
Copyright

by

Eiman Ebrahimi

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5191468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Eiman Ebrahimi
certifies that this is the approved version of the following dissertation:

Fair and High Performance

Shared Memory Resource Management

Committee:

Yale N. Patt, Supervisor

Nur A. Touba

Keshav Pingali

Derek Chiou

Onur Mutlu

Fair and High Performance

Shared Memory Resource Management

by

Eiman Ebrahimi, B.S.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2011

Dedicated to my loving parents, Ahmad and Batool, and my brother Amir

Acknowledgments

Many people have contributed to this dissertation both technically and moti-

vationally. This acknowledgment is my attempt at expressing my gratitude for their

help and support.

First and foremost, I thank my advisor Professor Yale Patt. He has taught

me most of what I know today about the fundamentals of computer architecture

and how to be a caring teacher. His drive to perform high-impact research rooted in

fundamentals has always been inspirational to me. I also thank him for providing

the resources and environment within the HPS research groupthat creates the op-

portunity to do high-quality research and collaborate withpeople that are both very

smart and great human beings. Finally I would like to thank him for the valuable

real-life lessons I have learnt from him over the years whichwill have impact on

more than just my future professional career.

I am very grateful to have had Onur Mutlu as a mentor and the opportunity

to collaborate closely with him. I have learnt a great deal about how to perform

high-quality research from him. His attention to detail andseemingly never-ending

energy for making progress in research have always been exemplary for me. I would

also like to thank Onur for his patience with me both technically and personally, and

also his always encouraging attitude.

I thank Chang Joo Lee for being a great collaborator and beyond that, a

friend. His contributions have without doubt made this dissertation much stronger.

He mentored me throughout our collaboration and led by example with his pro-

fessionalism and discipline. I also thank him for his support and encouragement

through the hard times of my graduate student life.

I thank José A. Joao for the motivation and support he provided in getting

me started with my PhD research. I am very grateful for the time and effort he

v

generously spent in the role of a senior colleague helping megrow in the HPS

group. I would also like to thank him for his technical feedback and constructive

criticisms and suggestions which have made this dissertation stronger. Lastly, his

expertise and hard work in maintaining the group’s infrastructure has been a signif-

icant help to our research group’s progress.

I would like to thank Rustam Miftakhutdinov, M. Aater Suleman,

Veynu Narasiman, Khubaib, Milad Hashemi, and Faruk Guvenilir for all of their

technical feedback and criticism. I thank Rustam for his generous help with the

simulation infrastructure work and collaboration on the parallel application mem-

ory scheduling work. I also thank Aater for his insightful comments which helped

in developing many key ideas, and Milad for proofreading allthe chapters of this

dissertation.

I thank Francis Tseng, Hyesoon Kim, Moinuddin K. Qureshi, Daniel N.

Lynch, Santhosh Srinath and other previous HPS members for their encouragement

and friendship. I also thank Leticia Lira for her outstanding administrative support

to the HPS group. Besides the HPS group members, I would like to express my

gratitude to the following people and organizations.

I thank Keshav Pingali, Nur Touba, and Derek Chiou for serving on my

dissertation committee and providing me valuable commentson this dissertation. I

also thank Tse-Yu Yeh, Evan Speight, Mootaz Elnozahy and Mark Stephenson for

providing me with great experiences as an intern at PA Semi and IBM.

I would like to thank my friends Mahnaz Sadoughi, Hossein Namazi,

Kaveh Majlesi, Setareh Nematollahi, Hadi Esmaeilzadeh, and Ali Akhavan for their

friendship, encouragement and support during many difficult times of my graduate

student life.

I would like to also pay tribute to the memory of the late Professor

Margarida Jacome. If it was not for her, I would almost certainly not have come

to UT Austin, and would have not had the great experiences andopportunities that

came with it. May she rest in peace.

vi

Finally, I cannot express with words my indebtedness to my parents,

Ahmad Ebrahimi and Batool Jazbi, and my brother Amir, for their unconditional

love, encouragement and support in every step of my life. It is from them that I

learnt that hard work, perseverance, and faith in one’s abilities are necessary for

success in any endeavor. Without them, this work would be meaningless.

Eiman Ebrahimi

December 2011, Austin, TX

vii

Fair and High Performance

Shared Memory Resource Management

Eiman Ebrahimi, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Yale N. Patt

Chip multiprocessors (CMPs) commonly share a large portionof memory

system resources among different cores. Since memory requests from different

threads executing on different cores significantly interfere with one another in these

shared resources, the design of the shared memory subsystemis crucial for achiev-

ing high performance and fairness.

Inter-thread memory system interference has different implications based on

the type of workload running on a CMP. In multi-programmed workloads, different

applications can experience significantly different slowdowns. If left uncontrolled,

large disparities in slowdowns result in low system performance and make system

software’s priority-based thread scheduling policies ineffective. In a single multi-

threaded application, memory system interference betweenthreads of the same ap-

plication can slow each thread down significantly. Most importantly, thecritical

pathof execution can also be significantly slowed down, resulting in increased ap-

plication execution time.

viii

This dissertation proposes three mechanisms that address different short-

comings of current shared resource management techniques targeted at multi-

programmed workloads, and one mechanism which speeds up a single multi-

threaded application by managing main-memory related interference between its

different threads.

With multi-programmed workloads, the key idea is that both demand-

and prefetch-caused inter-application interference should be taken into account in

shared resource management techniques across the entire shared memory system.

Our evaluations demonstrate that doing so significantly improves both system per-

formance and fairness compared to the state-of-the-art. When executing a single

multi-threaded application on a CMP, the key idea is to take into account the inter-

dependence of threads in memory scheduling decisions. Our evaluation shows

that doing so significantly reduces the execution time of themulti-threaded ap-

plication compared to using state-of-the-art memory schedulers designed for multi-

programmed workloads.

This dissertation concludes that the performance and fairness of CMPs can

be significantly improved by better management of inter-thread interference in

the shared memory resources, both for multi-programmed workloads and multi-

threaded applications.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvii

Chapter 1. Introduction 1
1.1 The Problem . 1

1.1.1 Inter-Application Interference In Multi-Programmed Work-
loads . 2

1.1.2 Inter-Thread Interference In Multi-Threaded Workloads . . . 4

1.2 Thesis Statement . 5

1.3 The Solution: Managing Inter-Thread Memory System Interference
for Multi-Core Systems . 6

1.3.1 Multi-Programmed Workloads 6

1.3.2 Multi-Threaded Workloads 7

1.4 Contributions . 8

1.5 Dissertation Organization . 10

Chapter 2. Background and Related Work 11
2.1 Research in Caching . 11

2.2 Research in DRAM Systems . 12

2.2.1 Network Fair Queuing (NFQ) 13

2.2.2 Parallelism-Aware Batch Scheduling (PARBS) 14

2.2.3 Thread Cluster Memory Scheduling (TCM) 14

2.2.4 Prefetch-Aware DRAM Controllers (PADC) 15

2.3 Research in Management of Multiple Shared Resources in CMPs . . 15

2.4 Research in Prefetching . 18

2.4.1 Per-Core Prefetcher Control 18

2.4.2 Eliminating Useless Prefetches 19

2.4.3 Reducing Cache Pollution 19

x

2.4.4 Prefetching in shared memory multiprocessors 20

2.5 Other Research in Inter-Thread Interference Management Mechanism 20

2.6 Research in Critical Path Prediction of Parallel Applications 21

Chapter 3. Hierarchical Prefetcher Aggressiveness Control 22
3.1 Introduction . 22

3.2 Motivation . 26

3.2.1 Shortcomings of Local-Only Prefetcher Control 26

3.3 Hierarchical Prefetcher Aggressiveness Control (HPAC) 28

3.3.1 Local Aggressiveness Control Structure 28

3.3.2 Global Aggressiveness Control Structure 29

3.3.2.1 Terminology . 29

3.3.2.2 Global Control Mechanism 31

3.3.2.3 Handling Multiple Prefetchers on Each Core 36

3.3.2.4 Support for System-Level Application Priorities .. . 36

3.3.2.5 Optimizing Threshold Values and Decision Set . . . 37

3.3.3 Implementation . 37

3.4 Methodology . 39

3.4.1 Metrics . 39

3.4.2 Processor Model . 40

3.4.3 Workloads . 41

3.4.4 Prefetcher Aggressiveness Levels and Thresholds forEvalu-
ation . 41

3.5 Experimental Evaluation . 43

3.5.1 8-core System Results . 43

3.5.2 4-core System Results . 47

3.5.2.1 Overall Performance 47

3.5.2.2 Case Study . 50

3.5.3 HPAC Performance with Different DRAM Scheduling Policies 54

3.5.4 Effect of HPAC on Fairness 55

3.5.5 HPAC on Systems with Hardware Prefetch Filtering 56

3.5.6 Multiple Types of Prefetchers per Core 57

3.5.7 Sensitivity to System Parameters 58

3.5.8 Hardware Cost . 59

3.6 Conclusion . 59

xi

Chapter 4. Fairness via Source Throttling 61
4.1 Introduction . 61
4.2 Background and Motivation . 63

4.2.1 Shared CMP Memory Systems 63

4.2.2 Motivation . 64

4.3 Fairness via Source Throttling .68

4.3.1 Runtime Unfairness Evaluation Overview68

4.3.2 Dynamic Request Throttling 69

4.3.3 Unfairness Evaluation Component Design 72

4.3.3.1 Cache Interference 73

4.3.3.2 DRAM Bus and Bank Conflict Interference 74

4.3.3.3 DRAM Row-Buffer Interference 75
4.3.3.4 Slowdown Due to Throttling 75

4.3.3.5 Implementation Details 76

4.3.4 System Software Support 76

4.3.5 General Dynamic Request Throttling 78

4.3.6 Hardware Cost and Implementation Details81

4.3.7 Lightweight FST . 81

4.4 Methodology . 83

4.4.1 Metrics . 83

4.4.2 Processor Model . 84

4.4.3 Workloads . 84
4.4.4 FST Parameters Used in Evaluation 86

4.5 Experimental Evaluation . 86

4.5.1 2-core System Results . 87

4.5.2 4-core System Results . 90

4.5.2.1 Overall Performance 90

4.5.2.2 Case Study . 92

4.5.3 Effect of Throttling Mechanisms 96

4.5.4 Evaluation of System Software Support 98

4.5.5 Effects of Implementation Constraints 100

4.5.6 Effects of Different Sources of Interference 101
4.5.7 Evaluation of Lightweight FST 101

4.5.8 Sensitivity to Unfairness Threshold102

4.5.9 Effect of Multiple Memory Controllers 103

4.5.10 Evaluation of Using Profile Information 103

4.6 Conclusion . 104

xii

Chapter 5. Prefetch-Aware Shared-Resource Management 106
5.1 Introduction . 106

5.2 Summary from Previous Chapters and Background 109

5.2.1 Fairness in the Presence of Prefetching109

5.2.2 Hierarchical Prefetcher Aggressiveness Control (HPAC) . . . 109

5.2.3 Fairness via Source Throttling (FST) 110

5.3 Motivation . 111

5.4 High Performance and Fair Shared Resource Management inthe
Presence of Prefetching . 115

5.4.1 Demand Boosting . 115

5.4.2 Prefetch-Aware Resource-Based Management Techniques . . 117

5.4.2.1 Parallelism-Aware Batch Scheduling 117

5.4.2.2 Network Fair Queuing 118

5.4.3 Prefetch-Aware Source-Based Management Techniques. . . 119

5.4.3.1 Determining Application Slowdown in the Presence
of Prefetching . 120

5.4.3.2 Coordinated Core and Prefetcher Throttling 121

5.5 Methodology . 123

5.5.1 Metrics . 123

5.5.2 Processor Model . 123

5.5.3 Workloads . 124

5.5.4 Parameters Used in Evaluation 126

5.6 Experimental Evaluation . 126

5.6.1 NFQ Results . 126

5.6.2 PARBS Results . 129

5.6.2.1 Case Study . 130

5.6.3 FST Results . 133

5.6.4 Effect on Homogeneous Workloads 135

5.6.5 Sensitivity to System and Algorithm Parameters 135

5.6.6 Hardware Cost . 136

5.7 Conclusion . 137

Chapter 6. Parallel Application Memory Scheduling 139
6.1 Introduction . 139

6.2 Mechanism: Parallel Application Memory Scheduling 141

6.2.1 Runtime System Extensions 142

6.2.1.1 Estimating Limiter Threads 143

xiii

6.2.1.2 Measuring Loop Progress 145

6.2.2 Memory controller design 146

6.2.2.1 Terminology . 146

6.2.2.2 Prioritization among limiter threads 147

6.2.2.3 Prioritization among non-limiter threads150

6.2.3 Implementation Details . 154

6.3 Methodology . 156

6.3.1 Processor Model . 156

6.3.2 Benchmarks . 156

6.3.3 Parameters Used in Evaluations 157

6.4 Results and Analysis . 158

6.4.1 Case Study . 160

6.4.2 Comparison to Memory scheduling using Thread Criticality
Predictors . 164

6.4.3 Sensitivity to System Parameters 165

6.5 Conclusion . 165

Chapter 7. Conclusion and Future Research Directions 167
7.1 Conclusion . 167

7.2 Future Research Directions . 169

Bibliography 171

Vita 178

xiv

List of Tables

3.1 Global control rules -ACCi: Accuracy of prefetcher,BWCi: Con-
sumed bandwidth,POLi: Pollution imposed on other cores, and
BWNOi: Sum of needed bandwidth of other cores 34

3.2 Baseline system configuration . 40

3.3 Characteristics SPEC 2000/2006 benchmarks that appearin evalu-
ated workloads with/without prefetching: IPC, MPKI, Bus Traffic
(M cache lines), and ACC . 42

3.4 Prefetcher configurations . 43

3.5 HPAC threshold values . 43

3.6 Summary of average results on the 8-core system 44

3.7 Summary of average results on the 4-core system 47

3.8 Most frequently exercised cases for HPAC in case study I 54

3.9 Stream and GHB with HPAC (local policy: FDP) 58

3.11 Effect of our proposal on Hspeedup (HS) and bus traffic with dif-
ferent system parameters on a 4-core system 59

3.12 Hardware cost of HPAC - Including both local and global throttling
structures on an N-core CMP withScache MB L2 cache 60

4.1 Hardware cost of FST on a 4-core CMP system 82

4.2 Baseline system configuration . 84

4.3 Characteristics of 29 SPEC 2000/2006 benchmarks: IPC and MPKI
(L2 cache Misses Per 1K Instructions) 85

4.4 FST parameters . 86

4.5 Summary of results on the 2-core system89

4.6 Sensitivity of alone performance to # of MSHRs 98

5.1 Baseline system configuration . 124

5.2 Characteristics of 29 SPEC 2000/2006 benchmarks that appear in
the workloads of this chapter: IPC and MPKI (L2 cache Misses
Per 1K Instructions) with and without prefetching, HPKI (L2cache
Hits Per 1K Instructions) with prefetching, and prefetcheraccuracy
and coverage . 125

5.3 Effect of our proposal on homogeneous workloads in system using
NFQ memory scheduling . 135

5.4 Effect of our proposal on system using NFQ memory scheduling
with different microarchitectural parameters 136

xv

5.5 Hardware cost of our proposed enhancements 137

6.1 Hardware storage cost of PAMS 154

6.2 Baseline system configuration . 156

6.3 Benchmark summary . 157

6.4 Parameters used in evaluation . 157

6.5 Reduction in execution time of PAMS compared to TCP-based [3]
memory scheduling . 164

6.6 Sensitivity of PAMS performance benefits to memory system pa-
rameters . 165

xvi

List of Figures

1.1 Motivating example . 3

1.2 System performance and memory bus traffic with prefetching nor-
malized to no prefetching . 4

1.3 Normalized execution time . 5

3.3 Speedup of each application w.r.t. when run alone 27

3.4 System performance . 27

3.5 Example of how to measureBWCi, BWNi, andBWNOi 31

3.6 HPAC performance on 8-core system (all 32 workloads) 44

3.9 Case Study: individual application behavior 52

3.10 Case Study: system behavior . 53

3.14 HPAC performance on 4-core system using HW prefetch filtering
(all 32 workloads) . 58

4.1 Disparity in slowdowns due to unfairness 62

4.2 Shared CMP Memory System . 64

4.3 Access pattern and memory-related stall time of requests when ap-
plication A running alone (a, b), application B running alone (c, d),
A and B running concurrently with no fairness control (e, f),fair
cache (g, h), and fair source throttling (i, j) 66

4.4 FST’s interval-based estimation and throttling 69

4.5 Changes made to the memory system 83

4.6 Average performance of FST on the 2-core system 87

4.7 Hspeedup of 18 2-core workloads normalized to no fairness control 87

4.8 Average performance of FST on the 4-core system 90

4.9 Normalized speedup of ten 4-core workloads 91

4.10 Unfairness of ten 4-core workloads 92

4.11 Case Study - individual application behavior 93

4.12 Case study - system behavior . 93

4.13 Case study - application throttling levels 95

4.14 Effects of different throttling mechanisms for FST 97

4.15 Enforcing thread weights with FST99

4.16 Enforcing maximum slowdown with FST 99

4.17 Comparing overall results with different system leveltargets 100

xvii

4.18 Effect of periodic updates on FST’s performance and unfairness . . 101

4.19 Sensitivity of FST to taking into account different interference sources102

4.20 Comparing overall results of original and lightweightFST 102

4.21 Sensitivity of FST to unfairness threshold 103

4.22 Effect of FST on a system with two memory controllers 104

4.23 Effect of using profile information for throttling related slowdown . 104

5.1 Harmonic mean of speedups and maximum slowdown on system
using NFQ memory scheduler (normalized to FR-FCFS) 108

5.2 Example 1 - Different policies for treatment of prefetches in PARBS
batch formation . 112

5.3 Memory service timeline for requests of Figure 5.2 113

5.4 Example 2 - No demand boosting vs. Demand boosting 114

5.5 Average system performance and unfairness on 4-core system with
NFQ . 127

5.6 System performance (Hspeedup) for each of the 15 workloads with
NFQ (legend same as Figure 5.5) 128

5.7 Average system performance and unfairness on 4-core system with
PARBS . 129

5.8 System performance (Hspeedup) for each of the 15 workloads with
PARBS(legend same as Figure 5.7) 130

5.9 PARBS case study . 132

5.10 Average system performance and unfairness on 4-core system with
FST . 133

5.11 System performance (Hspeedup) for each of the 15 workloads . . . 134

5.12 Sensitivity to boosting threshold 136

6.1 Normalized execution time . 140

6.2 Overview of parallel application memory scheduling 142

6.3 Code-segment based classification149

6.4 Time based classification . 149

6.5 Threads have similar memory behavior152

6.6 Threads have different memory behavior 152

6.7 Overall Results . 159

6.8 Execution ofis benchmark with different memory scheduling tech-
niques . 163

xviii

Chapter 1

Introduction

1.1 The Problem

Chip multiprocessor (CMP) systems are generally used to execute two dif-

ferent types of workloads:Multi-programmed workloadsandmulti-threaded work-

loads. In multi-programmed workloads each core of the CMP executes an inde-

pendent application and there is little to no inter-dependence between the different

threads of execution. In a multi-threaded workload, the CMPexploits parallelism

by concurrently executing multiple threads of the workloadon different cores to

speed up a single application.

CMPs are commonly designed such that they share a large portion of mem-

ory system resources among different cores (e.g., shared caches, memory controller,

etc.). Memory requests from different threads1 executing on different cores of a

CMP interfere significantly with one another with respect tothese shared memory

resources. This interference is due to both demand memory requests and specu-

lative prefetch requests causing significant delays for memory requests of concur-

rently executing threads. These delays slow down the execution of each thread

compared to the thread executing alone with the entire memory system to itself.

From a system design standpoint, the slowdown suffered by different threads of ex-

ecution has different implications based on the type of workload being executed. In

the following subsections we introduce the problems created by inter-application

interferencein multi-programmed workloads, andinter-thread interferencein par-

allel multi-threaded workloads.

1In multi-programmed workloads eachthreadof execution is an independent application. In
multi-threaded workloads multiple interdependentthreadswork together to speed up a single appli-
cation.

1

1.1.1 Inter-Application Interference In Multi-Programme d Workloads

We define the slowdown (ISlowdown) of threadi as:

ISlowdowni =
T shared

i

T alone
i

whereT shared
i is the number of cycles it takes to run threadi simultaneously

with other threads andT alone
i is the number of cycles it would have taken threadi

to run alone2 on the same system. The slowdown experienced by each thread of

a workload can be significantly different from the slowdown of the other threads.

If left uncontrolled, large disparities in slowdowns can a)result in low system per-

formance and vulnerability to denial of service attacks [51, 73], b) make system-

software’s priority-based thread scheduling policies ineffective [20] and c) cause

highly unpredictable program performance which makes performance analysis and

optimization extremely difficult [51, 54, 57].

Figures 1.1 and 1.2 illustrate the problem. In this example four equal-

priority applications (each consisting of a single thread)execute one per core on

a a 4-core CMP in two configurations: with and without an aggressive prefetcher

enabled for each core. Figure 1.1 (a) shows the individual slowdown of each appli-

cation compared to the application executing alone on the 4-core system. Figure 1.1

(b) shows system unfairness in each configuration. We define system unfairness as:

Unfairness =
MAX{ISlowdown0, ..., ISlowdownN−1}

MIN{ISlowdown0, ..., ISlowdownN−1}

whereISlowdowni is the slowdown of threadi as defined above.

Two observations from this example illustrate the problem:

1. In the no prefetching case, due to different memory behavior of the ap-

plications (different levels of memory intensity, cache behavior, DRAM row buffer

2When an application executes alone, the other cores are idle. The running application has the
whole memory system to itself.

2

behavior, etc.), the ratio of the slowdown of the application showing the greatest

slowdown that of the application showing the smallest slowdown is almost a factor

of 3. The unfairness metric in Figure 1.1(b) indicates exactly this.3 Unfairness hap-

pens when at least one thread slows down more than others as a result of sharing

memory system resources. Figure 1.1(a) shows that the slowdown (performance

loss) that threadsmgrid andparsersuffer as a result of sharing the memory sub-

system among the four threads is far more than that whichsoplexandperlbench

experience. We would like the slowdowns of the applicationsin a workload to: a)

be as close as possible to each other (which would bring the corresponding sys-

tem unfairness close to the valueone), and b) each be as close as possible to the

value one (which would mean each application executes as fast as it would when

executing alone).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
lo

w
do

w
n

ov
er

 a
lo

ne
 r

un

mgrid
parser
soplex
perlbench

No Prefetching Aggressive Prefetching

(a) individual application behavior
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

V
al

ue
 o

f m
et

ric

No Prefetching
Aggressive Prefetching

(b) Unfairness

Figure 1.1: Motivating example

2. When prefetching is employed, it has different effects onthe slowdowns

of the different applications. Some applications are more prefetch friendly than

others and benefit more from aggressive prefetching. However, more importantly

from a multi-core system perspective, prefetching for eachthread will have system-

wide effects which alter the slowdowns of concurrently running threads. We refer

to these effects asprefetcher-caused inter-thread (or inter-core) interference. These

effects can cause the disparity between the most slowed downapplication and the

least slowed down application to increase, as is the case in the example shown in

3Our system configuration for this experiment is discussed inSection 4.4. The unfairness metric
is discussed in Section 3.4.1.

3

Figure 1.1(a). Figure 1.1(b) shows the corresponding increase in system unfair-

ness. Figure 1.2 (a) shows system performance of the system shown in Figure 1.1

with aggressive prefetching normalized to when no prefetching is used. Figure 1.2

(b) shows the corresponding bus traffic. Figure 1.2 and Figure 1.1(b) show that

enabling prefetching in this workload results in lower system performance, higher

bus traffic, and higher system unfairness compared to no prefetching. This makes

prefetching harmful for this workload even though there areapplications in the

workload that can significantly benefit from prefetching. The reason for these neg-

ative results is unmanaged prefetcher inter-thread interference.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
. S

ys
te

m
 P

er
fo

rm
an

ce

(a) System Performance

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
. M

em
or

y
B

us
 T

ra
ffi

c
(b) Bus Traffic

Figure 1.2: System performance and memory bus traffic with prefetching normal-
ized to no prefetching

1.1.2 Inter-Thread Interference In Multi-Threaded Worklo ads

In parallel multi-threaded workloads, memory requests from threads of the

same application interfere with one another in the shared memory subsystem, slow-

ing each thread down significantly. Most importantly, thecritical pathof execution

can also be significantly slowed down, resulting in increased application execution

time.

To illustrate the importance of DRAM-related inter-threadinterference to

parallel application performance, Figure 1.3 shows the potential performance im-

provement that can be obtained for six different parallel applications running on a

16-core system. In this experiment we ideally eliminate allDRAM-related inter-

4

ference caused by concurrently executing threads of each application.4 A threadi’s

DRAM-related interference cycles are those extra cycles that threadi has to wait

for memory due to bank or row-buffer conflicts caused by concurrently executing

threads (compared to if threadi were accessing the same memory system alone). In

the ideal, unrealizable system we model for this experiment: 1) a threadi’s memory

requests wait for DRAM banks only if the banks are busy servicing requests from

that same threadi, and 2) no DRAM row-conflicts occur as a result of some other

threadj (i 6= j) closing a row that is accessed by threadi. That is, we model each

thread as having its own row buffer in each bank. Figure 1.3 shows that significant

performance improvement could potentially be obtained by better management of

memory-related inter-thread interference in a parallel application. That is, eliminat-

ing inter-thread interference in each application reducesthe average execution time

of these 6 applications by 45%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

hist_ph mg cg is bt ft gmean

Figure 1.3: Normalized execution time

1.2 Thesis Statement

CMP memory systems can be designed to achieve higher system perfor-

mance and improved fairness by managing in a coordinated manner, inter-thread

interference due to both demand and prefetch requests across the entire shared

memory system.

4Our system configuration and benchmark selection are discussed in Section 6.3.

5

1.3 The Solution: Managing Inter-Thread Memory System In-
terference for Multi-Core Systems

The goal of managing inter-thread memory system interference is dependent

on the type of workloads being executed. Among multiple different applications,

the goal is to design a memory system that provides highsystem-performanceand

fairness. For multi-threaded workloads the goal is to reduce theexecution timeof

the parallel application.

1.3.1 Multi-Programmed Workloads

In order to design fair and high performance memory systems for multi-

programmed workloads, we propose mechanisms that manage inter-thread interfer-

ence created by both demand requests and speculative prefetch requests across the

entire shared memory system.

This thesis shows that in chip multiprocessor systems, we cannot reap the

potential benefits of aggressive prefetching if prefetcher-caused inter-thread inter-

ference is left unmanaged. For this purpose we develop a mechanism that controls

the aggressiveness of the system’s prefetchers in a hierarchical fashion, called Hi-

erarchical Prefetcher Aggressiveness Control (HPAC). HPAC dynamically adjusts

the aggressiveness of each prefetcher in two ways:local and global. Local de-

cisions attempt to maximize each core’s performance by taking into account only

local feedback information. The global mechanism can override the local decisions

by taking into account effects and interactions of different cores’ prefetchers when

adjusting each one’s aggressiveness. Chapter 3 analyzes this mechanism.

In order to achieve system software fairness policies in thepresence of

multiple shared resources in the memory system of CMPs, thisthesis develops a

low-cost architectural technique that enables fair sharing of the entire memory sys-

tem without requiring multiple complicated, specialized,and possibly contradictory

fairness techniques for different shared resources. To achieve this goal, we propose

a fundamentally new mechanism that gathers dynamic feedback information about

6

the unfairness in the system, and uses this information to dynamically adapt the rate

at which the different cores inject requests into the sharedmemory subsystem such

that system-level fairness objectives are met. Chapter 4 analyzes thissource-based

throttling fairness mechanism.

This thesis also demonstrates that when prefetching is employed in systems

using fair shared resource management techniques, system performance/fairness

may not improve as expected and can degrade even if prefetcher-caused interference

is controlled by throttling prefetchers. To mitigate this effect, this thesis provides

mechanisms for management of prefetches in systems using fair shared-resource

management based on three fundamental ideas: (1) an application’s prefetches

should be treated similar to demands only when they are predicted to be useful,

(2) treating some applications’ prefetches like demands can be unfair to some other

memory non-intensive applications; hence, the priority ofdemands from memory-

non intensive applications should be boosted above requests of others, and (3) when

using source-based throttling for fairness, prefetcher and core throttling decisions

should be coordinated in order to improve system fairness and performance. Chap-

ter 5 analyzes this mechanism.

1.3.2 Multi-Threaded Workloads

This thesis designs a memory scheduler targeted at reducingthe execution

time of parallel applications by managing inter-thread DRAM interference. The

design estimates the critical path using a technique we calllimiter thread estimation,

and also loop progress measurement [6]. We extend the runtime system with a

mechanism to estimate a set oflimiter threadswhich is likely to include the thread

on thecritical path. This estimate is based on lock contention, which we quantify as

the time threads spend waiting to acquire a particular lock.We use the compiler to

enable loop progress measurement in order to estimate the progress of each thread

towards a barrier synchronization point within a parallel loop.

The memory controller is build on two key principles: a) it prioritizes threads

7

that are likely to be on the critical path (which are either limiter threads or threads

identified to be falling behind in parallel loops) over others, and b) among a group

of limiter threads or non-limiter threads, the memory controller shuffles the priority

of threads in a way that reduces the time all threads collectively reach their next

synchronization point. Chapter 6 analyzes this memory scheduling technique.

1.4 Contributions

This dissertation makes the following contributions.

• This dissertation shows that in CMPs, uncoordinated, local-only prefetch-

ers can lead to significant system performance degradation compared to no

prefetching even though each makes “correct”local decisions in an attempt

to maximize its core’s performance.

• This dissertation proposes a low-cost mechanism to improvethe performance

and bandwidth-efficiency of prefetching and make it effective in CMPs. The

proposed mechanism uses a hierarchical approach to prefetcher aggressive-

ness control. It optimizes overall system performance withglobal control

using inter-core prefetcher interference feedback from the shared memory

system, while maximizing prefetcher benefits on each core with local control

using per-core feedback.

• This dissertation introduces a low-cost, hardware-based and system-software-

configurable mechanism to achieve fairness goals specified by system soft-

ware in theentireshared memory system. This mechanism collects dynamic

feedback on the unfairness of the system and adjusts requestrates of the dif-

ferent cores to achieve the desired fairness/performance balance. By perform-

ing source-basedfairness control, we eliminate the need for complicatedin-

dividual resource-basedfairness mechanisms that are implemented indepen-

dently in each resource and that require coordination.

8

• This dissertation identifies a new problem in multi-core shared resource man-

agement: prefetching can significantly degrade system performance and fair-

ness of multiple state-of-the-art shared resource management techniques. This

problem still exists even if state-of-the-art prefetcher throttling techniques are

used to dynamically adapt prefetcher aggressiveness.

• This dissertation introduces new general mechanisms for handling prefetches

within shared resource management techniques in order to synergistically ob-

tain the benefits of both prefetching and shared resource management in a

multi-core system. We apply our mechanisms to three state-of-the-art shared

resource management techniques and demonstrate in detail how these tech-

niques should be made aware of prefetching. Comprehensive experimental

evaluations show that our proposal significantly improves fairness and per-

formance of these techniques in the presence of prefetching.

• This dissertation proposes a runtime-system mechanism to periodically esti-

mate a set oflimiter threadswhich is likely to include the thread on thecrit-

ical path for the purpose of memory request prioritization. We also propose

a memory request prioritization mechanism that reduces inter-thread inter-

ference among a set of parallel threads which are not contending for locks.

This mechanism uses dynamic feedback information about thememory sys-

tem behavior of the threads in order to reduce the time it takes the threads to

collectively reach their synchronization point.

• This dissertation proposes a memory scheduling algorithm that takes into ac-

count information about limiter thread estimation, loop-progress measure-

ment, and dynamic thread memory behavior to manage inter-thread memory

system interference. We show that by doing so our memory controller design

significantly improves the performance of parallel applications compared to

a state-of-the-art memory controller designed for multi-programmed work-

loads.

9

1.5 Dissertation Organization

This dissertation consists of seven chapters. Chapter 2 provides background

information on the prior work related to shared resource management and improv-

ing prefetching efficiency that we use to compare our work to.This chapter also

discusses other prior work related to the proposals of this dissertation. Chapters 3

through 5 address problems with multi-programmed workloads. Chapter 3 pro-

poses a mechanism to control prefetcher-caused inter-coreinterference by dynami-

cally adjusting the aggressiveness of multiple cores’ prefetchers, in order to enable

and improve the benefit of prefetching for multi-core systems. Chapter 4 proposes

a new approach to providing fair shared resource managementin theentire shared

memory systemthat eliminates the need for and complexity of developing fairness

mechanisms for each individual resource. Chapter 5 proposes mechanisms that both

manage shared resources of a multi-core chip to obtain high-performance and fair-

ness while also exploiting the benefits of prefetching. Chapter 6 deals with parallel

multi-threaded applications. We propose a memory scheduling algorithm designed

specifically for parallel multi-threaded applications. Chapter 7 contains some con-

cluding remarks and offers suggestions for future work.

10

Chapter 2

Background and Related Work

This chapter discusses prior studies that are relevant to memory system

inter-thread interference management with respect to caches, DRAM systems,

prefetching, and the management of multiple shared resources. Of the related

work in DRAM systems, this chapter provides additional background on the fol-

lowing previously proposed mechanisms which we build upon,or we use as com-

parison points in future chapters: Network Fair Queuing (NFQ) [57], Parallelism-

Aware Batch Scheduling (PARBS) [55], Thread Cluster MemoryScheduling

(TCM) [38], and Prefetch-Aware DRAM Controllers (PADC) [43] (Sections 2.2.1

through 2.2.4). Finally, we discuss research in critical path prediction for parallel

applications, as it is relevant to mechanisms proposed in Chapter 6.

2.1 Research in Caching

Prior work in fair caching [31, 36, 28, 32, 58] focus on improving fairness

in cache access bandwidth and/or cache capacity sharing. These papers ignore how

providing fairness in one shared resource (the shared cache) changes the demand on

other shared resources (e.g., the memory controller). Thisaltered demand on other

shared resources can create a new source of interference. Asa result of the unfair

policies of other shared resources the fairness benefits from fair cache capacity

sharing can be reduced or even overturned.

Nesbit et. al. [58], proposes virtual private caches (VPC) to provide qual-

ity of service from the cache and improve memory system fairness. VPC consists

of two major components: the VPC arbiter, and the VPC capacity manager. The

VPC arbiter manages the shared cache arrays’ access bandwidth using fair queuing

11

scheduling algorithms. The VPC capacity manager improves fairness by dynami-

cally way-partitioning the cache based on shares allocatedby system software. In

addition to providing fairness in only one shared resource (the shared cache), we

show in Chapter 4 how such partitioning of cache space can result in significant

system performance degradation compared to no partitioning at all.

Qureshi and Patt [63] propose utility-based cache partitioning (UCP) for

high performance run-time partitioning of shared caches. Such techniques focus

on improving performance and not on system fairness. As such, the mechanisms

proposed in this thesis are applicable to systems employingtechniques like UCP

and are orthogonal to them.

Prefetching is already a part of most commercial processors. However, none

of the related work mentioned above considers the effect of prefetching on the per-

formance and fairness improvements provided by these techniques. This thesis

explores this omission.

2.2 Research in DRAM Systems

Prior work in improving memory system fairness and/or DRAM through-

put [57, 54, 55, 37, 38] attempt to improve fairness only in the DRAM controller

by modifying the memory scheduling policy. We discuss threeof these techniques

called: Network Fair Queuing (NFQ) [57], Parallelism-Aware Batch Scheduling

(PARBS) [55], and Thread Cluster Memory Scheduling (TCM) [38] in detail in the

following subsections.

None of these papers consider interference in a shared cache. The evalu-

ation sections of these papers model only private caches to isolate the effects of

interference to the memory controller. Similar to prior work in fair caching, none

of the related work in improving fairness in DRAM bandwidth consider the effect

of prefetching on the performance and fairness improvements provided by these

techniques. We discuss the only work on DRAM scheduling thatdoes address

prefetches, Prefetch-Aware DRAM Controllers (PADC) in a following subsection.

12

All of the prior papers mentioned above focus on multi-programmed work-

loads and contrary to this thesis (Chapter 6), none considerthe inter-dependencies

between threads in their prioritization decisions. Ipek et. al. [30], propose using a

machine learning technique to design a memory controller that learns to optimize

scheduling policies. Their technique observes the system state and estimates the

long-term performance impact of different actions. In comparison to the memory

scheduler for parallel applications proposed in this thesis (see Chapter 6), this tech-

nique requires more complex black-box implementation of re-inforcement learning

in hardware. Lin et. al., propose hierarchical memory scheduling for multimedia

MPSoCs [47]. This design addresses interference between requests coming from

different execution cores of the SoC working on the same application by applying

the PAR-BS [55] technique among them. As such, it does not take into account

the inter-dependencies of parallel applications that thisthesis takes into account to

reduce the critical path and only attempts to fairly servicethe different streams of

requests from different cores.

2.2.1 Network Fair Queuing (NFQ)

Nesbit et al. [57] propose network fair queuing (NFQ), a memory schedul-

ing technique based on the concepts of fair network scheduling algorithms. NFQ’s

goal is to provide quality of service to different concurrently executing applications

based on each application’s assigned fraction of memory system bandwidth. NFQ’s

QoS objective is that “a threadi that is allocated a fractionF of the memory system

bandwidth will run no slower than the same thread on a privatememory system

running at that fractionF of the frequency of the shared physical memory system.”

NFQ determines avirtual finish timefor every request of each thread. A memory

request’s virtual finish time is the time it would finish on thethread’s virtual private

memory system (a memory system running at the fractionF of the frequency of the

shared memory system). To achieve this objective, memory requests are scheduled

earliest virtual finish time first. NFQ provides no specification of how prefetches

should be treated.

13

2.2.2 Parallelism-Aware Batch Scheduling (PARBS)

Mutlu and Moscibroda [55] propose parallelism-aware batchscheduling

(PARBS), a memory scheduling technique aimed at improving throughput by pre-

serving intra-thread bank parallelism while providing fairness by avoiding starva-

tion of requests from different threads. There are two majorsteps to the PARBS

algorithm: First, PARBS generates batches from a number of outstanding memory

requests, and ensures that all requests belonging to the current batch are serviced

before the formation of the next batch. This batching technique avoids starvation

of different threads and is aimed at improving system fairness. Second, PARBS

preserves intra-thread bank-level-parallelism while servicing requests from each

application within a batch. This step improves system throughput by reducing

each thread’s memory related stall time. PARBS does not specify how to handle

prefetches in either of these two steps.

2.2.3 Thread Cluster Memory Scheduling (TCM)

Kim et. al. propose thread cluster memory scheduling (TCM),a memory

scheduling technique designed to address system throughput and fairness separately

with the goal of achieving the best of both for multi-programmed workloads. The

algorithm detects and exploits differences in memory access behavior across appli-

cations. TCM periodically groups applications into two clusters:latency-sensitive,

and bandwidth-sensitive. This is done once every interval (10M cycles in [38])

based on the applications’ memory intensity measured in last level cache misses

per thousand instructions (MPKI). The least memory intensive threads are put in

the latency-sensitive cluster, and others are placed in thebandwidth-sensitive clus-

ter. To improve system throughput, TCM always prioritizes applications in the

latency-sensitive cluster over those in the bandwidth-sensitive cluster. To improve

fairness, the priorities of applications in the bandwidth-sensitive cluster are period-

ically shuffled (every 800 cycles in [38]).

As we show in Chapter 6, a state-of-the-art memory scheduling technique

14

such as TCM, which is designed for multi-programmed workloads, can improve

the performance of parallel multi-threaded workloads compared to standard FR-

FCFS (First Ready-First Come First Serve) memory scheduling. However, as this

thesis demonstrates, a memory scheduling algorithm targeted at managing DRAM

interference specifically for multi-threaded applications can significantly reduce ap-

plication runtime compared to such state-of-the-art techniques.

2.2.4 Prefetch-Aware DRAM Controllers (PADC)

Lee et. al. [43] propose prefetch-aware DRAM controllers. To our knowl-

edge, this is the only prior work that deals with how prefetches should be dealt

with in a shared resource. However, this work targets handling prefetches in a

DRAM-throughput-oriented FR-FCFS scheduler that is not designed to provide

fairness/QoS. In contrast, Chapter 5 of this thesis is the first work to address

how prefetches should be considered infair/QoS-capable memory scheduling tech-

niques that are shown to provide significantly higher performance than throughput-

oriented DRAM schedulers. Chapter 5 provides generalized prefetch handling tech-

niques not only for memory scheduling but also for a more general source throttling-

based management technique that aims to manage multiple shared resources.

2.3 Research in Management of Multiple Shared Resources in
CMPs

Bitirgen et al. [4] propose implementing an artificial neural network that

learns each application’s performance response to different resource allocations.

Their technique searches the space of different resource allocations among co-

executing applications to find a partitioning in the shared cache and memory con-

troller that improves performance. In contrast to the shared memory system re-

source management technique we propose in Chapter 4, this prior work requires

that resource-based fairness/partitioning techniques beimplemented in each indi-

vidual resource. In addition, it requires more complex, black-box implementation

15

of artificial neural networks in hardware.

Nesbit et. al. [59] propose an abstraction of virtual private machines (VPM)

for shared resource management. The hardware mechanism they use in this work

for the partitioning of shared resources is a combination ofvirtual private caches

(VPC) for cache management [58] and the network fair queuing(NFQ) memory

scheduler [57]. VPM [59] mainly focuses on providing performance isolation to

concurrently executing applications whereas the goal of this thesis is to achieve

high system fairness and performance at the same time.

Herdrich et al. [26] observe that the interference caused bya lower-priority

application on a higher-priority application can be reduced using existing clock

modulation techniques in CMP systems. However, their proposal does not con-

sider or provide fairness to equal-priority applications.Zhang et al. [74] propose a

software-based technique that uses clock modulation and prefetcher on/off control

provided by existing hardware platforms to improve fairness in current multi-core

systems compared to other software techniques. Neither of these prior papers pro-

pose an online algorithm that dynamically controls clock modulation to achieve

fairness. In contrast, Chapter 4 of this thesis provides: 1)hardware-based archi-

tectural mechanisms that continuously monitor shared memory system unfairness

at run-time and 2) an online algorithm that, upon detection of unfairness, throttles

interfering applications using two new hardware-based throttling mechanisms (in-

stead of coarse-grained clock modulation) to reduce the interfering applications’

request rates.

Jahre and Natvig [33] observe that adjusting the number of available last-

level cache MSHRs (Miss Status Holding/information Registers [39] keep track of

all requests to a cache until they are serviced) can control the total miss bandwidth

available to each thread running on a CMP. However, this prior work does not show

how this observation can be used by an online algorithm to dynamically achieve a

well-defined fairness or performance goal. In contrast to this prior work, Chapter 4

of this thesis, 1) provides architectural support for achieving different well-defined

16

system-software fairness objectives while also improvingsystem performance, 2)

shows that using complementary throttling mechanisms and preventing bank ser-

vice denial due to FR-FCFS, as done by our proposed fairness via source throttling

(FST, see Chapter 4), provides better fairness/performance than simply adjusting

the number of available MSHRs (see Section 4.5.3), 3) shows that our FST ap-

proach of throttling sources based on unfairness feedback,provides better system

fairness/performance than implementing different fairness mechanisms in each in-

dividual shared resource.

Zhuravlev et. al. [76] take a pure software-based scheduling approach to

the resource contention problem for multi-core memory systems. This paper pro-

poses to detect which pairs of applications are likely to interfere more with each

other and to schedule them for execution on cores that share as small a number

of resources as possible. Tang et. al. [69] show the negativeimpacts of memory

subsystem resource sharing on real datacenter applications. They also show that

pure software-based intelligent thread-to-core mappingscan reduce the amount of

memory subsystem interference different applications suffer and improve their per-

formance. The mechanisms we propose in Chapter 4 are orthogonal to those pro-

posed by Zhuravlev et. al. and Tang et. al. as we address the problem of inter-core

memory system interference in a finer-grained fashion usinga hardware/software

cooperative approach:

First, the mix of applications to be scheduled may be such that whatever

software schedule is chosen, high inter-core interferencewill exist among the ap-

plications sharing multiple memory system resources. In such cases, pure software-

based scheduling approaches can not be as effective. However, the fairness via

source throttling (FST) mechanism of Chapter 4 can provide performance and fair-

ness improvements since it throttles applications in a fine-grained manner.

Second, even if inter-core interference can be somewhat reduced using bet-

ter scheduling, after a number of applications have been scheduled to share some

memory system resources, an FST like approach can further improve system fair-

17

ness and performance by dynamically controlling memory system interference at a

finer-granularity.

2.4 Research in Prefetching

To our knowledge, there exists no prior work that directly addresses the

problem of inter-application prefetcher interference. This is an important problem

as it can significantly degrade or totally destroy the benefits of prefetching in multi-

core systems even though prefetch-friendly applications are being executed on a

CMP. The related papers in prefetcher control, useless prefetch elimination, and

cache pollution reduction which can reduce inter-core prefetcher interference as a

side effect of their main goals, are summarized below. We also briefly discuss a

number of papers that have studied mitigating the negative effects of prefetching in

shared memory multiprocessor systems, e.g. [71].

2.4.1 Per-Core Prefetcher Control

Almost all prefetching algorithms contain a design parameter determining

their aggressiveness [35, 2, 34, 11, 56]. For example, in many stream or stride

prefetcher designs,prefetch distanceandprefetch degreeare two parameters that

define how aggressive the prefetcher is [67]. Prefetch distance refers to how far

ahead of the demand miss stream the prefetcher can send requests, and prefetch

degree determines how many requests the prefetcher issues at once.

In applications where a prefetcher’s requests are accurateand timely, a more

aggressive prefetcher can achieve higher performance. On the other hand, in appli-

cations where prefetching is not useful, aggressive prefetching can lead to large

performance degradation due to cache pollution and wasted memory bandwidth,

and higher power consumption due to increased off-chip accesses. To reduce these

problems, prior studies have proposed dynamically changing the aggressiveness

of prefetchers or turning off prefetchers based on their accuracy [13, 56, 67, 18].

For example Feedback-Directed Prefetching (FDP) [67] is a prefetcher throttling

18

technique that collects feedback local to a single prefetcher (i.e., the prefetcher’s

accuracy, timeliness, and pollution on the local core’s cache) and adjusts its aggres-

siveness based on its usefulness to reduce the negative effects of prefetching.

All such techniques can significantly degrade performance since they can

exacerbate inter-thread interference in shared resources. This is because these tech-

niques use only informationlocal to the core the prefetcher resides on and do not

have a global view of how each prefetcher’s behavior in the CMP system affects

overall system performance. In contrast, the hierarchicalprefetcher aggressiveness

control (HPAC) mechanism we propose in Chapter 3 of this thesis, attempts to

maximize each core’s performance with prefetching, while also taking into account

effects and interactions of different cores’ prefetchers when adjusting each one’s

aggressiveness.

2.4.2 Eliminating Useless Prefetches

Many previous proposals address the problem of useless prefetches by

proposing mechanisms to intelligently filter them [52, 8, 46, 75, 53, 43]. Mak-

ing prefetchers more accurate by eliminating useless prefetches is orthogonal to ad-

dressing prefetcher-caused inter-thread contention in the shared memory resources

of a CMP system. Chapter 3 shows that managing prefetcher-caused inter-thread in-

terference improves system performance significantly evenin a system that already

uses prefetch filtering to reduce useless prefetches.

2.4.3 Reducing Cache Pollution

Cache pollution caused by prefetches can be reduced by usingseparate

prefetch buffers [44] instead of inserting prefetched datainto caches. However,

prior research [67] showed that in order to provide significant performance im-

provements, the size of the prefetch buffers needs to be large (at least 64KB).

Even though each of the techniques discussed in Sections 2.4.1

through 2.4.3 can make prefetchers more accurate and reducetheir generated inter-

19

ference by reducing the number of their inaccurate requests, none directly identify

and address prefetcher-caused inter-application interference. This is an important

problem, since even accurate prefetch requests of overly aggressive prefetchers can

hamper the performance of prefetching in CMP systems.

2.4.4 Prefetching in shared memory multiprocessors

Prior work on prefetching in multiprocessors [13, 71] studyadaptivity and

limitations of prefetching in these systems. Dahlgren et al. [13] use prefetch accu-

racy to decide whether to increase or decrease aggressiveness on a per-processor

basis, similar to employing FDP on each core’s prefetcher independently. Tullsen

and Eggers [71] develop a prefetching heuristic tailored towrite-shared data in

multi-threaded applications. They apply a restructuring algorithm for shared data

to reduce false sharing in multi-threaded applications. Incontrast, our goal is to

make prefetching effective by controlling prefetch-caused inter-applicationinter-

ference. Neither of these prior papers solve the problem this thesis targets and they

would be ineffective in reducing prefetcher-caused inter-application interference.

2.5 Other Research in Inter-Thread Interference Management
Mechanism

Cheng et. al. [10] propose throttling memory requests generated by

threads in streaming parallel applications to reduce memory system interference.

Their mechanism is a software-based approach that allows only an analytically-

determined threshold number of threads to send out requeststo memory at any

given time to constrain interference among them. Contrary to the parallel applica-

tion memory scheduling mechanism proposed in Chapter 6 of this thesis which is

not restricted to a particular programming model, their solution requires applica-

tions to be written in a gather-compute-scatter style of stream programming. Chen

et. al. [9] address inter-thread interference in shared caches as opposed to managing

interference at the memory controller and propose a thread scheduling mechanism

20

aimed at allowing for constructive cache sharing among threads of a parallel appli-

cation. This prior work is orthogonal to the proposals of this dissertation.

2.6 Research in Critical Path Prediction of Parallel Applications

Cai et. al. [6] propose a mechanism for dynamically detecting critical

threads in a parallel region. They use iteration counts of a parallel loop to de-

lay threads that are running ahead to save energy, and to givehigher priority to

predicted critical threads in the issue queue of an SMT core.In this thesis we use

iteration counts of parallel loop regions as a small component of our overall parallel

application memory scheduler design as described in Section 6.2.1.2. As such, most

of our proposals are orthogonal to this prior work. Other prior techniques exploit

the idleness of early-arriving threads at barriers to save power [45, 48], which [6]

improves over.

21

Chapter 3

Hierarchical Prefetcher Aggressiveness Control

3.1 Introduction

Memory latency tolerance mechanisms are critical to improving system per-

formance as DRAM speed continues to lag processor speed. Prefetching is one

commonly-employed mechanism that predicts the memory addresses a program

will require, and issues memory requests to those addressesbefore the program

needs the data. By doing so, prefetching can hide the latencyof a memory access

since the processor either does not incur a cache miss for that access or incurs a

cache miss that is satisfied earlier because the prefetch request already started the

memory access.

In a chip-multiprocessor (CMP) system, cores share memory system re-

sources beyond some level in the memory hierarchy. Bandwidth to main mem-

ory and a shared last level cache are two important shared resources in almost all

CMP designs. Aggressive prefetching on different cores of aCMP, although very

beneficial for memory latency tolerance on many applications when they are run

alone, can ultimately lead to 1) significant system performance degradation and

bandwidth waste compared to no prefetching, or 2) relatively small system perfor-

mance improvements with prefetching. This is a result of thefollowing types of

prefetcher-caused inter-core interference in shared resources: 1)prefetch-prefetch

interference: prefetches from one core can delay or displace prefetches from an-

other core by causing contention for memory bandwidth and cache space, and 2)

prefetch-demand interference:prefetches from one core can either delay demand

(load/store) requests from another core or displace the other core’s demand-fetched

blocks from the shared caches. Our goal in this chapter is to develop a hardware

22

framework that enables large performance improvements from prefetching in CMPs

by significantly reducing prefetcher-caused inter-core interference.

Prefetcher-caused inter-core interference can be somewhat reduced if the

prefetcher(s) on each core are individually made more accurate. Previous work [75,

23, 67, 43, 18] proposed techniques to throttle the aggressiveness or increase

the accuracy of prefetchers. As a side effect, such techniques can also reduce

prefetcher-caused inter-core interference compared to a system that enables ag-

gressive prefetching without any prefetcher control. However, proposed prefetcher

throttling techniques [23, 67, 18] only use feedback information local to the core

the prefetcher resides on. Mechanisms that attempt to reduce the negative effects

of aggressive prefetching by filtering useless prefetch requests [43, 75] also operate

independently on each core’s prefetch requests. Not takinginto account feedback

information about the amount of prefetcher-causedinter-core interference is a ma-

jor shortcoming of previous techniques. We call this feedback informationglobal

(or system-wide) feedback.

Why is global feedbackimportant? Figure 3.1 compares the performance

improvement obtained by independently throttling the prefetcher on each core us-

ing state-of-the-art feedback-directed prefetching (FDP) [67] to that obtained by an

unrealizable system that, in addition to using FDP,ideallyeliminates all prefetcher-

caused inter-core interference in shared memory resources. To model the ideal sys-

tem, for each core we eliminate all memory request buffer entry conflicts, memory

bank conflicts, row buffer conflicts, and cache pollution caused by another core’s

prefetcher, but we model all similar interference effects caused by the same core’s

prefetcher. This experiment was performed for 32 multiprogrammed workloads on

a 4-core system and Figure 3.2 shows the results of this experiment for all 32 work-

loads.1 Independently throttling each prefetcher using FDP improves performance

by only 4%. In contrast, if all prefetcher-caused inter-core interference were ide-

ally eliminated, performance would improve by 56% on average. Hence, significant

1These are the same workloads shown in Figure 3.8, which constitute five classes of workloads
analyzed in Section 3.5.2.

23

performance potential exists for techniques that control prefetcher-caused inter-core

interference. Moreover, we find that, in some workloads, independently throttling

the prefetcher on each core degrades system performance because it blindly in-

creases the aggressiveness of accurate prefetchers. However, using global feedback,

coordinated and collective decisions can be made for prefetchers of different cores,

leading to significant performance and bandwidth-efficiency improvements, as we

show in this chapter.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

 H
ar

m
on

ic
 S

pe
ed

up

Feedback-Directed Prefetching [27]
No Prefetcher-Caused Inter-Core Interference

Gmean-32

Figure 3.1: Average System performance improvement of ideally eliminating
prefetcher-caused inter-core interference vs. feedback-directed prefetching

Basic Idea: We develop a mechanism that controls the aggressiveness of

the system’s prefetchers in a hierarchical fashion, calledHierarchical Prefetcher

Aggressiveness Control (HPAC). HPAC dynamically adjusts the aggressiveness of

each prefetcher in two ways:local andglobal. The local decision attempts to max-

imize the local core’s performance by taking into account only local feedback in-

formation, similar to previous prefetcher throttling mechanisms [23, 67, 18]. The

global mechanism can override the local decision by taking into account effects

and interactions of different cores’ prefetchers when adjusting each one’s aggres-

siveness. The key idea is that if prefetcher-caused interference in the shared cache

and memory bandwidth is estimated to be significant, the global control system en-

forces a throttling decision that is best for overall systemperformance rather than

allowing the local control to make a less-informed decisionthat may degrade over-

24

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

 H
ar

m
on

ic
 S

pe
ed

up

Feedback-Directed Prefetching [27]
No Prefetcher-Caused Inter-Core Interference

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9

(a) Workloads #1-#9 (Class 1)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

iz
ed

 H
ar

m
on

ic
 S

pe
ed

up

Feedback-Directed Prefetching [27]
No Prefetcher-Caused Inter-Core Interference

WL10 WL11 WL12 WL13 WL14 WL15 WL16 WL17 WL18

(b) Workloads #10-#18 (Class 2)

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

N
or

m
al

iz
ed

 H
ar

m
on

ic
 S

pe
ed

up

Feedback-Directed Prefetching [27]
No Prefetcher-Caused Inter-Core Interference

WL19 WL20 WL21 WL22 WL23 WL24 WL25 WL26 WL27

(c) Workloads #19-#27 (Class 3)

Figure 3.2: System performance improvement of ideally eliminating prefetcher-
caused inter-core interference vs. feedback-directed prefetching (1.0 is the baseline
performance with no throttling; performance measured in harmonic speedup, see
Section 3.4)

25

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

N
or

m
al

iz
ed

 H
ar

m
on

ic
 S

pe
ed

up

Feedback-Directed Prefetching [27]
No Prefetcher-Caused Inter-Core Interference

WL28 WL29 WL30 WL31 WL32

Class 4 Class 5

(d) Workloads #28-#32 (Classes 4 and 5)

Figure 3.2: System performance improvement of ideally eliminating prefetcher-
caused inter-core interference vs. feedback-directed prefetching (1.0 is the baseline
performance with no throttling; performance measured in harmonic speedup, see
Section 3.4)

all system performance.

3.2 Motivation

We provided background on relevant previous research in prefetcher ag-

gressiveness control in Section 2.4.1. Since we extensively compare our proposal

to Feedback-Directed Prefetching (FDP) [67] in this Chapter, here we describe the

shortcomings of this prefetcher control mechanism and moregenerallylocal-only

prefetcher control. We also provide insight into the potential benefits of reduc-

ing prefetcher-caused inter-core interference using coordinated control of multiple

prefetchers.

3.2.1 Shortcomings of Local-Only Prefetcher Control

Prior approaches to controlling prefetcher aggressiveness that use only in-

formation local to each core can make incorrect decisions from a system-wide

perspective. Consider the example in Figures 3.3 and 3.4. Inthe 4-core work-

load shown, employing aggressive stream prefetching increases the performance of

26

swim and lbm (by 86% and 30%) and significantly degrades the performance of

crafty andbzip2(by 57% and 35%). This results in an overall reduction in system

performance of 5% (harmonic speedup - defined in Section 3.4)and an increase in

bus traffic of 10% compared to no prefetching. As Figure 3.3 shows, with FDP, ap-

plications independently gain some performance, however,even with these gains,

system performance still degrades by 4% and bus traffic increases by 7% compared

to no prefetching. In contrast, our HPAC proposal makes a coordinated decision

for the aggressiveness of multiple prefetchers. As a result, system performance

increases by 19.1% (harmonic speedup defined in Section 3.4.1) while bus traffic

increases by only 3.5% compared to no prefetching as shown inFigure 3.4.

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

 o
ve

r
A

lo
ne

 R
un

No Prefetching
Pref. + No Throttling
FDP
HPAC

lbm_06 swim_00 crafty_00 bzip2_00

Figure 3.3: Speedup of each application w.r.t. when run alone

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
ill

io
n

C
ac

he
 L

in
es

No Prefetching
Pref. + No Throttling
FDP
HPAC

(c) Bus Traffic

Figure 3.4: System performance

The key to this performance improvement is throttling down of swim’s and

lbm’s prefetchers. When these prefetchers are very aggressive, they cause signifi-

cant pollution for other applications in the shared cache and cause high contention

27

for DRAM banks. HPAC detects the interference caused byswim’s and lbm’s ag-

gressive prefetchers. As a result, even though FDPincorrectly decides to throttle

up the prefetchers (because the prefetchers are very accurate), HPAC throttles down

the prefetchers using global feedback on interference. Doing so results in a loss of

swim’s and lbm’s performance compared to aggressive prefetching. However, this

allowsbzip2to gain performance with prefetching, which was not realizable for this

application with no throttling or with FDP, and significantly reducescrafty’s perfor-

mance degradation. Overall, HPAC enables significant performance improvement

due to prefetching which cannot be obtained with no throttling or FDP.

The key insight is that a control system that is aware of prefetcher-caused

inter-core interference in the shared memory resources cankeep anaccuratebut

overly aggressive prefetcher in check, whereas a local-only control scheme would

allow it to continue to interfere with other cores’ memory requests and cause overall

system performance degradation.

Our goal: In this chapter, we aim to provide a solution to prefetcher control

to significantly improve the performance of prefetching andmake it effective on a

large variety of workloads in CMP systems. Our HPAC mechanism does exactly

that by combining system-wide and per-core feedback information to throttle the

aggressiveness of multiple prefetchers of different coresin a coordinated fashion.

3.3 Hierarchical Prefetcher Aggressiveness Control (HPAC)

The Hierarchical Prefetcher Aggressiveness Control (HPAC) mechanism

consists oflocal andglobal control structures. The two structures have fundamen-

tally different goals and are hence designed very differently as explained in detail

below.

3.3.1 Local Aggressiveness Control Structure

The local control structure adjusts the aggressiveness of the prefetcher(s) of

each core with the sole goal of maximizing the performance ofthat core. This struc-

28

ture is not aware of the overall system picture and the interference between memory

requests of different cores. Prior research [67, 18] proposed such structures. Such

previously proposed structures or other novel structures that determine the aggres-

siveness of a single core’s prefetcher(s) are orthogonal tothe ideas presented in this

chapter and could be incorporated as the local control mechanism of the system

proposed here. In fact, we evaluate the use of two previous proposals, FDP [67]

and coordinated throttling [18], as our local control structure in Section 3.5.6.

3.3.2 Global Aggressiveness Control Structure

Theglobalaggressiveness control structure keeps track of prefetcher-caused

inter-core interference in the shared memory system. The global control can accept

or override decisions made by each local control structure with the goal of increas-

ing overall system performance and bandwidth efficiency.

3.3.2.1 Terminology

We first provide the terminology we will use to describe the global aggres-

siveness control. For our analysis we define the following terms, which are used as

global feedback metrics in our mechanism:

Accuracy of a Prefetcher for Core i - ACCi: The fraction of prefetches

sent by corei’s prefetcher(s) that were used by subsequent demand requests.

Pollution Caused by Corei’s prefetcher(s) - POLi: The number of de-

mand cache lines of all coresj evicted by corei’s (j 6= i) prefetches that are re-

quested subsequent to eviction.2 This indicates the amount of disturbance a core’s

prefetches cause in the cache to the demand-fetched blocks of other cores.

Bandwidth Consumed by Core i - BWCi: The sum of the number of

DRAM banks servicing requests (demand or prefetch) from core i every cycle.

2Please note this definition is different from that used by Srinath et al. [67] for pollution caused
by inaccurate prefetches on the same core’s demands.

29

Bandwidth Needed by Corei - BWNi: The sum of the number of DRAM

banks that are busy every cycle servicing requests (demand or prefetch) from cores

j when there is a request (demand or prefetch) from corei (j 6= i) queued for that

bank in that cycle. This indicates the number of outstandingrequests of a core that

would have been serviced in the DRAM banks had there been no interference from

other cores.

Bandwidth Needed by Cores Other than Corei - BWNOi: The sum of

the needed bandwidth of all cores except corei for which the prefetcher throttling

decision is being made. Therefore,

BWNOi =
N−1∑

j=0, j 6=i

BWNj , N : Number of cores

Note that the global feedback metrics we define include information on in-

terference affectingbothdemand and prefetch requests of different cores.

Example: Figure 3.5 illustrates the concepts of bandwidth consumption and

bandwidth need. Figure 3.5(a) does not show many details of the DRAM subsys-

tem but provides a framework to better understand the definitions above. It shows

a snapshot of the DRAM subsystem with four requests being serviced by the dif-

ferent DRAM banks while other requests are queued waiting for those banks to

be released. Based on the definitions above, the “Bandwidth consumed by a core”

(BWCi) and “Bandwidth needed by a core” (BWNi) counts of the four different

cores are incremented with the values shown in Figure 3.5(b)in the cycle the snap-

shot was taken. We focus on the increments forBWN of cores 1 and 2 to point out

some subtleties. Core 1 has one request waiting for bank 0, one waiting for bank 1,

and one waiting for bank 3. However, when calculatingBWN of core 1, only the

requests waiting for bank 0 and bank 3 are accounted for. If there was no interfer-

ence in the system, and if core 1 was the only core using the shared resources, the

request from core 1 in the queue for bank 1 would still have hadto wait. Hence, the

BWN count for core 1 is incremented by 2 in this cycle. Core 2 has three requests

waiting for bank 0, one request waiting for bank 2 and two requests waiting for

30

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������

������
������
������

������
������
������
������

������
������
������
������

Bank 2 Bank 3

Memory requests waiting

Memory requests being serviced

1 2 3

1 0 21

1 13

5

2

6 4 6

0

BWCi

BWNi

iBWNO

(b) Measured parameters(a) Snapshot of memory requests’ state

Core 3 Core 3

Core 2

i (Core)

Core 2

Core 3

Core 2

Core 2

Core 0

Core 1

Core 2

Core 2

To DRAM

Core 1

Bank 0 Bank 1

Core 0 Core 1

Core 1

Figure 3.5: Example of how to measureBWCi, BWNi, andBWNOi

bank 3. However, if there was no interference present only one of the three requests

waiting for bank 0, the request waiting for bank 2, and one of the requests waiting

for bank 3 could have been serviced in the cycle shown by the snapshot. Hence, the

BWN count for core 2 is incremented by 3 in this cycle.

Intuitively, BWC corresponds to the amount of shared bandwidth used by

a particular core. A core with highBWC can potentially delay other cores’ si-

multaneous access to the shared DRAM banks and have a negative impact on their

memory access latencies.BWN corresponds to the amount of bandwidth a core is

denieddue to interference caused by other cores in the system. A core might be

causing interference for other cores if the sum ofBWN of other cores grows too

large (i.e.,BWNO of the core is too large).

3.3.2.2 Global Control Mechanism

In this section we explain how the feedback defined above is used to im-

plement the global control mechanism. We refer to the prefetcher being throttled

as thetargetprefetcher. When making a decision to allow or override the decision

of a prefetcher’s local control, the global control unit needs to know: i) how accu-

rate that prefetcher is, and ii) how much interference the prefetcher is causing for

31

other cores in the system. In our proposed solution, we use the following param-

eters to identify how much interference the prefetcher of core i is generating for

other cores in the shared resources: 1) the bandwidth consumed by corei (BWCi),

2) the pollution caused by the prefetcher(s) of corei on other cores’ demand re-

quests (POLi), and 3) the bandwidth needed by the other cores’ requests (both

prefetch and demand) (BWNOi). Parameter 1,BWCi, indicates the potential for

increased interference with other cores due to the bandwidth consumption of core

i. A high BWCi indicates that corei will potentially cause interference if the target

prefetcher’s aggressiveness is not kept in check. Parameters 2 and 3 indicate the

existence of such interference in the form of high bandwidthneeds of other cores

(BWNOi) or cache pollution experienced by other cores (POLi). WhenBWNOi

or POLi has a high value, high interference has been detected, and hence measures

are required to reduce it.

Our global control mechanism is an interval-based mechanism that gathers

the described feedback parameters during each interval. Atthe end of an interval,

global control uses the collected feedback to allow or override the decision made

by the target prefetcher’s local control using the following principles.

Principle 1. When the target prefetcher shows low pollution (lowPOLi):

(a) If the accuracy of the prefetcher is low3 and other cores need a lot

of bandwidth (i.e.,BWNO of the core is high), then override the local control’s

decision and throttle down.Rationale: this state indicates that an inaccurate

prefetcher’s requests have caused bandwidth interferencethat is negatively affect-

ing other cores. Hence, the inaccurate prefetcher should bethrottled down to reduce

the negative impact of its inaccurate prefetches on other cores.

(b) If the accuracy of the prefetcher is low and the prefetcher’score is con-

suming a large amount of bandwidth (i.e.,BWC of the core is high), our global

control mechanism allows the local decision to affect the prefetcher only if the local

3Note that the local and global control structures can have separate thresholds to categorize an
accuracy value aslow or high.

32

control decides to throttle down. Otherwise, global control leaves the aggressive-

ness at its current level.Rationale: this is a state where interference can potentially

worsen because the high bandwidth consumption of an inaccurate prefetcher’s core

can result in high bandwidth needs for other cores.

(c) If the prefetcher is highly accurate, then allow the local control to decide

the aggressiveness of the prefetcher.Rationale: if a highly accurate prefetcher is

not polluting other cores’ demand requests (i.e.,POL of the core is low), it should

be given the opportunity to increase the performance of its local core.

Principle 2. When the target prefetcher is polluting other cores (highPOLi):

(a) If the accuracy of the prefetcher is low, then override the local control’s

decision and throttle down.Rationale: if an inaccurate prefetcher’s requests pollute

the demands of other cores, it could be negatively affectingsystem performance.

(b) If the target prefetcher is highly accurate, then allow the local decision

to proceed if there are no other signs of interference (bothBWC andBWNO of

the core are low).Rationale: if the bandwidth needs of all cores are observed to

be low, the high pollution caused by the target prefetcher islikely not affecting the

performance of other cores.

(c) If either bandwidth consumed (BWC) by the target prefetcher’s core

is high or other cores need a lot of bandwidth (BWNO is high), then only allow

the local decision to affect the prefetcher if it decides to throttle down, otherwise

leave aggressiveness at its current level.Rationale: even though the prefetcher is

accurate, it is showing more than one sign of interference which could be damaging

overall system performance.

Rules used for global aggressiveness control:Table 3.1 shows the rules

used by the global control structure. There is one case in this table that does not

follow the general principles described above, case 14. In this case, interference

is quite severe even though the target prefetcher is highly accurate. The target

prefetcher’s core is consuming a lot of bandwidth and is polluting other cores’

demands while other cores have high bandwidth needs. Due to high interference

33

detected by multiple feedback parameters, reducing prefetcher aggressiveness is

desirable. The decision based on general principles would be: “Allow local deci-

sion only if it throttles down,” which is not strong enough toalleviate this very high

interference scenario. Therefore, we treat case 14 as an exception to the aforemen-

tioned principles and enforce a throttle-down with global control.

Info from Info from
Case core i other cores Decision Rationale

Acci BWCi POLi BWNOi

1 Low Low Low Low Allow local decision No interference
Allow local

2 Low High Low Low throttle down 1(b)

Global enforces
3 Low - Low High throttle down 1(a)

4 High Low Low Low Allow local decision 1(c)
5 High High Low Low Allow local decision 1(c)
6 High Low Low High Allow local decision 1(c)
7 High High Low High Allow local decision 1(c)

Global enforces
8 Low Low High Low throttle down 2(a)

Global enforces
9 Low High High Low throttle down 2(a)

Global enforces
10 Low - High High throttle down 2(a)

11 High Low High Low Allow local decision 2(b)
Allow local

12 High High High Low throttle down 2(c)

Allow local
13 High Low High High throttle down 2(c)

Global enforces Very high
14 High High High High throttle down interference

Table 3.1: Global control rules -ACCi: Accuracy of prefetcher,BWCi: Consumed
bandwidth,POLi: Pollution imposed on other cores, andBWNOi: Sum of needed
bandwidth of other cores

Classification of global control rules:We group the cases of Table 3.1 into

three main categories classified based on the intensity of the interference detected

by each case.

34

1) Severe interference scenario:Cases 3, 8, 9, 10 and 14 fall into this cate-

gory. In these cases, the goal of the global control is to reduce the detected severe

interference by reducing the number of prefetch requests generated by the interfer-

ing prefetchers. When the target prefetcher is inaccurate,and there is high band-

width need from other cores (case 3), or when an inaccurate prefetcher is polluting

(cases 8, 9 and 10), or when a prefetcher consumes high bandwidth, is polluting,

and causes high bandwidth needs on other cores (case 14), prefetcher aggressive-

ness should be reduced regardless of the local decision. After the prefetcher has

been throttled down and the detected interference has become less severe (by ei-

ther improved accuracy of the target prefetcher, reduced pollution for other cores,

or reduced bandwidth needs of other cores), the global throttling decisions for this

prefetcher will be relaxed. This will allow the prefetcher to either not be throt-

tled down further or throttled up based on local control’s future evaluation of the

prefetcher’s behavior.

2) Borderline interference scenario:Cases 2, 12 and 13 fall into this cat-

egory. In these cases, the global control’s goal is to prevent the prefetcher from

transitioning into a severe interference scenario. This isdone by either overriding

local control throttle up decisions, or throttling the prefetcher down at the request

of the local control. When an inaccurate prefetcher consumes high bandwidth but

is not polluting (case 2), or when an accurate polluting prefetcher either consumes

high bandwidth or causes high bandwidth need for other cores(cases 12 and 13),

the prefetcher should not be throttled up as a result of the local control structure’s

decision.

3) No interference scenario or moderate interference by an accurate

prefetcher:All other cases fall in this category. In these cases, eitherthere is no

interference or an accurate prefetcher has moderate interference. As explained in

the general principles, in these cases, the prefetchers’ aggressiveness is decided by

the local control structures optimizing for highest performance in each core. We

empirically found that high prefetcher accuracy can overcome the negative effects

35

of moderate interference (cases 5, 6, 7 and 11) and thereforethe local decision is

used.

In Section 3.5.2.2, we present a detailed case study to provide insight into

how prefetcher-caused inter-core interference hampers system performance and

how HPAC improves performance significantly by reducing such interference.

3.3.2.3 Handling Multiple Prefetchers on Each Core

HPAC can seamlessly support systems with multiple types of prefetchers

per core. In such systems, where speculative requests from different prefetchers can

potentially increase prefetcher-caused inter-core interference, having a mechanism

that takes such interference into account is even more important. In a system with

multiple prefetchers on each core, the system-level feedback information referred

to in Table 3.1 for each core corresponds toall the prefetchers on that core as a

whole. For example, accuracy is the overall accuracy of all prefetchers on that core.

Similarly, pollution is the overall shared cache pollutioncaused by all prefetchers

from that core.

Note that prior research on intra-core prefetcher management [18] is orthog-

onal to the focus of this chapter. In HPAC, when the local aggressiveness control

corresponding to each core makes a decision for one of the prefetchers on that core,

the global control allows or overrides that decision based on the effects and interac-

tions of other cores’ prefetchers.

3.3.2.4 Support for System-Level Application Priorities

So far, we have assumed concurrently running applications are of equal

priority and hence are treated equally. However, system software (operating sys-

tem or virtual machine monitor) may make policy decisions prioritizing certain

applications over others in a multi-programmed workload. We seamlessly extend

HPAC to support such priorities: 1) separate threshold values can be used for each

concurrently-running application, 2) these separate threshold values are config-

36

urable by the system software using privileged instructions. To prioritize a more

important application within HPAC, the system software cansimply set a higher

threshold value forBWNOi, POLi, andBWCi and a lower threshold value for

Acci for that application. By doing so, HPAC allows a more important application’s

prefetcher to cause more interference for other applications if doing so improves the

more important application’s performance.

3.3.2.5 Optimizing Threshold Values and Decision Set

Genetic algorithms [25] can be used to optimize the threshold value set or

decision set of HPAC at design time. We implemented and evaluated a genetic al-

gorithm for this purpose. We found that the improvements obtained by optimizing

the decision set were not significant, but a 5% average performance improvement

on top of HPAC can be achieved by optimizing thresholds for subsets of workloads.

Although we did not use such an optimization for the results presented in the eval-

uation section, this demonstrates a rigorous and automatedapproach for optimizing

HPAC’s decision and threshold sets.

3.3.3 Implementation

In our implementation of HPAC, FDP, and coordinated throttling, all mech-

anisms are implemented using an interval-based sampling mechanism similar to

that used in [67, 18]. To detect the end of an interval, a hardware counter is used

to keep track of the number of cache lines evicted from the L2 cache. When the

counter exceeds the empirically determined threshold of 8192 evicted lines, an in-

terval ends and the counters gathering feedback information are updated using the

following equation:

Count = 1/2 CountAtStartOfInt. + 1/2 CountDuringInt.

HPAC’s global control mechanism maintains counters for keeping track of

the BWCi, BWNi andPOLi at each corei as defined in Section 6.2.2.1.ACCi

37

is calculated by maintaining two counters to keep track of the number of useful

prefetches for corei (used-totali) and the total number of prefetches of that core

(pref -totali). The update of these counters is similar to that proposed for FDP.

ACCi is obtained by taking the ratio ofused-totali to pref-totali at the end of every

interval. BWCi andBWNi are maintained by simply incrementing their values at

the memory controller every DRAM cycle based on the state of the requests in that

cycle (see the example in Section 6.2.2.1).

To calculatePOLi, we need to track the number of last-level cache demand

misses corei’s prefetches cause for all other cores. We use a Bloom filter [5] for

each corei to approximate this count. Each filter entry consists of apollution bit

and aprocessor id. When a prefetch from corei replaces another corej’s demand

line, corei’s filter is accessed using the evicted line’s address, the corresponding

pollution bit is set in the filter, and the corresponding processor id entry is set toj.

When memory finishes servicing a prefetch request from corej, the Bloom filters

of all cores are accessed by the address of the fetched line and the pollution bit

of that entry is reset if the processor id of the corresponding entry is equal toj.

When a demand request from corej misses the last level cache, the filters of all

cores are accessed using the address of that demand request.If the corresponding

bit of corei’s Bloom filter is set and the processor id of the entry is equalto j, the

filter predicts that this line was evicted previously due to aprefetch from corei and

the miss could have been avoided had the prefetch that evicted the requested line

not been inserted into the cache. Hence,POLi is incremented and the pollution

bit is reset. The interval-based nature of our technique puts the communication of

information needed to update pollution filters and feedbackcounters off the critical

path since all such communication only needs to complete before the end of the

current interval.

38

3.4 Methodology

3.4.1 Metrics

To measure CMP system performance, we useIndividual Speedup (IS),

Harmonic mean of Speedups (Hspeedup or HS)[49], and Weighted Speedup

(Wspeedup or WS)[66]. Recent research [19] on system-level performance met-

rics for multi-programmed workloads shows thatHS is the reciprocal of theav-

erage turn-around timeand is the primary user-oriented system performance met-

ric [19]. WSis equivalent tosystem throughputwhich accounts for the number of

programs completed per unit of time. We show both metrics throughout our eval-

uation.ISpeedup is the ratio of an application’s performance when it is run together

with other applications on different cores of a CMP to its performance when it runs

alone on one core in the CMP system (other cores are idle). This metric reflects

the change in performance of an application that results from running concurrently

with other applications in the CMP system.

To demonstrate that the performance gains of our techniquesare not due to

unfair treatment of applications, we also reportUnfairness, as defined in [54]. We

use the following definitions in determining unfairness:

1) We define a memory system design asfair if the slowdowns of equal-

priority applications running simultaneously on the coresof a CMP are the same,

similarly to previous works [66, 49, 7, 22, 54].

2) We define slowdown asTshared/Talone whereTshared is the number of

cycles it takes to run simultaneously with other applications andTalone is the number

of cycles it would have taken the application to run alone on the same system.

Unfairness is defined as the ratio between the maximum individual slow-

down and minimum individual slowdown among all co-executedapplications.

The equations below provide the definitions of these metrics. In these equa-

tions,N is the number of cores in the CMP system.IPCalone is the IPC measured

when an application runs alone on one core in the CMP system with the prefetcher

39

enabled (other cores are idle).IPCtogether is the IPC measured when an application

runs on one core while other applications are running on the other cores.

HS =
N

N−1∑

i=0

IPCalone
i

IPCtogether
i

, WS =
N−1∑

i=0

IPCtogether
i

IPCalone
i

ISpeedupi
=

IPCtogether
i

IPCalone
i

ISi =
T shared

i

T alone
i

, Unfairness =
MAX{IS0, IS1, ..., ISN−1}

MIN{IS0, IS1, ..., ISN−1}

3.4.2 Processor Model

We use a cycle accurate x86 CMP simulator for our evaluation.We faith-

fully model all port contention, queuing effects, bank conflicts, and other DDR3

DRAM system constraints in the memory subsystem. Table 3.2 shows the base-

line configuration of each core and the shared resource configuration for the 4 and

8-core CMP systems we use.

15 stage out of order processor
Decode/retire up to 4 instructionsExecution Core
Issue/execute up to 8 micro instructions;
256-entry reorder buffer;
Fetch up to 2 branches; 4K-entry BTB;Front End
64K-entry hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line size;
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line size;

On-chip Caches Shared unified L2: 2MB (4MB for 8-core), 16-way (32-way for 8-core),
16-bank, 15-cycle (20-cycle for 8-core), 1 port, 64B line size;

Prefetcher Stream prefetcher with 32 streams, prefetch degree of 4, andprefetch dis-
tance of 64 [70, 67]
On-chip, demand-first [43] Parallelism-Aware Batch Scheduling policy [55]DRAM controller
128 L2 MSHR (256 for 8-core) and memory request buffer; Two memory
channels for 8-core;
667MHz DRAM bus cycle, Double Data Rate (DDR3 1333MHz) [50],
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bankDRAM and Bus
Latency: 15ns per command (tRP , tRCD, CL);

Table 3.2: Baseline system configuration

40

3.4.3 Workloads

We use the SPEC CPU 2000/2006 benchmarks for our experimental eval-

uation. Each benchmark was compiled using ICC (Intel C Compiler) or IFORT

(Intel Fortran Compiler) with the -O3 option. We ran each benchmark with the

reference input set for 200 million x86 instructions selected by Pinpoints [62] as a

representative portion of each benchmark.

We classify benchmarks intomemory intensive/non-intensive, with/without

cache locality in data accesses, andprefetch sensitivefor purposes of analysis in

our evaluation. We refer to a benchmark as memory intensive if its L2 Cache Miss

per 1K Instructions (MPKI) is greater than one. We say a benchmark has cache

locality if its number of L2 cache hits per 1K instructions isgreater than five, and

we say it is prefetch sensitive if the performance delta obtained with an aggressive

prefetcher is greater than 10% compared to no prefetching. These classifications are

based on measurements made when each benchmark was run aloneon the 4-core

system. We show the characteristics of the benchmarks that appear in the evaluated

workloads in Table 3.3.

We used 32 four-application and 32 eight-application multi-programmed

workloads for our 4-core and 8-core evaluations. These workloads were randomly

selected from all possible 4-core and 8-core workloads withthe one condition that

the evaluated workloads be relevant to the proposed techniques: each application in

each workload is either memory intensive, prefetch sensitive, or has cache locality.

3.4.4 Prefetcher Aggressiveness Levels and Thresholds forEvaluation

Table 3.4 shows the values we use for determining the aggressiveness of the

stream prefetcher in our evaluations. The aggressiveness of the GHB [56] prefetcher

is determined by itsprefetch degree. We use five values for GHB’s prefetch de-

gree (2, 4, 8, 12, 16). Throttling a prefetcher up/down corresponds to increas-

ing/decreasing its aggressiveness by one level.

Threshold values for FDP [67] and coordinated throttling [18] are empiri-

41

No prefetcher With Stream Prefetcher

Benchmark IPC MPKI Traffic IPC MPKI Traffic ACC (%)
bzip2 00 1.27 0.39 0.08 1.37 0.11 0.09 96
swim 00 0.36 23.10 4.62 0.75 3.43 4.62 99.9

facerec00 1.35 2.72 0.54 1.45 1.18 0.88 59.6
parser00 1.06 0.62 0.12 1.17 0.09 0.15 86.1
apsi00 1.75 0.85 0.17 1.87 0.39 0.17 99.3

perlbmk 00 1.85 0.04 0.01 1.86 0.02 0.02 28.7
xalancbmk06 0.95 0.82 0.16 0.79 1.44 0.85 8.2
libquantum06 0.39 13.51 2.70 0.40 2.62 2.70 99.9
omnetpp06 0.41 8.60 1.72 0.44 8.39 5.31 11.5

GemsFDTD06 0.46 15.35 3.07 0.74 1.67 3.34 90.9
lbm 06 0.37 20.16 4.03 0.50 3.76 4.25 93.9

bwaves06 0.58 18.7 3.74 1.02 0.57 3.74 99.8
crafty 00 1.89 0.09 0.02 1.92 0.05 0.03 48.2

leslie3d06 0.37 20.75 4.15 0.63 1.45 4.46 92.7
sphinx306 0.36 12.57 2.51 0.59 1.71 4.25 56.7
zeusmp06 0.74 4.37 0.87 0.85 1.68 1.19 63.5
mesa00 1.62 0.59 0.12 1.61 0.29 0.12 97.4

gromacs06 1.06 0.26 0.05 1.07 0.03 0.06 88.2
lucas00 0.34 10.61 2.12 0.56 0.31 2.12 99.9

equake00 0.40 19.33 3.87 0.61 3.11 3.93 98.2
vortex 00 1.14 0.90 0.18 1.11 0.90 0.30 20.4
gobmk06 1.18 0.28 0.06 1.20 0.17 0.08 49.8

eon00 2.21 0.01 0.00 2.21 0.00 0.00 37.3
soplex06 0.33 20.93 4.19 0.49 4.69 5.05 79.8
gzip 00 1.15 0.34 0.07 1.15 0.31 0.19 4.3
applu00 0.67 11.39 2.28 0.95 1.1 2.34 96.9
wrf 06 0.66 7.81 1.56 0.93 0.69 1.64 95

povray 06 1.92 0.02 0.00 1.92 0.01 0.01 27.3
mcf 00 0.16 33.82 6.76 0.10 28.54 24.42 74.9

mgrid 00 0.53 6.49 1.30 0.79 0.38 1.38 94.3
sixtrack 00 0.95 0.10 0.02 0.95 0.00 0.12 46.8
sjeng06 1.61 0.37 0.07 1.61 0.37 0.12 2.1
fma3d00 0.84 4.13 0.83 1.27 0.43 0.86 95.1

gap 00 0.90 1.98 0.40 1.44 0.04 0.40 99.1
hmmer06 1.33 1.11 0.22 1.66 0.01 0.23 96.2
twolf 00 1.19 0.09 0.02 1.20 0.04 0.02 93.4
vpr 00 1.31 0.10 0.02 1.33 0.06 0.02 76.8
apsi00 1.75 0.85 0.17 1.87 0.39 0.17 99.3

wupwise00 1.47 1.68 0/34 1.89 0.38 0.61 48.5

Table 3.3: Characteristics SPEC 2000/2006 benchmarks thatappear in evaluated
workloads with/without prefetching: IPC, MPKI, Bus Traffic(M cache lines), and
ACC

42

cally determined for our system configuration. We use the threshold values shown

in Table 3.5 for HPAC. We determined these threshold values empirically, but due

to the large design space, we did not tune the values. Unless otherwise stated, we

use FDP as the local control mechanism in our evaluations.

Aggressiveness Stream Stream
Level Prefetcher Prefetcher

Distance Degree

Very Conservative 4 1
Conservative 8 1

Moderate 16 2
Aggressive 32 4

Very Aggressive 64 4

Table 3.4: Prefetcher configurations

ACC BWC POL BWNO
0.6 50k 90 75k

Table 3.5: HPAC threshold values

3.5 Experimental Evaluation

We evaluate HPAC on both 4-core and 8-core systems. We find theim-

provements provided by our technique increase as the numberof cores in a CMP

increases. We present both sets of results, but to ease understanding most of the

analysis is done on the 4-core system.

3.5.1 8-core System Results

Figure 3.6 shows system performance and bus traffic averagedacross 32

workloads evaluated on the 8-core system. HPAC provides thehighest system per-

formance among all examined techniques, and is the only technique employing

prefetching that improves average system performance overno prefetching. It also

consumes the least bus traffic among schemes that employ prefetching. Several key

observations are in order:

1. Employing aggressive prefetching with no throttling performs worse than

no prefetching at all: harmonic speedup and weighted speedup decrease by 16% and

10% respectively. We conclude that attempting to aggressively prefetch in CMPs

with no throttling has significant negative effects, which makes aggressive prefetch-

43

ing a challenge in CMP systems.

2. FDP increases performance compared to no prefetcher throttling, but is

still inferior to no prefetching. FDP’s performance is 4.8%/1.2% (HS/WS) lower

than no prefetching while its bus traffic is 12.8% higher. We conclude that inter-core

prefetcher interference, which is left unmanaged by even a state-of-the-art local-

only prefetch control scheme, can cause prefetching to be detrimental to system

performance in CMPs.

3. HPAC improves performance by 8.5%/5.3% (HS/WS) comparedto no

prefetching, at the cost of only 8.9% higher bus traffic. In addition, HPAC increases

performance by 23% and 14% (HS), and consumes 17% and 3.2% less memory

bandwidth compared to no throttling and FDP respectively, as summarized in Ta-

ble 3.6. HPAC enables prefetching to become effective in CMPs by controlling and

reducing prefetcher-caused interference. Among the schemes where prefetching

is enabled, HPAC is the most bandwidth-efficient. We conclude that with HPAC,

prefetching can significantly improve system performance of CMP systems without

large increases in bus traffic.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p

(a) Hspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

W
sp

ee
du

p

(b) Wspeedup

0
2
4
6
8

10
12
14
16
18
20

M
ill

io
n

C
ac

he
 L

in
es

No Prefetching
Pref. + No Throttling
FDP
HPAC

(c) Bus Traffic

Figure 3.6: HPAC performance on 8-core system (all 32 workloads)

HS WS Bus Traffic
HPAC∆ over No Prefetching 8.5% 5.3% 8.9%
HPAC∆ over No Throttling 23% 12.8% -17%

HPAC∆ over FDP 14% 6.6% -3.2%

Table 3.6: Summary of average results on the 8-core system

44

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

applu
parser
gobmk

lbm
gcc06
sphinx3
bwaves

wrf

applu
gzip

soplex
fma3d
swim
gcc00
wrf

sphinx3

wrf
bzip2-00
bwaves
zeusmp
mcf-00
soplex

gromacs
gcc-06

sphinx3
parser

cactusADM
wupwise
gcc-00
crafty
galgel
vortex

lbm
gromacs
gobmk
zeusmp

wrf
swim
parser
bwaves

sphinx3
bzip2-06
bzip2-00
perlbmk

swim
lbm

gcc-06
gromacs

swim
perlbmk
crafty

leslie3d
lbm
mesa

sphinx3
fma3d

gcc-06
perlbmk

mesa
wupwise

swim
gromacs
bwaves
soplex

(a) Workloads #1-#8

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

GemsFDTD
mesa

libquantum
lbm

vortex
zeusmp
crafty
parser

soplex
gromacs

astar
mesa

gobmk
sphinx3
leslie3d
ammp

swim
parser

gromacs
mesa
ammp
lbm

vortex
bwaves

bwaves
bzip2-00
fma3d

sphinx3
crafty
equake
gcc-06

lbm

GemsFDTD
bzip2-06
equake

lbm
swim

xalancbmk
leslie3d
gcc-06

soplex
parser
gzip

gcc-00
crafty
wrf

ammp
mesa

eon
mgrid

leslie3d
hmmer
ammp
sjeng

sphinx3
facerec

sixtrack
namd
lucas

bwaves
vortex
gamess
astar
mesa

(b) Workloads #9-#16

Figure 3.7: Hspeedup of 8-core workloads
(normalized to “no throttling”)

45

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

GemsFDTD
sjeng

hmmer
libquantum

ammp
namd
applu

perlbmk

apsi
lbm

soplex
calculix
soplex
crafty
soplex
bwaves

wrf
sphinx3
hmmer

lbm
vortex
gzip

zeusmp
mesa

bwaves
facerec

bzip2-06
mesa
lucas

h264ref
xalancbmk

gcc-00

namd
swim
gcc-00

wupwise
vortex

gap
sixtrack

mesa

sphinx3
facerec
gcc-00
gzip
lucas

hmmer
galgel

bzip2-06

crafty
swim

bzip2-06
gap
vpr

hmmer
mesa
gzip

zeusmp
lbm

swim
facerec

bzip2-06
perlbmk

mesa
twolf

(c) Workloads #17-#24

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

gobmk
leslie3d
equake
perlbmk
sphinx3
povray
soplex

GemsFDTD

gromacs
swim

leslie3d
crafty

sphinx3
povray
soplex

gcc

perlbench
equake
leslie3d
gamess
lucas
fma3d

cactusADM
lbm

wrf
equake
hmmer
sixtrack
fma3d
povray

perlbmk
vortex

fma3d
hmmer
lucas
parser

xalancbmk
equake
leslie3d

cactusADM

soplex
bzip2-06

swim
hmmer

GemsFDTD
wrf

sphinx3
gcc-06

bwaves
gzip

gcc-06
vortex

wrf
lbm

sphinx3
leslie3d

zeusmp
leslie3d
swim

facerec
gcc-00
crafty
vortex
gzip

(d) Workloads #25-#32

Figure 3.7: Hspeedup of 8-core workloads
(normalized to “no throttling”)

46

To show how HPAC performs compared to other schemes on different

workloads, Figure 3.7 shows the performance improvement (in terms of harmonic

speedup) of no prefetching, FDP, and HPAC normalized to thatof prefetching with

no throttling across the 32 evaluated workloads.

3.5.2 4-core System Results

We first present overall performance results for the 32 workloads evaluated

on the 4-core system, and analyze the workloads’ characteristics. We then discuss

a case study in detail to provide insight into the behavior ofthe scheme.

3.5.2.1 Overall Performance

Table 3.7 summarizes our overall performance results for the 4-core system.

As observed with the 8-core workloads in Section 3.5.1, HPACprovides the highest

system performance among all examined techniques. It also generates the least bus

traffic among schemes that employ prefetching.

HS WS Bus Traffic
HPAC∆ over No Prefetching 8.9% 5.3% 8.9%
HPAC∆ over No Throttling 15% 8.4% -14%

HPAC∆ over FDP 10.7% 4.7% -3.2%

Table 3.7: Summary of average results on the 4-core system

Workload Analysis: Figure 3.8 shows the performance improvement (in terms

of harmonic speedup) of no prefetching, FDP, and HPAC normalized to that of

prefetching with no throttling across the 32 evaluated workloads. We identify five

distinct classes of workloads as shown in subfigures 3.8 (a) through (d).

Class 1: Prefetcher-caused inter-core interference does not allowsignificant gains

with no throttling or FDP. In fact, in the leftmost two cases,FDP degrades perfor-

mance slightly compared to no throttling because it increases prefetchers’ interfer-

ence in the shared resources (as discussed in detail in the case study presented in

Section 3.5.2.2). HPAC controls this interference and enables much higher system

47

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

Class 1

lbm
parser
crafty

leslie3d

leslie3d
sphinx3
zeusmp
crafty

bwaves
crafty

bzip2-00
swim

libquantum
swim

GemsFDTD
bzip2-00

mesa
lbm

gromacs
crafty

lucas
equake
swim
vortex

parser
gobmk

eon
GemsFDTD

equake
soplex

bzip2-00
swim

soplex
soplex
leslie3d

gzip

(a) Class 1 workloads

0.7

0.8

0.9

1.0

1.1

1.2

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

Class 2

swim
perlbmk

applu
wrf

soplex
bwaves

wrf
povray

mcf
equake
sphinx3

gzip

omnetpp
eon

mgrid
lucas

sixtrack
bzip2-00

sjeng
gcc

libquantum
bwaves

lbm
GemsFDTD

swim
bwaves
leslie3d
soplex

applu
hmmer
fma3d
mesa

gap
hmmer
fma3d

GemsFDTD

(b) Class 2 workloads

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
ar

m
on

ic
 S

pe
ed

up

No Prefetching
FDP
HPAC

Class 3

sphinx3
gromacs
vortex
swim

swim
perlbmk
sphinx3
vortex

applu
gobmk
leslie3d

lbm

lbm
twolf

equake
mesa

applu
vpr

bzip2-00
perlbmk

apsi
swim

facerec
xalancbmk

bzip2-06
gobmk

lbm
sjeng

perlbench
wupwise

applu
bwaves

sixtrack
parser
lbm

omnetpp

(c) Class 3 workloads

Figure 3.8: Hspeedup of 4-core workload classes
(normalized to “no throttling”)

48

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

H
ar

m
on

ic
 S

pe
ed

up No Prefetching
FDP
HPAC

Class 4

parser
perlbmk

xalancbmk
omnetpp

sixtrack
hmmer

vpr
gzip

Class 5

gcc-06
leslie3d
applu
vortex

vpr
twolf
fma3d
swim

lucas
ammp

xalancbmk
gromacs

(d) Classes 4 and 5 workloads

Figure 3.8: Hspeedup of 4-core workload classes
(normalized to “no throttling”)

performance improvement than what is possible without it.

Class 2: Significant performance can be obtained with FDP and sometimes with

no throttling since prefetcher-caused inter-core interference is tolerable. HPAC per-

forms practically at least as well as these previous mechanisms.

Class 3:Intense prefetcher-caused inter-core interference makesprefetching signif-

icantly harmful with no throttling or FDP. FDP can slightly reduce this interference

compared to no throttling by making prefetchers independently more accurate, but

still degrades performance significantly compared to no prefetching. The existence

of such workloads makes prefetching without control of prefetcher-caused inter-

core interference very unattractive in CMPs. However, HPACenables prefetching

to significantly improve performance over no prefetching.

Class 4:Small prefetcher-caused inter-core interference can be controlled by FDP.

Potential system performance to be gained by prefetching issmall compared to

other classes. Small performance degradations of no throttling can be eliminated

using FDP or HPAC, which perform similarly.

Class 5: Intense prefetcher-caused inter-core interference exists due to the co-

execution of prefetch-friendly benchmarks together with cache-sensitive and mem-

49

ory non-intensive applications. FDP can slightly reduce this interference compared

to no throttling by making prefetchers independently more accurate, but still de-

grades performance significantly compared to no prefetching. HPAC detects inter-

core interference and throttles down aggressive prefetchers. However it performs

worse than no prefetching on these workloads. This is due to unfair treatment of de-

mand requests from cache-sensitive and memory non-intensive applications in the

presence of the large number of prefetch requests from the prefetch-friendly and

memory intensive applications. We address this problem in detail in Chapter 5.

We conclude that HPAC is effective for a wide variety of workloads. In

many workloads where there is significant prefetcher-caused inter-core interference

(classes 1 and 3), HPAC is the only technique that enables prefetching to improve

performance significantly over no prefetching. When prefetcher-caused inter-core

interference is not significant (class 2), HPAC retains significant performance over

no prefetching. Hence, HPAC makes prefetching effective and robust in multi-core

systems.

3.5.2.2 Case Study

This case study is an example of a scenario where prefetcher-caused inter-

core interference that hampers system performance can be observed in both shared

bandwidth and shared cache space. It provides insight into why controlling the

aggressiveness of a CMP’s prefetchers based on local-only feedback from each core

is ineffective.

We examine a scenario where a combination of three memory-intensive ap-

plications (libquantum, swim, GemsFDTD) are run together with one memory non-

intensive application that has high data cache locality (bzip2). Figures 3.9 and 3.10

show individual benchmark performance and overall system performance, respec-

tively. Several observations are in order:

First, employing aggressive prefetching on all cores improves perfor-

mance by 6.0%/3.7% (HS/WS) compared to no prefetching. However, the ef-

50

fect of prefetching on individual benchmarks is mixed: eventhough two ap-

plications’ (swim and GemsFDTD) performance significantly improves, that of

two others (libquantumandbzip2) significantly degrades. Althoughlibquantum’s

prefetches are very accurate, they, along withlibquantum’s demands, are delayed

by swim’s andGemsFDTD’s prefetches in the memory controller. Since previous

works [43, 18] analyzed the effects of enabling prefetchingin multi-core systems,

we focus our analysis on the differences between prefetching without throttling,

local-only throttling, and HPAC.

Second, using FDP to reduce the negative effects of prefetching actually

degrades system performance by 1.2%/1% (HS/WS) compared tono throttling.

To provide insight, Figure 3.9(b) shows the percentage of total execution time

each application’s prefetcher spends in different aggressiveness levels. With FDP,

since the feedback indicates high accuracy for prefetchersof libquantum, swimand

GemsFDTD(respectively at accuracies of 99.9%, 99.9%, 92%), their prefetchers

are kept very aggressive. This causes significant memory bandwidth interference

between these three applications, which causeslibquantum’s demand and prefetch

requests to be delayed by the aggressiveswimandGemsFDTDprefetch requests.

On the other hand,bzip2’s demand-fetched cache blocks get thrashed due to the

very large number ofswim’s and GemsFDTD’s prefetches:bzip2’s L2 demand

MPKI increases by 26% from 2.1 to 2.7.bzip2’s prefetcher performance is also

affected negatively as its useful prefetches are evicted from the cache before being

used and therefore reduced by 40%. This prompts FDP to reducethe aggressive-

ness ofbzip2’s prefetcher as a result of detectedlocal low accuracy, which in turn

causes a loss of potential performance improvement forbzip2 from prefetching.

As a result, FDP does not helplibquantum’s performance and degradesbzip2’s

performance, resulting in overall system performance degradation compared to no

throttling.

Third, using HPAC increases system performance significantly by

12.2%/8.7% (HS/WS) while reducing bus traffic by 3.5% compared to no throttling.

Hence, HPAC makes aggressive prefetching significantly beneficial to the entire

51

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
pe

ed
up

 o
ve

r
A

lo
ne

 R
un

No Prefetching
Pref. + No Throttling
FDP
HPAC

libquantum_06 swim_00 GemsFDTD_06 bzip2_00
(a) Individual Speedup

0

10

20

30

40

50

60

70

80

90

100
%

 T
im

e
at

 e
ac

h
A

gg
r.

 L
ev

el

Level 5
Level 4
Level 3
Level 2
Level 1

libquantum_06 swim_00 GemsFDTD_06 bzip2_00

FDP HPAC

(b) Prefetch Aggr. Levels

Figure 3.9: Case Study: individual application behavior

system: it increases performance by 19%/12.7% (HS/WS) compared to a system

with no prefetching. The main reason for the performance benefits of HPAC over

FDP is twofold: 1) by tracking prefetcher-caused interference in the shared cache,

HPAC recognizes that aggressive (yet accurate) prefetchesof swimandGemsFDTD

destroy the cache locality ofbzip2 and throttles those applications’ prefetchers,

thereby significantly improvingbzip2’s locality and performance, 2) by tracking

the bandwidth need and bandwidth consumption of cores in theDRAM system,

HPAC recognizes thatswim’s andGemsFDTD’s aggressive prefetches delay ser-

vice of libquantum’s demands and prefetches, and therefore throttles down these

two prefetchers. Doing so significantly improveslibquantum’s performance. HPAC

improves the performance of all applications compared to noprefetching, except for

bzip2, which still incurs a slight (1.5%) performance loss. Finally, HPAC reduces

memory bus traffic compared to both FDP and no throttling because: 1) it elimi-

nates many unnecessary demand requests that need to be re-fetched from memory

52

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

W
sp

ee
du

p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
ill

io
n

C
ac

he
 L

in
es

No Prefetching
Pref. + No Throttling
FDP
HPAC

(c) Bus Traffic

Figure 3.10: Case Study: system behavior

by reducing the pollutionbzip2experiences in the shared cache:bzip2’sbandwidth

demand reduces by 33% with HPAC compared to FDP, 2) it eliminates some use-

less (or marginally useful) prefetch requests due toGemsFDTD’svery aggressive

prefetcher: we found that in total, HPAC reduces the number of useless prefetch

requests by 14.6% compared to FDP.

Table 3.8 and Figure 3.9(b) provide more insight into the behavior and bene-

fits of HPAC by showing the most common global control cases (from Table 3.1) for

each application and the percentage of time each prefetcherspends at different lev-

els of aggressiveness respectively (in Figure 3.9 (b), Level 1 corresponds to a “very

conservative” aggressiveness level as defined in Section 3.4.4.). Note that Case 14,

which indicates extreme prefetcher interference isswim’s andGemsFDTD’s most

frequent case. As a result, HPAC throttles down their prefetchers to reduce the

interference they cause in shared resources. Figure 3.9(b)shows that FDP keeps

these two applications’ prefetchers at the highest aggressiveness for more than 70%

of their execution time, which degrades system performance, because FDP cannot

detect the inter-core interference caused by the two prefetchers. In contrast, with

HPAC, the two prefetchers spend approximately 50% of their execution time in the

lowest aggressiveness level, thereby reducing inter-coreinterference and improving

system performance.

We conclude that HPAC can effectively control and reduce theshared re-

source interference caused by the prefetchers of multiple memory and prefetch-

intensive applications both among themselves and against asimultaneously running

53

Most Frequent 2nd Most Frequent 3rd Most FrequentApplication
Case # Case # Case #

libquantum Case 6 (89%) Case 13 (7%) Case 7 (2%)
swim Case 14 (65%) Case 7 (23%) Case 6 (6%)

GemsFDTD Case 14 (55%) Case 7 (24%) Case 6 (8%)
bzip2 Case 10 (39%) Case 3 (39%) Case 6 (15%)

Table 3.8: Most frequently exercised cases for HPAC in case study I

memory non-intensive application, thereby resulting in significantly higher system

performance than what is possible without it.

3.5.3 HPAC Performance with Different DRAM Scheduling Policies

We evaluate the performance of our proposal in a system with the recently

proposed Prefetch-Aware DRAM Controller (PADC) [43]. PADCuses feedback

about the accuracy of the prefetcher of each core to adaptively prioritize between

prefetch requests of that prefetcher and demands in memory scheduling decisions.

If the prefetcher of a core is accurate, prefetch requests from that core are treated

with the same priority as demand requests. Otherwise, prefetches from that core

are deprioritized below demands and prefetches from cores with high prefetch ac-

curacy. Note that this local-only technique does not take into account inter-core

interference caused by prefetchers. If the memory scheduler increases the prior-

ity of highly accurate but interfering prefetches, inter-core interference will likely

increase. As a result, PADC cannot control the negative performance impact of ac-

curate yet highly-interfering prefetchers in the memory system, which can degrade

system performance.

Figure 3.11 shows the effect of HPAC when employed in a systemwith

a prefetch-aware DRAM controller. HPAC increases the performance of a 4-core

system that uses PADC by 12% (HS) on average while reducing bus traffic by 7%.

HPAC’s ability to reduce the negative interference caused by accurate prefetchers

can have positive effects on PADC’s options for better memory scheduling when

PADC and HPAC are employed together. A reduction in interference caused by

54

one core’s very aggressive prefetcher can reduce the numberof demand misses of

other cores. This removes many pollution-induced misses caused by the interfering

core(s) and the new miss stream observed by the prefetchers of other cores can in-

crease their accuracy significantly. HPAC’s interference reduction enables PADC’s

memory scheduling decisions to take advantage of these moreaccurate prefetches.

In contrast, PADC without HPAC would have seen inaccurate prefetch requests

from such cores and deprioritized them due to their low accuracy. We conclude

that systems with PADC-like memory controllers can benefit significantly if their

prefetchers are controlled in a coordinated manner using HPAC.

The performance and bus traffic benefits of using HPAC with an FR-

FCFS [65] memory scheduling policy are similar to those presented for the PAR-

BS [55] fair memory scheduler which we use as our baseline (i.e., 12.4%/6.2%

HS/WS improvement over FDP). We conclude that our proposal is orthogonal to

the employed memory scheduling policy.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
sp

ee
du

p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10

M
ill

io
n

C
ac

he
 L

in
es

No Prefetching
Pref. + No Throttling
FDP
HPAC

(c) Bus Traffic

Figure 3.11: Performance of HPAC on system using PADC

3.5.4 Effect of HPAC on Fairness

Although HPAC’s objective is to “improve system performance” not to “im-

prove fairness,” it is worth noting that HPAC’s performanceimprovement does not

come at the expense of fair treatment of all applications. Wehave evaluated HPAC’s

impact on performance unfairness [54] as defined in Section 3.4. Figure 3.12 shows

that HPAC actually reduces unfairness in the system compared to all other tech-

niques in both 4-core and 8-core systems. We found that this is because HPAC

55

significantly reduces the interference caused by applications that generate a very

large number of prefetches on other less memory-intensive applications. This in-

terference unfairly slows down the latter type of applications in the baseline since

there is no mechanism that controls such interference.

We note that HPAC is orthogonal to techniques that provide fairness in

shared resources [58, 32, 55]. As such, HPAC can be combined with techniques

that are designed to provide fairness in shared multi-core resources. Note that we

use Parallelism-Aware Batch Scheduling [55] as a fair memory scheduler in the

baselinefor all our evaluations. Figure 3.13 shows system performance and bus

traffic of a 4-core system that uses a fair cache [58], a fair memory scheduler [55]

and a state-of-the-art local-only prefetcher throttling mechanism (FDP) compared

to 1) the combination of HPAC and a fair cache, and 2) HPAC by itself. Two ob-

servations are in order: First, using HPAC improves the performance of a system

employing a fair cache. However, the improvement in performance is less than that

obtained by HPAC alone. The reason is that constraining eachcore to a certain num-

ber of ways in each cache set as done in [58] reduces HPAC’s flexibility. HPAC can

throttle down a prefetcher that is causing large inter-corepollution to reduce such

interference without the constraints of a fair cache [58]. Therefore HPAC can make

more efficient use of cache space and perform better alone. Second, HPAC outper-

forms the combination of a fair cache, a fair memory scheduler, and FDP, by 10.2%

(HS) and 4.7% (WS) while consuming 15% less bus traffic. We conclude that 1) our

contribution is orthogonal to techniques that provide fairness in shared resources,

and 2) the benefits of adjusting the aggressiveness of multiple prefetchers in a co-

ordinated fashion (as done by HPAC) cannot be obtained by combining FDP, a fair

cache, and a fair memory controller.

3.5.5 HPAC on Systems with Hardware Prefetch Filtering

Zhuang and Lee [75] propose a hardware-based prefetch filtering scheme

that eliminates a prefetch request for an address if a prefetch request for the same

address was useless in the past. They use a two-level branch predictor-like struc-

56

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

No Prefetching
Pref. + No Throttling
FDP
HPAC

8-core 4-core

Figure 3.12: Unfairness in 8- and 4-core systems

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
ill

io
n

C
ac

he
 L

in
es

FDP + Fair Cache
HPAC + Fair Cache
HPAC

(c) Bus Traffic

Figure 3.13: Comparison to combination of fair cache + fair memory scheduling +
FDP

ture to record the usefulness of prefetches. We implementedHPAC on top of this

hardware filtering scheme, and found that HPAC increases system performance by

12% while reducing bus traffic by 8.7% compared to hardware filtering alone on the

evaluated 4-core workloads. Figure 3.14 shows that even though employing hard-

ware prefetching on a 4-core system using aggressive prefetching does improve its

performance and reduce bus traffic, system performance remains worse than that of

a system with no prefetching on average. We conclude that even when hardware

prefetch filtering is used, using HPAC makes prefetching much more effective on

multi-core systems.

3.5.6 Multiple Types of Prefetchers per Core

Recent research suggests that by using “coordinated throttling” of multiple

prefetchers of different types, hybrid prefetching systems can be useful [18]. Some

current processors already employ more than one type of prefetcher on each core

57

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p
(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
ill

io
n

C
ac

he
 L

in
es

No Prefetching
Pref. + No Throttling
Pref. + No Throttling + HW Filter
HPAC + HW Filter

(c) Bus Traffic

Figure 3.14: HPAC performance on 4-core system using HW prefetch filtering (all
32 workloads)

of a CMP [72]. We evaluate the effectiveness of our proposal on a 4-core system

with two types of prefetcher per core and also with two different state-of-the-art

local control policies as the local control for HPAC: FDP [67] and coordinated

throttling [18]. Tables 3.9 and 3.10 show that HPAC is effective: 1) when multiple

prefetchers of different types are employed within each core and 2) regardless of the

local throttling policy used for prefetchers of each core. In all comparisons HPAC

is the best performing of all schemes and produces the least bus traffic compared to

any configuration with prefetching turned on.

HS WS Bus Traffic
∆ over No Prefetching 7.9 % 5.1 % 10.7 %

∆ over Prefetching w. no Throttling 15.6 % 6.7 % -13.9 %
∆ over FDP 10.6 % 3.2 % -3 %

Table 3.9: Stream and GHB with HPAC (local policy: FDP)

HS WS Bus Traffic
∆ over No Prefetching 6.3 % 4.0 % 12.2 %

∆ over Prefetching w. no Throttling 14.6 % 6.3 % -12.7 %
∆ over coordinated throttling 12.2 % 4.5 % -6.3 %

Table 3.10: Stream and GHB with HPAC
(local policy: coordinated throttling)

3.5.7 Sensitivity to System Parameters

We evaluate the sensitivity of our technique to three major memory system

parameters: L2 cache size, memory latency and number of memory banks. Ta-

58

ble 3.11 shows the change in system performance (HS) and bus traffic provided

by HPAC over FDP for each configuration. For these experiments we did not tune

HPAC’s parameters; doing so will likely increase HPAC’s benefits even more. We

conclude that our technique is effective for a wide variety of system parameters.

L2 Cache Size
1 MB 2 MB 4 MB

∆ HS ∆ Bus Traffic ∆ HS ∆ Bus Traffic ∆ HS ∆ Bus Traffic
19.5% -4% 10.7% -3.2% 9.6% -2.5%

Memory Latency - Latency per command (tRP , tRCD, CL)
13ns 15ns 17ns

∆ HS ∆ Bus Traffic ∆ HS ∆ Bus Traffic ∆ HS ∆ Bus Traffic
15 % -3% 10.7% -3.2% 6% -3.4%

Number of Memory Banks
8 banks 16 banks 32 banks

∆ HS ∆ Bus Traffic ∆ HS ∆ Bus Traffic ∆ HS ∆ Bus Traffic
10.7% -3.2% 12% -1.5% 9% -1%

Table 3.11: Effect of our proposal on Hspeedup (HS) and bus traffic with different
system parameters on a 4-core system

3.5.8 Hardware Cost

Table 3.12 shows HPAC’s required storage. The additional storage is

15.14KB (for a 4-core system), most of which is already required to implement

FDP. This storage corresponds to 0.739% of the 2MB L2 baseline cache. The new

global control structures require only 1.55KB of storage (for a 4-core system) on

top of FDP. HPAC does not require any structures or logic thatare on the critical

path of execution.

3.6 Conclusion

We have proposed a low-cost technique that controls the aggressiveness

of multiple prefetchers of different cores in chip-multiprocessors with the goal of

improving system performance and making prefetching effective. We show that

adjusting prefetcher aggressiveness using state-of-the-art techniques without pay-

ing attention to prefetcher-caused inter-core interference in shared memory sys-

59

Global Control Closed form for N cores (bits) N=4(bits)
Counters for

global feedback
7 counters/core×N×16 bits/counter 448

Interference Pol. Filter 1024 entries× N ×
per core (pol. bit+(log N) bit proc. id)/entry

12,288

Local Control - FDP
Proc. id for each 16384 blocks/Megabyte
L2 tag store entry × Scache × (log N) bit/block

65,536

Pref. bit for each 16384 blocks/Megabyte
L2 tag store entry × Scache × 1 bit/block

32,768

Pol. Filter for intra-core 1024 entries× N ×
prefetch interference (pol. bit+(log N) bit proc. id)/entry

12,288

Counters for (8 counters/core×N + 3 counters)
local feedback ×16 bits/counter

560

Pref. bit per MSHR entry 32 entries/core× N × 1 bit/entry 128

Total storage Sum of the above 15.14 KB

Table 3.12: Hardware cost of HPAC - Including both local and global throttling
structures on an N-core CMP withScache MB L2 cache

tems can significantly degrade system performance comparedto no prefetching at

all. The key idea of our solution is to take into account prefetcher-caused inter-

core interference in determining the aggressiveness of each core’s prefetcher. Our

scheme reduces the interference due to prefetchers using a coordinated control

mechanism, thereby significantly improving system performance and bandwidth-

efficiency compared to the state-of-the-art prefetcher control techniques that do not

take into account such interference. We conclude that our technique significantly

improves the performance of prefetching and makes it effective in multi-core envi-

ronments.

60

Chapter 4

Fairness via Source Throttling

4.1 Introduction

When different applications concurrently execute on a CMP system, their

memory requests can interfere with and delay each other in the shared memory sub-

system. Compared to a scenario where each application runs alone on the CMP, this

inter-core interference causes the execution of simultaneously running applications

to slow down. However, sharing memory system resources affects the execution of

different applications very differently because the resource management algorithms

employed in the shared resources are unfair [54]. As a resultsome applications are

unfairly slowed down significantly more than others .

Figure 4.1 shows two examples of vastly differing effects ofresource-

sharing on simultaneously executing applications on a 2-core CMP system (Sec-

tion 4.4 describes our experimental setup). Whenbzip2andart run simultaneously

with equal priorities, the inter-core interference causedby the sharing of memory

system resources slows downbzip2by 5.2Xcompared to when it is run alone while

art slows down by only1.15X. In order to achieve system level fairness or quality

of service (QoS) objectives, the system software (operating system or virtual ma-

chine monitor) expects proportional progress ofequal-priority applications when

running simultaneously. Clearly, disparities in slowdownlike those shown in Fig-

ure 4.1 due to sharing of the memory system resources betweensimultaneously

running equal-priority applications is unacceptable since it would make priority-

based thread scheduling policies ineffective [20].

To mitigate this problem, previous papers [31, 36, 57, 54, 58, 32, 55] on

fair memory system design for multi-core systems mainly focused on partitioning

61

0

1

2

3

4

5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

zeusmp art
0

1

2

3

4

5

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

bzip2 art

Figure 4.1: Disparity in slowdowns due to unfairness

a particular shared resource (cache space, cache bandwidth, or memory bandwidth)

to provide fairness in the use of that shared resource. However, none of these prior

works directly target afair memory system design that provides fair sharing of

all resources together. We define a memory system design asfair if the slow-

downs of equal-priority applications running simultaneously on the cores sharing

that memory system are the same (this definition has been usedin several prior

papers [66, 49, 7, 22, 54]). This chapter shows that, employing separate unco-

ordinated fairness techniques together does not necessarily result in a fair memory

system design. This is because fairness mechanisms in different resources can con-

tradict each other. Our goal in this chapter is to develop a low-cost architectural

technique that allows system software fairness policies tobe achieved in CMPs by

enabling fair sharing of theentire memory system, without requiring multiple com-

plicated, specialized, and possibly contradictory fairness techniques for different

shared resources.

Basic Idea: To achieve this goal, we propose a fundamentally new mecha-

nism that 1) gathers dynamic feedback information about theunfairness in the sys-

tem and 2) uses this information to dynamically adapt the rate at which the different

cores inject requests into the shared memory subsystem suchthat system-level fair-

ness objectives are met. To calculate unfairness at run-time, a slowdown value is

estimated for each application in hardware. Slowdown is defined asTshared/Talone,

whereTshared is the number of cycles it takes to run simultaneously with other ap-

plications andTalone is the number of cycles it would have taken the application

62

to run alone. Unfairness is calculated as the ratio of the largest slowdown to the

smallest slowdown of the simultaneously running applications. If the unfairness

in the system becomes larger than theunfairness thresholdset by the system soft-

ware, the core that interferes most with the core experiencing the largest slowdown

is throttled down. This means that the rate at which the most interfering core in-

jects memory requests into the system is reduced, in order toreduce the inter-core

interference it generates. If the system software’sfairness goalis met, all cores

are allowed to throttle up to improve system throughput while system unfairness is

continuously monitored. This configurable hardware substrate enables the system

software to achieve different QoS/fairness policies: it can determine the balance

between fairness and system throughput, dictate differentfairness objectives, and

enforce thread priorities in the entire memory system.

4.2 Background and Motivation

We first present a brief background on how we model the shared memory

system of CMPs. We then motivate our approach to providing fairness in the entire

shared memory system by showing how employing resource-based fairness tech-

niques does not necessarily provide better overall fairness.

4.2.1 Shared CMP Memory Systems

In this thesis, we assume that the last-level (L2) cache and off-chip

DRAM bandwidth are shared by multiple cores on a chip as in many commer-

cial CMPs [70, 72, 29, 1]. Each core has its own L1 cache. Miss Status Hold-

ing/information Registers (MSHRs) [39] keep track of all requests to the shared L2

cache until they are serviced. When an L1 cache miss occurs, an access request to

the L2 cache is created by allocating an MSHR entry. Once the request is serviced

by the L2 cache or DRAM system as a result of a cache hit or miss respectively, the

corresponding MSHR entry is freed and used for a new request.Figure 4.2 gives a

high level view of such a shared memory system. The number of MSHR entries for

63

a core indicates the total number of outstanding requests allowed to the L2 cache

and DRAM system. Therefore increasing/decreasing the number of MSHR entries

for a core can increase/decrease the rate at which memory requests from the core

are injected into the shared memory system.

MSHR allocator

L1 Cache

. . .

Core 0

Core N−1

...

L2 Cache

Memory
Controller

Figure 4.2: Shared CMP Memory System

4.2.2 Motivation

Most prior papers on providing fairness in shared resourcesfocus on par-

titioning of a single shared resource. However, by partitioning a singleshared re-

source, the demands on other shared resources may change such that neither sys-

tem fairness nor system performance is improved. In the following example, we

describe how constraining the rate at which an application’s memory requests are

injected to the shared resources can result in higher fairness and system perfor-

mance than employing fair partitioning of a single resource.

64

Figure 4.3 shows the memory-related stall time1 of equal-priority applica-

tions A and B either running alone on one core of a 2-core CMP (parts (a)-(d)), or,

running concurrently with equal priority on different cores of a 2-core CMP (parts

((e)-(j)). For simplicity of explanation, we 1) assume thatan application stalls when

there is an outstanding memory request, 2) focus on requestsgoing to the same

cache set and memory bank, and 3) assume all shown accesses tothe shared cache

occur before any replacement happens. Application A is verymemory-intensive,

while application B is much less memory-intensive as can be seen by the differ-

ent memory-related stall times they experience when running alone (Figures 4.3

(a)-(d)). As prior work has observed [55], when a memory-intensive application

with already high memory-related stall time interferes with a less memory-intensive

application with much smaller memory-related stall time, delaying the former im-

proves system fairness because the additional delay causesa smaller slowdown for

the memory-intensive application than for the non-intensive one. Doing so can also

improve throughput by allowing the less memory-intensive application to quickly

return to its compute-intensive portion while the memory-intensive application con-

tinues waiting on memory.

Figures 4.3(e) and (f) show the initial L2 cache state, access order and

memory-related stall time when no fairness mechanism is employed in any of the

shared resources. Application A’s large number of memory requests arrive at the L2

cache earlier, and as a result, the small number of memory requests from applica-

tion B are significantly delayed. This causes large unfairness because the compute-

intensive application B is slowed down significantly more than the already-slow

memory-intensive application A. Figures 4.3(g) and (h) show that employing a fair

cache increases the fairnessin utilization of the cacheby allocatingan equal number

of waysfrom the accessed set to the two equal-priority applications. This increases

1Stall-time is the amount of execution time in which the application cannot retire instructions.
Memory-related stall time caused by a memory request consists of: 1) time to access the L2 cache,
and if the access is a miss 2) time to wait for the required DRAMbank to become available, and
finally 3) time to access DRAM.

65

(d) Application B’s
alone memory−related stall time

alone memory−related stall time
(b) Application A’s

application B running alone
(c) Initial State for

����
����
����
����

����
����
����
����Memory access

Wait for busy bank
Cache hit

fair source throttling (FST)
(i) Initial state for

�������
�������
�������
�������

�����������
�����������
�����������

�����������
�����������
�����������

������
������
������
������

��������
��������
��������
��������

�������
�������
�������

�������
�������
�������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

�������
�������
�������

�������
�������
�������

��������
��������
��������

��������
��������
��������

���������������������������
���������������������������
���������������������������
���������������������������

�������
�������
�������
�������

B’s stall time
A’s stall time

A1
B1
B2
B3
A2
A3
A4
A5
A6
A7

A1, B1, B2, B3, A2, A3, A4, A5, A6, A7
Access order: Throttled requests

(j) Memory−related stall time of FST

A7 B2

Shared L2 cache

A1 A2

Access order:
A1, A2, A3, A4, A5, A6, A7

B1, B2, B3Access order:

��������
��������
��������

��������
��������
��������

�������
�������
�������
�������

������
������
������
������

�������������
�������������
�������������
�������������

��������
��������
��������
��������

�����������������
�����������������
�����������������
�����������������

��������
��������
��������
��������

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

�������
�������
�������

�������
�������
�������

��������
��������
��������

��������
��������
��������

�
�
�
�

�
�
�
�

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

�
�
�

�
�
�

��
��
��

��
��
��

�������
�������
�������
�������

��
��
��
��

��
��
��
��

��������
��������
��������

��������
��������
��������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

������������
������������
������������

������������
������������
������������

��������
��������
��������
��������

������
������
������
������

�������
�������
�������
�������

�������������
�������������
�������������

�������������
�������������
�������������

��������
��������
��������

��������
��������
��������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

��������
��������
��������

��������
��������
��������

������������������������
������������������������
������������������������

������������������������
������������������������
������������������������

�������
�������
�������

�������
�������
�������

����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������

��������
��������
��������

��������
��������
��������

A’s stall time
B’s stall time

A1
A2
A3
A4
A5
A6
A7
B1
B2
B3

(e) Initial state for no fairness control (f) Memory−related stall time of no fairness control

A1, A2, A3, A4, A5, A6, A7, B1, B2, B3
Access order:

A7 B2

Shared L2 cache

A1 A2

A1

A3
A4
A5
A6
A7

A2

A’s stall time

B1
B2
B3

B’s stall time

Shared L2 cache

B2 B3 B4B1

Shared L2 cache

application A running alone
(a) Initial State for

A1 A2 A4 A7

B’s stall time
A’s stall time

A1
A2
A3
A4
A5
A6
A7
B1
B2
B3

Access order:
A1, A2, A3, A4, A5, A6, A7, B1, B2, B3

(g) Initial state for fair cache (h) Memory−related time of fair cache

B1 B2

Shared L2 cache

A2A1

Figure 4.3: Access pattern and memory-related stall time ofrequests when appli-
cation A running alone (a, b), application B running alone (c, d), A and B running
concurrently with no fairness control (e, f), fair cache (g,h), and fair source throt-
tling (i, j)

66

application A’s cache misses compared to the baseline with no fairness control.

Even though application B gets more hits as a result of fair sharing of the cache, its

memory-related stall time does not reduce due to increased interference in the main

memory system from application A’s increased misses. Application B’s memory

requests are still delayed behind the large number of memoryrequests from ap-

plication A. Application A’s memory-related stall time increases slightly due to its

increased cache misses, however, since application A already had a large memory-

related stall time, this slight increase does not incur a large slowdown for it. As a

result, fairness improves slightly, but system throughputdegrades because the sys-

tem spends more time stalling rather than computing compared to no fair caching.

In Figure 4.3, if the unfair slowdown of application B due to application A

is detected at run-time, system fairness can be improved by limiting A’s memory

requests and reducing the frequency at which they are issuedto the shared memory

system. This is shown in the access order and memory-relatedstall times of Fig-

ures 4.3(i) and (j). If the frequency at which application A’s memory requests are in-

jected into the shared memory system is reduced, the access order changes as shown

in Figure 4.3(i). We use the termthrottled requeststo refer to those requests from

application A that are delayed when accessing the shared L2 cache due to A’s re-

duced injection rate. As a result of the late arrival of thesethrottled requests, appli-

cation B’s memory-related stall time significantly reduces(because A’s requests no

longer interfere with B’s) while application A’s stall timeincreases slightly. Over-

all, this ultimately improves both system fairness and throughput compared to both

no fairness control and just a fair cache. Fairness improvesbecause the memory-

intensive application is delayed without significantly increasing the less intensive

application’s memory related-stall time compared to when running alone. Delay-

ing the memory-intensive application does not slow it down too much compared to

when running alone, because even when running alone it has high memory-related

stall time. System throughput improves because the total amount of time spent

computing rather than stalling in the entire system increases, as can be seen by

comparing the stall times in Figures 4.3 (f) and (h) to Figure4.3 (j).

67

The key insight is thatboth system fairness and throughput can improve

by detecting high system unfairness at run-time and dynamically limiting the num-

ber of or delaying the issuing of memory requests from the aggressive applications.

In essence, we propose a new approach that performssource-basedfairness in the

entire memory system rather thanindividual resource-basedfairness that imple-

ments complex and possibly contradictory fairness mechanisms in each resource.

Sources (i.e., cores) can collectively achieve fairness bythrottling themselves based

on dynamic unfairness feedback. This eliminates the need for implementing pos-

sibly contradictory/conflicting fairness mechanisms and complicated coordination

techniques between them.

4.3 Fairness via Source Throttling

To enable fairness in the entire memory system, we proposeFairness via

Source Throttling(FST). The proposed mechanism consists of two major compo-

nents: 1)runtime unfairness evaluationand 2)dynamic request throttling.

4.3.1 Runtime Unfairness Evaluation Overview

The goal of this component is to dynamically obtain an estimate of the un-

fairness in the CMP memory system. We use the definition of unfairness presented

in Section 3.4.1.

The main challenge in the design of the runtime unfairness evaluation com-

ponent is obtaining information about the number of cycles it would have taken an

application to run alone, while it is running simultaneously with other applications.

To do so, we estimate the number ofextra cyclesit takes an application to exe-

cute due to inter-core interference in the shared memory system, calledTexcess. As

defined in Section 3.4.1,Tshared is the number of cycles it takes to run simultane-

ously with other applications andTalone is the number of cycles it would have taken

the application to run alone on the same system. Given this,Talone is estimated

asTshared − Texcess. Section 4.3.3 explains in detail how the runtime unfairness

68

evaluation component is implemented and in particular howTexcess is estimated.

Assuming for now that this component is in place, we next explain how the infor-

mation it provides is used to determine how each applicationis throttled to achieve

fairness in the entire shared memory system.

4.3.2 Dynamic Request Throttling

This component is responsible for dynamically adjusting the rate at which

each core/application2 makes requests to the shared resources. This is done on an

interval basis as shown in Figure 4.4.

Time

Slowdown
Estimation

.

Interval 1 Interval 2 Interval 3

Determine request rates
for Interval 2 using feedback
from Interval 1

Calculate Unfairness &{

Figure 4.4: FST’s interval-based estimation and throttling

An interval ends when each core has executed a certain numberof instruc-

tions from the beginning of that interval. During each interval (for exampleInterval

1 in Figure 4.4) the runtime unfairness evaluation componentgathers feedback used

to estimate the slowdown of each application. At the beginning of the next interval

(Interval 2), the feedback information obtained during the prior interval is used to

make a decision about the request rates of each application for that interval. More

precisely, slowdown values estimated duringInterval 1are used to estimate unfair-

ness for the system. That unfairness value is used to determine the request rates

for the different applications for the duration ofInterval 2. During the next interval

(Interval 2), those request rates are applied, and unfairness evaluation is performed

again. The algorithm used to adjust the request rate of each application using the un-

fairness estimate calculated in the prior interval is shownin Algorithm 1. For clarity,

2Since each core runs a separate application, we use the wordscore and application interchange-
ably in this chapter.

69

Algorithm 1 is simplified for dual-core configurations. Section 4.3.5 presents the

more general algorithm for more than two cores.

We define multiple possible levels of aggressiveness for therequest rate of

each application. The dynamic request throttling component makes a decision to

increase/decrease or keep constant the request rate of eachapplication at interval

boundaries. We refer to increasing/decreasing the requestrate of an application as

throttling the application up/down.

Algorithm 1 Dynamic Request Throttling
if Estimated Unfairness > Unfairness Threshold then

Throttle down application with the smallestslowdown (AppSmallestSlowdown)
Throttle up application with the largestslowdown (AppLargestSlowdown)
ResetSuccessive Fairness Achieved Intervals

else
if Successive Fairness Achieved Intervals = threshold then

Throttle all applications up
ResetSuccessive Fairness Achieved Intervals

else
IncrementSuccessive Fairness Achieved Intervals

end if
end if

At the end of each interval, the algorithm compares the unfairness esti-

mated in the previous interval to the unfairness threshold that is defined by sys-

tem software. If the fairness goal has not been met in the previous interval, the

algorithm reduces the request rate of the application with the smallest individ-

ual slowdown value (referred to asAppSmallestSlowdown) and increases the request

rate of the application with the largest individual slowdown value (referred to as

AppLargestSlowdown). This reduces the number and frequency of requests generated

for and inserted into the memory resources by the application with the smallest es-

timated slowdown, thereby reducing its interference with other cores. The increase

in the request rate of the application with the highest slowdown allows it to be

more aggressive in exploiting Memory-Level Parallelism (MLP) [24] and as a re-

sult reduces its slowdown. If the fairness goal is met for a predetermined number of

intervals (tracked by aSuccessive Fairness Achieved Intervals counter in Al-

70

gorithm 1), the dynamic request throttling component attempts to increase system

throughput by increasing the request rates of all applications by one level. This is

done because our proposed mechanism strives to increase throughput while main-

taining the fairness goals set by the system software. Increasing the request rate

of all applications might result in unfairness. However, the unfairness evaluation

during the interval in which this happens detects this occurrence and dynamically

adjusts the requests rates again.

Throttling Mechanisms: Our mechanism increases/decreases the request

rate of each application in multiple ways: 1) Adjusting the number of outstanding

misses an application can have at any given time. To do so, anMSHR quota, which

determines the maximum number of MSHR entries an application can use at any

given time, is enforced for each application. Reducing MSHRentries for an ap-

plication reduces the pressure caused by that application’s requests on all shared

memory system resources. This is done by limiting the numberof concurrent re-

quests from that application contending for service from the shared resources. This

reduces other simultaneously running applications’ memory-related stall times and

gives them the opportunity to speed up. 2) Adjusting thefrequency at which re-

quests in the MSHRs are issued to access L2. Reducing this frequency for an appli-

cation reduces the number of memory requests per unit time from that application

which contend for shared resources. This mechanism is important for reducing

the interference caused by applications that do not have high MLP to begin with.

This is because such applications are not sensitive to a reduction in the number of

MSHRs available to them. As such, throttling them just by reducing their MSHR

quotas would not allow memory requests from other applications to be prioritized

in accessing shared resources. We refer to this throttling technique asfrequency

throttling. We use both of these mechanisms to reduce the interference caused by

AppSmallestSlowdown onAppLargestSlowdown.

71

4.3.3 Unfairness Evaluation Component Design

Tshared is simply the number of cycles it takes to execute an application in

an interval. EstimatingTalone is more difficult, and FST achieves this by estimat-

ing Texcess for each core, which is the number of cycles the core’s execution time

is lengthened due to interference from other cores in the shared memory system.

To estimateTexcess, the unfairness evaluation component keeps track of inter-core

interference each core incurs.

Tracking Inter-Core Interference: We consider three sources of inter-core

interference: 1) cache, 2) DRAM bus and bank conflict, and 3) DRAM row-buffer.3

Our mechanism uses anInterferencePerCore bit-vector whose purpose is to in-

dicate whether or not a core is delayed due to inter-core interference. In order to

track interference from each source separately, a copy ofInterferencePerCore is

maintained for each interference source. A main copy which is updated by taking

the union of the differentInterferencePerCore vectors is eventually used to up-

dateTexcess as described below. When FST detects inter-core interference for corei

at any shared resource, it sets biti of theInterferencePerCore bit-vector, indicat-

ing that the core was delayed due to interference. At the sametime, it also sets an

InterferingCoreId field in the correspondinginterfered-withmemory request’s

MSHR entry. This field indicates which core interfered with this request and is

later used to reset the corresponding bit in theInterferencePerCore vector when

the interfered-withrequest is scheduled/serviced. We explain this process in more

detail for each resource below in Sections 4.3.3.1-4.3.3.3. If a memory request has

not been interfered with, it’sInterferingCoreId will be the same as the core id

of the core it was generated by.

Updating Texcess: FST stores the number ofextra cyclesit takes to ex-

ecute a given interval’s instructions due to inter-core interference (Texcess) in an

3On-chip interconnect can also experience inter-core interference [14]. Feedback information
similar to that obtained for the three sources of inter-coreinterference we account for can be col-
lected for the on-chip interconnect. That information can be incorporated into our technique seam-
lessly, which we leave as future work.

72

ExcessCycles counter per core. Every cycle, if theInterferencePerCore bit of

a core is set, FST increments the corresponding core’sExcessCycles counter.

Algorithm 2 shows how FST calculatesExcessCycles for a given corei.

The following subsections explain in detail how each sourceof inter-core interfer-

ence is taken into account to setInterferencePerCore. Table 4.1 summarizes the

required storage needed to implement the mechanisms explained here.

Algorithm 2 Estimation ofTexcess for corei
Every cycle

if inter-core cache or DRAM bus or DRAM bank or
DRAM row-buffer interference then

setInterferencePerCore bit i
setInterferingCoreId in delayed memory request

end if
if InterferencePerCore bit i is setthen

IncrementExcessCycles for corei
end if

Every L2 cache fill for a miss due to interference OR
Every time a memory request which is a row-buffer miss due to interference is ser-

viced
resetInterferencePerCore bit of corei
InterferingCoreId of corei = i (no interference)

Every time a memory request is scheduled to DRAM
if Core i has no requests waiting on any bank which is busy servicing another corej (j
!= i) then

resetInterferencePerCore bit of corei
end if

4.3.3.1 Cache Interference

In order to estimate inter-core cache interference, for each corei we need to

track the last-level cache misses that are caused for corei by any other corej. To

do so, FST uses a pollution filter for each core to approximatesuch misses. The

pollution filter is a bit-vector that is indexed with the lower order bits of the ac-

73

cessed cache line’s address.4 In the bit-vector, a set entry indicates that a cache line

belonging to the corresponding core was evicted by another core’s request. When

a request from corej replaces one of corei’s cache lines, corei’s filter is accessed

using the evicted line’s address, and the corresponding bitis set. When a memory

request from corei misses the cache, its filter is accessed with the missing ad-

dress. If the corresponding bit is set, the filter predicts that this line was previously

evicted due to inter-core interference and the bit in the filter is reset. When such

a prediction is made, once the interfered-with request is scheduled to DRAM the

InterferencePerCore bit corresponding to corei is set to indicate that corei is

experiencing extra execution cycles due to cache interference. Once the interfered-

with memory request is finished receiving service from the memory system and the

corresponding cache line is filled, corei’s filter is accessed and the bit is reset and

so is corei’s InterferencePerCore bit.

4.3.3.2 DRAM Bus and Bank Conflict Interference

Inter-core DRAM bank conflict interference occurs when corei’s memory

request cannot access the bank it maps to, because a request from some other core

j is being serviced by that memory bank. DRAM bus conflict interference occurs

when a core cannot use the DRAM because another core is using the DRAM bus.

These situations are easily detected at the memory controller, as described in [54].

When such interference is detected, theInterferencePerCore bit corresponding

to corei is set to indicate that corei is stalling due to a DRAM bus or bank conflict.

This bit is reset when no request from corei is being prevented access to DRAM by

the other cores’ requests.

4We empirically determined the pollution filter for each coreto have 2K-entries in our evalua-
tions.

74

4.3.3.3 DRAM Row-Buffer Interference

This type of interference occurs when a potential row-buffer hit of core i

when running alone is converted to a row-buffer miss/conflict due to a memory

request of some corej when running together with others. This happens if a re-

quest from corej closes a DRAM row opened by a prior request from corei that

is also accessed by a subsequent request from corei. To track such interference, a

Shadow Row-buffer Address Register (SRAR)is maintained for each core for each

bank. Whenever corei’s memory request accesses some rowR, the SRAR of core

i is updated to rowR. Accesses to the same bank from some other corej do not

affect the SRAR of corei. As such, at any point in time, corei’s SRAR will con-

tain the last row accessed by the last memory request serviced from that core in that

bank. When corei’s memory request suffers a row-buffer miss because anothercore

j’s row is open in the row-buffer of the accessed bank, the SRARof core i is con-

sulted. If the SRAR indicates a row-buffer hit would have happened, then inter-core

row-buffer interference is detected. As a result, theInterferencePerCore bit cor-

responding to corei is set. Once the memory request is serviced, the corresponding

InterferencePerCore bit is reset.5

4.3.3.4 Slowdown Due to Throttling

When an application is throttled, it experiences some slowdown due to the

throttling. This slowdown is different from the inter-coreinterference induced

slowdown estimated by the mechanisms of Sections 4.3.3.1 to4.3.3.3. Throttling-

induced slowdown is a function of an application’s sensitivity to 1) the number of

MSHRs that are available to it, 2) the frequency of injectingrequests into the shared

resources. Using profiling, we determine for each throttling levell, the correspond-

ing slowdown (due to throttling)f of an applicationA. At runtime, any estimated

slowdown for applicationA when running at throttling levell is multiplied byf . We

5To be more precise, the bit is reset “row buffer hit latency” cycles before the memory request
is serviced. The memory request would have taken at least “row buffer hit latency” cycles had there
been no interference.

75

find that accounting for this slowdown using this profiling information improves the

system performance gained by FST by 4% on 4-core systems, as we show in Sec-

tion 4.5.10.

Slowdown due to throttling can also be tracked by maintaining a counter for

the number of cycles each applicationA stalls because it can not obtain an MSHR

entry because of its limitedMSHR quota. We separately keep track of the number

of such cycles and refer to them asexcess cycles which are due to throttling(as op-

posed toexcess cycles due to interference from other applications). We discuss how

this information is used later in a more general form of dynamic request throttling

presented in Section 4.3.5, Algorithm 3.

4.3.3.5 Implementation Details

Section 4.3.3 describes how separate copies ofInterferencePerCore are

maintained per interference source. The main copy which is used by FST for updat-

ing Texcess is physically located close by the L2 cache. Note that sharedresources

may be located far away from each other on the chip. Any possible timing con-

straints on the sending of updates to theInterferencePerCore bit-vector from

the shared resources can be eliminated by making these updates periodically, as we

evaluate in Section 4.5.5.

4.3.4 System Software Support

Different Fairness Objectives: System-level fairness objectives and poli-

cies are generally decided by the system software (the operating system or virtual

machine monitor). FST is intended as architectural supportfor enforcing such poli-

cies in shared memory system resources. Thefairness goalto be achieved by FST

can be configured by system software. To achieve this, we enable system software

to determine the nature of the condition that triggers Algorithm 1. In the explana-

tions of Section 4.3.2, thetriggering conditionis

Condition (1) “Estimated Unfairness > Unfairness Threshold”

76

System software might want to enforce different triggeringconditions de-

pending on the system’s fairness/QoS requirements. To enable this capability, FST

implements different triggering conditions from which thesystem software can

choose. For example, the fairness goal that system softwarewants to achieve could

be to keep the maximum slowdown of any given application below a threshold

value. To enforce such a goal, the system software can configure FST such that the

triggering condition in Algorithm 1 is changed to

Condition (2) “Estimated Slowdowni > Max. Slowdown Threshold”

Thread Weights: So far, we have assumed all threads are of equal impor-

tance. FST can be seamlessly adjusted to distinguish between and provide differ-

entiated services to threads with different priorities. Weadd the notion ofthread

weightsto FST, which are communicated to it by the system software using special

instructions. Higher slowdown values are more tolerable for less important orlower

weightthreads. To incorporate thread weights, FST usesweighted slowdownvalues

calculated as:

WeightedSlowdowni = Measured Slowdowni × Weighti

By scaling the real slowdown of a thread with its weight, a thread with a

higher weight appears as if it slowed down more than it reallydid, causing it to be

favored by FST. Section 4.5.4 quantitatively evaluates FSTwith the above fairness

goal and threads with different weights.

Thread Migration and Context Switches: FST can be seamlessly ex-

tended to work in the presence of thread migration and context switches. When

a context switch happens or a thread is migrated, the interference state related to

that thread is cleared. When a thread restarts executing after a context switch or

migration, it starts at maximum throttle. The interferencecaused by the thread and

the interference it suffers are dynamically re-estimated and FST adapts to the new

set of co-executing applications.

77

4.3.5 General Dynamic Request Throttling

Scalability to More Cores: When the number of cores is greater than two,

a more general form of Algorithm 1 is used. The design of theunfairness eval-

uation component for the more general form of Algorithm 1 is slightly different.

This component gathers the following extra information forthe more general form

of dynamic request throttling presented in Algorithm 3: a) for each corei, FST

maintains a set ofN-1 counters, whereN is the number of simultaneously running

applications. We refer to theseN-1 counters that FST uses to keep track of the

amount of the inter-core interference caused by any other core j in the system for

core i asExcessCyclesij . This information is used to identify which of the other

applications in the system generates the most interferencefor corei, b) FST main-

tains the total inter-core interference an application on core i experiences due to

interference from other cores in aTotalExcessCyclesInterferencei counter per

core, and c) as described in Section 4.3.3.4, those excess cycles that are caused as

a result of an application being throttled down are accounted for separately in a

TotalExcessCyclesThrottlingi counter per core.

Algorithm 3 shows the generalized form of Algorithm 1 that uses the extra

information described above to make more accurate throttling decisions in a system

with more than two cores. The five most important changes are as follows:

First, when the algorithm is triggered due to unfair slowdown of corei, FST

compares theExcessCyclesij counter values for all coresj 6= i to determine which

other core is interfering most with corei. The core found to be the most interfering

is throttled down. We do this in order to reduce the slowdown of the core with the

largest slowdown value, and improve system fairness.

Second, first ready-first come first serve (FR-FCFS) [65] is a commonly

used memory scheduling policy which we use in our baseline system. This mem-

ory scheduling policy has the potential to starve an application with no row-buffer

locality in the presence of an application with high row-buffer locality (as discussed

in prior work [57, 51, 54, 55]). Even when the interfering application is throttled

78

down, the potential for continued DRAM bank interference exists when FR-FCFS

memory scheduling is used, due to the greedy row-hit-first nature of the schedul-

Algorithm 3 Dynamic Request Throttling - General Form
if Estimated Unfairness > Unfairness Threshold AND
Appslow slowdown/Appinterfering slowdown > Unfairness Threshold then

if Appslow ’s excess cycles due to interference fromAppinterfering > Appslow’s
TotalExcessCyclesThrottlingi then

Throttle down application that causes most interference (Appinterfering) for appli-
cation with largestslowdown

end if
Throttle up application with the largestslowdown (Appslow)
ResetSuccessive Fairness Achieved Intervals
ResetIntervals To Wait To Throttle Up for Appinterfering.

// Preventing bank service denial
if Appinterfering throttled lower than Switchthr AND causes greater than
Interferencethr amount ofAppslow’s total interferencethen

Temporarily stop prioritizingAppinterfering due to row hits in memory controller
end if
if AppRowHitNotPrioritized has not beenAppinterfering for SwitchBackthr intervals
then

Allow it to be prioritized in memory controller based on row-buffer hit status of its
requests

end if

for all applications exceptAppinterfering andAppslow do
if Intervals To Wait To Throttle Up = threshold1 then

throttle up
ResetIntervals To Wait To Throttle Up for this app.

else
IncrementIntervals To Wait To Throttle Up for this app.

end if
end for

else
if Successive Fairness Achieved Intervals = threshold2 then

Throttle up application with the smallestslowdown
ResetSuccessive Fairness Achieved Intervals

else
IncrementSuccessive Fairness Achieved Intervals

end if
end if

79

ing algorithm: a throttled-down application with high row-buffer locality can deny

service to another application continuously. To overcome this, we supplement FST

with a heuristic that prevents this denial of service. Once an application has al-

ready been throttled down lower thanSwitchthr%, if FST detects that this throt-

tled application is generating greater thanInterferencethr% of Appslow’s total

interference, it will temporarily stop prioritizing the interfering application based

on row-buffer hit status in the memory controller. We refer to this application as

AppRowHitNotPrioritized. If AppRowHitNotPrioritized has not been the most interfer-

ing application forSwitchBackthr number of intervals, its prioritization over other

applications based on row-buffer hit status will be re-allowed in the memory con-

troller. This is done because if an application with high row-buffer locality is not

allowed to take advantage of row buffer hits for a long time, its performance will

suffer.

Third, we change the condition based on which throttling triggers. Throt-

tling triggers if both the following conditions hold: 1) theestimated unfairness

(Max. Slowdown/Min. Slowdown) is greater thanUnfairness Threshold and,

2) the ratio between the slowdowns of the core with the largest slowdown (Appslow)

and the core generating the most interference (Appinterfering) is greater than

Unfairness Threshold. Doing so helps reduce excessive throttling when two ap-

plications significantly interfere with eachother and alternate between being identi-

fied asAppslow andAppinterfering. By comparing their slowdowns before throttling

is performed, overall throughput is improved by avoiding excessive throttling.

Fourth, we restrict throttling down ofAppinterfering to cases where the slow-

down thatAppslow is suffering is mainly caused by inter-core interference and is

not a result ofAppslow having been throttled down in previous intervals. We do

this because we observe that there are situations where an application suffers slow-

down that is incurred as a result of throttling from previousintervals. If the ex-

cess cycles thatAppslow suffers due to not being able to acquire MSHR entries is

greater than the excess cycles caused for it byAppinterfering we do not throttle down

Appinterfering as this would result in a loss of throughput. In such cases thedetected

80

unfairness can be resolved by throttling upAppslow and reducing its slowdown by

allowing it to acquire more MSHR entries.

Fifth, cores that are neither the core with the largest slowdown (Appslow)

nor the core generating the most interference (Appinterfering) for the core with the

largest slowdown are throttled up everythreshold1intervals. This is a performance

optimization that allows cores to be aggressive if they are not the main contributors

to the unfairness in the system.

4.3.6 Hardware Cost and Implementation Details

Table 4.1 shows the breakdown of FST’s required storage. Thetotal storage

cost required by our implementation of FST is 11.24KB which is only 0.55% the

size of the L2 cache being used. FST does not require any structure or logic that

is on the critical path since all updates to interference-tracking structures can be

made periodically at relatively large intervals to eliminate any timing constraints

(see Section 4.5.5).

Figure 4.5 shows the shared CMP memory system we model for evaluation

of FST including additional structures for tracking interference added to the base-

line memory system shown in Figure 4.2. The two boxes on the right of the figure

contain interference tracking structures and counters, and the shaded bit positions

in the L2 cache lines and MSHR entries on the left are additions to these structures

required by FST.

4.3.7 Lightweight FST

In this section we describe an alternative FST implementation that requires

less hardware and is more scalable. In this alternative implementation, we do not

keep track of how much interference is caused by each application for each other

application which requiresN 2 ExcessCyclescounters, as described in the previous

subsection. Instead, we propose maintaining two counters for each corei. One

counter tracks the total number ofExcessCyclesthat the application executing on

81

Cost for N cores Cost for N = 4

ExcessCycles counters N × N × 16 bits/counter 256 bits
2048 entries× N × 24,576 bitsInterference pollution filter per core

(1 pollution bit + (log2 N) bit processor id)/entry
32 entries/core× N × 2 interference sources 512 bits

InterferingCoreId per MSHR entry
× (log2 N) bits/entry

InterferencePerCore bit-vector 3 interference sources× N × N × 1 bit 48 bits
Shadow row-buffer address register N × # of DRAM banks (B)× 32 bits/address 1024 bits

Successive Fairness Achieved Intervals counter
Intervals To Wait To Throttle Up counter per core

Inst Count Each Interval per core
(2 × N + 1)× 16 bits/counter 144 bits

Core id per tag store entry in K MB L2 cache 16384 blocks/Megabyte× K × (log2 N) bit/block 65,536 bits

Total hardware cost for N-core system Sum of the above 92092(11.24 KB)
Percentage area overhead 11.24KB/2MB

(as fraction of the baseline K MB L2 cache)
Sum (KB)× 100 / (K× 1024)

= 0.55%

Table 4.1: Hardware cost of FST on a 4-core CMP system

corei generated forany otherconcurrently-executing application. We refer to this

counter asExcessCyclesGeneratedi. The other counter tracks the total number

of ExcessCyclesthat any otherconcurrently-executing application creates for the

application on corei. We refer to this counter asExcessCyclesSufferedi. This

requires a total of2N 16-bit counters to be maintained and makes for a more scal-

able solution with larger numbers of cores.

For the lightweight FST implementation to work with the counters described

above we modify Algorithm 3 as follows. With lightweight FST, the core executing

the application that has the largest slowdownAppslow is still throttled up. How-

ever, as opposed to throttling down the core executing the application which causes

the most interference forAppslow (i.e., Appinterfering) in Algorithm 3, we throttle

down the core that is executing the application which is generating the most in-

terference for other concurrently-executing applications. This is the core with the

highestExcessCyclesGeneratedi counter in a given interval. We evaluate the

performance of our lightweight FST in Section 4.5.7.

82

MSHR allocator

L1 Cache

. . .

L2 Cache

Memory
Controller

.

.
.
.

N

Interference per−core
bit vector(row−buffer) bit vector

Interference per−core
(bank)

N

N

N

N

N

N

.

.
.
.

.

.
Interference per−core
bit vector (cache)

Instructions
Executed counters

ExcessCycles
counters

...

...

Core id
per tag
store entry

Core 0

Core N−1

...

...

Shadow Row−Buffer
Address Registers

B

InterferingCoreId
per MSHR entry

Successive
Fairness Achieved
Intervals counter

...

Interference Pol.
filter per core

...

Intervals to wait
to throttle up counters

Figure 4.5: Changes made to the memory system

4.4 Methodology

4.4.1 Metrics

To measure CMP system performance, we useHarmonic mean of Speedups

(Hspeedup)[49], Weighted Speedup (Wspeedup)[66], andIndividual Speedup (IS),

which are defined in Section 3.4.1. SinceHspeedupprovides a balanced measure

between fairness and system throughput as shown in previouswork [49], we use it

as our primary evaluation metric. In order to demonstrate fairness improvements,

we reportUnfairness(see Section 3.4.1), as defined in [22, 54]. We also report

Maximum Slowdownto evaluate fairness improvements, which is the maximum in-

dividual slowdown that any application in a workload experiences.Maximum Slow-

down is an indicator of the minimum service that any application in the workload

receives.

83

4.4.2 Processor Model

Table 4.2 shows the baseline configuration of each core and the shared re-

source configuration for the 2 and 4-core CMP systems we use inthe evaluations

of this chapter. We faithfully model all port contention, queuing effects, bank con-

flicts, and other major DDR3 DRAM system constraints in the memory subsystem.

15 stage out of order processor
Decode/retire up to 4 instructionsExecution Core
Issue/execute up to 8 micro instructions
256-entry reorder buffer
Fetch up to 2 branches; 4K-entry BTBFront End
64K-entry Hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip Caches Shared unified L2: 1MB (2MB for 4-core), 8-way (16-way for 4-core),
16-bank, 15-cycle (20-cycle for 4-core), 1 port, 64B line size
On-chip, FR-FCFS scheduling policy [65]

DRAM Controller 128-entry MSHR and memory request buffer
667MHz bus cycle, DDR3 1333MHz [50]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank

DRAM and Bus Latency: 15-15-15ns (tRP -tRCD-CL), corresponds to 100-100-100 pro-
cessor cycles
Round-trip L2 miss latency: Row-buffer hit: 36ns, conflict:66ns

Table 4.2: Baseline system configuration

4.4.3 Workloads

We use the SPEC CPU 2000/2006 benchmarks for our evaluation.Each

benchmark was compiled using ICC (Intel C Compiler) or IFORT(Intel Fortran

Compiler) with the -O3 option. We ran each benchmark with thereference input

set for 200 million x86 instructions selected by Pinpoints [62] as a representative

portion for the 2-core experiments. Due to long simulation times, 4-core experi-

ments were done with 50 million instructions per benchmark.

We classify benchmarks ashighly memory-intensive/with medium memory

intensity/non-intensivefor our analyses and workload selection. We refer to a

benchmark as highly memory-intensive if its L2 Cache Missesper 1K Instructions

84

(MPKI) is greater than ten. If the MPKI value is greater than one but less than ten,

we say the benchmark has medium memory-intensity. If the MPKI value is less

than one, we refer to it as non-intensive. This classification is based on measure-

ments made when each benchmark was run alone on the 2-core system. Table 4.3

shows the characteristics of the benchmarks that appear in the evaluated workloads

when run on the 2-core system.

Benchmark Type IPC MPKI Benchmark Type IPC MPKI

art FP00 0.10 90.89 milc FP06 0.30 29.33
soplex FP06 0.28 21.24 leslie3d FP06 0.41 20.88
lbm FP06 0.45 20.16 bwaves FP06 0.46 18.71

GemsFDTD FP06 0.46 15.63 lucas FP00 0.61 10.61
astar INT06 0.37 10.19 omnetpp INT06 0.36 10.11
mgrid FP00 0.52 6.5 gcc INT06 0.45 6.26

zeusmp FP06 0.82 4.69 cactusADM FP06 0.60 4.51
bzip2 INT06 1.14 2.61 xalancbmk INT06 0.71 1.68

h264ref INT06 1.46 1.28 vortex INT00 1.01 1.24
parser INT00 1.24 0.91 apsi FP00 1.81 0.85
ammp FP00 1.8 0.75 perlbench INT06 1.49 0.68
mesa FP00 1.82 0.61 gromacs FP06 1.06 0.29
namd FP06 2.25 0.18 crafty INT00 1.82 0.1

calculix FP06 2.28 0.05 gamess FP06 2.32 0.04
povray FP06 1.88 0.02 - - - -

Table 4.3: Characteristics of 29 SPEC 2000/2006 benchmarks: IPC and MPKI (L2
cache Misses Per 1K Instructions)

We used 18 two-application and 10 four-application multi-programmed

workloads for our 2-core and 4-core evaluations respectively. The 2-core workloads

were chosen such that at least one of the benchmarks is highlymemory intensive.

For this purpose we used eitherart from SPEC2000 orlbm from SPEC2006. For

the second benchmark of each 2-core workload, applicationsof different memory

intensity were used in order to cover a wide range of different combinations. Of

the 18 benchmarks combined with eitherart or lbm, seven benchmarks have high

memory intensity, six have medium intensity, and five have low memory intensity.

The ten 4-core workloads were randomly selected with the condition that the eval-

uated workloads each include at least one benchmark with high memory intensity

and at least one benchmark with medium or high memory intensity.

85

4.4.4 FST Parameters Used in Evaluation

Table 4.4 shows the FST parameter values we use in our evaluation unless

stated otherwise. There are eight aggressiveness levels used for the request rate

of each application: 2%, 3%, 4%, 5%, 10%, 25%, 50% and 100%. These levels

denote the scaling of the MSHR quota and the request rate in terms of percentage.

For example, when FST throttles an application to 5% of its total request rate on

a system with 128 MSHRs, two parameters are adjusted. First,the application is

given a 5% quota of the total number of available MSHRs (in this case, 6 MSHRs).

Second, the application’s memory requests in the MSHRs are issued to access the

L2 cache at 5% of the maximum possible frequency (i.e., once every 20 cycles).

Unfairness Successive Fairness Intervals Wait Interval
Threshold Achieved Intervals To Throttle Up Length

Threshold
1.4 4 2 25Kinsts

Switchthr Interferencethr SwitchBackthr

5% 70% 3 intervals

Table 4.4: FST parameters

4.5 Experimental Evaluation

We evaluate our proposed techniques on both 2-core (Section4.5.1) and 4-

core systems (all other sections). We compare FST to four other systems in our eval-

uations: 1) a baseline system with no fairness techniques employed in the shared

memory system, using LRU cache replacement and FR-FCFS memory schedul-

ing [65], both of which have been shown to be unfair [36, 57, 51]. We refer to this

baseline asNoFairness, 2) a system with only fair cache capacity management us-

ing the virtual private caches technique [58], calledFairCache, 3) a system with a

network fair queuing (NFQ) fair memory scheduler [57] combined with fair cache

capacity management [58], calledNFQ+FairCache, 4) a system with a parallelism-

aware batch scheduling (PAR-BS) fair memory scheduler [55]combined with fair

cache capacity management [58], calledPAR-BS+FairCache.

86

4.5.1 2-core System Results

Figure 4.6 shows system performance and unfairness averaged (using geo-

metric mean) across 18 workloads evaluated on the 2-core system. Figure 4.7 shows

the Hspeedup performance of FST and other fairness techniques normalized to that

of a system without any fairness technique for each of the 18 evaluated 2-core work-

loads. FST provides the highest system performance (in terms of Hspeedup) and the

best unfairness among all evaluated techniques. We make several key observations:

0.0

0.5

1.0

1.5

2.0

2.5

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

ax
 S

lo
w

do
w

n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
sp

ee
du

p

(c) Hspeedup
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
sp

ee
du

p

No Fairness Technique
Fair Cache
NFQ + Fair Cache
PAR-BS + Fair Cache
FST

(d) Wspeedup

Figure 4.6: Average performance of FST on the 2-core system

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 H
sp

ee
du

p Fair Cache
NFQ + Fair Cache
PAR-BS + Fair Cache
FST

milc
art

soplex
art

 art
GemsFDTD

astar
art

zeusmp
art

bzip2
art

leslie3d
lbm

gcc
lbm

bwaves
art

gcc
art

h264ref
art

gamess
art

omnetpp
lbm

 lbm
cactus

povray
lbm

calculix
lbm

namd
art

calculix
art

Figure 4.7: Hspeedup of 18 2-core workloads normalized to nofairness control

1. Fair caching’s unfairness reduction comes at the cost of alarge degra-

dation in system performance. Also average maximum slowdown, which indicates

the most any application in a workload is slowed down due to sharing of memory

system resources, is increased slightly. These happen because fair caching changes

the memory access patterns of applications. Since the memory access scheduler

is unfair, the fairness benefits of the fair cache itself are reverted by the memory

scheduler.

87

2. NFQ+FairCache together reduces system unfairness by 30.2% compared

to NoFairnessand reduces maximum slowdown by 10.9%. However, this degrades

Wspeedup (by 12.3%). The combination of PAR-BS and fair caching improves both

system performance and fairness compared to the combination of NFQ and a fair

cache. The main reason is that PAR-BS preserves both DRAM bank parallelism and

row-buffer locality of each thread better than NFQ, as shownin previous work [55].

Compared to the baseline with no fairness control, employing PAR-BS and a fair

cache reduces unfairness and maximum slowdown by 41.3%/24.5% and improves

Hspeedup by 11.5%. However, this improvement comes at the expense of a (7.8%)

Wspeedup degradation.

NFQ+FairCache and PAR-BS+FairCache both significantly degrade system

throughput (Wspeedup) compared to employing no fairness mechanisms. This is

due to two reasons both of which lead to the delaying of memorynon-intensive

applications (Recall that prioritizing memory non-intensive applications is better

for system throughput [57, 55]). First, the fairness mechanisms that are employed

separately in each resource interact negatively with each other, leading to one mech-

anism (e.g. fair caching) increasing the pressure on the other (fair memory schedul-

ing). As a result, even though fair caching might benefit system throughput by

giving more resources to a memory non-intensive application, increased misses of

the memory-intensive application due to fair caching causes more congestion in

the memory system, leading to both the memory-intensive andnon-intensive ap-

plications to be delayed. Second, even though the combination of a fair cache and

a fair memory controller can prioritize a memory non-intensive application’s re-

quests, this prioritization can be temporary. The deprioritized memory-intensive

application can still fill the shared MSHRs with its requests, thereby denying the

non-intensive application entry into the memory system. Hence, the non-intensive

application stalls because it cannot inject enough requests into the memory sys-

tem. As a result, the memory non-intensive application’s performance does not

improve while the memory-intensive application’s performance degrades (due to

fair caching), resulting in system throughput degradation.

88

3. FST reduces system unfairness and maximum slowdown by

46.1%/32.3% while also improving Hspeedup by 20% and degrades Wspeedup by

1.8% compared toNoFairness. Unlike other fairness mechanisms, FST improves

both system performance and fairness, without large degradation to Wspeedup.

This is due to two major reasons. First, FST provides a coordinated approach in

which both the cache and the memory controller receive less frequent requests from

the applications causing unfairness. This reduces the starvation of the applications

that are unfairly slowed down as well as interference of requests in the memory

system, leading to better system performance for almost allapplications. Second,

because FST usesMSHR quotasto limit requests injected by memory-intensive ap-

plications that cause unfairness, these memory-intensiveapplications do not deny

other applications’ entry into the memory system. As such, unlike other fairness

techniques that do not consider fairness in memory system buffers (e.g., MSHRs),

FST ensures that unfairly slowed-down applications are prioritized in the entire

memory system, including all the buffers, caches, and schedulers.

Table 4.5 summarizes our results for the 2-core evaluations. Compared to

the previous technique that provides the highest system throughput (i.e. NoFair-

ness), FST provides a significantly better balance between system fairness and

performance. Compared to the previous technique that provides the best fairness

(PAR-BS+FairCache), FST improves both system performanceand fairness. We

conclude that FST provides the best system fairness as well as the best balance

between system fairness and performance.

Unfairness Maximum Slowdown HspeedupWspeedup
FST∆ over No Fairness Mechanism -46.1% -32.3% 20% -1.8%

FST∆ over Fair Cache -31.3% -32.6% 30.2% 16.1%
FST∆ over NFQ + Fair Cache -22.8% -24.1% 19.7% 11.9%

FST∆ over PAR-BS + Fair Cache -8.2% -10.4% 7.5% 6.4%

Table 4.5: Summary of results on the 2-core system

89

4.5.2 4-core System Results

4.5.2.1 Overall Performance

Figure 4.8 shows unfairness and system performance averaged across the

ten evaluated 4-core workloads. FST provides the best fairness (in terms of both

smallest unfairness and smallest maximum slowdown) and Hspeedup among all

evaluated techniques,6 while providing Wspeedup that is within 3.5% that of the

best previous technique. Overall, FST reduces unfairness and maximum slowdown

by 44.4%/41%7 and increases system performance by 30.4% (Hspeedup) and 6.9%

(Wspeedup) compared toNoFairness. Compared to NFQ, the previous technique

with the highest system throughput (Wspeedup), FST reducesunfairness and max

slowdown by 22%/16.1% and increases Hspeedup by 4.2%. FST’slarge perfor-

mance improvement is mainly due to the large reduction in unfairness.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

W
sp

ee
du

p

No Fairness Technique
Fair Cache
NFQ + Fair Cache
NFQ
PAR-BS + Fair Cache
PAR-BS
FST

(d) Wspeedup

Figure 4.8: Average performance of FST on the 4-core system

Note that the overall trends in the 4-core system are similarto those in the 2-

core system except that previous fairness mechanisms do notsignificantly improve

6In this subsection we also include data points for NFQ alone and PAR-BS alone with no Fair-
Cache to show how the uncoordinated combination of fairnesstechniques at different shared re-
sources can result in degradation of both performance and fairness compared to when only one is
employed.

7Similarly, FST also reduces the coefficient of variation, analternative unfairness metric, by
45%.

8Since relative slowdowns of different applications are most important to improving unfairness
and performance using FST, highly accurateTexcess estimations are not necessary for such improve-
ments. However, we find that with the mechanisms proposed in this chapter the application which
causes the most interference for the most-slowed-down application is on average identified correctly
in 70% of the intervals.

90

fairness in the 4-core system. As we will explain in detail inSection 4.5.2.2, this is

due to prioritization of non-intensive applications in individual resources by previ-

ous fairness mechanisms regardless of whether or not such applications are actually

slowed down.

Figure 4.9 shows the harmonic speedup performance of FST andother fair-

ness techniques normalized to that of a system without any fairness technique for

each of the ten workloads. Figure 4.10 shows the system unfairness of all the tech-

niques for each of the ten workloads. We make two major conclusions. First,

FST improves system performance (both Hspeedup and Wspeedup) and fairness

compared to no fairness control for all workloads. Second, FST provides the best

trade-off between system performance and system fairness:FST has the highest

Hspeedup compared to the previous technique with the highest average system per-

formance (NFQ) on seven of the ten workloads, and the best fairness compared to

the previous technique with the best system fairness (PAR-BS) on seven of the ten

workloads.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 H
sp

ee
du

p

Fair Cache
NFQ + Fair Cache
NFQ
PAR-BS + Fair Cache
PAR-BS
FST

gromacs

art

astar

h264ref

art

GemsFDTD

gamess

h264ref

omnetpp

lbm

apsi

vortex

art

leslie3d

gamess

gromacs

leslie3d

art

astar

crafty

art

milc

namd

calculix

lucas

xalancbmk

gromacs

ammp

lbm

mesa

astar

GemsFDTD

parser

perlbench

soplex

mgrid

gcc

lbm

xalancbmk

cactusADM

Figure 4.9: Normalized speedup of ten 4-core workloads

91

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

U
nf

ai
rn

es
s

No Fairness Technique
Fair Cache
NFQ + Fair Cache
NFQ
PAR-BS + Fair Cache
PAR-BS
FST

gromacs
art

astar
h264ref

art
GemsFDTD

gamess
h264ref

omnetpp
lbm
apsi

vortex

art
leslie3d
gamess
gromacs

leslie3d
art

astar
crafty

art
milc
namd

calculix

lucas
xalancbmk
gromacs
ammp

lbm
mesa
astar

GemsFDTD

parser
perlbench

soplex
mgrid

gcc
lbm

xalancbmk
cactusADM

Figure 4.10: Unfairness of ten 4-core workloads

4.5.2.2 Case Study

To provide more insight into the performance and fairness improvements

of FST, we analyze one 4-core workload in detail. This workload is a mix of ap-

plications of different levels of memory intensity.Art and leslie are both highly

memory-intensive, whilegamessandgromacsare non-intensive (as shown in Ta-

ble 4.3). When these applications are run simultaneously ona 4-core system with

no fairness control, the two memory-intensive applications (especiallyart) gener-

ate a large amount of memory traffic.Art’s large number of memory requests to the

shared resources unfairly slows down the other three applications, whileart does

not slow down significantly. Figures 4.11 and 4.12 show individual benchmark

performance and system performance/fairness, respectively (note that Figure 4.11

shows speedup over the alone run which is the inverse of individual slowdown,

defined in Section 3.4.1). Several observations are in order:

1. NFQ+FairCache significantly degrades system performance by 12.3%

(Hspeedup) and 7.1% (Wspeedup) compared to no fairness control. This com-

bination slows down the memory-intensive applications toomuch, resulting in a

16.7% increase in maximum slowdown compared to employing nofairness tech-

nique. The largest slowdowns are experienced by the memory-intensiveart and

92

leslie because they both get less cache space due to FairCache and are depriori-

tized in DRAM due to NFQ. On the other hand, when NFQ alone is employed,

the memory non-intensive application’s performance is slightly improved by pri-

oritizing them in DRAM at small reductions to the performance of the memory-

intensive applications. NFQ alone improves system performance by 6.7%/3.1%

(HS/WS) and reduces unfairness/maximum slowdown by 12.7%/10.9%. However

these gains are not large even though there is significant interference in the memory

system for this workload because NFQ does not address interference caused in the

shared cache.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
pe

ed
up

 o
ve

r
A

lo
ne

 R
un art

leslie
gamess
gromacs

No Fairness
Technique

NFQ +
Fair Cache

NFQ PAR-BS +
Fair Cache

PAR-BS FST

Figure 4.11: Case Study - individual application behavior

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

No Fairness Technique
NFQ + Fair Cache
NFQ
PAR-BS + Fair Cache
PAR-BS
FST

(d) Wspeedup

Figure 4.12: Case study - system behavior

2. With PAR-BS+FairCache and PAR-BS,art is heavily deprioritized while

the performance of the less memory intensive applications is improved unfairly.

This results in improved overall system throughput (WSpeedup). These two tech-

niques are an example of where unfair treatment of applications in a workload

93

may increase system throughput at the cost of large increases to unfairness and

maximum slowdown (51.5%/39% and 40.4%/31.6% for PAR-BS+FairCache and

PAR-BS respectively). Average system turnaround time (Hspeedup) also degrades

compared to not using any fairness technique. These techniques overly depriori-

tize memory intensive applications (specificallyart) because they do not explicitly

detect when such applications cause slowdowns for others. They prioritize non-

intensive applications almost all the time, regardless of whether or not they are

actually slowed down in the memory system. In contrast, our approach explicitly

detects when memory-intensive applications are causing unfairness in the system.

If they are not causing unfairness, FST does not deprioritize them. As a result, their

performance is not unnecessarily reduced. This effect is observed by examining the

most memory-intensive application’s (art’s) performance with FST. With FST,art

has higher performance than with any of the other fairness techniques.

3. FST increases system performance by 17.5%/11.6% (HS/WS)while re-

ducing unfairness/maximum slowdown by 21.4%/19.5% compared to no fairness

control. In this workload, the memory-intensiveart andlesliecause significant in-

terference to each other in all shared resources and togromacsin the shared cache.

Unlike other fairness techniques, FST dynamically tracks the interference and the

unfairness in the system in a fine-grained manner. When the memory-intensive

applications are causing interference and increasing unfairness, FST throttles the

offendinghogapplication(s). In contrast, when the applications are notinterfering

significantly with each other, FST allows them to freely share resources in order

to maximize each application’s performance. The fine-grained dynamic detection

of unfairness and enforcement of fairness mechanisms only when they are needed

allow FST to achieve higher system performance (Hspeedup) and a better balance

between fairness and performance than other techniques.

To provide insight into the dynamic behavior of FST, Figure 4.13 shows the

percentage of time each core spends at each throttling level. FST significantly throt-

tles downart andlesliemuch of the time (but not always) to reduce the inter-core

interference they generate for each other and the less memory intensive applica-

94

tions. As a result,art andlesliespend almost 25%/30% of their execution time at

10% or less of their full aggressiveness. Also, a lot of the time,art can prevent bank

service to the accesses ofleslie to the same bank. FST detects this and disallows

art’s requests to be prioritized based on row-buffer hits for 74% of all intervals, pre-

ventingart from causing bank service denial as described in Section 4.3.5. Note that

art spends approximately 55% of its time at throttling level 100, which shows that

FST detects times when art is not causing large interferenceand does not penalize

it. Figure 4.13 also shows that FST detects interference caused by not onlyart but

also other applications.leslie, gromacs, and evengamessare detected to generate

inter-core interference for other applications in certainexecution intervals. As such,

FST dynamically adapts its fairness control decisions to the interference patterns

of applications rather than simply prioritizing memory non-intensive applications.

Therefore, unlike other fairness techniques, FST does not overly deprioritizeart in

the memory system.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 T
im

e
at

 e
ac

h
A

gg
r.

 L
ev

el

Level 100
Level 50
Level 25
Level 10
Level 5
Level 4
Level 3
Level 2

art_00 leslie3d_06 gamess_06gromacs_06

Figure 4.13: Case study - application throttling levels

We conclude that FST provides a higher-performance approach to attaining

fairness than coarsely tracking the memory-intensity of applications and depriori-

tizing memory-intensive applications without dynamic knowledge of interference

and unfairness. FST achieves this by tracking unfairness inthe system and making

fairness/throttling decisions based on that tracking in a finer-grained manner.

95

4.5.3 Effect of Throttling Mechanisms

As described in Section 4.3.2, FST uses a combination of two mechanisms

to throttle an application up/down and increase/decrease its request rate from the

shared resources: 1) Applying anMSHR quotato each application, 2) Adjusting

the frequency at which requests in the MSHRs are issued to access the L2. Sec-

tion 4.3.5 explains how to prevent bank service denial from FR-FCFS memory

scheduling within FST. Figure 4.14 shows the effect of each of the different throt-

tling mechanisms, the effect of bank service denial prevention (BSDP), and FST on

the 4-core system. Several observations are in order:

1. Employing BSDP always improves performance regardless of the throt-

tling mechanism being used. BSDP’s improvements are due to resolution of a prob-

lem we refer to as theover-throttling problem. As explained in Section 4.3.5, even

throttled applications can cause significant interferencewhen the memory controller

uses an FR-FCFS scheduling algorithm. When this occurs (using the terminol-

ogy of Section 4.3.5), FST detects some already throttled down application to be

Appinterfering and continuously throttles it down further because the estimated un-

fairness remains high andAppslow stays the same. We call thisover-throttlingof

Appinterfering. BSDP resolves this issue by eliminating the cause of bank service

denial due to FR-FCFS scheduling.

In Figure 4.14, the fourth and fifth bars from the left in each subgraph

show the importance of BSDP. Without BSDP, enabling MSHR quotas destroys

fairness (sub-figures (a) and (b)) and degrades system performance in terms of har-

monic mean of speedups (sub-figure (c)) as a result of unfair treatment of memory-

intensive applications in some workloads. The large increase in average unfairness

is mainly due to workloads that contain the applicationart. Art is a highly memory-

intensive workload with high row-buffer locality. As such,as we described in Sec-

tion 4.3.5, it can cause bank service denial for concurrently executing applications

even when it is throttled down. Additionally,art’s performance is very sensitive to

the number of MSHR entries at its disposal. As a result, it cangetover-throttledas

96

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

No Fairness Technique
FST - Only Freq. Throttling
FST - Only BSDP
FST - Only MSHR quota
FST - Freq. Throt.+MSHR quota
FST - Freq. Throt.+BSDP
FST - MSHR quota+BSDP
FST

(d) Wspeedup

Figure 4.14: Effects of different throttling mechanisms for FST

described above when MSHR quotas are employed for throttling. Figure 4.14 (d)

shows that while the over-throttling problem that exists for the workloads including

art does not result in an average loss of system throughput (Wspeedup) across all

the workloads, it does have a large impact on system fairnessand average system

turnaround time (as shown by Hspeedup, sub-figure (c)). We conclude that BSDP

is necessary for significant improvements to system fairness when MSHR quotas

are employed.

2. Without BSDP, the combination of MSHR quota and frequencythrot-

tling perform worse than using MSHR quota alone. The reason for this is theover-

throttling of memory-intensive benchmarks in the absence of BSDP. Whenboth

throttling mechanisms are employed, the negative effect ofover-throttlingdomi-

nates the average in our evaluated workloads. This leads to the combination of the

two throttling mechanisms performing worse than MSHR alonein the absence of

BSDP.

3. UsingMSHR quotasis more effective than using frequency throttling

alone when BSDP is employed. UsingMSHR quotastogether with BSDP achieves

97% of the performance improvement and 95% of the fairness improvement pro-

vided by FST. However, as table 4.6 shows, some applicationsare not significantly

slowed down by small adjustments to their MSHR quota values even when running

alone. This is because applications such assphinx3andomnetppdo not make use

of many MSHRs even when running alone as they do not have high degrees of

97

memory-level parallelism. For such memory-intensive applications with low MLP,

applying MSHR quotas as the throttling mechanism reduces the request rates only

at the smallest throttling levels (MSHR quotas of 1 or 2). Therefore, using the sec-

ond throttling mechanism that reduces the frequency at which requests are sent to

L2 provides better, fine-grained control of request injection rate.

We conclude that using all mechanisms of FST is better than each throttling

mechanism alone in terms of both fairness and performance.

of MSHRs 1 2 3 5 6 12 32 64 128
sphinx3 (IPC) 0.13 0.23 0.28 0.29 0.29 0.30 0.30 0.30 0.30

milc (IPC) 0.10 0.22 0.36 0.38 0.39 0.40 0.40 0.40 0.40
leslie3d (IPC) 0.06 0.13 0.21 0.24 0.26 0.32 0.36 0.36 0.36

lbm (IPC) 0.04 0.10 0.22 0.26 0.30 0.39 0.45 0.46 0.48

Table 4.6: Sensitivity of alone performance to # of MSHRs

4.5.4 Evaluation of System Software Support

Enforcing Thread Priorities: As explained in Section 4.3.4, FST can be

configured by system software to assign different weights todifferent threads. As

an example of how FST enforces thread weights, we ran four identical copies of the

GemsFDTDbenchmark on a 4-core system and assigned themthread weightsof 1,

1, 4 and 8 (recall that a higher-weight thread is one the system software wants to pri-

oritize). Figure 4.15 shows that with no fairness techniqueeach copy ofGemsFDTD

has an almost identical slowdown as the baseline does not support thread weights

and treats the applications identically in the shared memory system. However, FST

prioritizes the applications proportionally to their weights, favoring applications

with higher weight in the shared memory system. FST also slows down the two

copies with the same weight by the same amount. We conclude that FST approxi-

mately enforces thread weights, thereby easing the development of system software

which naturally expects a CMP to respect thread weights in the shared memory

system.

98

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
pe

ed
up

 o
ve

r
A

lo
ne

 R
un

GemsFDTD - Weight 1
GemsFDTD - Weight 1
GemsFDTD - Weight 4
GemsFDTD - Weight 8

 No Fairness Technique FST

Figure 4.15: Enforcing thread weights with FST

Enforcing an Alternative Fairness Objective (Maximum Tolerable

Slowdown): Section 4.3.4 explained how FST can be configured to achieve amax-

imum slowdown thresholdas determined by system software, that dictates the max-

imum tolerable slowdown of any individual application executing concurrently on

the CMP. Figure 4.16 shows an example of how FST enforces thisfairness objective

when four applications are run together on a 4-core system. The figure shows each

application’s individual slowdown in four different experiments where each experi-

ment uses a different maximum slowdown threshold (ranging from 2 to 3) as set by

the system software. As tighter goals are set by the system software, FST throttles

the applications accordingly to achieve (close to) the desired maximum slowdown.

The fairness objective is met until the maximum slowdown threshold becomes too

tight and is violated (formgrid and parser), which happens at threshold value 2.

We conclude that FST can enforce different system-software-determined fairness

objectives.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

S
lo

w
do

w
n

ov
er

 A
lo

ne
 R

un

Max Slowdown 3
Max Slowdown 2.5
Max Slowdown 2.25
Max Slowdown 2

mgrid parser soplex perlbench

Figure 4.16: Enforcing maximum slowdown with FST

99

In Algorithm 3 throttling is triggered when estimated system unfairness is

greater than a system-software-specified threshold. Figure 4.17 shows average sys-

tem performance and fairness when using a system-software-specified maximum

slowdown target compared to FST with an unfairness target which is the system-

software target we use in all other experiments in this chapter. We conclude that

similar system performance and fairness benefits can be gained using either system

software goal: maximum tolerable slowdown or maximum tolerable unfairness.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
M

ax
 S

lo
w

do
w

n

No Fairness Technique
FST Unfairness Threshold 1.4
FST Max Slowdown Threshold 2

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

(d) Wspeedup

Figure 4.17: Comparing overall results with different system level targets

4.5.5 Effects of Implementation Constraints

Shared resources may be located far away from each other on the

chip. In order to eliminate timing constraints on the sending of updates to the

InterferencePerCore bit-vector from the shared resources, such updates can be

made periodically. EveryUpdateThreshold cycles, all shared resources send their

local copies ofInterferencePerCore to update the main copy at the L2. Once

the updates are applied to the main copy by taking the union ofall bit-vectors, FST

checks the main copy ofInterferencePerCore. If the InterferencePerCore

bit of a core is set, FST increments theExcessCycles counter corresponding to the

core by theUpdateThreshold value.

Figure 4.18 shows the effect of periodic updates and sensitivity to chosen

period lengths on the performance and fairness improvements of FST. The figure

shows that even with updates occurring once every 1000 cycles, system perfor-

100

mance is almost identical and fairness improvements are within 2.5% of FST with

updates being made every cycle. We conclude that using periodic updates (even

when made at relatively long periods) eliminates any timingconstraints on the send-

ing of updates to theInterferencePerCore bit-vector and does not significantly

effect the performance and fairness improvements of FST.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p
(c) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

No Fairness Technique
FST
FST - UpdateThreshold = 500 cycles
FST - UpdateThreshold = 1000 cycles
FST - UpdateThreshold = 2500 cycles
FST - UpdateThreshold = 3500 cycles

(d) Wspeedup

Figure 4.18: Effect of periodic updates on FST’s performance and unfairness

4.5.6 Effects of Different Sources of Interference

Figure 4.19 shows the effect of taking into account interference from each

of the interference sources we discuss in Section 4.3.3. Thefigure shows that FST’s

performance is mostly sensitive to whether or not DRAM bank interference is in-

cluded in the estimations. Without DRAM bank interference,FST only improves

performance by 5.1% (Hspeedup) and reduces unfairness by 13.8% respectively.

As we observed in Section 4.3.6, a significant portion of the hardware required to

implement FST is required for accounting for cache interference and DRAM row-

buffer interference. This gives opportunity for a much lessexpensive implementa-

tion of FST based only on DRAM bank interference which can achieve 97% of the

total performance improvements of FST and 94% of its total unfairness reduction.

4.5.7 Evaluation of Lightweight FST

Figure 4.20 compares the performance of the lightweight FSTimplemen-

tation described in Section 4.3.7 to that of the baseline andthe FST we have been

101

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

No Fairness Technique
FST
FST - no Cache Interference
FST - no Bank Interference
FST - no Row Buffer Interference
FST - no DRAM Bus Interference
FST - only use Cache Interference
FST - only use Bank Interference

(d) Wspeedup

Figure 4.19: Sensitivity of FST to taking into account different interference sources

evaluating so far. The figure shows that the lightweight implementation that re-

quires2N counters for trackingExcessCyclesinformation, provides 98% of the

system performance and 95% of the system fairness benefits ofthe original FST

which requiresN2 counters. We conclude that this is an interesting option to con-

sider for systems with a larger number of cores.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ax

 S
lo

w
do

w
n

No Fairness Technique
Original FST
Lightweight FST (Section 4.3.7)

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

(d) Wspeedup

Figure 4.20: Comparing overall results of original and lightweight FST

4.5.8 Sensitivity to Unfairness Threshold

Figure 4.21 shows how FST’s average fairness and performance changes

with different unfairness thresholds on our evaluated 4-core workloads. Lowering

theunfairness thresholdset by the system-software continuously improves fairness

and performance until the unfairness threshold becomes toosmall. With a very

small unfairness threshold (1.05), FST becomes 1) very aggressive at throttling

down cores to reach the very tight unfairness goal, 2) too sensitive to inaccura-

102

cies in slowdown estimation and therefore triggers throttling of sources unneces-

sarily. As a result, both system performance and fairness slightly degrade. On the

other hand, as the threshold increases, unfairness in the system also increases (be-

cause throttling is employed less often) and performance decreases beyond some

point (because memory hog applications start causing starvation to others, leading

to lower system utilization). Overall, the unfairness threshold provides a knob to

the system software, using which the system software can determine the fairness-

performance balance in the system. We find an unfairness threshold of 1.4 provides

the best fairness and performance for our 4-core workloads.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

No Fairness Technique
FST Unfairness Thres 1.05
FST Unfairness Thres 1.2
FST Unfairness Thres 1.4
FST Unfairness Thres 1.8
FST Unfairness Thres 2.5

(d) Wspeedup

Figure 4.21: Sensitivity of FST to unfairness threshold

4.5.9 Effect of Multiple Memory Controllers

Figure 4.22 shows the effect of using FST on a system with two memory

controllers. We conclude that in such a system with higher available off-chip band-

width where there is less inter-core interference, and as a result lower unfairness

to begin with in the baseline, FST provides significant improvements in system

fairness and performance compared to combinations of fairness mechanisms at the

different resources.

4.5.10 Evaluation of Using Profile Information

Figure 4.23 shows the effect of using profile information to account for

slowdown due to throttling as described in Section 4.3.3.4.On average, using

103

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

U
nf

ai
rn

es
s

(a) Unfairness
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ax

 S
lo

w
do

w
n

(b) Max Slowdown
0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p

(c) Hspeedup
0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
du

p

No Fairness Technique
Fair Cache
NFQ + Fair Cache
PAR-BS + Fair Cache
FST

(d) Wspeedup

Figure 4.22: Effect of FST on a system with two memory controllers

such profile information improves system performance by 4% and leaves system

unfairness unchanged across the 4-core workloads. However, such profile informa-

tion is not completely accurate in accounting for slowdownsdue to throttling in all

intervals since the factors described in Section 4.3.3.4 are obtained by comparing

performance of complete runs of each application at different throttling levels. Due

to the inaccuracies that exist, the use of this information results in increased system

unfairness in two of the workloads.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Normalized System Performance (Hspeedup)
Normalized System Unfairness

gromacs
art

astar
h264ref

art
GemsFDTD

gamess
h264ref

omnetpp
lbm
apsi

vortex

art
leslie3d
gamess
gromacs

leslie3d
art

astar
crafty

art
milc
namd

calculix

lucas
xalancbmk
gromacs
ammp

lbm
mesa
astar

GemsFDTD

parser
perlbench

soplex
mgrid

gcc
lbm

xalancbmk
cactusADM

gmean

Figure 4.23: Effect of using profile information for throttling related slowdown

4.6 Conclusion

We proposed a low-cost architectural technique, Fairness via Source Throt-

tling (FST), that allows system-software fairness policies to be achieved in CMPs

by enabling fair sharing of the entire memory system. FST eliminates the need for

104

and complexity of multiple complicated, specialized, and possibly contradictory

fairness techniques for different shared resources. The key idea of our solution is to

gather dynamic feedback information about the slowdowns experienced by differ-

ent applications in hardware at run-time and, based on this feedback, collectively

adjust the memory request rates of sources (i.e., cores) to balance applications’

slowdowns. Our solution ensures that fairness decisions inthe entire memory sys-

tem are made in tandem, thereby significantly improving bothsystem performance

and fairness compared to the state-of-the-artresource-basedfairness techniques im-

plemented independently for different shared resources. We have also shown FST is

configurable by system software, allowing it to enforce thread priorities and achieve

different fairness objectives. We conclude that FST provides a promising low-cost

substrate that can not only improve the performance and fairness of future multi-

core systems but also ease the task of future multi-core system software in managing

shared on-chip hardware resources.

105

Chapter 5

Prefetch-Aware Shared-Resource Management

5.1 Introduction

In Chapter 4 we discussed how memory requests from differentapplications

concurrently executing on different cores of a CMP interfere with one another. This

inter-application interference causes each application to slow down compared to

when it runs in isolation. Recent research (e.g., [57, 55, 15]) has proposed dif-

ferent mechanisms to manage this interference in the sharedmemory resources in

order to improve system performance and/or system fairness. In Chapter 4, we pro-

posed Fairness via Source Throttling (FST), which is one such technique targeted at

providing fairness across all shared memory resources while providing high system

performance.

On the other hand, memory latency tolerance mechanisms are critical to

improving system performance as DRAM speed continues to lagprocessor speed.

Prefetching is one commonly-employed mechanism that predicts the memory ad-

dresses a program will require, and issues memory requests to those addresses

before the program needs the data. Prefetching improves thestandalone perfor-

mance of many applications and is currently done in almost all commercial proces-

sors [70, 27, 40, 61]. In Chapter 3, we proposed HierarchicalPrefetcher Aggres-

siveness Control (HPAC), which intelligently adjusts prefetcher aggressiveness at

runtime to make prefetching effective and efficient in CMPs.

Ideally we would like CMP systems to both obtain the performance benefits

of prefetching when possible, and also reap the performanceand fairness benefits of

shared resource management techniques. However, shared resource management

techniques that otherwise improve system performance and fairness significantly,

106

can also significantly degrade performance/fairness in thepresence of prefetching.

The reason: these techniques are designed for demand requests and do not consider

prefetching.

Figure 5.1 illustrates this problem on a system that uses a fair/quality of ser-

vice (QoS)-capable memory scheduler, network fair queuing(NFQ) scheduler [57].

Results are averaged over 15 multiprogrammed SPEC CPU2006 workloads on a

4-core system1, and normalized to a system that uses a common first-ready first-

come-first-serve (FR-FCFS) memory scheduler [65]. Figure 5.1 (a) shows how

NFQ affects average system performance and average maximumslowdown (one

metric of unfairness) in a system with no prefetching. Figure 5.1 (b) shows this in

the presence of aggressive stream prefetching. This figure shows that, even though

NFQ improves performance and reduces maximum slowdown on a system that does

not have a prefetcher, if aggressive prefetching is enabled, we see a very different

result. On a system with prefetching NFQ degrades performance by 25% while

significantly increasing maximum slowdown, because its underlying prioritization

algorithm does not differentiate between prefetch and demand requests. As a re-

sult, prefetches can be unduly prioritized by the memory scheduler, causing system

performance and fairness degradation.

In this chapter, we demonstrate that different shared resource management

techniques suffer from this problem, i.e., they can degradeperformance signifi-

cantly when employed with prefetching. Our goal is to devisegeneral mechanisms

that intelligently take prefetches into account within shared resource management

techniques to ensure their effectiveness for both performance and fairness in the

presence of prefetching.

We provide mechanisms for management of prefetch requests in three re-

cently proposed shared resource management techniques. Two of these tech-

niques areresource-basedmemory scheduling techniques: network fair queuing

1Our system configuration, metrics, and workloads are discussed in section 5.5. In Figure 5.1,
the stream prefetcher of Table 5.1 is used. Prefetch and demand requests are treated alike with
respect to NFQ’s virtual finish time calculations.

107

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Perf. Max
Slowdown

(a) No Prefetching

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

FR-FCFS
NFQ

Pref Max
Slowdown

(b) Stream Pref

Figure 5.1: Harmonic mean of speedups and maximum slowdown on system using
NFQ memory scheduler (normalized to FR-FCFS)

(NFQ) [57] and parallelism-aware batch scheduling (PARBS)[55]. The third tech-

nique is thesource throttling-basedtechnique for coordinated management of mul-

tiple shared resources (FST) which we proposed in Chapter 4.

Basic Ideas: Our mechanisms build upon three fundamental ideas. First,

we use accuracy feedback from the prefetchers to decide how prefetch requests

should be handled in each of theresource-basedtechniques. The key idea is tonot

treat all prefetches the same. An application’s prefetchesshould be treated similar

to the demand requestsonly whenthey are useful.

Second, treating useful prefetches like demands can significantly delay de-

mand requests of memory non-intensive applications because such requests can get

stuck behind accurate prefetches (and demands) of memory-intensive applications.

This degrades system performance and fairness. To solve this problem, we intro-

duce the idea ofdemand boosting: the key idea is to boost the priority of the demand

requests of memory non-intensive applications over requests of other applications.

Third, with source throttling-based resource management, we observe that

uncoordinated core and prefetcher throttling can cause performance/fairness degra-

dation because throttling decisions for cores can contradict those for prefetchers.

To solve this problem, we propose mechanisms that coordinate core and prefetcher

108

throttling based on interference feedback that indicates which cores are being un-

fairly slowed down.

5.2 Summary from Previous Chapters and Background

In Sections 2.2.1 and 2.2.2 we gave an overview of two of the shared

resource management techniques that we discuss in this chapter, NFQ [57] and

PARBS [55]. Here we briefly summarize FST from Chapter 4 and our prefetcher

control technique, HPAC, from Chapter 3. We first briefly describe what we mean

by system fairness in the presence of prefetching.

5.2.1 Fairness in the Presence of Prefetching

We evaluate fairness of a multi-core system executing a multi-programmed

workload using theMaxSlowdown metric as defined in Section 4.4.1. Recall from

Section 3.4.1 that theIndividual Slowdown (IS)of each application is calculated as

Tshared/Talone, whereTshared is the number of cycles it takes an application to run

simultaneously with other applications, andTalone is the number of cycles it would

have taken the application to run alone on the same system. Inall of our evaluations,

we use an aggressive stream prefetcher when calculating each benchmark’sTalone

as our stream prefetcher significantly improves average performance and makes for

a better baseline system. In addition to theMaxSlowdown metric, we also show

the commonly usedunfairnessmetric [36, 22, 54] as defined in Section 3.4.1.

5.2.2 Hierarchical Prefetcher Aggressiveness Control (HPAC)

In Chapter 3, we proposed hierarchical prefetcher aggressiveness control

(HPAC) as a prefetcher throttling solution to improve prefetching performance

in CMPs. HPAC’s goal is to control/reduce inter-thread interference caused by

prefetchers. It does so by gathering global feedback information about the effect of

each core’s prefetcher on concurrently executing applications. Examples of global

feedback are memory bandwidth consumption of each core, howmuch each core is

109

delayed waiting for other applications to be serviced by DRAM, and cache pollution

caused by each core’s prefetcher for other applications in the shared cache. Using

this feedback, HPAC throttles each core’s prefetcher. By doing so, we showed that

HPAC can enable system performance improvements using prefetching that are not

possible without it. In this chapter, we use HPAC in our baseline system since it

significantly improves the performance of prefetching in multi-core systems and

therefore constitutes a stronger baseline.

5.2.3 Fairness via Source Throttling (FST)

In Chapter 4 we proposed fairness via source throttling (FST) as a mech-

anism to provide fairness in the entire shared memory system. FST dynamically

estimates how much each applicationi is slowed down due to inter-core interfer-

ence that results from sharing the memory system with other applications. Using

these estimated slowdowns, FST calculates an estimate for system unfairness. In

addition, FST also determines the core experiencing the largest slowdown in the

system, referred to asApp-slowest, and the core creating the most interference for

App-slowest, referred to asApp-interfering. If the estimated unfairness is greater

than a threshold specified by system software, FST throttlesdownApp-interfering

(i.e., it reduces how aggressively that application accesses the shared memory re-

sources), and throttles upApp-slowest. In order to throttle down the interfering

thread, FST limits the number of requests that the thread cansimultaneously send

to the shared resources and also the frequency at which it does so.

In order to estimate each application’s slowdown, FST tracks inter-thread

interference in the memory system. FST estimatesboth how much each applica-

tion i is actually being slowed down due to inter-core interference andalso how

much each other corej (j 6= i) contributes to the interference experienced by core

i. In Chapter 4, we assume all requests are demand requests anddo not consider

prefetching. In this chapter we demonstrate what problems occur when prefetching

is enabled and extend the FST design of Chapter 4 to continue to be efficient in the

presence of prefetching.

110

5.3 Motivation

In this section, we motivate why special treatment of prefetch requests is

required in shared resource management techniques to both 1) achieve benefits from

prefetching and, 2) maintain the corresponding techniques’ performance benefits

and/or fairness/QoS capabilities.

Every shared resource management technique has a prioritization algorithm

that determines the order in which requests are serviced. For example, NFQ pri-

oritizes requests that have earliervirtual finish times. PARBS prioritizes requests

included in the formed batch by scheduling them all before a new batch is formed.

In resource-based management techniques, the first key ideaof this chapter is that

the usefulness of prefetch requests should be considered within each management

technique’s prioritization policy. As such, not all prefetches should be treated the

same as demand requests, and not all prefetches should be deprioritized compared

to demand requests. However, this is not enough; in fact, prioritizing accurate

prefetches causes starvation to demands of non-intensive applications. To solve

this problem, the second key idea we present in this chapter is to boost the priority

of demand requests of such non-intensive applications so that they are not starved.

We motivate these two key ideas with two examples.

Example 1: Figure 5.2 shows the effect of prefetching on PARBS. The fig-

ure shows a snapshot of the memory request buffers in the memory controller for

banks 1 and 2. The initial state of these queues right before anew batch is formed

can be seen on the left. Based on PARBS’s batching algorithm,a maximum number

of requests from any given thread to any given bank are markedto form a batch. Let

us assume PARBS marks three requests per-thread per-bank when forming a batch.

Additionally, let us assume that application 1’s prefetches are useless or inaccu-

rate while application 2’s prefetches are useful or accurate. Figure 5.2 shows two

simplistic policies, (a) and (b), and our proposed approach, policy (c), for handling

prefetches in PARBS’s batching phase. Figure 5.3 shows the respective memory

service timelines.

111

Initial State Policy (a)

Bank 1 Bank 2 Bank 1 Bank 2 Bank 1 Bank 2Bank 1 Bank 2

P1: Useless prefetches from Core 1
P2 : Useful prefetches from Core 2
D1, D2: Demands from Cores 1 and 2 respectively

Batch

S
er

vi
ce

 O
rd

er

D1
D2

P1

D2
D2
P2
P1
P1

P2
A

rr
iv

al
 O

rd
er

D2

D1

D2

D2
P1
P2

P1
P2

P1
D1

P2

P1

D2
D2
P2

D2
P1

D1
D2

P2

D2
D2
P1
P1

P1

P2

P1

Policy (c)

when any demands are present
Do not include any prefetches

Policy (b)
Include all prefetches in batch Include prefetches in batches

based on prefetch accuracy

Figure 5.2: Example 1 - Different policies for treatment of prefetches in PARBS
batch formation

Policy (a): mark prefetches and demands from each thread alike when creating a

batch. Figure 5.2 shows that all the requests in the memory request queues of the

two banks are included in the batch with this policy. Within each batch, PARBS

prioritizes threads that that are “shorter jobs” in terms ofmemory request queue

length. Since thread 1 has a shorter queue length (maximum 2 requests in any bank)

than thread 2 (maximum 3 requests in any bank), thread 1 is prioritized over thread

2. As a result, as Figure 5.3 (a) shows, thread 1’s inaccurateprefetches to addresses

Y, X and Z are prioritized over thread 2’s demands and useful prefetches. This leads

to unwarranted degradation of thread 2’s performance without any benefit to thread

1 (as its prefetches are useless).

Policy (b): never mark prefetches.This policy provides a naive solution to policy

(a)’s problems by not marking any prefetches. This is helpful in prioritizing the

demands of thread 2 over the useless prefetches of thread 1. However, by not mark-

ing any prefetches, this policy also does not include the useful prefetches of thread

2 in the generated batch. Figure 5.3 (b) shows that thread 2’suseful prefetches to

addresses L and M are now delayed since all prefetches are deprioritized. Hence

thread 2 issues demands for addresses L and M before the prefetches are serviced,

and so the benefit of those accurate prefetches significantlydecreases. This causes

a loss of potential performance.

112

Core 1 Compute
stall

P1:Useless prefetches
P2:Useful prefetches

{P/D, Core #} − address

(b) Do not include any prefetches
 when any demands are present

(c) Include prefetches in batches
 based on prefetch accuracy

DRAM
Bank 1

Bank 2

P1 − Y

P1 − X

D1 − A

P1 − Z

D2 − E P2 − L

D2 − GD2 − F P2 − M

Hit Pref − L

Hit Pref − M

Core 2 Compute Compute

Compute

stall

Core 1 Compute
stall

Bank 1

Bank 2

P2 − L

DRAM

P1 − ZP1 − XD2 − GD2 − F

D1 − A D2 − E P1 − Y

Miss − MMiss − L

Core 2 Compute Compute

Compute
stall

Bank 1

Bank 2

DRAM
D1 − A D2 − E P2 − L P1 − Y

D2 − G P2 − M P1 − X P1 − Z

Core 1 Compute
stall

Core 1’s saved stall cycles compared to (a)

Hit Pref − L

Hit Pref − M

Core 2 Compute Compute
stall

Core 2’s saved stall cycles compared to (a)
Compute

P2 − M

D2 − F

(a) Include all prefetches in batches

Figure 5.3: Memory service timeline for requests of Figure 5.2

Our Approach : A key principle we introduce in this chapter is to treat onlyac-

curate prefetches as demands in shared resource management. Figure 5.2 (c) con-

cisely shows how this is done for PARBS. Using feedback from different threads’

prefetchers, PARBS can make a more intelligent decision about whether or not to

include prefetches when forming batches. Since thread 2’s prefetches are useful, we

include them in the batch, while thread 1’s useless prefetches are excluded. As a re-

sult, benefits from prefetching for thread 2 is maintained, as shown in Figure 5.3 (c).

Excluding thread 1’s useless prefetches from the batch improves system fairness as

113

these requests do not unduly delay thread 2’s demands and useful prefetches, and

thread 2’s slowdown is reduced without increasing thread 1’s slowdown. Figure 5.3

(c) shows that this policy improves both applications’ performance compared to

policies that treat all prefetches equally. This motivatesthe need for distinguishing

between accurate and inaccurate prefetches in shared resource management.

Example 2: Figure 5.4 shows the problem with just prioritizing accurate

prefetches, and concisely shows our solution for a system using PARBS. When

including accurate prefetches into the batches formed by PARBS, in the presence

of prefetch-friendly applications (like application 2 in Figure 5.4), the size of the

batches can increase. Since memory non-intensive applications (like application

1 in Figure 5.4) generate memory requests at a slow pace, every time a batch is

formed (Timet1 shown in Figure 5.4(a)), memory non-intensive applications will

have a small number of their requests included. At timet2, more requests from

the memory non-intensive application arrive. Without our proposed mechanism,

since the current batch is still being serviced, these requests have to wait until the

current batch is finished (Figure 5.4 (c)), which could take along time since useful

prefetch requests that were included in the batch made the batch size larger. In

this chapter, we propose demand boosting, which prioritizes asmall numberof the

non-intensive application’s requests over others. In Figure 5.4 (d), at timet3, the

two demand requests from application 1 to addresses K and L are boostedinto the

current batch and prioritized over the existing requests from application 2 within

the batch. This allows application 1 to go back to its computephase quickly. Doing

No Demand Boosting

S
er

vi
ce

 O
rd

er

Bank 2Bank 1

P2−C P2−D

P2−O D2−P

P2−M P2−N

{P/D, Core #} − address
P2 : Useful prefetches from Core 2

Batch

Bank 2

P2−C P2−D

Bank 2Bank 1

P2−O D2−P

P2−M P2−N

P2−I P2−J

D2−G P2−H

P2−E D2−F

Bank 2Bank 1

P2−O D2−P

P2−M P2−N

P2−I P2−J

P2−HD2−G

P2−E D2−F

(b) T = t2 (c) T = t3
With Demand Boosting

(d) T = t3

Boosted Demands
Bank 1

P2−I P2−J

D2−G P2−H

P2−E D2−F

(a) T = t1

D1−A D1−B

D1−K D1−L

D1−LD1−K P2−I P2−J

D2−G P2−H

P2−E D2−F

D1−K D1−L

Figure 5.4: Example 2 - No demand boosting vs. Demand boosting

114

so does not degrade application 2’s performance significantly as the non-intensive

application 1 inherently has very few requests.

5.4 High Performance and Fair Shared Resource Management
in the Presence of Prefetching

In this section, we describe in detail our proposal for handling prefetches

in the two types of resource management techniques:resource-basedandsource-

based. We also introducedemand boosting, which is orthogonal to the employed

resource management technique. Since demand boosting is common to both

resource-based and source-based techniques, we describe it first in Section 5.4.1.

Then, we describe in detail how to apply our insights (described in Sections 5.1

and 5.3) to each resource management technique in turn (Sections 5.4.2 and 5.4.3).

5.4.1 Demand Boosting

Problem and Main Idea: As described in Section 5.3, the first compo-

nent of our proposal is to treat useful prefetches to be as important as demands.

Memory-intensive and prefetch-friendly applications cangenerate many such re-

quests, which can cause long delays for the demands of concurrently executing

memory non-intensive threads. As a result, system performance and fairness can

degrade because of large performance degradations to memory non-intensive ap-

plications. To mitigate this problem, we proposedemand boostingfor such non-

intensive applications. The key idea is to prioritize the non-intensive application’s

small number of demand requestsover others, allowing that application to go back

to its compute phase quickly. It must be noted that doing so does not significantly

degrade other applications’ performance because the non-intensive application in-

herently has very few requests.

Why the Problem Exists: The potential forshort-termstarvation of a non-

intensive application’s demands increases in each of the techniques we consider for

different reasons. In NFQ and FST, potential for starvationis created by the priori-

115

tization of DRAM row buffer hits in the memory scheduler, coupled with high row

buffer locality of accurate prefetches that are consideredas important as demands.

PARBS uses the batching concept to mitigate this inherent issue due to prioritizing

row-buffer hit requests. However, in Section 5.3 we proposed including accurate

prefetches into PARBS’s batches. The slow rate at which non-intensive threads

generate their requests, together with the large batches generated using requests

from prefetch-friendly applications, causes potential for starvation in PARBS. In

addition, when such memory non-intensive applications arecache friendly, as they

stall waiting for their small number of memory requests to beserviced, their useful

requests in the shared cache move up the LRU stack. Hence, they can get evicted

more quickly by intensive applications’ requests. This, inturn, causes larger per-

formance penalties for such memory non-intensive applications.

To summarize, elevating the priority of accurate prefetch requests from

memory intensive applications causes the small memory related stall times of non-

intensive applications to increase. This significantly hurts the non-intensive appli-

cations’ performance (as also observed by prior work [41]).

Demand Boosting Mechanism:Demand boosting is a general mechanism

orthogonal to the type of resource management technique. Itincreases the perfor-

mance of memory non-intensive applications that do not takeadvantage of accurate

prefetches by dynamically prioritizinga small numberof such applications’ de-

mands. With demand boosting, the demands of an application that does not have

accurate prefetchesand has a at most athreshold numberof outstanding requests,

will be boosted and prioritized overall other requests. For example, in a system us-

ing PARBS, when an application’s demands are boosted, they no longer wait for a

current batch to finish before they are considered for scheduling. A boosted request

X has higher priority than any other request Y regardless of whether or not request

Y is in the current batch.2

2Note that in the context of demand boosting for PARBS, demandboosting is significantly dif-
ferent from the “intra-batch” ranking proposed by the original PARBS mechanism (which we use
in all our PARBS related mechanisms). PARBS’s ranking prioritizes requests chosen from requests

116

Delaying a memory-intensive application in lieu of a memorynon-intensive

application with inherently small memory stall times can improve both system per-

formance and fairness [55, 42, 15, 37]. In many cases, demand-boosting enables

performance benefits from prefetching that are not possiblewithout it, as we show

in Section 6.4.

5.4.2 Prefetch-Aware Resource-Based Management Techniques

We identify prefetcher accuracy as the critical prefetchercharacteristic to

determine how a prefetcher’s requests should be treated in shared resource man-

agement techniques. Prefetcher accuracy is defined as the ratio of useful prefetches

generated by a prefetcher to the total number of prefetches it generates. We also

investigated using other prefetcher feedback such as a prefetcher’sdegree of timeli-

ness3, but found that accuracy has more of a first order effect.

In all of the mechanisms we propose, we measure prefetch accuracy on

an interval by interval basis. An interval ends whenT = 8192 cache lines are

evicted from the last level cache, whereT is empirically determined. Every interval,

information on the number of useful prefetches and total sent prefetches of each

prefetcher is gathered. Using this information, the accuracy of the prefetcher in

that interval is calculated and used as an estimate of the prefetcher accuracy in

the following interval. In the following subsections, we discuss how to redesign

underlying prioritization principles of tworesource-basedmanagement techniques.

5.4.2.1 Parallelism-Aware Batch Scheduling

PARBS usesbatching to provide a minimum amount of DRAM service

to each application by limiting the maximum number of requests considered for

already containedwithin the current batchusing its ranking algorithm. In contrast, with demand
boosting, demand requests from a boosted thread are prioritized overall other requests.

3A prefetcher’s degree of timeliness is defined as the ratio ofthe number of useful prefetches
that fill the last level cache before the corresponding demand request is issued, to the total number
of useful prefetches.

117

scheduling from any one application. Inaccurate prefetches of an application A can

have negative impact on system performance and fairness in two ways. First, they

get included in batches and get prioritized over other applications’ demands and

useful prefetches that were not included. As a result, they cause large performance

degradation for those other applications without improving application A’s perfor-

mance. Second, they reduce the fairness provided by PARBS toapplication A by

occupying a number of slots of each batch that would otherwise be used to give

application A’s demands a minimum amount of useful DRAM service.

We propose the following new batch scheduling algorithm to enable poten-

tial performance improvements from prefetching, while maintaining the benefits of

PARBS. The key to Algorithm 4 is that it restricts the processof marking requests

to demands and accurate prefetches. As a result, a prefetch-friendly application will

be able to benefit from prefetching within its share of memoryservice. On the other

hand, inaccurate requests are not marked and are hence deprioritized by PARBS.

Algorithm 4 Parallelism-Aware Batch Scheduler’s Batch Formation (Prefetch-Aware
PARBS, P-PARBS)

Forming a new batch: A new batch is formed when there are no marked requests left
in the memory request buffer, i.e., when all requests from the previous batch have been
completely serviced.
Marking: When forming a new batch, the scheduler marks up toMarking-Capoutstand-
ing demandand also accurate prefetch requestsfor each application; these requests form
the new batch.

5.4.2.2 Network Fair Queuing

NFQ usesearliest virtual finish time firstmemory scheduling to provide

quality of service to concurrently executing applications. Inaccurate prefetches of

some application A can have negative impact on system performance and fairness

in two ways: First, if application A’s inaccurate prefetches get prioritized over de-

mands or accurate prefetches of some other application B dueto the former’s ear-

lier virtual finish time, system performance will degrade. Application B’s service

is delayed while application A does not gain any performance. Second, since NFQ

provides service to application A’s inaccurate prefetches, the virtual finish times of

118

application A’s demands grows larger than when there was no prefetching. This

means that application A’s demand requests will get serviced later compared to

when there is no prefetching. Since application A’s prefetches are not improving

its performance, this ultimately results in application A’s performance loss due to

unwarranted waste of its share of main memory bandwidth.

We propose the following prioritization policy for the NFQ bank scheduler.

When this scheduler prioritizes requests based on earliestvirtual finish time, this

prioritization is performed only for demand accesses andaccurateprefetches. Do-

ing so prevents the two problems described in the previous paragraph. Algorithm 5

summarizes the proposed NFQ policy.

Algorithm 5 Network Fair Queuing’s Bank Scheduler Priority Policy (Prefetch-Aware
NFQ, P-NFQ)

Prioritize ready commands (highest)
Prioritize CAS commands
Prioritize commands for demandsand also accurate prefetch requestswith earliest vir-
tual finish-time
Prioritize commands based on arrival time (lowest)

5.4.3 Prefetch-Aware Source-Based Management Techniques

We propose prefetch handling mechanisms for thesource-basedshared re-

source management approach (FST), which we proposed in Chapter 4. We briefly

described FST’s operation in section 5.2.3. FST does not take into accountinterfer-

ence generated for prefetchesandinterference generated by the prefetchesof each

application.

We incorporate prefetch awareness into FST in two major waysby: a) deter-

mining how prefetches and demands should be considered in estimating slowdown

values, and b) coordinating core and prefetcher throttlingusing FST’s monitoring

mechanisms.

119

5.4.3.1 Determining Application Slowdown in the Presence of Prefetching

FST tracks interference in the shared memory system to dynamically es-

timate the slowdown experienced by each application. Yet, it cannot compute

accurate slowdown values if prefetching is employed because FST is unaware of

prefetches. In this section we describe a new mechanism to compute slowdown

when prefetching is employed.

When requests A and B from two applications interfere with each other in

a shared resource, one request receives service first and theother isinterfered-with.

Let us assume that request A was theinterferingand request B was theinterfered-

with. The typeof memory request A classifies the interference asprefetch-caused

or demand-causedinterference. The type of memory request B classifies the inter-

ference asprefetch-delayingor demand-delayinginterference.

Recall that FST defines individual slowdown,IS, asTshared/Talone to esti-

mate system unfairness. In order to estimateTalone when running in shared mode,

FST estimates “the number ofextra cyclesit takes an application to execute due to

inter-core interference in the shared memory resources.” This is known asTexcess

(Texcess = Tshared − Talone).

When estimatingTexcess in the presence of prefetching, we find that it is

important to use the following two principles. First, bothprefetch-causedand

demand-causedinterference should be considered. Second, onlydemand-delaying

interference should be used to calculate slowdown values atruntime. This means

that when calculating corei’s Texcess, interference caused for its demands byei-

ther demands or prefetches of other coresj (j 6= i) should be accounted for. This

is because ultimately both prefetch and demand requests from an interfering core

can cause aninterfered-withcore to stall. On the other hand, even thoughprefetch-

delayinginterference reduces the timeliness of interfered-with prefetches, it does

not significantly slow down the corresponding core. If an accurate prefetch is de-

layed until the corresponding demand is issued, that prefetch will be promoted to a

demand. Further delaying of that request will contribute tothe slowdown estimated

120

for the respective core because any interference with that request will be considered

demand-delayingfrom that point on.

Algorithm 6 summarizes how our proposal handles prefetchesto make FST

prefetch-aware.4 FST uses a bit per core to keep track of when each core was

interfered with. We refer to this bit-vector as theInterferencebit-vector in the

algorithm. Also, anExcessCycles counter is simply used to trackTexcess for each

core.

Algorithm 6 Prefetch-aware FST (P-FST) estimation ofTexcess for corei
Every cycle
if inter-core interference created by any corej’s prefetch requestsor demand requests
for corei’s demand requeststhen

set corei’s bit in theInterference bit-vector
end if
if Corei’s bit is set in theInterference bit-vectorthen

IncrementExcessCycles counter for corei
end if

5.4.3.2 Coordinated Core and Prefetcher Throttling

FST throttles cores to improve fairness and system performance. On the

other hand, HPAC is an independent technique that throttlesprefetchers to improve

system performance by controlling prefetcher-caused inter-core interference. Un-

fortunately, combining them without coordination causes contradictory decisions.

For example, the most slowed down core’s prefetcher can be throttled down (by

the prefetch throttling engine, i.e., HPAC’s global control) while the core is be-

ing throttled up (by the core throttling engine, i.e. FST). As a result, fairness and

performance degrade and potential performance benefits from prefetching can be

lost. Therefore, we would like to coordinate the decisions of core and prefetcher

throttling. The key insight is to coordinate HPAC’s throttling decisions with FST’s

decisions using the interference information collected byFST. We achieve this in

two ways.

4We present our changes to the originalTexcess estimation algorithm presented in Algorithm 2
of Chapter 4. For other details onTexcess estimation we refer to Section 4.3.3.

121

The first key idea is to use the slowdown information that FST gathers for

core throttling to make better prefetcher throttling decisions. To do this, we only

apply HPAC’s global prefetcher throttle down decisions to acore if FST has de-

tected the corresponding core to beAppinterfering.5 As such, wefilter some of the

throttle-down decisions made by HPAC. This is because HPAC can be very strict

at prefetcher throttling due to its coarse classification ofthe severity of prefetcher-

caused interference. As a result, it throttles some prefetchers downconservatively

even though they are not affecting system performance/fairness adversely. We avoid

this by using the information FST gathers about which cores are actually being

treated unfairly as a result of inter-core interference.

The second key idea is to use FST’s ability of tracking inter-core cache

pollution to improve how well HPAC detects accurate prefetchers. This is useful

because HPAC can underestimate a prefetcher’s accuracy dueto its interference-

unaware tracking of useful prefetches. HPAC does not count accurate prefetches for

corei that were evicted by some other core’s requests before beingused. This can

cause HPAC to incorrectly throttle down corei’s accurate prefetcher and degrade its

performance. To avoid this, we use FST’s pollution filter to detect when an accurate

prefetch for corei was evicted due to another corej’s request. For this purpose, we

extend FST’s pollution filter entries to also include a prefetch bit. Using this, we

account for useful prefetches evicted by another core’s requests in HPAC’s estimate

of each prefetcher’s accuracy.

Algorithms 7 and 8 summarize the above mechanisms that coordinate core

and prefetcher throttling.

5If HPAC’s local throttling component for corei detects that the core’s prefetcher is not perform-
ing well, that prefetcher is still throttled down regardless of FST’s decision. This helps both corei’s
and other cores’ performance.

122

Algorithm 7 Prefetch-Aware FST (P-FST) Core and Prefetcher Throttling
if Estimated Unfairness > Unfairness Threshold then

Throttle downAppinterfering

Throttle down prefetcher of Appinterfering if HPAC indicates global throttle down
for this prefetcher
Throttle upAppslowest

end if
Allow HPAC to throttle up prefetchers as it requires
Apply HPAC’s local throttle down decisions

Algorithm 8 Enhancing prefetcher accuracy information using FST’s pollution filters
if Last-level cache hit on prefetched cache linethen

increment useful prefetch count
end if
if Last-level cache miss due to inter-core interference as detected by FSTand evicted
line was prefetch requestthen

increment useful prefetch count
end if
Prefetch accuracy = useful prefetch count / total prefetch count

5.5 Methodology

5.5.1 Metrics

To measure CMP system performance, we useHarmonic mean of speedups

(Hspeedup)[49], Weighted speedup (Wspeedup)[66], andIndividual speedup (IS),

which are defined in Section 3.4.1. SinceHspeedupprovides a balanced measure

between fairness and system throughput [49], we use it as ourprimary evaluation

metric. To demonstrate fairness improvements, we reportMaxSlowdown(Sec-

tion 4.4.1), and alsoUnfairnessas defined in Section 3.4.1 (also see Section 5.2.1).

5.5.2 Processor Model

Table 5.1 shows the baseline configuration of each core and the shared re-

source configuration for the 4-core CMP system we use in the evaluations of this

chapter. We faithfully model all port contention, queuing effects, bank conflicts,

and other major DDR3 DRAM system constraints in the memory subsystem.

123

15 stage out of order processor
Decode/retire up to 4 instructions

Execution core Issue/execute up to 8 micro instructions
128-entry reorder buffer
Fetch up to 2 branches; 4K-entry BTB

Front end 64K-entry Hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip caches Shared unified L2: 2MB , 16-way, 16-bank,
20-cycle, 1 port, 64B line size

Prefetcher Stream prefetcher with 32 streams, prefetch degree of 4, andprefetch dis-
tance of 64 cache lines [70, 67]
On-chip, Open-row PARBS [55]/NFQ [57]/FR-FCFS [65]

DRAM controller 128-entry MSHR and memory request queue
667MHz bus cycle, DDR3 1333MHz [50]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank

DRAM and bus Latency: 15-15-15ns; 100-100-100 processor cycles (tRP -tRCD-CL),
Round-trip L2 miss latency: Row-buffer hit: 36ns, conflict:66ns

Table 5.1: Baseline system configuration

5.5.3 Workloads

We use the SPEC CPU 2000/2006 benchmarks for our evaluation.Each

benchmark was compiled using ICC (Intel C Compiler) or IFORT(Intel Fortran

Compiler) with the -O3 option. Each benchmark runs the reference input set for 50

million x86 instructions selected by Pinpoints [62].

We classify a benchmark asmemory-intensiveif its L2 Cache Misses per

1K Instructions (MPKI) is greater than three and otherwise we refer to it asmem-

ory non-intensive.We say a benchmark hascache localityif the number of L2

cache hits per 1K instructions for the benchmark is greater than five. An appli-

cation is classified asprefetch-friendlyif its IPC improvement due to prefetching

when run in isolation is more than 10%. If its IPC degrades, itis classified as

prefetch-unfriendlyand otherwise asprefetch-insensitive. These classifications are

based on measurements made when each benchmark was run aloneon the 4-core

system. Table 5.2 shows the characteristics of the 29 benchmarks that appear in the

evaluated workloads when run on the 4-core system.

We used 15 four-application workloads for our evaluations.The workloads

124

were chosen such that each workload consists of at least twomemory-intensive

applications (MPKI greater than three) and an applicationwith cache locality. All

but one workload has at least oneprefetch-friendlyapplication since the goal of the

chapter is to demonstrate how to improve system performancedue to prefetching in

systems that employ the different shared resource management mechanisms. The

one workload with no prefetch-friendly applications consists of memory-intensive

and prefetch-unfriendly applications.

No prefetching Prefetching

Benchmark Type IPC MPKI IPC MPKI HPKI Acc(%) Cov(%)

art FP00 0.23 25.7 0.25 13.73 105 61 55
gromacs FP06 1.17 0.22 1.2 0.07 11 66 70

lbm FP06 0.33 19.3 0.36 3.43 27.4 94 82
GemsFDTD FP06 0.38 12.67 0.67 0.07 17.6 93 99

omnetpp INT06 0.34 8.79 0.34 8.72 5 11 19
zeusmp FP06 0.66 3.97 0.75 1.92 17 67 52
bzip2 INT06 1.57 0.96 1.65 0.64 7.8 95 35

perlbmk INT00 1.8 0.04 1.8 0.03 5.4 16 35
xalancbmk INT06 1.07 0.83 0.93 0.99 18.8 11 18

sphinx3 FP06 0.26 12.82 0.51 2.71 14.5 58 79
leslie3d FP06 0.29 21.37 0.55 4.73 22.3 94 78
bwaves FP06 0.26 22.43 0.33 2.3 11.3 100 90
astar INT06 0.17 23.04 0.17 21.4 10.4 25 8

vortex INT00 0.97 1.21 0.93 1.15 7 27 14
swim FP00 0.39 16.85 0.48 0.57 20 100 97

h264ref INT06 1.89 0.77 1.86 0.43 2 56 55
crafty INT00 1.56 0.26 1.61 0.19 8 34 29

libquantum INT06 0.26 11.84 0.29 2.21 0.52 100 81
applu FP00 0.55 13.09 1.33 0.7 12.13 97 95
wrf FP06 0.53 8.6 0.86 1.06 11.61 95 88
apsi FP00 1.2 1.54 1.23 1.33 14.83 95 14

parser INT00 1.11 0.68 1.21 0.12 8.25 78 82
gobmk INT06 1.16 0.38 1.18 0.25 7.6 41 36
twolf INT00 1.05 0.35 1.1 0.14 25.47 95 60

equake FP00 0.27 18.72 0.4 3.54 8.77 98 81
mesa FP00 1.58 1.96 1.58 1.92 0.89 61 2

gamess FP06 2.04 0.15 2.12 0.04 4.64 58 75
lucas FP00 0.47 10.42 0.61 4.8 5.1 99 54
ammp FP00 1.92 0.33 1.93 0.29 14.64 9 13

Table 5.2: Characteristics of 29 SPEC 2000/2006 benchmarksthat appear in the
workloads of this chapter: IPC and MPKI (L2 cache Misses Per 1K Instructions)
with and without prefetching, HPKI (L2 cache Hits Per 1K Instructions) with
prefetching, and prefetcher accuracy and coverage

125

5.5.4 Parameters Used in Evaluation

In all our mechanisms, the threshold to determine whether anapplication’s

prefetcher is accurate is 80%. In P-NFQ and P-FST, an application must havefewer

thanten memory requests in the memory request queue of the memorycontroller to

be considered fordemand boosting, and fewer than 14 requests in P-PARBS (sec-

tion 5.6.5 shows that the reported results are not very sensitive to the value chosen

for this threshold). The parameter setup for each of the FST and HPAC techniques

is the same as those reported in [15] and [17] respectively. For PARBS [55], we use

the sameMarking Capthreshold as used in the original paper, five memory requests

per thread per bank.

5.6 Experimental Evaluation

We evaluate the mechanisms described in the previous sections on a 4-

core CMP system employing NFQ, PARBS, and FST in the following three sub-

sections respectively. Note that our prefetch-aware NFQ, PARBS, and FST tech-

niques (P-NFQ, P-PARBS, and P-FST) are evaluated on a systemwhich includes

the prefetcher aggressiveness control (HPAC) mechanism ofChapter 3.

5.6.1 NFQ Results

Figures 5.5 (a)-(d) show average system performance and unfairness of

a system using an NFQ memory scheduler in different configurations: with no

prefetching, prefetching with and without prefetcher control, and with our proposed

prefetch-aware NFQ. In the policies referred to asdemand-pref-equal, demands and

prefetches are treated equally in terms of prioritization based on earliest virtual fin-

ish time. In thedemand-prioritizedpolicy, demands are always prioritized over

prefetches, and are scheduled earliest virtual finish time first. Figure 5.6 shows sys-

tem performance for each of the 15 evaluated workloads for the nine configurations

of NFQ that we evaluated. P-NFQ provides the highest system performance and

least unfairness among all the examined techniques. P-NFQ outperforms the best

126

performing previous technique (NFQ + HPAC demand-prioritized) by 11%/8.6%

(HS/WS) while reducing maximum slowdown by 9.9%. Several key observations

are in order:

1. Figure 5.5 shows that in all cases (with or without prefetcher throt-

tling), demand-prioritizedhas higher performance and lower maximum slowdown

thandemand-pref-equal. We conclude that as we explained in section 5.4.2, ifall

prefetch requests are treated alike demand requests, wasted service given to useless

prefetches leads to a worse-performing and less fair systemthan always prioritizing

demands.

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
du

p

(b) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

U
nf

ai
rn

es
s

(c) Unfairness

0

1

2

3

4

5

6

7

M
ax

 S
lo

w
do

w
n

NFQ + No Pref
NFQ + Str. Pref (demand-pref-equal)
NFQ + Str. Pref (demand-prioritized)
NFQ + Str. Pref (demand-prioritized) + Boost
NFQ + HPAC (demand-pref-equal)
NFQ + HPAC (demand-prioritized)
NFQ + HPAC (demand-prioritized) + Boost
P-NFQ (No Boost)
P-NFQ

(d) Max Slowdown

Figure 5.5: Average system performance and unfairness on 4-core system with NFQ

2. The last two bars in each of the subfigures of Figure 5.5 demonstrate

a key insight: without intelligent prioritization of demand requests ofmemory

non-intensive applications, system performance and fairness do not significantly

improvesimply byprioritizing accurate prefetches. Adding the demand boosting

optimization to P-NFQ (with no boosting) improves performance by 10%/3.8%

(HS/WS) and reduces maximum slowdown by 13.2% compared to just prioritizing

accurate prefetches within NFQ’s algorithm.

127

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
sp

ee
du

p

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim
(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

(a) Workloads #1-#8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
sp

ee
du

p

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

(b) Workloads #9-#15

Figure 5.6: System performance (Hspeedup) for each of the 15workloads with
NFQ (legend same as Figure 5.5)

3. Figures 5.5 (a)-(d) show that demand boosting improves system per-

formance independent of the setup it is used with. Demand boosting alone im-

proves the performance of demand-prioritized and prefetching with no throttling by

7.3%/6.7% (HS/WS). When used with demand-prioritized and HPAC, it improves

performance by 3.3%/3.6% (HS/WS). However, demand boosting provides the best

system performance and fairness when usedtogetherwith our proposed P-NFQ

which prioritizes requests based on virtual finish time firstusing prefetch accuracy

feedback. Note that demand boosting and considering prefetch accuracy informa-

tion in prioritization decisions are synergistic techniques. Together they perform

better than each one alone. We conclude that demand boostingis a general mech-

anism but is most effective when used together with resourcemanagement policies

which take prefetcher accuracy into account in their prioritization rules.

128

5.6.2 PARBS Results

Figures 5.7 (a)-(d) show average system performance and unfairness of dif-

ferent prefetch-demand batching policies with and withoutprefetcher control. In

demand-pref-batching, demands and prefetches are treated equally in PARBS’s

batch-forming (within the batches, demands are prioritized over prefetches because

we find this to be better performing on average). Indemand-only-batching, only

demands are included in the batches. Figure 5.8 shows systemperformance for

each of the 15 evaluated workloads for the nine configurations of PARBS that we

evaluated. P-PARBS provides the highest system performance and the smallest un-

fairness among all of the techniques, improving system performance on average by

10.9%/4.4% (HS/WS) while reducing maximum slowdown by 18.4% compared to

the combination of PARBS and HPAC with demand-only-batching.

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
du

p

(b) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

U
nf

ai
rn

es
s

(c) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

M
ax

 S
lo

w
do

w
n PARBS + No Pref

PARBS + Str. Pref (demand-pref-batching)
PARBS + Str. Pref (demand-only-batching)
PARBS + Str. Pref (demand-only-batching) + Boost
PARBS + HPAC (demand-pref-batching)
PARBS + HPAC (demand-only-batching)
PARBS + HPAC (demand-only-batching) + Boost
P-PARBS (No Boost)
P-PARBS

(d) Max Slowdown

Figure 5.7: Average system performance and unfairness on 4-core system with
PARBS

129

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
sp

ee
du

p

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim
(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

(a) Workloads #1-#8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

H
sp

ee
du

p

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

(b) Workloads #9-#15

Figure 5.8: System performance (Hspeedup) for each of the 15workloads with
PARBS(legend same as Figure 5.7)

5.6.2.1 Case Study

The goal of this case study is to provide insight into how the mechanisms

that we propose improve performance. It also shows in detailwhy simplyprioritiz-

ing accurate prefetches in shared resource management techniques does not neces-

sarily improvesystem performance and fairness. We examine a scenario where two

memory intensive and prefetch-friendly applications (swim and sphinx3) concur-

rently execute with two memory non-intensive applications(perlbmk and vortex).

Figures 5.9 (a) and (c)-(f) show individual application performance and overall sys-

tem behavior of this workload. Figure 5.9 (b) shows the dynamics of the mecha-

nisms proposed for prefetch-aware PARBS. In Figure 5.9 (b),each application is

represented with two bars. The left bar in each pair shows thepercentage of time

thatbothdemands and prefetches from the corresponding applicationwere included

in P-PARBS’s batches vs. the percentage of time thatonlydemands were included.

130

The right bar shows the percentage of all demand requests that were boosted into

the batches by the demand-boosting mechanism vs. all other batched requests.

P-PARBS both performs significantly better and is much more fair than all

the other evaluated techniques. This is due to the followingtwo reasons:

1. Including useful prefetches ofswimandsphinx3alongside demand re-

quests in P-PARBS’s batches allows these applications to make good use of their

accurate prefetches and significantly improves their performance. Figure 5.9 (b)

shows thatswim’s andsphinx3’s prefetches are included in the batches for 100%

and 60% of their execution times respectively. During theseperiods,swim and

sphinx3also achieve better row buffer locality: their row buffer hits are increased

by 90% and 27% respectively compared to the technique with the best system per-

formance among the other techniques (HPAC demand-only-batching). In addition,

swimandsphinx3’s prefetches become 8% and 11% more timely (not shown in the

figure).

2. Boosting the demands of the prefetch insensitive and memory non-

intensive application,vortex, allows it to get quick memory service and prevents

it being delayed by the many requests batched forswimandsphinx3. Becausevor-

tex’s requests are serviced quickly, its performance increases. Also, sincevortexis

memory non-intensive, this boosting does not degrade otherapplications’ perfor-

mance significantly.

The last two sets of bars in Figure 5.9 (a) show the importanceof demand

boosting. Whenswim’s andsphinx3’s prefetches are included in the batches,vor-

tex’s performance degrades ifdemand boostingis not used. This happens because

of inter-core cache pollution caused byswim and sphinx3. Hence, even though

swim’s andsphinx3’s performance improves significantly without boosting, over-

all system performance does not improve over the HPAC demand-only-batching

(Figures 5.9 (c)-(d)). In contrast, withdemand boosting, vortex’s performance also

improves which enables P-PARBS to perform 13.3%/7.6% (HS/WS) better than the

best previous approach while also reducing maximum slowdown by 17.8%.

131

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
pe

ed
up

 o
ve

r
A

lo
ne

 R
un

swim
perlbmk
sphinx3
vortex

No Pref. Str. Pref.
Dem-Pr-Eq

Str Pref.
Dem-First

HPAC
Dem-Pr-Eq

HPAC
Dem-First

P-PARBS
(No Boost)

P-PARBS

(a) PARBS case study: individual application behavior

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

swim perlbmk sphinx3 vortex

Demand-pref-batching

Demand-only-batching

Demand-boosted

Batched

(b) Left bars: dem-pref-batching vs dem-only-batching time, right bars: re-
quests boosted vs batched normally

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p

(c) Hspeedup

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

W
sp

ee
du

p

(d) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

U
nf

ai
rn

es
s

(e) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

M
ax

 S
lo

w
do

w
n

PARBS + No Pref
PARBS + Str. Pref (demand-pref-batching)
PARBS + Str. Pref (demand-only-batching)
PARBS + HPAC (demand-pref-batching)
PARBS + HPAC (demand-only-batching)
P-PARBS (No Boost)
P-PARBS

(f) Max Slowdown

Figure 5.9: PARBS case study

132

5.6.3 FST Results

Figures 5.10 (a)-(d) show average system performance and unfairness of

FST in the following configurations: without prefetching, with aggressive stream

prefetching, with HPAC, and our proposed coordinated core and prefetcher throt-

tling, i.e., P-FST (with and without demand boosting). Figure 5.11 shows system

performance for each of the 15 evaluated workloads for the five configurations of

FST that we evaluated. P-FST provides the highest performance and best fairness

among the five techniques. Several observations are in order:

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
du

p

(b) Wspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
nf

ai
rn

es
s

(c) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ax

 S
lo

w
do

w
n

FST + No Pref
FST + Str. Pref
FST + HPAC (uncoordinated)
P-FST (No Boost)
P-FST

(d) Max Slowdown

Figure 5.10: Average system performance and unfairness on 4-core system with
FST

1. When prefetching with no throttling is used, in five of the workloads

prefetcher-caused interference is noticeable and is left uncontrolled by FST. This

results in large degradations in system performance of 5% ormore (WL5, WL11,

WL12, WL14, and WL15). In these workloads, FST does not detect the applica-

tions causing prefetcher interference to beApp-interfering. Because of these work-

loads, prefetching with no throttling does not improve average system performance

significantly compared to no prefetching as shown in Figure 5.10. This shows the

need for explicit prefetcher throttling when prefetching is used with FST.

133

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
sp

ee
du

p

FST + No Pref
FST + Str. Pref (demand-prioritized)
FST + HPAC (uncoordinated)
P-FST (No Boost)
P-FST

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim
(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

Figure 5.11: System performance (Hspeedup) for each of the 15 workloads

2. When HPAC (Chapter 3) and FST (Chapter 4) are naively combined with

no coordination, four of the 15 workloads lose significant prefetching performance

(workloads WL1, WL3, WL4, and WL8). In such cases, HPAC throttles down

some useful prefetchers unnecessarily. This happens due to: a) excessive throttling

caused by HPAC’s coarse classification of interference, andb) underestimation of

prefetcher accuracy due to interference-unaware trackingof useful prefetches (de-

scribed in section 5.4.3.2). Unnecessary throttling makesthe system more unfair

compared to no prefetcher throttling. This happens when a prefetch-friendly ap-

plication with the largest slowdown in the absence of prefetching is unnecessarily

throttled. With no prefetcher throttling, such an application gains significant per-

formance, which in turn reduces system unfairness. When HPAC throttles down

the prefetchers of such applications too much, this fairness improvement is lost.

We conclude that even though a naive combination of HPAC and FST improves

average system throughput, this comes at the cost of increasing system unfairness

significantly compared to no throttling.

3. Our P-FST technique (with demand-boosting) addresses the problems

described above by coordinating prefetcher and core throttling, and improves per-

formance by 11.3%/5.6% (HS/WS) while reducing maximum slowdown by 14.5%

compared to the best performing of the other techniques (i.e. the uncoordinated

FST and HPAC combination). Compared to the configuration with the least max-

134

imum slowdown, i.e. the combination of prefetching with no throttling and FST,

P-FST with boosting performs 11.2%/10.3% (HS/WS) better while reducing maxi-

mum slowdown by 10.3%.

5.6.4 Effect on Homogeneous Workloads

Multi-core systems are sometimes used to run multiple copies of the same

application in server environments. Table 5.3 shows systemperformance and fair-

ness deltas of P-NFQ compared to NFQ + HPAC (demand-prioritized) for a prefetch

friendly (four copies of sphinx3) and a prefetch unfriendly(four copies of astar)

workload. Our proposal improves system performance and reduces max slowdown

for the prefetch friendly workload, while it does not significantly affect the prefetch

unfriendly one. In the prefetch friendly workload, prioritizing accurate prefetches

improves each benchmark’s performance by making timely useof those accurate

prefetches. This is not possible if all prefetches are treated alike.

Four copies of sphinx3 (prefetch friendly) Four copies of astar (prefetch unfriendly)
∆ HS ∆ WS ∆ Max Slowdown ∆ HS ∆ WS ∆ Max Slowdown
7.9% 7.9% -8.1% -1% -1% 0.5%

Table 5.3: Effect of our proposal on homogeneous workloads in system using NFQ
memory scheduling

5.6.5 Sensitivity to System and Algorithm Parameters

Table 5.4 shows how P-NFQ performs compared to NFQ + HPAC (demand

prioritized) on systems with two/four memory channels or 8MB/16MB shared last

level caches. Even though using multiple memory channels reduces contention to

DRAM, and using larger caches reduces cache contention, P-NFQ still performs

significantly better while reducing maximum slowdown. We conclude that our

mechanism provides performance benefits even on more costlysystems with higher

memory bandwidth or larger shared caches.

Figure 5.12 shows how sensitive the performance benefits of the techniques

we propose (compared to the best previous technique in each case) are to the boost-

135

Single Channel Dual Channel Four Channel
∆ HS∆ WS∆ Max Slowdown∆ HS∆ WS∆ Max Slowdown∆ HS∆ WS∆ Max Slowdown
11% 8.6% -9.9% 5% 5.7% -3.7% 4% 6.3% 0.7%

2MB Shared Cache 8MB Shared Cache 16MB Shared Cache
∆ HS∆ WS∆ Max Slowdown∆ HS∆ WS∆ Max Slowdown∆ HS∆ WS∆ Max Slowdown
11% 8.6% -9.9% 6.3% 5.3% -9.1% 4.9% 3.9% -6.6%

Table 5.4: Effect of our proposal on system using NFQ memory scheduling with
different microarchitectural parameters

4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

A
vg

 %
 (

H
S

)
Im

pr
ov

em
en

t

P-NFQ
P-PARBS
P-FST

4 6 8 10 12 14 16 18 20 22 24 26

Figure 5.12: Sensitivity to boosting threshold

ing threshold. For all shown thresholds, P-NFQ and P-FST show performance

within 1% of that of the chosen threshold. For P-PARBS, this is the case for all

boosting threshold values between 14 and 26. In P-PARBS, with thresholds less

than 14, not enough requests from prefetch-unfriendly benchmarks get boosted.

We conclude that the benefits of our mechanisms are not highlysensitive to the

chosen threshold value.

5.6.6 Hardware Cost

Table 5.5 shows the required storage of our mechanisms on topof each

of the shared resource management techniques. Our mechanisms do not require

any structures that are on the critical path of execution. Additionally, none of the

structures we add/modify require large energy to access andnone are accessed very

often. As such, significant power overhead is not introduced.

136

P-NFQ Closed form for N cores (bits)N=4(bits)
Boosting bits in memory request queue entries 32 x N 128

Counters for number of requests per core in memory request queue 8 x N 32
Total storage required for P-NFQ 40 x N 160

P-PARBS
Counters for number of requests per core in memory request queue 8 x N 32

Total storage required for P-PARBS 8 x N 32

P-FST
Boosting bits in memory request queue entries 32 x N 128

Counters for number of requests per core in memory request queue 8 x N 32
Prefetch bits in pollution filter used for coordinated core and prefetcher throttlingPol. Filter Entries (2048) x N 8192

Total storage required for P-FST 2088 x N 8352

Table 5.5: Hardware cost of our proposed enhancements

5.7 Conclusion

This chapter demonstrates a new problem in CMP designs: state-of-

the-art fair shared resource management techniques, whichsignificantly enhance

performance/fairness in the absence of prefetching, can largely degrade perfor-

mance/fairness in the presence of prefetching. To solve this problem, we introduce

general mechanisms to effectively handle prefetches in multiple types of resource

management techniques.

We develop three major new ideas to enable prefetch-aware shared resource

management. We introduce the idea ofdemand boosting, a mechanism that elim-

inates starvation of applications that are not prefetch-friendly yet memory non-

intensive, thereby boosting performance and fairness of any type of shared resource

management. We describe how to intelligently prioritize demands and prefetches

within the underlying fair management techniques. We develop new mechanisms to

coordinate the actions of prefetcher and core throttling mechanisms to make syner-

gistic decisions. To our knowledge, this is the first work that deals with prefetches

in shared multi-core resource management, and enables suchtechniques to be ef-

fective and synergistic with prefetching.

We apply these new ideas to three state-of-the-art multi-core shared resource

management techniques. Our extensive evaluations show that our proposal signif-

icantly improves system performance and fairness of two fair memory schedul-

137

ing techniques and the source-throttling-based shared memory system management

technique we proposed in Chapter 4 (by more than 10% in 4-coresystems), and

makes these techniques effective with prefetching. We conclude that our pro-

posal can be a low-cost and effective solution that enables the employment of both

prefetching and shared resource management together in future multi-core systems.

This will ensure future systems can reap the performance andfairness benefits of

both ideas together.

138

Chapter 6

Parallel Application Memory Scheduling

6.1 Introduction

In Chapters 3 through 5 we presented mechanisms that addressmanage-

ment of inter-application interference in the memory system for multi-programmed

workloads. In addition to multi-programmed workloads, CMPs are also commonly

used to speed up a single application using multiple threadsthat concurrently exe-

cute on different cores. Memory requests from concurrentlyexecuting threads can

interfere with one another in the shared memory subsystem, slowing the threads

down significantly. Most importantly, thecritical path of execution can also be

significantly slowed down, resulting in increased application execution time.

To illustrate the importance of DRAM-related inter-threadinterference to

parallel application performance, Figure 6.1 shows the potential performance im-

provement that can be obtained for six different parallel applications run on a 16-

core system.1 In this experiment, we ideally eliminate allinter-threadDRAM-

related interference. Threadi’s DRAM-related interference cycles are those extra

cycles that threadi has to wait on memory due to bank or row-buffer conflicts

caused by concurrently executing threads (compared to if threadi were accessing

the same memory system alone). In the ideal, unrealizable system we model for this

experiment: 1) threadi’s memory requests wait for DRAM banks only if the banks

are busy servicing requests from that same threadi, and 2) no DRAM row-conflicts

occur as a result of some other threadj (i 6= j) closing a row that is accessed by

threadi (i.e., we model each thread as having its own row buffer in each bank).

This figure shows that there is significant potential performance to be obtained by

1Our system configuration and benchmark selection are discussed in Section 6.3.

139

better management of memory-related inter-thread interference in a parallel appli-

cation: ideally eliminating inter-thread interference reduces the average execution

time of these six applications by 45%.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

hist_ph mg cg is bt ft gmean

Figure 6.1: Normalized execution time

Chapters 3 through 5, and previous papers on managing memorysystem re-

lated inter-applicationinterference [31, 36, 57, 32, 54, 51, 55, 17, 15, 37, 38, 16]

address the problem of improving system performance (system throughput or aver-

age job turnaround time) and/or system fairness in the context of multi-programmed

workloads where different cores of the CMP execute independent single-threaded

applications.2 None of these works directly address parallelmulti-threadedappli-

cations as we do in this chapter where our goal of managing memory system inter-

thread interference is very different: reducing the execution time of a single parallel

application. Managing the interference between threads ofa parallel application

poses a different challenge than previous works: threads ina parallel application

are likely to be inter-dependent on each other, whereas suchinter-dependencies are

assumed to be non-existent between applications in these previous works. Tech-

niques for reducing inter-application memory interference for improving system

performance and fairness of multi-programmed workloads may result in improved

parallel application performance by reducing overall interference. However, as we

2We refer to interference between independent applicationsrunning on different cores as inter-
application interference, and to interference between threads of a parallel application running on
different cores as inter-thread interference.

140

show in this chapter, designing a technique that specifically aims to maximize paral-

lel application performance by taking into account the inter-dependence of threads

within an application can lead to significantly higher performance improvements.

Basic Idea:We design a memory scheduler that reduces parallel application

execution time by managing inter-thread DRAM interference. Our solution consists

of two key parts:

First, we propose estimating the set of threads likely to be on the critical path

usinglimiter threadestimation (for lock-based synchronization) andloop progress

measurement (for barrier-based synchronization). For lock-based synchronization,

we extend the runtime system (e.g., runtime library that implements locks) with a

mechanism to estimate a set oflimiter threadswhich are likely critical (i.e., make

up the critical path of the application). This estimate is based on lock contention,

which we quantify as the time threads spend waiting to acquire a lock. For barrier-

based synchronization used with parallelfor loops, we add hardware iteration

counters to estimate the progress of each thread towards thebarrier at the end of the

loop. We identify threads that fall behind as more likely to be critical.

Second, we design our memory controller based on two key principles: a)

we prioritize threads that are likely to be on the critical path (which are either limiter

threads or threads falling behind in parallel loops), and b)among a group of limiter

threads, non-limiter threads, or parallel-for-loop threads that have made the same

progress towards a synchronizing barrier (i.e. threads that are equally critical), we

shuffle thread priorities in a way that reduces the time all threads collectively make

progress.

6.2 Mechanism: Parallel Application Memory Scheduling

Our parallel application memory scheduler (PAMS):

1. Estimates likely-critical threads using limiter estimation (Section 6.2.1.1)

and loop progress measurement (Section 6.2.1.2).

141

Runtime
System

Memory
ControllerHW Counters

Each Code−Segment’s:

Set of Limiter Threads
(c) Instruction Count

Each Thread’s:
(a) BW Consumption
(b) Mem Req Count

(a) Memory Intensity
(b) BW Consumption

Each Thread’s Loop Iteration Count

Figure 6.2: Overview of parallel application memory scheduling

2. Prioritizes likely-critical threads (Section 6.2.2.2)and shuffles priorities

of non-likely-critical threads (Section 6.2.2.3) to reduce inter-thread memory inter-

ference.

Figure 6.2 provides an overview of the interactions betweenthe major com-

ponents of our design. The runtime system (e.g., runtime library that implements

locks) uses hardware monitors to characterize memory behavior of code-segments

(parts of the parallel program, see Section 6.2.2.1 for details) and passes this in-

formation to the memory controller. In addition, the runtime system provides the

memory controller with a set oflimiter threads(those likely to be on the critical

path). Finally, the memory controller has access to iteration counts of parallelfor

loops. The following sections describe each component in detail.

6.2.1 Runtime System Extensions

In parallel applications, thecritical path determines the execution time of

the program. In each execution cycle, the critical path lieson one of the concur-

rently executing threads. Hence, to improve performance, the memory scheduler

should minimize memory-related interference suffered by memory requests issued

by the thread on the critical path. Unfortunately, identifying exactly which thread is

on the critical path at runtime with low/acceptable overhead is difficult. However,

we find that even a coarse estimation of the critical path can be very useful.

We propose to estimate the critical path via limiter thread estimation and

loop progress measurement. Limiter thread estimation is a runtime system mech-

anism which identifies a set of threads likely to contain the thread on the critical

142

path by analyzing lock contention. We call these threadslimiter threads, since

one of them likely limits the application running time. Loopprogress measure-

ment is a cooperative compiler/hardware mechanism which estimates the progress

of each thread within a parallelfor loop, for programs structured with such barrier-

synchronized loops across threads.

The memory controller uses limiter thread and loop progressinformation

to manage inter-thread interference in the DRAM system and improve application

performance.

6.2.1.1 Estimating Limiter Threads

When multiple threads concurrently execute and access shared data, cor-

rectness is guaranteed by themutual exclusionprinciple: multiple threads are not

allowed to access shared data concurrently. This mutual exclusion is achieved by

encapsulating accesses to shared data in code regions guarded by synchronization

primitives such as locks. Such guarded code is referred to ascritical sectioncode.

Prior work [68] shows that acceleratingcritical sectionsby executing them

on high performance cores in a heterogeneous CMP can significantly reduce appli-

cation running time. This is because contended critical sections are often on the

critical path. We find that performance can be greatly improved by exposinginfor-

mation about contended critical sections to the memory controller, which uses this

information to make better memory scheduling decisions. The rest of this subsec-

tion describes how this information is gathered by the runtime system and passed

to the memory controller. We describe how the runtime systeminforms the mem-

ory controller of the single most contended critical section for ease of explanation;

in general, however, the runtime system can detect any number of most contended

critical sections.

As more and more threads contend over the lock protecting some shared

data, it is more likely that threads executing the critical section guarded by the

contended lock will be on the critical path of execution. As such, at a high level, the

143

runtime system periodically identifies the most contended lock. The thread holding

that lock is estimated to be a limiter thread. Limiter threadinformation is passed

to the memory controller hardware using theLimiterThreadBitVector which has a

bit per thread.3 The runtime system identifies threadi as alimiter thread by setting

the corresponding biti in this bit-vector. This information is used by the memory

controller in the following interval. The runtime system provides two main pieces

of information which our algorithm uses to estimate limiterthreads: the ID of the

thread currently holding each lock, and the time a thread starts waiting for a lock.

Algorithm 9 explains limiter thread estimation in detail. The goal of the

algorithm is to a) find the lock that causes the most contention in a given interval,

and b) record the thread that owns this lock inLimiterThreadBitVector so that

the memory controller can prioritize that thread. To implement the algorithm, the

runtime system maintains one counter per lock which accumulates the total cycles

threads wait in that lock’s queue, and keeps two variables torecord the currently

most-contended lock and the thread that owns it.

Every interval (i.e., everyLimiterEstimationInterval lock acquires), the

runtime system finds the most-contended lock. To do so, it compares the lock queue

waiting times accumulated for all of the locks. The system identifies the lock for

which threads spent the most time waiting in the queue duringthe previous interval

and saves it asLocklongest. It then determines which thread is holding that lock, and

sets the corresponding bit in theLimiterThreadBitVector .

To keep track of each lock’s waiting time, every time a lock issuccessfully

acquired by some threadi, the runtime system adds the time threadi spent waiting

on the lock to the lock’s waiting time counter (See Section 6.2.3 for implementation

details). Finally, when a thread acquires the lock that had the longest waiting time

in the previous interval (Locklongest), LimiterThreadBitVector is updated: the bit

corresponding to the previous owner of the lock is reset in the vector, the bit for the

3In this chapter, we consider one thread of execution per core, but in systems with si-
multaneous multithreading (SMT) support, each thread context would have its own bit in
LimiterThreadBitVector .

144

thread acquiring the lock is set, and the new owner is recorded asLastOwnerlongest.

This updated bit-vector is communicated to the memory controller in order to pri-

oritize the limiter thread.

Algorithm 9 Runtime Limiter Thread Estimation
Every LimiterEstimationInterval lock acquires

Find lock with longest total waiting time in previous interval
SetLocklongest to the lock with the longest waiting time
SetLastOwnerlongest to the thread that holdsLocklongest

Set bit forLastOwnerlongest in LimiterThreadBitVector

Every successful lock acquire
IncrementwaitingTime counter of acquired lock by the number of cycles spent in the
lock’s queue by the acquiring thread
if acquired lock isLocklongest then

Reset bit forLastOwnerlongest in LimiterThreadBitVector

Record newLocklongest owner inLastOwnerlongest

Set bit forLastOwnerlongest in LimiterThreadBitVector

end if

6.2.1.2 Measuring Loop Progress

Parallelfor loops are a common parallel programming construct which

allows for critical path estimation in a different way. Eachiteration of a parallel

for loop identifies an independent unit of work. These loops are usually statically

scheduled by dividing iterations equally among threads. After the threads complete

their assigned iterations, they typically synchronize on abarrier.

Given this common computation pattern, we can easily measure the

progress of each thread towards the barrier by the number of loop iterations it has

completed, as has also been proposed by Cai et al. [6]. We employ the compiler

to identify this computation pattern and pass the address ofthe loop branch to the

PAMS hardware. For each thread, we add a hardware loop iteration counter which

tracks the number of times the loop branch is executed (i.e.,the number of loop it-

erations completed by the thread) The runtime system resetsthese counters at every

barrier.

The memory controller uses this loop progress information to prioritize

145

threads that have lower executed iteration counts, as described in Section 6.2.2.3.

6.2.2 Memory controller design

At a high level, our memory controller enforces three priorities in the fol-

lowing order (see Algorithm 10): First, we prioritize row-buffer hit requests over

all other requests because of the significant latency benefitof DRAM row-buffer

hits compared to row-buffer misses. Second, we prioritize limiter threads over non-

limiter threads, because our runtime system mechanism deems limiter threads likely

to be on the critical path. We describe prioritization amonglimiter threads in de-

tail in Section 6.2.2.2. We prioritize remaining non-limiter threads according to

loop progressinformation described in Section 6.2.1.2. Prioritizationamong non-

limiter threads is described in detail in Section 6.2.2.3. Algorithm 10 serves as a

high level description and outline for the subsections thatfollow.

Algorithm 10 Request Prioritization for
Parallel Application Memory Scheduler (PAMS)

1. Row-hit first
2. Limiter threads (Details of the following are explained in Section 6.2.2.2)
- Among limiter threads, latency-sensitive threads are prioritized over bandwidth-
sensitive threads
- Among latency-sensitive group: lower-MPKI threads are ranked higher
- Among bandwidth-sensitive group: periodically shuffle thread ranks
3. Non-Limiter threads (Details of the following are explained in Section 6.2.2.3)
if loop progress towards a synchronizing barrier is knownthen

- Prioritize threads with lower loop-iteration counts first
- Among threads with same loop-iteration count: shuffle thread ranks

else
- Periodically shuffle thread ranks of non-limiter threads

end if

6.2.2.1 Terminology

Throughout the subsections that follow, we will be using theterm code-

segmentwhich we define as: a program region between two consecutive synchro-

nization operations such as lock acquire, lock release, or barrier. Code-segments

146

starting at a lock acquire are also distinguished based on the address of the acquired

lock. Hence, a code-segment can be identified with a 2-tuple:

<beginning IP, lock address (zero if code is not within a critical section)>

Code-segments are an important construct in classifying threads as latency-

vs. bandwidth-sensitive (as we describe in the next subsection), and also in defining

the intervals at which classification and shuffling are performed.

6.2.2.2 Prioritization among limiter threads

The goal for the limiter thread group is to achieve high performance in

servicing the requests of the group, while also ensuring some level of fairness in

progress between them as we do not know exactly which one is onthe critical

path. To this end, we propose classifying limiter threads into two groups:latency-

sensitiveandbandwidth-sensitive. Latency-sensitive threads (which are generally

the less memory intensive threads) are prioritized over bandwidth-sensitive ones.

As Algorithm 10 shows, among latency-sensitive threads, threads with lower MPKI

are prioritized as they are less-memory intensive and servicing them quickly will

allow for better utilization of the cores. Prioritization among bandwidth-sensitive

threads is done using a technique calledrank shuffling[38]. This technique is also

used to prioritize non-limiter threads and, in fact, is moreimportant in that context;

hence, we defer discussion of rank shuffling to Section 6.2.2.3. The rest of this

subsection describes how we classify threads as latency- vs. bandwidth-sensitive.

Latency-sensitive vs. bandwidth-sensitive classification of threads: As

described in [38], a less memory intensive thread has greater potential to make

progress and keep its core utilized than a more memory intensive one. Hence, clas-

sifying it as latency-sensitive and prioritizing it in the memory controller improves

overall system throughput because it allows the thread to quickly return to its com-

pute phase and utilize its core. To do this classification, the main question is how to

predict the future memory intensity of the code a thread is about to execute.

We propose classifying threads as latency- or bandwidth-sensitive based on

147

the memory intensity of thecode-segmentthat thread is executing. The key idea is

that we can estimate the memory intensity of the code-segment that the thread is

entering based on the memory intensity of that code-segmentlast time it was exe-

cuted. Figure 6.3 illustrates this strategy. Classification of threads is performed at

each code-segment change (indicated by a vertical dotted line in the figure). Al-

gorithm 11 presents the details of the classification algorithm used by the memory

controller. This algorithm is a modified version of the original thread clustering

algorithm by Kim et al. [38] adapted to be invoked at every code-segment change.4

The algorithm requires information about the memory intensity (number of misses

per thousand instructions) and bandwidth consumption of the code-segment to be

executed (number of cycles that at least one memory bank is busy servicing the

code-segment’s requests).

Algorithm 11 sets aside a fraction (ClusterThreshold) of the total band-

width per cycle for latency-sensitive threads. It uses previous bandwidth consump-

tion of currently executing code-segments to predict theircurrent behavior. To do

so, it sums up the previous bandwidth consumption of the least memory inten-

sive currently-executing code-segments up to aClusterThresholdfraction of total

bandwidth consumption. The threads that are included in this sum are classified as

latency-sensitive.

Note that in the original algorithm, Kim et al. [38] measure each cores’

memory intensity every 10M cycles in a multi-core system where each core exe-

cutes an independent application. In other words, they classify threads on a time

interval basis rather than on the basis of a change in the code-segment. We find that

with parallel workloads there is little information to be gained by looking back at a

thread’s memory behavior over a fixed time interval. Figure 6.4 shows why. In the

figure, thread 2 spends a long time waiting on a lock in time quantum 2. However,

its memory behavior measured during that time interval has nothing to do with its

4We refer the reader to Algorithm 1 in the original TCM [38] paper for details on the original
algorithm.

148

Thread 0

Thread 1

Thread 2

Thread 3

Changes
Non−Critical Section Code−Segment

BarrierWaiting for Sync

Time

Critical Section

Barrier

Figure 6.3: Code-segment based classification

Thread 0

Thread 1

Thread 2

Thread 3

Time

Barrier

Time Quantum 1 Time Quantum 2Time Quantum 3

Figure 6.4: Time based classification

memory behavior in the following time interval (time quantum 3), during which it

happens to be not waiting. For this reason, we perform classification on the basis

of a code-segment change.

Keeping track of past code-segment memory behavior:

As a thread executes a given code segment, the memory controller main-

tains a counter for the number of memory requests generated by that code segment.

Another counter maintains the number of instructions executed in the code seg-

ment. When the code segment ends, the runtime system takes control because a

synchronization event has occurred. The runtime system reads both counters and

calculates the memory intensity of that code segment which it stores for later use. It

also keeps track of abandwidth consumed per cyclecount for the completed code

segment. When that code segment is started on any thread in the future, the runtime

system loads two registers in the memory controller with thememory intensity and

149

bandwidth consumed per cycle which were last observed for that code segment.

Algorithm 11 Latency-sensitive vs. Bandwidth-sensitive classification for limiter
threads

Per-thread parameters:
CodeSegMPKI i : MPKI of code-segment currently running on threadi the last time it
occurred
CodeSegBWConsumedPerCyclei : BW consumed per cycle by code-segment currently
running on threadi the last time it occurred
BWConsumed i : Bandwidth consumed by threadi during previous interval
Classification: (every code-segment change)
TotalBWConsumedPerCycle = (Σi BWConsumed i) / Length Of Previous Interval
In Cycles
while Threads left to be classifieddo

Find thread with lowest MPKI (threadi)
SumBW +=CodeSegBWConsumedPerCyclei

if SumBW≤ ClusterThreshold × TotalBWConsumedPerCyclethen
threadi classified asLatencySensitive

else
threadi classified asBandwidthSensitive

end if
end while

6.2.2.3 Prioritization among non-limiter threads

When the application is executing a parallelfor loop, the memory con-

troller uses loop progress information (Section 6.2.1.2) to ensure balanced thread

execution. The measured loop progress information is used by the memory con-

troller to create priorities for different threads in orderof their loop progress:

threads with lower iteration counts—those falling behind—are prioritized over

those with higher iteration counts. This prioritization happens on an interval by

interval basis, where the priorities assigned based on loopprogress are maintained

for a while to give threads that have fallen behind a chance tofully exploit their

higher priority in the memory system (e.g., exploit row buffer locality). Subse-

quently, priorities are re-evaluated and assigned at the end of the interval for the

next interval.

Among a set of threads that have the same loop progress or in the absence

150

of such information, the memory controller aims to service all bandwidth-sensitive

threads in a manner such that none become a new bottleneck as aresult of being

deprioritized too much in the memory system. To achieve this, we perform interval-

basedrank shufflingof the threads.

Shuffling of bandwidth-sensitive threads:

At the beginning of each interval, we assign a random rank to each of

the bandwidth-sensitive threads and prioritize their memory requests based on that

ranking in that interval. The main question in shuffling the ranks of parallel threads

is: when should an interval end and new rankings be assigned?

We find that a group of threads that have similar memory behavior should

be treated differently than a group of threads that do not.5 When threads have

similar memory behavior, we find that maintaining a given random ranking until

one of the threads finishes executing the code-segment it is currently executing

can significantly improve performance. This is because whena code-segment ends

(e.g., when the thread reaches a barrier), the inter-threadinterference it was causing

for the other threads is removed, and the other threads can make faster progress

in its absence. We call thiscode-segment based shuffling: new thread ranks are

assigned when a code-segment change happens. On the other hand, when a group

of threads have very different memory behavior, we find that changing the thread

ranking only on a code-segment change can sometimes lead to performance loss.

For example, if the thread that is going to reach the barrier first is assigned the

highest rank, keeping it prioritized until it reaches the barrier delays the thread that

would be last to reach the barrier, lengthening the criticalpath of the program. As

such, for threads with very different memory behavior, fixed-interval time-based

shuffling of thread ranking performs better. This allows each thread to get quick

service for its memory requests for a while and make proportional progress toward

the barrier. We call thistime-based shuffling.

5When the ratio between the largest memory intensity and the smallest memory intensity of all
threads within a group of threads is small (less than 1.2 in our experiments), we refer to the group
as a group of threads with similar memory behavior.

151

(a) No Shuffling

(b) Time−based Shuffling

(c) Code−segment based Shuffling

Barrier

Barrier

Barrier

Barrier

Barrier

Barrier

Thread 3

Thread 2

Thread 1

Thread 0

Time

Thread 3

Thread 2

Thread 1

Thread 0

Saved
Cycles

Thread 3

Thread 2

Thread 1

Thread 0

Saved
Cycles

Time

Time

Figure 6.5: Threads have similar memory
behavior

Barrier Barrier

Barrier Barrier

Barrier

4

3

2

4

3 4

Barrier

Thread 3

Thread 2

Thread 1

Thread 0

(a) No Shuffling
Time

Thread 3

Thread 2

Thread 1

Thread 0

Cycles

(b) Time−based Shuffling
Time

Saved

Thread 3

Thread 2

Thread 1

Thread 0 4

2

3

1

(c) Code−segment based Shuffling

Cycles
Lost

Time

Figure 6.6: Threads have different mem-
ory behavior

Figures 6.5 and 6.6 illustrate how each of these two shufflingpolicies per-

forms when applied to two very different scenarios for threads concurrently execut-

ing between two barriers.

When the set of threads have similar memory behavior as shownin Fig-

ure 6.5 (a), code-segment based shuffling can be significantly better than time-based

shuffling. Behavior similar to this exists in the applications ft and is. Time-based

shuffling (Figure 6.5 (b)) improves performance over no shuffling by allowing dif-

ferent threads to be prioritized during different time intervals and thus make propor-

tional progress toward the barrier. However, all threads continue to interfere with

one another in the memory system until they all reach the barrier at a similar time.

Code-segment based shuffling reduces this interference between threads by ensur-

ing some threads reach the barrier earlier and once they reach the barrier, they stop

152

exerting pressure on the memory system. As shown in Figure 6.5 (c) and described

above, maintaining a given random ranking until a code-segment change happens

(i.e., a thread reaches a barrier) allows the prioritized thread to reach its barrier be-

fore the deprioritized one. After that, the deprioritized thread can make much faster

progress because previously-prioritized threads stop exerting memory interference

as they are waiting at the barrier. For this very reason, code-segment based shuffling

can significantly improve performance over time-based shuffling, as shown in the

longer “Saved Cycles” of Figure 6.5 (c) compared to that of Figure 6.5 (b).

When the set of threads have different memory behavior as shown in Fig-

ure 6.6 (a), time-based shuffling can outperform code-segment based shuffling.

Behavior similar to this can be observed in themg application. With time-based

shuffling (Figure 6.6 (b)), threads are assigned different random rankings for each

fixed-length interval, which allows each thread to get quickservice for its memory

requests for a while. This reduces the time it takes for all threads to get to the barrier

at the end of the interval. Figure 6.6(c) shows how code-segment based shuffling

can easily perform poorly. The numbers shown above the threads in the different

intervals are an example of random ranks assigned to the threads every time one

of the threads’ code-segment finishes (i.e., every time a thread reaches the barrier,

in this example). Because the threads which would have reached the barrier ear-

lier end up receiving a higher rank than the thread that wouldreach the barrier last

(thread 3) after every code-segment change, code-segment based shuffling delays

the “critical thread” by causing more interference to it. This results in performance

loss compared to time-based shuffling and even compared to noshuffling, as shown

in “Lost Cycles” in Figure 6.6(c).

Dynamic Shuffling Policy:Since neither of the two policies always performs

best, we propose a dynamic shuffling policy that chooses either time-based shuffling

or code-segment based shuffling based on the similarity in the memory behavior of

threads. Our dynamic shuffling policy operates on an interval-basis. An interval

ends when each thread executes a threshold number of instructions (we empirically

determined this interval as 5000 instructions). Our proposed policy continuously

153

monitors the memory intensity of the threads to be shuffled. At the end of each

interval, depending on the similarity in memory intensity of the threads involved,

the memory controller chooses a time-based or code-segment-based shuffling pol-

icy for the following interval. As we will show in Section 6.4, this policy performs

better than either time-based shuffling or code-segment based shuffling employed

for the length of the application.

6.2.3 Implementation Details

Table 6.1 breaks down the modest storage required for our mechanisms,

1552 bits in a 16-core configuration. Additionally, the structures we add or modify

require little energy to access and are not accessed very often. As such, significant

power overhead is not introduced.

Closed form for N=16
PAMS N cores (bits) (bits)

Loop iteration counters 32 x N 512
Bandwidth consumption counters 16 x N 256

Number of
generated memory requests counters 16 x N 256

Past code-segment
information registers 2 x 16 x N 512

Limiter thread bit-vector N 16
Total storage required for PAMS 97 x N 1552

Table 6.1: Hardware storage cost of PAMS

Limiter Estimation: In Algorithm 9, to keep track of the total time all

threads spend waiting on lockl in an interval, we modify the runtime system (i.e.,

the threading library) to perform the following: When any thread attempts to ac-

quire lockl, a timestamp of this event is recorded locally. Once lockl is success-

fully acquired by some threadi, the runtime system adds the waiting time for that

thread (obtained by subtracting the recorded timestamp forthreadi from the cur-

rent time) to the waiting time counter of lockl. Note that the waiting time counter

for lock l is protected by the lock itself as it is only modified by a thread once that

thread has successfully acquired the lock.

154

The overhead of the runtime limiter estimation described inAlgorithm 9 is

insignificant as it does not occur very often. In our evaluations we empirically de-

termineLimiterEstimationInterval to be equal to five. Among our benchmarks,

hist has the highest frequency of lock acquires, averaging one lock acquire every

37k cycles. Assuming sixteen locks are being tracked, the limiter estimation algo-

rithm incurs the latency of sorting sixteen waiting times (each a 32-bit value) once

every 185k cycles. A back-of-the-envelope calculation shows that this latency adds

an overhead of less than 1% (even for the benchmark that has the most frequent

lock acquires).

Alternative Hardware-Based Limiter Estimation:Even though the over-

head of tracking total waiting time for each lock in the runtime system is very

small in our implementation and evaluation, it could becomemore significant in

the context of a locking library that is highly-optimized for fine-grain synchro-

nization and when there is high lock contention. An alternative implementation

of our proposal could track waiting time in hardware to further reduce the over-

head. Although we did not evaluate this alternative, we outline its general idea

here. In this implementation, two new instructions delimitthe beginning and the

end of each thread’s wait for a lock:LOCK WAIT START <lock address> and

LOCK WAIT END <lock address>. Each instruction takes a lock address, and

updates a centralized lock table after commit, i.e. off the critical path.

This table contains one entry for each lock which contains the current

number of threads waiting on that lock (numwait) and the associated cumula-

tive waiting time (wait time). LOCK WAIT START incrementsnumwait and

LOCK WAIT END decrementsnumwait for the specified lock. Periodically,

the hardware incrementswait timeby numwait, and estimates the limiter by find-

ing the lock with the the highestwait time and storing its address in aLocklongest

register associated with the lock table. SinceLOCK WAIT END executes right

before a thread starts the critical section, the instruction also compares the lock ad-

dress withLocklongest and in case of a match, it reports the thread ID to the memory

155

controller as the current owner ofLocklongest, and the memory controller prioritizes

requests from this thread.

6.3 Methodology

6.3.1 Processor Model

Table 6.2 shows the baseline configuration of each core and the shared re-

source configuration for the 16-core CMP system we use in the evaluations of this

chapter. We faithfully model cache coherence, port contention, queuing effects,

bank conflicts, and other major memory system constraints.

15 stage out of order processor, decode/retire up to 2 instructions
Execution core Issue/execute up to 4 micro instructions; 64-entry reorderbuffer

Front end Fetch up to 2 branches; 4K-entry BTB; 64K-entry Hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line ;
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip caches Shared unified L2: 4MB , 16-way, 16-bank, 20-cycle, 1 port, 64B line
On-chip, FR-FCFS [65] scheduling

DRAM controller 128-entry MSHR and memory request queue
667MHz bus cycle, DDR3 1333MHz [50]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank

DRAM and bus Latency: 15-15-15ns; 100-100-100 processor cycles (tRP -tRCD-CL),
Round-trip L2 miss latency: Row-buffer hit: 36ns, conflict:51ns

Table 6.2: Baseline system configuration

6.3.2 Benchmarks

We use a selection of benchmarks from NAS Parallel Bench-

marks (NPB 2.3) [12] and thehist benchmark from Phoenix [64]. For each NPB

benchmark, we manually choose a representative execution interval delimited by

global barriers (Table 6.3 lists the barriers used). We do this in order to simulate a

tractable number of instructions with a large enough input set that will produce a

meaningful number of memory requests. However, this was notpossible for three of

the NAS benchmarksep, lu, andsp. This is because, with a large enough input set,

we were unable to pick a tractable execution interval. We runthehistbenchmark to

156

completion.

All benchmarks are compiled using the Intel C Compiler with the-O3 op-

tion. Table 6.3 summarizes the benchmarks. The memory intensity values reported

in this table are obtained from simulations on the system described by Table 6.2.

The benchmarks we evaluate use Pthreads and OpenMP threading libraries. We

modify the threading library to intercept library calls anddetect locks. Also, we

assume gang scheduling [60, 21] of threads where all the threads of a parallel appli-

cation are concurrently scheduled to execute. As a result, thread preemption does

not skew the threads’ measured waiting times.

Benchmark Description Input Set LengthMPKI Critical
Sections

Barriers Barrier
Interval

hist Histogram (Phoenix) minis 50M 2.66 405 1 N/A
mg Multigrid solver (NPB) W 225M 4.07 0 300201–501
cg Conjugate gradient solver (NPB)A 113M22.26 256 60 31–91
is Integer sort (NPB) W 140M17.32 112 25 1–26
bt Block tridiagonal solver (NPB)W 397M 6.45 0 310171–481
ft Fast fourier transform (NPB) W 161M 5.41 16 5 21–26

Table 6.3: Benchmark summary

6.3.3 Parameters Used in Evaluations

Table 6.4 shows the parameter values we use in our evaluations.

LimiterEstimation TCM Time TCM Shuffling Time-based Period
Interval Quanta Period (also used within Dynamic Shuffling)

5 2M cycles 100k cycles 100k cycles
Instruction Sampling Period

in Dynamic Shuffling
5k insts

Table 6.4: Parameters used in evaluation

157

6.4 Results and Analysis

We first present performance results for each of the 6 benchmarks on a 16-

core system normalized to their performance on a system using an FR-FCFS mem-

ory scheduler. Figure 6.7 shows results for the following six configurations from

left to right for each benchmark, with each succeeding configuration introducing

only one new component to the previous configuration: 1) thread cluster memory

scheduling (TCM) [38], which uses time-based classification of latency-sensitive

vs. bandwidth-sensitive threads with time-based shuffling, 2) code-segment based

classification of latency-sensitive vs. bandwidth-sensitive threads (Section 6.2.2.2)

with time-based shuffling, 3) code-segment based classification of threads with

code-segment based shuffling (Section 6.2.2.3), 4) limiterinformation based thread

prioritization (Section 6.2.1.1) with code-segment basedclassification and code-

segment based shuffling, 5) limiter information based thread prioritization with

code-segment based classification and dynamic shuffling policy, and 6) the com-

bination of all our proposed mechanisms (PAMS): limiter information based thread

prioritization, code-segment based thread classificationwith dynamic shuffling pol-

icy, and loop progress measurement based thread prioritization (note that no con-

figuration except for this last one takes into account loop progress information in

barrier based synchronization, described in Section 6.2.1.2). We find that among all

evaluated mechanisms, PAMS provides the best performance,reducing execution

time by 16.7% compared to a system with FR-FCFS memory scheduling, and by

12.6% compared to TCM, a state-of-the-art memory scheduling technique. Several

observations are in order:

1. Applying TCM, which is a memory scheduling technique primarily de-

signed for improving system performance and fairness in multi-programmed work-

loads, to parallel applications improves average performance by 4.6%. This is be-

cause even though this technique does not consider inter-dependencies between

threads, it still reduces inter-thread memory system interference, providing quicker

service to threads (average memory latency reduces by 4.8%), thus enabling faster

application progress.

158

2. Using code-segment based classification of latency-sensitive vs.

bandwidth-sensitive threads (second bar from the left for each benchmark) as ex-

plained in Section 6.2.2.2 improves performance significantly compared to the time-

based classification done by TCM on two of the shown benchmarks (hist and ft).

This is mainly because by using code-segments as interval delimiters to classify

threads as latency- vs. bandwidth-sensitive (See Figure 6.3), we can make a more

accurate classification of the thread’s future memory behavior using information

from the last time the starting code-segment executed.

3. When code-segment based shuffling is used instead of time-based shuf-

fling (third bar from left, compared to second), performanceimproves significantly

on three benchmarks (hist, is, andft). This is primarily due to behavior shown in

Figure 6.5. As explained in Section 6.2.2.3, when the group of concurrently execut-

ing threads have similar memory behavior, using code-segment based intervals for

shuffling thread rankings outperforms time-based shuffling. On the other hand, in

benchmarksmgandcg, execution time increases by as much as 6.8% (formg) when

code-segment based shuffling is used. This is because the threads have significantly

different memory behavior, which can lead to performance degradation with code-

segment based shuffling, as shown in Figure 6.6 (c). However,because of large

improvements onhist (11%), is (14%), andft (10%), average performance with

code-segment based shuffling improves by 3.9% compared to time-based shuffling.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Thread cluster memory scheduling (TCM)
Code-seg classification + Time shuffling
Code-Seg classification + Code-seg shuffling
Lim. Info + Code-seg classification + Code-seg shuffling
Lim. Info + Code-seg classification + Dyn. shuffling policy
PAMS (Lim. Info + Loop Progress Info + Code-seg classification + Dyn. shuffling policy)

hist mg cg is bt ft gmean

Figure 6.7: Overall Results

159

4. When limiter information is used to prioritize threads likely to be on the

critical path (fourth bar from left), as described in Section 6.2.1.1, further bene-

fits can be gained on applications that have contended locks.This can be seen in

benchmarks such ashistandis. In these applications (one of which we will analyze

in detail in a case study in Section 6.4.1), memory requests from limiter threads

estimated by the runtime system are prioritized over non-limiter threads’ requests,

resulting in further execution time reduction. Note that when limiter information

is used (in the three rightmost bars of Figure 6.7), latency-vs. bandwidth-sensitive

classification of threads is performed only for limiter threads (as described by Al-

gorithm 11 in Section 6.2.2.2).

5. Using the dynamic shuffling policy described in Section 6.2.2.3 (fifth

bar for each benchmark) mitigates the performance loss seendue to code-segment

based shuffling on benchmarks that have threads with different memory behavior,

such asmgandcg. The dynamic shuffling policy monitors the memory intensityof

concurrently executing threads and dynamically chooses code-segment based shuf-

fling (when threads have similar intensities) or time-basedshuffling (when threads

have different intensities). With our dynamic shuffling policy, time-based shuffling

is used for 74% and 52% of the time onmgandcg respectively.

6. mg andcg are also the benchmarks that benefit the most from prioriti-

zation of lagging threads enabled by loop progress measurement. This is expected

since parallelfor loops dominate the execution time of both benchmarks. In fact,

mg andcg have very few critical sections, leaving loop progress measurement as

the only way to estimate the critical path. Hence, performance of both benchmarks

improves the most when loop progress measurement is enabled(4.5% and 6.9%

over FR-FCFS, respectively).

6.4.1 Case Study

To provide insight into the dynamics of our mechanisms, we use the bench-

mark is, which has a combination of barriers and critical sections,as a case study.

160

This benchmark performs a bucket sort, each iteration of which consists of two

phases: counting the integers belonging to each bucket and partially computing the

starting index of each integer in the sorted integer array. The first phase is done in

parallel; the second, however, modifies a shared array of partial results and hence

requires a critical section. Figures 6.8(a)–(d) showthread activityplots generated

by runningis on the following configurations: a baseline system with an FR-FCFS

memory controller, a system with TCM [38], a system that usescode-segment based

shuffling and code-segment based classification of latency-sensitive vs. bandwidth-

sensitive threads, and finally a system using our proposed PAMS.

In eachthread activityplot shown in Figure 6.8, each thread’s execution is

split into three different states (as indicated by the legend on top of the figure): non-

critical section execution (normal line), critical section execution (bold line), and

waiting for a lock or barrier (dotted line). Vertical lines represent barriers where all

threads synchronize.

Several observations are in order: First, by using TCM [38],overall inter-

thread interference is reduced compared to a baseline system with FR-FCFS, re-

sulting in 3% reduction in execution time. This is mainly dueto the reduction in

execution time when threads are executing the non-criticalsection code that comes

right after each barrier. This happens due to TCM’s shufflingof priorities between

the threads on time-based intervals, which leads to relatively similar improvement

in the execution of all threads.

Second, performance can be significantly improved by using the code-

segment based thread classification and shuffling that we propose in Sec-

tions 6.2.2.2 and 6.2.2.3 respectively. Figure 6.8c is a good real benchmark exam-

ple of the behavior shown in Figure 6.5. Comparing the intervals between each pair

of barriers across Figures 6.8c and (b) clearly shows the benefits of code-segment

based shuffling vs. time-based shuffling in a benchmark whereparallel threads ex-

ecuting non-critical section code have similar memory behavior.

By keeping an assigned ranking constant until a code-segment change hap-

161

pens (which triggers the end of an interval and the assignment of a new ranking

across threads) three benefits occur: 1) when a prioritized thread reaches the bar-

rier, it starts waiting and stops interfering with other threads enabling their faster

progress (as explained in Section 6.2.2.3), 2) with time-based shuffling all threads

reach the point where they attempt to acquire the lock at a similar time resulting

in high contention and waiting for the lock. Code-segment based shuffling reduces

this lock contention. As a result, accesses to the critical section are spread over

time and the first thread to reach the lock acquire in each barrier interval gets to that

point earlier than with time-based shuffling (as seen in Figure 6.8(c)), and 3) code-

segment based shuffling enables some threads to reach the critical section earlier

than others as opposed to all threads reaching it at the same time (the latter happens

in Figures 6.8(a) and (b)). This leads to the overlapping of the critical section la-

tency with the execution of non-critical section code, and ultimately a reduction in

the critical path of execution. As a result of these three major benefits, using code-

segment based shuffling reduces execution time by 15.6% and 12.8% compared to

the FR-FCFS baseline and TCM respectively.

Finally, adding limiter information detected by the runtime system can sig-

nificantly improve performance when combined with code-segment based classi-

fication and shuffling. Consider those critical sections that are part of the critical

path in Figure 6.8c. As this figure shows, some threads enter their critical section

early while other threads are still executing non-criticalsection code. Hence, mem-

ory requests from threads executingnon-critical code can interfere with memory

requests of thecritical thread. However, by prioritizing memory requests from the

thread identified as critical by the runtime system (Section6.2.1), PAMS reduces

the total time spent in the critical section by 29% compared to code-segment based

classification and shuffling without limiter thread information (as shown by the im-

provement in Figure 6.8d compared to (c)). Overall, PAMS improves execution

time by 28.4% and 26% compared to the FR-FCFS baseline and TCMrespectively.

162

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 50M 100M 150M 200M 250M

T
hr

ea
d

N
um

be
r

Cycles

Non-Critical Section Critical Section Waiting for Sync Barrier (vertical)

(a) FR-FCFS

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 50M 100M 150M 200M 250M

T
hr

ea
d

N
um

be
r

Cycles

(b) TCM

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 50M 100M 150M 200M 250M

T
hr

ea
d

N
um

be
r

Cycles

(c) Code-segment based classification and shuffling

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

0 50M 100M 150M 200M 250M

T
hr

ea
d

N
um

be
r

Cycles

(d) PAMS

Figure 6.8: Execution ofis benchmark with different memory scheduling tech-
niques

163

6.4.2 Comparison to Memory scheduling using Thread Criticality Predictors

Bhattacharjee and Martonosi [3] propose thread criticality predictors (TCP)

to predict thread criticality based on memory hierarchy statistics. Although they do

not demonstrate how their thread criticality predictor canbe used for reducing inter-

thread interference in the memory system, they do mention that it can be used in

the design of memory controllers. We implement a memory scheduling technique

based on the information TCP provides as a comparison point to PAMS. TCP uses

L1 and L2 cache miss counts and the penalty incurred by such misses to determine

a criticality count for a thread, defined in [3] as:

N(Crit.Count.) = N(L1miss) +
LLCpenalty . N(LLCmiss)

L1penalty

In the TCP-based memory scheduling technique we developed,the critical-

ity of each thread is obtained once every 100k cycles, and a set of rankings is as-

signed to threads based on their criticality. Threads with higher estimated criticality

are given higher priority for that interval. At the end of each interval, thread criti-

calities are re-evaluated and a new set of priorities are assigned for the next interval.

As Table 6.5 shows, we find that our technique, PAMS, outperforms this TCP-based

memory scheduler by 6.6% on average. PAMS outperforms TCP significantly on

three of the benchmarks. This improvement is mainly due to the following which

TCP does not address: 1) PAMS uses information about the multi-threaded ap-

plication such as lock contention and loop progress to estimate thread criticality,

and 2) PAMS also addresses how to schedule requests of non-critical threads (e.g.,

shuffling of non-limiter bandwidth-sensitive threads). Assuch, the TCP idea is or-

thogonal to some of our proposals and could be used within PAMS as part of the

basis for predicting critical/limiter threads, which we leave to future work.

Benchmark name hist mg cg is bt ft gmean
∆ Execution time -9.9% -15.0% -9.8% -1.3% 0.2% -2.5% -6.6%

Table 6.5: Reduction in execution time of PAMS compared to TCP-based [3] mem-
ory scheduling

164

6.4.3 Sensitivity to System Parameters

Table 6.6 shows how PAMS performs compared to FR-FCFS and TCMon

systems with 8MB/16MB shared last level caches or two/four independent memory

channels. Even though using a larger cache or multiple memory channels reduces

interference in main memory, PAMS still provides significantly higher performance

than both previous schedulers. We conclude that our mechanism provides perfor-

mance benefits even on more costly systems with higher memorybandwidth or

larger caches.

Channels LLC ∆ wrt FR-FCFS ∆ wrt TCM

Single 4MB -16.7% -12.6%
Single 8MB -15.9% -13.4%
Single 16MB -10.5% -5.0%
Dual 4MB -11.6% -10.0%
Quad 4MB -10.4% -8.9%

Table 6.6: Sensitivity of PAMS performance benefits to memory system parameters

6.5 Conclusion

We introduced the Parallel Application Memory Scheduler (PAMS), a new

memory controller design that manages inter-thread memoryinterference in paral-

lel applications to reduce overall execution time. To achieve this, PAMS employs

a hardware/software cooperative approach that consists oftwo new components.

First, the runtime system estimates likely-critical threads due to lock-based and

barrier-based synchronization using different mechanisms and conveys this infor-

mation to the memory scheduler. Second, the memory scheduler 1) prioritizes the

likely-critical threads’ requests since they are the performance bottleneck, 2) peri-

odically shuffles the priorities of non-likely-critical threads to reduce memory in-

terference between them and enable their fast progress. To our knowledge, PAMS

is the first memory controller design that explicitly aims toreduce inter-thread in-

terference between inter-dependent threads of a parallel application.

Our experimental evaluations show that PAMS significantly improves par-

allel application performance, outperforming the best previous memory scheduler

165

designed for multi-programmed workloads and a memory scheduler we devised

that uses a previously-proposed thread criticality prediction mechanism to estimate

and prioritize critical threads. We conclude that the principles used in the design

of PAMS can be beneficial in designing memory controllers that enhance parallel

application performance and hope our design inspires new approaches in managing

inter-thread memory system interference in parallel applications.

166

Chapter 7

Conclusion and Future Research Directions

7.1 Conclusion

Inter-application memory system interference in multi-programmed work-

loads and inter-thread memory system interference in parallel multi-threaded work-

loads are major obstacles to high-performance and fair memory system design for

CMPs. This dissertation identified significant shortcomings of conventional tech-

niques for management of bothinter-applicationand inter-thread interferencein

the shared memory subsystem. To overcome these shortcomings, we proposed and

evaluated low-cost mechanisms for both types of interference. We proposed three

mechanisms addressing different shortcomings of current designs in dealing with

inter-application interference in multi-programmed workloads. We also proposed

one mechanism which speeds up parallel multi-threaded workloads by managing

DRAM-related interference between multiple threads of thesame application.

To significantly improve the benefits of prefetching in CMP systems, this

dissertation proposed hierarchical prefetcher aggressiveness control (HPAC). HPAC

takesprefetcher-caused inter-application interferenceinto account to determine the

aggressiveness of each core’s prefetcher. HPAC dynamically adjusts the aggressive-

ness of each prefetcher in two ways:local andglobal. The local decision attempts

to maximize the local core’s performance by taking into account only local feed-

back information. The global mechanism can override the local decision by taking

into account effects and interactions of different cores’ prefetchers when adjusting

each one’s aggressiveness. Chapter 3 shows that HPAC significantly improves sys-

tem performance and bandwidth-efficiency compared to state-of-the-art prefetcher

control techniques that do not take into account inter-application interference.

167

To provide fair sharing of the entire shared memory system todifferent

applications without the complexity of developing fairness mechanisms for each

individual resource, this dissertation proposes fairnessvia source throttling (FST).

FST estimates unfairness in the entire shared memory system, and enforces system-

software-defined fairness objectives by throttling cores accordingly via adjusting

the number of requests they can inject into the system and thefrequency at which

they can do so. Chapter 4 shows that FST can significantly improve both system

performance and fairness compared to state-of-the-artresource-basedfairness tech-

niques implemented independently for different shared resources.

This dissertation identified for the first time that, proposals which address

high-performance and fair management of shared resources can significantly de-

grade both performance and fairness rather than improve them in the presence of

prefetching. Chapter 5 proposed mechanisms that both manage the shared resources

of a CMP to obtain high-performance and fairness, and also exploit prefetching.

We apply these ideas to three state-of-the-art shared resource management tech-

niques. Our evaluations show that these proposals significantly improve system

performance and fairness of two fair memory scheduling techniques and our pro-

posed FST technique from Chapter 4.

To reduce the execution time of parallel multi-threaded workloads, this dis-

sertation proposes a memory controller design that takes into account information

specific to parallel applications in designing the memory scheduling algorithm. Our

parallel application memory scheduling (PAMS) mechanism from Chapter 6 con-

sists of two components. First, estimating the critical path usinglimiter threadesti-

mation andloop progressmeasurement. Second, a memory controller based on two

principles: a) prioritizing threads likely to be on the critical path, and b) shuffling

priorities among a group of limiter or non-limiter threads in a way that reduces the

time it takes for them to reach a synchronization point. We show that this memory

controller design significantly improves the performance of parallel applications

compared to a state-of-the-art memory controller designedfor multi-programmed

workloads.

168

7.2 Future Research Directions

There are several possible future research directions thatcould improve

the management of inter-application/thread interferencefor more fair and higher-

performance memory system designs.

• The source-throttling-based management technique presented in Chapter 4

keeps the resource management techniques unchanged compared to the base-

line in order to make the shared memory resource designs simpler. How-

ever, some performance-enhancing or fairness features of resource-based ap-

proaches could potentially be used in combination with FST’s source-based

approach to further improve performance and fairness.

• Our PAMS mechanism in Chapter 6 is targeted at DRAM-related inter-thread

interference which is a major component of memory system inter-thread in-

terference. However, management of interference among threads of a parallel

application in other shared resources (e.g., shared caches, interconnect, etc.)

could further improve parallel application performance. For instance the ap-

plication of source-throttling-based shared resource management or a com-

bination of resource-based and source-based techniques may provide further

performance improvements.

• As industry continues to place more and more cores on the samechip (i.e.,

the emergence of many-core CMPs), CMPs will almost certainly be used to

concurrently execute multiple multi-threaded applications which share parts

of the memory system. To manage memory system interference in such sys-

tems, our solution for parallel multi-threaded applications (PAMS, Chapter 6)

can be combined with existing solutions that deal with multiple applications

(i.e., PAR-BS, TCM, or FST proposed in Chapter 4).

• With multiple concurrently executing multi-threaded applications on a many-

core system, different system-software-specified fairness guarantees and per-

formance goals can be of interest for the different applications. Combin-

169

ing software-based scheduling approaches [76, 69] (discussed in Chapter 2)

with fine-grained source throttling (FST, Chapter 4) may be useful in satis-

fying different system-software goals by managing shared memory resources

at different levels of granularity.

170

Bibliography

[1] Advanced Micro Devices. AMD’s six-core Opteron processors.

http://techreport.com/articles.x/17005, 2009.

[2] J. Baer and T. Chen. An effective on-chip preloading scheme to reduce data

access penalty. InProceedings of Supercomputing ’91, 1991.

[3] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for dynamic

performance, power, and resource management in chip multiprocessors. In

ISCA, 2009.

[4] R. Bitirgen et al. Coordinated management of multiple interacting resources

in chip multiprocessors: A machine learning approach. InMICRO-41, 2008.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

CACM, 13, 1970.

[6] Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro, and A. Gonzalez.

Meeting points: Using thread criticality to adapt multicore hardware to paral-

lel regions. InPACT, 2008.

[7] F. J. Cazorla et al. QoS for high-performance SMT processors in embedded

systems.IEEE Micro, 24(4):24–31, 2004.

[8] M. Charney and T. Puzak. Prefetching and memory system behavior of

the SPEC95 benchmark suite.IBM Journal of Research and Development,

31(3):265–286, 1997.

[9] S. Chen et al. Scheduling threads for constructive cachesharing on CMPs. In

SPAA, 2007.

171

[10] H.-Y. Cheng et al. Memory latency reduction via thread throttling. In MI-

CRO, 2010.

[11] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed data

prefetching mechanism. InASPLOS-X, 2002.

[12] D. H. Bailey et al. NAS parallel benchmarks. Technical report, NASA Ames

Research Center, Moffett Field, CA 94035-1000, USA, March 1994.

[13] F. Dahlgren, M. Dubois, and P. Stenstrom. Fixed and adaptive sequential

prefetching in shared memory multiprocessors. InICPP-22, 1993.

[14] R. Das et al. Application-aware prioritization mechanisms for on-chip net-

works. InMICRO, 2009.

[15] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Fairness via source throttling: A

configurable and high-performance fairness substrate for multi-core memory

systems. InASPLOS, 2010.

[16] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Prefetch-aware shared resource

management for multi-core systems. InISCA, 2011.

[17] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. Patt. Coordinated control of multiple

prefetchers in multi-core systems. InMICRO, 2009.

[18] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for bandwidth-efficient

prefetching of linked data structures in hybrid prefetching systems. InHPCA,

2009.

[19] S. Eyerman and L. Eeckhout. System-level performance metrics for multi-

program workloads.IEEE Micro, 28(3):42–53, 2008.

[20] A. Fedorova et al. Improving performance isolation on chip multiprocessors

via an operating system scheduler. InPACT, 2007.

172

[21] D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits for

fine-grain synchronization.JPDC, 16(4):306–318, 1992.

[22] R. Gabor et al. Fairness and throughput in switch on event multithreading. In

MICRO-39, 2006.

[23] A. Gendler, A. Mendelson, and Y. Birk. A pab-based multi-prefetcher mech-

anism. International Journal of Parallel Programming, 34(2):171–478, Apr.

2006.

[24] A. Glew. MLP yes! ILP no! InASPLOS Wild and Crazy Idea Session ’98,

Oct. 1998.

[25] D. E. Goldberg and J. H. Holland. Genetic algorithms andmachine learning.

Journal of Machine Learning, 3(2-3):95–99, 1988.

[26] A. Herdrich et al. Rate-based QoS techniques for cache/memory in CMP

platforms. InICS, 2009.

[27] G. Hinton et al. The microarchitecture of the Pentium 4 processor. Intel

Technology Journal, Feb. 2001. Q1 2001 Issue.

[28] L. R. Hsu et al. Communist, utilitarian and capitalist cache policies on cmps:

caches as a shared resource. InPACT, 2006.

[29] Intel. First the tick, now the tock: Next generation Intel microarchitecure

(Nehalem).Intel Technical White Paper, 2008.

[30] E. Ipek et al. Self-optimizing memory controllers: A reinforcement learning

approach. InMICRO, 2008.

[31] R. Iyer. CQoS: a framework for enabling QoS in shared caches of CMP

platforms. InICS, 2004.

[32] R. Iyer et al. QoS policies and architecture for cache/memory in CMP plat-

forms. InSIGMETRICS, 2007.

173

[33] M. Jahre and L. Natvig. A light-weight fairness mechanism for chip multi-

processor memory systems. InComputing Frontiers, 2009.

[34] D. Joseph and D. Grunwald. Prefetching using Markov predictors. InISCA-

24, 1997.

[35] N. Jouppi. Improving direct-mapped cache performanceby the addition of a

small fully-associative cache and prefetch buffers. InISCA-17, 1990.

[36] S. Kim et al. Fair cache sharing and partitioning in a chip multiprocessor

architecture. InPACT, 2004.

[37] Y. Kim et al. ATLAS: A scalable and high-performance scheduling algorithm

for multiple memory controllers. InHPCA, 2010.

[38] Y. Kim et al. Thread cluster memory scheduling: Exploiting differences in

memory access behavior. InMICRO, 2010.

[39] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In

ISCA-8, 1981.

[40] H. Q. Le et al. IBM POWER6 microarchitecture.IBM Journal of Research

and Development, 51:639–662, 2007.

[41] C. J. Lee et al. Prefetch-aware DRAM controllers. InMICRO-41, 2008.

[42] C. J. Lee et al. Improving memory bank-level parallelism in the presence of

prefetching. 2009.

[43] C. J. Lee, O. Mutlu, V. Narasiman, and Y. Patt. Prefetch-aware DRAM con-

trollers. InMICRO-41, 2008.

[44] R. L. Lee, P.-C. Yew, and D. H. Lawrie. Data prefetching in shared memory

multiprocessors. InICPP-16, 1987.

[45] J. Li et al. The thrifty barrier: energy-aware synchronization in shared mem-

ory multiprocessors. 2004.

174

[46] W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak. Filtering superfluous

prefetches using density vectors. InICCD, 2001.

[47] Y.-J. Lin et al. Hierarchical memory scheduling for multimedia mpsocs. In

ICCAD, 2010.

[48] C. Liu et al. Exploiting barriers to optimize power consumption of CMPs. In

IPDPS, 2005.

[49] K. Luo et al. Balancing throughput and fairness in SMT processors. In

ISPASS, 2001.

[50] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8

banks, http://download.micron.com/pdf/datasheets/dram/ddr3.

[51] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of mem-

ory service in multi-core systems. InUSENIX Security, 2007.

[52] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler

algorithm for prefetching. InASPLOS-5, 1992.

[53] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Using the first-level

caches as filters to reduce the pollution caused by speculative memory refer-

ences.International Journal of Parallel Programming, 33(5):529–559, Octo-

ber 2005.

[54] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for

chip multiprocessors. InMICRO-40, 2007.

[55] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared DRAM systems. InISCA-35, 2008.

[56] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An adaptive data

cache prefetcher. InPACT, 2004.

[57] K. J. Nesbit et al. Fair queuing memory systems. InMICRO-39, 2006.

175

[58] K. J. Nesbit et al. Virtual private caches. InISCA-34, 2007.

[59] K. J. Nesbit et al. Virtual private machines: A resourceabstraction for

multi-core computer systems. Technical Report ECE 07-08, University of

Wisconsin-Madison, Dec. 2007.

[60] J. K. Ousterhout. Scheduling techniques for concurrent systems. InIEEE

Distributed Computer Systems, 1982.

[61] J. Owen and M. Steinman. Northbridge architecture of AMD’s Griffin micro-

processor family.IEEE Micro, 28(2), 2008.

[62] H. Patil et al. Pinpointing representative portions oflarge intel itanium pro-

grams with dynamic instrumentation. InMICRO-37, 2004.

[63] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches.

In MICRO-39, 2006.

[64] C. Ranger et al. Evaluating mapreduce for multi-core and multiprocessor

systems. InHPCA, 2007.

[65] S. Rixner et al. Memory access scheduling. InISCA-27, 2000.

[66] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous

multithreading processor. InASPLOS-IX, 2000.

[67] S. Srinath, O. Mutlu, H. Kim, and Y. Patt. Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers.

In HPCA, 2007.

[68] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating criti-

cal section execution with asymmetric multi-core architectures. InASPLOS,

2009.

176

[69] L. Tang et al. The impact of memory subsystem resource sharing on datacen-

ter applications. InISCA, 2011.

[70] J. Tendler et al. POWER4 system microarchitecture.IBM Technical White

Paper, Oct. 2001.

[71] D. M. Tullsen and S. J. Eggers. Limitations of cache prefetching on a bus-

based multiprocessor. InISCA-20, 1993.

[72] O. Wechsler. Inside Intel core microarchitecure.Intel Technical White Paper,

2006.

[73] D. H. Woo and H.-H. S. Lee. Analyzing performance vulnerability due to

resource denial of service attack on chip multiprocessors.In Workshop on

Chip Multiprocessor Memory Systems and Interconnects, 2007.

[74] X. Zhang, S. Dwarkadas, and K. Shen. Hardware executionthrottling for

multi-core resource management. InUSENIX, 2009.

[75] X. Zhuang and H.-H. S. Lee. A hardware-based cache pollution filtering

mechanism for aggressive prefetches. InICPP-32, 2003.

[76] S. Zhuravlev et al. Addressing shared resource contention in multicore pro-

cessors via scheduling. InASPLOS, 2010.

177

Vita

Eiman Ebrahimi was born in Tehran, Iran on September 16, 1982. He at-

tended Kamal High School in Tehran, Iran until 2000. He started his Bachelors

in Computer Engineering from the University of Tehran in 2000 and graduated in

2005. He moved to the United States to begin graduate school under the supervision

of the late Professor Margarida Jacome in 2005. He received his Masters in 2007.

He started working on his PhD with Professor Yale Patt in 2007.

While in graduate school, Eiman served as a teaching assistant for six

semesters at The University of Texas at Austin: The mixed signal laboratory be-

tween 2005 and 2007, EE306 Introduction to Computing in Fall2008, and EE382N

Microarchitecture in Spring 2010. He completed three internships at the following

companies: PA Semi, Microsoft Research, and IBM Research. He published papers

in the International Symposium on Computer Architecture (ISCA), International

Conference on Architectural Support for Programming Languages (ASPLOS), In-

ternational Symposium on Microarchitecture (MICRO), International Symposium

on High-Performance Computer Architecture (HPAC), and ACMTransactions on

Computer Systems (TOCS). His honors include a best paper award at ASPLOS in

2010, and a best paper award nomination at HPCA in 2009.

Permanent address: 1440 First St., Kharazm St., Shahrak-e-Gharb,
Tehran, Iran

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

178

