the region until 

030*01.0 lu =∆ .  Then the displacement is fixed at the level 030*01.0 lu =∆ , and Aω  

is increased to apply a charge loading on the right surface to generate an opposing 

electric field to the initial polarization.  

 

 

Figure 2.4.17:  A schematic plot of the specimen. In this 00 l60l60 ×  domain, the 

entire boundary is traction free, and the top and bottom sides of the region 

have no surface charge density.  The left surface has zero electric potential 

and the right surface has an applied surface charge density of 0 APω ω= − .  

When 0Aω = , then 
0 0/ 1, / 0

x y
P P P P= =  is the initial state.  

When the charge is increased to 0/ 0.24A Pω = , a new domain is nucleated at the 

crack tip, and it is allowed to evolve with a non-zero polarization viscosity term, until the 

solution is very close to the equilibrium configuration.  At that time, the viscosity term 

is set to be zero, and the final equilibrium state is reached.   
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Domain Nucleation at 0/ 0.24A Pω =  

  
 Domain Evolution at 0/ 0.24A Pω =  

 
Domain Evolution at 0/ 0.24A Pω =  

Figure 2.4.18:  Contour plots of the x-component (left) and the y-component (right) of 

the polarization normalized by 
0P  in the vicinity of the crack tip for 

different times at the fixed charge load 
0/ 0.24A Pω =  and a fixed 

mechanical displacement load.  Only the upper half of the model is 

displayed due to symmetry.  The x and y distances are normalized as 
0/ lx  

and 
0/ ly , and the polarization scale is normalized by the spontaneous 

polarization 
0P .  The arrows represent the nominal direction of the 

polarization in different regions. 
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Domain Evolution at 0/ 0.24A Pω =  

 
Domain Evolution at 0/ 0.24A Pω =  

 
Domain Evolution at 

0/ 0.24A Pω =  

 
 

Final Equilibrium State at 0/ 0.24A Pω =  

Figure 2.4.18:  Cont’d. 
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Domain nucleation and evolution until the final equilibrium state is shown in 

Figure 2.4.18.  For this simulation, a 90° domain is first nucleated at the crack tip, and 

then grows towards the top surface.  While the charge is fixed, the domain evolves and 

reaches the top surface, and “reflects”, forming a 180° domain wall and a newly oriented 

domain.  At the same time, a 180° domain grows from the crack tip to the left boundary, 

and finally reaches the left side of this square region.  In the final equilibrium 

configuration, the 180° and 90° domains both exist. 

 

 

(a) 

 

(b) 

Figure 2.4.19:  (a) The crack-tip energy release rate as a function of the applied negative 

mechanical displacement in y-direction.  (b) The crack-tip energy release 

rate as a function of the applied charge before domain nucleation. 
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The energy release rate as the function of the applied mechanical displacement 

and charge are plotted during the mechanical-electrical loading in Figure 2.4.19.  With 

purely mechanical loading by applying compressive mechanical displacement, the energy 

release rate is positive and increasing with the applied compressive mechanical load.  

When the compressive displacement is fixed on the top surface, and the net charge is 

applied, the energy release rate will decrease and approaches zero.  At the charge 

loading level where the energy release rate is close to zero, the new domain structure is 

nucleated. 

 

 

2.4.7 Evolution of a Pre-existing 180°°°° Domain Needle 

In addition to the crack studies, we also studied the growth/evolution of a 180° 

domain needle within a uniformly poled region.  Figure 2.4.20 shows a schematic plot 

of a 00 l200l100 ×  domain, in which 0l100  is the width of the region and 0l200  is 

the height.  The top and bottom sides of the region have no surface charge density. The 

left and the right surfaces have an applied surface charge density of )( 0 AP ωω −±= .  In 

the majority of the region, 
0 0/ 1, / 0

x y
P P P P= = , while the center left of the region 

contains a 180° domain needle with 
0 0/ 1, / 0

x y
P P P P= − = .  We fix the charge load at 

0/ 0.2A Pω = , and allow the structure to evolve.  Due to symmetry, only the upper half 

of the model is meshed and analyzed.  In the upper half region, the boundary of the 

domain needle is located at 80l/8l/ 00 ≤+ yx .  
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Figure 2.4.20: A schematic plot of a 00 l200l100 ×  domain, in which 0l100  is the 

width of the region and 0200l  is the height. The top & bottom sides of the 

region have no surface charge density.  The left surface and the right 

surfaces have an applied surface charge density of 
0( )

A
Pω ω= ± −∓ .  In 

most of the region, 
0 0/ 1, / 0

x y
P P P P= = , and there exists a 180° domain 

needle with 
0 0/ 1, / 0

x y
P P P P= − = .  We fix the load 0/ 0.2A Pω = , and 

allow the structure to evolve.  Due to symmetry, only the upper half of the 

model is modeled and analyzed.  In the upper half region, the boundary of 

the domain needle is 80/8/ 00 ≤+ lylx .  The mesh is refined over the 

180° domain needle and ahead of the needle, and is relatively coarse 

elsewhere.  

The mesh is refined over the 180° domain needle and ahead of the needle, and is 

relatively coarse elsewhere.  It was expected that the domain needle would grow 

towards the right boundary.  However, significantly more complex domain patterns 

occurred in the simulations.  Rather than a single 180° domain needle, new 90° domains 

form and grow, until the 90° domains reach the right boundary, and are stopped by the 

applied charge layer.  
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In addition to the charge load on the left and right boundaries, we also used 

mechanical constraint to control the domain structures.  Here, different cases with 

different mechanical displacement boundary conditions are simulated.  

 

(1) No constraint on the outer boundary 

For this case the entire region is traction free on the outer boundary.  Due to 

symmetry, we only analyze the upper half of the region.  

The evolution of the domain structure with fixed charge 0/ 0.2A Pω =  is shown 

in Figure 2.4.21.  (a) Shows the initial state with a 180° domain needle, however, note 

that the initial state is not an equilibrium state.  Then the domain is allowed to evolve 

with a non-zero polarization viscosity term (b-e), and finally the polarization viscosity is 

set to zero to obtain the final equilibrium state (f).  As time elapses, a new 90° domain 

forms from the tip of the domain needle, and grows towards the right boundary until the 

surface charge layer on this boundary constrains it.  During the growth of this new 90° 

domain structure, the 180° domain needle retrieves back, and ultimately stops in the 

middle of the boundary at the equilibrium state.   
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(a)                                  (b)                    

  
 (c)                                 (d)                    

  
 (e)                                  (f)                    

Figure 2.4.21: Contour plots of the x-component of the polarization normalized by 0P  at 

the fixed charge load 0/ 0.2A Pω =  without the constraint on the outer 

boundaries.  Only the upper half of the model is displayed due to 

symmetry.  The x and y distances are normalized as 0/ lx  and 0/ ly , and 

the polarization scale is normalized by the spontaneous polarization 0P .  

The arrows represent the nominal direction of the polarization in different 

regions. (a)-(e) are non-equilibrium states, and (f) is the final equilibrium 

state. 
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(2) Mechanical Constraint on the outer boundary 

 

The simulation without constraint on the outer boundary results in a distorted 

right boundary.  Next, we constrain the left and the right boundaries to remain flat. Then 

the x-component of the mechanical displacement on the left and right surfaces are fixed, 

and both x and y-components of the mechanical displacements are specified and fixed on 

the top and bottom surfaces.  First we initialize the entire domain 1/ 0 =PPx , 

0/ 0 =PPy
, and find the associated stress-free strain.  The center left of the region 

contains a 180° domain needle with 
0 0/ 1, / 0

x y
P P P P= − = .  Due to symmetry, only the 

upper half of the model is meshed and analyzed.  In the upper half region, the boundary 

of the domain needle is located at 80l/8l/ 00 ≤+ yx , where x and y are normalization 

length by 
0l .  Finally, the charge load of 

0/ 0.2A Pω =  is applied on the right boundary 

and the evolution of the domain structure is simulated.  

A contour plot of the x-component of the polarization normalized by 0P  at the 

fixed charge load 
0/ 0.2A Pω =  is shown in Figure 2.4.22.  The arrows represent the 

nominal direction of the polarization in different regions.  Plots (a)-(e) are non-

equilibrium states, and (f) is the final equilibrium state.  In addition to the new 90° 

domain that nucleates from the tip of the 180° domain needle without the mechanical 

constraint on the outer boundary, a second 90° domain nucleates from the tip of the 

domain needle and grows following the first 90° domain.  The two 90° domains come to 

rest when the first 90° domain reaches the same location as where the 90° domain from 

the unconstrained case. 
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 (a)                                     (b)             

         
 (c)                                       (d)              

         
 (e)                                        (f)             

Figure 2.4.22: Contour plot of the x-component of the polarization normalized by 
0P  at 

the fixed charge load 
0/ 0.2A Pω =  with constraint on the outer boundaries.  

Only the upper half of the model is displayed due to symmetry.  The x and 

y distances are normalized as 
0/ lx  and 

0/ ly , and the polarization scale is 

normalized by the spontaneous polarization 
0P .  The arrows represent the 

nominal direction of the polarization in different regions. (a)-(e) are non-

equilibrium states, and (f) is the final equilibrium state. 
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If the y-component of mechanical displacement on the top surface remains 

negative with the magnitude to be 0

0

0 /l1002.0 εε yy×× , and the x-component of 

mechanical displacement on the right boundary is positive with the magnitude 

0

0

0 /l1002.0 εε xx×× .  All the remaining boundary conditions are identical with the 

previous case, and the domain structure is allowed to evolve with the fixed charge load of 

0/ 0.2A Pω = .   

 

  
 (a)                     (b)                    (c)                    

 

    
 (d)                     (e)                   (f)                    

Figure 2.4.23: Contour plot of the x-component of the polarization normalized by 
0P  at 

the fixed charge load 
0/ 0.2A Pω = with compressive displacement fixed in 

y direction and extensive displacement fixed in x direction on the outer 

boundaries.  Only the upper half of the model is displayed due to 

symmetry.  The x and y distances are normalized as 
0/ lx  and 

0/ ly , and 

the polarization scale is normalized by the spontaneous polarization 
0P .  

The arrows represent the nominal direction of the polarization in different 

regions. (a)-(e) are non-equilibrium states, and (f) is the final equilibrium 

state. 



 79 

The evolution of the domain structure is shown in Figure 2.4.23, in which (a)-(e) 

are the non-equilibrium states, and (f) is the final equilibrium state.  Then we can 

observe another 180° domain nucleates from the first 90° domain at the final equilibrium 

state comparing to the previous case.  

 

(3) Electric Potential loading 

 

       
(a)                (b)                 (c)               (d)        

 

Figure 2.4.25: Contour plot of the x-component of the polarization normalized by 0P  at 

the fixed charge load 0/ 0.2A Pω = on the left boundary and electric 

potential 4.0/ 00 =∆ lEφ with compression in y direction and tension in x 

direction on the outer boundaries.  Only the upper half of the model is 

displayed due to symmetry.  The x and y distances are normalized as 0/ lx  

and 0/ ly , and the polarization scale is normalized by the spontaneous 

polarization 0P .  The arrows represent the nominal direction of the 

polarization in different regions. (a)-(c) are non-equilibrium states, and (d) is 

the final equilibrium state. 

With the same geometry, if electric potential is applied on the right boundary 

instead of charge loading, then the domain needle spreads through the entire structure.  

Figure 2.4.25 shows the evolution of domain structure with the electric potential at the 

right boundary fixed at 4.0/ 0 =∆ LEφ , and (d) is the final equilibrium state.  In this 

case, the pre-existing 180° domain needle is able to grow and intersect the right 

boundary, with constraint on the outer boundary or without constraint on the outer 
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boundary.  This occurs because there is no charge layer to constrain the domain needle 

from growing and intersecting the right boundary. 

 

2.5 DISCUSSION 

In this chapter, the formulation of the phase-field model for ferroelectrics is given, 

and the finite element method is used to implement the numerical model.  To calculate 

the crack-tip energy release rate, a modified J-integral is used.  For cases where the 

initial polarization has a component normal to the crack faces, a modified impermeable 

crack face boundary conditions is applied.  

Using the phase-field theory as the modeling approach, and the finite element 

method as the numerical tool, we simulated the nucleation and evolution of domain 

structures with different geometries and different mechanical & electrical loadings in 

ferroelectrics.   The simulations lead us to some conclusions.  The J-integral is path-

independence only for equilibrium states, and in these cases it can be used to calculate the 

apparent crack-tip energy release rate.  For combinations of KI-KD loading, KD plays 

the primary key role in the domain nucleation.  Under purely electrical loading when 

charge is applied directly to the surface, the apparent crack-tip energy release rate 

becomes positive after a 90° domain nucleates and grows to an equilibrium configuration.  

Such positive energy release rates do not occur in linear piezoelectric fracture mechanics 

from purely electrical loading.  

Also, in this charge loading case, we observe that the 90° domain needle expands 

and moves towards the right boundary of the square region.  This situation gives us 

some hints that another new domain structure might nucleate at the crack tip and grow 

towards the direction of the first domain needle.  However, for the case in section 2.4.3, 
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when the charge load on the top surface is increased, the 90° domain needle simply 

expands to balance the new charges, and no new domain is nucleated from the crack tip.  

We also tested several other scenarios, such as using a specimen with a larger height to 

length ratio to determine if the first domain would move father from the tip allowing for 

the nucleation of another new domain.  However, none of the cases that we investigated 

gave rise to a second domain being nucleated from the crack tip.  Rather than a second 

domain nucleating from the crack tip, the simulations show that new domains nucleate 

from the other locations as the electrical loading is increased. 
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Chapter III  Finite Deformation Phase-Field Modeling 

In the previous chapter, the assumptions associated with a linear kinematics 

deformation-displacement description are made throughout the calculations.  The small 

deformation assumption is prevalent in phase-field modeling literature.  This 

simplification allows the electrical forces on the material and the associated Maxwell 

stresses that are induced by long-range electrical interactions to be neglected.  In this 

chapter, finite deformations will be incorporated into the phase-field theory to account for 

such electrical forces.  For the dissipation associated with polarization changes, an 

objective rate of polarization is used to make the dissipation frame indifferent.  The 

problem of domain nucleation from a crack tip is modeled with the theory and we find 

that the resulting domain structure evolution does not differ significantly from the linear 

kinematics theory.  In order to study a problem where finite deformations are critical for 

the analysis, the theory is used in Chapter 4 where dielectric elastomers materials are 

introduced.  These materials can be used in electrically driven actuator devices, 

manipulators and energy harvesters.  In Chapter 4 the instabilities in dielectric elastomer 

composites are investigated.. 

 

3.1 FINITE DEFORMATION THEORY 

In Chapter 2, a phase-field model using the assumptions of linear kinematics was 

presented.  Such theories assume that the electrical forces that exist in ferroelectric 

materials can be neglected as higher order terms.  In this chapter, a general finite 

deformation theory for phase-field modeling of ferroelectrics is presented.  Standard 

index notation is used with summation implied over repeated indices.  Lowercase 
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indices represent quantities in current state while uppercase indices represent quantities in 

reference state.  

Consider two nearby material particles P and Q within an object with position 

vectors X  and dXX +  respectively in the undeformed or reference configuration. 

After deformation these particles move to the positions p and q with position vectors x  

and dxx +  respectively in the deformed or current configuration.  To describe the 

history of deformation of the body, x  can be written as a function of the two 

independent variables, the reference material particle position X  and time t, 

),( tXxx = .  The deformation gradient tensor F  is then defined as,  

 

K

i
iK

X

tx
F

∂

∂
=

),(X
             (3.1) 

 

This deformation gradient tensor F  is a linear operator mapping the vector 

between the two differentially separated material particles P and Q in the reference state, 

dX , to the vector connecting the same two material particle p and q in the current state, 

dx .  The tensor F  is generally not symmetric, and represents both stretching and 

rotation.  The determinant of the deformation gradient tensor, also called the Jacobian of 

the deformation )det(F=J  describes the volume change between the reference state 

and current state, i.e. dVdv •= )det(F . 

Ultimately we are interested in numerical solutions for the phase-field theory 

using finite deformation kinematics.  With this goal in mind we develop the governing 

equations of the theory with respect to the reference configuration.  First, consider 

mechanical equilibrium. 
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0
~~

00
00 =+ ∫∫ V

i
S

i dVbdSt          (3.2) 

 

Here we have introduced the Cartesian components of the reference traction it
~

 with 

dimensions of force per unit reference area, and the reference body force ib
~

 with 

dimension of force per unit reference volume.  Next we introduce the first Piola-

Kirchoff stress tensor Jis , which is linked to the reference traction such that 

 

JJii Nst =~
 on S0.          (3.3) 

 

Here JN  are the Cartesian components of the unit vector normal to the reference 

surface S0.  Application of the divergence theorem to the integral form of the 

equilibrium equation and recognizing that this equation must be valid for any arbitrary 

volume of the material provides the point-wise form for the equilibrium equation as, 

 

0
~

, =+ iJJi bs  in V0.          (3.4) 

 

Next consider the equations of electrostatics.  The spatial electric field components 
iE  

are related to the electric potential φ  as, 

 

iiE ,φ−=            (3.5) 

 

Of interest for finite deformation theories is the reference electric field IE
~

, which is 

defined in the following equation and related to the spatial electric field as, 
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        (3.6) 

 

Note that the reference electric field is an objective measure of the electric field that can 

be used to characterize the electric field acting on the material in free energy functions 

and constitutive relations.  Next, consider Gauss’s law in integral form.  Gauss’s law 

states that the flux of the electric displacement through a closed surface is equal to the 

free charge enclosed by the surface. 
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       (3.7) 

 

Here we have identified the reference electric displacement 
JD

~
 and the reference free 

charge density q~  as the free charge per reference volume.  Note that the reference 

electric displacement and the reference electric field are work conjugate quantities such 

that, 

 

∫∫ =
0

0

~~

V
JJ

V
ii dVDEdVDE          (3.8) 

 

Finally, the application of the divergence theorem to Gauss’s law and the recognition that 

the result holds for any arbitrary volume yields, 

 

0~~
, =− qD JJ  in V0.          (3.9) 
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Gauss’s law can also be applied to a “pillbox” around a surface element to yield a 

relationship between the reference electric displacement and the reference surface charge 

per unit reference area ω~  as, 

 

ω~
~

−=JJ ND  on S0.         (3.10) 

 

Our final balance laws for the phase-field theory are for the micro-forces.  Paralleling 

the description of mechanical equilibrium we introduce the previously described micro-

forces (see Chapter 2) in their associated reference forms, 
iπ~  and 

iγ~ , along with a “first 

Piola-Kirchoff” micro-force tensor Jiξ
~

, where kiJkJi JF ξξ 1~ −= .  Then, the micro-force 

balance in referential form is, 

 

.0~~~
0~~~

0,000
000

VindVdVdSN iiJJi
V

i
V

iJ
S

Ji =++⇒=++ ∫∫∫ γπξγπξ   (3.11) 

 

With the similar process in section 2.1, the Helmholtz free energy of the material 

including the free space occupied by the material is assumed to take the form: 

 

),,
~

,( ,JiiIiJ PPDFψψ =           (3.12) 

 

where 
iJF  is the deformation gradient tensor, 

ID
~

 is the electric displacement in 

reference state, 
iP  is the material polarization, and 

JiP ,
 is the derivation of the material 

polarization iP  with respect to JX  coordinate.  

Once again considering isothermal processes below the Curie temperature, the 

second law of thermodynamics is written as the Clausius-Duhem inequality as 

 



 87 

000
000

)
~~~

()~~~
(~ dSPNxtdVPqxbdV

S
iJJiii

V
iiii

V ∫∫∫ +++++≤ ������� ξωφγφψ     (3.13) 

 

Substitution into this inequality of the balance laws for equilibrium, Gauss’s law, 

and micro-force, along with the application of the divergence theorem yields 
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This form for the dissipation inequality suggests taking the following dependencies for 

the Helmholtz free energy per unit reference volume, 
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Then, at first glance, the analysis of the inequality implies 
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Note that Equation (3.16a-c) are rigorously valid, however Equation (3.16d) is simply 

one possible choice that can be taken to satisfy the inequality.  However, we will note 

here that this choice does not satisfy objectivity for the material dissipation.   

For the finite element method it is useful to define virtual work quantities.  The 

internal virtual work (IVW) and internal virtual dissipation work can be written as 

 

0

0,

0

0

~~~~

dVPPIVD

dVPPDEFsIVW

ij
V

ij

iiJiJiII
V

iJJi

δβ

δηδξδδ

�∫

∫
=

+++=
     (3.17) 



 88 

In order to implement the electric potential as a nodal variable for the finite 

element method we will utilize the electrical enthalpy per unit reference volume �h , 

which can be derived from a Legendre transformation 
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~~~~

−=ψ            (3.18) 

 

In order to mimic the small deformation theory of Chapter 2, the electrical enthalpy h
~

 

is given in the following form 

 

JIIJJIIJ

NMLKIJIJKLMNNMKLIJIJKLMNKLIJIJKLLKIJIJKL

SRNMLKJIIJKLMNRSNMLKJIIJKLMNLKJIIJKLJIIJ

LKJIIJKL

IIIJIIIJ

PEJCEEJC

PPPPgPPfcPPb

PPPPPPPPaPPPPPPaPPPPaPPa

PPa

DEEPPh

~~~~

2

1

~~~~~~~~~~~

2

1~~~

~~~~~~~~

8

1~~~~~~

6

1~~~~

4

1~~

2

1

~~

2

1

~~~)
~

,
~

,
~

,~(
~

11

0

,,

,

−− −−

++++

++++

=

−=

κ

εεεεεε

ψε

 

                      (3.19) 

In the last line of the Equation (3.19), the factor 1−
IJJC  is from the transformation 
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The 2
nd

 Piola-Kirchoff stress, and the invariant descriptions of electric displacements, 

micro-forces are derived as 
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Notice that while IE
~

 
and ID

~

 
are invariant descriptions of electric field and electric 

displacement for rigid body rotations of the material, the deformation gradient kIF , the 

polarization 
iP
 

and the reference gradient of the polarization JiP ,  
are not objective 

measures.  In order to model the ferroelectric material described in Chapter 2 we have 

utilized is the Green-Lagrange strain tensor IJε~ , an objective polarization measure 

jjII PFP =
~

, and an objective polarization gradient measure JkkIIJ PFP ,

~
= . 

 

3.2 OBJECTIVE RATE OF POLARIZATION 

As mentioned previously, Equation (3.16d) and (3.17b) do not yield rigid 

rotation-invariant descriptions of the material dissipation.  To make the description of 

the dissipation frame indifferent, an objective rate of polarization must be used.  

Historically, three objective rates are usually implemented: the Truesdell rate, the Green-

Naghdi rate, and the Jaumann rate.  The Jaumann rate is adopted as the objective 

polarization rate in the theory presented here. 

The Jaumann rate of polarization is defined as 
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where ijω  is the spin tensor. 

Under a rigid body rotation, there is no energy dissipation when using the 

Jaumann rate of polarization for the dissipation 
∆∆

ii PPβ , while if the dissipation is 
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described as β �Pi
�Pi  

then it is not zero for a rigid body rotation.  Figure 3.2.1 shows a 

schematic of a polarized specimen undergoing a rigid body rotation.  The electric 

potential on the top and bottom surfaces is fixed at zero.  The initial material 

polarization is 1/ 0 =PPy , and the center-point on the bottom surface has a pin support.  

The upper right corner is displaced in a circular arc with the center of the arc located at 

the pin support.   

 

Py = P0

Electric Potential φ = 0

φ = 0

θ

Py = P0

Electric Potential φ = 0

φ = 0

θ

 

Figure 3.2.1:  A schematic plot of the rigid rotation of a generalized plane strain domain.  

The electric potential on the top and bottom surfaces are zero. Initial 

material polarization is 1/ 0 =PPy
, and the center bottom has a pin support.  

The entire domain rotated with the center of rotation located at the pin 

support. 

Suppose the specimen has a rotation angle of θ , then the spin tensor ω  can be written 

as 
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and 
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The spatial rate of polarization inherited from last chapter gives the energy dissipation 

rate D�  

 

dVPPD j
V

iijSpatial
��� ∫= β          

 

The energy dissipation rate associated with Jaumann rate of polarization is defined as 
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V

iijJaumann

∆∆

∫= β�         (3.24) 

 

Then the Jaumann rate of polarization is 
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From this calculation, it is shown that the energy dissipation with the Jaumann 

rate of polarization is zero. Simulation results agree with the theoretical prediction.  The 

energy dissipation with the spatial rate of the polarization is not frame indifferent, such 

that this rate of the polarization does not yield zero dissipation for a rigid body rotation. 

 

3.3 FINITE DEFORMATION ANALYSIS OF THE DOMAIN NUCLEATION PROBLEM 

The nucleation and growth of a new domain from a crack tip during purely 

electrical charge loading is simulated within the finite deformation phase-field model.  
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In order to compare the simulation results generated from the finite deformation phase-

field model with the linear kinematics case, the size of the specimen and the loading 

conditions are the same as the linear kinematics simulations, which are described in 

Section 2.4.3. 

A two-dimensional square geometry with the length of the side of the square 

equal to 
0l60  is studied here, and the crack length equal to 

0l30 .  The characteristic 

thickness of domain wall within the theory is 0l2 . The generalized impermeable 

boundary conditions on the crack faces are applied.  The initial spontaneous polarization 

0P  is normal to the crack faces.  The entire boundary of the square region is traction 

free, and the left and right sides of the region have no surface charge density.  The top 

and bottom surfaces have an applied surface charge density of )( 0 AP ωω −=±
∓ , and 

0=Aω  corresponds the initial state.  Then Aω  is increased to apply the charge loading 

on the top and bottom surfaces.  

At charge loading level at 12.0/ 0 =PAω , the domain was nucleated at the crack 

tip and allowed to evolve with a non-zero polarization viscosity term.  The loading is 

applied by first ramping up a uniform charge load on the top and bottom surfaces with a 

charging rate of 1.0/ 0 =EAωβ �  to a total charge of 12.0/ 0 =PAω  in the 00 l60l60 ×  

domain.  The charge was then fixed at 12.0/ 0 =PAω  and the domain structure was 

allowed to evolve until the solution was sufficiently close to the equilibrium 

configuration, at which point the polarization viscosity term was set to 0=β  to find the 

final equilibrium solution.   

 



 93 

  

Domain Nucleation at 12.0/ 0 =PAω  

 

Domain Evolution at 12.0/ 0 =PAω  

 

Final Equilibrium at 12.0/ 0 =PAω  

Figure 3.3.1:  Contour plots of the x and y-components of the polarization normalized by 

0P  in the vicinity of the crack tip during the evolution of the domain 

structure with the fixed charge loading 12.0/ 0 =PAω  at different times, 

from the nucleation of the domain to the final equilibrium configuration.  

Due to symmetry, only the upper half of the model is displayed.  The x and 

y distances are normalized as 0/ lx  and 0/ ly , and the polarization scale is 

normalized by the spontaneous polarization 0P .  The arrows represent the 

nominal direction of the polarization in different regions.  

Figure 3.3.1 shows the contour plots of the x and y-components of the 

polarization normalized by 
0P  in the vicinity of the crack tip during the evolution of the 

domain structure with the fixed charge loading 12.0/ 0 =PAω  at different times, from 
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the nucleation of the domain to the final equilibrium configuration.  The arrows 

represent the nominal direction of the polarization in different regions. 

Comparing Figure 3.3.1 generated from finite deformation phase-field model with 

the Figure 2.4.7 from the linear kinematics phase-field model, the charge loading levels at 

nucleation of the new domain are the same, and the final domain structures for the two 

models are nearly indistinguishable.  We also performed the analogous simulations for 

the charge-controlled uniform electric potential loading case and found similar agreement 

between the two theories.  Hence, these results suggest that the linear kinematics 

assumption is sufficient for modeling most domain evolution problems in ferroelectric 

ceramics. 
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Chapter IV  Instabilities in Dielectric Elastomer Composites 

While piezoelectric ceramics can generally attain strains less than 1% under 

electric field loading, dielectric elastomers can undergo much larger strains of over 100% 

and thus require a finite deformation theory for the description of the material behavior.  

Dielectric elastomers were implemented in the early 1990s as a new class of electroactive 

polymer (EAP) actuators.  This material has gained substantial attentions in the last two 

decades for applications in dielectric elastomers include actuator devices, manipulators 

and energy harvesters due to their large strains that can be induced by voltage, the fast 

deformation response, and light weight.  Excellent reviews of the literatures in this field 

have been given by Carpi et al. and Suo (F. Carpi et al., 2008; Suo, 2010).  

 

4.1 BACKGROUND 

In 1880, W. Roentgen designed an experiment with electric charges on natural 

rubber, and M. P. Sacerdote followed on Roentgen’s experiment by formulating a theory 

on the strain response to an applied electric field in 1899.  Then the first piezoelectric 

polymer, Electret, was discovered in 1925. In 1969, Kawai demonstrated that 

polyvinylidene fluoride (PVDF) exhibits a large piezoelectric effect. An important step in 

discovering dielectric elastomers was the work by Zhenyi et al. (Zhenyi et al., 1994) and 

others on investigating electrostriction in polymers, which showed the possibility of 

electroactive polymers beyond the already discovered piezoelectric polymers.  

Simultaneously, research in robotics in the late 1980s, and the need for flexible large-

stroke actuators, also lead to enhanced interest in dielectric elastomers. 

All dielectric materials contain bound electrons or ions, which do not move over 

significant distances causing charge flow though the material as in a conductor. Instead, 
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the charge carriers can only shift slightly from their equilibrium positions in response to 

an applied electric field, and this process is called dielectric polarization.  In all 

materials mechanical deformation and electrical polarization are inherently coupled, and 

the magnitude of this coupling allows dielectric elastomers to convert electrical energy to 

mechanical energy in an actuator mode, or convert mechanical energy to electrical energy 

in a generator mode.  Figure 4.1.1 illustrates a thin layer of a dielectric elastomer 

sandwiched between two compliant electrodes across the thickness of the layer.  

Applying charge to the top and bottom surfaces causes a reduction in the layer thickness 

and expands the cross-sectional area.  This straining caused by the applied electric field 

can exceed 100%.  This large strain behavior has led some researchers to refer to 

dielectric elastomers as artificial muscles. 

 

 

(a) Reference State     (b) Current State 

Figure 4.1.1:  A schematic plot of a dielectric elastomer in the (a) reference state and (b) 

the deformed or current state.  The dielectric elastomer deforms under the 

applied electric field.  

The electric field in the dielectric elastomer is given as lE /φ∆= . As the applied 

electric field increases, the electrostrictive effect causes the dielectric elastomer to 

become thinner, which causes an even higher electric field at the same voltage.  The 

increase in the electric field lead to two possible failure modes: electrical breakdown or 

electromechanical instability.  For ferroelectric ceramics, the deformation induced by 

Compliant 
Electrode 

Dielectric 
Elastomer A Φ

l

a Q+

Q−

L
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voltage is usually limited by electrical breakdown, i.e. charges are able to migrate 

through the material creating a highly conductive channel that connects the opposing 

electrodes.  For dielectric elastomers as a compliant dielectric, the deformation induced 

by the electric field generally leads to some form of electromechanical instability.  Such 

instabilities in dielectric elastomer composites will be investigated in the following 

sections of this chapter.  Electromechanical instabilities are sensitive to the mechanical 

stress versus deformation behavior of the elastomer.  Dielectric elastomers are 

composed of a network of long and flexible polymer chains held together by cross-links.  

At small deformation levels, the dielectric is compliant, since the density of the 

networked chains is small resulting in a lower stiffness of the elastomer.  Then, as 

deformation proceeds, the dielectric elastomer stiffens steeply at modest stretches when 

the networked chains are straightened towards their full contour length.  In the next 

section we introduce the constitutive descriptions that will be used to model these 

behaviors. 

 

4.2 HYPERELASTIC MODELS 

In this chapter the mechanical behavior of dielectric elastomers is modeled using 

finite deformation hyperelasticity.  The hyperelastic material models can be classified as 

phenomenological descriptions of the observed behavior such as the Mooney-Rivilin and 

Ogden models, mechanistic models derived from arguments about the underlying 

structure of the material such as the Neo-Hookean model, and hybrids of the 

phenomenological and mechanistic approaches such as the Gent model.  In our 

simulation, the compressible Neo-Hookean model and compressible Gent model are 

used. 
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In addition to the deformation dependence, the free energy descriptions for 

dielectric elastomers must also include a dependence on electric field or electrical 

polarization.  The hyperelastic models used in this chapter that includes the electric 

polarization as a parameter can be found in Appendix D.  

 

 

(a) Reference State     (b) Current State 

Figure 4.2.1:  A schematic plot of a dielectric elastomer with dimension 321 LLL ××  at 

(a) the reference state and with dimensions 321 lll ××  at (b) the current 

state.  The dielectric elastomer deforms under the applied electric field.  

Figure 4.2.1 shows a schematic plot of a dielectric elastomer with the dimensions 

321 LLL ××  at (a) the reference state and with the dimensions 
321 lll ××  at (b) the 

current state.  The dielectric elastomer will deform under the application of electric 

field. The principal stretches 321 ,, λλλ  are defined as 111 / Ll=λ , 222 / Ll=λ , and 

333 / Ll=λ  respectively.  

The general form of the free energy to be used in this chapter for the description 

of dielectric elastomers can be written as 
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where ),,( 321 λλλsW  is the energy due to stretching which will be different for the 

different hyperelastic models, κ  is the dielectric electrical permittivity of the material, 

J  is the determinant of gradient deformation tensor, E
~

 is the reference electric field in 

reference state, 1−F  is the inverse of the deformation gradient tensor and 1−C  the 

inverse of right Cauchy-Green deformation tensor.  Note that the electrical part of the 

free energy assumes that the dielectric permittivity of the material is independent of the 

volume change, which is a feature that can of course be modified but is approximately 

true for many materials. 

Using the assumption of generalized plane strain, 13 =λ .  Then the energy form 

in (4.1) can be expanded for the different hyperelastic models.  

The compressible Neo-Hookean model takes the free energy form 
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where κ  is the permittivity, the subscript mat  represents the permittivity of the 

dielectric elastomer material, J  is the determinant of the deformation gradient tensor 

)det(F=J , C  is the right Cauchy-Green deformation tensor, E
~

 is the reference 

electric field, CI1
 is the first invariant of right Cauchy-Green deformation tensor 
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II

C CtrI == )(1 C , and µ , K  are the shear modulus and bulk modulus of the dielectric 

elastomer respectively. 

 The first line of the energy form in (4.2) represents the energy stored in the 

material with the coupling between mechanical deformation and the electric field, and the 

second line represents the Helmholtz free energy associated with the stretching of the 

elastomer.  For the incompressible case, 1)det( == FJ , the energy function of the 

Neo-Hookean model will reduce to the form 
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The compressible Gent model takes the form 

 

)ln
2

1
(

2
ln)

3
1ln(

2

)
~~~~~~

(
2

1

2

1

12

1

2121

1

12

2

2

1

22

2

1

1

11

J
JK

J
J

I
J

EECEECECECJW

m

C

m

mat

C

G

−
−

+−
−

−−

+++−=
−−−−

µ
µ

κ

       (4.4) 

 

where mJ  denotes the limiting value for 31 −CI  and is a new material constant.  This 

parameter allows the model to represent the saturation of deformation associated with the 

straightening of the polymer chains.  As for the Neo-Hookean model, the first line in 

equation (4.4) is the energy stored in the material, and the second line is the Helmholtz 

free energy associated with the stretching.  For the incompressible case, the free energy 

form of Gent model reduces to 

 



 101 

)
3

1ln(
2

)
~~~~~~

(
2

1

1

12

1

2121

1

12

2

2

1

22

2

1

1

11

m

C

m

mat

I

G

J

I
J

EECEECECECW

−
−−

+++−=
−−−−

µ

κ

     (4.5) 

 

Furthermore, in the limit as ∞→mJ , the Gent model reduces to the Neo-Hookean 

model. 

The finite element method is used as numerical technique to solve the boundary 

value problems, and mechanical displacement and electric potential are chosen as the 

nodal degrees of freedom.  

 

4.3 SIMULATION RESULTS 

In this section, we studied the electromechanical behavior of dielectric elastomers 

filled with square arrays of different inclusion types using compressible Neo-Hookean 

model and Gent models for the description of the elastomer.  Finite deformation affects 

are accounted for and the theory is implemented in the finite element method.   

 

A

B

A

B

           

(a)                    (b)  

Figure 4.3.1:  A schematic plot of a generalized plane strain dielectric elastomer 

specimen with a repeated pattern of long cylindrical inclusions.  Due to 

symmetry, only the regions A or B enclosed by the dashed lines are 

analyzed.  The small cell A is a LL ×  square, and the radius of the 

inclusion is r . 

r

A
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Figure 4.3.1 shows a schematic plot of a dielectric elastomer specimen with a 

square array of long cylindrical inclusions.  Due to symmetry, only the regions enclosed 

by the dashed lines, small cell A and large cell B, are analyzed.  Consider a two-

dimensional LL ×  square region as in Figure 4.3.1(b), with the radius of an inclusion as 

r .  Four different inclusion types are considered: (1) rigid conducting inclusions, (2) 

conducting holes, (3) impermeable (perfectly insulating) holes and (4) air-filled 

insulating holes.  We study ratios of the inclusion size to the specimen side length Lr / , 

from 0 to 1 with the increments of 1/10.  Here we use the plane strain assumption such 

that the strain in the 
3x  direction is assumed to be zero.  

 

 

Figure 4.3.2: In a LL ×  square, the radius of the inclusion is r . The left boundary is 

charge free and the horizontal displacement is zero due to symmetry; the 

right boundary is charge free and remains straight and vertical; the vertical 

displacement and electric potential for the lower boundary are zero; the top 

boundary remains straight and horizontal with a uniform electric potential.  

The boundary conditions at the inclusion boundary vary with the different 

inclusion types. 

The first simulations are for a material with different inclusion sizes and types 

under pure electric loading in a LL ×  domain. As shown in Figure 4.3.2, in a LL ×  

square, the radius of inclusion is r .  The left boundary is charge free and the horizontal 

r
0=φ

Flat

.. φUniformFlat
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displacement is zero due to symmetry; the right boundary is charge free and remains 

straight and vertical; the vertical displacement and electric potential for the lower 

boundary are zero; the top boundary remains straight and horizontal with a uniform 

electric potential.  The boundary conditions at the inclusion boundary vary with the 

different inclusion types.  

(1) Rigid conducting inclusions: mechanical displacement and electric potential at 

the inclusion interface are fixed at zero. 

(2) Conducting holes: the interface is free of mechanical tractions, and the electric 

potential at the interface is zero. 

(3) Air-filled insulating holes: the interface between air and material is free of 

mechanical tractions and charges, and the air inside the hole is modeled such that the 

permittivity of free space is also accounted for. 

(4) Impermeable (perfectly insulating) holes: the interface is free of mechanical 

tractions and charges, and the permittivity of free space is approximately to be zero. 

In order to track solutions after electrical “softening” occurs, the electrical loading 

is increased by increasing the net charge on the top surface while maintaining a uniform 

electric potential uniform along the surface.  The nominal electric field LE /φ= , 

where φ  is the electric potential on the top surface and L  the initial length of the unit 

cell.  The nominal electric displacement AQD /= , where Q  is the total applied 

charge to the upper surface, and A  is the initial area of the top surface.  The electric 

field and the electric displacement are normalized by κµ /  and µκ  respectively, 

where µ  is the shear modulus and κ  is the permittivity of the material.  To illustrate 

the behavior of the material when there is no inclusion, the contraction of the speciment 

in the direction of applied charge is plotted as a function of the electric displacement in 

Figure 4.3.3 for a Neo-Hookean material.  As an electrical loading is applied, the 
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material contracts.  This behavior can be rationalized in several ways, the simplest being 

that the full electromechanical energy of the system is reduced if the electrodes move 

together.  This reduction in energy consists of an increase in the strain energy and the 

stored electrostatic energy along with a reduction in the potential energy due to the 

electrical work done by the battery that feeds charge to the electrodes in order to keep the 

voltage constant. 

 

 

Figure 4.3.3:  The stretch in the direction of applied charge is plotted as a function of the 

nominal electric displacement.  The electric displacement is normalized by 

µκ , where µ  is the shear modulus and κ  is the dielectric permittivity 

of the material.  This plot is for the Neo-Hookean material without an 

inclusion. 

Figure 4.3.4 shows the comparison of the charge-voltage behavior predicted by 

the Neo-Hookean model and the Gent model with Jm=50.  The nominal electric 

displacement is plotted as the function of the nominal electric field.  Figure 4.3.4(b) 

magnifies the region in plot (a).   
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(a) 

 

(b) 

Figure 4.3.4: Comparison between the Neo-Hookean model and the Gent model with 

Jm=50.  The nominal electric displacement is plotted as a function of the 

nominal electric field.  (b) magnifies the region near point A in the plot (a). 

For both models, the material responses are approximately linear.  At point 

A, the two models diverge, the Gent model shows that the material 

“hardens” initially, and beyond load level B, localized thinning occurs and 

the voltage decreases with increasing charge.  

For both models at low levels of applied voltage the electrical response for the 

capacitor structure in that charge flows easily between the two electrodes without the 

need for increases in the applied voltage.  In contrast, the Gent model predicts that the 
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structure has an electrical “hardening” behavior where additional voltage is required to 

cause the charge transfer between electrodes.  Note that even for the Gent model the 

structural electrical response can be characterized as “soft” after point A.  For the Gent 

material there is eventually a voltage level, point B, that does lead to an instability where 

the voltage decreases with the increasing charge.  Notice that the plot illustrates that the 

Neo-Hookean and the Gent models share the same electrical “softening” point A in the 

structural response.  To illustrate an example for a dielectric elastomer composite, 

Figure 4.3.5 plots a similar comparison of the charge-voltage curve for the Neo-Hookean 

model and the Gent model with Jm=50 when the normalized inclusion size is r/L=0.8.  

Again, this figure illustrates that the structural softening points at which where the slope 

of response changes significantly are similar for both models.  Hence, in many cases we 

will simply use the Neo-Hookean model to report unambiguous instability points for the 

composites structures to be investigated. 

 

 

Figure 4.3.5:  Comparison of the charge-voltage curves from the Neo-Hookean model 

and the Gent model with Jm=50 for rigid conducting inclusions of radius 

r/L=0.8.  The x-axis represents the normalized nominal electric field and 

the y-axis represents the normalized nominal electric displacement. 
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Comparisons of the charge-voltage curves for different types of the four different 

inclusions: rigid conducting inclusions, conducting holes, perfectly insulating holes, and 

air-filled insulating holes; with the inclusion size r/L=0.8 using the Neo-Hookean model 

are shown in Figure 4.3.6.  With the same normalized electric displacement, the 

normalized electric field decreases in the order of the ratio of permittivity in the free 

space to the material.  Rigid conducting inclusions and conducting holes assume infinity 

permittivity of free space, then different insulating holes take the ratio of permittivity in 

the dielectric material to the free space to be 1,2,5,10, and finally impermeable (perfectly 

insulating) holes implied zero permittivity in the free space.  

 

 

Figure 4.3.6:  Comparison of the charge-voltage curves for different types of inclusions: 

rigid conducting inclusions, conducting holes, impermeable (perfectly 

insulating) holes and air-filled insulating holes with the inclusion size 

r/L=0.8 using the Neo-Hookean model.  The x-axis represents the 

normalized nominal electric field and the y-axis represents the normalized 

nominal electric displacement. 
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Figure 4.3.7: The deformation mode at instability for rigid conducting inclusions with the 

inclusion size r/L=0.8, using the Neo-Hookean model. 

 

Figure 4.3.8: The deformation mode at instability for conducting holes with the inclusion 

size r/L=0.8, using the Neo-Hookean model. 

The deformation modes at the instability are different for the different types of 

inclusions.  In Figures 4.3.7~4.3.10, these deformation modes at the instability for 

different inclusion types are plotted.  Here, the material model used is the Gent model 

with Jm=50.  For the conducting inclusions, including rigid conducting inclusions and 

conducting holes, a pinching instability is favored.  The thickness of the material 
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between adjacent inclusions/holes becomes very small.  The instability occurs when the 

increase of the local electric field due to the ligament thinning overwhelms the materials 

ability to elastically resist the deformation.  In contrast, the perfectly insulating holes 

(and we suspect that this also occurs for the air-filled holes) undergo a cusping/collapse 

type of instability, where the sides of the holes collapse and contact occurs forming a 

cups at the hole equators.  We were unable to numerically achieve the cusp instability in 

the air-filled holes due to the requirement that the air inside the holes must be meshed.  

Since this material has no elastic stiffness, multi-point constraints, connecting the internal 

nodes to control nodes on the hole boundary, were used to control the displacements of 

the nodes on the inside of the hole.  As the hole starts to collapse the control nodes on 

the boundary move in a way that causes ill-conditioning of the internal elements leading 

to numerical difficulties in obtaining valid solutions.  This is not to say that such 

solutions are impossible, but rather that a more sophisticated procedure is required to 

control the displacements and mesh configuration that represents the air inside of the 

holes. 
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(a) 

 

(b) 

Figure 4.3.9: (a) The deformation mode at the numerical instability for air-filled 

insulating holes with the inclusion size r/L=0.8, using the Neo-Hookean 

model.  (b) The deformation for impermeable (perfectly insulating) holes 

with the inclusion size r/L=0.8 at small load. 
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Figure 4.3.10: The deformation mode at instability for impermeable (perfectly insulating) 

holes with the inclusion size r/L=0.8, using the Gent model with Jm=50. 

The normalized electrical loads at the electrical loading instability for the 

different inclusion types using the Neo-Hookean material model are compared in Figure 

4.3.11.  For conducting holes, the critical load at instability is linear in the inclusion 

size.  As the inclusion size increases, the critical electrical loading level at the instability 

decreases primarily because the pinching instability can occur more readily in the thinner 

ligaments separating the holes.  

 

 

Figure 4.3.11: The loads at instability are plotted with respect to inclusion size for rigid 

conducting inclusions and conducting holes using the Neo-Hookean model. 
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The calculations above are based on the small unit cell, region A in Figure 4.3.1.  

The small unit cell places considerable constraints on the deformation patterns that can be 

achieved in the composite.  To investigate other modes of deformation a larger unit cell 

is introduced.  Instead of pure electrical loading, mechanical loading will be applied 

first, and then followed by electrical loading.  The instabilities in this structure due to 

mechanical loading has been studied by Bertoldi and Boyce (2008) and Triantafyllidis et 

al. (2006).  A schematic plot and mesh of the large unit cell, region B in Figure 4.3.1, is 

shown in Figure 4.3.13.  When charge is applied, the loading curves for the large unit 

cell and small unit cell are compared for air-filled insulating holes r/L=0.9 using the Gent 

model with Jm=50.  For the large unit cell, the bottom surface is fixed in the vertical 

direction and the electric potential is zero; the left surface is constrained to remain flat 

and the horizontal mechanical displacement is zero due to symmetry; and the right 

surface is constrained to remain flat.  The top surface is also constrained to remain flat, 

and the electric potential is uniform along this surface.  A compressive mechanical 

displacement is applied on the top surface to reach and go beyond the mechanical loading 

instability, and then charge is applied with the mechanical displacement held fixed on the 

top surface.  Two different inclusion types are investigated: air-filled insulating holes 

with 
holemat κκ 10=  and conducting holes with 1000/holemat κκ = .  In the calculation, 

the Gent model with Jm =50 is used and the inclusion size r/L is 0.9. 
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Figure 4.3.13: A schematic plot and mesh of region B in Figure 4.3.1.  The loading 

curve of large unit cell and small unit cell are compared for the air-filled 

insulating holes of radius r/L=0.9 using the Gent model with Jm=50.  

Figure 4.3.14(a) shows the mechanical loading curve for the large unit cell.  The 

x-axis is the normalized strain and the y-axis is the normalized first Piola-Kirchhoff 

stress.  Figure 4.3.14(b) illustrates the deformation mode of the mechanical loading 

instability.  The elastomers “buckle” under the mechanical compression in the vertical 

direction.  This calculation is for the Gent model with Jm=50, air-filled insulating holes 

( holemat κκ 10= ) and conducting holes ( 1000/holemat κκ = ) with inclusion size r/L=0.9.  

Both the air-filled insulating holes and the conducting holes share the same behavior 

since the material is subject to mechanical loading only.  
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(a) 
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(b) 

Figure 4.3.14: (a) Mechanical loading curve for the large unit cell. (b) The deformation 

mode at the mechanical loading instability.  The calculation is for the Gent 

model with Jm=50, air-filled insulating holes ( holemat κκ 10= ) and conducting 

holes ( 1000/holemat κκ = ) with inclusion size r/L=0.9.  
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(a) 
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(b) 

Figure 4.3.15: (a) Mechanical stress versus applied electric displacement with fixed 

mechanical displacement on the top surface u/L=-0.05.  When mechanical 

stress reaches zero, the material is unbuckled.  (b) The shape at the 

unbuckled state.  The calculation is for the Gent model with Jm=50, air-

filled insulating holes (
holemat κκ 10= ) with inclusion size r/L=0.9. 

With the mechanical displacement fixed on the top surface, the charge is now 

applied.  The air-filled insulating holes and the conducting holes now behave 

differently.  For the air-filled insulating holes, Figure 4.3.15(a) shows mechanical stress 

versus applied electric displacement response, with the mechanical displacement on the 

top surface fixed at u/L=-0.05.  The first Piola-Kirchhoff stress decreases nearly 

quadratically with the applied charge.  Then when mechanical stress reaches zero, the 
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material is unbuckled (the unbuckled shape is drawn in Figure 4.3.15(b)).  After 

unbuckling, the deformation mode follows that of the simple unit cell, and if more charge 

is applied, the first Piola-Kirchoff stress behaves nearly linearly in the electric 

displacement. 

 

 

(a) 

 

(b) 

Figure 4.3.16: (a) Mechanical stress versus applied electric displacement with fixed 

mechanical displacement on the top surface with u/L=-0.03.  The pinching 

instability occurs as the applied charge increases.  (b) The deformation 

mode at the pinching instability.  The calculation is for the Gent model 

with Jm=50, conducting holes ( 1000/holemat κκ = ) with inclusion size 

r/L=0.9.  

For the conducting holes ( 1000/holemat κκ = ) with inclusion size r/L=0.9, Figure 

4.3.16(a) shows the curve of mechanical stress versus the applied electric displacement, 
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with mechanical displacement on the top surface fixed at u/L=-0.03.  For this case, the 

unbuckling and the pull-in process occur simultaneously.  Then, when the applied 

charge reaches a critical value the material experiences a pinching instability.  The 

deformation mode at the pinching instability is plotted in Figure 4.3.16(b).  

 

4.4 DISCUSSION 

In Chapter 3, finite deformation effects were incorporated into the phase-field 

theory.  An objective rate of the electric polarization was used to cause the energy 

dissipation to be frame indifferent.  Since the working strain of ferroelectric ceramics is 

small, it was shown the qualitative results for the numerical simulation of domain 

evolution with the finite deformation theory does not significantly differ from its linear 

kinematics counterpart.  Hence, for most domain structure evolution problems we 

tentatively conclude that the assumptions associated with linear kinematics assumption 

are acceptable.  We do envision that even for these materials there are likely to be some 

problems where the effects of finite deformations are significant.  

In contrast to ferroelectric ceramics, dielectric elastomers can undergo strains on 

the order to ~100%, so that difference between the reference configuration and 

current/deformed configuration is significant.  In this chapter the finite deformation 

effects and the associated electrical forces are accounted for, and the theory is 

implemented using the finite element method.  Hyperelastic models, such as the Neo-

Hookean model and the Gent model, are used to describe the elastic parts of the material 

free energy.  The electromechanical behavior, including the occurrence of some 

interesting instabilities, of dielectric elastomers filled with square arrays of different 

inclusions types were then studied.  For the electrical loading instability, the conducting 
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inclusions favor a pinching instability whereas the insulating holes undergo 

collapse/cusping instability.  Next, the mechanical loading instability was investigated, 

followed by electrical loading with fixed mechanical load.  The results show that the 

insulating holes will unbuckle and return to the initial state under the application of 

electrical loading, while the conducting holes will unbuckle but undergo pinching 

instability with electrical loading.  
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Chapter V  Outlook and Future Work 

During the course of the studies described in this dissertation, several issues 

associated with the numerical solution of the phase-field model were encountered.  First, 

in many cases the domain structures that arise in a given simulation can be difficult to 

predict a priori.  Prior knowledge of the expected domain structures can be used 

advantageously when constructing finite element meshes for a given initial-boundary 

value problem.  Fine meshes are desired in regions where domain walls are expected 

(due to the large polarization gradients), and in order to reduce the computational 

overhead, coarse meshes are preferred in regions where the solution is expected to be 

smooth.  Problems can arise when domains nucleate and grow into regions where the 

mesh is coarse.  This leads us to the second issue that the regions of the coarse mesh act 

as numerical pinning sites.  What this means is that a domain wall that would otherwise 

sweep through a region unimpeded is instead stopped at the location where the mesh 

coarsens.  Clearly, when this occurs the accuracy of the solution is poor and the results 

can no long be trusted.  These numerical issues were not addressed in this work, but 

clearly adaptive mesh refinement and coarsening strategies will be beneficial for the 

accurate solution of problems where the domain structure evolution is unpredictable. 

One of the tentative findings from Chapter 3 was that the inclusion of finite 

deformation effects did not play a large role in the domain nucleation and subsequent 

evolution from a crack tip.  However, caution should be taken when attempting to 

extrapolate this observation to other boundary value problems.  For example, finite 

deformation will certainly be important in thin structures that may undergo large 

deflections and rotations but relatively small strains.  Also, the region within a crack can 

be modeled directly, which will then allow for the fully consistent integration of electrical 
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forces on crack faces within this modeling approach.  At present, the state-of-the art for 

applying electrical tractions on crack faces uses a linear kinematics description of the 

bulk but a finite deformation description of the crack interior.  This, albeit minor, 

inconsistency can be “fixed” by using a full finite deformation approach. 

A final challenge that was encountered when generating the numerical 

simulations was for the collapse/cusping of the air-filled holes in the dielectric elastomer 

composite studies.  In fact, this mode of deformation was unexpected and to my 

knowledge has not yet been observed.  In order to investigate this phenomenon 

properly, numerical techniques that can handle the contact and large geometry changes 

within the holes are needed.  It may be possible that the initiation of the cusping 

phenomenon can be handled with simple-minded methods, but the post-cusping behavior 

will most likely require more sophisticated numerical techniques. 
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Appendix A:  Linear Piezoelectric Constitutive Laws 

Depending on which independent fields variables are used, four forms of the 

linear piezoelectric constitutive laws governing the relationship among mechanical stress, 

mechanical strain, electric field and electric displacement about a fixed remanent strain 

and polarization state are given here. 
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where 
r

ijε  and 
r

iP  are the remanent strain and polarization; 
E

ijklS , 
D

ijklS , 
E

ijklC , and 

D

ijklC  are the fourth rank tensors of elasticity; 
kijkijkijkij ghed  and,,  are the third rank 

tensors of piezoelectricity;  
εσεσ ββκκ ijijijij and,,,  are the second rank dielectric tensors. 

Relationships among the different coefficients can be obtained by manipulating the 

different forms of the constitutive laws. 
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Appendix B:  Helmholtz Free Energy and Material Properties of 

Barium Titanate 3BaTiO  

The general form for the Helmholtz free energy applied in Chapter 2 is given in 

Equation (2.18).  For a coordinate system with the Cartesian axes aligned with <1 0 0> 

directions, the specific form used to fit the dielectric, piezoelectric and elastic properties 

of ferroelectric single crystals that undergo a cubic to tetragonal phase transformation 

through the Curie temperature is: 
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The properties of mono-domain single crystal barium titanate ( BaTiO3) have 

been measured by Li et al. (Li et al.,1991) at room temperature ( ~22 °C). For a domain 

with spontaneous polarization in the 
3x  direction, the spontaneous polarization and 

strain rate is: 

 

.0,0027.0

,0082.0,0,C/m26.0

2321122211

3321

2

3

===−==

====
sssss

ssss
PPP

εεεεε

ε
 

 

In the same coordinate system, the elastic, piezoelectric, and dielectric properties given in 

standard Voigt notation are: 
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where 
0κ  is the dielectric permittivity of free space. 

Therefore, the permittivities at constant stress presented above are calculated 

accordingly.  In order to fit these properties of a mono-domain the coefficients of the 

Helmholtz free energy are chosen as follows: 
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.N/m10692/ and V/m,1018247.2,0082.0,C/m26.0 26
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The definition of 00 , εP arise from the spontaneous state. And the critical electric 

field 0E  is the magnitude of the electric field required to cause homogeneous 180° 

switching when the electric field is applied in the opposite direction of the uniform 

spontaneous polarization.  Finally, the stress 0σ  is a derived quantity used for 

normalizations. 

The parameter 0a  appearing in the Equation (B.1) determines the domain wall 

thickness.  If /CmV101 310

0

−×=a , then nm10 =l , and therefore the 180° domain wall 

has thickness equal to 2 nm which is in general agreement with experiment observations 

(Zhang et al., 1992). 
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Appendix C:  Stroh Formalism in Piezoelectrics 

The stroh solution is a compact, complex variable representation for generalized 

plane strain problem.  Here we will investigate two-dimensional (independent of the 3x  

direction, 0333 == Eε ) problems in homogenous, linear, piezoelectric materials with no 

body forces or charges (Landis, 2008).  The governing equations for this two-

dimensional problem are: 

 

2,21,1 and φφ −=−= EE        (C.1.a) 

2,3321,3311,22,1122,2221,111 2and2,2,, uuuuuu ==+=== εεεεε   (C.1.b) 

02,21,1 =+ DD          (C.1.c) 

jiijwith σσσσσσσσ ==+=+=+ 0and,0,0 2,321,312,221,122,211,11  (C.1.d) 

 

Standard index notation is used with summation implied over repeated indices, 

and ,j represents partial differentiation with respect to the 
jx  coordinate direction. 

Ultimately, we will state the equilibrium equations in terms of mechanical 

displacements iu  and the electric potential φ , so we need the stresses 
ijσ  and electric 

displacements 
iD  in terms of the strain 

ijε  and electric field 
iE  from the constitutive 

response, then the stresses and electric displacements can be written in terms of the 

displacement and potential, and finally these relationships will be placed into the 

equilibrium and Gauss’ law to get three governing partial differential equations for the 

displacements and potential.  

In Appendix A, we have the formula (A.2), and use the (C.1.a) & (C.1.b), 

assuming the generalized plane strain and electric field conditions, then 
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where the Greek subscripts are only allowed to take on the values 1 and 2, and 

summation over repeated indices is still assumed.  The constants ec
E , and 

εκ  in 

(C.2) can be obtaining by manipulating (A.1) and (A.2), since the material properties in 

(A.1) are given in Appendix B.  

To solve these equations in (C.2), we assume a solution of the form, 
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where 21 pxxz +=  is a complex variable ( p  is complex with generally both real and 

imaginary parts).  Therefore, (C.2) becomes an eigenvalue problem with p  as the 

eigenvalues and a  as the eigenvectors, and our characteristic equation can be written as, 
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Using standard Voigt notation, 
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Non-trivial solutions to the characteristic equation exist when the determinant of 

the bracketed matrix is zero. 

 

{ } 0)(det 2 =+++ TRRQ pp T        (C.6) 

 

This represents an eighth order polynomial for p .   It is possible to show that 

for a material with physically admissible p  is always complex.  Since the coefficients 

of the eighth order polynomial are real, the roots appear as complex conjugate pairs.  

Without loss of generality, we can take, 
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where ypxz II += , the general solution has the form, 
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For each eigenvalue Jp  there is an associated eigenvector ),( 4JiJ AA . The 

matrix A  is assembled by placing the components of the eigenvectors a  in the 

columns. 
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Figure C.1: A schematic of the crack under mode I, II and III loadings. 

Define 
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It is possible to write the stresses and electric displacements in vector form as, 
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The matrix B  is assembled by placing b  vectors in the columns.  Note that the stress 

and electric displacement can be derived from a set of stress and electric displacement 

potential functions as, 
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The potential functions can then be given in terms of the complex functions as, 
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Now take the case of a semi-infinite crack with traction-free and charge-free boundaries.  

On the plane ahead of the crack tip, ,0=θ  and rxzI == 1
, where θ,r  are defined 

through Ii

III erxpxz
θ=+= 21 , we have 
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The definition in (C.12) states that the stress or electric displacement ahead of the 

crack tip is equal to its corresponding intensity factor K by the square root of rπ2 .  

Here, IIIIII KKK ,,  are the opening loads, in-plane shear loads, and out-of-plane shear 

loads intensity factors respectively as shown in Figure C.1, and IVK  is the electric 

loading intensity factor which can also be written as 
DK .  Using this convention and 

our previous conclusion, we can show, 
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Finally, our solutions for the stress and electric displacement potentials and the 

displacements & electric potential are, 
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where 
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T

I pA )()()( 1 BTR −+=  

and I denotes the th
I  column. 

The energy release rate associated with an incremental advance of the crack tip 

can be computed using a crack closure integral, 
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where iu∆  and φ∆  are the crack opening/sliding displacements and potential jump.  

The two vectors appearing in the integrand are given as, 
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and 
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From (C.15), the closure integral becomes, 
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Appendix D:  Model of Dielectric Elastomers with Electric 

Polarization 

In this appendix, the form of free energy in the hyperelastic models not only 

depend on the mechanical displacement and electric field, but also on electric 

polarization.  

 

 

(a) Reference State     (b) Current State 

Figure D.1:  A schematic plot of a dielectric elastomer with the dimension 
321 LLL ××  

at (a) the reference state and with the dimension 
321 lll ××  at (b) the 

deformed or current state.  

Figure D.1 shows a schematic plot of dielectric elastomer with the dimension 

321 LLL ××  at (a) the reference state and with the dimension 321 lll ××  at (b) the 

deformed or current state. The stretches 321 ,, λλλ  are defined by 111 / Ll=λ ,  

222 / Ll=λ  , and 
333 / Ll=λ  respectively.  Suppose 

321 ,, PPP  are the normal forces in 

the 321 ,, xxx  directions, then the nominal stresses are defined by 3211 / LLPs = , 

1322 / LLPs = , and 2133 / LLPs = .  

The general form of free energy can be taken as 
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(D.1) 

And the nominal stresses can be written as 
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where ),,( 321 λλλsW  is the energy due to stretch and different for different hyperelastic 

models, 
matκ  electrical permittivity of the material, J  determinant of gradient 

deformation tensor, E
~

 electric field in reference state, P  electric polarization in 

current state, P
~

 electric polarization in reference state, F  deformation gradient tensor, 

1−F  inverse of deformation gradient tensor and 
1−C  the inverse of right Cauchy-Green 

deformation tensor. 

 With the assumption of generalized plane strain, 13 =λ .  For the electric 

potential loads on the top and bottom surfaces in 
2x  direction, the electric field in 

reference state is 
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L
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δ−= .  And the deformation gradient tensors can be written as 

the functions of the stretches,  
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The Jacobian determinant 21321 λλλλλ ==J .  The electric polarizations in the 

reference state 0
~~

31 == PP .  Suppose PP =2

~
,  the energy form reduces to  
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The electric polarization in equilibrium state can be found from  
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Solving the set of three equations, the electric polarization at equilibrium is 
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And 
21,λλ  can be derived from 0,0
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s , depending on different 

hyperelastic models such as the Neo-Hookean and the Gent models. 

For the Neo-Hookean model,   
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With the different value of the applied electric potential, the numerical calculated electric 

polarization is compared with the analytic result in (D.5), as shown in Figure D.2. 
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Figure D.2:  With the different value of the applied electric potential, the numerical 

calculated electric polarization is compared with the analytic result.  The x-

axis represents the normalized electric potential and the y-axis represents the 

normalized y-component of polarization. 

The material properties used here are  
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