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Shared Memory Resource Management

Eiman Ebrahimi, Ph.D.
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Chip multiprocessors (CMPs) commonly share a large poxiomemory
system resources among different cores. Since memory sexjfrem different
threads executing on different cores significantly interf@ith one another in these
shared resources, the design of the shared memory subsgstemcial for achiev-

ing high performance and fairness.

Inter-thread memory system interference has differenticapons based on
the type of workload running on a CMP. In multi-programmediioads, different
applications can experience significantly different slowds. If left uncontrolled,
large disparities in slowdowns result in low system perfante and make system
software’s priority-based thread scheduling policiedfewtive. In a single multi-
threaded application, memory system interference betweeads of the same ap-
plication can slow each thread down significantly. Most imgotly, thecritical
path of execution can also be significantly slowed down, resglimincreased ap-
plication execution time.

viii



This dissertation proposes three mechanisms that addiféset short-
comings of current shared resource management technigugsted at multi-
programmed workloads, and one mechanism which speeds upgk snulti-
threaded application by managing main-memory relatedference between its

different threads.

With multi-programmed workloads, the key idea is that bo#madnd-
and prefetch-caused inter-application interference lshbe taken into account in
shared resource management techniques across the enatieel shemory system.
Our evaluations demonstrate that doing so significantlyrawgs both system per-
formance and fairness compared to the state-of-the-arte@xecuting a single
multi-threaded application on a CMP, the key idea is to take account the inter-
dependence of threads in memory scheduling decisions. @luoation shows
that doing so significantly reduces the execution time of rthdti-threaded ap-
plication compared to using state-of-the-art memory sualezd designed for multi-

programmed workloads.

This dissertation concludes that the performance anddssiof CMPs can
be significantly improved by better management of inteedlar interference in
the shared memory resources, both for multi-programmedkivads and multi-

threaded applications.
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Chapter 1

Introduction

1.1 The Problem

Chip multiprocessor (CMP) systems are generally used touggdwo dif-
ferent types of workloadsvulti-programmed workloadandmulti-threaded work-
loads In multi-programmed workloads each core of the CMP execate inde-
pendent application and there is little to no inter-dep@cdeietween the different
threads of execution. In a multi-threaded workload, the GMploits parallelism
by concurrently executing multiple threads of the worklaaddifferent cores to

speed up a single application.

CMPs are commonly designed such that they share a larg@poftimem-
ory system resources among different cores (e.g., shactgsamemory controller,
etc.). Memory requests from different threddsecuting on different cores of a
CMP interfere significantly with one another with respecthtese shared memory
resources. This interference is due to both demand memaguests and specu-
lative prefetch requests causing significant delays for orgmequests of concur-
rently executing threads. These delays slow down the execof each thread
compared to the thread executing alone with the entire memsystem to itself.
From a system design standpoint, the slowdown sufferedftsreint threads of ex-
ecution has different implications based on the type of a@#t being executed. In
the following subsections we introduce the problems crkateinter-application
interferencein multi-programmed workloads, andter-thread interferencen par-

allel multi-threaded workloads.

Yn multi-programmed workloads eathread of execution is an independent application. In
multi-threaded workloads multiple interdependgmreadswork together to speed up a single appli-
cation.



1.1.1 Inter-Application Interference In Multi-Programme d Workloads

We define the slowdown/ Glowdown) of threadi as:

shared
i

alone
T

ISlowdown; =

whereT#"ed js the number of cycles it takes to run threamultaneously

with other threads and@ "¢ is the number of cycles it would have taken thread

to run aloné on the same system. The slowdown experienced by each thfead o
a workload can be significantly different from the slowdowfrtlte other threads.

If left uncontrolled, large disparities in slowdowns carr@gult in low system per-
formance and vulnerability to denial of service attacks, [B3], b) make system-
software’s priority-based thread scheduling policiedfawtive [20] and c) cause
highly unpredictable program performance which makesgserdnce analysis and
optimization extremely difficult [51, 54, 57].

Figures 1.1 and 1.2 illustrate the problem. In this exampia fequal-
priority applications (each consisting of a single thread@cute one per core on
a a 4-core CMP in two configurations: with and without an aggiree prefetcher
enabled for each core. Figure 1.1 (a) shows the individus¥dbwn of each appli-
cation compared to the application executing alone on tberd-system. Figure 1.1
(b) shows system unfairness in each configuration. We defsters unfairness as:

MAXA{ISlowdowny, ..., [Slowdowny_1}
MIN{ISlowdowny, ..., I Slowdown_1 }

Unfairness =

wherel Slowdown; is the slowdown of threaélas defined above.
Two observations from this example illustrate the problem:

1. In the no prefetching case, due to different memory beitafi the ap-
plications (different levels of memory intensity, cachdaeor, DRAM row buffer

2When an application executes alone, the other cores areTtle running application has the
whole memory system to itself.



behavior, etc.), the ratio of the slowdown of the applicatshowing the greatest
slowdown that of the application showing the smallest slomal is almost a factor
of 3. The unfairness metric in Figure 1.1(b) indicates dyabis2 Unfairness hap-
pens when at least one thread slows down more than othersessilaaf sharing
memory system resources. Figure 1.1(a) shows that the slevdperformance
loss) that threadengrid and parsersuffer as a result of sharing the memory sub-
system among the four threads is far more than that whagiexand perlbench
experience. We would like the slowdowns of the applications workload to: a)
be as close as possible to each other (which would bring thesgmonding sys-
tem unfairness close to the valoee), and b) each be as close as possible to the
value one (which would mean each application executes asidas would when

executing alone).

c

2 if 5.0
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Figure 1.1: Motivating example

2. When prefetching is employed, it has different effectslenslowdowns
of the different applications. Some applications are moedgch friendly than
others and benefit more from aggressive prefetching. Hoivevere importantly
from a multi-core system perspective, prefetching for gaobad will have system-
wide effects which alter the slowdowns of concurrently mmgnthreads. We refer
to these effects gwefetcher-caused inter-thread (or inter-core) intedece These
effects can cause the disparity between the most slowed dppiication and the

least slowed down application to increase, as is the cadeiextample shown in

30ur system configuration for this experiment is discusseskiction 4.4. The unfairness metric
is discussed in Section 3.4.1.



Figure 1.1(a). Figure 1.1(b) shows the corresponding am®en system unfair-
ness. Figure 1.2 (a) shows system performance of the sys$tewnsn Figure 1.1
with aggressive prefetching normalized to when no prefatgis used. Figure 1.2
(b) shows the corresponding bus traffic. Figure 1.2 and Eidut(b) show that
enabling prefetching in this workload results in lower systperformance, higher
bus traffic, and higher system unfairness compared to n@fulghg. This makes
prefetching harmful for this workload even though there applications in the
workload that can significantly benefit from prefetching.eTeason for these neg-

ative results is unmanaged prefetcher inter-thread ieterice.

Norm. System Performance
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(a) System Performance b) Bus Traffic

Figure 1.2: System performance and memory bus traffic wigfigbching normal-
ized to no prefetching

1.1.2 Inter-Thread Interference In Multi-Threaded Worklo ads

In parallel multi-threaded workloads, memory requestsiftbreads of the
same application interfere with one another in the sharetdomng subsystem, slow-
ing each thread down significantly. Most importantly, tngical path of execution
can also be significantly slowed down, resulting in increlaegplication execution

time.

To illustrate the importance of DRAM-related inter-threiaterference to
parallel application performance, Figure 1.3 shows thepadl performance im-
provement that can be obtained for six different parallgll@ations running on a

16-core system. In this experiment we ideally eliminateCdlAM-related inter-



ference caused by concurrently executing threads of egaicapon? A threadi’s
DRAM-related interference cycles are those extra cycles tifread has to wait
for memory due to bank or row-buffer conflicts caused by corely executing
threads (compared to if threagvere accessing the same memory system alone). In
the ideal, unrealizable system we model for this experim®ra thread’s memory
requests wait for DRAM banks only if the banks are busy sargicequests from
that same threag and 2) no DRAM row-conflicts occur as a result of some other
threadj (i # j) closing a row that is accessed by thread hat is, we model each
thread as having its own row buffer in each bank. Figure 1d®wstthat significant
performance improvement could potentially be obtained &iyds management of
memory-related inter-thread interference in a parallpli@ation. That is, eliminat-
ing inter-thread interference in each application redubesverage execution time
of these 6 applications by 45%.
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Figure 1.3: Normalized execution time

1.2 Thesis Statement

CMP memory systems can be designed to achieve higher sysdor-p
mance and improved fairness by managing in a coordinatedchenamter-thread
interference due to both demand and prefetch requestssatresentire shared

memory system

40ur system configuration and benchmark selection are disdlis Section 6.3.



1.3 The Solution: Managing Inter-Thread Memory System In-
terference for Multi-Core Systems

The goal of managing inter-thread memory system interfs¥éndependent
on the type of workloads being executed. Among multipleedéht applications,
the goal is to design a memory system that provides biygitem-performancand
fairness For multi-threaded workloads the goal is to reducedkecution timeof

the parallel application.

1.3.1 Multi-Programmed Workloads

In order to design fair and high performance memory systemnsriulti-
programmed workloads, we propose mechanisms that maniage¢hnead interfer-
ence created by both demand requests and speculativechredguests across the

entire shared memory system.

This thesis shows that in chip multiprocessor systems, weaareap the
potential benefits of aggressive prefetching if prefetadarsed inter-thread inter-
ference is left unmanaged. For this purpose we develop aanesrh that controls
the aggressiveness of the system’s prefetchers in a hinecatdashion, called Hi-
erarchical Prefetcher Aggressiveness Control (HPAC). Elldnamically adjusts
the aggressiveness of each prefetcher in two wégsal and global. Local de-
cisions attempt to maximize each core’s performance bytpkito account only
local feedback information. The global mechanism can aderthe local decisions
by taking into account effects and interactions of différeores’ prefetchers when
adjusting each one’s aggressiveness. Chapter 3 analygesdbhanism.

In order to achieve system software fairness policies inptesence of
multiple shared resources in the memory system of CMPs thieisis develops a
low-cost architectural technique that enables fair slgaoiithe entire memory sys-
tem without requiring multiple complicated, specializadd possibly contradictory
fairness techniques for different shared resources. Teeelthis goal, we propose

a fundamentally new mechanism that gathers dynamic fe&dbBmrmation about



the unfairness in the system, and uses this informationiauhycally adapt the rate
at which the different cores inject requests into the sharethory subsystem such
that system-level fairness objectives are met. Chaptea#y/aes thissource-based

throttling fairness mechanism.

This thesis also demonstrates that when prefetching is@raglin systems
using fair shared resource management techniques, systdorrpance/fairness
may not improve as expected and can degrade even if prefetabsed interference
is controlled by throttling prefetchers. To mitigate thiteet, this thesis provides
mechanisms for management of prefetches in systems usmghired-resource
management based on three fundamental ideas: (1) an djgplisgorefetches
should be treated similar to demands only when they are ¢testlito be useful,
(2) treating some applications’ prefetches like demandseaunfair to some other
memory non-intensive applications; hence, the prioritg@mands from memory-
non intensive applications should be boosted above regjaésthers, and (3) when
using source-based throttling for fairness, prefetcher @re throttling decisions
should be coordinated in order to improve system fairnedgpanformance. Chap-

ter 5 analyzes this mechanism.

1.3.2 Multi-Threaded Workloads

This thesis designs a memory scheduler targeted at redtlengxecution
time of parallel applications by managing inter-thread DNRMterference. The
design estimates the critical path using a technique wéizatér thread estimation,
and also loop progress measurement [6]. We extend the rergystem with a
mechanism to estimate a setliofiter threadswhich is likely to include the thread
on thecritical path. This estimate is based on lock contention, which we quaasf
the time threads spend waiting to acquire a particular [&¢&.use the compiler to
enable loop progress measurement in order to estimate dlgegss of each thread

towards a barrier synchronization point within a paralteip.

The memory controller is build on two key principles: a) iigitizes threads



that are likely to be on the critical path (which are eitheriter threads or threads
identified to be falling behind in parallel loops) over otheand b) among a group
of limiter threads or non-limiter threads, the memory coltér shuffles the priority
of threads in a way that reduces the time all threads colielgtireach their next
synchronization point. Chapter 6 analyzes this memorydualireg technique.

1.4 Contributions

This dissertation makes the following contributions.

e This dissertation shows that in CMPs, uncoordinated, loof} prefetch-
ers can lead to significant system performance degradatiorpared to no
prefetching even though each makes “corrdotal decisions in an attempt

to maximize its core’s performance.

e This dissertation proposes a low-cost mechanism to impitev@erformance
and bandwidth-efficiency of prefetching and make it eflexin CMPs. The
proposed mechanism uses a hierarchical approach to grefeaggressive-
ness control. It optimizes overall system performance wittbal control
using inter-core prefetcher interference feedback from shared memory
system, while maximizing prefetcher benefits on each cotie lacal control

using per-core feedback.

e This dissertation introduces a low-cost, hardware-basddgstem-software-
configurable mechanism to achieve fairness goals specijiexystem soft-
ware in theentire shared memory system. This mechanism collects dynamic
feedback on the unfairness of the system and adjusts reqestof the dif-
ferent cores to achieve the desired fairness/performaseabe. By perform-
ing source-basedhirness control, we eliminate the need for complicated
dividual resource-basefhirness mechanisms that are implemented indepen-

dently in each resource and that require coordination.



e This dissertation identifies a new problem in multi-corersbdaesource man-
agement: prefetching can significantly degrade systenopeence and fair-
ness of multiple state-of-the-art shared resource manegeiechniques. This
problem still exists even if state-of-the-art prefetcheottling techniques are
used to dynamically adapt prefetcher aggressiveness.

e This dissertation introduces new general mechanisms fulivey prefetches
within shared resource management techniques in ordenargigtically ob-
tain the benefits of both prefetching and shared resourceageament in a
multi-core system. We apply our mechanisms to three stiatkesart shared
resource management techniques and demonstrate in datathkese tech-
niques should be made aware of prefetching. Comprehensperienental
evaluations show that our proposal significantly improwesess and per-

formance of these techniques in the presence of prefetching

e This dissertation proposes a runtime-system mechanisrartodically esti-
mate a set olimiter threadswhich is likely to include the thread on tloeit-
ical pathfor the purpose of memory request prioritization. We alsopose
a memory request prioritization mechanism that reduces-thiread inter-
ference among a set of parallel threads which are not comgridr locks.
This mechanism uses dynamic feedback information aboun#taory sys-
tem behavior of the threads in order to reduce the time itdake threads to

collectively reach their synchronization point.

e This dissertation proposes a memory scheduling algorittantakes into ac-
count information about limiter thread estimation, loapgress measure-
ment, and dynamic thread memory behavior to manage inteathmemory
system interference. We show that by doing so our memoryaibert design
significantly improves the performance of parallel appimas compared to
a state-of-the-art memory controller designed for mutbgvammed work-
loads.



1.5 Dissertation Organization

This dissertation consists of seven chapters. Chapten2da®background
information on the prior work related to shared resource ag@&ment and improv-
ing prefetching efficiency that we use to compare our workThis chapter also
discusses other prior work related to the proposals of tisisedtation. Chapters 3
through 5 address problems with multi-programmed work$oa@hapter 3 pro-
poses a mechanism to control prefetcher-caused interitigiderence by dynami-
cally adjusting the aggressiveness of multiple cores’qicdfers, in order to enable
and improve the benefit of prefetching for multi-core systei@hapter 4 proposes
a new approach to providing fair shared resource manageiméms entire shared
memory systerthat eliminates the need for and complexity of developingéss
mechanisms for each individual resource. Chapter 5 prgposehanisms that both
manage shared resources of a multi-core chip to obtain pégfermance and fair-
ness while also exploiting the benefits of prefetching. @ deals with parallel
multi-threaded applications. We propose a memory scheglaligorithm designed
specifically for parallel multi-threaded applications. &ler 7 contains some con-

cluding remarks and offers suggestions for future work.
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Chapter 2

Background and Related Work

This chapter discusses prior studies that are relevant tmane system
inter-thread interference management with respect to escbRAM systems,
prefetching, and the management of multiple shared ressurdOf the related
work in DRAM systems, this chapter provides additional lgaokind on the fol-
lowing previously proposed mechanisms which we build umrrwe use as com-
parison points in future chapters: Network Fair Queuing @QYf57], Parallelism-
Aware Batch Scheduling (PARBS) [55], Thread Cluster Mem&gheduling
(TCM) [38], and Prefetch-Aware DRAM Controllers (PADC) [UEections 2.2.1
through 2.2.4). Finally, we discuss research in criticahgarediction for parallel

applications, as it is relevant to mechanisms proposed ap(hn 6.

2.1 Research in Caching

Prior work in fair caching [31, 36, 28, 32, 58] focus on impiry fairness
in cache access bandwidth and/or cache capacity shariegeTgapers ignore how
providing fairness in one shared resource (the shared rabhages the demand on
other shared resources (e.g., the memory controller). dltesed demand on other
shared resources can create a new source of interferenca ressilt of the unfair
policies of other shared resources the fairness benefits fear cache capacity

sharing can be reduced or even overturned.

Nesbit et. al. [58], proposes virtual private caches (VRCprovide qual-
ity of service from the cache and improve memory system ésisn VPC consists
of two major components: the VPC arbiter, and the VPC capaw#nager. The
VPC arbiter manages the shared cache arrays’ access bahdwidg fair queuing
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scheduling algorithms. The VPC capacity manager improagadss by dynami-
cally way-partitioning the cache based on shares allodayesi/stem software. In
addition to providing fairness in only one shared resouthe 6hared cache), we
show in Chapter 4 how such partitioning of cache space caritressignificant
system performance degradation compared to no partigoei@ll.

Qureshi and Patt [63] propose utility-based cache paniitip (UCP) for
high performance run-time partitioning of shared cacheschSechniques focus
on improving performance and not on system fairness. As,shehmechanisms
proposed in this thesis are applicable to systems emplagdgniques like UCP
and are orthogonal to them.

Prefetching is already a part of most commercial proces$twa/ever, none
of the related work mentioned above considers the effectefeching on the per-
formance and fairness improvements provided by these igabs. This thesis

explores this omission.

2.2 Researchin DRAM Systems

Prior work in improving memory system fairness and/or DRAMaugh-
put [57, 54, 55, 37, 38] attempt to improve fairness only i@ BRAM controller
by modifying the memory scheduling policy. We discuss thoEthese techniques
called: Network Fair Queuing (NFQ) [57], Parallelism-AwaBatch Scheduling
(PARBS) [55], and Thread Cluster Memory Scheduling (TCM][® detail in the

following subsections.

None of these papers consider interference in a shared .cadteeevalu-
ation sections of these papers model only private cachesotaté the effects of
interference to the memory controller. Similar to prior won fair caching, none
of the related work in improving fairness in DRAM bandwidtbnsider the effect
of prefetching on the performance and fairness improvemprivided by these
techniques. We discuss the only work on DRAM scheduling toas address
prefetches, Prefetch-Aware DRAM Controllers (PADC) in Adeing subsection.
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All of the prior papers mentioned above focus on multi-pesgmed work-
loads and contrary to this thesis (Chapter 6), none congiigeinter-dependencies
between threads in their prioritization decisions. Ipekadt [30], propose using a
machine learning technique to design a memory controllatr ldarns to optimize
scheduling policies. Their technique observes the systate and estimates the
long-term performance impact of different actions. In camgon to the memory
scheduler for parallel applications proposed in this thésee Chapter 6), this tech-
nique requires more complex black-box implementation ehfercement learning
in hardware. Lin et. al., propose hierarchical memory sahiad for multimedia
MPSoCs [47]. This design addresses interference betwegreses coming from
different execution cores of the SoC working on the sameiegigbn by applying
the PAR-BS [55] technique among them. As such, it does net iatio account
the inter-dependencies of parallel applications thatttiesis takes into account to
reduce the critical path and only attempts to fairly senttoe different streams of
requests from different cores.

2.2.1 Network Fair Queuing (NFQ)

Nesbit et al. [57] propose network fair queuing (NFQ), a mgnszhedul-
ing technique based on the concepts of fair network scheglaligorithms. NFQ'’s
goal is to provide quality of service to different concurtigrexecuting applications
based on each application’s assigned fraction of memotgsybandwidth. NFQ'’s
QoS objective is that “a threadhat is allocated a fractiok of the memory system
bandwidth will run no slower than the same thread on a privaéenory system
running at that fractiorr of the frequency of the shared physical memory system.”
NFQ determines airtual finish timefor every request of each thread. A memory
request’s virtual finish time is the time it would finish on tieead’s virtual private
memory system (a memory system running at the fradtionthe frequency of the
shared memory system). To achieve this objective, memayyests are scheduled
earliest virtual finish time firstNFQ provides no specification of how prefetches
should be treated.
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2.2.2 Parallelism-Aware Batch Scheduling (PARBS)

Mutlu and Moscibroda [55] propose parallelism-aware batcheduling
(PARBS), a memory scheduling technique aimed at improvingughput by pre-
serving intra-thread bank parallelism while providingrifess by avoiding starva-
tion of requests from different threads. There are two majeps to the PARBS
algorithm: First, PARBS generates batches from a numbeutstanding memory
requests, and ensures that all requests belonging to thentilmatch are serviced
before the formation of the next batch. This batching teghaiavoids starvation
of different threads and is aimed at improving system fasneSecond, PARBS
preserves intra-thread bank-level-parallelism whileve#ng requests from each
application within a batch. This step improves system tghput by reducing
each thread’s memory related stall time. PARBS does notifypeow to handle
prefetches in either of these two steps.

2.2.3 Thread Cluster Memory Scheduling (TCM)

Kim et. al. propose thread cluster memory scheduling (TCMnemory
scheduling technique designed to address system throtghg@@airness separately
with the goal of achieving the best of both for multi-prograed workloads. The
algorithm detects and exploits differences in memory asbebavior across appli-
cations. TCM periodically groups applications into twostkrs:latency-sensitive
and bandwidth-sensitive This is done once every interval (10M cycles in [38])
based on the applications’ memory intensity measured inlégsl cache misses
per thousand instructions (MPKI). The least memory intensireads are put in
the latency-sensitive cluster, and others are placed ibdnewidth-sensitive clus-
ter. To improve system throughput, TCM always prioritizggplécations in the
latency-sensitive cluster over those in the bandwidtrsisigr cluster. To improve
fairness, the priorities of applications in the bandwid#nsitive cluster are period-
ically shuffled (every 800 cycles in [38]).

As we show in Chapter 6, a state-of-the-art memory schegluéohnique
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such as TCM, which is designed for multi-programmed worltlacan improve
the performance of parallel multi-threaded workloads caref to standard FR-
FCFS (First Ready-First Come First Serve) memory scheduliowever, as this
thesis demonstrates, a memory scheduling algorithm &dggtmanaging DRAM
interference specifically for multi-threaded applicas@an significantly reduce ap-

plication runtime compared to such state-of-the-art teqpes.

2.2.4 Prefetch-Aware DRAM Controllers (PADC)

Lee et. al. [43] propose prefetch-aware DRAM controllers.otir knowl-
edge, this is the only prior work that deals with how prefetelshould be dealt
with in a shared resource. However, this work targets hagdtirefetches in a
DRAM-throughput-oriented FR-FCFS scheduler that is nddigieed to provide
fairness/QoS. In contrast, Chapter 5 of this thesis is thst firork to address
how prefetches should be considereddim/QoScapable memory scheduling tech-
niques that are shown to provide significantly higher penfance than throughput-
oriented DRAM schedulers. Chapter 5 provides generalizeféfch handling tech-
niques not only for memory scheduling but also for a more gars@urce throttling-
based management technique that aims to manage multipkxisiesources.

2.3 Research in Management of Multiple Shared Resources in
CMPs

Bitirgen et al. [4] propose implementing an artificial ndunatwork that
learns each application’s performance response to differesource allocations.
Their technique searches the space of different resoutoeaibns among co-
executing applications to find a partitioning in the sharadhe and memory con-
troller that improves performance. In contrast to the stiareemory system re-
source management technique we propose in Chapter 4, thrswwork requires
that resource-based fairness/partitioning techniquesnpéemented in each indi-

vidual resource. In addition, it requires more complexcktaox implementation
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of artificial neural networks in hardware.

Nesbit et. al. [59] propose an abstraction of virtual pevatachines (VPM)
for shared resource management. The hardware mechanigrmagien this work
for the partitioning of shared resources is a combinationid@ial private caches
(VPC) for cache management [58] and the network fair que(iNigQ) memory
scheduler [57]. VPM [59] mainly focuses on providing penf@ance isolation to
concurrently executing applications whereas the goal isf tiesis is to achieve

high system fairness and performance at the same time.

Herdrich et al. [26] observe that the interference causea loyver-priority
application on a higher-priority application can be reduiesing existing clock
modulation techniques in CMP systems. However, their pgapdoes not con-
sider or provide fairness to equal-priority applicatio@fiang et al. [74] propose a
software-based technique that uses clock modulation afdtpher on/off control
provided by existing hardware platforms to improve faiéescurrent multi-core
systems compared to other software techniques. Neithéresktprior papers pro-
pose an online algorithm that dynamically controls clockdulation to achieve
fairness. In contrast, Chapter 4 of this thesis provideshdylware-based archi-
tectural mechanisms that continuously monitor shared nngisygstem unfairness
at run-time and 2) an online algorithm that, upon detectibardairness, throttles
interfering applications using two new hardware-basedttling mechanisms (in-
stead of coarse-grained clock modulation) to reduce trexfaring applications’

request rates.

Jahre and Natvig [33] observe that adjusting the number ailave last-
level cache MSHRs (Miss Status Holding/information Reys{39] keep track of
all requests to a cache until they are serviced) can corteoldtal miss bandwidth
available to each thread running on a CMP. However, this pravk does not show
how this observation can be used by an online algorithm t@ayoally achieve a
well-defined fairness or performance goal. In contrast i@ phor work, Chapter 4

of this thesis, 1) provides architectural support for acimg different well-defined
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system-software fairness objectives while also improwggtem performance, 2)
shows that using complementary throttling mechanisms aedepting bank ser-
vice denial due to FR-FCFS, as done by our proposed fairnasource throttling
(FST, see Chapter 4), provides better fairness/perform#man simply adjusting
the number of available MSHRs (see Section 4.5.3), 3) shbassaur FST ap-
proach of throttling sources based on unfairness feedl@okjdes better system

fairness/performance than implementing different fassymechanisms in each in

dividual shared resource.

Zhuravlev et. al. [76] take a pure software-based schegwdpproach to
the resource contention problem for multi-core memoryeayst. This paper pro-
poses to detect which pairs of applications are likely terif@re more with each
other and to schedule them for execution on cores that sisasenall a number
of resources as possible. Tang et. al. [69] show the negatipacts of memory
subsystem resource sharing on real datacenter applisatibney also show that
pure software-based intelligent thread-to-core mappaagsreduce the amount of
memory subsystem interference different applicationtesaind improve their per-
formance. The mechanisms we propose in Chapter 4 are ortabgnthose pro-
posed by Zhuravlev et. al. and Tang et. al. as we addressabéept of inter-core
memory system interference in a finer-grained fashion uaihgrdware/software

cooperative approach:

First, the mix of applications to be scheduled may be suchwinatever
software schedule is chosen, high inter-core interferaviteexist among the ap-
plications sharing multiple memory system resources. thsases, pure software-
based scheduling approaches can not be as effective. Howhkeefairness via
source throttling (FST) mechanism of Chapter 4 can provitfopmance and fair-

ness improvements since it throttles applications in agra@red manner.

Second, even if inter-core interference can be somewhatestusing bet-
ter scheduling, after a number of applications have beeadidhd to share some

memory system resources, an FST like approach can furthgoira system fair-
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ness and performance by dynamically controlling memoryesysnterference at a

finer-granularity.

2.4 Research in Prefetching

To our knowledge, there exists no prior work that directhydebses the
problem of inter-application prefetcher interference.sTis an important problem
as it can significantly degrade or totally destroy the besefiprefetching in multi-
core systems even though prefetch-friendly applicatioesb&ing executed on a
CMP. The related papers in prefetcher control, uselesetefelimination, and
cache pollution reduction which can reduce inter-coregigfer interference as a
side effect of their main goals, are summarized below. We htgefly discuss a
number of papers that have studied mitigating the negatieets of prefetching in
shared memory multiprocessor systems, e.g. [71].

2.4.1 Per-Core Prefetcher Control

Almost all prefetching algorithms contain a design parandetermining
their aggressiveness [35, 2, 34, 11, 56]. For example, inynséieam or stride
prefetcher designgrefetch distancend prefetch degre@re two parameters that
define how aggressive the prefetcher is [67]. Prefetch mtgtaefers to how far
ahead of the demand miss stream the prefetcher can sendstggaed prefetch
degree determines how many requests the prefetcher issoesea

In applications where a prefetcher’s requests are accaratémely, a more
aggressive prefetcher can achieve higher performanceh®other hand, in appli-
cations where prefetching is not useful, aggressive prkieg) can lead to large
performance degradation due to cache pollution and waserdary bandwidth,
and higher power consumption due to increased off-chipsssse To reduce these
problems, prior studies have proposed dynamically changie aggressiveness
of prefetchers or turning off prefetchers based on theiueaxy [13, 56, 67, 18].
For example Feedback-Directed Prefetching (FDP) [67] isedepcher throttling
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technique that collects feedback local to a single pre&t¢he., the prefetcher’s
accuracy, timeliness, and pollution on the local core’hedand adjusts its aggres-
siveness based on its usefulness to reduce the negatictsedferefetching.

All such techniques can significantly degrade performareeesthey can
exacerbate inter-thread interference in shared resouftesis because these tech-
nigues use only informatiolocal to the core the prefetcher resides on and do not
have a global view of how each prefetcher’s behavior in theRC3fstem affects
overall system performance. In contrast, the hierarctpoafetcher aggressiveness
control (HPAC) mechanism we propose in Chapter 3 of thisishesttempts to
maximize each core’s performance with prefetching, whie &aking into account
effects and interactions of different cores’ prefetchefgew adjusting each one’s

aggressiveness.

2.4.2 Eliminating Useless Prefetches

Many previous proposals address the problem of uselesgtphels by
proposing mechanisms to intelligently filter them [52, 8, 46, 53, 43]. Mak-
ing prefetchers more accurate by eliminating useless foteds is orthogonal to ad-
dressing prefetcher-caused inter-thread contentiondrskfared memory resources
of a CMP system. Chapter 3 shows that managing prefetchesedanter-thread in-
terference improves system performance significantly aversystem that already
uses prefetch filtering to reduce useless prefetches.

2.4.3 Reducing Cache Pollution

Cache pollution caused by prefetches can be reduced by seipgrate
prefetch buffers [44] instead of inserting prefetched data caches. However,
prior research [67] showed that in order to provide significperformance im-
provements, the size of the prefetch buffers needs to be (atgdeast 64KB).

Even though each of the techniques discussed in Sectiond 2.4
through 2.4.3 can make prefetchers more accurate and réloeicgenerated inter-
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ference by reducing the number of their inaccurate requastge directly identify
and address prefetcher-caused inter-application imeré®. This is an important
problem, since even accurate prefetch requests of oveglseagive prefetchers can
hamper the performance of prefetching in CMP systems.

2.4.4 Prefetching in shared memory multiprocessors

Prior work on prefetching in multiprocessors [13, 71] stwadiaptivity and
limitations of prefetching in these systems. Dahlgren efldl] use prefetch accu-
racy to decide whether to increase or decrease aggresss/@nea per-processor
basis, similar to employing FDP on each core’s prefetcheependently. Tullsen
and Eggers [71] develop a prefetching heuristic tailoredvtie-shared data in
multi-threaded applications. They apply a restructuritggpathm for shared data
to reduce false sharing in multi-threaded applicationscdntrast, our goal is to
make prefetching effective by controlling prefetch-calisger-applicationinter-
ference. Neither of these prior papers solve the problesthigsis targets and they

would be ineffective in reducing prefetcher-caused iatgplication interference.

2.5 Other Research in Inter-Thread Interference Managemenh
Mechanism

Cheng et. al. [10] propose throttling memory requests gardr by
threads in streaming parallel applications to reduce mgragstem interference.
Their mechanism is a software-based approach that allodysammanalytically-
determined threshold number of threads to send out reqtesteemory at any
given time to constrain interference among them. Contramhé parallel applica-
tion memory scheduling mechanism proposed in Chapter 6isthlesis which is
not restricted to a particular programming model, theiusoh requires applica-
tions to be written in a gather-compute-scatter style aastr programming. Chen
et. al. [9] address inter-thread interference in sharelesies opposed to managing

interference at the memory controller and propose a threhdduling mechanism
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aimed at allowing for constructive cache sharing amonggitiseof a parallel appli-
cation. This prior work is orthogonal to the proposals osttlissertation.

2.6 Researchin Critical Path Prediction of Parallel Applications

Cai et. al. [6] propose a mechanism for dynamically detgctntical
threads in a parallel region. They use iteration counts oflfel loop to de-
lay threads that are running ahead to save energy, and tohger priority to
predicted critical threads in the issue queue of an SMT clor¢his thesis we use
iteration counts of parallel loop regions as a small compooéour overall parallel
application memory scheduler design as described in $e6tih1.2. As such, most
of our proposals are orthogonal to this prior work. Otheoptechniques exploit
the idleness of early-arriving threads at barriers to sameqp [45, 48], which [6]

improves over.
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Chapter 3

Hierarchical Prefetcher Aggressiveness Control

3.1 Introduction

Memory latency tolerance mechanisms are critical to imp@sgystem per-
formance as DRAM speed continues to lag processor speedetdhiag is one
commonly-employed mechanism that predicts the memoryesdds a program
will require, and issues memory requests to those addrésdege the program
needs the data. By doing so, prefetching can hide the lat@haymemory access
since the processor either does not incur a cache miss foatitass or incurs a

cache miss that is satisfied earlier because the prefetcleseqlready started the
memory access.

In a chip-multiprocessor (CMP) system, cores share memystes re-
sources beyond some level in the memory hierarchy. Bantwaimain mem-
ory and a shared last level cache are two important sharediness in almost all
CMP designs. Aggressive prefetching on different cores 6MP, although very
beneficial for memory latency tolerance on many applicatismen they are run
alone, can ultimately lead to 1) significant system perferoeadegradation and
bandwidth waste compared to no prefetching, or 2) relatigatall system perfor-
mance improvements with prefetching. This is a result offtil®wing types of
prefetcher-caused inter-core interference in shareduress: 1)prefetch-prefetch
interference prefetches from one core can delay or displace prefetaioes &n-
other core by causing contention for memory bandwidth ardheapace, and 2)
prefetch-demand interferenc@refetches from one core can either delay demand
(load/store) requests from another core or displace theratbre’s demand-fetched

blocks from the shared caches. Our goal in this chapter i®teldp a hardware
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framework that enables large performance improvemenis piefetching in CMPs
by significantly reducing prefetcher-caused inter-coterierence.

Prefetcher-caused inter-core interference can be sontawtlaced if the
prefetcher(s) on each core are individually made more ateuPrevious work [75,
23, 67, 43, 18] proposed techniques to throttle the agyessss or increase
the accuracy of prefetchers. As a side effect, such teclksigan also reduce
prefetcher-caused inter-core interference compared tpsterm that enables ag-
gressive prefetching without any prefetcher control. Hesveproposed prefetcher
throttling techniques [23, 67, 18] only use feedback infation local to the core
the prefetcher resides on. Mechanisms that attempt to ecth&cnegative effects
of aggressive prefetching by filtering useless prefetchests [43, 75] also operate
independently on each core’s prefetch requests. Not takitogaccount feedback
information about the amount of prefetcher-causedr-core interference is a ma-
jor shortcoming of previous techniques. We call this feattbiaformationglobal

(or system-wide) feedback

Why is global feedbackmportant? Figure 3.1 compares the performance
improvement obtained by independently throttling the @tefer on each core us-
ing state-of-the-art feedback-directed prefetching (JF[BF] to that obtained by an
unrealizable system that, in addition to using FDBally eliminates all prefetcher-
caused inter-core interference in shared memory resoufoamnodel the ideal sys-
tem, for each core we eliminate all memory request bufferyesinflicts, memory
bank conflicts, row buffer conflicts, and cache pollution szaiby another core’s
prefetcher, but we model all similar interference effeassed by the same core’s
prefetcher. This experiment was performed for 32 multipangmed workloads on
a 4-core system and Figure 3.2 shows the results of this exeet for all 32 work-
loads? Independently throttling each prefetcher using FDP impsoperformance
by only 4%. In contrast, if all prefetcher-caused interecorterference were ide-

ally eliminated, performance would improve by 56% on averagence, significant

These are the same workloads shown in Figure 3.8, which itatestive classes of workloads
analyzed in Section 3.5.2.
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performance potential exists for techniques that contefigicher-caused inter-core
interference. Moreover, we find that, in some workloadsepehdently throttling
the prefetcher on each core degrades system performaneedsed blindly in-
creases the aggressiveness of accurate prefetchers. elpwswg global feedback,
coordinated and collective decisions can be made for mteées of different cores,
leading to significant performance and bandwidth-efficyeingprovements, as we

show in this chapter.
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Figure 3.1: Average System performance improvement ofllglediminating
prefetcher-caused inter-core interference vs. feedlirelcted prefetching

Basic Idea: We develop a mechanism that controls the aggressiveness of
the system’s prefetchers in a hierarchical fashion, callestrarchical Prefetcher
Aggressiveness Control (HPAC). HPAC dynamically adjustsdggressiveness of
each prefetcher in two way®cal andglobal. The local decision attempts to max-
imize the local core’s performance by taking into accourly docal feedback in-
formation, similar to previous prefetcher throttling macksms [23, 67, 18]. The
global mechanism can override the local decision by takimg account effects
and interactions of different cores’ prefetchers when siiljigg each one’s aggres-
siveness. The key idea is that if prefetcher-caused imet® in the shared cache
and memory bandwidth is estimated to be significant, theaglobntrol system en-
forces a throttling decision that is best for overall sysiganformance rather than

allowing the local control to make a less-informed decigtwat may degrade over-
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performance with no throttling; performance measured inrwenic speedup, see
Section 3.4)

all system performance.

3.2 Motivation

We provided background on relevant previous research ifefofeer ag-
gressiveness control in Section 2.4.1. Since we exterysoahpare our proposal
to Feedback-Directed Prefetching (FDP) [67] in this Chatere we describe the
shortcomings of this prefetcher control mechanism and rgereerallylocal-only
prefetcher contral We also provide insight into the potential benefits of reduc
ing prefetcher-caused inter-core interference usingdioated control of multiple

prefetchers.

3.2.1 Shortcomings of Local-Only Prefetcher Control

Prior approaches to controlling prefetcher aggressivetiest use only in-
formation local to each core can make incorrect decisioomfa system-wide
perspective. Consider the example in Figures 3.3 and 3.4hdm-core work-

load shown, employing aggressive stream prefetching asarethe performance of
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swimandIlbm (by 86% and 30%) and significantly degrades the performaiice o
crafty andbzip2(by 57% and 35%). This results in an overall reduction in exyst
performance of 5% (harmonic speedup - defined in Sectiona®d)an increase in
bus traffic of 10% compared to no prefetching. As Figure 3@sh with FDP, ap-
plications independently gain some performance, howexemn with these gains,
system performance still degrades by 4% and bus traffic asa® by 7% compared
to no prefetching. In contrast, our HPAC proposal makes adinated decision
for the aggressiveness of multiple prefetchers. As a resyfitem performance
increases by 19.1% (harmonic speedup defined in Sectioh) 3while bus traffic

increases by only 3.5% compared to no prefetching as shoWwigure 3.4.
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Figure 3.4: System performance

The key to this performance improvement is throttling dovswinis and
Ibom's prefetchers. When these prefetchers are very aggresbey cause signifi-

cant pollution for other applications in the shared cach#@use high contention
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for DRAM banks. HPAC detects the interference caused@wiris andlbm's ag-
gressive prefetchers. As a result, even though Hi2rrectly decides to throttle
up the prefetchers (because the prefetchers are very aepH&AC throttles down
the prefetchers using global feedback on interferencen@so results in a loss of
swimms andlbm’s performance compared to aggressive prefetching. Honvévis
allowsbzip2to gain performance with prefetching, which was not redliedor this
application with no throttling or with FDP, and significanteduce<srafty's perfor-
mance degradation. Overall, HPAC enables significant padiace improvement

due to prefetching which cannot be obtained with no thrajttor FDP.

The key insight is that a control system that is aware of pecéfr-caused
inter-core interference in the shared memory resourceskeap anaccuratebut
overly aggressive prefetcher in check, whereas a local-omhtrol scheme would
allow it to continue to interfere with other cores’ memorguoests and cause overall

system performance degradation.

Our goal: In this chapter, we aim to provide a solution to prefetcheticu
to significantly improve the performance of prefetching amake it effective on a
large variety of workloads in CMP systems. Our HPAC mechanilwes exactly
that by combining system-wide and per-core feedback inébion to throttle the

aggressiveness of multiple prefetchers of different corescoordinated fashion.

3.3 Hierarchical Prefetcher Aggressiveness Control (HPAL

The Hierarchical Prefetcher Aggressiveness Control (HP&@chanism
consists ofocal andglobal control structures. The two structures have fundamen-
tally different goals and are hence designed very diffédyesnt explained in detall

below.

3.3.1 Local Aggressiveness Control Structure

The local control structure adjusts the aggressivenesseqgiriefetcher(s) of
each core with the sole goal of maximizing the performandeaifcore. This struc-
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ture is not aware of the overall system picture and the iaterfce between memory
requests of different cores. Prior research [67, 18] predagich structures. Such
previously proposed structures or other novel structuresdetermine the aggres-
siveness of a single core’s prefetcher(s) are orthogorthktadeas presented in this
chapter and could be incorporated as the local control mesimof the system
proposed here. In fact, we evaluate the use of two previooggsals, FDP [67]

and coordinated throttling [18], as our local control sture in Section 3.5.6.

3.3.2 Global Aggressiveness Control Structure

Theglobalaggressiveness control structure keeps track of prefetzhesed
inter-core interference in the shared memory system. Taleedjicontrol can accept
or override decisions made by each local control structutie thie goal of increas-

ing overall system performance and bandwidth efficiency.

3.3.2.1 Terminology

We first provide the terminology we will use to describe thelgll aggres-
siveness control. For our analysis we define the followimm#e which are used as

global feedback metrics in our mechanism:

Accuracy of a Prefetcher for Corei - ACC;: The fraction of prefetches
sent by core’s prefetcher(s) that were used by subsequent demand tsques

Pollution Caused by Core:’s prefetcher(s) - POL;: The number of de-
mand cache lines of all corgsevicted by core’s (j # i) prefetches that are re-
quested subsequent to evictibhis indicates the amount of disturbance a core’s

prefetches cause in the cache to the demand-fetched blbokisan cores.

Bandwidth Consumed by Core: - BWC;: The sum of the number of

DRAM banks servicing requests (demand or prefetch) frone cexery cycle.

2Please note this definition is different from that used by&t et al. [67] for pollution caused
by inaccurate prefetches on the same core’s demands.
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Bandwidth Needed by Corei - BW N;: The sum of the number of DRAM
banks that are busy every cycle servicing requests (demgmefztch) from cores
j when there is a request (demand or prefetch) from ¢gye# i) queued for that
bank in that cycle. This indicates the number of outstandaugiests of a core that
would have been serviced in the DRAM banks had there beent@derence from

other cores.

Bandwidth Needed by Cores Other than Corei - BWNO;: The sum of
the needed bandwidth of all cores except coi@ which the prefetcher throttling

decision is being made. Therefore,

N—-1
BWNO; = Z BWNj, N :Numberof cores
j=0, j#i
Note that the global feedback metrics we define include méiron on in-
terference affectinpothdemand and prefetch requests of different cores.

Example: Figure 3.5 illustrates the concepts of bandwidth consurng@ind
bandwidth need. Figure 3.5(a) does not show many detailseoDRAM subsys-
tem but provides a framework to better understand the digfinsitabove. It shows
a snapshot of the DRAM subsystem with four requests beingcset by the dif-
ferent DRAM banks while other requests are queued waitimgHose banks to
be released. Based on the definitions above, the “Bandwadtbuened by a core”
(BWC;) and “Bandwidth needed by a coreB{V N;) counts of the four different
cores are incremented with the values shown in Figure 3iB(the cycle the snap-
shot was taken. We focus on the incrementsddr NV of cores 1 and 2 to point out
some subtleties. Core 1 has one request waiting for bankeDwaiting for bank 1,
and one waiting for bank 3. However, when calculati®ig’ vV of core 1, only the
requests waiting for bank 0 and bank 3 are accounted for.elketivas no interfer-
ence in the system, and if core 1 was the only core using thedmasources, the
request from core 1 in the queue for bank 1 would still havetbasait. Hence, the
BW N count for core 1 is incremented by 2 in this cycle. Core 2 hasetihequests

waiting for bank 0, one request waiting for bank 2 and two esis waiting for
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Figure 3.5: Example of how to measuB&/ C;, BW N;, andBW NO;

bank 3. However, if there was no interference present ondyadithe three requests
waiting for bank 0, the request waiting for bank 2, and onéhefrequests waiting
for bank 3 could have been serviced in the cycle shown by tapsot. Hence, the

BW N count for core 2 is incremented by 3 in this cycle.

Intuitively, BWC corresponds to the amount of shared bandwidth used by
a particular core. A core with higlB1wC can potentially delay other cores’ si-
multaneous access to the shared DRAM banks and have a reigapisct on their
memory access latencieBW N corresponds to the amount of bandwidth a core is
denieddue to interference caused by other cores in the system. @& rmogyht be
causing interference for other cores if the sumBdf’' N of other cores grows too
large (i.e.,BW NO of the core is too large).

3.3.2.2 Global Control Mechanism

In this section we explain how the feedback defined aboveead ts im-
plement the global control mechanism. We refer to the pecefat being throttled
as thetargetprefetcher. When making a decision to allow or override theision
of a prefetcher’s local control, the global control unit ded¢o know: i) how accu-
rate that prefetcher is, and ii) how much interference trefgicher is causing for
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other cores in the system. In our proposed solution, we uséollowing param-
eters to identify how much interference the prefetcher akeads generating for
other cores in the shared resources: 1) the bandwidth catbsncore (BW C;),

2) the pollution caused by the prefetcher(s) of comn other cores’ demand re-
quests POL;), and 3) the bandwidth needed by the other cores’ requests (b
prefetch and demandpB{’ NO;). Parameter 1BW C;, indicates the potential for
increased interference with other cores due to the bantivwaidihsumption of core
i. A high BWC; indicates that corewill potentially cause interference if the target
prefetcher’s aggressiveness is not kept in check. Parasn2tend 3 indicate the
existence of such interference in the form of high bandwittkds of other cores
(BW NO;) or cache pollution experienced by other core®(.;). When BW NO;

or POL; has a high value, high interference has been detected, aice heeasures

are required to reduce it.

Our global control mechanism is an interval-based mechaiist gathers
the described feedback parameters during each intervaheAend of an interval,
global control uses the collected feedback to allow or agterthe decision made
by the target prefetcher’s local control using the follog/principles.

Principle 1. When the target prefetcher shows low pollution (I6WL;):

(a) If the accuracy of the prefetcher is Iévand other cores need a lot
of bandwidth (i.e.,BW NO of the core is high), then override the local control’'s
decision and throttle down.Rationale: this state indicates that an inaccurate
prefetcher’s requests have caused bandwidth interferdmataes negatively affect-
ing other cores. Hence, the inaccurate prefetcher shoutltrbled down to reduce

the negative impact of its inaccurate prefetches on othesco

(b) If the accuracy of the prefetcher is low and the prefetchesi® is con-
suming a large amount of bandwidth (i.&WC of the core is high), our global

control mechanism allows the local decision to affect thefgicher only if the local

3Note that the local and global control structures can haparsgée thresholds to categorize an
accuracy value dsw or high.
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control decides to throttle down. Otherwise, global confeaves the aggressive-
ness at its current leveRationale: this is a state where interference can potentially
worsen because the high bandwidth consumption of an inatxprefetcher’s core

can result in high bandwidth needs for other cores.

(c) If the prefetcher is highly accurate, then allow the locaitcol to decide
the aggressiveness of the prefetcHeationale: if a highly accurate prefetcher is
not polluting other cores’ demand requests (if&),L of the core is low), it should

be given the opportunity to increase the performance obttallcore.
Principle 2. When the target prefetcher is polluting other cores (highr.;):

(a) If the accuracy of the prefetcher is low, then override thealaontrol’s
decision and throttle dowrRationale: if an inaccurate prefetcher’s requests pollute
the demands of other cores, it could be negatively affecyrsgem performance.

(b) If the target prefetcher is highly accurate, then allow theal decision
to proceed if there are no other signs of interference (IBhC and BWNO of
the core are low)Rationale: if the bandwidth needs of all cores are observed to
be low, the high pollution caused by the target prefetchékédy not affecting the
performance of other cores.

(c) If either bandwidth consumedB(V C) by the target prefetcher's core
is high or other cores need a lot of bandwidBI{ NO is high), then only allow
the local decision to affect the prefetcher if it decideshmttle down, otherwise
leave aggressiveness at its current lewhtionale: even though the prefetcher is
accurate, it is showing more than one sign of interferencelwould be damaging

overall system performance.

Rules used for global aggressiveness controfable 3.1 shows the rules
used by the global control structure. There is one case st#tile that does not
follow the general principles described above, case 14 higdase, interference
is quite severe even though the target prefetcher is higbtyrate. The target
prefetcher’s core is consuming a lot of bandwidth and isytimify other cores’
demands while other cores have high bandwidth needs. Duighoiriterference
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detected by multiple feedback parameters, reducing miedetaggressiveness is
desirable. The decision based on general principles woedd/Allow local deci-
sion only if it throttles down,” which is not strong enoughdatlteviate this very high
interference scenario. Therefore, we treat case 14 as apgon to the aforemen-
tioned principles and enforce a throttle-down with globahirol.

Info from Info from
Case corei other cores Decision Rationale
Acc; | BWC; | POL; | BWNO;
1 Low | Low Low Low Allow local decision| No interference
. Allow local
2 Low | High Low Low throttle down 1(b)
. Global enforces
3 Low - Low High throttle down 1(a)
4 High | Low | Low Low Allow local decision 1(c)
5 High | High | Low Low Allow local decision 1(c)
6 High | Low | Low High Allow local decision 1(c)
7 High | High | Low High Allow local decision 1(c)
. Global enforces
8 Low | Low High Low throttle down 2(a)
. . Global enforces
9 Low | High | High Low throttle down 2(a)
. . Global enforces
10 Low - High High throttle down 2(a)
11 || High| Low | High Low Allow local decision 2(b)
. . . Allow local
12 || High | High | High Low throttle down 2(c)
. . ) Allow local
13 High | Low High High throttle down 2(c)
. . . : Global enforces Very high
14 High | High | High High throttle down interference

Table 3.1: Global control rulesACC;: Accuracy of prefetche3Ww C;: Consumed
bandwidth,POL;: Pollution imposed on other cores, aB#l’ NO,: Sum of needed
bandwidth of other cores

Classification of global control rules: We group the cases of Table 3.1 into
three main categories classified based on the intensityeohtlerference detected

by each case.
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1) Severe interference scenariGases 3, 8, 9, 10 and 14 fall into this cate-
gory. In these cases, the goal of the global control is tocedbe detected severe
interference by reducing the number of prefetch requestismgged by the interfer-
ing prefetchers. When the target prefetcher is inaccueatd,there is high band-
width need from other cores (case 3), or when an inaccurafetgher is polluting
(cases 8, 9 and 10), or when a prefetcher consumes high bdigva polluting,
and causes high bandwidth needs on other cores (case 1#Xcher aggressive-
ness should be reduced regardless of the local decisiorer &f¢ prefetcher has
been throttled down and the detected interference has le&zsa severe (by ei-
ther improved accuracy of the target prefetcher, reducdidipn for other cores,
or reduced bandwidth needs of other cores), the globalttimptecisions for this
prefetcher will be relaxed. This will allow the prefetcher ¢ither not be throt-
tled down further or throttled up based on local control'tufe evaluation of the
prefetcher’s behavior.

2) Borderline interference scenaricCases 2, 12 and 13 fall into this cat-
egory. In these cases, the global control’s goal is to prethen prefetcher from
transitioning into a severe interference scenario. Thdoise by either overriding
local control throttle up decisions, or throttling the prtgher down at the request
of the local control. When an inaccurate prefetcher consumgh bandwidth but
is not polluting (case 2), or when an accurate polluting gtafer either consumes
high bandwidth or causes high bandwidth need for other cma&ses 12 and 13),
the prefetcher should not be throttled up as a result of tbal loontrol structure’s

decision.

3) No interference scenario or moderate interference by anueate
prefetcher: All other cases fall in this category. In these cases, eithere is no
interference or an accurate prefetcher has moderate enéerée. As explained in
the general principles, in these cases, the prefetchegseagiveness is decided by
the local control structures optimizing for highest perfi@nce in each core. We
empirically found that high prefetcher accuracy can overedhe negative effects
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of moderate interference (cases 5, 6, 7 and 11) and theréfer®cal decision is
used.

In Section 3.5.2.2, we present a detailed case study togeamsight into
how prefetcher-caused inter-core interference hampestesy performance and
how HPAC improves performance significantly by reducingrsunterference.

3.3.2.3 Handling Multiple Prefetchers on Each Core

HPAC can seamlessly support systems with multiple typesrefiepchers
per core. In such systems, where speculative requests ffteredt prefetchers can
potentially increase prefetcher-caused inter-core fietence, having a mechanism
that takes such interference into account is even more it@pbrin a system with
multiple prefetchers on each core, the system-level feddivdormation referred
to in Table 3.1 for each core correspondsatbthe prefetchers on that core as a
whole. For example, accuracy is the overall accuracy ofrafigichers on that core.
Similarly, pollution is the overall shared cache polluticaused by all prefetchers

from that core.

Note that prior research on intra-core prefetcher managéfh8] is orthog-
onal to the focus of this chapter. In HPAC, when the local aggiveness control
corresponding to each core makes a decision for one of thetphers on that core,
the global control allows or overrides that decision basethe effects and interac-

tions of other cores’ prefetchers.

3.3.2.4 Support for System-Level Application Priorities

So far, we have assumed concurrently running applicatioesoa equal
priority and hence are treated equally. However, systertwsoé (operating sys-
tem or virtual machine monitor) may make policy decision®yitizing certain
applications over others in a multi-programmed workloade $#amlessly extend
HPAC to support such priorities: 1) separate thresholdesltan be used for each
concurrently-running application, 2) these separatestioll values are config-
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urable by the system software using privileged instruciomo prioritize a more
important application within HPAC, the system software sanply set a higher
threshold value foBW NO,, POL;, and BW (C; and a lower threshold value for
Acc; for that application. By doing so, HPAC allows a more impottapplication’s
prefetcher to cause more interference for other applioatibdoing so improves the

more important application’s performance.

3.3.2.5 Optimizing Threshold Values and Decision Set

Genetic algorithms [25] can be used to optimize the threkkalue set or
decision set of HPAC at design time. We implemented and atedua genetic al-
gorithm for this purpose. We found that the improvementsimigd by optimizing
the decision set were not significant, but a 5% average pedoce improvement
on top of HPAC can be achieved by optimizing thresholds fossts of workloads.
Although we did not use such an optimization for the resulésented in the eval-
uation section, this demonstrates a rigorous and autonagi@ach for optimizing

HPAC's decision and threshold sets.

3.3.3 Implementation

In our implementation of HPAC, FDP, and coordinated thiragtl all mech-
anisms are implemented using an interval-based samplirghamésm similar to
that used in [67, 18]. To detect the end of an interval, a hardwounter is used
to keep track of the number of cache lines evicted from the &¢he. When the
counter exceeds the empirically determined threshold 8284victed lines, an in-
terval ends and the counters gathering feedback informaitie updated using the

following equation:

Count = 1/2 Count AtStartO fInt. + 1/2 CountDuringInt.

HPAC'’s global control mechanism maintains counters foipkeg track of
the BWC;, BWN; and POL; at each core as defined in Section 6.2.2.14CC;
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is calculated by maintaining two counters to keep track ef tamber of useful
prefetches for core (used-total;) and the total number of prefetches of that core
(pref-total;). The update of these counters is similar to that proposedrBP.
ACC; is obtained by taking the ratio @ked-total; t0 pre f-total; at the end of every
interval. BWC; and BW N; are maintained by simply incrementing their values at
the memory controller every DRAM cycle based on the statb®féquests in that

cycle (see the example in Section 6.2.2.1).

To calculatePOL;, we need to track the number of last-level cache demand
misses core’s prefetches cause for all other cores. We use a Bloom filiiefgr
each core to approximate this count. Each filter entry consists giodution bit
and aprocessor id When a prefetch from corereplaces another cores demand
line, cores’s filter is accessed using the evicted line’s address, theesponding
pollution bit is set in the filter, and the corresponding @ssor id entry is set tp.
When memory finishes servicing a prefetch request from gptiee Bloom filters
of all cores are accessed by the address of the fetched Ishéhanpollution bit
of that entry is reset if the processor id of the correspogaintry is equal tg.
When a demand request from corenisses the last level cache, the filters of all
cores are accessed using the address of that demand relftlestcorresponding
bit of corei’s Bloom filter is set and the processor id of the entry is edoadl the
filter predicts that this line was evicted previously due fmrefetch from core and
the miss could have been avoided had the prefetch that dwisgerequested line
not been inserted into the cache. Henkeg)L; is incremented and the pollution
bit is reset. The interval-based nature of our technique thé communication of
information needed to update pollution filters and feedlaminters off the critical
path since all such communication only needs to completerbéahe end of the

current interval.
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3.4 Methodology
3.4.1 Metrics

To measure CMP system performance, we lsbvidual Speedup (1)
Harmonic mean of Speedups (Hspeedup or |HS®), and Weighted Speedup
(Wspeedup or W3b6]. Recent research [19] on system-level performance met
rics for multi-programmed workloads shows tHa§ is the reciprocal of thew-

erage turn-around timand is the primary user-oriented system performance met-

ric [19]. WSis equivalent tasystem throughpwhich accounts for the number of
programs completed per unit of time. We show both metricsughout our eval-
uation. Ispecqup IS the ratio of an application’s performance when it is rugetther
with other applications on different cores of a CMP to itsfpanance when it runs
alone on one core in the CMP system (other cores are idle)s mieiric reflects
the change in performance of an application that resulta fenning concurrently
with other applications in the CMP system.

To demonstrate that the performance gains of our technigggesot due to
unfair treatment of applications, we also repdrifairness as defined in [54]. We

use the following definitions in determining unfairness:

1) We define a memory system designfas if the slowdowns of equal-
priority applications running simultaneously on the cooés. CMP are the same,
similarly to previous works [66, 49, 7, 22, 54].

2) We define slowdown a&,qrea/Tuione Where Tspa.eq is the number of
cycles it takes to run simultaneously with other applicagiandl,,,.. is the number
of cycles it would have taken the application to run aloner@ngame system.

Unfairness is defined as the ratio between the maximum idaali slow-

down and minimum individual slowdown among all co-execuapglications.

The equations below provide the definitions of these methicthese equa-
tions, NV is the number of cores in the CMP systeh2C*°"¢ is the IPC measured
when an application runs alone on one core in the CMP systéimtiag prefetcher
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enabled (other cores are idld)PCto9¢thr is the IPC measured when an application

runs on one core while other applications are running on thercores.

together
HS = N-1 Igcl-alone ’ WS = Z If]fcalone
IPCZ‘together
ISpeedupi = W
1S; = TiShaTEd Unfairness = MAX{IS0, ISy, ..., ISN -1}

Talone MIN{ISy, ISy, ... ISn_1}

3.4.2 Processor Model

We use a cycle accurate x86 CMP simulator for our evaluatita.faith-
fully model all port contention, queuing effects, bank cmt$l, and other DDR3
DRAM system constraints in the memory subsystem. Table I30%s the base-
line configuration of each core and the shared resource aoatign for the 4 and
8-core CMP systems we use.

15 stage out of order processor

Decode/retire up to 4 instructions

Issue/execute up to 8 micro instructions;

256-entry reorder buffer;

Fetch up to 2 branches; 4K-entry BTB;

64K-entry hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line size;

L1 D-cache: 32KB, 4-way, 2-cycle, 64B line size;

On-chip Caches| Shared unified L2: 2MB (4MB for 8-core), 16-way (32-way foc8re),
16-bank, 15-cycle (20-cycle for 8-core), 1 port, 64B lineesi

Prefetcher Stream prefetcher with 32 streams, prefetch degree of 4peafdtch dis-
tance of 64 [70, 67]

On-chip, demand-first [43] Parallelism-Aware Batch Schiedupolicy [55]
128 L2 MSHR (256 for 8-core) and memory request buffer; Twormagy
channels for 8-core;

667MHz DRAM bus cycle, Double Data Rate (DDR3 1333MHz) [50],
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank
Latency: 15ns per commantiRP, *RCD, CL);

Execution Core

Front End

DRAM controller

DRAM and Bus

Table 3.2: Baseline system configuration
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3.4.3 Workloads

We use the SPEC CPU 2000/2006 benchmarks for our experihrematia
uation. Each benchmark was compiled using ICC (Intel C Cérjpor IFORT
(Intel Fortran Compiler) with the -O3 option. We ran each d@nark with the
reference input set for 200 million x86 instructions sedelchby Pinpoints [62] as a

representative portion of each benchmark.

We classify benchmarks intmemory intensive/non-intensjweith/without
cache locality in data accessesndprefetch sensitivéor purposes of analysis in
our evaluation. We refer to a benchmark as memory intensit® L2 Cache Miss
per 1K Instructions (MPKI) is greater than one. We say a bewgk has cache
locality if its number of L2 cache hits per 1K instructionsgieeater than five, and
we say it is prefetch sensitive if the performance deltaiokthwith an aggressive
prefetcher is greater than 10% compared to no prefetchihgsd classifications are
based on measurements made when each benchmark was ruoaldre=4-core
system. We show the characteristics of the benchmarks pipaia in the evaluated

workloads in Table 3.3.

We used 32 four-application and 32 eight-application mpitigrammed
workloads for our 4-core and 8-core evaluations. These Wwads were randomly
selected from all possible 4-core and 8-core workloads thighone condition that
the evaluated workloads be relevant to the proposed tegbgigeach application in

each workload is either memory intensive, prefetch samsior has cache locality.

3.4.4 Prefetcher Aggressiveness Levels and Thresholds tevaluation

Table 3.4 shows the values we use for determining the aggeesss of the
stream prefetcher in our evaluations. The aggressiveridss GHB [56] prefetcher
is determined by itprefetch degree We use five values for GHB'’s prefetch de-
gree (2, 4, 8, 12, 16). Throttling a prefetcher up/down cspoads to increas-

ing/decreasing its aggressiveness by one level.

Threshold values for FDP [67] and coordinated throttling][&re empiri-
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| I No prefetcher || With Stream Prefetcher |

Benchmark IPC | MPKI | Traffic || IPC | MPKI | Traffic | ACC (%)
bzip2.00 1.27| 0.39 0.08| 1.37| 0.11 0.09 96
swim.00 0.36 | 23.10 462 | 0.75| 3.43 4.62 99.9
facerec00 1.35| 272 054 | 145 1.18 0.88 59.6
parser00 1.06| 0.62 0.12 || 1.17| 0.09 0.15 86.1
apsi00 1.75| 0.85 0.17 | 1.87| 0.39 0.17 99.3
perlbmk 00 1.85| 0.04 0.01| 1.86| 0.02 0.02 28.7
xalancbmk06 || 0.95| 0.82 0.16| 0.79| 1.44 0.85 8.2
libquantumO6 || 0.39 | 13.51 270|| 0.40| 2.62 2.70 99.9
omnetpp06 0.41 8.60 1.72 || 0.44 8.39 531 115
GemsFDTDO06 || 0.46 | 15.35 3.07 || 0.74| 1.67 3.34 90.9
Ibm_06 0.37| 20.16 403 0.50| 3.76 4.25 93.9
bwaves06 0.58| 18.7 3.74 || 1.02| 0.57 3.74 90.8
crafty_00 1.89| 0.09 0.02 | 1.92| 0.05 0.03 48.2
leslie3d06 0.37| 20.75 415 0.63| 1.45 4.46 92.7
sphinx306 0.36 | 12.57 251 0.59 1.71 4.25 56.7
zeusmp06 0.74| 4.37 0.87| 0.85| 1.68 1.19 63.5
mesa00 1.62| 0.59 0.12 | 1.61| 0.29 0.12 97.4
gromacs06 1.06| 0.26 0.05| 1.07| 0.03 0.06 88.2
lucas00 0.34| 10.61 212 | 0.56| 0.31 2.12 99.9
equake00 0.40| 19.33 3.87| 0.61| 3.11 3.93 98.2
vortex 00 1.14| 0.90 0.18 | 1.11| 0.90 0.30 204
gobmk 06 1.18| 0.28 0.06 || 1.20| 0.17 0.08 49.8
eon00 221| 0.01 0.00|| 2.21| 0.00 0.00 37.3
soplex06 0.33| 20.93 419 0.49| 4.69 5.05 79.8
gzip_.00 1.15| 0.34 0.07 || 1.15| 0.31 0.19 4.3
applu00 0.67 | 11.39 2.28| 0.95 11 2.34 96.9
wrf_06 0.66| 7.81 156 0.93| 0.69 1.64 95
povray 06 1.92 0.02 0.00 || 1.92 0.01 0.01 27.3
mcf_.00 0.16 | 33.82 6.76 || 0.10 | 28.54| 24.42 74.9
mgrid_00 0.53| 6.49 1.30|| 0.79| 0.38 1.38 94.3
sixtrack 00 0.95| 0.10 0.02 || 0.95| 0.00 0.12 46.8
sjeng06 1.61| 0.37 0.07| 1.61| 0.37 0.12 2.1
fma3d 00 0.84| 4.13 0.83 || 1.27| 0.43 0.86 95.1
gap00 090 | 1.98 040 1.44| 0.04 0.40 99.1
hmmer06 1.33| 1.11 0.22| 1.66| 0.01 0.23 96.2
twolf_00 1.19| 0.09 0.02| 1.20| 0.04 0.02 934
vpr_00 1.31| 0.10 0.02 || 1.33| 0.06 0.02 76.8
apsi00 1.75| 0.85 0.17 || 1.87| 0.39 0.17 99.3
wupwise00 1.47| 1.68 0/34 ] 1.89| 0.38 0.61 48.5

Table 3.3: Characteristics SPEC 2000/2006 benchmarksafiggar in evaluated
workloads with/without prefetching: IPC, MPKI, Bus Traffi®! cache lines), and
ACC
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cally determined for our system configuration. We use thegthold values shown
in Table 3.5 for HPAC. We determined these threshold valuasirgcally, but due
to the large design space, we did not tune the values. Untassvase stated, we

use FDP as the local control mechanism in our evaluations.

Aggressiveness Stream Stream
Level Prefetcher| Prefetcher
Distance Degree
Very Conservative 4 1
Conservative 8 1
Moderate 16 2
Aggressive 32 4 ACC | BWC | POL | BWNO
Very Aggressive 64 4 0.6 50k 90 75k

Table 3.4: Prefetcher configurations  Table 3.5: HPAC threshold values

3.5 Experimental Evaluation

We evaluate HPAC on both 4-core and 8-core systems. We finththe
provements provided by our technique increase as the nuaflsares in a CMP
increases. We present both sets of results, but to easestaading most of the

analysis is done on the 4-core system.

3.5.1 8-core System Results

Figure 3.6 shows system performance and bus traffic averagexs 32
workloads evaluated on the 8-core system. HPAC providehititeest system per-
formance among all examined techniques, and is the onlynigea employing
prefetching that improves average system performanceraverefetching. It also
consumes the least bus traffic among schemes that empl@tqirelg. Several key

observations are in order:

1. Employing aggressive prefetching with no throttlingfpems worse than
no prefetching at all: harmonic speedup and weighted sypegeicrease by 16% and
10% respectively. We conclude that attempting to aggressprefetch in CMPs
with no throttling has significant negative effects, whicakas aggressive prefetch-
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ing a challenge in CMP systems.

2. FDP increases performance compared to no prefetchetliingo but is
still inferior to no prefetching. FDP’s performance is 4.8%2% (HS/WS) lower
than no prefetching while its bus traffic is 12.8% higher. Wadude that inter-core
prefetcher interference, which is left unmanaged by eveta®-®f-the-art local-
only prefetch control scheme, can cause prefetching to baramtal to system
performance in CMPs.

3. HPAC improves performance by 8.5%/5.3% (HS/WS) compévetb
prefetching, at the cost of only 8.9% higher bus traffic. Idiidn, HPAC increases
performance by 23% and 14% (HS), and consumes 17% and 3.2%mkasory
bandwidth compared to no throttling and FDP respectivedys@anmarized in Ta-
ble 3.6. HPAC enables prefetching to become effective in € B§Pcontrolling and
reducing prefetcher-caused interference. Among the sebemnere prefetching
is enabled, HPAC is the most bandwidth-efficient. We corelticht with HPAC,
prefetching can significantly improve system performarfd@MP systems without

large increases in bus traffic.

0.6 4.5 20-
4.04 - nl8
0.5 | 3.5 - 216
2 0.4] = %—? 3.0l - o4
2 @ 2.5 - £12
& 0.3] - S 10]
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2 0.2 - =15 - < ~{=No Prefetching
1.0l ] 61— Pref. + No Throttling
. = 4,
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0.0! - 0.0! - O Fm———
(a) Hspeedup (b) wspeedup (C) Bus Traffic

Figure 3.6: HPAC performance on 8-core system (all 32 wa#§)

HS WS | Bus Traffic

HPAC A over No Prefetching| 8.5% | 5.3% 8.9%
HPAC A over No Throttling || 23% | 12.8% -17%
HPAC A over FDP 14% | 6.6% -3.2%

Table 3.6: Summary of average results on the 8-core system
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To show how HPAC performs compared to other schemes on dlifter
workloads, Figure 3.7 shows the performance improvemeniefms of harmonic
speedup) of no prefetching, FDP, and HPAC normalized todhptefetching with

no throttling across the 32 evaluated workloads.

3.5.2 4-core System Results

We first present overall performance results for the 32 waatls evaluated
on the 4-core system, and analyze the workloads’ charatitsi We then discuss

a case study in detail to provide insight into the behavidhefscheme.

3.5.2.1 Overall Performance

Table 3.7 summarizes our overall performance results dtaore system.
As observed with the 8-core workloads in Section 3.5.1, HRA®Wides the highest
system performance among all examined techniques. It @isergtes the least bus
traffic among schemes that employ prefetching.

HS | WS | Bus Traffic

HPAC A over No Prefetching| 8.9% | 5.3% 8.9%
HPAC A over No Throttling 15% | 8.4% -14%
HPAC A over FDP 10.7% | 4.7% -3.2%

Table 3.7: Summary of average results on the 4-core system

Workload Analysis: Figure 3.8 shows the performance improvement (in terms
of harmonic speedup) of no prefetching, FDP, and HPAC namedlto that of
prefetching with no throttling across the 32 evaluated \Wwealls. We identify five
distinct classes of workloads as shown in subfigures 3.&(augh (d).

Class 1: Prefetcher-caused inter-core interference does not aigwificant gains

with no throttling or FDP. In fact, in the leftmost two cas€®P degrades perfor-
mance slightly compared to no throttling because it inazegsefetchers’ interfer-
ence in the shared resources (as discussed in detail in $eestady presented in
Section 3.5.2.2). HPAC controls this interference and Esatmuch higher system
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performance improvement than what is possible without it.

Class 2: Significant performance can be obtained with FDP and sonestwvith
no throttling since prefetcher-caused inter-core interfiee is tolerable. HPAC per-

forms practically at least as well as these previous meshasi

Class 3:Intense prefetcher-caused inter-core interference madeéstching signif-

icantly harmful with no throttling or FDP. FDP can slightlyduce this interference
compared to no throttling by making prefetchers indepetigenore accurate, but
still degrades performance significantly compared to néepching. The existence
of such workloads makes prefetching without control of ptelfier-caused inter-
core interference very unattractive in CMPs. However, HRHR@bles prefetching

to significantly improve performance over no prefetching.

Class 4:Small prefetcher-caused inter-core interference can heated by FDP.
Potential system performance to be gained by prefetchirggniall compared to
other classes. Small performance degradations of no lingpttan be eliminated

using FDP or HPAC, which perform similarly.

Class 5: Intense prefetcher-caused inter-core interference exige to the co-

execution of prefetch-friendly benchmarks together wablge-sensitive and mem-
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ory non-intensive applications. FDP can slightly reducs ithterference compared
to no throttling by making prefetchers independently mareusate, but still de-
grades performance significantly compared to no prefetchtPAC detects inter-
core interference and throttles down aggressive prefetchidowever it performs
worse than no prefetching on these workloads. This is duefaintreatment of de-
mand requests from cache-sensitive and memory non-ingeagplications in the
presence of the large number of prefetch requests from tbketeh-friendly and

memory intensive applications. We address this problengtaitin Chapter 5.

We conclude that HPAC is effective for a wide variety of warkdls. In
many workloads where there is significant prefetcher-chuger-core interference
(classes 1 and 3), HPAC is the only technique that enabléstpingng to improve
performance significantly over no prefetching. When pifet-caused inter-core
interference is not significant (class 2), HPAC retains ifiggmnt performance over
no prefetching. Hence, HPAC makes prefetching effectiverabust in multi-core
systems.

3.5.2.2 Case Study

This case study is an example of a scenario where prefetecheed inter-
core interference that hampers system performance candsgv@a in both shared
bandwidth and shared cache space. It provides insight iy aentrolling the
aggressiveness of a CMP’s prefetchers based on local-eadiphick from each core
is ineffective.

We examine a scenario where a combination of three memaoeypsive ap-

plications (ibquantum, swim, GemsFDT@re run together with one memory non
intensive application that has high data cache localtiyp?d. Figures 3.9 and 3.10
show individual benchmark performance and overall systenfopmance, respec-

tively. Several observations are in order:

First, employing aggressive prefetching on all cores inapso perfor-
mance by 6.0%/3.7% (HS/WS) compared to no prefetching. Mevwyehe ef-
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fect of prefetching on individual benchmarks is mixed: ewBough two ap-
plications’ swim and GemsFDTD performance significantly improves, that of
two others [jbquantumandbzip? significantly degrades. Althoudibquantuns
prefetches are very accurate, they, along viltlquantun's demands, are delayed
by swinmis andGemsFDTDs prefetches in the memory controller. Since previous
works [43, 18] analyzed the effects of enabling prefetchmgiulti-core systems,
we focus our analysis on the differences between prefegcithout throttling,
local-only throttling, and HPAC.

Second, using FDP to reduce the negative effects of prefetcctually
degrades system performance by 1.2%/1% (HS/WS) compared throttling.
To provide insight, Figure 3.9(b) shows the percentage il texecution time
each application’s prefetcher spends in different aggressss levels. With FDP,
since the feedback indicates high accuracy for prefetabfdiisquantum, swinand
GemsFDTD(respectively at accuracies of 99.9%, 99.9%, 92%), thesfgichers
are kept very aggressive. This causes significant memorghviadih interference
between these three applications, which calibgsiantun's demand and prefetch
requests to be delayed by the aggressiwemand GemsFDTDprefetch requests.
On the other handhzip2s demand-fetched cache blocks get thrashed due to the
very large number obwinmis and GemsFDTDs prefetches:bzip2s L2 demand
MPKI increases by 26% from 2.1 to 2.’ hzip2s prefetcher performance is also
affected negatively as its useful prefetches are evictma the cache before being
used and therefore reduced by 40%. This prompts FDP to retiecaggressive-
ness ofbzip2s prefetcher as a result of detectiedal low accuracy, which in turn
causes a loss of potential performance improvemenbp?2 from prefetching.
As a result, FDP does not helfpquantuns performance and degradézip2s
performance, resulting in overall system performance aggion compared to no

throttling.

Third, using HPAC increases system performance signifizably
12.2%/8.7% (HS/WS) while reducing bus traffic by 3.5% comaplao no throttling.
Hence, HPAC makes aggressive prefetching significantleti@al to the entire
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Figure 3.9: Case Study: individual application behavior

system: it increases performance by 19%/12.7% (HS/WS) eoedpto a system
with no prefetching. The main reason for the performance=benof HPAC over
FDP is twofold: 1) by tracking prefetcher-caused intenieein the shared cache,
HPAC recognizes that aggressive (yet accurate) prefetdffegmandGemsFDTD
destroy the cache locality dizip2 and throttles those applications’ prefetchers,
thereby significantly improvindpzip2s locality and performance, 2) by tracking
the bandwidth need and bandwidth consumption of cores IrDIRAM system,
HPAC recognizes thatwims and GemsFDTDs aggressive prefetches delay ser-
vice of libquantuns demands and prefetches, and therefore throttles dovwsethe
two prefetchers. Doing so significantly improvdsjuantunis performance. HPAC
improves the performance of all applications compared tpretetching, except for
bzip2 which still incurs a slight (1.5%) performance loss. FipaHPAC reduces
memory bus traffic compared to both FDP and no throttling bsea 1) it elimi-
nates many unnecessary demand requests that need to behedféom memory
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Figure 3.10: Case Study: system behavior

by reducing the pollutiotzip2experiences in the shared cacheip2’sbandwidth

demand reduces by 33% with HPAC compared to FDP, 2) it elitegaaome use-
less (or marginally useful) prefetch requests du&tmmsFDTD’svery aggressive
prefetcher: we found that in total, HPAC reduces the numlberseless prefetch

requests by 14.6% compared to FDP.

Table 3.8 and Figure 3.9(b) provide more insight into thedvedr and bene-
fits of HPAC by showing the most common global control cases{fTable 3.1) for
each application and the percentage of time each prefetgleeds at different lev-
els of aggressiveness respectively (in Figure 3.9 (b), LEgerresponds to a “very
conservative” aggressiveness level as defined in Sectdb4.B. Note that Case 14,
which indicates extreme prefetcher interferencevignis and GemsFDTDs most
frequent case. As a result, HPAC throttles down their pobiets to reduce the
interference they cause in shared resources. Figure 38(wys that FDP keeps
these two applications’ prefetchers at the highest agysssss for more than 70%
of their execution time, which degrades system performabeeause FDP cannot
detect the inter-core interference caused by the two poieées. In contrast, with
HPAC, the two prefetchers spend approximately 50% of thetcation time in the
lowest aggressiveness level, thereby reducing interiobeeference and improving
system performance.

We conclude that HPAC can effectively control and reducestmared re-
source interference caused by the prefetchers of multigenany and prefetch-

intensive applications both among themselves and agasnistidtaneously running
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— Most Frequent| 2nd Most Frequent 3rd Most Frequent
Application Case # Case # Case #
libqguantum || Case 6 (89%) Case 13 (7%) Case 7 (2%)

swim Case 14 (65% Case 7 (23%) Case 6 (6%)
GemsFDTD|| Case 14 (55% Case 7 (24%) Case 6 (8%)
bzip2 Case 10 (39% Case 3 (39%) Case 6 (15%)

Table 3.8: Most frequently exercised cases for HPAC in cas#yd

memory non-intensive application, thereby resulting gngficantly higher system

performance than what is possible without it.

3.5.3 HPAC Performance with Different DRAM Scheduling Polcies

We evaluate the performance of our proposal in a system Wwéhecently
proposed Prefetch-Aware DRAM Controller (PADC) [43]. PADRGes feedback
about the accuracy of the prefetcher of each core to ad&ptiveritize between
prefetch requests of that prefetcher and demands in mensbedsling decisions.
If the prefetcher of a core is accurate, prefetch requests that core are treated
with the same priority as demand requests. Otherwise, forefe from that core
are deprioritized below demands and prefetches from coréshigh prefetch ac-
curacy. Note that this local-only technique does not take atcount inter-core
interference caused by prefetchers. If the memory schedhwlecases the prior-
ity of highly accurate but interfering prefetches, intere interference will likely
increase. As a result, PADC cannot control the negativeopadnce impact of ac-
curate yet highly-interfering prefetchers in the memorgtsyn, which can degrade

system performance.

Figure 3.11 shows the effect of HPAC when employed in a systdm
a prefetch-aware DRAM controller. HPAC increases the parémce of a 4-core
system that uses PADC by 12% (HS) on average while reduciadréafiic by 7%.
HPAC's ability to reduce the negative interference causeddrurate prefetchers
can have positive effects on PADC’s options for better mgnsamheduling when

PADC and HPAC are employed together. A reduction in interiee caused by
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one core’s very aggressive prefetcher can reduce the nuoflommand misses of
other cores. This removes many pollution-induced missaesexhby the interfering
core(s) and the new miss stream observed by the prefetchetisey cores can in-
crease their accuracy significantly. HPAC's interfererexuction enables PADC's
memory scheduling decisions to take advantage of these aworeate prefetches.
In contrast, PADC without HPAC would have seen inaccuratdgbch requests
from such cores and deprioritized them due to their low aacyr We conclude
that systems with PADC-like memory controllers can benéginiicantly if their

prefetchers are controlled in a coordinated manner usimfyd-P

The performance and bus traffic benefits of using HPAC with & F
FCFES [65] memory scheduling policy are similar to those pnésd for the PAR-
BS [55] fair memory scheduler which we use as our baseliree, (12.4%/6.2%
HS/WS improvement over FDP). We conclude that our propasalthogonal to

the employed memory scheduling policy.
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Figure 3.11: Performance of HPAC on system using PADC

3.5.4 Effect of HPAC on Fairness

Although HPAC's objective is to “improve system performahoot to “im-
prove fairness,” it is worth noting that HPAC’s performancgrovement does not
come at the expense of fair treatment of all applicationshées evaluated HPAC'’s
impact on performance unfairness [54] as defined in SectibnR3gure 3.12 shows
that HPAC actually reduces unfairness in the system condp@arall other tech-

niques in both 4-core and 8-core systems. We found that shimecause HPAC
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significantly reduces the interference caused by apptinatthat generate a very
large number of prefetches on other less memory-intenppéications. This in-
terference unfairly slows down the latter type of applicas in the baseline since

there is no mechanism that controls such interference.

We note that HPAC is orthogonal to techniques that providendas in
shared resources [58, 32, 55]. As such, HPAC can be combiitbdechniques
that are designed to provide fairness in shared multi-ceseurces. Note that we
use Parallelism-Aware Batch Scheduling [55] as a fair mgnsaheduler in the
baselinefor all our evaluations. Figure 3.13 shows system perfolceasnd bus
traffic of a 4-core system that uses a fair cache [58], a famory scheduler [55]
and a state-of-the-art local-only prefetcher throttlingainanism (FDP) compared
to 1) the combination of HPAC and a fair cache, and 2) HPAC &sliit Two ob-
servations are in order: First, using HPAC improves theqrarnce of a system
employing a fair cache. However, the improvement in pertamoe is less than that
obtained by HPAC alone. The reason is that constraining ea&to a certain num-
ber of ways in each cache set as done in [58] reduces HPACIbifligx HPAC can
throttle down a prefetcher that is causing large inter-qgaokution to reduce such
interference without the constraints of a fair cache [58]efefore HPAC can make
more efficient use of cache space and perform better alom@n8eHPAC outper-
forms the combination of a fair cache, a fair memory schegaled FDP, by 10.2%
(HS) and 4.7% (WS) while consuming 15% less bus traffic. Wekmte that 1) our
contribution is orthogonal to techniques that providerfags in shared resources,
and 2) the benefits of adjusting the aggressiveness of reufiefetchers in a co-
ordinated fashion (as done by HPAC) cannot be obtained bytong FDP, a fair

cache, and a fair memory controller.

3.5.5 HPAC on Systems with Hardware Prefetch Filtering

Zhuang and Lee [75] propose a hardware-based prefetchrigtecheme
that eliminates a prefetch request for an address if a plefetguest for the same

address was useless in the past. They use a two-level braedictpr-like struc-
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Figure 3.13: Comparison to combination of fair cache + fagmmory scheduling +
FDP

ture to record the usefulness of prefetches. We implemardf&C on top of this
hardware filtering scheme, and found that HPAC increasdssygerformance by
12% while reducing bus traffic by 8.7% compared to hardwateriilg alone on the
evaluated 4-core workloads. Figure 3.14 shows that evamgtnemploying hard-
ware prefetching on a 4-core system using aggressive phafetdoes improve its
performance and reduce bus traffic, system performanceinemarse than that of
a system with no prefetching on average. We conclude that even hardware
prefetch filtering is used, using HPAC makes prefetching immore effective on

multi-core systems.

3.5.6 Multiple Types of Prefetchers per Core

Recent research suggests that by using “coordinatedIlthgitof multiple
prefetchers of different types, hybrid prefetching systeran be useful [18]. Some

current processors already employ more than one type oéfatetr on each core
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Figure 3.14: HPAC performance on 4-core system using HWepehkffiltering (all
32 workloads)

of a CMP [72]. We evaluate the effectiveness of our proposad d-core system
with two types of prefetcher per core and also with two déf@r state-of-the-art
local control policies as the local control for HPAC: FDP [G¥hd coordinated
throttling [18]. Tables 3.9 and 3.10 show that HPAC is efiext1l) when multiple
prefetchers of different types are employed within eacle eord 2) regardless of the
local throttling policy used for prefetchers of each conmeall comparisons HPAC
is the best performing of all schemes and produces the leadtdffic compared to

any configuration with prefetching turned on.

HS | WS | Bus Traffic

A over No Prefetching 79%| 51% 10.7 %

A over Prefetching w. no Throttling| 15.6 % | 6.7 % -13.9%
A over FDP 106% | 3.2% 3%

Table 3.9: Stream and GHB with HPAC (local policy: FDP)

HS WS | Bus Traffic

A over No Prefetching 6.3%| 4.0% 12.2%

A over Prefetching w. no Throttling| 14.6 % | 6.3 % -12.7%
A over coordinated throttling 122%| 45% -6.3 %

Table 3.10: Stream and GHB with HPAC
(local policy: coordinated throttling)

3.5.7 Sensitivity to System Parameters

We evaluate the sensitivity of our technique to three majemmory system

parameters: L2 cache size, memory latency and number of myebamks. Ta-
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ble 3.11 shows the change in system performance (HS) anddidtis provided
by HPAC over FDP for each configuration. For these experisesmat did not tune
HPAC's parameters; doing so will likely increase HPAC's bkis even more. We

conclude that our technique is effective for a wide varidtgystem parameters.

L2 Cache Size
1MB 2 MB 4 MB
A HS | ABus Traffic|| AHS | ABus Traffic|| A HS | A Bus Traffic
19.5% -4% 10.7% -3.2% 9.6% -2.5%
Memory Latency - Latency per command ( RP,*RCD, CL)
13ns 15ns 17ns
A HS | A Bus Traffic|| A HS | A Bus Traffic|| A HS | A Bus Traffic
15% -3% 10.7% -3.2% 6% -3.4%
Number of Memory Banks
8 banks 16 banks 32 banks
A HS | ABus Traffic|| A HS | A Bus Traffic || A HS | A Bus Traffic
10.7% -3.2% 12% -1.5% 9% -1%

Table 3.11: Effect of our proposal on Hspeedup (HS) and laiBdmwith different
system parameters on a 4-core system

3.5.8 Hardware Cost

Table 3.12 shows HPAC’s required storage. The additionadage is
15.14KB (for a 4-core system), most of which is already resplito implement
FDP. This storage corresponds to 0.739% of the 2MB L2 basekche. The new
global control structures require only 1.55KB of storager @ 4-core system) on
top of FDP. HPAC does not require any structures or logic #naton the critical

path of execution.

3.6 Conclusion

We have proposed a low-cost technique that controls theeagyeness
of multiple prefetchers of different cores in chip-multygessors with the goal of
improving system performance and making prefetching &ffec We show that
adjusting prefetcher aggressiveness using state-aduthiechniques without pay-

ing attention to prefetcher-caused inter-core interfeeeim shared memory sys-
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Global Control Closed form for N cores (bits) | N=4(bits)
Counters for 7 counters/core N x 16 bits/counter 448
global feedback
Interference Pol. Filter 1024 entriesx N x 12 288
per core (pol. bit+(log N) bit proc. id)/entry '
Local Control - FDP
Proc. id for each 16384 blocks/Megabyte 65.536
L2 tag store entry X Secache X (10g N) bit/block '
Pref. bit for each 16384 blocks/Megabyte 32 768
L2 tag store entry X Seache X 1 bit/block '
Pol. Filter for intra-core 1024 entries N x 12 288
prefetch interference | (pol. bit+(log N) bit proc. id)/entry '
Counters for (8 counters/coreN + 3 counters) 560
local feedback x 16 bits/counter
Pref. bit per MSHR entry] 32 entries/core< N x 1 bit/entry 128
| Total storage | Sum of the above | 15.14KB]

Table 3.12: Hardware cost of HPAC - Including both local ahabgl throttling

structures on an N-core CMP with),,.,. MB L2 cache

tems can significantly degrade system performance companed prefetching at

all.

core interference in determining the aggressiveness d¢f ea’s prefetcher. Our
scheme reduces the interference due to prefetchers usingrdicated control
mechanism, thereby significantly improving system perfamoe and bandwidth-
efficiency compared to the state-of-the-art prefetchetrobtechniques that do not
take into account such interference. We conclude that alnmigue significantly

improves the performance of prefetching and makes it effeah multi-core envi-

ronments.
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Chapter 4

Fairness via Source Throttling

4.1 Introduction

When different applications concurrently execute on a CM#&tesn, their
memory requests can interfere with and delay each otheeistiared memory sub-
system. Compared to a scenario where each application loms an the CMP, this
inter-core interference causes the execution of simudtasig running applications
to slow down. However, sharing memory system resourcestaftae execution of
different applications very differently because the reseumanagement algorithms
employed in the shared resources are unfair [54]. As a resulie applications are

unfairly slowed down significantly more than others .

Figure 4.1 shows two examples of vastly differing effectsre$ource-
sharing on simultaneously executing applications on ar2-@MP system (Sec-
tion 4.4 describes our experimental setup). Wheip2andart run simultaneously
with equal priorities, the inter-core interference caubgdhe sharing of memory
system resources slows downip2by 5.2Xcompared to when it is run alone while
art slows down by onlyl.15X In order to achieve system level fairness or quality
of service (QoS) objectives, the system software (opagaystem or virtual ma-
chine monitor) expects proportional progressegiual-priority applications when
running simultaneously. Clearly, disparities in slowdokike those shown in Fig-
ure 4.1 due to sharing of the memory system resources betsigaiitaneously
running equal-priority applications is unacceptable sifiowould make priority-
based thread scheduling policies ineffective [20].

To mitigate this problem, previous papers [31, 36, 57, 54,38 55] on
fair memory system design for multi-core systems mainlyug®d on partitioning
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Figure 4.1: Disparity in slowdowns due to unfairness

a particular shared resource (cache space, cache bandandtemory bandwidth)
to provide fairness in the use of that shared resource. Hexyvawne of these prior
works directly target dair memory system design that provides fair sharing of
all resources together We define a memory system designfas if the slow-
downs of equal-priority applications running simultansiguon the cores sharing
that memory system are the same (this definition has beeninsszleral prior
papers [66, 49, 7, 22, 54]). This chapter shows that, empipgeparate unco-
ordinated fairness techniques together does not neclgsssmult in a fair memory
system design. This is because fairness mechanisms inediffieesources can con-
tradict each other. Our goal in this chapter is to developvadost architectural
technique that allows system software fairness policidsetachieved in CMPs by
enabling fair sharing of thentire memory systemwithout requiring multiple com-
plicated, specialized, and possibly contradictory fassechniques for different

shared resources.

Basic Idea: To achieve this goal, we propose a fundamentally new mecha-
nism that 1) gathers dynamic feedback information aboutitifairness in the sys-
tem and 2) uses this information to dynamically adapt theaatvhich the different
cores inject requests into the shared memory subsystenttsaicéystem-level fair-
ness objectives are met. To calculate unfairness at rua-t@nslowdown value is
estimated for each application in hardware. Slowdown ineefiasl.rcq/Tuione
whereT,,...q 1S the number of cycles it takes to run simultaneously witieotap-

plications andl ;. is the number of cycles it would have taken the application
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to run alone. Unfairness is calculated as the ratio of thgelstrslowdown to the
smallest slowdown of the simultaneously running applarai If the unfairness
in the system becomes larger than thdairness thresholdet by the system soft-
ware, the core that interferes most with the core expemanttie largest slowdown
is throttled down. This means that the rate at which the mustfering core in-
jects memory requests into the system is reduced, in ordeduce the inter-core
interference it generates. If the system softwafaisness goalis met, all cores
are allowed to throttle up to improve system throughput @/ifstem unfairness is
continuously monitored. This configurable hardware salbstenables the system
software to achieve different QoS/fairness policies: i determine the balance
between fairness and system throughput, dictate diffdeemtess objectives, and
enforce thread priorities in the entire memory system.

4.2 Background and Motivation

We first present a brief background on how we model the shamdaory
system of CMPs. We then motivate our approach to providiirgdas in the entire
shared memory system by showing how employing resourceebfasérness tech-

niques does not necessarily provide better overall fagnes

4.2.1 Shared CMP Memory Systems

In this thesis, we assume that the last-level (L2) cache dfidhp
DRAM bandwidth are shared by multiple cores on a chip as inyr@mmer-
cial CMPs [70, 72, 29, 1]. Each core has its own L1 cache. MtasuS Hold-
ing/information Registers (MSHRSs) [39] keep track of atjuests to the shared L2
cache until they are serviced. When an L1 cache miss ocauis;@ess request to
the L2 cache is created by allocating an MSHR entry. Oncedbeest is serviced
by the L2 cache or DRAM system as a result of a cache hit or rasggectively, the
corresponding MSHR entry is freed and used for a new reqéggire 4.2 gives a

high level view of such a shared memory system. The numberSiiR entries for
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a core indicates the total number of outstanding requekt&ed to the L2 cache
and DRAM system. Therefore increasing/decreasing the euwidMSHR entries
for a core can increase/decrease the rate at which memaungseqfrom the core
are injected into the shared memory system.

Memory
Controller

|

L2 Cache

i

\ MSHR aIIocatoﬂ

Core O
L1 Cache

Figure 4.2: Shared CMP Memory System

4.2.2 Motivation

Most prior papers on providing fairness in shared resoufgesgs on par-
titioning of a single shared resource. However, by pariitig a singleshared re-
source, the demands on other shared resources may chargthatioeither sys-
tem fairness nor system performance is improved. In the@dotlg example, we
describe how constraining the rate at which an applicagiommory requests are
injected to the shared resources can result in higher fssriaad system perfor-

mance than employing fair partitioning of a single resource
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Figure 4.3 shows the memory-related stall tihaé equal-priority applica-
tions A and B either running alone on one core of a 2-core CM#tgda)-(d)), or,
running concurrently with equal priority on different ceref a 2-core CMP (parts
((e)-(j))- For simplicity of explanation, we 1) assume thatapplication stalls when
there is an outstanding memory request, 2) focus on reqgesgtg to the same
cache set and memory bank, and 3) assume all shown acce$sestared cache
occur before any replacement happens. Application A is wegynory-intensive,
while application B is much less memory-intensive as candsn dy the differ-
ent memory-related stall times they experience when rynailone (Figures 4.3
(a)-(d)). As prior work has observed [55], when a memonginsive application
with already high memory-related stall time interfereshwatless memory-intensive
application with much smaller memory-related stall timelaging the former im-
proves system fairness because the additional delay cawsealler slowdown for
the memory-intensive application than for the non-intemsine. Doing so can also
improve throughput by allowing the less memory-intensippleation to quickly
return to its compute-intensive portion while the memantensive application con-

tinues waiting on memory.

Figures 4.3(e) and (f) show the initial L2 cache state, exaeder and
memory-related stall time when no fairness mechanism id@red in any of the
shared resources. Application A's large number of memagyests arrive at the L2
cache earlier, and as a result, the small number of memonests from applica-
tion B are significantly delayed. This causes large unfasri@ecause the compute-
intensive application B is slowed down significantly morarththe already-slow
memory-intensive application A. Figures 4.3(g) and (h)velizat employing a fair
cache increases the fairnassitilization of the cachey allocatingan equal number
of waysfrom the accessed set to the two equal-priority applicatidinis increases

IStall-time is the amount of execution time in which the apaiion cannot retire instructions.
Memory-related stall time caused by a memory request ctsnsis1) time to access the L2 cache,
and if the access is a miss 2) time to wait for the required DRi#dvik to become available, and
finally 3) time to access DRAM.
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Figure 4.3: Access pattern and memory-related stall timeegfiests when appli-
cation A running alone (a, b), application B running aloned);c A and B running
concurrently with no fairness control (e, f), fair cacheiy, and fair source throt-

tling (i, j)
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application A's cache misses compared to the baseline vatifaimness control.
Even though application B gets more hits as a result of fairisly of the cache, its
memory-related stall time does not reduce due to increadedeérence in the main
memory system from application A's increased misses. Apgibn B's memory
requests are still delayed behind the large number of memeayests from ap-
plication A. Application A's memory-related stall time ir@ases slightly due to its
increased cache misses, however, since application Adgliezd a large memory-
related stall time, this slight increase does not incur gdalowdown for it. As a
result, fairness improves slightly, but system throughgrgdrades because the sys-

tem spends more time stalling rather than computing congitarao fair caching.

In Figure 4.3, if the unfair slowdown of application B due fapéication A
is detected at run-time, system fairness can be improvedhioinig A's memory
requests and reducing the frequency at which they are igsube shared memory
system. This is shown in the access order and memory-residdidimes of Fig-
ures 4.3(i) and (j). If the frequency at which applicatios Aiemory requests are in-
jected into the shared memory system is reduced, the acabschanges as shown
in Figure 4.3(i). We use the terthrottled requestso refer to those requests from
application A that are delayed when accessing the sharectlecdue to A's re-
duced injection rate. As a result of the late arrival of thibgettled requestsappli-
cation B’s memory-related stall time significantly redu@escause A's requests no
longer interfere with B’s) while application A's stall timacreases slightly. Over-
all, this ultimately improves both system fairness anduigigout compared to both
no fairness control and just a fair cache. Fairness imprbeesuse the memory-
intensive application is delayed without significantly ieasing the less intensive
application’s memory related-stall time compared to whe&ming alone. Delay-
ing the memory-intensive application does not slow it doammuch compared to
when running alone, because even when running alone it lgastemory-related
stall time. System throughput improves because the totaluaiof time spent
computing rather than stalling in the entire system in@esasas can be seen by
comparing the stall times in Figures 4.3 (f) and (h) to Figdu& (j).
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The key insight is thatboth system fairness and throughput can improve
by detecting high system unfairness at run-time and dyraliyikmiting the num-
ber of or delaying the issuing of memory requests from theesgive applications
In essence, we propose a new approach that perfeome-basedairness in the
entire memory system rather thamdividual resource-basethirness that imple-
ments complex and possibly contradictory fairness meshasiin each resource.
Sources (i.e., cores) can collectively achieve fairnegbimttling themselves based
on dynamic unfairness feedback. This eliminates the neennjolementing pos-
sibly contradictory/conflicting fairness mechanisms anthplicated coordination

techniques between them.

4.3 Fairness via Source Throttling

To enable fairness in the entire memory system, we propag@ess via
Source Throttling FST). The proposed mechanism consists of two major compo-
nents: 1yuntime unfairness evaluaticand 2)dynamic request throttling

4.3.1 Runtime Unfairness Evaluation Overview

The goal of this component is to dynamically obtain an edtnad the un-
fairness in the CMP memory system. We use the definition dcdiumgss presented
in Section 3.4.1.

The main challenge in the design of the runtime unfairneatiation com-
ponent is obtaining information about the number of cydegauld have taken an
application to run alone, while it is running simultanequsith other applications.
To do so, we estimate the number @ftra cyclest takes an application to exe-
cute due to inter-core interference in the shared memongsyscalled!l ., ...s. AS
defined in Section 3.4.1,,...q IS the number of cycles it takes to run simultane-
ously with other applications arif,,.. is the number of cycles it would have taken
the application to run alone on the same system. Given Tjs,. is estimated

aS Tipared — Teweess- Section 4.3.3 explains in detail how the runtime unfaisnes
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evaluation component is implemented and in particular Aoy, is estimated.
Assuming for now that this component is in place, we next @&xphow the infor-
mation it provides is used to determine how each applicasidhrottled to achieve
fairness in the entire shared memory system.

4.3.2 Dynamic Request Throttling

This component is responsible for dynamically adjusting thite at which
each core/applicatidrmakes requests to the shared resources. This is done on an

interval basis as shown in Figure 4.4,

Interval 1 Interval 2 Interval 3

B e e e e e —

w Calculate Unfairness &
Slovelown

Estimation  D€termine request rates
) for Interval 2 using feedback
Time from Interval 1

Figure 4.4: FST’s interval-based estimation and thrattlin

An interval ends when each core has executed a certain nurhbestruc-
tions from the beginning of that interval. During each int@r(for exampldnterval
1in Figure 4.4) the runtime unfairness evaluation compogattters feedback used
to estimate the slowdown of each application. At the begigmif the next interval
(Interval 2), the feedback information obtained during the prior im&iis used to
make a decision about the request rates of each applicatdhét interval. More
precisely, slowdown values estimated durinterval 1are used to estimate unfair-
ness for the system. That unfairness value is used to deterthe request rates
for the different applications for the duration lofterval 2 During the next interval
(Interval 2), those request rates are applied, and unfairness evaiuatperformed
again. The algorithm used to adjust the request rate of ggaitation using the un-

fairness estimate calculated in the prior interval is showkigorithm 1. For clarity,

2Since each core runs a separate application, we use the vameland application interchange-
ably in this chapter.
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Algorithm 1 is simplified for dual-core configurations. Sect4.3.5 presents the

more general algorithm for more than two cores.

We define multiple possible levels of aggressiveness forgfaest rate of
each application. The dynamic request throttling componeakes a decision to
increase/decrease or keep constant the request rate oapplitation at interval
boundaries. We refer to increasing/decreasing the regatsbf an application as

throttling the application up/down.

Algorithm 1 Dynamic Request Throttling
if Estimated Unfairness > Unfairness Threshold then
Throttle down application with the smallegbwdown (AppsmaiiestSiowdown)
Throttle up application with the largestowdown (ApprargestSiowdown)
ResetSuccessive Fairness Achieved Intervals
else
if Successive Fairness Achieved Intervals = threshold then
Throttle all applications up
ResetSuccessive Fairness Achieved Intervals
else
IncrementSuccessive Fairness Achieved Intervals
end if
end if

At the end of each interval, the algorithm compares the umézis esti-
mated in the previous interval to the unfairness threshioid ts defined by sys-
tem software. If the fairness goal has not been met in theiquevinterval, the
algorithm reduces the request rate of the application with $mallest individ-
ual slowdown value (referred to a&ppsmaiiestsiowdown) @and increases the request
rate of the application with the largest individual slowdowalue (referred to as
APPLargestsiowdown)- 1hiS reduces the number and frequency of requests gewerat
for and inserted into the memory resources by the applicatith the smallest es-
timated slowdown, thereby reducing its interference witieo cores. The increase
in the request rate of the application with the highest stowml allows it to be
more aggressive in exploiting Memory-Level ParallelismL{®) [24] and as a re-
sult reduces its slowdown. If the fairness goal is met foredptermined number of

intervals (tracked by &uccessive Fairness Achieved Intervals counter in Al-
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gorithm 1), the dynamic request throttling component agitsnto increase system
throughput by increasing the request rates of all appboatiby one level. This is
done because our proposed mechanism strives to increasgkiput while main-

taining the fairness goals set by the system software. &sang the request rate
of all applications might result in unfairness. Howeveg tinfairness evaluation
during the interval in which this happens detects this aenge and dynamically

adjusts the requests rates again.

Throttling Mechanisms: Our mechanism increases/decreases the request
rate of each application in multiple ways: 1) Adjusting thenber of outstanding
misses an application can have at any given time. To do SgStR quotawhich
determines the maximum number of MSHR entries an applicatém use at any
given time, is enforced for each application. Reducing MStiRies for an ap-
plication reduces the pressure caused by that applicatieguests on all shared
memory system resources. This is done by limiting the nunobeoncurrent re-
quests from that application contending for service fromghared resources. This
reduces other simultaneously running applications’ mgrnelated stall times and
gives them the opportunity to speed up. 2) Adjusting fileguency at which re-
quests in the MSHRs are issued to accessR&tlucing this frequency for an appli-
cation reduces the number of memory requests per unit tiova that application
which contend for shared resources. This mechanism is itapfor reducing
the interference caused by applications that do not have MigP to begin with.
This is because such applications are not sensitive to atiedun the number of
MSHRs available to them. As such, throttling them just byuedg their MSHR
quotas would not allow memory requests from other applbcetito be prioritized
in accessing shared resources. We refer to this throttBegrtique asrequency
throttling. We use both of these mechanisms to reduce the interferensed by

AppSmallestSlowdown on AppLargestSlowdown .
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4.3.3 Unfairness Evaluation Component Design

Tanarea 1S Simply the number of cycles it takes to execute an apptinan
an interval. Estimating,,.. is more difficult, and FST achieves this by estimat-
ing T....ss for each core, which is the number of cycles the core’s execuime
is lengthened due to interference from other cores in theeshaemory system.
To estimatéer’,,....s, the unfairness evaluation component keeps track of cues-

interference each core incurs.

Tracking Inter-Core Interference: We consider three sources of inter-core
interference: 1) cache, 2) DRAM bus and bank conflict, andRADI row-buffer3
Our mechanism uses dmter ference PerCore bit-vector whose purpose is to in-
dicate whether or not a core is delayed due to inter-corefaerence. In order to
track interference from each source separately, a copytaf- f erence PerCore is
maintained for each interference source. A main copy whsalpdated by taking
the union of the differentnter ference PerCore vectors is eventually used to up-
dateT....ss as described below. When FST detects inter-core interéeréor core
at any shared resource, it setsilof the Inter ference PerCore bit-vector, indicat-
ing that the core was delayed due to interference. At the samee it also sets an
Inter feringCoreld field in the correspondingterfered-withmemory request’s
MSHR entry. This field indicates which core interfered withstrequest and is
later used to reset the corresponding bit in fréer ference PerCore vector when
theinterfered-withrequest is scheduled/serviced. We explain this procesone m
detail for each resource below in Sections 4.3.3.1-4.318@8memory request has
not been interfered with, it$nter feringCoreld will be the same as the core id
of the core it was generated by.

Updating T,...ss: FST stores the number @ixtra cyclesit takes to ex-

ecute a given interval’s instructions due to inter-corestifgrence . .ss) in an

30n-chip interconnect can also experience inter-core fietence [14]. Feedback information
similar to that obtained for the three sources of inter-daterference we account for can be col-
lected for the on-chip interconnect. That information carifrorporated into our techniqgue seam-
lessly, which we leave as future work.
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ExcessCycles counter per core. Every cycle, if theuter ference PerCore bit of
a core is set, FST increments the corresponding cdfe®:ssC'ycles counter.

Algorithm 2 shows how FST calculatégszcessCycles for a given cord.
The following subsections explain in detail how each sowfcater-core interfer-
ence is taken into account to detter ference PerCore. Table 4.1 summarizes the
required storage needed to implement the mechanisms ezglaere.

Algorithm 2 Estimation of7,.ss for corei
Every cycle
if inter-core cache or DRAM bus or DRAM bank or
DRAM row-buf fer inter ference then
setinter ferencePerCore biti
setinter feringCoreld in delayed memory request
end if
if Inter ferencePerCore biti is setthen
IncrementExcessCycles for corei
end if

Every L2 cache fill for a miss due to interference OR

Every time a memory request which is a row-buffer miss due tonterference is ser-
viced
resetinter ferencePerCore bit of corei
Inter feringCoreld of corei =i (no interference)

Every time a memory request is scheduled to DRAM
if Corei has no requests waiting on any bank which is busy servicimghan coreg (j
I=i) then
resetInter ference PerCore bit of corei
end if

4.3.3.1 Cache Interference

In order to estimate inter-core cache interference, foheacei we need to
track the last-level cache misses that are caused foridmyeany other corg. To
do so, FST uses a pollution filter for each core to approxinsath misses. The
pollution filter is a bit-vector that is indexed with the lomerder bits of the ac-
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cessed cache line’s addrésim the bit-vector, a set entry indicates that a cache line
belonging to the corresponding core was evicted by anotherssrequest. When

a request from corgreplaces one of corés cache lines, corés filter is accessed
using the evicted line’s address, and the correspondinig b#t. When a memory
request from core misses the cache, its filter is accessed with the missing ad-
dress. If the corresponding bit is set, the filter predicéd this line was previously
evicted due to inter-core interference and the bit in therfiis reset. When such

a prediction is made, once the interfered-with requestlieguled to DRAM the
Inter ference PerCore bit corresponding to coreis set to indicate that coreis
experiencing extra execution cycles due to cache interéereOnce the interfered-
with memory request is finished receiving service from thenogy system and the
corresponding cache line is filled, care filter is accessed and the bit is reset and

sois cord’s Inter ference PerCore bit.

4.3.3.2 DRAM Bus and Bank Conflict Interference

Inter-core DRAM bank conflict interference occurs when dsenemory
request cannot access the bank it maps to, because a ragunesioime other core
] is being serviced by that memory bank. DRAM bus conflict ii@emce occurs
when a core cannot use the DRAM because another core is i&rigRAM bus.
These situations are easily detected at the memory caeriral described in [54].
When such interference is detected, fger ference PerCore bit corresponding
to corei is set to indicate that coias stalling due to a DRAM bus or bank conflict.
This bit is reset when no request from cors being prevented access to DRAM by

the other cores’ requests.

“We empirically determined the pollution filter for each caéoehave 2K-entries in our evalua-
tions.
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4.3.3.3 DRAM Row-Buffer Interference

This type of interference occurs when a potential row-bulffé of corei
when running alone is converted to a row-buffer miss/contlice to a memory
request of some corewhen running together with others. This happens if a re-
guest from corg closes a DRAM row opened by a prior request from cotleat
is also accessed by a subsequent request fromi cdetrack such interference, a
Shadow Row-buffer Address Register (SRi8R)aintained for each core for each
bank. Whenever corés memory request accesses some Rvhe SRAR of core
I is updated to rowR. Accesses to the same bank from some other paoie not
affect the SRAR of coré. As such, at any point in time, cors SRAR will con-
tain the last row accessed by the last memory request sdrirm that core in that
bank. When corés memory request suffers a row-buffer miss because anotrer
j's row is open in the row-buffer of the accessed bank, the SRAEbrei is con-
sulted. If the SRAR indicates a row-buffer hit would have aped, then inter-core
row-buffer interference is detected. As a result, fheer ferencePerCore bit cor-
responding to coreis set. Once the memory request is serviced, the correspgndi

Inter ferencePerCore bit is resef

4.3.3.4 Slowdown Due to Throttling

When an application is throttled, it experiences some stawddue to the
throttling. This slowdown is different from the inter-coreterference induced
slowdown estimated by the mechanisms of Sections 4.3.3113t8.3. Throttling-
induced slowdown is a function of an application’s sengitito 1) the number of
MSHRs that are available to it, 2) the frequency of injectieguests into the shared
resources. Using profiling, we determine for each thragtlevell, the correspond-
ing slowdown (due to throttling) of an applicatiorA. At runtime, any estimated

slowdown for applicatio® when running at throttling levélis multiplied by f. We

5To be more precise, the bit is reset “row buffer hit latencytles before the memory request
is serviced. The memory request would have taken at leastBtdfer hit latency” cycles had there
been no interference.
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find that accounting for this slowdown using this profilingarmation improves the
system performance gained by FST by 4% on 4-core systemsg abow in Sec-
tion 4.5.10.

Slowdown due to throttling can also be tracked by maintg@ircounter for
the number of cycles each applicatiérstalls because it can not obtain an MSHR
entry because of its limiteMSHR quota We separately keep track of the number
of such cycles and refer to them escess cycles which are due to throttlifas op-
posed texcess cycles due to interference from other applicaliofe discuss how
this information is used later in a more general form of dyr@araquest throttling

presented in Section 4.3.5, Algorithm 3.

4.3.3.5 Implementation Details

Section 4.3.3 describes how separate copigstdr ference PerCore are
maintained per interference source. The main copy whickeslby FST for updat-
ing T....ss 1S physically located close by the L2 cache. Note that shessdurces
may be located far away from each other on the chip. Any ptessilming con-
straints on the sending of updates to théer ference PerCore bit-vector from
the shared resources can be eliminated by making theseaggaatiodically, as we

evaluate in Section 4.5.5.

4.3.4 System Software Support

Different Fairness Objectives: System-level fairness objectives and poli-
cies are generally decided by the system software (the bpgrsystem or virtual
machine monitor). FST is intended as architectural sugpognforcing such poli-
cies in shared memory system resources. falir@ess goato be achieved by FST
can be configured by system software. To achieve this, welesgbtem software
to determine the nature of the condition that triggers Aipon 1. In the explana-
tions of Section 4.3.2, thieiggering conditionis

Condition (1) “ Estimated Un fairness > Un fairness Threshold”
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System software might want to enforce different triggeraumditions de-
pending on the system’s fairness/QoS requirements. Tdeiiab capability, FST
implements different triggering conditions from which tegstem software can
choose. For example, the fairness goal that system softmamés to achieve could
be to keep the maximum slowdown of any given application wedothreshold
value. To enforce such a goal, the system software can coefighil such that the

triggering condition in Algorithm 1 is changed to
Condition (2) * Estimated Slowdown; > Maz. Slowdown Threshold”

Thread Weights: So far, we have assumed all threads are of equal impor-
tance. FST can be seamlessly adjusted to distinguish betarek provide differ-
entiated services to threads with different priorities. ¥ the notion othread
weightsto FST, which are communicated to it by the system softwaireguspecial
instructions. Higher slowdown values are more tolerabtdégfes important olower
weightthreads. To incorporate thread weights, FST wgeighted slowdowwalues

calculated as:
WeightedSlowdown; = Measured Slowdown; x Weight;

By scaling the real slowdown of a thread with its weight, settr with a
higher weight appears as if it slowed down more than it redilly causing it to be
favored by FST. Section 4.5.4 quantitatively evaluates w8 the above fairness

goal and threads with different weights.

Thread Migration and Context Switches: FST can be seamlessly ex-
tended to work in the presence of thread migration and corswkches. When
a context switch happens or a thread is migrated, the imearée state related to
that thread is cleared. When a thread restarts executieg aftontext switch or
migration, it starts at maximum throttle. The interferewegsed by the thread and
the interference it suffers are dynamically re-estimated BST adapts to the new

set of co-executing applications.
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4.3.5 General Dynamic Request Throttling

Scalability to More Cores: When the number of cores is greater than two,
a more general form of Algorithm 1 is used. The design of thé&irness eval-
uation component for the more general form of Algorithm 1 is slighdifferent.
This component gathers the following extra informationtfee more general form
of dynamic request throttling presented in Algorithm 3: a) éach cora, FST
maintains a set dN-1 counters, wherd\ is the number of simultaneously running
applications. We refer to thedé-1 counters that FST uses to keep track of the
amount of the inter-core interference caused by any otherjda the system for
corei as ExcessCycles;;. This information is used to identify which of the other
applications in the system generates the most interfefiema®rei, b) FST main-
tains the total inter-core interference an application orec¢ experiences due to
interference from other cores inTvtal ExcessCyclesInter ference; counter per
core, and c) as described in Section 4.3.3.4, those excelesdhat are caused as
a result of an application being throttled down are accalifive separately in a

Total ExcessCyclesT hrottling; counter per core.

Algorithm 3 shows the generalized form of Algorithm 1 thaesghe extra
information described above to make more accurate thmgttlecisions in a system

with more than two cores. The five most important changesafellaws:

First, when the algorithm is triggered due to unfair slowdas¥ corei, FST
compares thé&zcessCycles;; counter values for all corgs# 7 to determine which
other core is interfering most with coreThe core found to be the most interfering
is throttled down. We do this in order to reduce the slowdowthe core with the

largest slowdown value, and improve system fairness.

Second, first ready-first come first serve (FR-FCFS) [65] i©mmonly
used memory scheduling policy which we use in our baseliséesy. This mem-
ory scheduling policy has the potential to starve an apfinavith no row-buffer
locality in the presence of an application with high row4{ieufocality (as discussed
in prior work [57, 51, 54, 55]). Even when the interfering &pation is throttled
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down, the potential for continued DRAM bank interferencesexwhen FR-FCFS
memory scheduling is used, due to the greedy row-hit-firtineaof the schedul-

Algorithm 3 Dynamic Request Throttling - General Form
if Estimated Unfairness > Unfairness Threshold AND
Appsiow slowdown | Appinter fering slowdown > Un fairness Threshold then
if Appgow's excess cycles due to interference frafpinier fering > APPsiow'S
Total ExcessCyclesT hrottling; then
Throttle down application that causes most interferentepf,ic, rering) for appli-
cation with largestlowdown
end if
Throttle up application with the largestowdown (Appsiow)
ResetSuccessive Fairness Achieved Intervals
Resetintervals To Wait To Throttle Up for Appinter fering-

I/l Preventing bank service denial
if  Appinter fering throttled lower than Switchy,, AND causes greater than
Inter ferenceg,, amount ofApp,..,'S total interferencehen
Temporarily stop priofitizingAppinter fering due to row hits in memory controller
end if
if AppRowHitNotPrioritized has not beemppinterfering for SwitChBathhr intervals
then
Allow it to be prioritized in memory controller based on rdwffer hit status of its
requests
end if

for all applications exceptippinier fering ANAAppsion dO
if Intervals To Wait To Throttle Up = thresholdl then
throttle up
Reset/ntervals T'o Wait To Throttle Up for this app.
else
Incrementintervals T'o Wait To Throttle Up for this app.
end if
end for

else
if Successive Fairness Achieved Intervals = threshold2 then
Throttle up application with the smallestowdown
ResetSuccessive Fairness Achieved Intervals
else
IncrementSuccessive Fairness Achieved Intervals
end if
end if
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ing algorithm: a throttled-down application with high rdwfer locality can deny
service to another application continuously. To overconi® twve supplement FST
with a heuristic that prevents this denial of service. Oneepplication has al-
ready been throttled down lower th&hvitch,,, %, if FST detects that this throt-
tled application is generating greater thamter ferences,, % 0of Appgo,'s total
interference, it will temporarily stop prioritizing the terfering application based
on row-buffer hit status in the memory controller. We referthis application as
ApprownitNotPrioritized- 1t APPRowHitNotPrioritizea s NOt been the most interfer-
ing application forSwitch Back,,,. number of intervals, its prioritization over other
applications based on row-buffer hit status will be resad in the memory con-
troller. This is done because if an application with high flouffer locality is not
allowed to take advantage of row buffer hits for a long tinie,performance will
suffer.

Third, we change the condition based on which throttlinggers. Throt-
tling triggers if both the following conditions hold: 1) tlestimated unfairness
(Mazx. Slowdownl/ Min. Slowdown) is greater that/n fairness Threshold and,

2) the ratio between the slowdowns of the core with the ldargiesvdown Appo.)

and the core generating the most interfereng@p(,,.c, rering) 1S greater than
Unfairness Threshold. Doing so helps reduce excessive throttling when two ap-
plications significantly interfere with eachother and aitde between being identi-
fied asAppsiow aNAAppinter fering. By cOmparing their slowdowns before throttling

is performed, overall throughput is improved by avoidingessive throttling.

Fourth, we restrict throttling down oApp;ser fering 10 Cases where the slow-
down thatAppg.. iS suffering is mainly caused by inter-core interferencd &n
not a result ofApp,,,, having been throttled down in previous intervals. We do
this because we observe that there are situations wherepéinadion suffers slow-
down that is incurred as a result of throttling from previootervals. If the ex-
cess cycles thatlpp,.., suffers due to not being able to acquire MSHR entries is
greater than the excess cycles caused for by, e, fering We do not throttle down
ApPinter rering @S this would result in aloss of throughput. In such casedebected
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unfairness can be resolved by throttling 4pp..., and reducing its slowdown by
allowing it to acquire more MSHR entries.

Fifth, cores that are neither the core with the largest stowrd (Appsiow)
nor the core generating the most interferend@;,..c, rering) for the core with the
largest slowdown are throttled up evehyesholdlintervals. This is a performance
optimization that allows cores to be aggressive if they ateime main contributors
to the unfairness in the system.

4.3.6 Hardware Cost and Implementation Details

Table 4.1 shows the breakdown of FST's required storage tathestorage
cost required by our implementation of FST is 11.24KB whistonly 0.55% the
size of the L2 cache being used. FST does not require anytsteuar logic that
is on the critical path since all updates to interfereneeking structures can be
made periodically at relatively large intervals to elimi@any timing constraints
(see Section 4.5.5).

Figure 4.5 shows the shared CMP memory system we model faragiean
of FST including additional structures for tracking inenénce added to the base-
line memory system shown in Figure 4.2. The two boxes on tit& of the figure
contain interference tracking structures and counterg,the shaded bit positions
in the L2 cache lines and MSHR entries on the left are addittorthese structures
required by FST.

4.3.7 Lightweight FST

In this section we describe an alternative FST implemetatiat requires
less hardware and is more scalable. In this alternativeemphtation, we do not
keep track of how much interference is caused by each agiplictor each other
application which required’? ExcessCyclesounters, as described in the previous
subsection. Instead, we propose maintaining two counteredch cora. One
counter tracks the total number BkcessCyclethat the application executing on
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| Cost for N cores | CostforN=4]

ExcessCycles counters N x N x 16 bits/counter 256 bits
2048 entriesx N x 24,576 bits
(1 pollution bit + {og2 N) bit processor id)/entr
32 entries/corg N x 2 interference sources 512 bits
X (logz2 N) bits/entry

Interference pollution filter per core

Inter feringCoreld per MSHR entry

Inter ference PerCore bit-vector 3interference sources N x N x 1 bit 48 bits
Shadow row-buffer address register N x # of DRAM banks (B)x 32 bits/address 1024 bits
Successive Fairness Achieved Intervals counter
Intervals To Wait T'o Throttle Up counter per cote (2 x N + 1) x 16 bits/counter 144 bits

Inst Count Each Interval per core
Core id per tag store entry in K MB L2 cache (16384 blocks/Megabyte K x (log2 N) bit/block 65,536 bits
Total hardware costfor N-core system Sum of the above 92092(1.24 KB)

Percentage area overhead 11.24KB/2MB
. i KB)x 1 K x 1024
(as fraction of the baseline K MB L2 cache) Sum (KB)>x 100/ (K x 1024) =0.55%

Table 4.1: Hardware cost of FST on a 4-core CMP system

corei generated foany otherconcurrently-executing application. We refer to this
counter askxcessCyclesGenerated;. The other counter tracks the total number
of ExcessCyclethat any otherconcurrently-executing application creates for the
application on coreé. We refer to this counter aBxzcessCyclesSuf fered;. This
requires a total o2 N 16-bit counters to be maintained and makes for a more scal-

able solution with larger numbers of cores.

For the lightweight FST implementation to work with the céens described
above we modify Algorithm 3 as follows. With lightweight F3Te core executing
the application that has the largest slowdovmp,., is still throttled up. How-
ever, as opposed to throttling down the core executing tpécgtion which causes
the most interference falppsiow (i.€., Appinter rering) IN Algorithm 3, we throttle
down the core that is executing the application which is geingg the most in-
terference for other concurrently-executing applicagiofhis is the core with the
highest FxzcessCyclesGenerated; counter in a given interval. We evaluate the

performance of our lightweight FST in Section 4.5.7.
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Figure 4.5: Changes made to the memory system

4.4 Methodology
4.4.1 Metrics

To measure CMP system performance, weldaemonic mean of Speedups
(Hspeedup)49], Weighted Speedup (Wspeediff)], andindividual Speedup (1)
which are defined in Section 3.4.1. Sindspeeduprovides a balanced measure
between fairness and system throughput as shown in prewiorks[49], we use it
as our primary evaluation metric. In order to demonstraieéss improvements,
we reportUnfairness(see Section 3.4.1), as defined in [22, 54]. We also report
Maximum Slowdowto evaluate fairness improvements, which is the maximum in-
dividual slowdown that any application in a workload expaedes Maximum Slow-
downis an indicator of the minimum service that any applicatiothe workload

receives.
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4.4.2 Processor Model

Table 4.2 shows the baseline configuration of each core andttared re-
source configuration for the 2 and 4-core CMP systems we u#®ievaluations
of this chapter. We faithfully model all port contention,equng effects, bank con-

flicts, and other major DDR3 DRAM system constraints in themogy subsystem.

15 stage out of order processor

Decode/retire up to 4 instructions

Issue/execute up to 8 micro instructions

256-entry reorder buffer

Fetch up to 2 branches; 4K-entry BTB

64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line

. L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip Caches || gpared unified L2: 1MB (2MB for 4-core), 8-way (16-way for dre),
16-bank, 15-cycle (20-cycle for 4-core), 1 port, 64B lingesi
On-chip, FR-FCFS scheduling policy [65]

128-entry MSHR and memory request buffer

667MHz bus cycle, DDR3 1333MHz [50]

8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank
DRAM and Bus || Latency: 15-15-15ns RP-t RC'D-C'L), corresponds to 100-100-100 pro
cessor cycles

Round-trip L2 miss latency: Row-buffer hit: 36ns, confli6Bns

Execution Core

Front End

DRAM Controller

Table 4.2: Baseline system configuration

4.4.3 Workloads

We use the SPEC CPU 2000/2006 benchmarks for our evaluakech
benchmark was compiled using ICC (Intel C Compiler) or IFOfRitel Fortran
Compiler) with the -O3 option. We ran each benchmark withréference input
set for 200 million x86 instructions selected by Pinpoiri2][as a representative
portion for the 2-core experiments. Due to long simulationes, 4-core experi-

ments were done with 50 million instructions per benchmark.

We classify benchmarks dsghly memory-intensive/with medium memory
intensity/non-intensivéor our analyses and workload selection. We refer to a

benchmark as highly memory-intensive if its L2 Cache Migs&s1K Instructions
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(MPKI) is greater than ten. If the MPKI value is greater thae dut less than ten,
we say the benchmark has medium memory-intensity. If the MR#ue is less
than one, we refer to it as non-intensive. This classificaisobased on measure-
ments made when each benchmark was run alone on the 2-cteensy&ble 4.3
shows the characteristics of the benchmarks that appelae ievialuated workloads

when run on the 2-core system.

| Benchmark]|| Type | IPC | MPKI || Benchmark| Type| IPC | MPKI |

art FPOO| 0.10 | 90.89 milc FPO6| 0.30| 29.33
soplex FPO6| 0.28 | 21.24 leslie3d FPO6| 0.41| 20.88
Ibm FP06| 0.45| 20.16 bwaves FPO6| 0.46 | 18.71
GemsFDTD|| FPO6| 0.46 | 15.63 lucas FPOO| 0.61| 10.61
astar INTO6 | 0.37 | 10.19 omnetpp INTO6 | 0.36 | 10.11
mgrid FP0OO | 0.52 6.5 gcc INTO6 | 0.45| 6.26
zeusmp FP0O6| 0.82| 4.69 || cactusADM FPO6| 0.60| 4.51
bzip2 INTO6 | 1.14 | 2.61 || xalancbmk || INTO6 | 0.71 1.68
h264ref INTO6 | 1.46 1.28 vortex INTOO | 1.01 1.24
parser INTOO | 1.24| 0.91 apsi FPOO| 1.81 0.85
ammp FPOO| 1.8 0.75 || perlbench || INTO6 | 1.49 0.68
mesa FPOO| 1.82 0.61 gromacs FPO6 | 1.06 0.29
namd FPO6| 2.25| 0.18 crafty INTOO | 1.82 0.1
calculix FP0O6| 2.28 0.05 gamess FPO6 | 2.32 0.04
povray FPO6| 1.88 0.02 - - - -

Table 4.3: Characteristics of 29 SPEC 2000/2006 benchmtrksand MPKI (L2
cache Misses Per 1K Instructions)

We used 18 two-application and 10 four-application mufbgrammed
workloads for our 2-core and 4-core evaluations respdgtivdne 2-core workloads
were chosen such that at least one of the benchmarks is mggnyory intensive.
For this purpose we used eithart from SPEC2000 olbm from SPEC2006. For
the second benchmark of each 2-core workload, applicabbdgferent memory
intensity were used in order to cover a wide range of diffe@mbinations. Of
the 18 benchmarks combined with eitteat or Iom, seven benchmarks have high
memory intensity, six have medium intensity, and five have teemory intensity.
The ten 4-core workloads were randomly selected with thelitiom that the eval-
uated workloads each include at least one benchmark with migmory intensity

and at least one benchmark with medium or high memory intgnsi
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4.4.4 FST Parameters Used in Evaluation

Table 4.4 shows the FST parameter values we use in our eiaduatless
stated otherwise. There are eight aggressiveness levetsfas the request rate
of each application: 2%, 3%, 4%, 5%, 10%, 25%, 50% and 100%&s& tevels
denote the scaling of the MSHR quota and the request ratenmstef percentage.
For example, when FST throttles an application to 5% of italteequest rate on
a system with 128 MSHRs, two parameters are adjusted. Eiestapplication is
given a 5% quota of the total number of available MSHRs (ia taise, 6 MSHRS).
Second, the application’s memory requests in the MSHRssareed to access the
L2 cache at 5% of the maximum possible frequency (i.e., onegye0 cycles).

Unfairness | Successive Fairness | Intervals Wait | Interval
Threshold Achieved Intervals | To Throttle Up | Length

Threshold
1.4 4 2 25Kinsts
Switchsp, | Inter ferencegn, | SwitchBackyp,
5% 70% 3 intervals

Table 4.4: FST parameters

4.5 Experimental Evaluation

We evaluate our proposed techniques on both 2-core (Set#oh) and 4-
core systems (all other sections). We compare FST to fo@rststems in our eval-
uations: 1) a baseline system with no fairness techniqugdosed in the shared
memory system, using LRU cache replacement and FR-FCFS rjesnbedul-
ing [65], both of which have been shown to be unfair [36, 57, Y¥e refer to this
baseline adloFairness 2) a system with only fair cache capacity management us-
ing the virtual private caches technique [58], callairCache 3) a system with a
network fair queuing (NFQ) fair memory scheduler [57] condal with fair cache
capacity management [58], callblfFQ+FairCache 4) a system with a parallelism-
aware batch scheduling (PAR-BS) fair memory scheduler ¢@bhbined with fair
cache capacity management [58], calR&R-BS+FairCache
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4.5.1 2-core System Results

Figure 4.6 shows system performance and unfairness awefageg geo-
metric mean) across 18 workloads evaluated on the 2-cotersy&igure 4.7 shows
the Hspeedup performance of FST and other fairness teatsigurmalized to that
of a system without any fairness technique for each of thevaRiated 2-core work-
loads. FST provides the highest system performance (irstefidspeedup) and the

best unfairness among all evaluated techniques. We makeat&ey observations:
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Figure 4.6: Average performance of FST on the 2-core system
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Figure 4.7: Hspeedup of 18 2-core workloads normalized ttamoess control

1. Fair caching’s unfairness reduction comes at the costlafge degra-
dation in system performance. Also average maximum slowdaevhich indicates
the most any application in a workload is slowed down due &risly of memory
system resources, is increased slightly. These happense&ar caching changes
the memory access patterns of applications. Since the nyeawwess scheduler
is unfair, the fairness benefits of the fair cache itself @&eerted by the memory

scheduler.
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2. NFQ+FairCache together reduces system unfairness By@3€mpared
to NoFairnessand reduces maximum slowdown by 10.9%. However, this degrad
Wspeedup (by 12.3%). The combination of PAR-BS and fair icegcimproves both
system performance and fairness compared to the combmnatiblFQ and a fair
cache. The main reason is that PAR-BS preserves both DRAK femallelism and
row-buffer locality of each thread better than NFQ, as showprevious work [55].
Compared to the baseline with no fairness control, emptpHAR-BS and a fair
cache reduces unfairness and maximum slowdown by 41.358(24nd improves
Hspeedup by 11.5%. However, this improvement comes at {hense of a (7.8%)
Wspeedup degradation.

NFQ+FairCache and PAR-BS+FairCache both significantlyabkgysystem
throughput (Wspeedup) compared to employing no fairnessharesms. This is
due to two reasons both of which lead to the delaying of menmory-intensive
applications (Recall that prioritizing memory non-intemsapplications is better
for system throughput [57, 55]). First, the fairness medras that are employed
separately in each resource interact negatively with ederdeading to one mech-
anism (e.qg. fair caching) increasing the pressure on ther ¢tair memory schedul-
ing). As a result, even though fair caching might benefit @ysthroughput by
giving more resources to a memory non-intensive applioatiacreased misses of
the memory-intensive application due to fair caching causere congestion in
the memory system, leading to both the memory-intensiverammdintensive ap-
plications to be delayed. Second, even though the combmatfia fair cache and
a fair memory controller can prioritize a memory non-inteasapplication’s re-
quests, this prioritization can be temporary. The depimgd memory-intensive
application can still fill the shared MSHRs with its request®reby denying the
non-intensive application entry into the memory systemnddg the non-intensive
application stalls because it cannot inject enough requagh the memory sys-
tem. As a result, the memory non-intensive applicationgggmance does not
improve while the memory-intensive application’s perfamse degrades (due to

fair caching), resulting in system throughput degradation
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3. FST reduces system unfairness and maximum slowdown by
46.1%/32.3% while also improving Hspeedup by 20% and degraddspeedup by
1.8% compared tdloFairness Unlike other fairness mechanisms, FST improves
both system performance and fairness, without large degiadto Wspeedup.
This is due to two major reasons. First, FST provides a coatdid approach in
which both the cache and the memaory controller receive fesgient requests from
the applications causing unfairness. This reduces theagian of the applications
that are unfairly slowed down as well as interference of esgl in the memory
system, leading to better system performance for almostplications. Second,
because FST us®&SHR quotaso limit requests injected by memory-intensive ap-
plications that cause unfairness, these memory-interzgpéications do not deny
other applications’ entry into the memory system. As suctlika other fairness
techniques that do not consider fairness in memory systdfarbye.g., MSHRS),
FST ensures that unfairly slowed-down applications arerpized in the entire
memory system, including all the buffers, caches, and sdkes

Table 4.5 summarizes our results for the 2-core evaluati@unpared to
the previous technique that provides the highest systeaugffiput (i.e. NoFair-
ness), FST provides a significantly better balance betwgstem fairness and
performance. Compared to the previous technique that gesvihe best fairness
(PAR-BS+FairCache), FST improves both system performamcefairness. We
conclude that FST provides the best system fairness as weheabest balance

between system fairness and performance.

Unfairnesg Maximum Slowdowrn HspeedupWspeeduy

FSTA over No Fairness Mechanisiin  -46.1% -32.3% 20% -1.8%
FSTA over Fair Cache -31.3% -32.6% 30.2% 16.1%
FSTA over NFQ + Fair Cache -22.8% -24.1% 19.7% 11.9%
FSTA over PAR-BS + Fair Cache -8.2% -10.4% 7.5% 6.4%

Table 4.5: Summary of results on the 2-core system

89



4.5.2 4-core System Results

45.2.1 Overall Performance

Figure 4.8 shows unfairness and system performance avkegess the
ten evaluated 4-core workloads. FST provides the bestds&ifin terms of both
smallest unfairness and smallest maximum slowdown) anceétip among all
evaluated techniquéswhile providing Wspeedup that is within 3.5% that of the
best previous technique. Overall, FST reduces unfairnegsreaximum slowdown
by 44.4%/41% and increases system performance by 30.4% (Hspeedup)%#d 6.
(Wspeedup) compared tdoFairness Compared to NFQ, the previous technique
with the highest system throughput (Wspeedup), FST reduicfssrness and max
slowdown by 22%/16.1% and increases Hspeedup by 4.2%. H&Ys perfor-

mance improvement is mainly due to the large reduction imiunéss
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Figure 4.8: Average performance of FST on the 4-core system

Note that the overall trends in the 4-core system are sirtolt#rose in the 2-

core system except that previous fairness mechanisms dogmoficantly improve

8In this subsection we also include data points for NFQ alormkRAR-BS alone with no Fair-
Cache to show how the uncoordinated combination of fairtesisniques at different shared re-
sources can result in degradation of both performance danmtefs compared to when only one is
employed.

’Similarly, FST also reduces the coefficient of variation, aternative unfairness metric, by
45%.

8Since relative slowdowns of different applications are tiwgortant to improving unfairness
and performance using FST, highly accur@te..s estimations are not necessary for such improve-
ments. However, we find that with the mechanisms proposelisrchapter the application which
causes the most interference for the most-slowed-dowricgioln is on average identified correctly
in 70% of the intervals.
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fairness in the 4-core system. As we will explain in detaibrection 4.5.2.2, this is
due to prioritization of non-intensive applications in imidual resources by previ-
ous fairness mechanisms regardless of whether or not sydicapons are actually

slowed down.

Figure 4.9 shows the harmonic speedup performance of FSothed fair-
ness techniques normalized to that of a system without amyefss technique for
each of the ten workloads. Figure 4.10 shows the systemroets of all the tech-
niques for each of the ten workloads. We make two major canmhs. First,
FST improves system performance (both Hspeedup and Wspgadd fairness
compared to no fairness control for all workloads. Secor®IT provides the best
trade-off between system performance and system fairféSs: has the highest
Hspeedup compared to the previous technique with the higlresage system per-
formance (NFQ) on seven of the ten workloads, and the beasiefss compared to

the previous technique with the best system fairness (PSReB seven of the ten

workloads.
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Figure 4.9: Normalized speedup of ten 4-core workloads
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Figure 4.10: Unfairness of ten 4-core workloads

4.5.2.2 Case Study

To provide more insight into the performance and fairnesgravements
of FST, we analyze one 4-core workload in detail. This woaklas a mix of ap-
plications of different levels of memory intensityArt andleslie are both highly
memory-intensive, whilggamessandgromacsare non-intensive (as shown in Ta-
ble 4.3). When these applications are run simultaneously 4ftore system with
no fairness control, the two memory-intensive applicati¢@speciallyart) gener-
ate a large amount of memory traffisrt's large number of memory requests to the
shared resources unfairly slows down the other three agpits, whileart does
not slow down significantly. Figures 4.11 and 4.12 show iiiial benchmark
performance and system performance/fairness, respbctivete that Figure 4.11
shows speedup over the alone run which is the inverse ofighda slowdown,
defined in Section 3.4.1). Several observations are in order

1. NFQ+FairCache significantly degrades system perforednycl2.3%
(Hspeedup) and 7.1% (Wspeedup) compared to no fairnessotorithis com-
bination slows down the memory-intensive applications noach, resulting in a
16.7% increase in maximum slowdown compared to employin¢amoess tech-

nique. The largest slowdowns are experienced by the memupsiveart and
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leslie because they both get less cache space due to FairCacheeadépaiori-
tized in DRAM due to NFQ. On the other hand, when NFQ alone ipleyed,
the memory non-intensive application’s performance ighgly improved by pri-
oritizing them in DRAM at small reductions to the performanaf the memory-
intensive applications. NFQ alone improves system perdowwe by 6.7%/3.1%
(HS/WS) and reduces unfairness/maximum slowdown by 12.0%%o.. However
these gains are not large even though there is significatenence in the memory
system for this workload because NFQ does not addressenteide caused in the

shared cache.
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Figure 4.11: Case Study - individual application behavior

5.0 6.5 0.54 2.5,
45 60
4.0 c 567 0.4 | 2.0
® 35 2 45 =) =
Q 30 T4y B 0.3] - 315
= 2.5 o gg % 8 ==No Fairness Techniqug
T = 3.0] S = :
= 2.0 2 25 %0.2 | g 1.0l EE8+Fa|r Cache
| T -
= 15 s —PAR-BS + Fair Cache
Lo 1.0} 01 - 05| —PARBS
0.5 0.51 =FST
0.0* 0.0/ 0.0’ oo MENNNTENT
(a) Unfairness  (b) Max Slowdown  (c) Hspeedup (d) Wspeedup

Figure 4.12: Case study - system behavior

2. With PAR-BS+FairCache and PAR-B&t is heavily deprioritized while
the performance of the less memory intensive applicatisnsproved unfairly.
This results in improved overall system throughput (WSpged These two tech-
nigues are an example of where unfair treatment of appdinatin a workload
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may increase system throughput at the cost of large incsetasanfairness and
maximum slowdown (51.5%/39% and 40.4%/31.6% for PAR-B3€Feche and
PAR-BS respectively). Average system turnaround time @ddgpp) also degrades
compared to not using any fairness technique. These tasdsigverly depriori-
tize memory intensive applications (specificadlif) because they do not explicitly
detect when such applications cause slowdowns for othelngy prioritize non-
intensive applications almost all the time, regardless bétiver or not they are
actually slowed down in the memory system. In contrast, gur@ach explicitly
detects when memory-intensive applications are causifegraess in the system.
If they are not causing unfairness, FST does not deprierthem. As a result, their
performance is not unnecessarily reduced. This effectseied by examining the
most memory-intensive application’arf’s) performance with FST. With FS&rt
has higher performance than with any of the other fairnegsnigues.

3. FST increases system performance by 17.5%/11.6% (HSWhIE re-
ducing unfairness/maximum slowdown by 21.4%/19.5% coexbdao no fairness
control. In this workload, the memory-intensiget andleslie cause significant in-
terference to each other in all shared resources agitoacsn the shared cache.
Unlike other fairness techniques, FST dynamically tratksinhterference and the
unfairness in the system in a fine-grained manner. When thmaamneintensive
applications are causing interference and increasinginmefss, FST throttles the
offendinghog application(s). In contrast, when the applications areimetfering
significantly with each other, FST allows them to freely €hexsources in order
to maximize each application’s performance. The fine-gr@didynamic detection
of unfairness and enforcement of fairness mechanisms ongnwhey are needed
allow FST to achieve higher system performance (Hspeeduphaetter balance

between fairness and performance than other techniques.

To provide insight into the dynamic behavior of FST, Figurgishows the
percentage of time each core spends at each throttling IE®8l significantly throt-
tles downart andleslie much of the time (but not always) to reduce the inter-core
interference they generate for each other and the less nyeimensive applica-
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tions. As a resultart andleslie spend almost 25%/30% of their execution time at
10% or less of their full aggressiveness. Also, a lot of theetiart can prevent bank
service to the accessesletlieto the same bank. FST detects this and disallows
art's requests to be prioritized based on row-buffer hits fd¥o/df all intervals, pre-
ventingart from causing bank service denial as described in Sectiab A\®te that
art spends approximately 55% of its time at throttling level 1@@ich shows that
FST detects times when art is not causing large interferandedoes not penalize
it. Figure 4.13 also shows that FST detects interferenceazhbly not onlyart but
also other applicationdeslie gromacs and evergamessare detected to generate
inter-core interference for other applications in cer@ecution intervals. As such,
FST dynamically adapts its fairness control decisions &ititerference patterns
of applications rather than simply prioritizing memory rioiensive applications.
Therefore, unlike other fairness techniques, FST doesvetydeprioritizeart in

the memory system.
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Figure 4.13: Case study - application throttling levels

We conclude that FST provides a higher-performance apprtaattaining
fairness than coarsely tracking the memory-intensity gfiiaptions and depriori-
tizing memory-intensive applications without dynamic whedge of interference
and unfairness. FST achieves this by tracking unfairnetiseiisystem and making

fairness/throttling decisions based on that tracking imarfgrained manner.
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4.5.3 Effect of Throttling Mechanisms

As described in Section 4.3.2, FST uses a combination of techanisms
to throttle an application up/down and increase/decre@sequest rate from the
shared resources: 1) Applying &#SHR quotao each application, 2) Adjusting
the frequency at which requests in the MSHRs are issued &sadbe L2. Sec-
tion 4.3.5 explains how to prevent bank service denial froR¥tFCFS memory
scheduling within FST. Figure 4.14 shows the effect of eddh® different throt-
tling mechanisms, the effect of bank service denial pregar(BSDP), and FST on

the 4-core system. Several observations are in order:

1. Employing BSDP always improves performance regardléssecthrot-
tling mechanism being used. BSDP’s improvements are dwestdution of a prob-
lem we refer to as thever-throttling problem As explained in Section 4.3.5, even
throttled applications can cause significant interferamcen the memory controller
uses an FR-FCFS scheduling algorithm. When this occuradusie terminol-
ogy of Section 4.3.5), FST detects some already throttledhdapplication to be
ApDinter fering @nd continuously throttles it down further because thevestied un-
fairness remains high andpp,;,., stays the same. We call thaser-throttling of
ApPinter fering- BSDP resolves this issue by eliminating the cause of bankcse
denial due to FR-FCFS scheduling.

In Figure 4.14, the fourth and fifth bars from the left in eacthgraph
show the importance of BSDP. Without BSDP, enabling MSHRtagialestroys
fairness (sub-figures (a) and (b)) and degrades systenmrpenfee in terms of har-
monic mean of speedups (sub-figure (c)) as a result of uméstrhent of memory-
intensive applications in some workloads. The large irgegn average unfairness
is mainly due to workloads that contain the applicaton Art is a highly memory-
intensive workload with high row-buffer locality. As sucis we described in Sec-
tion 4.3.5, it can cause bank service denial for concuryesrecuting applications
even when it is throttled down. Additionallgt’s performance is very sensitive to

the number of MSHR entries at its disposal. As a result, itgetiover-throttledas
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Figure 4.14: Effects of different throttling mechanismsF&T

described above when MSHR quotas are employed for thrgitlgure 4.14 (d)
shows that while the over-throttling problem that existsthe workloads including
art does not result in an average loss of system throughput (dsypg across all
the workloads, it does have a large impact on system fairaedsaverage system
turnaround time (as shown by Hspeedup, sub-figure (c)). Welade that BSDP
Is necessary for significant improvements to system fagnwdsen MSHR quotas

are employed.

2. Without BSDP, the combination of MSHR quota and frequethcgt-
tling perform worse than using MSHR quota alone. The reaspthfs is theover-
throttling of memory-intensive benchmarks in the absence of BSDP. \jo&m
throttling mechanisms are employed, the negative effecvef-throttlingdomi-
nates the average in our evaluated workloads. This lead®todmbination of the
two throttling mechanisms performing worse than MSHR alomthe absence of
BSDP.

3. UsingMSHR quotass more effective than using frequency throttling
alone when BSDP is employed. UsiMSHR quotasogether with BSDP achieves
97% of the performance improvement and 95% of the fairnegsawement pro-
vided by FST. However, as table 4.6 shows, some applicaticmeot significantly
slowed down by small adjustments to their MSHR quota values ghen running
alone. This is because applications sucls@sinx3andomnetppdo not make use

of many MSHRs even when running alone as they do not have hegheds of
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memory-level parallelism. For such memory-intensive aggpions with low MLP,
applying MSHR quotas as the throttling mechanism reducesdatuest rates only
at the smallest throttling levels (MSHR quotas of 1 or 2). rEifiere, using the sec-
ond throttling mechanism that reduces the frequency athlwvi@quests are sent to
L2 provides better, fine-grained control of request inj@ctiate.

We conclude that using all mechanisms of FST is better theh gmottling

mechanism alone in terms of both fairness and performance.

# of MSHRs 1 2 3 5 6 12 32 64 | 128
sphinx3 (IPC)|| 0.13 | 0.23 | 0.28| 0.29 | 0.29| 0.30| 0.30 | 0.30| 0.30
milc (IPC) 0.10| 0.22 | 0.36| 0.38| 0.39| 0.40| 0.40| 0.40| 0.40
leslie3d (IPC)|| 0.06 | 0.13| 0.21 | 0.24| 0.26| 0.32| 0.36 | 0.36 | 0.36
Ibm (IPC) 0.04| 0.10| 0.22| 0.26| 0.30| 0.39| 0.45| 0.46 | 0.48

Table 4.6: Sensitivity of alone performance to # of MSHRs

4.5.4 Evaluation of System Software Support

Enforcing Thread Priorities: As explained in Section 4.3.4, FST can be
configured by system software to assign different weighifferent threads. As
an example of how FST enforces thread weights, we ran foutickd copies of the
GemsFDTDbenchmark on a 4-core system and assigned themad weightof 1,
1, 4 and 8 (recall that a higher-weight thread is one the systdtware wants to pri-
oritize). Figure 4.15 shows that with no fairness technigaeh copy oGemsFDTD
has an almost identical slowdown as the baseline does npbauread weights
and treats the applications identically in the shared mgrepstem. However, FST
prioritizes the applications proportionally to their whtg, favoring applications
with higher weight in the shared memory system. FST also sldown the two
copies with the same weight by the same amount. We concladé&8il approxi-
mately enforces thread weights, thereby easing the deveopof system software
which naturally expects a CMP to respect thread weights énstiared memory

system.
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Figure 4.15: Enforcing thread weights with FST

Enforcing an Alternative Fairness Objective (Maximum Tolerable
Slowdown): Section 4.3.4 explained how FST can be configured to achievaxa
imum slowdown thresholaks determined by system software, that dictates the max-
imum tolerable slowdown of any individual application exgog concurrently on
the CMP. Figure 4.16 shows an example of how FST enforcefdinness objective
when four applications are run together on a 4-core systdma.figure shows each
application’s individual slowdown in four different experents where each experi-
ment uses a different maximum slowdown threshold (rangiognf2 to 3) as set by
the system software. As tighter goals are set by the systémase, FST throttles
the applications accordingly to achieve (close to) therddsinaximum slowdown.
The fairness objective is met until the maximum slowdowreshiold becomes too
tight and is violated (fomgrid and parsey, which happens at threshold value 2.
We conclude that FST can enforce different system-softwiatermined fairness

objectives.

= Max Slowdown 3
==Max Slowdown 2.5 |
== Max Slowdown 2.25
== Max Slowdown 2

mgrid parser soplex perlbench

Figure 4.16: Enforcing maximum slowdown with FST
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In Algorithm 3 throttling is triggered when estimated systenfairness is

greater than a system-software-specified threshold. &igur7 shows average sys-

tem performance and fairness when using a system-softsymefied maximum

slowdown target compared to FST with an unfairness targetiwis the system-

software target we use in all other experiments in this adrapiVe conclude that

similar system performance and fairness benefits can bedaising either system

software goal: maximum tolerable slowdown or maximum t@alée unfairness.
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Figure 4.17: Comparing overall results with different €ystlevel targets

4.5.5 Effects of Implementation Constraints

Shared resources may be located far away from each other ®n th

chip.

In order to eliminate timing constraints on the segdaf updates to the

Inter ference PerCore bit-vector from the shared resources, such updates can be

made periodically. Every/ pdateT hreshold cycles, all shared resources send their

local copies ofinter ference PerCore to update the main copy at the L2. Once

the updates are applied to the main copy by taking the uniati bft-vectors, FST

checks the main copy dinter ference PerCore. If the Inter ference PerCore

bit of a core is set, FST increments thecessC'ycles counter corresponding to the

core by thelUpdateT hreshold value.

Figure 4.18 shows the effect of periodic updates and seitgito chosen

period lengths on the performance and fairness improvesr@&EST. The figure

shows that even with updates occurring once every 1000 syslstem perfor-



mance is almost identical and fairness improvements at@m&.5% of FST with
updates being made every cycle. We conclude that usingderigpdates (even
when made at relatively long periods) eliminates any tintogstraints on the send-
ing of updates to thénter ference PerCore bit-vector and does not significantly
effect the performance and fairness improvements of FST.
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Figure 4.18: Effect of periodic updates on FST’s perforngaied unfairness

456 Effects of Different Sources of Interference

Figure 4.19 shows the effect of taking into account intenfee from each
of the interference sources we discuss in Section 4.3.3figiaee shows that FST’s
performance is mostly sensitive to whether or not DRAM banrtkriference is in-
cluded in the estimations. Without DRAM bank interferen€8T only improves
performance by 5.1% (Hspeedup) and reduces unfairness .Byolispectively.
As we observed in Section 4.3.6, a significant portion of theltvare required to
implement FST is required for accounting for cache intenfee and DRAM row-
buffer interference. This gives opportunity for a much legpensive implementa-
tion of FST based only on DRAM bank interference which cane@97% of the
total performance improvements of FST and 94% of its totéhiumess reduction.

4.5.7 Evaluation of Lightweight FST

Figure 4.20 compares the performance of the lightweight F§Jlemen-
tation described in Section 4.3.7 to that of the baselinethad=ST we have been

101



| S 5.0 05 25
3.5 4.5] 20
3.0] s a

@ o 3.5 — £ S —No Fairness Technique

@ 2.59 T 3.0 — S0 - g L5 =FsT

c s o) [}

% 2.04 O 25 ) 8_ =FST - no Cache Interference

C 1.54 N 20 o2 I o 1.0f =FST - no Bank Interference

S5 é 151 T ; =FST - no Row Buffer Interference
1.04 s 104 01 | 0.51 =FST - no DRAM Bus Interference
051 : ) | =FST - only use Cache Interference

) 0.5 = FST - only use Bank Interference

0.0 0.04 0.0 0.0 NN T
(a) Unfairness (b) Max Slowdown (c) Hspeedup (d) Wspeedup

Figure 4.19: Sensitivity of FST to taking into account diéfiet interference sources

evaluating so far. The figure shows that the lightweight enpéntation that re-
quires2N counters for trackingexcessCyclesformation, provides 98% of the
system performance and 95% of the system fairness benefite airiginal FST
which requiresV? counters. We conclude that this is an interesting optioroto ¢

sider for systems with a larger number of cores.
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Figure 4.20: Comparing overall results of original and tigaight FST

4.5.8 Sensitivity to Unfairness Threshold

Figure 4.21 shows how FST’s average fairness and perforenehanges
with different unfairness thresholds on our evaluated #eaeorkloads. Lowering
theunfairness thresholdet by the system-software continuously improves fairness
and performance until the unfairness threshold becomesnwall. With a very
small unfairness threshold (1.05), FST becomes 1) veryemggre at throttling

down cores to reach the very tight unfairness goal, 2) tositea to inaccura-
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cies in slowdown estimation and therefore triggers thirggtiof sources unneces-
sarily. As a result, both system performance and fairneghts} degrade. On the
other hand, as the threshold increases, unfairness in gtemsyalso increases (be-
cause throttling is employed less often) and performanceedses beyond some
point (because memory hog applications start causingagtarvto others, leading
to lower system utilization). Overall, the unfairness #ireld provides a knob to
the system software, using which the system software carrdete the fairness-
performance balance in the system. We find an unfairnesstbie of 1.4 provides

the best fairness and performance for our 4-core workloads.
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Figure 4.21: Sensitivity of FST to unfairness threshold

4.5.9 Effect of Multiple Memory Controllers

Figure 4.22 shows the effect of using FST on a system with twonory
controllers. We conclude that in such a system with higharable off-chip band-
width where there is less inter-core interference, and assaltr lower unfairness
to begin with in the baseline, FST provides significant inweroents in system
fairness and performance compared to combinations ofdagimechanisms at the

different resources.

4.5.10 Evaluation of Using Profile Information

Figure 4.23 shows the effect of using profile information twa@unt for

slowdown due to throttling as described in Section 4.3.3Ch average, using
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Figure 4.22: Effect of FST on a system with two memory coitérsl

such profile information improves system performance by 4% l@aves system
unfairness unchanged across the 4-core workloads. Howswer profile informa-
tion is not completely accurate in accounting for slowdowus to throttling in all
intervals since the factors described in Section 4.3.34oatained by comparing
performance of complete runs of each application at diffetierottling levels. Due
to the inaccuracies that exist, the use of this informatesults in increased system
unfairness in two of the workloads.
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Figure 4.23: Effect of using profile information for throtitg related slowdown

4.6 Conclusion

We proposed a low-cost architectural technique, FairnesSeurce Throt-
tling (FST), that allows system-software fairness poBdie be achieved in CMPs
by enabling fair sharing of the entire memory system. FSiielates the need for
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and complexity of multiple complicated, specialized, ams$gbly contradictory
fairness techniques for different shared resources. Thélea of our solution is to
gather dynamic feedback information about the slowdowmpeegnced by differ-
ent applications in hardware at run-time and, based on @adldack, collectively
adjust the memory request rates of sources (i.e., coresalamte applications’
slowdowns. Our solution ensures that fairness decisiotisarentire memory sys-
tem are made in tandem, thereby significantly improving lsgtem performance
and fairness compared to the state-of-theegburce-basethirness techniques im-
plemented independently for different shared resourceshaVe also shown FST is
configurable by system software, allowing it to enforce #larpriorities and achieve
different fairness objectives. We conclude that FST presid promising low-cost
substrate that can not only improve the performance anddag of future multi-
core systems but also ease the task of future multi-coresysbftware in managing
shared on-chip hardware resources.

105



Chapter 5

Prefetch-Aware Shared-Resource Management

5.1 Introduction

In Chapter 4 we discussed how memory requests from diffeqgpiications
concurrently executing on different cores of a CMP integf@rth one another. This
inter-application interference causes each applicatoslaw down compared to
when it runs in isolation. Recent research (e.g., [57, 5%) h&s proposed dif-
ferent mechanisms to manage this interference in the shmaesdory resources in
order to improve system performance and/or system fairnasshapter 4, we pro-
posed Fairness via Source Throttling (FST), which is oné sechnique targeted at
providing fairness across all shared memory resourcesvpndviding high system

performance.

On the other hand, memory latency tolerance mechanismsriéicalcto
improving system performance as DRAM speed continues tplagessor speed.
Prefetching is one commonly-employed mechanism that gietlhhe memory ad-
dresses a program will require, and issues memory requedfsose addresses
before the program needs the data. Prefetching improvestémelalone perfor-
mance of many applications and is currently done in almésoahmercial proces-
sors [70, 27, 40, 61]. In Chapter 3, we proposed Hierarchicafetcher Aggres-
siveness Control (HPAC), which intelligently adjusts jeteher aggressiveness at
runtime to make prefetching effective and efficient in CMPs.

Ideally we would like CMP systems to both obtain the perfanoebenefits
of prefetching when possible, and also reap the performanddairness benefits of
shared resource management techniques. However, shamdae management

techniques that otherwise improve system performance aingess significantly,
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can also significantly degrade performance/fairness irptesence of prefetching.
The reason: these techniques are designed for demand t®gqudsio not consider

prefetching.

Figure 5.1 illustrates this problem on a system that uses/quality of ser-
vice (QoS)-capable memory scheduler, network fair que(N#Q) scheduler [57].
Results are averaged over 15 multiprogrammed SPEC CPU206@8oads on a
4-core systerh and normalized to a system that uses a common first-ready firs
come-first-serve (FR-FCFS) memory scheduler [65]. Figufe (&) shows how
NFQ affects average system performance and average maxsiawdown (one
metric of unfairness) in a system with no prefetching. Fegbirl (b) shows this in
the presence of aggressive stream prefetching. This fignmessthat, even though
NFQ improves performance and reduces maximum slowdown gstara that does
not have a prefetcher, if aggressive prefetching is enabedsee a very different
result. On a system with prefetching NFQ degrades perfoomday 25% while
significantly increasing maximum slowdown, because itsawythg prioritization
algorithm does not differentiate between prefetch and aelmaquests. As a re-
sult, prefetches can be unduly prioritized by the memonreddier, causing system

performance and fairness degradation.

In this chapter, we demonstrate that different shared resomanagement
techniques suffer from this problem, i.e., they can degaeidormance signifi-
cantly when employed with prefetching. Our goal is to degeaeral mechanisms
that intelligently take prefetches into account within idtaresource management
techniques to ensure their effectiveness for both perfoomaand fairness in the
presence of prefetching.

We provide mechanisms for management of prefetch requedtseae re-
cently proposed shared resource management technique®. offithese tech-

niques areresource-baseanemory scheduling techniques: network fair queuing

LOur system configuration, metrics, and workloads are d&atisn section 5.5. In Figure 5.1,
the stream prefetcher of Table 5.1 is used. Prefetch and ntbmemuests are treated alike with
respect to NFQ's virtual finish time calculations.
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Figure 5.1: Harmonic mean of speedups and maximum slowdovaystem using
NFQ memory scheduler (normalized to FR-FCFS)

(NFQ) [57] and parallelism-aware batch scheduling (PARBS]). The third tech-
nique is thesource throttling-basetechnique for coordinated management of mul-
tiple shared resources (FST) which we proposed in Chapter 4.

Basic Ideas: Our mechanisms build upon three fundamental ideas. First,
we use accuracy feedback from the prefetchers to decide hefetph requests
should be handled in each of thesource-basetechniques. The key idea is ot
treat all prefetches the same. An application’s prefetahesild be treated similar

to the demand requestsly whenthey are useful.

Second, treating useful prefetches like demands can signtfy delay de-
mand requests of memory non-intensive applications becswsh requests can get
stuck behind accurate prefetches (and demands) of memtaysive applications.
This degrades system performance and fairness. To solv@tbblem, we intro-
duce the idea alemand boostinghe key idea is to boost the priority of the demand
requests of memory non-intensive applications over regu@ther applications.

Third, with source throttling-based resource managemerd observe that
uncoordinated core and prefetcher throttling can causeipeance/fairness degra-
dation because throttling decisions for cores can corttalose for prefetchers.
To solve this problem, we propose mechanisms that cooelo@e and prefetcher
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throttling based on interference feedback that indicateghvcores are being un-

fairly slowed down.

5.2 Summary from Previous Chapters and Background

In Sections 2.2.1 and 2.2.2 we gave an overview of two of theregh
resource management techniques that we discuss in thisech&j#Q [57] and
PARBS [55]. Here we briefly summarize FST from Chapter 4 andpoefetcher
control technique, HPAC, from Chapter 3. We first briefly ddszwhat we mean

by system fairness in the presence of prefetching.

5.2.1 Fairness in the Presence of Prefetching

We evaluate fairness of a multi-core system executing aifprdgrammed
workload using thé// ax Slowdown metric as defined in Section 4.4.1. Recall from
Section 3.4.1 that thimdividual Slowdown (ISpf each application is calculated as
Tshared/ Tatone, WhereTg,,..q is the number of cycles it takes an application to run
simultaneously with other applications, ahg,,.. is the number of cycles it would
have taken the application to run alone on the same systeall.diour evaluations,
we use an aggressive stream prefetcher when calculatimgbesschmark’sl’,;,..
as our stream prefetcher significantly improves averag®peance and makes for
a better baseline system. In addition to the.z Slowdown metric, we also show
the commonly usednfairnesametric [36, 22, 54] as defined in Section 3.4.1.

5.2.2 Hierarchical Prefetcher Aggressiveness Control (H&C)

In Chapter 3, we proposed hierarchical prefetcher aggrelssss control
(HPAC) as a prefetcher throttling solution to improve ptefeng performance
in CMPs. HPAC's goal is to control/reduce inter-thread ifegeence caused by
prefetchers. It does so by gathering global feedback inddiom about the effect of
each core’s prefetcher on concurrently executing appiinat Examples of global
feedback are memory bandwidth consumption of each core pmaeh each core is
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delayed waiting for other applications to be serviced by DRAnd cache pollution
caused by each core’s prefetcher for other applicationsarshared cache. Using
this feedback, HPAC throttles each core’s prefetcher. Bpglso, we showed that
HPAC can enable system performance improvements usingtphafig that are not
possible without it. In this chapter, we use HPAC in our bagesystem since it
significantly improves the performance of prefetching inltmeore systems and

therefore constitutes a stronger baseline.

5.2.3 Fairness via Source Throttling (FST)

In Chapter 4 we proposed fairness via source throttling jF&Ta mech-
anism to provide fairness in the entire shared memory syste8T dynamically
estimates how much each applicatiois slowed down due to inter-core interfer-
ence that results from sharing the memory system with otppliGtions. Using
these estimated slowdowns, FST calculates an estimatgdters unfairness. In
addition, FST also determines the core experiencing tlgesrslowdown in the
system, referred to a&pp-slowestand the core creating the most interference for
App-slowestreferred to aApp-interfering If the estimated unfairness is greater
than a threshold specified by system software, FST thrattes App-interfering
(i.e., it reduces how aggressively that application aceefise shared memory re-
sources), and throttles uppp-slowest In order to throttle down the interfering
thread, FST limits the number of requests that the threadstanltaneously send

to the shared resources and also the frequency at whichstsitne

In order to estimate each application’s slowdown, FST saoker-thread
interference in the memory system. FST estiméieth how much each applica-
tion i is actually being slowed down due to inter-core interfeeeaadalso how
much each other cofje(j # i) contributes to the interference experienced by core
i. In Chapter 4, we assume all requests are demand requestarat consider
prefetching. In this chapter we demonstrate what problernamowhen prefetching
is enabled and extend the FST design of Chapter 4 to continioe éfficient in the
presence of prefetching.
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5.3 Motivation

In this section, we motivate why special treatment of pfatequests is
required in shared resource management techniques to pathieve benefits from
prefetching and, 2) maintain the corresponding technigoedormance benefits

and/or fairness/QoS capabilities.

Every shared resource management technique has a patatizalgorithm
that determines the order in which requests are serviced.e¥xample, NFQ pri-
oritizes requests that have earliartual finish times PARBS prioritizes requests
included in the formed batch by scheduling them all beforewa batch is formed.
In resource-based management techniques, the first keypidbe chapter is that
the usefulness of prefetch requests should be consideththwiach management
technique’s prioritization policy. As such, not all prefeés should be treated the
same as demand requests, and not all prefetches should heritiepd compared
to demand requests. However, this is not enough; in facbripring accurate
prefetches causes starvation to demands of non-intenpplecations. To solve
this problem, the second key idea we present in this chapterboost the priority

of demand requests of such non-intensive applicationsagdhby are not starved.
We motivate these two key ideas with two examples.

Example 1: Figure 5.2 shows the effect of prefetching on PARBS. The fig-
ure shows a snapshot of the memory request buffers in the myetoatroller for
banks 1 and 2. The initial state of these queues right befaenabatch is formed
can be seen on the left. Based on PARBS'’s batching algorahmaximum number
of requests from any given thread to any given bank are madkemm a batch. Let
us assume PARBS marks three requests per-thread per-bamkfariming a batch.
Additionally, let us assume that application 1's prefeglaee useless or inaccu-
rate while application 2's prefetches are useful or aceur&igure 5.2 shows two
simplistic policies, (a) and (b), and our proposed appropohcy (c), for handling
prefetches in PARBS’s batching phase. Figure 5.3 showsetbigective memory

service timelines.
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Figure 5.2: Example 1 - Different policies for treatment oéfetches in PARBS
batch formation

Policy (a): mark prefetches and demands from each thredet alihen creating a
batch. Figure 5.2 shows that all the requests in the memory requesies of the
two banks are included in the batch with this policy. Withack batch, PARBS
prioritizes threads that that are “shorter jobs” in termsve#mory request queue
length. Since thread 1 has a shorter queue length (maximeepu2sts in any bank)
than thread 2 (maximum 3 requests in any bank), thread losifzed over thread
2. As aresult, as Figure 5.3 (a) shows, thread 1’s inaccprafetches to addresses
Y, X and Z are prioritized over thread 2's demands and usegfgbches. This leads
to unwarranted degradation of thread 2's performance withay benefit to thread

1 (as its prefetches are useless).

Policy (b): never mark prefetchedhis policy provides a naive solution to policy
(a)’s problems by not marking any prefetches. This is hélpfuprioritizing the
demands of thread 2 over the useless prefetches of threadldevdr, by not mark-
ing any prefetches, this policy also does not include théulipeefetches of thread
2 in the generated batch. Figure 5.3 (b) shows that threadsZful prefetches to
addresses L and M are now delayed since all prefetches armuiged. Hence
thread 2 issues demands for addresses L and M before thegheseare serviced,
and so the benefit of those accurate prefetches significdetyeases. This causes

a loss of potential performance.
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based on prefetch accuracy

Figure 5.3: Memory service timeline for requests of Figur2 5

Our Approach: A key principle we introduce in this chapter is to treat oalg-
curate prefetches as demands in shared resource managéfgeme 5.2 (c) con-
cisely shows how this is done for PARBS. Using feedback frafferdnt threads’
prefetchers, PARBS can make a more intelligent decisiomialwbether or not to
include prefetches when forming batches. Since threadefefches are useful, we
include them in the batch, while thread 1's useless preésteine excluded. As are-
sult, benefits from prefetching for thread 2 is maintainedsfzown in Figure 5.3 (c).
Excluding thread 1's useless prefetches from the batchawgs system fairness as
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these requests do not unduly delay thread 2’s demands afd pegfetches, and
thread 2's slowdown is reduced without increasing threadtbwdown. Figure 5.3
(c) shows that this policy improves both applications’ periance compared to
policies that treat all prefetches equally. This motivdtesneed for distinguishing
between accurate and inaccurate prefetches in sharedcesoanagement.

Example 2: Figure 5.4 shows the problem with just prioritizing accerat
prefetches, and concisely shows our solution for a systengu®ARBS. When
including accurate prefetches into the batches formed HRB®, in the presence
of prefetch-friendly applications (like application 2 ingkre 5.4), the size of the
batches can increase. Since memory non-intensive apphesaflike application
1 in Figure 5.4) generate memory requests at a slow pacey éwee a batch is
formed (Timetl shown in Figure 5.4(a)), memory non-intensive applicagiomll
have a small number of their requests included. At ti&yemore requests from
the memory non-intensive application arrive. Without ouogosed mechanism,
since the current batch is still being serviced, these reigugave to wait until the
current batch is finished (Figure 5.4 (c)), which could takersy time since useful
prefetch requests that were included in the batch made ttoh Is&ze larger. In
this chapter, we propose demand boosting, which priostasmall numbeof the
non-intensive application’s requests over others. In EEdu4 (d), at timd3, the
two demand requests from application 1 to addresses K and haostednto the
current batch and prioritized over the existing requestsnfiapplication 2 within

the batch. This allows application 1 to go back to its cominase quickly. Doing
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so does not degrade application 2's performance significastthe non-intensive
application 1 inherently has very few requests.

5.4 High Performance and Fair Shared Resource Management
in the Presence of Prefetching

In this section, we describe in detail our proposal for hamdprefetches
in the two types of resource management techniquesource-basedndsource-
based We also introducelemand boostingwvhich is orthogonal to the employed
resource management technique. Since demand boostingril@o to both
resource-based and source-based techniques, we desdiibein Section 5.4.1.
Then, we describe in detail how to apply our insights (déscdiin Sections 5.1

and 5.3) to each resource management technique in turnd8eét4.2 and 5.4.3).

5.4.1 Demand Boosting

Problem and Main Idea: As described in Section 5.3, the first compo-
nent of our proposal is to treat useful prefetches to be a®itapt as demands.
Memory-intensive and prefetch-friendly applications g@merate many such re-
guests, which can cause long delays for the demands of aemtiyr executing
memory non-intensive threads. As a result, system perfoceand fairness can
degrade because of large performance degradations to merorintensive ap-
plications. To mitigate this problem, we propodemand boostindor such non-
intensive applications. The key idea is to prioritize theé+matensive application’s
small number of demand requestiger others, allowing that application to go back
to its compute phase quickly. It must be noted that doing ®s ¢t significantly
degrade other applications’ performance because thentensive application in-
herently has very few requests.

Why the Problem Exists: The potential foishort-termstarvation of a non-
intensive application’s demands increases in each of dimiques we consider for
different reasons. In NFQ and FST, potential for starvaisocreated by the priori-
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tization of DRAM row buffer hits in the memory scheduler, pbed with high row
buffer locality of accurate prefetches that are considaganportant as demands.
PARBS uses the batching concept to mitigate this inhersaoeislue to prioritizing
row-buffer hit requests. However, in Section 5.3 we progoseluding accurate
prefetches into PARBS’s batches. The slow rate at whichintamsive threads
generate their requests, together with the large batchesrgied using requests
from prefetch-friendly applications, causes potential $tarvation in PARBS. In
addition, when such memory non-intensive applicationcache friendly, as they
stall waiting for their small number of memory requests tesbeviced, their useful
requests in the shared cache move up the LRU stack. Hengegdhagyet evicted
more quickly by intensive applications’ requests. Thistum, causes larger per-
formance penalties for such memory non-intensive apjdinat

To summarize, elevating the priority of accurate prefeteuests from
memory intensive applications causes the small memoryeetktall times of non-
intensive applications to increase. This significantlythdine non-intensive appli-
cations’ performance (as also observed by prior work [41]).

Demand Boosting Mechanism:Demand boosting is a general mechanism
orthogonal to the type of resource management techniquecrtases the perfor-
mance of memory non-intensive applications that do not éaakentage of accurate
prefetches by dynamically prioritizing small numbeiof such applications’ de-
mands. With demand boosting, the demands of an applicatatndbes not have
accurate prefetchemnd has a at most threshold numbeof outstanding requests,
will be boosted and prioritized ovatl otherrequests. For example, in a system us-
ing PARBS, when an application’s demands are boosted, thégnger wait for a
current batch to finish before they are considered for sdiregluA boosted request
X has higher priority than any other request Y regardlessloétiver or not request
Y is in the current batch.

2Note that in the context of demand boosting for PARBS, dentaasting is significantly dif-
ferent from the “intra-batch” ranking proposed by the amigiPARBS mechanism (which we use
in all our PARBS related mechanisms). PARBS'’s ranking fitiz@s requests chosen from requests
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Delaying a memory-intensive application in lieu of a memooy-intensive
application with inherently small memory stall times carpnove both system per-
formance and fairness [55, 42, 15, 37]. In many cases, detbaosting enables
performance benefits from prefetching that are not possiiileout it, as we show
in Section 6.4.

5.4.2 Prefetch-Aware Resource-Based Management Techniggl

We identify prefetcher accuracy as the critical prefetctigaracteristic to
determine how a prefetcher’s requests should be treatedared resource man-
agement techniques. Prefetcher accuracy is defined adithefraseful prefetches
generated by a prefetcher to the total number of prefetdhgsnerates. We also
investigated using other prefetcher feedback such as atphefr’'sdegree of timeli-

ness$, but found that accuracy has more of a first order effect.

In all of the mechanisms we propose, we measure prefetchramgcon
an interval by interval basis. An interval ends whén= 8192 cache lines are
evicted from the last level cache, whéres empirically determined. Every interval,
information on the number of useful prefetches and totat pegfetches of each
prefetcher is gathered. Using this information, the accy@f the prefetcher in
that interval is calculated and used as an estimate of thetpher accuracy in
the following interval. In the following subsections, wesdiuss how to redesign
underlying prioritization principles of tweesource-basethanagement techniques.

5.4.2.1 Parallelism-Aware Batch Scheduling

PARBS usedatchingto provide a minimum amount of DRAM service

to each application by limiting the maximum number of redseonsidered for

already containedvithin the current batctusing its ranking algorithm. In contrast, with demand
boosting, demand requests from a boosted thread are atribverall other requests.

3A prefetcher's degree of timeliness is defined as the ratithefnumber of useful prefetches
that fill the last level cache before the corresponding dehmaquest is issued, to the total number
of useful prefetches.
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scheduling from any one application. Inaccurate prefetdie@n application A can
have negative impact on system performance and fairnesgimvays. First, they
get included in batches and get prioritized over other appibns’ demands and
useful prefetches that were not included. As a result, tlaesse large performance
degradation for those other applications without imprgvapplication A's perfor-
mance. Second, they reduce the fairness provided by PARBSpication A by
occupying a number of slots of each batch that would othenbes used to give

application A's demands a minimum amount of useful DRAM g&rv

We propose the following new batch scheduling algorithmralde poten-
tial performance improvements from prefetching, while maining the benefits of
PARBS. The key to Algorithm 4 is that it restricts the proceémarking requests
to demands and accurate prefetches. As aresult, a prdfetoldly application will
be able to benefit from prefetching within its share of mensayice. On the other
hand, inaccurate requests are not marked and are hencentegad by PARBS.

Algorithm 4 Parallelism-Aware Batch Scheduler's Batch Formation f@oh-Aware
PARBS, P-PARBS)
Forming a new batch: A new batch is formed when there are no marked requests left
in the memory request buffer, i.e., when all requests froengtevious batch have been
completely serviced.
Marking: When forming a new batch, the scheduler marks udaoking-Capoutstand-
ing demanand also accurate prefetch requedts each application; these requests form
the new batch.

5.4.2.2 Network Fair Queuing

NFQ usesearliest virtual finish time firsmemory scheduling to provide
quality of service to concurrently executing applicatiohsaccurate prefetches of
some application A can have negative impact on system pedioce and fairness
in two ways: First, if application A's inaccurate prefetshget prioritized over de-
mands or accurate prefetches of some other application Badie former’s ear-
lier virtual finish time, system performance will degradepplication B’s service
is delayed while application A does not gain any performasseond, since NFQ

provides service to application A's inaccurate prefetchias virtual finish times of
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application As demands grows larger than when there wasrafteigching. This

means that application A's demand requests will get sedviager compared to
when there is no prefetching. Since application A's prdfegcare not improving
its performance, this ultimately results in applicatiors flerformance loss due to

unwarranted waste of its share of main memory bandwidth.

We propose the following prioritization policy for the NFQuik scheduler.
When this scheduler prioritizes requests based on eavigggal finish time, this
prioritization is performed only for demand accesses arclurateprefetches. Do-
ing so prevents the two problems described in the previotegpaph. Algorithm 5

summarizes the proposed NFQ policy.

Algorithm 5 Network Fair Queuing’s Bank Scheduler Priority Policy (feteh-Aware
NFQ, P-NFQ)
Prioritize ready commands (highest)
Prioritize CAS commands
Prioritize commands for demandsd also accurate prefetch requesisth earliest vir-
tual finish-time
Prioritize commands based on arrival time (lowest)

5.4.3 Prefetch-Aware Source-Based Management Techniques

We propose prefetch handling mechanisms fordberce-basedhared re-
source management approach (FST), which we proposed int€hapwWe briefly
described FST’s operation in section 5.2.3. FST does netitdk accouninterfer-
ence generated for prefetchasdinterference generated by the prefetcbégach

application.

We incorporate prefetch awareness into FST in two major egtys) deter-
mining how prefetches and demands should be considerednmatisig slowdown
values, and b) coordinating core and prefetcher throttlisigpg FST’s monitoring

mechanisms.
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5.4.3.1 Determining Application Slowdown in the Presencefd’refetching

FST tracks interference in the shared memory system to diadlgnes-
timate the slowdown experienced by each application. Yetannot compute
accurate slowdown values if prefetching is employed bes&&T is unaware of
prefetches. In this section we describe a new mechanismnpute slowdown

when prefetching is employed.

When requests A and B from two applications interfere witbheather in
a shared resource, one request receives service first anthitreisinterfered-with
Let us assume that request A was thierferingand request B was theterfered-
with. Thetypeof memory request A classifies the interferencgeefetch-caused
or demand-causenhterference. The type of memory request B classifies theg-int
ference aprefetch-delayingr demand-delayinghterference.

Recall that FST defines individual slowdow®, asTnarea/Taione tO €Sti-
mate system unfairness. In order to estinBjg,. when running in shared mode,
FST estimates “the number ektra cyclest takes an application to execute due to

inter-core interference in the shared memory resourcebi% i known asl’, ...

(Te:ccess = L shared — Talone)-

When estimatind/,....s in the presence of prefetching, we find that it is
important to use the following two principles. First, bgpnefetch-cause@nd
demand-causenhterference should be considered. Second, deiyand-delaying
interference should be used to calculate slowdown valuesnéitne. This means
that when calculating corés T,,..ss, interference caused for its demands ddy
ther demands or prefetches of other cojds # i) should be accounted for. This
is because ultimately both prefetch and demand requestsdrointerfering core
can cause aimterfered-withcore to stall. On the other hand, even thoypgéfetch-
delayinginterference reduces the timeliness of interfered-witfgiches, it does
not significantly slow down the corresponding core. If anusate prefetch is de-
layed until the corresponding demand is issued, that piefstll be promoted to a
demand. Further delaying of that request will contributéhtslowdown estimated
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for the respective core because any interference with duptest will be considered
demand-delayinfrom that point on.

Algorithm 6 summarizes how our proposal handles prefetthesake FST
prefetch-awaré. FST uses a bit per core to keep track of when each core was
interfered with. We refer to this bit-vector as tleterferencebit-vector in the
algorithm. Also, anFxcessCycles counter is simply used to track ... for each

core.

Algorithm 6 Prefetch-aware FST (P-FST) estimatiorilpf....s for corei
Every cycle
if inter-core interference created by any c@seprefetch request®r demand requests
for corei’'s demand requestthen
set cord’s bit in the Inter ference bit-vector
end if
if Corei’s bitis set in thelnter ference bit-vectorthen
IncrementExcessCycles counter for core
end if

5.4.3.2 Coordinated Core and Prefetcher Throttling

FST throttles cores to improve fairness and system perfocea On the
other hand, HPAC is an independent technique that thrgitkfetchers to improve
system performance by controlling prefetcher-caused-raee interference. Un-
fortunately, combining them without coordination causestradictory decisions.
For example, the most slowed down core’s prefetcher can to¢titd down (by
the prefetch throttling engine, i.e., HPAC’s global cofjtnehile the core is be-
ing throttled up (by the core throttling engine, i.e. FST}¥ Aresult, fairness and
performance degrade and potential performance benefits fr@fetching can be
lost. Therefore, we would like to coordinate the decisiohsare and prefetcher
throttling. The key insight is to coordinate HPAC's throtg decisions with FST's
decisions using the interference information collectede®f. We achieve this in

two ways.

4We present our changes to the origifial,..., estimation algorithm presented in Algorithm 2
of Chapter 4. For other details dn,...ss estimation we refer to Section 4.3.3.
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The first key idea is to use the slowdown information that F&thgrs for
core throttling to make better prefetcher throttling dewis. To do this, we only
apply HPAC'’s global prefetcher throttle down decisions toose if FST has de-
tected the corresponding core to Bepi,icr fering-> AS such, wefilter some of the
throttle-down decisions made by HPAC. This is because HP&AChe very strict
at prefetcher throttling due to its coarse classificatiothefseverity of prefetcher-
caused interference. As a result, it throttles some prieé&tcdownconservatively
even though they are not affecting system performancefag adversely. We avoid
this by using the information FST gathers about which coresaatually being

treated unfairly as a result of inter-core interference.

The second key idea is to use FST’s ability of tracking imtere cache
pollution to improve how well HPAC detects accurate prdfets. This is useful
because HPAC can underestimate a prefetcher’s accuraciodtseinterference-
unaware tracking of useful prefetches. HPAC does not carourate prefetches for
corei that were evicted by some other core’s requests before hesied. This can
cause HPAC to incorrectly throttle down coi®accurate prefetcher and degrade its
performance. To avoid this, we use FST’s pollution filter ébegtt when an accurate
prefetch for core was evicted due to another cqierequest. For this purpose, we
extend FST’s pollution filter entries to also include a pteffiebit. Using this, we
account for useful prefetches evicted by another coresasts in HPAC's estimate

of each prefetcher’s accuracy.

Algorithms 7 and 8 summarize the above mechanisms that iradedcore

and prefetcher throttling.

5If HPAC's local throttling component for coliedetects that the core’s prefetcher is not perform-
ing well, that prefetcher is still throttled down regardiedf FST’s decision. This helps both cale
and other cores’ performance.
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Algorithm 7 Prefetch-Aware FST (P-FST) Core and Prefetcher Throttling

if Estimated Unfairness > Unfairness Threshold then
Throttle downAppinier fering
Throttle down prefetcher of Appinier fering If HPAC indicates global throttle down
for this prefetcher
Throttle upAppslowest

end if

Allow HPAC to throttle up prefetchers as it requires

Apply HPAC's local throttle down decisions

Algorithm 8 Enhancing prefetcher accuracy information using FST suioh filters
if Last-level cache hit on prefetched cache linen
increment useful prefetch count
end if
if Last-level cache miss due to inter-core interference asctied by FSTand evicted
line was prefetch requesien
increment useful prefetch count
end if
Prefetch accuracy = useful prefetch count / total prefetaimt

5.5 Methodology
5.5.1 Metrics

To measure CMP system performance, weldaemonic mean of speedups
(Hspeedup)49], Weighted speedup (Wspeed(§§], andindividual speedup (I1S)
which are defined in Section 3.4.1. Sindspeedupprovides a balanced measure
between fairness and system throughput [49], we use it apromary evaluation
metric. To demonstrate fairness improvements, we reptakSlowdown(Sec-
tion 4.4.1), and alstInfairnessas defined in Section 3.4.1 (also see Section 5.2.1).

5.5.2 Processor Model

Table 5.1 shows the baseline configuration of each core andhared re-
source configuration for the 4-core CMP system we use in ta&iations of this
chapter. We faithfully model all port contention, queuirfigets, bank conflicts,
and other major DDR3 DRAM system constraints in the memobggstem.
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15 stage out of order processor

Decode/retire up to 4 instructions

Issue/execute up to 8 micro instructions

128-entry reorder buffer

Fetch up to 2 branches; 4K-entry BTB

64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line

i L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip caches | ghareq unified L2: 2MB , 16-way, 16-bank,

20-cycle, 1 port, 64B line size

Stream prefetcher with 32 streams, prefetch degree of 4peafdtch dis-
tance of 64 cache lines [70, 67]

On-chip, Open-row PARBS [55]/NFQ [57]/FR-FCFS [65]
128-entry MSHR and memory request queue

667MHz bus cycle, DDR3 1333MHz [50]

8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank
DRAM and bus Latency: 15-15-15ns; 100-100-100 processor cycl8s(t RC D-CL),
Round-trip L2 miss latency: Row-buffer hit: 36ns, confli6Bns

Execution core

Front end

Prefetcher

DRAM controller

Table 5.1: Baseline system configuration

5.5.3 Workloads

We use the SPEC CPU 2000/2006 benchmarks for our evaluakach
benchmark was compiled using ICC (Intel C Compiler) or IFORTtel Fortran
Compiler) with the -O3 option. Each benchmark runs the exfee input set for 50
million x86 instructions selected by Pinpoints [62].

We classify a benchmark asemory-intensivé its L2 Cache Misses per
1K Instructions (MPKI) is greater than three and otherwigerefer to it asmem-
ory non-intensive.We say a benchmark hasche localityif the number of L2
cache hits per 1K instructions for the benchmark is gredtan five. An appli-
cation is classified agrefetch-friendlyf its IPC improvement due to prefetching
when run in isolation is more than 10%. If its IPC degradess itlassified as
prefetch-unfriendlyand otherwise aprefetch-insensitiveThese classifications are
based on measurements made when each benchmark was rumalthre=4-core
system. Table 5.2 shows the characteristics of the 29 beatisithat appear in the

evaluated workloads when run on the 4-core system.

We used 15 four-application workloads for our evaluatiofise workloads

124



were chosen such that each workload consists of at leastrtermory-intensive
applications (MPKI greater than three) and an applicatwth cache locality All
but one workload has at least opeefetch-friendlyapplication since the goal of the
chapter is to demonstrate how to improve system performduaeeo prefetching in
systems that employ the different shared resource managemexhanisms. The
one workload with no prefetch-friendly applications catsiof memory-intensive

and prefetch-unfriendly applications.

| || No prefetching]| Prefetching |
| Benchmark| Type || IPC | MPKI [ IPC | MPKI [ HPKI | Acc(%) | Cov(%) |
art FPOO || 0.23 25.7|| 0.25| 13.73| 105 61 55
gromacs FPO6 || 1.17 0.22 1.2 0.07 11 66 70
Ibm FPO6 || 0.33 19.3|| 0.36| 3.43| 274 94 82
GemsFDTD| FPO6 || 0.38 12.67|| 0.67| 0.07| 17.6 93 99
omnetpp | INTO6 || 0.34 8.79| 0.34| 8.72 5 11 19
zeusmp FPO6 || 0.66 3.97 || 0.75 1.92 17 67 52
bzip2 INTO6 || 1.57 096 | 1.65| 0.64 7.8 95 35
perlbmk INTOO 1.8 004 18 0.03 5.4 16 35
xalancbmk | INTO6 || 1.07 0.83| 0.93| 0.99| 188 11 18
sphinx3 FPO6 || 0.26 12.82|| 0.51| 2.71| 145 58 79
leslie3d FPO6 || 0.29 21.37|| 055 4.73| 223 94 78
bwaves FP0O6 || 0.26| 22.43| 0.33 23| 113 100 90
astar INTO6 || 0.17 23.04|| 0.17| 21.4| 104 25 8
vortex INTOO || 0.97 1.21{ 0.93 1.15 7 27 14
swim FPOO || 0.39 16.85|| 0.48| 0.57 20 100 97
h264ref INTO6 || 1.89 0.77] 1.86| 0.43 2 56 55
crafty INTOO || 1.56 0.26| 1.61| 0.19 8 34 29
libquantum | INTO6 || 0.26 11.84|| 0.29| 2.21| 0.52 100 81
applu FPOO || 0.55 13.09]| 1.33 0.7] 12.13 97 95
wrf FPO6 || 0.53 8.6 0.86| 1.06| 11.61 95 88
apsi FPOO 1.2 154 1.23 1.33| 14.83 95 14
parser INTOO || 1.11 0.68| 1.21| 0.12| 8.25 78 82
gobmk INTO6 || 1.16 0.38| 1.18| 0.25 7.6 41 36
twolf INTOO || 1.05 035| 11| 0.14| 25.47 95 60
equake FPOO || 0.27 18.72| 04 3.54| 8.77 98 81
mesa FPOO || 1.58 196 1.58| 1.92| 0.89 61 2
gamess FPO6 || 2.04 0.15|| 2.12 0.04| 464 58 75
lucas FPOO || 0.47 10.42 || 0.61 4.8 5.1 99 54
ammp FPOO || 1.92 0.33|| 1.93| 0.29]| 14.64 9 13

Table 5.2: Characteristics of 29 SPEC 2000/2006 benchnibetsappear in the
workloads of this chapter: IPC and MPKI (L2 cache Misses Retristructions)

with and without prefetching, HPKI (L2 cache Hits Per 1K Hastions) with

prefetching, and prefetcher accuracy and coverage
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5.5.4 Parameters Used in Evaluation

In all our mechanisms, the threshold to determine whethexpgtication’s
prefetcher is accurate is 80%. In P-NFQ and P-FST, an apipiicenust havdéewer
thanten memory requests in the memory request queue of the mesantxoller to
be considered fodemand boostingand fewer than 14 requests in P-PARBS (sec-
tion 5.6.5 shows that the reported results are not very sem$d the value chosen
for this threshold). The parameter setup for each of the RRITHPAC techniques
is the same as those reported in [15] and [17] respectivelyPRRBS [55], we use
the saméviarking Capthreshold as used in the original paper, five memory requests
per thread per bank.

5.6 Experimental Evaluation

We evaluate the mechanisms described in the previous sectio a 4-
core CMP system employing NFQ, PARBS, and FST in the follgwtitree sub-
sections respectively. Note that our prefetch-aware NFARBS, and FST tech-
niques (P-NFQ, P-PARBS, and P-FST) are evaluated on a sysléch includes

the prefetcher aggressiveness control (HPAC) mechanisbhapter 3.

5.6.1 NFQ Results

Figures 5.5 (a)-(d) show average system performance araironess of
a system using an NFQ memory scheduler in different conftgurst with no
prefetching, prefetching with and without prefetcher eohtand with our proposed
prefetch-aware NFQ. In the policies referred talasnand-pref-equatlemands and
prefetches are treated equally in terms of prioritizatiasdd on earliest virtual fin-
ish time. In thedemand-prioritizedoolicy, demands are always prioritized over
prefetches, and are scheduled earliest virtual finish tirse frigure 5.6 shows sys-
tem performance for each of the 15 evaluated workloads #nthe configurations
of NFQ that we evaluated. P-NFQ provides the highest systerofnance and
least unfairness among all the examined techniques. P-Nf&dorms the best
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performing previous technique (NFQ + HPAC demand-pripedi) by 11%/8.6%
(HS/WS) while reducing maximum slowdown by 9.9%. Several &bservations
are in order:

1. Figure 5.5 shows that in all cases (with or without prédfetcthrot-
tling), demand-prioritizedchas higher performance and lower maximum slowdown
thandemand-pref-equalWe conclude that as we explained in section 5.4.3]lif
prefetch requests are treated alike demand requests,disesigce given to useless

prefetches leads to a worse-performing and less fair sygtamalways prioritizing

demands.
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Figure 5.5: Average system performance and unfairnessaamelsystem with NFQ

2. The last two bars in each of the subfigures of Figure 5.5 detnate
a key insight without intelligent prioritization of demand requests rmemory
non-intensive applications, system performance anddagrdo not significantly
improve simply byprioritizing accurate prefetches. Adding the demand bogst
optimization to P-NFQ (with no boosting) improves perfomoa by 10%/3.8%
(HS/WS) and reduces maximum slowdown by 13.2% comparedst@jioritizing
accurate prefetches within NFQ’s algorithm.
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Figure 5.6: System performance (Hspeedup) for each of thedrkloads with
NFQ (legend same as Figure 5.5)

3. Figures 5.5 (a)-(d) show that demand boosting improvesesy per-
formance independent of the setup it is used with. Demandtbmpalone im-
proves the performance of demand-prioritized and prefegciith no throttling by
7.3%/6.7% (HS/WS). When used with demand-prioritized aRAE, it improves
performance by 3.3%/3.6% (HS/WS). However, demand baggtiavides the best
system performance and fairness when usepktherwith our proposed P-NFQ
which prioritizes requests based on virtual finish time fusing prefetch accuracy
feedback. Note that demand boosting and considering pregatcuracy informa-
tion in prioritization decisions are synergistic techregu Together they perform
better than each one alone. We conclude that demand bodstingeneral mech-
anism but is most effective when used together with resomaeagement policies

which take prefetcher accuracy into account in their ptimation rules.
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5.6.2 PARBS Results

Figures 5.7 (a)-(d) show average system performance armdrness of dif-
ferent prefetch-demand batching policies with and withanetfetcher control. In
demand-pref-batchingdemands and prefetches are treated equally in PARBS’s
batch-forming (within the batches, demands are prioritiaeer prefetches because
we find this to be better performing on average).demand-only-batchingonly
demands are included in the batches. Figure 5.8 shows systeiormance for
each of the 15 evaluated workloads for the nine configuratad@PARBS that we
evaluated. P-PARBS provides the highest system perforenand the smallest un-
fairness among all of the techniques, improving systemoperdnce on average by
10.9%/4.4% (HS/WS) while reducing maximum slowdown by ¥8@bmpared to
the combination of PARBS and HPAC with demand-only-batghin
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Figure 5.7: Average system performance and unfairness corel-system with
PARBS
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Figure 5.8: System performance (Hspeedup) for each of thedrkloads with
PARBS(legend same as Figure 5.7)

5.6.2.1 Case Study

The goal of this case study is to provide insight into how thechanisms
that we propose improve performance. It also shows in detaylsimplyprioritiz-
ing accurate prefetches in shared resource managementdgaek does not neces-
sarily improvesystem performance and fairne¥ge examine a scenario where two
memory intensive and prefetch-friendly applicatioss/im and sphinxX3concur-
rently execute with two memory non-intensive applicatigosribomk and vortex
Figures 5.9 (a) and (c)-(f) show individual applicationfpemance and overall sys-
tem behavior of this workload. Figure 5.9 (b) shows the dyiarof the mecha-
nisms proposed for prefetch-aware PARBS. In Figure 5.9€agh application is
represented with two bars. The left bar in each pair showgéneentage of time
thatbothdemands and prefetches from the corresponding applicagoaincluded
in P-PARBS'’s batches vs. the percentage of time ahfitdemands were included.
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The right bar shows the percentage of all demand requestsvira boosted into
the batches by the demand-boosting mechanism vs. all ctitelndd requests.

P-PARBS both performs significantly better and is much manethan all
the other evaluated techniques. This is due to the followawgyreasons:

1. Including useful prefetches sfvimandsphinx3alongside demand re-
quests in P-PARBS’s batches allows these applications t@ maod use of their
accurate prefetches and significantly improves their perémce. Figure 5.9 (b)
shows thaswimmis andsphinx3s prefetches are included in the batches for 100%
and 60% of their execution times respectively. During thpsgods,swim and
sphinx3also achieve better row buffer locality: their row buffetshare increased
by 90% and 27% respectively compared to the technique wilbést system per-
formance among the other techniques (HPAC demand-onbhiveaf). In addition,
swimandsphinx3s prefetches become 8% and 11% more timely (not shown in the

figure).

2. Boosting the demands of the prefetch insensitive and memaon-
intensive applicationyortex allows it to get quick memory service and prevents
it being delayed by the many requests batchedg¥amandsphinx3 Becauseor-
texs requests are serviced quickly, its performance increa8éso, sincevortexis
memory non-intensive, this boosting does not degrade @tpplications’ perfor-

mance significantly.

The last two sets of bars in Figure 5.9 (a) show the importaficiemand
boosting. Wherswinis andsphinx3s prefetches are included in the batches:-
teXs performance degradesdemand boosting not used. This happens because
of inter-core cache pollution caused bwim and sphinx3 Hence, even though
swims and sphinx3s performance improves significantly without boostingeov
all system performance does not improve over the HPAC dersahdbatching
(Figures 5.9 (c)-(d)). In contrast, witlemand boosting/ortexs performance also
improves which enables P-PARBS to perform 13.3%/7.6% (HS/Wétter than the

best previous approach while also reducing maximum slowdoy17.8%.
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Figure 5.9: PARBS case study
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5.6.3 FST Results

Figures 5.10 (a)-(d) show average system performance afairness of
FST in the following configurations: without prefetchingitivaggressive stream
prefetching, with HPAC, and our proposed coordinated coi @refetcher throt-
tling, i.e., P-FST (with and without demand boosting). Feg6.11 shows system
performance for each of the 15 evaluated workloads for theedanfigurations of
FST that we evaluated. P-FST provides the highest perfazenand best fairness

among the five techniques. Several observations are in:order
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Figure 5.10: Average system performance and unfairness-aretsystem with
FST

1. When prefetching with no throttling is used, in five of therkloads
prefetcher-caused interference is noticeable and is tefontrolled by FST. This
results in large degradations in system performance of 5%ae (WL5, WL11,
WL12, WL14, and WL15). In these workloads, FST does not ddtex applica-
tions causing prefetcher interference toAgp-interfering Because of these work-
loads, prefetching with no throttling does not improve ager system performance
significantly compared to no prefetching as shown in Figui®5This shows the

need for explicit prefetcher throttling when prefetchisgused with FST.
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Figure 5.11: System performance (Hspeedup) for each ofihveatkloads

2. When HPAC (Chapter 3) and FST (Chapter 4) are naively coetbivith
no coordination, four of the 15 workloads lose significargfptching performance
(workloads WL1, WL3, WL4, and WLS8). In such cases, HPAC thiest down
some useful prefetchers unnecessarily. This happens dagéacessive throttling
caused by HPAC's coarse classification of interference,lgnehderestimation of
prefetcher accuracy due to interference-unaware trackingseful prefetches (de-
scribed in section 5.4.3.2). Unnecessary throttling mdkessystem more unfair
compared to no prefetcher throttling. This happens wheneéefoh-friendly ap-
plication with the largest slowdown in the absence of pafety is unnecessarily
throttled. With no prefetcher throttling, such an applicatgains significant per-
formance, which in turn reduces system unfairness. WhenGHtPdottles down
the prefetchers of such applications too much, this fagnegprovement is lost.
We conclude that even though a naive combination of HPAC &8itl improves
average system throughput, this comes at the cost of inogeagstem unfairness

significantly compared to no throttling.

3. Our P-FST technique (with demand-boosting) addressegpritblems
described above by coordinating prefetcher and core timgttand improves per-
formance by 11.3%/5.6% (HS/WS) while reducing maximum slown by 14.5%
compared to the best performing of the other techniques {he uncoordinated
FST and HPAC combination). Compared to the configuratioh #ie least max-
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imum slowdown, i.e. the combination of prefetching with hoottling and FST,
P-FST with boosting performs 11.2%/10.3% (HS/WS) bettetevieducing maxi-
mum slowdown by 10.3%.

5.6.4 Effect on Homogeneous Workloads

Multi-core systems are sometimes used to run multiple copfehe same
application in server environments. Table 5.3 shows sygterformance and fair-
ness deltas of P-NFQ compared to NFQ + HPAC (demand-pgedjifor a prefetch
friendly (four copies of sphinx3) and a prefetch unfrien@igur copies of astar)
workload. Our proposal improves system performance andoesimax slowdown
for the prefetch friendly workload, while it does not sigodntly affect the prefetch
unfriendly one. In the prefetch friendly workload, pridgzing accurate prefetches
improves each benchmark’s performance by making timelyaighose accurate

prefetches. This is not possible if all prefetches are ¢éeatike.

Four copies of sphinx3 (prefetch friendly) Four copies of astar (prefetch unfriendly)
AHS | AWS A Max Slowdown AHS | AWS A Max Slowdown
7.9% | 7.9% -8.1% -1% -1% 0.5%

Table 5.3: Effect of our proposal on homogeneous workloagystem using NFQ
memory scheduling

5.6.5 Sensitivity to System and Algorithm Parameters

Table 5.4 shows how P-NFQ performs compared to NFQ + HPAC éaeim
prioritized) on systems with two/four memory channels orBBW6MB shared last
level caches. Even though using multiple memory channelgoes contention to
DRAM, and using larger caches reduces cache contentior-@-ill performs
significantly better while reducing maximum slowdown. Wenclide that our
mechanism provides performance benefits even on more a@ystigms with higher

memory bandwidth or larger shared caches.

Figure 5.12 shows how sensitive the performance benefiteedeichniques

we propose (compared to the best previous technique in eae) are to the boost-
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Single Channel Dual Channel Four Channel
A HSA WSA Max SlowdownA HSA WSA Max Slowdown A HSA WSA Max Slowdown
11%| 8.6% -9.9% 5% |5.7% -3.7% 4% | 6.3% 0.7%
2MB Shared Cache 8MB Shared Cache 16MB Shared Cache
A HSA WSA Max Slowdown A HSA WSA Max SlowdownA HSA WSA Max Slowdown
11%| 8.6% -9.9% 6.3%]| 5.3% -9.1% 4.9%| 3.9% -6.6%

Table 5.4: Effect of our proposal on system using NFQ memoheduling with
different microarchitectural parameters
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Figure 5.12: Sensitivity to boosting threshold

ing threshold. For all shown thresholds, P-NFQ and P-FSTwsperformance
within 1% of that of the chosen threshold. For P-PARBS, thithe case for all
boosting threshold values between 14 and 26. In P-PARB®, thiesholds less
than 14, not enough requests from prefetch-unfriendly bevarks get boosted.
We conclude that the benefits of our mechanisms are not hggngitive to the

chosen threshold value.

5.6.6 Hardware Cost

Table 5.5 shows the required storage of our mechanisms ownfteach
of the shared resource management techniques. Our megtsadds not require
any structures that are on the critical path of executiondifi@hally, none of the
structures we add/modify require large energy to accessiand are accessed very

often. As such, significant power overhead is not introduced
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P-NFQ Closed form for N cores (bitsIN=4(bits)
Boosting bits in memory request queue entries 32xN 128
Counters for number of requests per core in memory requesieu 8xN 32
Total storage required for P-NFQ 40 x N 160,
P-PARBS

Counters for number of requests per core in memory requesieu 8xN 32
Total storage required for P-PARBS 8xN 32

P-FST
Boosting bits in memory request queue entries 32xN 128
Counters for number of requests per core in memory requesieu 8xN 32
Prefetch bits in pollution filter used for coordinated conel grefetcher throttlingPol. Filter Entries (2048) x N 8192
Total storage required for P-FST 2088 x N 8352

Table 5.5: Hardware cost of our proposed enhancements

5.7 Conclusion

This chapter demonstrates a new problem in CMP designs:e-stat
the-art fair shared resource management techniques, vgigdificantly enhance
performance/fairness in the absence of prefetching, cayelia degrade perfor-
mance/fairness in the presence of prefetching. To solgepitublem, we introduce
general mechanisms to effectively handle prefetches iripheitypes of resource
management techniques.

We develop three major new ideas to enable prefetch-awaredesource
management. We introduce the ideadeimand boostinga mechanism that elim-
inates starvation of applications that are not prefet@mtily yet memory non-
intensive, thereby boosting performance and fairnessyfygre of shared resource
management. We describe how to intelligently prioritizendeds and prefetches
within the underlying fair management techniques. We dgyakw mechanisms to
coordinate the actions of prefetcher and core throttlingmaisms to make syner-
gistic decisions. To our knowledge, this is the first workttti@als with prefetches
in shared multi-core resource management, and enablegetiuhiques to be ef-
fective and synergistic with prefetching.

We apply these new ideas to three state-of-the-art muté-sloared resource
management techniques. Our extensive evaluations showuha@roposal signif-

icantly improves system performance and fairness of two rf@mory schedul-
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ing techniques and the source-throttling-based sharedamyesgstem management
technique we proposed in Chapter 4 (by more than 10% in 4-systems), and
makes these techniques effective with prefetching. We ladecthat our pro-
posal can be a low-cost and effective solution that enahkemployment of both
prefetching and shared resource management togetheune fuiulti-core systems.
This will ensure future systems can reap the performanceantess benefits of

both ideas together.
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Chapter 6

Parallel Application Memory Scheduling

6.1 Introduction

In Chapters 3 through 5 we presented mechanisms that aduis@ssge-
ment of inter-application interference in the memory sysfer multi-programmed
workloads. In addition to multi-programmed workloads, C&/#e also commonly
used to speed up a single application using multiple thréd@tsconcurrently exe-
cute on different cores. Memory requests from concurreeiycuting threads can
interfere with one another in the shared memory subsystewjrgy the threads
down significantly. Most importantly, theritical path of execution can also be
significantly slowed down, resulting in increased appl@maexecution time.

To illustrate the importance of DRAM-related inter-threiaterference to
parallel application performance, Figure 6.1 shows thepdl performance im-
provement that can be obtained for six different parallgiligations run on a 16-
core systent. In this experiment, we ideally eliminate ahter-thread DRAM-
related interference. Thread DRAM-related interference cycles are those extra
cycles that thread has to wait on memory due to bank or row-buffer conflicts
caused by concurrently executing threads (compared toehth were accessing
the same memory system alone). In the ideal, unrealizabtersywe model for this
experiment: 1) threads memory requests wait for DRAM banks only if the banks
are busy servicing requests from that same threadd 2) no DRAM row-conflicts
occur as a result of some other thrgad # ;) closing a row that is accessed by
threadi (i.e., we model each thread as having its own row buffer irheaank).

This figure shows that there is significant potential perfance to be obtained by

tOur system configuration and benchmark selection are disclis Section 6.3.
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better management of memory-related inter-thread inteniee in a parallel appli-
cation: ideally eliminating inter-thread interferenceluees the average execution

time of these six applications by 45%.

10
0.9
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Figure 6.1: Normalized execution time

Chapters 3 through 5, and previous papers on managing mesystgm re-
latedinter-applicationinterference [31, 36, 57, 32, 54, 51, 55, 17, 15, 37, 38, 16]
address the problem of improving system performance (sy#teoughput or aver-
age job turnaround time) and/or system fairness in the gbatenulti-programmed
workloads where different cores of the CMP execute independingle-threaded
applications. None of these works directly address paraitellti-threadedappli-
cations as we do in this chapter where our goal of managingonesystem inter-
thread interference is very different: reducing the executime of a single parallel
application. Managing the interference between threads édrallel application
poses a different challenge than previous works: threadsparallel application
are likely to be inter-dependent on each other, whereasistetdependencies are
assumed to be non-existent between applications in theseops works. Tech-
niques for reducing inter-application memory interfererfor improving system
performance and fairness of multi-programmed workloadg reault in improved

parallel application performance by reducing overall ifgeence. However, as we

2\We refer to interference between independent applicationsing on different cores as inter-
application interference, and to interference betweeeaditis of a parallel application running on
different cores as inter-thread interference.
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show in this chapter, designing a technique that specijieaths to maximize paral-
lel application performance by taking into account themuatependence of threads
within an application can lead to significantly higher pemi@ance improvements.

Basic Idea: We design a memory scheduler that reduces parallel apiplicat
execution time by managing inter-thread DRAM interfererar solution consists
of two key parts:

First, we propose estimating the set of threads likely torb#he critical path
usinglimiter threadestimation (for lock-based synchronization) dadp progress
measurement (for barrier-based synchronization). Fd«-lmased synchronization,
we extend the runtime system (e.qg., runtime library thatlements locks) with a
mechanism to estimate a setlwhiter threadswhich are likely critical (i.e., make
up the critical path of the application). This estimate isdzhon lock contention,
which we quantify as the time threads spend waiting to aecaiock. For barrier-
based synchronization used with paralie@r loops, we add hardware iteration
counters to estimate the progress of each thread towardsther at the end of the

loop. We identify threads that fall behind as more likely ®dbitical.

Second, we design our memory controller based on two keyiptes: a)
we prioritize threads that are likely to be on the criticattp@vhich are either limiter
threads or threads falling behind in parallel loops), andrbpng a group of limiter
threads, non-limiter threads, or parallel-for-loop tldedhat have made the same
progress towards a synchronizing barrier (i.e. threadsateequally critical), we
shuffle thread priorities in a way that reduces the time a#tdlds collectively make
progress.

6.2 Mechanism: Parallel Application Memory Scheduling

Our parallel application memory scheduler (PAMS):
1. Estimates likely-critical threads using limiter estiina (Section 6.2.1.1)

and loop progress measurement (Section 6.2.1.2).
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Figure 6.2: Overview of parallel application memory schedy

2. Prioritizes likely-critical threads (Section 6.2.2&)d shuffles priorities
of non-likely-critical threads (Section 6.2.2.3) to redunter-thread memory inter-

ference.

Figure 6.2 provides an overview of the interactions betwermajor com-
ponents of our design. The runtime system (e.g., runtintrarybthat implements
locks) uses hardware monitors to characterize memory bethalvcode-segments
(parts of the parallel program, see Section 6.2.2.1 forildg¢tand passes this in-
formation to the memory controller. In addition, the runéireystem provides the
memory controller with a set dimiter threads(those likely to be on the critical
path). Finally, the memory controller has access to iteratiounts of parallefi or
loops. The following sections describe each componenttailde

6.2.1 Runtime System Extensions

In parallel applications, theritical path determines the execution time of
the program. In each execution cycle, the critical path diesone of the concur-
rently executing threads. Hence, to improve performanoe,niemory scheduler
should minimize memory-related interference suffered l®ymary requests issued
by the thread on the critical path. Unfortunately, identifyexactly which thread is
on the critical path at runtime with low/acceptable overheadifficult. However,
we find that even a coarse estimation of the critical path eaveloy useful.

We propose to estimate the critical path via limiter threatingation and
loop progress measurement. Limiter thread estimation imime system mech-

anism which identifies a set of threads likely to contain thvead on the critical
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path by analyzing lock contention. We call these threlimger threads since
one of them likely limits the application running time. Lo@pogress measure-
ment is a cooperative compiler/hardware mechanism whitihhates the progress
of each thread within a parallebr loop, for programs structured with such barrier-
synchronized loops across threads.

The memory controller uses limiter thread and loop progreggmation
to manage inter-thread interference in the DRAM system argtove application

performance.

6.2.1.1 Estimating Limiter Threads

When multiple threads concurrently execute and accesedldata, cor-
rectness is guaranteed by timeitual exclusiorprinciple: multiple threads are not
allowed to access shared data concurrently. This mutuddig®n is achieved by
encapsulating accesses to shared data in code regioneduaydynchronization

primitives such as locks. Such guarded code is referred toitasal sectioncode.

Prior work [68] shows that acceleratimgitical sectionsby executing them
on high performance cores in a heterogeneous CMP can smmtiffaeduce appli-
cation running time. This is because contended criticalices are often on the
critical path. We find that performance can be greatly improved by expasifoy-
mation about contended critical sections to the memoryrotiat, which uses this
information to make better memory scheduling decisionse st of this subsec-
tion describes how this information is gathered by the maetsystem and passed
to the memory controller. We describe how the runtime systgorms the mem-
ory controller of the single most contended critical secfior ease of explanation;
in general, however, the runtime system can detect any nuailmeost contended

critical sections.

As more and more threads contend over the lock protectingessimred
data, it is more likely that threads executing the criticattion guarded by the
contended lock will be on the critical path of execution. Asls, at a high level, the
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runtime system periodically identifies the most contenade#.I The thread holding
that lock is estimated to be a limiter thread. Limiter threafrmation is passed
to the memory controller hardware using théniter ThreadBit Vector which has a
bit per thread. The runtime system identifies threads alimiter thread by setting
the corresponding bitin this bit-vector. This information is used by the memory
controller in the following interval. The runtime systenopides two main pieces
of information which our algorithm uses to estimate limitereads: the ID of the
thread currently holding each lock, and the time a threadsstzaiting for a lock.

Algorithm 9 explains limiter thread estimation in detail.hd goal of the
algorithm is to a) find the lock that causes the most contantia given interval,
and b) record the thread that owns this locklitmiter ThreadBitVector so that
the memory controller can prioritize that thread. To impé&rnthe algorithm, the
runtime system maintains one counter per lock which accateslthe total cycles
threads wait in that lock’s queue, and keeps two variablegsdord the currently

most-contended lock and the thread that owns it.

Every interval (i.e., everyimiter EstimationInterval lock acquires), the
runtime system finds the most-contended lock. To do so, ipaoes the lock queue
waiting times accumulated for all of the locks. The systesnidies the lock for
which threads spent the most time waiting in the queue duhiagrevious interval
and saves it abockiynges:- It then determines which thread is holding that lock, and
sets the corresponding bit in tdémiter ThreadBit Vector.

To keep track of each lock’s waiting time, every time a lockuscessfully
acquired by some threagthe runtime system adds the time thréagpent waiting
on the lock to the lock’s waiting time counter (See Secticgh®for implementation
details). Finally, when a thread acquires the lock that h&@ddangest waiting time
in the previous intervall{ockiongest), LimiterThreadBit Vector is updated: the bit

corresponding to the previous owner of the lock is reset@wector, the bit for the

3In this chapter, we consider one thread of execution per,cbut in systems with si-
multaneous multithreading (SMT) support, each thread ecdntvould have its own bit in
LimiterThreadBit Vector.
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thread acquiring the lock is set, and the new owner is recbagéastOwner;ongest-
This updated bit-vector is communicated to the memory adletrin order to pri-
oritize the limiter thread.

Algorithm 9 Runtime Limiter Thread Estimation
Every Limiter EstimationInterval lock acquires
Find lock with longest total waiting time in previous intaiv
SetLockjongest t0 the lock with the longest waiting time
SetLastOwnerjonges: 10 the thread that holdBockiopgest
Set bit for LastOwnerjongest IN Limiter ThreadBit Vector
Every successful lock acquire
IncrementwaitingTime counter of acquired lock by the number of cycles spent in the
lock’s queue by the acquiring thread
if acquired lock isLockionges: then
Reset bit forLastOwnerjonges: IN Limiter ThreadBit Vector
Record newLockiongest OWNEr iN LastOwneriongest
Set bit for LastOwnerjongest IN Limiter ThreadBit Vector
end if

6.2.1.2 Measuring Loop Progress

Parallelf or loops are a common parallel programming construct which
allows for critical path estimation in a different way. Eaitdration of a parallel
f or loop identifies an independent unit of work. These loops atally statically
scheduled by dividing iterations equally among threadsethe threads complete

their assigned iterations, they typically synchronize draaier.

Given this common computation pattern, we can easily measioe
progress of each thread towards the barrier by the numberogpf ikerations it has
completed, as has also been proposed by Cai et al. [6]. Weogrtip compiler
to identify this computation pattern and pass the addre#iseofoop branch to the
PAMS hardware. For each thread, we add a hardware loopigeradbunter which
tracks the number of times the loop branch is executed {ne.number of loop it-
erations completed by the thread) The runtime system rédsege counters at every

barrier.

The memory controller uses this loop progress informatiorptioritize
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threads that have lower executed iteration counts, asideddn Section 6.2.2.3.

6.2.2 Memory controller design

At a high level, our memory controller enforces three pties in the fol-
lowing order (see Algorithm 10): First, we prioritize rowHber hit requests over
all other requests because of the significant latency beoleRAM row-buffer
hits compared to row-buffer misses. Second, we prioriiingér threads over non-
limiter threads, because our runtime system mechanismsigeiter threads likely
to be on the critical path. We describe prioritization amdingter threads in de-
tail in Section 6.2.2.2. We prioritize remaining non-ligntthreads according to
loop progressnformation described in Section 6.2.1.2. Prioritizatenomong non-
limiter threads is described in detail in Section 6.2.2.3gokithm 10 serves as a

high level description and outline for the subsections tbkdw.

Algorithm 10 Request Prioritization for
Parallel Application Memory Scheduler (PAMS)
1. Row-hit first
2. Limiter threads (Details of the following are explained in Section 6.2.2.2)
- Among limiter threads, latency-sensitive threads areorjiized over bandwidth-
sensitive threads
- Among latency-sensitive group: lower-MPKI threads argkesd higher
- Among bandwidth-sensitive group: periodically shufflestid ranks
3. Non-Limiter threads (Details of the following are explained in Section 6.2.2.3)
if loop progress towards a synchronizing barrier is knoaen
- Prioritize threads with lower loop-iteration counts first
- Among threads with same loop-iteration count: shuffleadreanks
else
- Periodically shuffle thread ranks of non-limiter threads
end if

6.2.2.1 Terminology

Throughout the subsections that follow, we will be using t#en code-
segmentwhich we define as: a program region between two consecutivehso-

nization operations such as lock acquire, lock releaseaoids. Code-segments
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starting at a lock acquire are also distinguished basedeadtress of the acquired
lock. Hence, a code-segment can be identified with a 2-tuple:

<beginning IR lock address (zero if code is not within a critical section)

Code-segments are an important construct in classifyireatls as latency-
vs. bandwidth-sensitive (as we describe in the next suissgcand also in defining

the intervals at which classification and shuffling are penked.

6.2.2.2 Prioritization among limiter threads

The goal for the limiter thread group is to achieve high perfance in
servicing the requests of the group, while also ensuringestavel of fairness in
progress between them as we do not know exactly which one themritical
path. To this end, we propose classifying limiter threads two groups:latency-
sensitiveand bandwidth-sensitiveLatency-sensitive threads (which are generally
the less memory intensive threads) are prioritized ovediédth-sensitive ones.
As Algorithm 10 shows, among latency-sensitive threadeaths with lower MPKI
are prioritized as they are less-memory intensive and segyithem quickly will
allow for better utilization of the cores. Prioritizatiomang bandwidth-sensitive
threads is done using a technique calladk shuffling[38]. This technique is also
used to prioritize non-limiter threads and, in fact, is miong@ortant in that context;
hence, we defer discussion of rank shuffling to Section 82.Z2he rest of this

subsection describes how we classify threads as latencypavslwidth-sensitive.

Latency-sensitive vs. bandwidth-sensitive classificataf threads: As
described in [38], a less memory intensive thread has grgatential to make
progress and keep its core utilized than a more memory imMense. Hence, clas-
sifying it as latency-sensitive and prioritizing it in theemory controller improves
overall system throughput because it allows the thread icktyureturn to its com-
pute phase and utilize its core. To do this classificatiomntlain question is how to
predict the future memory intensity of the code a thread @ualo execute.

We propose classifying threads as latency- or bandwidtisisee based on
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the memory intensity of theode-segmerihat thread is executing. The key idea is
that we can estimate the memory intensity of the code-segthanhthe thread is
entering based on the memory intensity of that code-segtashtime it was exe-
cuted. Figure 6.3 illustrates this strategy. Classificatbthreads is performed at
each code-segment change (indicated by a vertical dottedri the figure). Al-
gorithm 11 presents the details of the classification algoriused by the memory
controller. This algorithm is a modified version of the onigi thread clustering
algorithm by Kim et al. [38] adapted to be invoked at everyeesggment chande.
The algorithm requires information about the memory intgn®umber of misses
per thousand instructions) and bandwidth consumption @tctide-segment to be
executed (number of cycles that at least one memory banksig &ervicing the
code-segment’s requests).

Algorithm 11 sets aside a fractiorClusterThresholl of the total band-
width per cycle for latency-sensitive threads. It uses joey bandwidth consump-
tion of currently executing code-segments to predict thamrent behavior. To do
so, it sums up the previous bandwidth consumption of thet leesnory inten-
sive currently-executing code-segments up GlasterThresholdraction of total
bandwidth consumption. The threads that are included sdtim are classified as

latency-sensitive.

Note that in the original algorithm, Kim et al. [38] measui&ck cores’
memory intensity every 10M cycles in a multi-core system rgheach core exe-
cutes an independent application. In other words, theysiflathreads on a time
interval basis rather than on the basis of a change in thesegment. We find that
with parallel workloads there is little information to beiged by looking back at a
thread’s memory behavior over a fixed time interval. Figureghows why. In the
figure, thread 2 spends a long time waiting on a lock in timen¢ua 2. However,
its memory behavior measured during that time interval hatking to do with its

“We refer the reader to Algorithm 1 in the original TCM [38] afor details on the original
algorithm.
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bandwidth consumed per cycle which were last observed &irahde segment.

Algorithm 11 Latency-sensitive vs. Bandwidth-sensitive classificafiar limiter
threads

Per-thread parameters:
CodeSegMPKI,; : MPKI of code-segment currently running on threaithe last time it
occurred
CodeSegBW ConsumedPerCycle; : BW consumed per cycle by code-segment currently
running on thread the last time it occurred
BWConsumed; : Bandwidth consumed by threadluring previous interval
Classification: (every code-segment change)
TotalBWConsumedPerCycle ={ BWConsumed;) | Length O f Previous Interval
In Cycles
while Threads left to be classifietb

Find thread with lowest MPKI (threai)

SUmBW +=CodeSegBW ConsumedPerCycle;

if SUMBW< ClusterThreshold x TotalBWConsumedPerCyctaen

thread: classified ad.atencySensitive
else
thread: classified aBBandwidthSensitive

end if

end while

6.2.2.3 Prioritization among non-limiter threads

When the application is executing a parafier loop, the memory con-
troller uses loop progress information (Section 6.2.1a2¢msure balanced thread
execution. The measured loop progress information is ugeitido memory con-
troller to create priorities for different threads in ordef their loop progress:
threads with lower iteration counts—those falling behinake- prioritized over
those with higher iteration counts. This prioritizationppgns on an interval by
interval basis, where the priorities assigned based on poogress are maintained
for a while to give threads that have fallen behind a chandeltp exploit their
higher priority in the memory system (e.g., exploit row larffocality). Subse-
quently, priorities are re-evaluated and assigned at tleogithe interval for the

next interval.

Among a set of threads that have the same loop progress oe ia$ence
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of such information, the memory controller aims to servitdandwidth-sensitive
threads in a manner such that none become a new bottleneckeaslaof being
deprioritized too much in the memory system. To achieve thesperform interval-

basedank shufflingof the threads.
Shuffling of bandwidth-sensitive threads:

At the beginning of each interval, we assign a random rankaich eof
the bandwidth-sensitive threads and prioritize their mgmequests based on that
ranking in that interval. The main question in shuffling theks of parallel threads

is: when should an interval end and new rankings be assigned?

We find that a group of threads that have similar memory behahould
be treated differently than a group of threads that do°n&hen threads have
similar memory behavior, we find that maintaining a givendam ranking until
one of the threads finishes executing the code-segment iuriently executing
can significantly improve performance. This is because whende-segment ends
(e.g., when the thread reaches a barrier), the inter-threaderence it was causing
for the other threads is removed, and the other threads c&e fagter progress
in its absence. We call thisode-segment based shufftingew thread ranks are
assigned when a code-segment change happens. On the attenin@n a group
of threads have very different memory behavior, we find thetnging the thread
ranking only on a code-segment change can sometimes leagtftormpance loss.
For example, if the thread that is going to reach the barrist 8 assigned the
highest rank, keeping it prioritized until it reaches therlea delays the thread that
would be last to reach the barrier, lengthening the crith of the program. As
such, for threads with very different memory behavior, fxetérval time-based
shuffling of thread ranking performs better. This allowsle#iread to get quick
service for its memory requests for a while and make propodi progress toward
the barrier. We call thisme-based shuffling

SWhen the ratio between the largest memory intensity andralest memory intensity of all
threads within a group of threads is small (less than 1.2 imeaperiments), we refer to the group
as a group of threads with similar memory behavior.
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Figures 6.5 and 6.6 illustrate how each of these two shuffiolgcies per-
forms when applied to two very different scenarios for tli€aoncurrently execut-
ing between two barriers.

When the set of threads have similar memory behavior as showing-
ure 6.5 (a), code-segment based shuffling can be signifydagitier than time-based
shuffling. Behavior similar to this exists in the applicaisdt andis. Time-based
shuffling (Figure 6.5 (b)) improves performance over no 8imgf by allowing dif-
ferent threads to be prioritized during different time veds and thus make propor-
tional progress toward the barrier. However, all threadstiooe to interfere with
one another in the memory system until they all reach thadyaat a similar time.
Code-segment based shuffling reduces this interfereneeebatthreads by ensur-

ing some threads reach the barrier earlier and once thep thadarrier, they stop
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exerting pressure on the memory system. As shown in Fig@réc®and described
above, maintaining a given random ranking until a code-g&grohange happens
(i.e., a thread reaches a barrier) allows the prioritizeddl to reach its barrier be-
fore the deprioritized one. After that, the deprioritizédgad can make much faster
progress because previously-prioritized threads stogiagememory interference
as they are waiting at the barrier. For this very reason, mtgnent based shuffling
can significantly improve performance over time-basedfihgf as shown in the
longer “Saved Cycles” of Figure 6.5 (c) compared to that gfufe 6.5 (b).

When the set of threads have different memory behavior asrsho Fig-
ure 6.6 (a), time-based shuffling can outperform code-segrbased shuffling.
Behavior similar to this can be observed in timg application. With time-based
shuffling (Figure 6.6 (b)), threads are assigned differandom rankings for each
fixed-length interval, which allows each thread to get qugekvice for its memory
requests for a while. This reduces the time it takes for adldds to get to the barrier
at the end of the interval. Figure 6.6(c) shows how code-segriased shuffling
can easily perform poorly. The numbers shown above the dsreathe different
intervals are an example of random ranks assigned to thadkrevery time one
of the threads’ code-segment finishes (i.e., every timeeathreaches the barrier,
in this example). Because the threads which would have eshtiie barrier ear-
lier end up receiving a higher rank than the thread that woeéah the barrier last
(thread 3) after every code-segment change, code-segraset Ishuffling delays
the “critical thread” by causing more interference to it.ighesults in performance
loss compared to time-based shuffling and even comparedsbuftiing, as shown
in “Lost Cycles” in Figure 6.6(c).

Dynamic Shuffling PolicySince neither of the two policies always performs
best, we propose a dynamic shuffling policy that choosesseitine-based shuffling
or code-segment based shuffling based on the similarityemt@mory behavior of
threads. Our dynamic shuffling policy operates on an intdraais. An interval
ends when each thread executes a threshold number of instrsiGwve empirically
determined this interval as 5000 instructions). Our prepglogolicy continuously
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monitors the memory intensity of the threads to be shuffledth& end of each
interval, depending on the similarity in memory intensifytloe threads involved,
the memory controller chooses a time-based or code-segased shuffling pol-
icy for the following interval. As we will show in Section 6.this policy performs
better than either time-based shuffling or code-segmergdosisuffling employed
for the length of the application.

6.2.3 Implementation Details

Table 6.1 breaks down the modest storage required for ouhameems,
1552 bits in a 16-core configuration. Additionally, the stures we add or modify
require little energy to access and are not accessed veay.ofts such, significant

power overhead is not introduced.

Closed form for| N=16

PAMS N cores (bits) | (bits)

Loop iteration counters 32xN 512

Bandwidth consumption counters 16 x N 256

Number of

generated memory requests counters 16xN 256
Past code-segment

information registers 2x16xN 512

Limiter thread bit-vector N 16

Total storage required for PAMS 97 xN 1552

Table 6.1: Hardware storage cost of PAMS

Limiter Estimation: In Algorithm 9, to keep track of the total time all
threads spend waiting on lo¢kn an interval, we modify the runtime system (i.e.,
the threading library) to perform the following: When anyahd attempts to ac-
quire lock!, a timestamp of this event is recorded locally. Once Ibksuccess-
fully acquired by some thread the runtime system adds the waiting time for that
thread (obtained by subtracting the recorded timestamghfead: from the cur-
rent time) to the waiting time counter of loék Note that the waiting time counter
for lock [ is protected by the lock itself as it is only modified by a tltr@mce that

thread has successfully acquired the lock.
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The overhead of the runtime limiter estimation describedlgorithm 9 is
insignificant as it does not occur very often. In our evaluadiwe empirically de-
termine LimiterEstimationInterval to be equal to five. Among our benchmarks,
hist has the highest frequency of lock acquires, averaging otledaquire every
37k cycles. Assuming sixteen locks are being tracked, thidr estimation algo-
rithm incurs the latency of sorting sixteen waiting timeadle a 32-bit value) once
every 185k cycles. A back-of-the-envelope calculationnghtiat this latency adds
an overhead of less than 1% (even for the benchmark that kasdst frequent

lock acquires).

Alternative Hardware-Based Limiter EstimationEven though the over-
head of tracking total waiting time for each lock in the rumé system is very
small in our implementation and evaluation, it could becanm@e significant in
the context of a locking library that is highly-optimizedrfone-grain synchro-
nization and when there is high lock contention. An alteugaimplementation
of our proposal could track waiting time in hardware to fertimeduce the over-
head. Although we did not evaluate this alternative, weinatlts general idea
here. In this implementation, two new instructions delith# beginning and the
end of each thread’s wait for a lockkOCK _WAIT_START <lock address- and
LOCK _WAIT_END <lock address-. Each instruction takes a lock address, and

updates a centralized lock table after commit, i.e. off ttigcal path.

This table contains one entry for each lock which contaires ¢hrrent
number of threads waiting on that lockumwait) and the associated cumula-
tive waiting time (vait_time). LOCK _WAIT_START incrementshumwait and
LOCK _WAIT_END decrementsiumwait for the specified lock. Periodically,
the hardware incrementgait_time by numwait, and estimates the limiter by find-
ing the lock with the the highestait_time and storing its address inockingest
register associated with the lock table. Sinoa@CK_WAIT_END executes right
before a thread starts the critical section, the instracéilso compares the lock ad-
dress withLock;,,4.c and in case of a match, it reports the thread ID to the memory
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controller as the current owner @bck;,,4es¢, and the memory controller prioritizes

requests from this thread.

6.3 Methodology
6.3.1 Processor Model

Table 6.2 shows the baseline configuration of each core andhared re-
source configuration for the 16-core CMP system we use invhkiations of this
chapter. We faithfully model cache coherence, port comaniqueuing effects,

bank conflicts, and other major memory system constraints.

15 stage out of order processor, decode/retire up to 2 ictins
Issue/execute up to 4 micro instructions; 64-entry reobtfier

Front end Fetch up to 2 branches; 4K-entry BTB; 64K-entry Hybrid biapeedictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line ;

. L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip caches | ghareq unified L2: 4MB , 16-way, 16-bank, 20-cycle, 1 porB Gide
On-chip, FR-FCFS [65] scheduling

128-entry MSHR and memory request queue

667MHz bus cycle, DDR3 1333MHz [50]

8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank
DRAM and bus Latency: 15-15-15ns; 100-100-100 processor cyclB¢t RC D-CL),
Round-trip L2 miss latency: Row-buffer hit: 36ns, conflistns

Execution core

DRAM controller

Table 6.2: Baseline system configuration

6.3.2 Benchmarks

We use a selection of benchmarks from NAS Parallel Bench-
marks (NPB 2.3) [12] and thkist benchmark from Phoenix [64]. For each NPB
benchmark, we manually choose a representative executierval delimited by
global barriers (Table 6.3 lists the barriers used). We @®ithorder to simulate a
tractable number of instructions with a large enough ingattsat will produce a
meaningful number of memory requests. However, this waposgible for three of
the NAS benchmarksp, lu, andsp. This is because, with a large enough input set,

we were unable to pick a tractable execution interval. Wetineistbenchmark to
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completion.

All benchmarks are compiled using the Intel C Compiler wiik+ C3 op-
tion. Table 6.3 summarizes the benchmarks. The memorysityevalues reported
in this table are obtained from simulations on the systencriesd by Table 6.2.
The benchmarks we evaluate use Pthreads and OpenMP tlgddmlaries. We
modify the threading library to intercept library calls addtect locks. Also, we
assume gang scheduling [60, 21] of threads where all thadisref a parallel appli-
cation are concurrently scheduled to execute. As a resutiat preemption does

not skew the threads’ measured waiting times.

Benchmark Description Input Set [Length]MPKI (Critical |Barriers|Barrier
Sections Interval
hist Histogram (Phoenix) minis 50M 2.66 405 1 N/A
mg Multigrid solver (NPB) W 225M 4.07 0 300201-501
cg Conjugate gradient solver (NPB) 113M22.26 256 60 31-91
is Integer sort (NPB) W 140M17.32 112 25 1-26
bt Block tridiagonal solver (NPB)W 397M 6.45 0 310171-481
ft Fast fourier transform (NPB) (W 161M 5.41 16 5 21-26

Table 6.3: Benchmark summary

6.3.3 Parameters Used in Evaluations

Table 6.4 shows the parameter values we use in our evalsation

Limiter Estimation | TCM Time | TCM Shuffling Time-based Period
Interval Quanta Period (also used within Dynamic Shuffling)
5 2M cycles 100k cycles 100k cycles

Instruction Sampling Period
in Dynamic Shuffling
5k insts

Table 6.4: Parameters used in evaluation
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6.4 Results and Analysis

We first present performance results for each of the 6 bendtsmm a 16-
core system normalized to their performance on a systeng asirFR-FCFS mem-
ory scheduler. Figure 6.7 shows results for the following@nfigurations from
left to right for each benchmark, with each succeeding condiion introducing
only one new component to the previous configuration: 1)athrduster memory
scheduling (TCM) [38], which uses time-based classificatb latency-sensitive
vs. bandwidth-sensitive threads with time-based shuffi¥)gode-segment based
classification of latency-sensitive vs. bandwidth-séresithreads (Section 6.2.2.2)
with time-based shuffling, 3) code-segment based cladsificaf threads with
code-segment based shuffling (Section 6.2.2.3), 4) lirmfermation based thread
prioritization (Section 6.2.1.1) with code-segment baskgsification and code-
segment based shuffling, 5) limiter information based tthrpaoritization with
code-segment based classification and dynamic shufflingypaind 6) the com-
bination of all our proposed mechanisms (PAMS): limitepimhation based thread
prioritization, code-segment based thread classificatitimdynamic shuffling pol-
icy, and loop progress measurement based thread pridigtizénote that no con-
figuration except for this last one takes into account loampess information in
barrier based synchronization, described in Section 22.We find that among all
evaluated mechanisms, PAMS provides the best performaadacing execution
time by 16.7% compared to a system with FR-FCFS memory sdinggdand by
12.6% compared to TCM, a state-of-the-art memory schegtéiohnique. Several

observations are in order:

1. Applying TCM, which is a memory scheduling technique iity de-
signed for improving system performance and fairness irtimpabgrammed work-
loads, to parallel applications improves average perfocady 4.6%. This is be-
cause even though this technique does not consider inpedencies between
threads, it still reduces inter-thread memory system fatence, providing quicker
service to threads (average memory latency reduces by 4tB%s) enabling faster

application progress.
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2. Using code-segment based classification of latencyitsens/s.
bandwidth-sensitive threads (second bar from the left &mhebenchmark) as ex-
plained in Section 6.2.2.2 improves performance signitigamompared to the time-
based classification done by TCM on two of the shown benchsnfrkt and ft).
This is mainly because by using code-segments as interliahite¥s to classify
threads as latency- vs. bandwidth-sensitive (See Fig@)e we can make a more
accurate classification of the thread’s future memory bemawsing information

from the last time the starting code-segment executed.

3. When code-segment based shuffling is used instead oftiamed shuf-
fling (third bar from left, compared to second), performamoproves significantly
on three benchmarksi6t, is, andft). This is primarily due to behavior shown in
Figure 6.5. As explained in Section 6.2.2.3, when the grdumocurrently execut-
ing threads have similar memory behavior, using code-sagimesed intervals for
shuffling thread rankings outperforms time-based shuffli@g the other hand, in
benchmarksngandcg, execution time increases by as much as 6.8%n({@rwhen
code-segment based shuffling is used. This is because #althhave significantly
different memory behavior, which can lead to performancgraeéation with code-
segment based shuffling, as shown in Figure 6.6 (c). Howdemause of large
improvements orhist (11%), is (14%), andft (10%), average performance with

code-segment based shuffling improves by 3.9% compareash&tiased shuffling.

0.51]=Thread cluster memory scheduling (TCM)

0.41 = Code-seg classification + Time shuffling

0.31 = Code-Seg classification + Code-seg shuffling

0'2” =Lim. Info + Code-seg classification + Code-seg shuffling
““if=Lim. Info + Code-seg classification + Dyn. shuffling policy

0.14_pams (Lim. Info + Loop Progress Info + Code-seg classification + Dyn. shuffling palicy)

Normalized Execution Time
(@]

hist an cg is bt it grhean

Figure 6.7: Overall Results
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4. When limiter information is used to prioritize threadselly to be on the
critical path (fourth bar from left), as described in Senti®.2.1.1, further bene-
fits can be gained on applications that have contended |oks. can be seen in
benchmarks such &sstandis. In these applications (one of which we will analyze
in detail in a case study in Section 6.4.1), memory requests fimiter threads
estimated by the runtime system are prioritized over nomtdéir threads’ requests,
resulting in further execution time reduction. Note thatenHimiter information
is used (in the three rightmost bars of Figure 6.7), latensy-bandwidth-sensitive
classification of threads is performed only for limiter thds (as described by Al-
gorithm 11 in Section 6.2.2.2).

5. Using the dynamic shuffling policy described in SectioR.B.3 (fifth
bar for each benchmark) mitigates the performance loss daeno code-segment
based shuffling on benchmarks that have threads with differeemory behavior,
such asngandcg. The dynamic shuffling policy monitors the memory intensity
concurrently executing threads and dynamically choosds-segment based shuf-
fling (when threads have similar intensities) or time-baseuaffling (when threads
have different intensities). With our dynamic shuffling ipg) time-based shuffling
is used for 74% and 52% of the time argandcg respectively.

6. mgandcg are also the benchmarks that benefit the most from prioriti-
zation of lagging threads enabled by loop progress measirerithis is expected
since parallef or loops dominate the execution time of both benchmarks. It fac
mg and cg have very few critical sections, leaving loop progress roeasent as
the only way to estimate the critical path. Hence, perforoeast both benchmarks
improves the most when loop progress measurement is enghEx and 6.9%

over FR-FCFS, respectively).

6.4.1 Case Study

To provide insight into the dynamics of our mechanisms, weethe bench-

markis, which has a combination of barriers and critical secti@ssa case study.
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This benchmark performs a bucket sort, each iteration othwltionsists of two
phases: counting the integers belonging to each bucketamidlfy computing the
starting index of each integer in the sorted integer arrdye first phase is done in
parallel; the second, however, modifies a shared array ¢iapaesults and hence
requires a critical section. Figures 6.8(a)—(d) sttbvead activityplots generated
by runningis on the following configurations: a baseline system with arRFEES
memory controller, a system with TCM [38], a system that wseke-segment based
shuffling and code-segment based classification of latsrogitive vs. bandwidth-

sensitive threads, and finally a system using our propos&d3?A

In eachthread activityplot shown in Figure 6.8, each thread’s execution is
split into three different states (as indicated by the lebemtop of the figure): non-
critical section execution (normal line), critical sectiexecution (bold line), and
waiting for a lock or barrier (dotted line). Vertical linespresent barriers where all

threads synchronize.

Several observations are in order: First, by using TCM [88Erall inter-
thread interference is reduced compared to a baselinensysith FR-FCFS, re-
sulting in 3% reduction in execution time. This is mainly doethe reduction in
execution time when threads are executing the non-crisieefion code that comes
right after each barrier. This happens due to TCM'’s shuffbhgriorities between
the threads on time-based intervals, which leads to relgtisimilar improvement

in the execution of all threads.

Second, performance can be significantly improved by usimgdode-
segment based thread classification and shuffling that w@opeo in Sec-
tions 6.2.2.2 and 6.2.2.3 respectively. Figure 6.8c is algeal benchmark exam-
ple of the behavior shown in Figure 6.5. Comparing the irdkrbetween each pair
of barriers across Figures 6.8c and (b) clearly shows thefiisrof code-segment
based shuffling vs. time-based shuffling in a benchmark wparallel threads ex-

ecuting non-critical section code have similar memory bedra

By keeping an assigned ranking constant until a code-segrhange hap-

161



pens (which triggers the end of an interval and the assighiwiea new ranking
across threads) three benefits occur: 1) when a prioritizezghtl reaches the bar-
rier, it starts waiting and stops interfering with otherghds enabling their faster
progress (as explained in Section 6.2.2.3), 2) with timgedashuffling all threads
reach the point where they attempt to acquire the lock at dasitime resulting
in high contention and waiting for the lock. Code-segmesigoshuffling reduces
this lock contention. As a result, accesses to the critieatisn are spread over
time and the first thread to reach the lock acquire in eachdranterval gets to that
point earlier than with time-based shuffling (as seen in Fagu8(c)), and 3) code-
segment based shuffling enables some threads to reach tikael @ection earlier
than others as opposed to all threads reaching it at the saraéthe latter happens
in Figures 6.8(a) and (b)). This leads to the overlappindhefdritical section la-
tency with the execution of non-critical section code, alttinately a reduction in
the critical path of execution. As a result of these threeomlgnefits, using code-
segment based shuffling reduces execution time by 15.6% 2a8&clcompared to
the FR-FCFS baseline and TCM respectively.

Finally, adding limiter information detected by the runéraystem can sig-
nificantly improve performance when combined with codersegt based classi-
fication and shuffling. Consider those critical sectiond dra part of the critical
path in Figure 6.8c. As this figure shows, some threads ené@r ¢ritical section
early while other threads are still executing non-critisattion code. Hence, mem-
ory requests from threads executingn-critical code can interfere with memory
requests of theritical thread. However, by prioritizing memory requests from the
thread identified as critical by the runtime system (Sec@idhl), PAMS reduces
the total time spent in the critical section by 29% compaceckide-segment based
classification and shuffling without limiter thread infortizan (as shown by the im-
provement in Figure 6.8d compared to (c)). Overall, PAMS nowps execution
time by 28.4% and 26% compared to the FR-FCFS baseline andré§péctively.
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Figure 6.8: Execution ofs benchmark with different memory scheduling tech-
niques
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6.4.2 Comparison to Memory scheduling using Thread Critictity Predictors

Bhattacharjee and Martonosi [3] propose thread critiggliedictors (TCP)
to predict thread criticality based on memory hierarchyistias. Although they do
not demonstrate how their thread criticality predictor barused for reducing inter-
thread interference in the memory system, they do mentiahittcan be used in
the design of memory controllers. We implement a memory dglireg technique
based on the information TCP provides as a comparison pmiPAMS. TCP uses
L1 and L2 cache miss counts and the penalty incurred by susbesito determine
a criticality count for a thread, defined in [3] as:

LLCpenalty . N(LLC'miss)

In the TCP-based memory scheduling technique we develdipedritical-
ity of each thread is obtained once every 100k cycles, and af sankings is as-
signed to threads based on their criticality. Threads wighér estimated criticality
are given higher priority for that interval. At the end of &aaterval, thread criti-
calities are re-evaluated and a new set of priorities angiasd for the next interval.
As Table 6.5 shows, we find that our technique, PAMS, outper$ahis TCP-based
memory scheduler by 6.6% on average. PAMS outperforms T@#figiantly on
three of the benchmarks. This improvement is mainly due édfétiowing which
TCP does not address: 1) PAMS uses information about tha-thtétaded ap-
plication such as lock contention and loop progress to egérnthread criticality,
and 2) PAMS also addresses how to schedule requests of itimaid¢hreads (e.g.,
shuffling of non-limiter bandwidth-sensitive threads). #A\gh, the TCP idea is or-
thogonal to some of our proposals and could be used within ANl part of the

basis for predicting critical/limiter threads, which wele to future work.

Benchmark nameg| hist mg cg is bt ft gmean
A Execution time|| -9.9% | -15.0% | -9.8% | -1.3% | 0.2% | -2.5% || -6.6%

Table 6.5: Reduction in execution time of PAMS compared t®Iased [3] mem-
ory scheduling
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6.4.3 Sensitivity to System Parameters

Table 6.6 shows how PAMS performs compared to FR-FCFS and 6&M
systems with 8MB/16MB shared last level caches or two/fndependent memory
channels. Even though using a larger cache or multiple mgcttannels reduces
interference in main memory, PAMS still provides signifidgmigher performance
than both previous schedulers. We conclude that our mesmapiovides perfor-
mance benefits even on more costly systems with higher metvamgwidth or

larger caches.

| Channels| LLC | AwrtFR-FCFS [ Awrt TCM |

Single 4MB -16.7% -12.6%
Single 8MB -15.9% -13.4%
Single 16MB -10.5% -5.0%
Dual 4MB -11.6% -10.0%
Quad 4MB -10.4% -8.9%

Table 6.6: Sensitivity of PAMS performance benefits to mgnsystem parameters

6.5 Conclusion

We introduced the Parallel Application Memory Schedul&NFS), a new
memory controller design that manages inter-thread menmbeyference in paral-
lel applications to reduce overall execution time. To aehithis, PAMS employs
a hardware/software cooperative approach that consistwamhew components.
First, the runtime system estimates likely-critical trdsadue to lock-based and
barrier-based synchronization using different mechasiamd conveys this infor-
mation to the memory scheduler. Second, the memory schetlufgioritizes the
likely-critical threads’ requests since they are the peniance bottleneck, 2) peri-
odically shuffles the priorities of non-likely-critical tbads to reduce memory in-
terference between them and enable their fast progressurfknowledge, PAMS
is the first memory controller design that explicitly aimsréaluce inter-thread in-

terference between inter-dependent threads of a paraliication.

Our experimental evaluations show that PAMS significantiprioves par-

allel application performance, outperforming the besvjoes memory scheduler
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designed for multi-programmed workloads and a memory sdeedve devised
that uses a previously-proposed thread criticality prgalicmechanism to estimate
and prioritize critical threads. We conclude that the ppfes used in the design
of PAMS can be beneficial in designing memory controllers grdnance parallel
application performance and hope our design inspires n@noaphes in managing

inter-thread memory system interference in parallel aapions.
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Chapter 7

Conclusion and Future Research Directions

7.1 Conclusion

Inter-application memory system interference in mulegmammed work-
loads and inter-thread memory system interference in lghrallti-threaded work-
loads are major obstacles to high-performance and fair mgsystem design for
CMPs. This dissertation identified significant shortcorsid conventional tech-
niques for management of boihter-applicationandinter-thread interferencen
the shared memory subsystem. To overcome these shortcemaegroposed and
evaluated low-cost mechanisms for both types of interiggeWe proposed three
mechanisms addressing different shortcomings of curresigds in dealing with
inter-application interference in multi-programmed wodds. We also proposed
one mechanism which speeds up parallel multi-threaded loads by managing

DRAM-related interference between multiple threads of¢ame application.

To significantly improve the benefits of prefetching in CMBtgyns, this
dissertation proposed hierarchical prefetcher aggressss control (HPAC). HPAC
takesprefetcher-caused inter-application interferenct account to determine the
aggressiveness of each core’s prefetcher. HPAC dynammdjllists the aggressive-
ness of each prefetcher in two wayscal andglobal. The local decision attempts
to maximize the local core’s performance by taking into actoonly local feed-
back information. The global mechanism can override thalldecision by taking
into account effects and interactions of different coregfgtchers when adjusting
each one’s aggressiveness. Chapter 3 shows that HPAC sagmiyi improves sys-
tem performance and bandwidth-efficiency compared to-sthtke-art prefetcher

control techniques that do not take into account interiappbn interference.
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To provide fair sharing of the entire shared memory systenditi@rent
applications without the complexity of developing faire@sechanisms for each
individual resource, this dissertation proposes fairnessource throttling (FST).
FST estimates unfairness in the entire shared memory syatehenforces system-
software-defined fairness objectives by throttling coresoadingly via adjusting
the number of requests they can inject into the system anfiehaency at which
they can do so. Chapter 4 shows that FST can significantlyangpboth system
performance and fairness compared to state-of-theesource-basethirness tech-

niques implemented independently for different sharedusses.

This dissertation identified for the first time that, propssahich address
high-performance and fair management of shared resouraresignificantly de-
grade both performance and fairness rather than improve theahe presence of
prefetching. Chapter 5 proposed mechanisms that both reghaghared resources
of a CMP to obtain high-performance and fairness, and alpdo#xprefetching.
We apply these ideas to three state-of-the-art shared n@sonanagement tech-
niques. Our evaluations show that these proposals signifycanprove system
performance and fairness of two fair memory schedulingriepkes and our pro-
posed FST technique from Chapter 4.

To reduce the execution time of parallel multi-threadedklaads, this dis-
sertation proposes a memory controller design that takesaiccount information
specific to parallel applications in designing the memohesiuling algorithm. Our
parallel application memory scheduling (PAMS) mechanisomf Chapter 6 con-
sists of two components. First, estimating the criticahpaginglimiter threadesti-
mation andoop progressneasurement. Second, a memory controller based on two
principles: a) prioritizing threads likely to be on the il path, and b) shuffling
priorities among a group of limiter or non-limiter threadsa way that reduces the
time it takes for them to reach a synchronization point. Wansthat this memory
controller design significantly improves the performandéearallel applications
compared to a state-of-the-art memory controller desigonedhulti-programmed
workloads.
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7.2 Future Research Directions

There are several possible future research directionsdabiald improve
the management of inter-application/thread interferdincenore fair and higher-

performance memory system designs.

e The source-throttling-based management technique pexsém Chapter 4
keeps the resource management techniques unchanged edrtptre base-
line in order to make the shared memory resource designslesimplow-
ever, some performance-enhancing or fairness featuressotirce-based ap-
proaches could potentially be used in combination with ESburce-based
approach to further improve performance and fairness.

e Our PAMS mechanism in Chapter 6 is targeted at DRAM-relatéztthread
interference which is a major component of memory systeser4tiiread in-
terference. However, management of interference amoegdsrof a parallel
application in other shared resources (e.g., shared caciteconnect, etc.)
could further improve parallel application performancer kstance the ap-
plication of source-throttling-based shared resourceagament or a com-
bination of resource-based and source-based techniquepnmade further

performance improvements.

e As industry continues to place more and more cores on the shipd(i.e.,
the emergence of many-core CMPs), CMPs will almost cestdiel used to
concurrently execute multiple multi-threaded applicasiavhich share parts
of the memory system. To manage memory system interferensach sys-
tems, our solution for parallel multi-threaded applicaBgPAMS, Chapter 6)
can be combined with existing solutions that deal with npldtiapplications
(i.e., PAR-BS, TCM, or FST proposed in Chapter 4).

e With multiple concurrently executing multi-threaded apgtions on a many-
core system, different system-software-specified fagregmrantees and per-
formance goals can be of interest for the different appheet Combin-
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ing software-based scheduling approaches [76, 69] (dsgcum Chapter 2)
with fine-grained source throttling (FST, Chapter 4) may beful in satis-
fying different system-software goals by managing sharedory resources

at different levels of granularity.
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