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Combatting Loss in Wireless Networks

Eric John Rozner, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Lili Qiu

The wireless medium is lossy due to many reasons, such as signal atten-

uation, multi-path propagation, and collisions. Wireless losses degrade network

throughput, reliability, and latency. The goal of this dissertation is to combat wire-

less losses by developing effective techniques and protocols across different net-

work layers.

First, a novel opportunistic routing protocol is developed to overcome wire-

less losses at the network layer. Opportunistic routing protocols exploit receiver

diversity to route traffic in the face of loss. A distinctive feature of the protocol is

the performance derived from its optimization can be achieved in real IEEE 802.11

networks. At its heart lies a simple yet realistic model of the network that cap-

tures wireless interference, losses, traffic, and MAC-induced dependencies. Then a

model-driven optimization algorithm is designed to accurately optimize the end-to-

end performance, and techniques are developed to map the resulting optimization

solutions to practical routing configurations. Its effectiveness is demonstrated using

simulation and testbed experiments.
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Second, an efficient retransmission scheme (ER) is developed at the link

layer for wireless networks. Instead of retransmitting lost packets in their original

forms, ER codes packets lost at different destinations and uses a single retransmis-

sion to potentially recover multiple packet losses. A simple and practical protocol

is developed to realize the idea, and it is evaluated using simulation and testbed

experiments to demonstrate its effectiveness.

Third, detailed measurement traces are collected to understand wireless

losses in dynamic and mobile environments. Existing wireless drivers are modi-

fied to enable the logging and analysis of network activity under varying end-host

configurations. The results indicate that mobile clients can suffer from consecutive

packet losses, or burst errors. The burst errors are then analyzed in more detail to

gain further insights into the problem. With these insights, recommendations for

future research directions to mitigate loss in mobile environments are presented.
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Chapter 1

Introduction

1.1 Motivation

Wireless networks are ubiquitous in today’s world and networks using the

IEEE 802.11 protocol [1] have been adopted for a wide range of scenarios. Many

different classes of these networks exist, such as ad-hoc networks, multiple-hop

wireless mesh networks, and Wireless Local Area Networks (also known as WLANs

or Wi-Fi hotspots). Wireless ad-hoc networks consist of multiple devices that may

be fixed or mobile and may need to route traffic over multiple wireless hops with

intermittent connectivity in order to communicate. For instance, ad-hoc networks

have been used for battlefield communications, vehicular networks, delay tolerant

networks, and sensor networks. Wireless mesh networks have been successfully

deployed to cover large, dedicated areas. To support large coverage areas, the net-

works consist of many static mesh nodes that communicate with one another to

route traffic over multiple wireless hops. Only a few of the mesh nodes may be out-

fitted with a connection to a back-end network (for instance, the Internet). There-

fore the rest of the mesh nodes need to cooperate to route traffic so that every node

in the mesh can gain access to the back-end network. The infrastructure for these

networks is typically cost-effective, leading them to be deployed over traditional

approaches such as wired networks. For example, many cities and towns have im-

1



plemented mesh networks to blanket certain areas, such as downtown regions and

parks (a partial list can be found in [3]). Mesh networks can also be deployed in

low-income areas in order to provide free or heavily-subsidized Internet connectiv-

ity [147]. Furthermore, there has been a trend towards deploying these networks in

developing countries [117, 155], where wiring costs are prohibitive. Beyond these

uses, mesh networks are also being deployed commercially [97]. Finally, perhaps

the most common type of 802.11 network is the WLAN. These networks consist of

one or more access points (APs), each having a dedicated back-end Internet con-

nection. Access points provide Internet connectivity to wireless and mobile devices

over a single hop connection. These networks have been adopted in many different

environments. They are commonly found in homes, office buildings, campuses,

coffee shops, restaurants, airports, malls, and hotels.

The challenge all of these networks face, regardless of their deployment or

intended use, is coping with with a problem fundamental to all wireless commu-

nications: loss. The wireless medium is lossy due to many prevailing factors. For

instance, the medium is inherently lossy and phenomena such as signal attenuation

and multi-path propagation can cause wireless packets to become corrupted. Fur-

thermore, wireless transmissions can be subject to collisions from imperfect packet

scheduling or hidden terminals. All of these effects can combine to create very

high loss on wireless links. Some deployments report average loss rates of up to

20-40% [7, 124], while others show that lossy links are quite common [32]. The

effects of loss become even worse for multiple hop wireless networks because each

hop is susceptible to loss. This high loss rate makes it difficult for wireless tech-

2



nologies to realize their full potential.

Loss causes many problems for wireless networks. Three main indicators

of network performance suffer in the face of loss: latency, throughput, and the

successful delivery of packets. For example, additional latency is imposed on data

packets that are lost in wireless networks. To cope with loss, retransmissions are of-

ten employed. Not only does the retransmission impose extra latency on the packet

itself, but it also imposes latency on other traffic in the network. The scheduler in

the 802.11 standard uses head-of-line blocking, so all packets in the transmit queue

must wait for the retransmissions to be sent. Throughput can also be affected by

loss. The wireless medium is a shared broadcast medium. Therefore, retransmis-

sions to one node take up air-time that could be used to transmit data to other nodes

in the network. Furthermore, a single client with high loss can impact the perfor-

mance of the whole network when it reduces its sending rate [17], regardless of

the link quality of the other nodes. Finally, lossy wireless links can cause packets

to be lost in transit, forcing upper-layers and applications to add redundancy and

robustness on an end-to-end basis.

The negative impact on latency, throughput and reliability can wreak havoc

on the higher network layers. For example, it has been widely shown that TCP

performs poorly in wireless environments [15,16,56,159], mainly because losses in

wireless environments are often due to poor signal, rather than network congestion.

Furthermore, interactive applications typically tolerate small latencies and loss. The

effects from packet losses in wireless environments has been shown to degrade

video quality [87, 88], as well as VoIP calls [106]. Lastly, applications that deal
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with safety and monitoring must be robust and cannot afford to lose packets.

In order to avoid degraded network performance, the goal of this dissertation

is to combat loss at varying network layers in order to allow wireless technologies to

realize their full potential. Attacking loss at each level of the network stack provides

increased robustness: if a coping mechanism fails in one layer, the adjacent lower

layer can be employed to mitigate the problem. For the purposes of this dissertation,

loss is tackled in the Network Layer and below.

1.2 Review of 802.11

This dissertation focuses on combatting losses in 802.11 networks [1]. Here,

a brief overview of 802.11 provides the necessary background for the rest of the

document. The 802.11 standard specifies two types of coordination functions that

dictate how nodes can access the wireless medium. The distributed coordination

function (DCF) allows nodes to access the wireless medium in a distributed manner

through CSMA/CA (carrier-sense multiple access with collision avoidance), while

the point coordination function (PCF) enrolls a point coordinator (typically an ac-

cess point) to to coordinate communication in the network. Wireless devices rarely

support PCF, and as a result, it is not widely used in practice. Therefore, this sum-

mary focuses on DCF.

Prior to a node transmitting data, it must first carrier sense the medium as

idle. There are two sensing techniques: physical carrier-sensing and virtual carrier-

sensing. In physical carrier-sensing, a sender determines the channel to be idle

when the total energy received is less than the clear-channel assessment threshold.
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Virtual carrier-sensing relies on a Network Allocation Vector (NAV), which is a

field contained in the 802.11 packet header that indicates the total transmission time

of a packet. When nodes overhear a packet, they set their local NAV counter to the

value in the packet header. Virtual carrier-sense classifies the medium as idle only

if the NAV counter is zero. A node can only classify the medium as idle when the

virtual-carrier sensing and the physical carrier-sensing indicate the medium is idle.

There are two types of data packets a node can send in 802.11, broadcast (which

includes multicast) and unicast. A brief description of each is listed below.

We first review broadcast transmissions as specified by the IEEE 802.11

standard. Before transmission, a sender first checks to see if the medium is avail-

able using the sensing techniques outlined in the previous paragraph. In this case,

a sender may begin transmission using the following rule: If the medium has been

idle for longer than a distributed inter-frame spacing time (DIFS) period, transmis-

sion can begin immediately. Otherwise, a sender waits for DIFS and then selects

a random back-off interval uniformly chosen between [0, CWmin], where CWmin is

the minimum contention window. The sender begins to count down its randomly

chosen interval. If, however, the medium no longer remains idle during the count-

down, the sender freezes its back-off counter and the countdown doesn’t resume

until the medium is again sensed idle. Once the countdown reaches zero, the sender

can send the packet. A special destination address is used in the packet header to

denote a broadcast packet, and all nodes try to receive the packet. However, due

to scalability concerns, the sender does not try to ensure that all nodes receive the

packet. Therefore, no retransmissions are provided for broadcast packets.
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With 802.11 unicast transmissions, a station waits for the medium to become

idle as before. When it transmits the packet, it waits for an ACK. If the receiver

successfully receives the packet, it waits for a short inter-frame spacing time (SIFS)

and then transmits an ACK frame. If the sender does not receive an ACK (e.g.,

due to a collision or poor channel condition), it retransmits the packet using binary

exponential back-off, where its contention window is doubled every time after a

failed transmission until it reaches its maximum value, denoted as CWmax. In

802.11, the packet is retransmitted in its original form and up to a pre-specified

number of times. After the successful reception of a packet, the sender reduces its

contention window to CWmin.

Finally, in order to avoid collisions due to hidden terminals, a sender can em-

ploy the Request-To-Send/Clear-To-Send (RTS/CTS) mechanism for unicast pack-

ets. Instead of sending a data packet, the sender first sends a RTS packet when it

wins contention. The RTS packet contains a NAV value indicating the length of

the packet transmission (including the RTS/CTS and ACK overhead). When the

receiver gets the RTS packet, it replies with a CTS packet, which also contains an

updated NAV. Any other node receiving the RTS/CTS frames updates its NAV value

accordingly and thus defers to the upcoming transmission. Once the sender receives

the CTS, it sends the data.

1.2.1 The 802.11n Standard

The IEEE 802.11n standard [2] was introduced as an amendment to the

802.11a and 802.11g standards. In 802.11n, physical-layer data rates of 600 Mbps
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are possible, whereas only 54 Mbps was possible in the the legacy 802.11 standards.

The increase in throughput in 802.11n is contributed to two factors: (i) the use of

multiple-input and multiple-output (MIMO) antennas at both the transmitter and

the receiver, and (ii) the use of MAC and PHY layer aggregation techniques.

The 802.11n standard utilizes MIMO technology to achieve high data rates.

At a high level, the sender and receiver can be affixed with multiple antenna pairs,

and the data rates scale linearly with the number of antenna pairs. In Table 1.1,

the data rates are enumerated for up to 3 spatial streams. The table lists the data

rates defined in the 802.11n standard, and the various rates are indexed by a Mod-

ulation and Coding Scheme (MCS) index value. Therefore, the MCS index is used

when describing a particular rate in 802.11n. While the table shows up to 3 spa-

tial streams, in the 802.11n standard, up to 4 spatial streams are allowed. Further

reading on MIMO and spatial diversity can be found in [53] and [2].

The second enhancement in 802.11n is the use of frame aggregation to im-

prove efficiency in the MAC layer. As described in Section 1.2, each data packet in

802.11 must incur some constant-in-time overheads (DIFS, preamble, SIFS, con-

tention time and acknowledgment frames). However, as the data rate increases,

the time to send the packet becomes increasingly smaller and the overhead associ-

ated with the fixed inter-frame spacing intervals becomes increasingly higher. This

overhead severely limits the throughput that can be achieved in practice. Therefore,
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MCS Spatial Modulation Coding Data rate (Mbit/s)
index streams type rate 20 Mhz channel 40 Mhz channel

800 ns GI 400 ns GI 800 ns GI 400 ns GI
0 1 BPSK 1/2 6.5 7.2 13.5 15
1 1 QPSK 1/2 13 14.4 27 30
2 1 QPSK 3/4 19.5 21.7 40.5 45
3 1 16-QAM 1/2 26 28.9 54 60
4 1 16-QAM 3/4 39 43.3 81 90
5 1 64-QAM 2/3 52 57.8 108 120
6 1 64-QAM 3/4 58.5 65 121.5 135
7 1 64-QAM 5/6 65 72.2 135 150
8 2 BPSK 1/2 13 14.4 27 30
9 2 QPSK 1/2 26 28.9 54 60

10 2 QPSK 3/4 39 43.3 81 90
11 2 16-QAM 1/2 52 57.8 108 120
12 2 16-QAM 3/4 78 86.7 162 180
13 2 64-QAM 2/3 104 115.6 216 240
14 2 64-QAM 3/4 117 130 243 270
15 2 64-QAM 5/6 130 144.4 270 300
16 3 BPSK 1/2 19.5 21.7 40.5 45
17 3 QPSK 1/2 39 43.3 81 90
18 3 QPSK 3/4 58.5 65 121.5 135
19 3 16-QAM 1/2 78 86.7 162 180
20 3 16-QAM 3/4 117 130.7 243 270
21 3 64-QAM 2/3 156 173.3 324 360
22 3 64-QAM 3/4 175.5 195 364.5 405
23 3 64-QAM 5/6 195 216.7 405 450

Table 1.1: 802.11n rate table for up to 3 streams.
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the 802.11n standard allows multiple data packets to be combined into a single ag-

gregated frame. This aggregated frame incurs the fixed time overheads only once,

allowing the cost to be amortized over all the packets contained within the frame.

There are two types of aggregation techniques: Aggregation of MAC Service Data

Units at the top of the MAC (A-MSDU) and Aggregation of MAC Protocol Data

Units at the bottom of the MAC (A-MPDU). The A-MPDU technique allows each

of the aggregated data frames to be individually acknowledged and thus requires

the use of the 802.11n Block ACK scheme [2].

1.3 Related Work

Due to the significant impact of losses in wireless networks, there exists a

large body of literature in this area. This section provides a brief overview of the

related work for each layer of the network stack in order to set the context for the

proposed approaches. Chapter 2 presents a more detailed look at related work.

1.3.1 Network Layer

Mitigating loss in the Network Layer has typically centered around de-

signing routing protocols for wireless mesh networks that account for loss when

routing traffic. Early on, researchers found that the hop count metric, as typically

used in AODV [112] and DSR [66], did not provide good performance in wire-

less networks. This is because not all hops are created equal: some hops have

higher loss than others, which impacts the performance of a given hop. Therefore,

Couto et al. [32] proposed routing traffic based on a routing metric called ETX,
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which explicitly accounts for the expected number of transmissions needed to for-

ward a packet over a wireless link based on the probability of a packet getting lost

on the link. Since then, researchers have proposed many other metrics to route

data [13, 35, 36, 47, 58, 138, 158], such as the expected transmission time, which

explicitly accounts for multiple rates and interfering links (WCETT) [35], or signal

quality [36, 47, 58].
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Figure 1.1: Opportunistic routing can take advantage of multiple weak links. The
sourceA has weak wireless connectivity to each of the five intermediate nodes, with
a delivery rate of 20%. All the intermediate nodes have 100% delivery rate to the
destination G.

While these metrics and routing protocols are designed explicitly for wire-

less networks, they still treat wireless transmissions as point-to-point communi-

cation links. However, the wireless medium is a broadcast medium and links do

not have to be treated as point-to-point. A class of opportunistic routing proto-

cols [20, 24, 72, 91, 129, 161] exploit the broadcast nature of the wireless medium

and defer route selection until after packet transmissions. This can cope well with
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unreliable and unpredictable wireless links. There are two major benefits in oppor-

tunistic routing. First, it can combine multiple weak links into one strong link. For

example, in Figure 1.1, traditional routing requires the source A to pick one inter-

mediate node as the next hop. Multiple packet transmissions are required to send

data to the next hop, due to the loss on the link. For example, in Figure 1.1 five

transmissions are required, on average, to send a packet over the first hop. How-

ever, in opportunistic routing, the source can specify a set of nodes as the next hop

and transmit its data. If any one of these nodes receives the data, it can forward it

to the destination. This essentially combines multiple weak links into one strong

link. For example, in Figure 1.1 only 1.48 transmissions are required, on average,

to send a packet to at least one of the forwarders on the first hop (assuming indepen-

dent packet loss). Second, opportunistic routing takes advantage of unexpectedly

short or unexpectedly long transmissions. A traditional routing protocol has to trade

off between link quality and the amount of progress each transmission makes. For

example, consider the network shown in Figure 1.2, where A sends data to D along

the path A − B − C − D. If B is used as the next hop and the quality of link

A−B is good, then no retransmissions are required to deliver the packet to B. But

the progress made is small. Alternatively, if C is chosen as the next hop, a large

progress is made if the packet reaches C. However if the quality of link A − C is

poor, multiple transmissions are required to deliver the packet to C. In comparison,

opportunistic routing does not commit to B or C before transmissions. Among the

nodes that receive the packet, the one closest to the destination is chosen to forward.

Early opportunistic routing protocols required forwarders to coordinate amongst
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Figure 1.2: Opportunistic routing can maximize the progress each transmission
makes.

themselves to determine which forwarder would actually send a received packet.

The sender of each individual packet was typically determined by strict timing con-

straints and forwarder priorities [20]. However, MORE [24] is an opportunistic

routing protocol that applies network coding to ease the coordination between po-

tential forwarding nodes. MORE puts multiple packets into a batch and sends out

packets that are random linear combinations of the batch. Since random linear

coding generates linearly independent coded packets with high probability, the for-

warding nodes in MORE require no coordination. Instead, each node computes how

much traffic it should forward given a received packet and independently generates

random linear combinations of all the packets it has received from a current batch

of packets.

1.3.2 Link Layer

Techniques to overcome loss and support reliable communications in the

Link Layer have centered around adding redundancy to cope with wireless loss or

trying to avoid loss in the first place. A brief explanation of works within each class

is provided below.

Adding redundancy: Perhaps the most widely known mechanism to recover from

packet losses is the simple retransmission technique employed by the IEEE 802.11
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MAC layer [1], as described in Section 1.2. As an alternative to retransmissions,

forward error correction (FEC) coding can also be employed to add redundancy in

the face of loss. There have been various schemes for FEC coding in the wired

environment (e.g., [19, 121, 122, 139]), but schemes have also been developed for

the wireless environment (e.g., [80, 96, 109, 123, 162, 168]). For instance, in [96],

McKinley et al. dynamically adjust the level of FEC redundancy based on observed

channel quality.

Avoiding Loss: Various schemes try to prevent loss from happening in the first

place. These schemes aim to prevent losses arising from packet collisions. A

widely-known scheme is the RTS/CTS mechanism in the IEEE 802.11 MAC layer,

as outlined in Section 1.2. Since RTS/CTS only applies to unicast traffic, other

schemes have been developed to extend channel reservation for broadcast traf-

fic [34, 59, 143, 144].

1.3.3 Physical Layer

There has been a large body of work to measure and increase link robustness

in the Physical Layer. A brief description of each is provided here.

Characterizing Wireless Links: Numerous studies have shown that loss is preva-

lent in wireless networks [7, 32, 39, 120]. Furthermore, additional studies have

shown that wireless losses exhibit bursty patterns [23, 65, 79, 99, 137]. In these

works, burstiness is found to occur in challenged environments: signal strength is

low or near the receive sensitivity threshold.
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Increasing Link Robustness: There are many classes of work that aim to create

a better wireless link. In the interest of brevity, a short summary is provided here

(a more detailed description can be found in Section 2.3). One class of schemes

aim to pick the best data rate for a wireless link [33, 103, 116, 151, 156]. Other

schemes allow the partial reception of uncorrupted bits in errored frames [64, 89].

Finally, other well-known techniques, such as utilizing diversity [11, 63, 101, 146]

or using interference cancellation [148, 150], can also reduce loss and make a link

more robust.

1.4 Challenges

We now describe the challenges for combating loss in wireless networks and

highlight why the previous work is not sufficient.

1.4.1 Network Layer

Opportunistic routing protocols leverage receiver diversity to effectively

route traffic over multiple hops in the face of loss. There are two key factors that

determine the performance of opportunistic communication in wireless mesh net-

works: (i) routes (i.e., for a given flow how much traffic node j should forward

upon receiving a packet from another node i), and (ii) rate limits (i.e., how fast each

traffic source can inject traffic into the network). Routes determine how effectively

we take advantage of communication opportunities and how efficiently we utilize

network resources and exploit spatial reuse. Rate limits ensure that traffic sources

do not send more than what paths can support. Without appropriate rate limits,
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the network throughput can degrade drastically under traditional shortest-path rout-

ing [85]. Rate limiting is even more critical for opportunistic routing due to its use

of broadcast transmissions: (i) broadcast transmissions do not perform exponential

back-off (i.e., its contention window does not increase upon packet losses) and thus

are more likely to cause network congestion; and (ii) broadcast transmissions pre-

clude the use of 802.11’s synchronous ACK mechanism, and receivers’ feedback

has to be sent above the MAC layer, which can easily get lost during network con-

gestion and cause unnecessary retransmissions and serious throughput degradation.

Previous approaches to opportunistic routing use a set of heuristics to determine

the routes that are utilized [20, 24, 72, 91, 129, 161], and only [129] attempted to

rate limit traffic. Each node makes these decisions locally and does not incorporate

network-wide information, like interference, into its decisions.

To this end, a class of related works has formulated opportunistic routing

as an optimization problem in order to provide interference-aware route selection

to reduce collision losses and compute safe sending rates to avoid losses due to

congestion [93, 115, 135, 141, 165]. However, these works use a simplistic model

of interference to derive their routes and sending rates. In order to ensure that

the derived configurations are feasible and the optimized results are effective, an

accurate network model should be employed.

However, accurate optimization of opportunistic communication in an IEEE

802.11 network is challenging for the following four reasons. First, the dynamic

and incidental nature of communication opportunities makes it difficult to estimate

their impact on the resulting network performance. Second, optimization of oppor-
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tunistic routing places stringent requirements on a network model: the model should

(i) specify the region of feasible network configurations using a compact represen-

tation so that we can optimize the objective within the feasible region as defined by

these constraints, (ii) accurately estimate performance on every link in the network

(as opposed to only a small number of links on specified routes, as in [85], for the

purpose of optimizing rate limiting alone), and (iii) be accurate across a wide range

of traffic conditions, including high traffic load, which is common in opportunistic

routing. Third, the non-convex interference relationships among different links and

the huge search space of possible opportunistic routes and rate limits impose sig-

nificant challenges on the optimization procedure itself. It is unclear whether one

should resort to a less accurate model that is convex and easier to optimize glob-

ally, or use a more accurate but non-convex model and settle for a local optimum.

Fourth, to be valuable in practice, the resulting optimization solution should be easy

to implement, using only a small number of control knobs.

1.4.2 Link Layer

Providing reliability in an efficient manner in the Link Layer is difficult

because the wireless medium is inherently lossy and also suffers from packet losses

due to collisions. Consider a WLAN environment where an access point may have

multiple client flows to serve, where each client may have different loss rates and

link qualities. Previous approaches providing reliability, such as the IEEE 802.11

retransmission technique or FEC coding, achieve robustness on a per node basis.

That is, they treat the wireless medium as a point-to-point link from the access point
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to the client and try to provide reliability over that link.

A key challenge in providing Link Layer reliability in wireless domains is

how to achieve robustness over multiple nodes simultaneously and efficiently in

the network. When providing reliability over multiple nodes, the previous schemes

simply iterate the reliability scheme over all links. But since the wireless domain is

a broadcast medium, the point-to-point abstraction no longer holds. How to exploit

the broadcast property of the wireless medium to provide robustness to many nodes

at the same time is a challenging problem.

The technique must provide the same reliability guarantees as existing ap-

proaches, while providing a mechanism that exploits the broadcast properties of the

wireless medium in order to simultaneously recover loss for multiple nodes. Algo-

rithms for recovering lost packets to multiple nodes simultaneously must be done

in a simple and effective way. Ideally, the approach should work with off-the-shelf

hardware so it can be used in today’s networks. Furthermore, the scheme should

be lightweight so that it can be employed by resource-constrained wireless devices

such as smart-phones.

Finally, the solution should work with broadcast, as well as unicast, data

traffic. Broadcast traffic is becoming increasingly popular. For example, it is used

for content dissemination, such as broadcast video, file sharing and location-aware

notifications (such as advertisements). A scheme that provides retransmissions for

broadcast must be able to retransmit its data in an efficient way in order to scale

with the number of broadcast clients.
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1.4.3 Physical Layer

We examine loss in the Physical Layer with the motivation that many ap-

plications are pushing the wireless medium towards its limits. For instance, con-

sider the home of the not-too-distant future that may be equipped with multiple

high-definition televisions, laptops and tablet PCs. The devices could be used for

wirelessly streaming television and movie programming to the televisions, but can

also be used for live, interactive applications like gaming, security monitoring and

video conferencing. Therefore, the wireless links need high throughput to support

high-definition streams, but also very low latency to provide interactivity.

Combating loss in this scenario is difficult because high-throughput schemes

rely on aggregating multiple packets together to reduce MAC-layer inefficiency.

However, creating larger packets makes it difficult for retransmissions to adhere to

the strict latency requirements imposed by the interactive nature of the content. The

problem is significantly worsened when coupled with the fact wireless losses are

typically bursty in nature [23, 65, 79]. This implies these losses must be eliminated

in order to support high-throughput, low latency applications on wireless links.

To eliminate these burst losses, we must first understand the details of what

happens during the burst. This can prove difficult, especially because most off-the-

shelf hardware does not readily provide adequate low-level details when packets

are lost. Therefore, a platform must be developed that allows analysis of corrupted

packets so that root causes of this packet loss can be flushed out.

Leveraging previous related work is difficult because of our unique usage
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scenario. Previous work typically does not jointly consider strict latency require-

ments and high throughput requirements. Furthermore, in our scenario, signal

strength is typically strong and the wireless endpoints typically have a clear line-of-

sight. Much of the previous work focuses on more challenged environments where

signal strengths are typically low and therefore requirements for performance are

not as strict.

1.5 Thesis Contributions

Given a brief overview of the related work and the challenges addressed in

the previous section, an overview of contributions of this thesis are now presented.

Specifically, approaches for combating loss in each layer in the networking stack

are outlined below.

1.5.1 Network Layer

Our goal is to optimize opportunistic routing, but ensure it is being driven

by an accurate model of broadcast interference. With an accurate model of inter-

ference, we can be confident that we’re optimizing the actual network performance,

rather than utilizing a set of heuristics or an inaccurate model that may not directly

correlate to system-wide network performance. If an optimization framework is

used to select routes and enforce safe sending rates, the underlying model must be

accurate so that the results being installed into the network can actually be achieved.

To achieve our goal, we develop our scheme with the following steps:
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1. Interference model for IEEE 802.11 broadcast traffic. The complex interfer-

ence, traffic, and MAC-induced dependencies in the network are often the

underlying cause of unexpected behavior. We develop a simple yet accurate

model to capture these dependencies for broadcast transmissions. We use

measurements from a given network to estimate link loss rate, carrier sense

probability, and conditional collision loss probabilities to seed our model.

Our model derives the relationships between sending rates, loss rates, and

throughput to capture the effects of carrier sense and collisions. Despite its

simplicity, the model captures real-world complexities such as hidden termi-

nals, non-uniform traffic, multi-hop flows, non-binary and asymmetric inter-

ference.

2. General optimization framework. We then develop a general framework to

jointly optimize routes and rate limits for opportunistic communication. The

framework uses opportunistic constraints to probabilistically characterize the

available communication opportunities. It allows the use of different wireless

interference models so that we can evaluate the effectiveness of our model.

3. Iterative procedure for non-convex optimization. Since our model is non-

convex, we develop an iterative optimization procedure to find a local opti-

mal solution. Our algorithm is flexible and can accommodate different per-

formance objectives. For comparison, we explore an alternative approach

that uses a widely used conflict-graph-based interference model [62] that is

less accurate [85, 113], but convex, and thus allows global optimization. Our
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results show that our approach of combining a more accurate model with

non-convex optimization yields better and more accurate performance.

4. Practical installation of routes and rate limits. We develop a practical op-

portunistic routing protocol that implements the opportunistic routes and rate

limits optimized by our algorithm in real networks.

Finally, we evaluate our scheme in a network simulator, as well as a testbed.

We find our model is highly accurate, typically estimating derived performance

within 20%. The performance of the protocol is significantly higher than other

schemes (its throughput is 2-13 times ETX’s throughput and 1.5-10 times MORE’s

throughput). Furthermore, we evaluate the performance of our scheme in dynamic

and uncontrolled environments.

1.5.2 Link Layer

Next, loss is dealt with in the Link Layer so single wireless hops, such as

WLANs, can also employ mechanisms to combat loss. The Link Layer typically

recovers from loss by retransmitting lost packets in their original forms. However,

instead of retransmitting packets in their original form, packets lost at different des-

tinations can be coded into a single retransmission in an attempt to recover multiple

packet losses simultaneously.

Given this framework for retransmitting packets to multiple nodes simulta-

neously, we develop an Efficient Retransmission (ER) protocol to realize the ben-

efits in 802.11 networks. Our goal is to develop a protocol that is simple to im-
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plement, has low overhead, codes multiple retransmissions effectively and can be

run on off-the-shelf hardware. In designing ER, we consider the following key

questions:

• First, how should the receivers give timely feedback to the sender without in-

curring much overhead? In ER, receivers send periodic feedback with aggre-

gated information about which packets they’ve received in order to amortize

the cost of providing feedback.

• Second, when to classify a packet as lost? In ER, senders keep track of the av-

erage time needed for receivers to provide feedback and use a simple round-

trip timeout to determine that a packet is lost.

• Third, when the medium is available for the sender to transmit, which packet

should it send – a new packet or a lost packet? This decision must be made

carefully as to balance the trade-off between the amount of coding possible

and the latency imposed on individual packets. In ER, senders store packets

to be retransmitted in a separate queue so that coding decisions can be made

over all lost packets easily. A scheduler in ER determines if a retransmitted

or a lost packet is to be sent. It ensures outstanding packets do not exceed a

pre-specified delay threshold and also ensures the retransmission queue does

not overflow.

• Fourth, which set of packets should be coded together to minimize the num-

ber of retransmissions? We formally study this problem and show it is NP-
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hard. Therefore, we design several practical heuristics to code effectively and

use empirical evaluation to study their effectiveness.

Finally, we develop and implement ER to provide reliable unicast, broad-

cast, and multicast in WLANs. Our extensive simulation and testbed experiments

show that ER significantly reduces the number of retransmissions compared to the

existing retransmission scheme, which retransmits lost packets by themselves.

1.5.3 Physical Layer

Finally, a case study is presented in the physical layer with the goal of

measuring, understanding and eliminating losses. Our goal is to see if strict per-

formance requirements can be imposed on the wireless link. We are concerned

with having high throughput, but also very low latency. Our study focuses on the

802.11n standard, which is designed to give much higher throughput than the pre-

vious 802.11a/b/g standards. The 802.11n standard achieves high throughput by

exploiting spatial diversity and eliminating MAC-layer inefficiencies. We examine

the trade-offs of these approaches and find that network loss must be minimized to

achieve our goals. Our study consists of three main parts:

• First, we modify existing wireless drivers to export fine-grained loss infor-

mation. We integrate application layer measurement tools into the driver to

ensure that we can measure losses specific to the wireless link, and avoid

counting queue drops at the sender’s buffer as wireless losses. We use the

test platform to study throughput and latency over wireless links. Our case
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study focuses on a living-room like environment, where the sender and re-

ceiver are close to each other and even have a line-of-sight path. Our studies

find that high throughput and low latency can be achieved in static environ-

ments. However, when client mobility is introduced, significant latency can

incur. We vary the configurations at the sender and receiver to see if these

latencies can be eliminated.

• Second, we make further modifications to the wireless driver in order to ex-

port information about wireless losses. We debug the burst losses in detail to

try to examine what is happening during a burst loss. We find that a signif-

icant amount of losses are not typical data packet corruption, meaning that

it isn’t possible to recover only a few bits that may be in error. Instead, the

whole aggregate packet must be recovered.

• Last, we provide recommendations for minimizing loss in mobile environ-

ments. We utilize the information obtained in our debugging step in order

focus on what may be causing the problem. Based on our analysis, we

find that increasing the robustness of the preamble is important to mitigat-

ing loss. Therefore, we make several recommendations of future research

directions to minimize loss. We analyze the potential of several schemes that

show promise in reducing loss: adding a preamble acknowledgement to avoid

losing a whole aggregated packet, changing the preamble structure to make

packet detection more robust, adding a midamble to help reduce CRC errors

and finally utilizing multiple radios to increase receiver robustness.
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Throughout our approach, we log and analyze extensive network traces. We

use the traces to present our case study and further understand losses in the Physical

Layer.

1.6 Thesis Outline

The outline of this thesis is as follows. Chapter 2 details the related work.

Chapter 3 describes how loss is mitigated in the Network Layer through the use of

opportunistic routing. Chapter 4 shows how loss is dealt with at the Link Layer

through an Efficient Retransmission scheme. Chapter 5 presents a case study for

measuring, understanding and minimizing loss in the Physical Layer. Finally, Chap-

ter 6 concludes the thesis.
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Chapter 2

Related Work

This chapter presents related work. Section 2.1 presents related work to our

optimized opportunistic routing protocol in the Network Layer. Section 2.2 details

related work to ER, our Link Layer approach. And finally, Section 2.3 examines

related work for the Physical Layer project.

2.1 Network Layer

There are three main categories of related work when considering our model-

based optimized opportunistic routing protocol: (i) design of traditional routing pro-

tocols, (ii) design and analysis of opportunistic routing protocols, and (iii) wireless

network modeling.

2.1.1 Traditional Routing in Wireless Mesh Networks

Routing has been an active area in wireless networking research. Most of the

original work in this area targeted high-mobility scenarios such as battlefield net-

works. Therefore, the focus was on establishing and maintaining routes under fre-

quent and unpredictable changes in network connectivity. A number of on-demand

routing protocols have been proposed for this purpose, as exemplified by DSR [66]
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and AODV [112], where packets are routed along paths with the shortest hop count.

Recently, wireless mesh networks [70, 126, 133] have emerged as a new

dominant application of multihop wireless networks. Nodes in such networks have

little or no mobility and often are not constrained by short battery-life or limited

computational power. Therefore, the primary focus becomes improving network

performance. Researchers have found the hop-count metric, as used in DSR and

AODV, does not provide good performance since not all hops are equal. To ad-

dress this issue, various link-quality metrics have been proposed. For example,

Couto et al. [32] propose a routing metric, called ETX, which is based on link loss

rate. Awerbuch et al. [13] develop a routing algorithm that chooses a path with the

smallest transmission time. Draves et al. [35] design a routing metric, called ETT,

based on the expected transmission time of a packet over the link. The authors

further generalize the metric for multiple-radio multiple-channel networks. Several

other routing schemes [36, 47, 58] propose the use of signal-to-noise ratio (SNR)

as a link quality metric. These metrics quantify the quality of links using link loss

rate, packet transmission time, or signal-to-noise ratios. Others use ETX scaled by

factors such as modulation or the number of neighbors [35, 138, 158].

2.1.2 Design and Analysis of Opportunistic Routing Protocols

ExOR [20] is a seminal opportunistic routing protocol. In ExOR, a sender

broadcasts a batch of packets. Each packet contains a list of nodes that can poten-

tially forward it. To maximize the progress of each transmission, the forwarding

nodes relay data packets in the order of their proximity to the destination in terms
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of ETX metric [32], which quantifies the number of transmissions required to de-

liver a packet from the forwarder to the destination. ExOR imposes strict timing

constraints among the forwarders to avoid redundant transmissions. Specifically, it

uses a batch map, which records the list of packets each node has received. Every

forwarding node only forwards data that has not been acknowledged by the nodes

with smaller ETX to the destination.

Since ExOR, many other opportunistic routing protocols have been pro-

posed. ROMER [161] tries to forward packets simultaneously along multiple paths.

It incorporates a credit based scheme to limit the number of transmissions a packet

is allowed before reaching the destination. SOAR [129] is an opportunistic routing

protocol designed to work with multiple flows in the network. It features adaptive

forwarding path selection to exploit diversity and reduce redundant retransmissions,

priority timer-based forwarding, local retransmissions, and adaptive flow control to

avoid excessive network congestion. Afanasyev and Snoeren develop a scheme

called modrate [5] to jointly couple physical-layer rate selection and overhearing

opportunities.

MORE [24] applies network coding to opportunistic routing to avoid the

need for forwarders to coordinate on which specific packet they need to send. Since

random linear coding generates linearly independent coded packets with high prob-

ability, the forwarding nodes in MORE require no coordination. Instead, each node

computes how much traffic it should forward and independently generates random

linear combinations of all the packets it has received from the current batch. By ob-

viating the needs for strict coordination, MORE can out-perform ExOR. However,
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the performance of MORE can degrade significantly when there are more than a few

flows in the network. This is because (i) it lacks rate limiting and causes network

congestion, and (ii) its routes only try to minimize the number of transmissions and

do not take wireless interference into account.

Since then, several improvements upon MORE have been proposed. MIXIT [72]

applies opportunistic routing at the symbol level, rather than the packet level. CodeOR [90]

improves upon MORE by supporting multiple outstanding batches in a streamlined

fashion. SlideOR [91] alleviates the problem of determining when to start transmit-

ting the next batch of packets by encoding packets in overlapping sliding batches

such that coded packets from one batch can be used to decode packets within an-

other batch. CCACK [76] and SOR [82] develop new schemes for online assistance

in how much traffic should be forwarded, rather than the offline approaches used

in [24] and [20].

Other approaches examine how forwarders should be selected in opportunis-

tic routing. Zhong et al. [167] show the routing metric used to select and prioritize

forwarding nodes is important. They develop a new routing metric, called EAX, to

account for inter-candidate communication in opportunistic routing, and show that

EAX out-performs the ETX metric. Ferriere et al. [37] also point out the limitation

of using ETX for selecting forwarding nodes. In particular, they show single-path

metrics, such as ETX, ignore the nodes with low delivery rate to each of its neigh-

bors even though collectively the links to multiple neighbors can form a strong

wireless link. Based on this insight, they develop least-cost opportunistic routing,

which quantifies the forwarding cost as the cost of reaching any neighbor in the
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direction towards the destination.

In addition to opportunistic routing protocols for mesh networks, researchers

have also designed opportunistic routing protocols for ad-hoc and sensor networks.

For example, [29] and [153] both dynamically select forwarding nodes based on

recent link quality. However, in both protocols, only one forwarding node is se-

lected before transmissions, and they cannot take advantage of transmissions reach-

ing nodes other than the previously selected forwarder. [26] balances the energy

consumption rates of different nodes in a sensor network by opportunistically in-

corporating forwarders’ energy consumption.

There have been several studies analyzing the performance of opportunistic

routing. For example, [163] develops a methodology for estimating the maximum

throughput given forwarding paths and traffic demands, and [164] extends the work

to multi-radio multi-channel wireless network. Both works assume the opportunis-

tic routes are given, where nodes only forward the traffic that are not received by

nodes closer to the destinations, so they cannot optimize routes. Such selected

routes are not optimal for two reasons: (i) as shown in [37], prioritizing forwarders

according to ETX, as done in [20, 24, 163, 164], is not optimal since the single path

metric, like ETX, does not capture the anycast performance in the opportunistic

routes, and (ii) due to wireless interference, we may sometimes prefer nodes farther

away from the destination to forward traffic that has been received by nodes closer

to the destination (in other words, none of least-cost path metrics can optimize end-

to-end throughput).

A few studies (e.g., [93, 115, 135, 141, 165]) propose optimization frame-
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works for opportunistic routing. The studies aim to maximize network throughput,

but differ in their derivations. Like our protocol, these approaches can optimize

throughput, proportional fairness, or energy [166] by constructing a linear program

that takes into account broadcast interference, multi-rate, multi-power and flow con-

trol.

2.1.3 Wireless Network Modeling

Significant research has been done on wireless network modeling. One class

of work focuses on asymptotic performance bounds (e.g., [44,50,51,83]). The sem-

inal work by Gupta and Kumar analyzes the capacity of a wireless network under

certain traffic patterns and topologies [51]. Other researchers have since extended

this work to other traffic patterns [83], mobility [50], and network coding [44].

These models provide useful insights as a network scales, but cannot be applied to

a specific network. Another large class of models predict performance for a given

scenario (e.g., [18, 41, 43, 71, 113, 120]). They differ in their generality: some as-

sume that everyone is within communication range of each other [18, 41, 43, 77],

while others assume restricted traffic demands (e.g., a single flow [41, 43], two

flows [120], sending to a single neighbor [42], adding one new flow at a time [130],

or one-hop demands [71, 113]).

2.2 Link Layer

The existing work of supporting reliable communication in the Link Layer

uses one or a combination of the following techniques: (i) retransmissions, (ii)
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forward error correction (FEC), (iii) network coding, and (iv) channel reservation

for reducing collision losses.

2.2.1 Retransmission

Retransmission is the most commonly used approach to recover packet er-

rors and losses. Retransmissions require feedback from the receivers, specifying

which packets are required for retransmissions. The feedback can be either ACKs

or negative ACKs (NACKs) [1, 78]. The retransmission mechanism of 802.11 was

presented in Section 1.2.

Reliable multicast has been proposed in SMACK [38]. The protocol works

by having each receiver send a binary response of packet reception on an dedicated

OFDM sub-channel.

2.2.2 FEC

FEC has been used to provide reliable unicast and multicast communication

in both wireless networks (e.g., [80, 96, 109, 123, 162, 168]) and wireline networks

(e.g., [19,121,122,139]). For example, in [96], McKinley et al. dynamically adjust

the level of FEC redundancy based on observed channel quality. [80] points out

that many existing FEC-based works incorrectly assume independent packet losses,

and studies the impact of spatial and temporal correlation of packet losses on FEC

schemes. In addition to network performance, [168] analyzes the tradeoff between

improving multicast throughput and minimizing power consumption when using

FEC techniques.
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2.2.3 Network coding

The pioneering work by Ahlswede et al. [8] shows that allowing relay nodes

to encode and decode traffic can achieve maximum multicast rate, and this is gener-

ally more efficient than only allowing the relay nodes to forward traffic. Since then,

lots of progress has been made in applying network coding to wireless and wire-

line networks (e.g., [73, 75, 84, 86]). In particular, COPE [73] develops a practical

network coding scheme for unicast in multi-hop wireless networks and [84] further

extends the idea to broadcast. Both works focus on multihop wireless networks,

and use network coding for the initial transmissions. COPE relies on MAC-layer

retransmissions to recover packet losses, while [84] does not consider loss recovery.

Finally, other schemes have used coding for loss recovery [67, 81, 160].

2.2.4 Channel reservation

One of the major sources of packet losses in wireless networks comes from

packet collisions. For unicast traffic, binary exponential back-off and RTS/CTS

are used to reduce collision losses and avoid hidden terminals. Due to expensive

feedback, neither schemes are applicable to multicast/broadcast traffic [1] and the

collision losses of multicast/broadcast traffic can be quite high. Motivated by this

observation, several channel reservation schemes have been proposed to reduce

collision losses for multicast traffic, such as Broadcast Support Multiple Access

(BSMA) [143], Broadcast Medium Window (BMW) [144], Batch Mode Multicast

MAC protocol (BMMM) [59], and Leader based Priority Ring Multicast Protocol

(LPRMP) [34].
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2.3 Physical Layer

There has been a wide variety of research that aims to prevent loss in the

Physical Layer. Here, we classify previous works into three main categories: (i)

characterization and measurements of wireless losses, (ii) efforts to build a more

robust wireless link and (iii) automatically diagnosing faults in wireless networks.

2.3.1 Characterization of Wireless Losses

In this section, a brief summary of loss measurements in wireless networks

is provided. In [7], the authors examine link loss in an 802.11b urban mesh net-

work. They find loss rates stay mostly stable from one second to the next, links can

exhibit varying degrees of bursty behavior, and a large number of links suffer from

intermediate loss rates due to multi-path. In [118], the authors find the link loss

variation is likely due to external interference rather than multi-path.

Numerous other works study loss. In [39], the authors characterize errors

in WLANs by evaluating the effects of interference and attenuation due to distance

and physical obstructions. In [136], the authors find some links exhibit correlation

in packet delivery. This finding is also observed in [142]. In [54], the authors

examine loss characteristics at a sub-frame level and find three main loss patterns

consistent across various chipsets: the slope-line pattern, the saw-line pattern and

the finger pattern.

Other works study burst losses in wireless networks. Burstiness in wireless

losses is a well-known problem [23, 65, 79]. For instance, evidence of burstiness in

wireless mesh networks is found in [7]. Subsequent works have found burstiness
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in indoor static wireless networks [120], industrial environments [154], as well as

environments without RF interference [49]. In [99], the authors find burstiness

exists in WLAN environments on the order of tens of frames. In their experiments,

nodes are separated by 15 meters with no line-of-sight. Static and mobile receivers

are evaluated and it is found that mobile receivers suffer from more frequent bursty

losses than static receivers. They also found, in contrast to our results, that bursts

from the static nodes were longer than bursts from the mobile nodes. In [137], the

authors describe an algorithm, β, to measure link burstiness. Furthermore, they

investigate the causes of link burstiness and show that a possible cause is variation

in the signal-to-noise ratio in 802.15.4 networks. They find that bursty links are

often links on the edge of reception sensitivity.

2.3.2 Building a Robust Wireless Link

There has been a wide variety of schemes that aim to build a dependable

wireless link. The schemes fall into these main categories: autorate mechanisms to

achieve the best rate, partial packet recovery to make use of the uncorrupted parts

of a frame in error, diversity techniques, and interference cancellation.

Autorate There has been a very large body of work to pick the best modulation and

coding schemes on a given wireless link. For example, there exists some work on

802.11a/b/g networks [21, 68, 103, 156], on 802.11n networks [33, 111], and some

taking a cross layer approach [116, 151]. Each of these schemes try to find the rate

that provides the highest throughput on the wireless link and do not necessary try

to minimize loss.
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Partial Packet Recovery Other schemes allow for partial packet reception [55,61,

64, 89]. That is, they keep the error-free portions of the packet and only require the

lost portions to be retransmitted. The 802.11n standard uses a similar approach in

its packet aggregation technique: only packets that are lost within an aggregated

frame need to be retransmitted.

Spatial Diversity Spatial diversity has been employed in order improve the quality

and reliability of a wireless link. Information from multiple antennas can effectively

be combined to reconstruct the transmitted wireless signal. Some schemes have

leveraged receiver diversity to reduce retransmissions in WLAN environments. To

reduce retransmissions in the down-link direction (from AP to client), PRO [92]

defines an opportunistic retransmission protocol. It leverages overhearing nodes to

retransmit data on behalf of a source when the original transmission fails. Schemes

have also been proposed in the up-link direction. In MRD [98], erroneous packets

received at an AP are compared with the same reception of the packet at different

APs. A search over the erroneous portions is conducted in an effort to satisfy the

CRC checksum. In SOFT [157], the confidence measure on individual bits is used

to more efficiently combine multiple corrupted packets into a single correct packet.

Diversity has been applied over multiple antennas for a single node [63, 101]. For

example, techniques such as diversity combining (for example, Maximal Ratio

Combining) and using multiple transmit antennas [11, 145, 146] can be employed.

Interference Cancellation Finally, there has been a large body of work that tries

to mitigate collisions through interference cancellation [22, 57, 148, 150]. These

techniques provide mechanisms to retrieve wireless data when the receiver receives
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data from multiple concurrent wireless transmissions. Some of these works have

focused on WLANs [48, 52], while others have focused on cellular networks. An

overview of schemes developed for cellular networks can be found in [12].

2.3.3 Diagnosing Wireless Losses

In [4], an architecture for detecting and diagnosing faults in WLAN envi-

ronments is presented. A system-wide framework is deployed to monitor and assist

wireless traffic when nodes are experiencing disconnectivity or performance issues.

In [14], wired desktop clients are also employed to monitor and assist wireless

clients.

In WiFiProfiler [25], clients cooperate with one another to diagnose and re-

solve network problems. The system contains a sensing component to passively

monitor the connectivity status and configuration information of a node, a com-

municate component to facilitate client cooperation, and a diagnosis component to

determine the likely cause of a fault.

The wit framework [95] merges multiple monitor traces to infer the status

of wireless packets. Similarly, Jigsaw [28] is a distributed wireless monitoring

platform that allows the merging of network events at several locations to present a

unified view of all activity on an 802.11 network. In [27], the framework is utilized,

along with network-side information, to reconstruct sources of delay in an 802.11

network. This information is then used to determine and diagnose faults.
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2.4 Contrasting Completed Work from Related Work

In this section, we present a brief overview of how the proposed work differs

from the related work.

2.4.1 Network Layer

Previous opportunistic routing schemes try route their traffic based on heuris-

tics [20, 24, 129, 161]. However, these heuristics may not correlate well to ac-

tual network performance. In comparison to the pre-existing opportunistic routing

schemes, our approach directly optimizes end-to-end performance by computing

interference-aware opportunistic routes and rate limits. The performance optimized

by our approach can be realized in a real network and is significantly better than the

existing schemes. Also, as detailed in Section 3.4, the protocol to realize our ap-

proach in real networks is built on top of the MORE code-base. Therefore, schemes

that improve MORE [76,82,90,91] can be used to make our routing protocol more

efficient.

Like our work, some schemes propose to optimize opportunistic routing [93,

115, 135, 141, 165]. However, the interference model used in these works is the

conflict-graph model described in Section 3.2. This model assumes packet trans-

missions can be precisely controlled and, hence, over-estimates performance in real

networks (our results in Section 3.6 confirm this model significantly over-estimates

the actual performance of the network). Furthermore, the interference models used

only provide an aggregate view of broadcast interference: broadcast transmissions

are assumed to interfere if any one of their receivers is interfered with by the other
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transmission. But providing a simple binary answer of interference does not fully

characterize the impact of interference on different receivers and is therefore inad-

equate for use in optimizing opportunistic routing. Different from these works, we

show that to achieve accurate optimization of network performance it is essential

to use an accurate network model that captures the non-convex relationship be-

tween the performance of different wireless links. We develop an accurate model

of broadcast interference to capture these relationships. Since the relationships are

non-linear and non-convex, we also develop iterative procedure for non-convex op-

timization. The algorithm provides us with a local optimal solution and can be used

to answer the question: is it better to use a global solution with a less accurate

model (the conflict-graph model), or instead find a local optimal solution with an

accurate model? To help answer this, in addition to a new interference model and

model-based optimization, our work goes beyond theoretical analysis (the primary

focus of the above works) by developing a practical routing protocol to realize the

performance gains in a real IEEE 802.11 network. This allows us to answer the

previously posed question. We find our model is highly accurate: it achieves within

20% of the estimated performance, while the conflict-graph approach consistently

over-predicts. Furthermore, our model provides performance benefits: 2-13 times

ETX’s throughput, 1.5-10 times MORE’s throughput and 10%-46% better through-

put than the conflict-graph model.

Finally, Section 2.1.3 lists previous work that has focused on modeling wire-

less networks. Most of the models in that section predict performance under a given

scenario and cannot support optimization without enumerating all possible network
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configurations, which is prohibitive due to an intractable search space. To facilitate

optimization, we need a model that can specify the entire region of feasible network

configurations using a compact set of constraints, which can then be incorporated

into the optimization procedure to optimize the desired objective within the feasi-

ble region. Two existing models are in this category: (i) the conflict-graph-based

model [62], and (ii) the unicast interference model [85]. We discuss why [85] is

insufficient for optimizing opportunistic routing in Section 3.2.1.

2.4.2 Link Layer

Much of the related work in this area is complementary to our approach.

The SMACK [38] scheme that provides reliable broadcast can be utilized to im-

plement receiver feedback in ER. SMACK, however, may require changes to cur-

rent off-the-shelf devices, whereas ER is designed to be used with commonly de-

ployed hardware. The FEC protocols are complementary to loss recovery schemes

using retransmissions with or without source/network coding, and can be used in

combination with ER. Furthermore, the channel reservation schemes reduce colli-

sion losses, while the retransmissions can recover both collision and other wireless

medium related losses (e.g., those due to fading and low SNR). Finally, ER can be

augmented to protocols such as COPE to provide coding for retransmitted packets.

The schemes most similar to ER are [67, 81, 160]. These schemes also em-

ploy coding for retransmitting data to multiple users. None of these works, however,

provide a detailed protocol description nor implement their scheme. In ER, we de-

velop a practical protocol that can be utilized in today’s IEEE 802.11 networks. We
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implement and evaluate our approach in a simulator and on a testbed, whereas the

previous approaches study and derive the problem analytically.

2.4.3 Physical Layer

In contrast to works that have measured and characterized wireless losses,

our work investigates losses when the signal quality is high and benefits from a

strong line-of-sight. We find that moderate mobility can cause burst losses even if

the signal isn’t low or near the edge of the reception sensitivity. The previous ap-

proaches have only identified burst losses when the signal strength is low or highly

variable. We find these losses occur independent of the receiver and sender config-

urations. Furthermore, our case study presents an in-depth analysis to characterize

these burst losses, gains insights into why they may be happening, and makes rec-

ommendations to rectify the problem.

Many of the previous schemes aiming to build a better wireless link try to

minimize the number of corrupted bits within a packet. We share this goal and can

harness existing schemes for this problem. However, through our analysis of burst

errors in dynamic environments, we find many of the burst errors result from the

packets getting lost completely (as opposed to be received with a few corrupted

bits). This wreaks havoc on wireless links that must provide high throughput and

low latency. Our motivating example and prime interest is to understand the bounds

of wireless communication so as to enable a rich ecosystem of wireless technolo-

gies. We therefore make recommendations to curtail wireless losses without sacri-

ficing the need for high throughput and low latency.
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Chapter 3

Network Layer

In this chapter, our scheme for optimizing opportunistic routing is presented.

The contents of this chapter represent work that appeared in the proceedings of the

ACM SIGMETRICS 2011 conference [127].

3.1 Optimization Framework

Overview: We adopt network coding introduced by MORE [24] to prevent for-

warders from forwarding redundant information without fine-grained coordination.

In this framework, an opportunistic route for a flow f from a source s to a desti-

nation d is defined by the sending rate at s, denoted as T (f, s), and the forwarding

rate at node j upon receiving a packet from node i, denoted as F (f, i, j). Single

path routing is a special case of opportunistic routing where F (f, i, j) = 1 if j is

i’s next hop and 0 otherwise, whereas the opportunistic route for a given packet

is determined on the fly based on who receives the transmission and the F (f, i, j)

values at the nodes. Below we present our general framework for jointly optimizing

opportunistic routes and rate limits (i.e., T (f, s) and F (f, i, j)). Our optimization

outputs T (f, i) and Y (f, d, i, j), which will be converted to F (f, i, j) using the

credit computation described in Section 3.4.
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Flows the set of unicast or multicast flows
src(f) source of flow f

dest(f, d) d-th destination of flow f

Demand(f) traffic demand of flow f , i.e., the
amount of traffic f desires to send

G(f) throughput of flow f

T (f, i) node i’s sending rate for flow f

Y (f, d, i, j) information receiving rate along link i−
j for d-th destination in flow f (d = 1
for unicast)

P (i, j) loss rate of link i − j (including both
collision and inherent wireless medium
loss)

N(i) a subset of i’s neighbors
S(i,N(i)) success rate from node i to i’s neighbor

set N(i)

Table 3.1: Notations for optimizing opportunistic routing.

Without loss of generality, we focus on multicast flows, since unicast flows

are a special case of multicast with one receiver in each multicast group. The main

design issue becomes how fast each traffic source should send traffic and how much

traffic an intermediate node should forward to achieve high performance. This can

be formulated as an optimization problem that maximizes total network through-

put subject to information conservation constraints, opportunistic constraints, and

interference constraints. Figure 3.1 shows the resulting formulation, and Table 3.1

specifies the variables in the formulation. Below we explain the formulation.

Optimization objective: The first term in the objective, shown in Figure 3.1,∑
f∈FlowsG(f), reflects the goal of maximizing the total throughput over all flows.

The second term in the objective, −β
∑

f,i T (f, i) represents the total amount of
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. Input : Flows, Demand(f)

. Output : T (f, i), Y (f, d, i, j)
maximize:

∑
f∈Flows

G(f)− β
∑
f,i

T (f, i)

subject to:
[C1] G(f) ≤ Demand(f) (∀f)
[C2] G(f) ≤

∑
k

Y (f, d, k, dest(f, d)) (∀f, d)

[C3] Y (f, d, k, src(f)) = 0 (∀f, d, k)
[C4] Y (f, d, dest(f, d), k) = 0 (∀f, d, k)
[C5]

∑
k

Y (f, d, k, i) ≥
∑
j

Y (f, d, i, j)

(∀i 6= src(f) and i 6= dest(f, d))
[C6] S(i,N(i))T (f, i) ≥

∑
k∈N(i)

Y (f, d, i, k) (∀i,N(i))

[C7] interference constraints on T (f, i)

Figure 3.1: Problem formulation to optimize multicast throughput of opportunistic
routing.
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wireless traffic. Including both terms reflects the goals of (i) maximizing total

throughput and (ii) preferring the least amount of traffic among all solutions that

support the same total throughput (e.g., avoiding loops and unnecessary traffic).

Since the first objective is more important, we use a small weighting factor β =

1e− 5 for the second term just for tie breaking (i.e., only when the first objective is

the same, we prefer the one with the least traffic).

To compute the first term, for a unicast flow f , G(f) is its throughput. For

a multicast flow f , G(f) is the throughput of the bottleneck receiver. While here

we focus on total throughput, our framework can be directly applied to optimizing

other linear objectives. For example, our evaluation also considers optimizing a lin-

ear approximation of proportional fairness, defined as
∑

f∈Flows logG(f), which

strikes a good balance between fairness and throughput [119]. We can also maxi-

mize total revenue if the revenue of a flow is a linear function of its throughput. In

addition, it is easy to apply our framework (with small modifications) to optimize

total throughput over all receivers in the multicast groups.

Throughput constraints: To ensure G(f) is the throughput of flow f , it has to

satisfy constraints (C1) and (C2) in Figure 3.1. Constraint (C1) indicates that the

throughput of a flow should be no more than its traffic demand (i.e., total amount

of information a source desires to send). Constraint (C2) ensures that G(f) is no

more than the total amount of information delivered from all links incident to the

destination of flow f . For a multicast flow f , G(f) should be no more than the total

amount of information delivered to each destination in the flow f . Note that we do

not need a lower bound on G(f) since the objective is to maximize G(f).
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Information conservation constraints: To handle lossy wireless links, we distin-

guish traffic and information sent along a link. A feasible routing solution should

satisfy information conservation. This property is given by constraints (C3–C5) in

Figure 3.1. Constraint (C3) ensures no incoming information to a traffic source,

constraint (C4) ensures no outgoing information from a destination, and constraint

(C5) represents flow conservation at an intermediate node i, i.e., the total amount

of incoming information is no less than the total amount of out-going information.

Opportunistic constraints: Opportunistic routing exploits the wireless broadcast

medium by having different nodes extract information from the same transmission.

We formally capture this notion using opportunistic constraints, which relate traffic

volume to the amount of information delivered.

For ease of explanation, we first consider one sender sending to two re-

ceivers, and then generalize it to an arbitrary number of receivers. Consider a

sender s and denote the link loss rates from s to its neighbors r1 and r2 as P (s, r1)

and P (s, r2), respectively. It is evident that for a given flow the amount of in-

formation delivered to a neighbor is bounded by the product of the sending rate

and link delivery ratio. Therefore we have (1 − P (s, r1))T (f, s) ≥ Y (f, d, s, r1)

and (1 − P (s, r2))T (f, s) ≥ Y (f, d, s, r2). In addition, since there is overlap

between the information delivered to r1 and r2 and we are only interested in the

non-overlapping information (i.e., when redundant information is delivered to both

nodes, it should only count once). The total non-overlapping information delivered
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to r1 and r2 should satisfy the following constraints:

(1− P (s, r1)P (s, r2))T (f, s) ≥
∑

i∈{1,2}Y (f, d, s, ri)

where the left hand-side represents the total amount of traffic successfully delivered

to at least one of the receivers, and the right hand-side represents the total non-

overlapping information delivered to the receivers.

Now we consider a general setting, where a sender s has N neighbors. We

enumerate all possible subsets of its neighbors. For each neighbor set N(i), we

require:

S(i,N(i))T (f, i) ≥
∑

k∈N(i)Y (f, d, i, k)

where S(i,N(i)) = 1−
∏

k∈N(i) P (i, k) gives the probability for i’s transmission to

reach at least one node in N(i). The constraint indicates the total traffic successfully

delivered to at least one neighbor in N(i) should be no less than the total non-

overlapping information delivered to N(i). This results in (C6) in Figure 3.1. When

i has many (say, K) neighbors, we limit the number of such constraints by only

enumerating neighbor sets of size 1, 2, and K (i.e., we enumerate only O(K2),

instead of O(2K) neighbor sets).

Interference constraints: Wireless interference has significant impact on wireless

network performance. In particular, nearby senders carrier sense and defer to each

other. Moreover, since carrier sense is not perfect, there may be multiple overlap-

ping nearby transmissions and cause collisions. These effects can further constrain

the amount of traffic on each link and introduce strong inter-dependency between
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sending rates, loss rates, and throughput. We address this issue in Section 3.2 by de-

veloping the constraints that capture the relationships between T (f, i) and P (i, j).

3.2 Broadcast Interference Model

In this section, we first motivate the need for a better interference model and

then present our new model.

3.2.1 Motivation for a Better Model

Despite significant research on modeling the impact of wireless interfer-

ence, none of the existing models fulfill our need for optimizing opportunistic rout-

ing. To support optimization, we need a model that specifies the feasible region of

network configurations using a compact representation. The following two models

fall into this category.

Conflict-graph-based model: The first model, proposed in [62], is a conflict-

graph-based model that represents wireless links as vertices and draws a conflict

edge between two vertices if the corresponding wireless links interfere. Based on

this definition, it is clear that links corresponding to an independent set in the con-

flict graph can be active simultaneously. Therefore, the interference constraints are

the schedule restrictions imposed by the independent sets, which can be expressed

as a set of linear constraints.

There are two limitations in applying the conflict-graph-based model for op-

timizing opportunistic routing. First, the model in [62] assumes perfect scheduling,
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i.e., packet transmissions at different nodes can be precisely controlled and it over-

estimates the performance in real networks as we will show in Section 3.6. Second,

the conflict-graph-based model is a link-based model, while opportunistic routing

uses broadcast transmissions and requires a node-based broadcast model. Existing

broadcast extensions of the conflict-graph model provide only an aggregate answer

of whether two broadcast transmissions interfere or not. For example, some exten-

sions [115, 134, 163, 165] conservatively consider two broadcast transmissions to

interfere if any one of their receivers is interfered by the other transmission, while

other extensions [163] consider broadcast transmissions to interfere if all of their

receivers are interfered by the other transmission. A single aggregate answer on

whether broadcast transmissions interfere does not fully characterize the impact of

interference on different receivers and is therefore inadequate for use in optimizing

opportunistic routing.

IEEE 802.11 unicast model: The other model, proposed in [85], models inter-

ference among unicast transmissions in IEEE 802.11. Since opportunistic routing

uses broadcast traffic, we need to develop interference models for broadcast trans-

missions. Furthermore, as broadcast transmissions does not perform binary backoff

to limit the sending rate, it is necessary to have an accurate model even for high

traffic load and channel occupancy, which induces high collision losses, and the

linear approximation used in [85] becomes inaccurate under high collision losses.

In addition, [85] is used for rate limiting unicast transmissions when given specified

routes. Therefore it suffices to accurately estimate the sending rates and loss rates

on a small number of links used for routing. In contrast, for the purpose of route
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optimization, we need to accurately estimate the performance for all receivers of a

given sender, which is much more challenging.

Modeling goals and strategy: We design our model specifically for IEEE 802.11

broadcast traffic. We observe that wireless interference affects IEEE 802.11 traf-

fic in two important ways: (i) nearby senders cannot transmit simultaneously due

to carrier sense, and (ii) transmissions may sometimes result in collisions due to

imperfect carrier sense. We model these effects by developing the relationships

between sending rates, loss rates, and throughput, which can be incorporated into

our optimization framework and facilitate model-driven optimization. While this

chapter applies the model to optimizing opportunistic routing, the model is use-

ful in other contexts (e.g., optimizing network topology and network planning).

Our model is general and captures real-world complexities (e.g., hidden termi-

nals, multi-hop flows, non-binary interference, and heterogeneous traffic), which

is confirmed by simulation and testbed experiments using multihop networks in

Section 3.6. Compared with [85], both our sender model (Section 3.2.3.1) and loss

model (Section 3.2.3.2) are much more refined and do not involve any linear ap-

proximation. As a result, our model can accurately estimate the loss rates for all

receivers even under heavy traffic loads, which is essential for the optimization of

opportunistic routing.

3.2.2 Background

We first review the broadcast transmissions as specified by the IEEE 802.11

standard [1]. Before transmission, a sender first checks to see if the medium is
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available using carrier-sensing. A sender determines the channel to be idle when

the total energy received is less than the clear-channel assessment threshold. In

this case, a sender may begin transmission using the following rule: If the medium

has been idle for longer than a distributed inter-frame spacing time (DIFS) period,

transmission can begin immediately. Otherwise, a sender waits for DIFS and then

waits for a random backoff interval uniformly chosen between [0, CWmin], where

CWmin is the minimum contention window.

3.2.3 Our New Model

We develop a simple interference model to capture the interdependency be-

tween broadcast sending rates, loss rates, and throughput. Such interdependency

can be captured using O(N) constraints, where N is the total number of nodes in

the network. These constraints can then be incorporated into the optimization prob-

lem as interference constraints shown in Figure 3.1. We present methods to measure

the input parameters of the model in Section 3.4.

Our model consists of two main components: (i) a sender model that cap-

tures the effects of carrier-sensing on a sender’s sending rate, and (ii) a loss model

that captures both inherent loss (i.e., packet loss under no interference) and the ef-

fects of overlapping packet transmissions on the collision loss rates for different

links.
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3.2.3.1 Broadcast Sender Model

Modeling the effects of carrier sense on traffic rates: We divide time into

variable-length slots (VLS) for each sender i. A variable-length slot may last for

either IEEE 802.11 slot time Tslot or the transmission time of a packet followed by

a DIFS duration. The former occurs when i senses a clear channel but either has no

data to transmit or has data but cannot transmit due to a non-zero backoff counter.

The latter occurs when i either transmits a packet or waits for a transmission from

another sender to complete.

Let τi be the probability for i to start a new packet transmission in a variable-

length slot. Clearly, τi depends on (i) how often i has data to send, and (ii) the ran-

dom backoff interval (i.e., CWmin). As derived in [18], when i has saturated traffic

demand (i.e., it always has data to transmit), on average i performs one transmis-

sion every CWmin/2+1 variable-length slots (since there is no exponential backoff

for broadcast traffic, we have CWmin/2 slots for backoff plus 1 slot for the trans-

mission). Therefore, the transmission probability τi is bounded by the following

feasibility constraint:

τi ≤ τmax
4
=

1

CWmin/2 + 1
(for ∀i) (3.1)

We assume pairwise interference, i.e., the interference relationship between

two links is independent of activities on other links. Previous works show that

pairwise interference is good approximation in real networks [6, 105]. Hence this

assumption has been widely used in the literature (e.g., [18,41,43,85,120]). More-

over, for the purpose of optimizing the performance of multi-hop wireless networks,
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it is often more important to capture the interference relationship among links that

are not too far apart. For these links, pairwise interference is likely to be an even

better approximation.

Under the pairwise interference model, whether sender i carrier-senses (and

thus defers to) an ongoing transmission of sender j only depends on nodes i and j

and is independent of if other senders are transmitting. Let Dij be this conditional

deferral probability (i.e., probability for node i to defer to node j when node j is

transmitting). For convenience, let Dii = 1. Let Ti be sender i’s sending rate

over all flows (Ti =
∑

f T (f, i)), V LSi be its expected VLS duration, and P idle
i

be the idle probability of node i. Ti, V LSi and τi have the following approximate

relationship, called the throughput constraints:

Ti = (EP × τi)/V LSi (3.2)

V LSi = TslotP
idle
i + (Txmit + TDIFS)(1− P idle

i )

= Tslot + (Txmit + TDIFS − Tslot)(1− P idle
i ) (3.3)

P idle
i =

∏
j

(1−Dij × τj ×
V LSi
V LSj

) (3.4)

whereEP is the expected packet payload size,EH is expected header size, Txmit =

(EP + EH)/rate is the expected packet transmission time, and Tslot is an IEEE

802.11 slot time. Eq. (3.2) computes throughput as the total amount of payload

transmitted during one VLS divided by the expected VLS duration. Eq. (3.3) com-

putes expected VLS duration as idle probability times an idle slot duration plus
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transmission (including collision) probability times a transmission duration. Fi-

nally, Eq. (3.4) gives the probability that i finds the medium is idle, where τj× V LSi

V LSj

is the probability for j to start transmission in i’s VLS,Dij×τj× V LSi

V LSj
is the proba-

bility that i defers to j’s transmission, and
∏

j(1−Dij×τj× V LSi

V LSj
) is the probability

that i does not defer to any node in the network including its own transmission (i.e.,

i senses the medium is idle).

Reducing the number of model parameters: To better facilitate model-driven

optimization, we transform the relationships in (3.1)–(3.4) into the following equiv-

alent constraints that apply directly to the traffic rates {Ti} by eliminating {τi} and

{P idle
i }.

• Feasibility constraint. According to Eq. (3.2), we have: τi = Ti∗V LSi

EP
. As a result,

Eq. (3.1) is equivalent to:

Ti
EP
≤ τmax

V LSi
(for ∀i). (3.5)

• Throughput constraint. With τi = Ti∗V LSi

EP
, Eq. (3.4) becomes: P idle

i =
∏

j

(
1− Dij∗Tj∗V LSi

EP

)
.

So Eq. (3.3) becomes:

V LSi = Tslot + (Txmit + TDIFS − Tslot) ∗[
1−

∏
j

(
1− Dij ∗ Tj ∗ V LSi

EP

)]
. (3.6)

Eq. (3.5) and (3.6) fully capture the relationships in (3.1)–(3.4) but have

fewer variables. Moreover, note that when traffic rates {Tj} are given as inputs,

Eq. (3.6) contains only a single variable: V LSi. This allows us to numerically

54



derive V LSi and partial derivatives ∂V LSi

∂Tj
from the given {Tj} (as described in

Section 3.3.2). We will therefore use (3.5) and (3.6) in our model-driven optimiza-

tion.

3.2.3.2 Broadcast Loss Model

Integrating inherent loss and collision loss: To estimate loss rates P (i, j) from

traffic rates Ti, we distinguish between two types of loss: inherent wireless medium

loss (i.e., loss rate under no interference) and collision loss. The former is denoted

as P raw(i, j) for link i− j and can be periodically measured. The latter depends on

two factors: (i) how often transmissions from different nodes overlap and (ii) how

often such overlapping transmissions result in a collision. To capture the first effect,

we introduceO(i, k) to denote the probability for an i’s transmission to overlap with

a k’s transmission (conditioned on i’s transmission) and derive its value based on

the deferral probability. To capture the second effect, we observe that the pairwise

interference model indicates there is a constant conditional collision loss probability

Lkij (i.e., the probability that a transmission on link i−j collides with an overlapping

transmission from node k). We assume that inherent wireless medium loss and

collision loss are independent, which has been commonly used (e.g., [85,113]). We

then compute the combined loss rate as follows:

P (i, j) = 1− (1− P raw(i, j))×
∏
k 6=i

[
1− Lkij ×O(i, k)

]
This is because a packet is delivered when it is not lost due to either inherent loss

or collision loss. To ensure no collision, the packet should not collide with any

node’s transmission. Since Lkij × O(i, k) is the collision loss probability with node
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k’s transmission,
∏
k 6=i

[
1− Lkij ×O(i, k)

]
is the probability that the link has no col-

lisions with any other node in the network.

Estimating overlap probabilities: We next estimate the overlap probabilities

O(i, j), which depends on whether i and j can carrier sense each other. Our model

has two salient features: (i) it supports both symmetric and asymmetric deferral

(e.g., node i defers to node j but not vice versa), and (ii) it handles non-binary

deferral (e.g., node i sometimes defers to j and sometimes does not).

To provide both features, our modeling strategy is to divide time into regions

to which one of the following four cases applies:

• Case 1: i and j can both carrier sense each other;

• Case 2: neither i nor j can carrier sense each other;

• Case 3: i can carrier sense j but j cannot carrier sense i; and

• Case 4: i cannot carrier sense j but j can carrier sense i.

Let Qc(i, j) be the probability for Case c to occur. Let Oc(i, j) be the prob-

ability for a transmission of i to overlap with any transmission of j under Case c.

We then have:

O(i, j) =
4∑
c=1

(Qc(i, j)×Oc(i, j)). (3.7)

Assuming whether i can carrier sense j is independent of whether j can
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carrier sense i, we derive Qc(i, j) as follows.

Q1(i, j) = Dij ×Dji,

Q2(i, j) = (1−Dij)× (1−Dji),

Q3(i, j) = Dij × (1−Dji),

Q4(i, j) = (1−Dij)×Dji.

In Section 3.2.3.3, we show Oc(i, j) can be computed as follows.

O1(i, j) = τj,

O2(i, j) = 1− (1− θj) exp [−Txmit/IPDj] ,

O3(i, j) = 1− exp [−Txmit/IPDj] ,

O4(i, j) =
θj

θj + (1− θj) exp [−Txmit/IPDj]
,

where θj =
Tj

rate
× EP+EH

EP
is the fraction of time j is transmitting (either payload

or header) and IPDj
4
=

1−θj

θj
× Txmit is j’s expected inter-packet delay.

3.2.3.3 Deriving Overlap Probabilities

In this section, we derive the overlap probabilities Oc(i, j) (c = 1, 2, 3, 4)

used in Eq. (3.7). Let θj =
Tj

rate
× EP+EH

EP
be the fraction of time j is transmitting

(either payload or header) and IPDj
4
=

1−θj

θj
× Txmit be the expected inter-packet

delay of j. We assume that j’s inter-packet delay has an exponential distribution.
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Case 1: i and j can both carrier sense each other. In this case, i’s transmission

overlaps with j’s transmission if and only if they both start transmitting within

the same idle slot. At a given idle slot, the probability for both i and j to start

transmitting is simply τi × τj . Therefore, we have: O1(i, j) =
τi×τj
τi

= τj.

Case 2: neither i nor j can carrier sense each other. In this case, in order

for i’s transmission not to overlap with any of j’s transmissions, two conditions

must hold: (C1) i’s transmission must start when j is not transmitting anything,

and (C2) j’s next transmission starts at least Txmit after i’s transmission. Therefore,

O1(i, j) = 1− prob{C1 ∧ C2} = 1− prob{C1} · prob{C2|C1}.

The probability for C1 to hold is simply prob{C1} = (1 − θj). To derive

prob{C2|C1}, we assume the inter-packet delay of j has an exponential distribution

with mean equals IPDj . The memoryless property of exponential distribution en-

sures that if j is not transmitting when i’s transmission starts, the delay between the

start time of i’s current transmission and the start time of j’s next transmission also

has an exponential distribution with the same mean IPDj . The probability for this

delay to exceed Txmit is simply prob{C2|C1} = exp [−Txmit/IPDj]. Therefore,

we have

O2(i, j) = 1− prob{C1} · prob{C2|C1}

= 1− (1− θj) exp [−Txmit/IPDj] .

Case 3: i can carrier sense j but j cannot carrier sense i. In this case, i always

starts transmission when j is idle. In order for i’s transmission not to overlap with

j’s transmission, the delay between the start time of i’s transmission and the start
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time of j’s next transmission must exceed Txmit. As derived in Case 2, the proba-

bility for this to occur is simply prob{C2|C1} = exp [−Txmit/IPDj]. Therefore,

we have:

O3(i, j) = 1− exp [−Txmit/IPDj] .

Case 4: i cannot carrier sense j but j can carrier sense i. There are three possi-

ble relative positions of i and j’s transmissions: (S1) i transmits in the middle of j’s

transmission, (S2) i starts and finishes its transmission during j’s idle time, and (S3)

i starts transmitting when j is idle but does not finish before j starts transmitting.

Since j can carrier sense i, (S3) is not possible. So we only need to consider (S1)

and (S2). (S1) causes i’s transmission to overlap with j’s transmission, whereas

(S2) does not result in any overlapping transmission.

It is evident that prob{S1} = θj . Meanwhile, note that prob{S2} is identical

to prob{C1∧C2} in Case 2. So we have prob{S2} = (1−θj) exp [−Txmit/IPDj].

Therefore, we have:

O4(i, j) =
prob{S1}

prob{S1}+ prob{S2}

=
θj

θj + (1− θj) exp [−Txmit/IPDj]
.

3.2.3.4 Deriving Expected VLS Duration

In this section, we present the details on how to derive V LSi from given

traffic rates {Tj} according to Eq. (3.6).
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Let

fi(x)
4
= x− Tslot − (Txmit + TDIFS − Tslot) ∗[

1−
∏
j

(
1− Dij ∗ Tj ∗ x

EP

)]
(3.8)

According to Eq. (3.6), we have fi(V LSi) = 0. That is, x = V LSi is a root

of fi(x).

Moreover, we need x = V LSi ∈
[
0, EP

maxj(Dij∗Tj)

]
to make sure that each(

1− Dij∗Tj∗x
EP

)
≥ 0 in Eq. (3.6).

Theorem 1. fi(x) is convex when x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
.

Proof. Clearly, fi(x) is continuously differentiable. Let f ′i(x) be the derivative of

fi(x). We have:

f ′i(x) = 1 − (Txmit + TDIFS − Tslot) ∗∑
k

[
Dik ∗ Tk
EP

∏
j 6=k

(
1− Dij ∗ Tj ∗ x

EP

)]
(3.9)

It is easy to verify that f ′i(x) is monotonically increasing for x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
.

Therefore, fi(x) is convex over interval x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
.

Lemma 1. fi(x) has at most 2 roots for x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
.

Proof. Since f ′i(x) is continuous and monotonically increasing with x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
,

f ′i(x) = 0 has at most one solution. So we only need to consider two cases:
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• Case 1: f ′i(x) 6= 0 for ∀x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
. In this case, f ′i(x) must be

either always positive or always negative (because any change of signs would

immediately imply a root of f ′i(x) due to the continuity of f ′i(x)). As a result,

fi(x) must be monotonic for x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
. Therefore, fi(x) can

have at most one root over interval
(
−∞, EP

maxj(Dij∗Tj)

]
.

• Case 2: ∃x0 ∈
(
−∞, EP

maxj(Dij∗Tj)

]
such that f ′i(x0) = 0. Since f ′i(x) is mono-

tonically increasing, we have f ′i(x) > 0 with x > x0 and f ′i(x) < 0 with

x < x0. By the same reasoning as in Case 1, we know that fi(x) has at most

one root on each side of x0. So fi(x) has at most 2 roots.

Combining Case 1 and Case 2, we complete our proof that fi(x) has at most

2 roots for x ∈
(
−∞, EP

maxj(Dij∗Tj)

]
.

Theorem 2. fi(x) has at most one root for x ∈
[
0, EP

maxj(Dij∗Tj)

]
.

Proof. Since fi(x) is a polynomial, we only need to consider the case when its

degree is at least 2. This implies that there exist at least 2 different j’s such that

DijTj > 0. In this case, it is easy to verify that limx→−∞ fi(x) = +∞. Meanwhile,

we have fi(0) = −Tslot < 0. Since fi(x) is continuous, it has at least one root for

x ∈ (−∞, 0). However, according to Lemma 1, fi(x) has at most 2 roots for x ∈(
−∞, EP

maxj(Dij∗Tj)

]
. Therefore, fi(x) has at most one root for x ∈

[
0, EP

maxj(Dij∗Tj)

]
.

Given Theorem 1 and 2, we can apply any classic univariate root-finding al-

gorithm to numerically compute the root of fi(x) over interval x ∈
[
0, EP

maxj(Dij∗Tj)

]
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.T: traffic rates, Y: information, P: loss rates
1 initialization: T∗ = 0, Y∗ = 0, thruput∗ = 0
2 for k = 1 to KMAX
3 P∗ = estimate loss(T∗)

4 [VLS∗, ∂VLS∗

∂T∗ ] = estimate VLS and partial derivatives(T∗)

5 derive linearized interference constraints in Eq. (3.10) using VLS∗ and ∂VLS∗

∂T∗
6 construct a linear program (LPk) from Figure 3.1 by adding linearized

interference constraints (3.10), and fixing loss rates P = P∗ as constants
7 solve (LPk); let (Topt,Yopt) be the optimal solution
8 α = αmax; succ = false
9 while (α ≥ αmin) and (succ = false) // line search for a better solution

10 T = (1− α)×T∗ + α×Topt

11 feasible = test traffic rates feasibility(T)
12 if (feasible)
13 [thruput,Y] = compute OR thruput from traffic rates(T)
14 if (thruput > thruput∗)
15 thruput∗ = thruput; T∗ = T; Y∗ = Y;
16 succ = true; break
17 end
18 end
19 α = α/2
20 end
21 if (succ = false), break; end
22 end
23 return (thruput∗,T∗,Y∗)

Figure 3.2: Iterative optimization of opportunistic routing.

and let the solution be V LSi (if such a solution exists). In our current implementa-

tion, we use the Matlab built-in function fzero to compute the root V LSi through

bisection search.

3.3 Model-Driven Optimization
3.3.1 Iterative Model-driven Optimization

A key challenge in optimizing opportunistic routing is that the relationships

between {Ti}, {V LSi} and {P (i, j)} are not linear or convex. To address this chal-

lenge, we perform optimization in an iterative fashion, as illustrated in Figure 3.2.

To decouple the non-linear inter-dependency between {Ti}, {V LSi}, and {P (i, j)},
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during each iteration, we perform the following steps:

1. We first fix traffic rates {T (f, i)} to their values {T ∗(f, i)} obtained in the

previous iteration and estimate the loss rates {P ∗(i, j)} as described in Sec-

tion 3.2.3.2.

2. We then numerically compute V LS∗i and partial derivatives ∂V LS∗i
∂T ∗k

from {T ∗j }

according to Eq. (3.6). The key observation we leverage is that when {Tj} are

given, Eq. (3.6) only contains a single variable, i.e., V LSi. We present the

details of this step later in Section 3.3.2.

3. We then approximate the non-linear interference constraints given in Eq. (3.5)

and (3.6) using linear constraints. This can be achieved by computing the first-

order approximation to the R.H.S. of (3.5) as a Taylor expansion at the current

T ∗i and then replacing equality with “≤”. Specifically, we use the following

linearized interference constraints:

Ti
EP
≤ τmax

V LS∗i
− τmax

(V LS∗i )
2

∑
k

∂V LS∗i
∂T ∗k

× (Tk − T ∗k ), (3.10)

where V LS∗i and ∂V LS∗i
∂T ∗k

are computed in step 2.

4. We then treat loss rates P ∗(i, j) as constants in Figure 3.1. We also add the

linearized interference constraints given in Eq. (3.10) to the LP formulation in

Figure 3.1, yielding a linear program (LPk) that can be solved efficiently by LP

solvers like cplex.

5. Since the linearized interference constraints are only an approximation to the

true interference constraints, the optimal solution to (LPk) may be infeasible
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under IEEE 802.11. We therefore perform a line search between the old so-

lution and the optimal solution to (LPk) to find a new set of traffic rates that

are both feasible and improves the total throughput. During the line search, we

need two capabilities: (i) to test whether a set of traffic rates are feasible under

802.11 (line 11 in Figure 3.2), and (ii) to find the maximum total throughput

of opportunistic routing under such traffic rates. The former is performed as

described in Section 3.3.2. The latter can be achieved by treating T (f, i) as

constants while solving the LP in Figure 3.1.

The iterative process continues until it reaches a solution that cannot be fur-

ther improved upon after enough attempts. Since the total throughput will strictly

increase over each iteration, the process is guaranteed to converge. In our experi-

ments, we conservatively limit the maximum number of iterations to 30. Our expe-

rience suggests that typically the iteration stops much earlier.

3.3.2 Technical Details

Our model-driven optimization framework above makes use of the follow-

ing three key capabilities: (i) estimating V LSi from traffic rates {Tj}, (ii) testing the

feasibility of given traffic rates {Tj}, and (iii) computing partial derivatives ∂V LSi

∂Tk
.

Below we present details on how to support these capabilities using our model.

Estimating V LSi from traffic rates {Tj}: To numerically derive V LSi from

given traffic rates {Tj}, let fi(x)
4
= x−Tslot−(Txmit+TDIFS−Tslot)∗

[
1−

∏
j

(
1− Dij∗Tj∗x

EP

)]
.

According to Eq. (3.6), x = V LSi is a root of fi(x). Moreover, we need x ∈[
0, EP

maxj(Dij∗Tj)

]
to ensure 1 − Dij∗Tj∗x

EP
≥ 0 in Eq. (3.6). In Appendix 3.2.3.4, we
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prove that when x ∈
[
0, EP

maxj(Dij∗Tj)

]
, fi(x) is convex (see Theorem 1) and has

at most one root (see Theorem 2). Therefore, we can apply any classic univariate

root-finding algorithm (e.g., Matlab’s fzero function) to numerically compute the

root of fi(x) over interval x ∈
[
0, EP

maxj(Dij∗Tj)

]
and let the solution be V LSi (if a

root exists).

Testing the feasibility of traffic rates {Tj}: To test whether traffic rates {Tj} are

feasible, we first numerically compute V LSi from Eq. (3.6) by finding a root of

fi(x) over x ∈
[
0, EP

maxj(Dij∗Tj)

]
as described above. If no solution is found, or if the

solution V LSi violates Eq. (3.5), then traffic rates {Tj} are infeasible. Otherwise,

{Tj} are feasible.

Computing partial derivatives ∂V LSi

∂Tk
: Eq. (3.6) also allows us to compute the

partial derivatives ∂V LSi

∂Tk
for given traffic rates {Tj}, which allows us to linearize

the non-linear interference constraints (see Section 3.3.1). Specifically, we have

∂V LSi

∂Tk
= Nik

1−Mi
, where Mi

4
= (Txmit + TDIFS − Tslot) × P idle∗

i ×
∑

j
DijTj

EP−DijTjV LSi
,

Nik
4
= (Txmit + TDIFS − Tslot) × P idle∗

i × DikV LSi

EP−DikTkV LSi
, and P idle∗

i
4
=
∏

j(1 −
DijTjV LSi

EP
).

3.4 Protocol Implementation

Overview: We develop a practical opportunistic routing protocol to install the op-

portunistic routes and rate limits computed by our optimization algorithm. It is built

on top of MORE [24], which sits between the IP and 802.11 MAC layers. It differs

from MORE in that it uses interference modeling and optimization to derive rate
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limits and opportunistic routes for a given performance objective. As in MORE, it

leverages intra-flow network coding to carry out the derived routes (i.e., an inter-

mediate forwarder transmits random linear combinations of the packets it receives

for a given flow at the rate derived from our optimization).

As most opportunistic routing protocols, we target medium to large trans-

fers. A traffic source divides data packets into batches, and broadcasts a random

linear combination of the original packets at the rate computed according to Fig-

ure 3.2. Upon receiving encoded packets, an intermediate node generates a ran-

dom linear combination of all the innovative packets it has from the current batch.

Each intermediate node uses the algorithm described in Figure 3.2 to determine

how much traffic it should forward. After receiving enough innovative packets,

the destination extracts the original data packets and sends an end-to-end ACK us-

ing MAC-layer unicast. When the source receives the ACK, it moves to the next

batch. Below we describe several key steps in our protocol: (i) measuring inputs to

seed our interference model, (ii) computing opportunistic routes and rate limits for

each flow, (iii) routing traffic according to the derived sending rates and routes, (iv)

supporting multicast, and (v) enhancing the reliability of end-to-end ACKs.

Measuring inputs: Our optimization procedure requires three inputs: traffic de-

mands, interference measurements, and link loss rates. As reported in [40, 85],

wireless traffic exhibits temporal stability and we can estimate current traffic de-

mands based on previous demands. In our evaluation, we also test the sensitivity

to the demand estimation error. To obtain interference measurements, we conduct

pairwise broadcast measurements [6] and compute the carrier sense probability and
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conditional collision loss probabilities as in [85]. The measurement takes O(n2)

time for an n-node network. In our 21-node testbed, each pair broadcasts for 30

seconds, and the entire measurement takes around 2 hours. To minimize measure-

ment overhead, we conduct pairwise broadcast measurement infrequently, around

once a week. Note that recent works have developed efficient online techniques to

measure interference when a network is in use (e.g., [9, 10]). These techniques can

be incorporated into our implementation to further reduce measurement overhead.

In addition, we compute the inherent wireless link loss rates using more frequent

broadcast measurements conducted at the beginning of each experiment. The latter

was based on more frequent measurement because it is more light-weight (only re-

quiring O(n) measurements) and existing routing protocols, such as [20,24,32], all

use frequent loss measurements for route selection.

Deriving opportunistic routes and rate limits: The optimization procedure to

compute opportunistic routes and rate limits can be done at a central location and

then the optimized results can be distributed to all other nodes. We use this ap-

proach in our implementation. The amount of information to distribute is very

small compared to data traffic: the optimization input is around 2 KB per node and

the optimization output is within a 100 bytes per node. Alternatively, the compu-

tation can also be done in a fully distributed fashion, similar to link-state protocols

like OSPF, where every node implements the same algorithm over the same data to

arrive at the same results. Such computation happens once every several minutes.

For instance, default SNMP polling intervals are typically 5 minutes, so the opti-

mization can rerun when the traffic demands and network topology change. The
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optimization is fairly efficient (e.g., it takes around 3 seconds to optimize routes

and rate limits for 16 flows under the 5× 5 grid topologies used in our simulation).

Enforcing derived routes and rate limits: As mentioned in Section 3.1, op-

portunistic routes are defined by F (f, i, j). Here we compute F (f, i, j) based

on T (f, i) and Y (f, d, i, j) using a credit-based scheme. When node j receives a

packet from node i, it increments its credit, which denotes how many packets j can

transmit. If its credit is at least 1, j generates and transmits a random linear com-

bination of the packets from the current batch buffered locally, and decrements the

credit by 1. This process repeats until the credit goes below 1. The credit computa-

tion in our protocol differs from MORE [24] in two main aspects. First, our protocol

computes credit to ensure the traffic and information sending rates conform to the

derived T and Y . Second, unlike MORE, which treats all transmissions equally if

coming from nodes with larger ETX to the destination, our protocol differentiates

transmissions coming from different neighbors as follows. Upon receiving a packet

from i, j increments its credit by C × R, where C reflects the fraction of useful

information contained in each packet received from i and R reflects the amount of

redundancy j should include to compensate for loss to its neighbors. Specifically,

we have C = Y (f,d,i,j)
T (f,i)(1−P (i,j))

, and R = T (f,j)P
k Y (f,d,j,k)

. For example, when j receives a

packet from a downstream node i, C = 0 to prevent j from sending non-innovative

packets; when receiving a packet from an upstream node i, j updates its credit ac-

cording to how much new information is involved in the packet and its loss rate to

its forwarders.

Supporting multicast extension: Our previous description applies to the uni-
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cast case. A few modifications are required to support multicast. First, since a

single packet carries a different amount of information for different destinations

in the same multicast group, a node j increments its credit by C × R, where

C = maxd Y (f,d,i,j)
T (f,i)(1−P (i,j))

and R = T (f,j)P
k maxd Y (f,d,j,k)

. Second, when some destinations re-

ceive enough innovative packets, the encoded packets from the current batch should

only be delivered to those who have not received all packets. To adapt to the changes

in the set of destinations that need the packets, we dynamically re-adjust credit in-

crement based on the remaining receivers who have not finished.

Enhancing ACK reliability: The destination sends an end-to-end ACK to the

source upon receiving enough innovative packets for decoding so that the source

can move on to the next batch. To ensure the reliability of ACKs, we keep retrans-

mitting ACKs until they are received. To expedite ACK transmissions, ACKs do

not perform binary backoff so that they have higher priority over retransmitted data.

For fair comparison, we apply the same optimizations to MORE.

3.5 Evaluation Methodology

We evaluate our approach using extensive simulation and testbed experi-

ments. Our evaluation consists of four parts. First, we compare the fidelity of the

conflict-graph (CG) based model and our new model by quantifying their under-

prediction and over-prediction errors. We use a conservative CG model, which

considers two broadcast transmissions to interfere if any one of their receivers is

interfered by the other transmission.
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Second, we compare the performance of our opportunistic routing proto-

col using either the conflict-graph-based model or the new broadcast interference

model, with the following existing routing protocols: (1) shortest-path routing using

the ETX routing metric, which minimizes the total number of expected transmis-

sions from a source to its destination [32], (2) shortest-path routing with rate limit

optimization as developed in [85], and (3) MORE, a state-of-art opportunistic rout-

ing protocol.

We compare total network throughput under 1–16 simultaneous flows. We

also compare in terms of the proportional fairness metric [74], which is defined

as:
∑

f∈Flows logG(f), where G(f) is flow f ’s throughput. This metric strikes a

balance between increasing network throughput and maintaining fairness among

the flows. Higher values are more desirable. Unless otherwise noted, each flow

sends saturated CBR traffic.

Third, we evaluate the multicast performance of one multicast group with a

varying group size, and measure the average throughput of the bottleneck receiver.

As in [24], we extend the shortest path routing to support multicast by generating

a multicast tree as a union of shortest paths towards all destinations and sending

one copy of traffic along the links that are shared by multiple destinations. It saves

the traffic on shared point-to-point links as in wire-line multicast routing but does

not leverage the broadcast nature of wireless links (e.g., a node still needs to send

traffic separately to reach each of its next hops). Shortest path with rate limit [85]

takes a routing matrix R as part of the input, where Rid is the fraction of flow d that

traverses link i. To support multicast, we derive a multicast routing tree R, where
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Rig = 1 if link i appears in multicast group g’s routing tree.

Fourth, we evaluate the sensitivity of our protocol against (i) errors in the

input traffic demands, (ii) unknown external interference, and (iii) errors in link loss

estimation.

For simulation, we implement all the protocols in Qualnet 3.9.5 [114]. For

testbed experiments, we use the shortest path routing and MORE implementations

publicly available [102]. In particular, the shortest path routing is the Click im-

plementation released as part of MORE source code. We calculate ETX according

to [32] and configure the link weight accordingly. The shortest path with rate limit-

ing is based on the shortest path code but the rate limit of each flow is computed us-

ing the algorithm in [85]. We extend MORE to implement our protocol as described

in Section 3.4. Both MORE and our protocol use 64 packets as the batch size for

network coding. All these routing protocols are implemented using Click [30] and

the MadWiFi driver [94] in the testbed.

Qualnet simulation: In simulation, we use 802.11a with a fixed MAC rate of 6

Mbps. The communication range is 230 meters, and interference range is 253 me-

ters. These are the default values in Qualnet under transmission power of 10dB,

and we use them in the conflict-graph model to determine if two nodes interfere.

As in [85], we seed the new interference model by having two senders broadcast si-

multaneously and measuring the resulting sending rates and receiving rates. Unless

noted otherwise, we use saturated UDP traffic with 1024-byte payloads.

For each scenario, we conduct 20 random trials. In each trial, flow sources
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and destinations are picked randomly and the simulation time is 20 seconds. We

extend Qualnet to generate directional inherent packet losses, which are uniformly

distributed between 0 and 90%. We consider two types of topologies: 5 × 5 grid

and 25-node random topologies, each occupying a 750× 750 m2 area.

Testbed experiments: Our testbed consists of 21 nodes located on two floors in-

side an office building. Each node runs Linux and is equipped with a NetGear

WAG511 NIC. Unless otherwise specified, we use 802.11a to minimize interfer-

ence with campus wireless LAN traffic, which uses 802.11g. This allows us to

evaluate in a controlled environment. We use 20 mW transmission power and 6

Mbps transmission rate so that the network paths are up to 7 hops. Among the

node pairs that have connectivity, 47.8% of them have links with loss ≤ 20%. All

the routing protocols require estimation of link loss rates, which are measured by

having one sender broadcast at a time and the other nodes measure the receiving

rates. The loss measurements were collected before the experiments. In addition,

our protocol and shortest path with rate limiting require interference measurement,

which we collected once per week. As in simulation, we conduct 20 random trials

for each scenario. Each trial lasts one minute. Other settings are consistent with the

simulation. Finally, in Section 3.8, we further evaluate using 802.11b, which com-

petes with campus WLAN traffic, in order to assess the sensitivity against unknown

external interference.
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Figure 3.3: Scatter plots of actual versus estimated throughput in simulation (25-
node random topologies).

3.6 Model Validation

We adopt the evaluation methodology presented in [85] to quantify the ac-

curacy of our model. In particular, to evaluate the over-prediction of our model,

we install the estimated throughput to the network to see if it can be satisfied. To

evaluate the under-prediction error, we uniformly scale each flow throughput by the

same factor and check if the scaled demand is achievable. If the scaled demand is

achieved in the network, it indicates that the under-prediction error is at least the

scaling factor. We vary the scaling factor from 1.1, 1.2, 1.5, corresponding to a load

increase of 10%, 20%, and 50%, and vary the number of flows from 1 to 16.

Simulation results: We first evaluate how often the models over-predict. In Fig-

ure 3.3, we plot the estimated throughput versus the actual throughput using the

CG model and our model in 25-node random topologies. For reference, we plot

lines y = x and y = 0.8x. Here, the CG model significantly over-predicts the
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Figure 3.4: CDF of ratios between actual and estimated throughput in simulation
(25-node random topologies).

actual throughput obtained, whereas the actual performance under our model is

mostly within 80% of the estimated throughput. The CG model experiences signif-

icantly higher over-prediction errors since it assumes perfect scheduling, whereas

our model explicitly models the interference between broadcast transmissions in

IEEE 802.11, thereby achieving higher accuracy. Moreover, the amount of over-

estimation by CG heavily depends on the network topology (e.g., whether the net-

work has hidden terminals) and simply scaling down the performance estimated by

CG by a constant factor does not work. Both CG and our models have part of their

over-prediction errors coming from the delay in end-to-end ACKs, during which

time the source keeps retransmitting the current batch. This effect is not modeled.

The use of a larger batch size can reduce the gap between the model estimation and

actual performance at the cost of a larger header size and longer delay.

Next we quantify under-prediction errors. In Figures 3.4(a) and (b), we plot
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Figure 3.5: Scatter plots of actual versus estimated throughput in the testbed.

CDFs of the ratios between actual and estimated throughput in random topologies

for the CG model and our model, respectively. Consistent with the scatter plots,

the CG model mostly over-predicts, and virtually none of the scaled demands are

satisfied. In comparison, using our model with a scale factor of 1, 80% of the runs

have actual throughput within 80% accuracy of the estimation. Increasing the scale

factor to 1.1 causes 65% of the actual throughput to be within 80% accuracy. After

a further increase of the scale factor to 1.2, only 11% of actual throughput falls into

80% accuracy. This indicates that the demands scaled up by 20% can rarely be

satisfied and shows our model has low under-prediction errors.

Testbed results: Next we validate our model and the CG model using testbed ex-

periments. Figures 3.5(a) and (b) show the scatter plots of the CG model and our

model, respectively. Figures 3.6(a) and (b) plot the CDFs of the ratios between

actual and estimated throughput using different scale factors. As in simulation,

the scatter plots from testbed experiments show a good match between actual and
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Figure 3.6: CDF of ratios between actual and estimated throughput in the testbed.

estimated throughput using our model and a significant over-estimation in the CG

model. Scaling the demands by 1.1 leads to only 50% of the demands being satisfied

and scaling the demands by 1.2 leads to only 29% of the demands being satisfied.

These results indicate low over-prediction and under-prediction error. There are

a few points in the testbed results where the actual throughput is higher than the

estimated throughput. These cases arise from loss fluctuation: we use loss mea-

surements to seed our model and derive opportunistic routes and rate limits, but the

actual link loss rates in the experiment improve and support higher throughput.

Summary: The simulation and testbed results demonstrate that our model is accu-

rate. It rarely over-estimates or under-estimates performance by more than 20%. In

comparison, the CG model consistently over-predicts network throughput due to its

assumption of perfect scheduling. These results highlight the importance of model

fidelity on performance predictability.

76



 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16

To
ta

l t
hr

ou
gh

pu
t (

M
bp

s)

Number of Flows

OUR
OUR w/ CG
ETX w/ RL
MORE
ETX w/o RL

(a) 5× 5 grid

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  2  4  6  8  10  12  14  16

To
ta

l t
hr

ou
gh

pu
t (

M
bp

s)

Number of Flows

OUR
OUR w/ CG
ETX w/ RL
MORE
ETX w/o RL

(b) 25-node random topology

Figure 3.7: Total unicast throughput in simulation (25-node random topologies).

3.7 Performance Comparison

In this section, we compare the performance of different routing protocols

using simulation and testbed experiments.
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3.7.1 Simulation Results

Total throughput of unicast flows: Figures 3.7(a) and (b) show the total through-

put for 5 × 5 grid and 25-node random topologies, respectively. The error bars on

the graph show the standard deviation of the sample mean.

We make several observations. First, in all cases our protocol using our

model yields the best performance. It out-performs ETX by 76%-799% in the grid

topology and by 117%-327% in the random topologies. Its gain over ETX with rate

limiting ranges from 57%-99% in the grid topology and 46%-117% in the random

topology. Its gain over MORE increases rapidly with the number of flows, ranging

from 34% (2 flow) to 146% (4 flows) to 501% (16 flows) in the grid topology, and

from 50% (2 flows) to 169% (4 flows) to 311% (16 flows) in random topologies. It

out-performs the one with CG, the second best performing protocol by up to 24%

in the grid topologies and 16% in the random topologies. Its performance bene-

fit comes from three main factors: (i) taking advantage of opportunistic transmis-

sions to cope with lossy wireless links, (ii) using interference-aware rate limiting to

avoid network congestion, and (iii) using interference-aware opportunistic routing

to maximize spatial reuse.

Second, comparing MORE against shortest path rate limiting, we observe

that MORE out-performs the latter under 1 or 2 flows by leveraging opportunistic

transmissions to recover losses. As the number of flows increases, the performance

of MORE degrades and becomes significantly worse than shortest path with rate

limiting due to lack of rate limiting. The impact of rate-limiting on opportunistic

routing is even higher than shortest path routing because opportunistic routing uses
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Figure 3.8: 802.11a multicast throughput in a 5× 5 grid.

broadcast transmissions, which do not have exponential backoff and are more likely

to cause network congestion. Further, congestion on the data path may corrupt end-

to-end ACKs in opportunistic routing and lead to unnecessary retransmissions and

throughput degradation. In contrast, shortest path routing uses unicast transmis-

sions, whose MAC-layer ACKs are given higher priority and hence more reliable.

Multicast flows: We now evaluate the performance of multicast flows. Figure 3.8

shows the throughput of the bottleneck receiver in a multicast group as we vary the

group size from 1 to 5. As in unicast flows, our protocol consistently out-performs

the alternatives. It improves the one with CG by 10%-46%, MORE by 8%-47%,

shortest path rate limiting by 58%-232%, and shortest path by 74%-894%. The

larger performance gain over both versions of shortest path is because our protocol

effectively exploits the broadcast nature of the wireless medium to reduce the num-

ber of transmissions. When sending to multiple neighbors, it can use one broadcast
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Figure 3.9: Total unicast throughput in the testbed.

transmission to reach all the neighbors. In comparison, while shortest path routing

uses a multicast tree to compress the traffic on a shared link, the links from one

sender to different neighbors are considered different and multiple transmissions

are required to reach them. For the same reason, MORE consistently out-performs

both versions of shortest path routing. Our protocol still out-performs the one with

CG and MORE by using a more accurate model to jointly optimize rate limit and

opportunistic routes.
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3.7.2 Testbed Results

Throughput of unicast flows: Figure 3.9(a) shows the total throughput of different

protocols in the testbed, which has up to 7 hops. The relative rankings of the routing

schemes are consistent with the simulation. As before, our protocol yields the best

performance. the links in our testbed tend to be binary: either low loss or close to

no connectivity. Among the node pairs that have network connectivity, 47.8% of

them have loss rate within 20%. So the benefit of opportunistic routing is smaller in

the testbed than in simulation. MORE performs close to shortest path routing, and

significantly worse than shortest path with rate limiting; similarly, the gap between

our protocol and shortest path routing also becomes smaller. These results confirm

the intuition that opportunistic routing is most useful under lossy medium.

To understand how opportunistic routing performs under more lossy wire-

less medium, we conduct another set of experiments where we pick only flows

whose ETX between source and destination is at least 1.25. Figure 3.9(b) sum-

marizes the results. In this case, our protocol out-performs shortest path with rate

limiting by 26%-67%, and out-performs shortest path by 9%-1303%. It provides

similar performance to MORE with 1 flow and up to 1047% improvement over

MORE with 16 flows. Furthermore, MORE also out-performs shortest path routing

by up to 43%. However, its performance is still worse than shortest path with rate

limiting as the number of flows reaches 4 or higher. These results are consistent

with the simulation, and highlight the importance of optimizing rate limiting and

opportunistic routing.

Proportional fairness of unicast flows: Next we consider maximizing propor-

81



-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10

 0  2  4  6  8  10  12  14  16

P
ro

po
rti

on
al

 F
ai

rn
es

s

Number of flows

OUR
OUR w/ CG
ETX w/ RL
MORE
ETX w/o RL

Figure 3.10: Unicast proportional fairness in the testbed.

tional fairness. Since this objective is non-linear, in order to optimize it, we first

approximate it using a piecewise linear, increasing, convex function as follows. We

select s points on log(x), and approximate log(x) using s line segments, each con-

necting two adjacent points. We perform two different point selections and observe

similar performance. In the interest of space, below we present results from only

one selection: x = 0.001, 0.01, 0.1,
√

0.1, 1,
√

10, 10. When a flow’s throughput is

0, its log value is undefined, so we set its throughput to 1 Kbps. Figure 3.10 shows

the proportional fairness as we vary the number of unicast flows in the testbed.

As in simulation, the three routing schemes that support rate limiting significantly

out-perform MORE and shortest path without rate limiting since the latter two can

easily cause starvation. Among those that support rate limit, our protocol performs

the best due to its opportunistic routing and high-fidelity model.

Multicast flows: Finally, we evaluate the performance of multicast in our testbed.
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Figure 3.11: 802.11a multicast throughput in the testbed.

Figure 3.11 shows the throughput of the bottleneck multicast receiver in one mul-

ticast group, where the multicast group size is varied from 2 to 4. Our protocol

performs the best. It out-performs the one with CG by 16%-38%, MORE by 10%-

63%, shortest path with rate limiting by 68%-89%, and shortest path routing by

101%-181%. In addition, by leveraging the broadcast wireless medium, all types of

opportunistic routing, including MORE, out-perform both versions of shortest path

routing. These results suggest opportunistic routing is even more useful to multi-

cast, and the effective optimization of multicast routes and rate limiting continues

to be important.

3.7.3 Summary of Performance

The simulation and testbed results show that our protocol consistently out-

performs the alternatives. By leveraging opportunistic transmissions and effective

route optimization, it significantly out-performs state-of-the-art shortest path rout-
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ing protocols. By using a high fidelity network model to jointly optimize rate limits

and opportunistic routes, it significantly out-performs state-of-the-art opportunistic

routing protocols. These benefits suggest that all the design components in our pro-

tocol, including opportunistic routing, network model, and joint rate limit and route

optimization, are essential and help improve the performance.

3.8 Evaluation of Sensitivity

In this section, we evaluate the sensitivity of various protocols under inac-

curate traffic demands, loss fluctuation and unknown external interference.

3.8.1 Impact of Inaccurate Traffic Demand

Methodology: We first evaluate the performance under inaccurate traffic demand

estimation, since in practice traffic demands fluctuate and may not be known ex-

actly. The actual traffic demands are uniformly distributed between 0 and the maxi-

mum link throughput. To simulate demand estimation error, we inject errors into the

actual demands and feed the salted demands to our optimization framework while

imposing the actual demands to the network for evaluation. The error injected is

uniformly distributed between 0-10%, 0-20%, and 0-50%. To protect against esti-

mation error, our protocol slightly over-provisions by scaling the derived sending

rates from the optimization output by a factor of 1.1.

Simulation: Figure 3.12(a) shows the total throughput versus the number of flows.

We see similar performance across different error ranges. This indicates that our

protocol is fairly robust against demand estimation errors, because for the purpose
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Figure 3.12: Total throughput under inaccurate traffic demand estimates.

of performance optimization, the spatial traffic demand distribution is more impor-

tant than the exact demand values.

Testbed: Figure 3.12(b) shows the performance of our protocol when we feed

inaccurate traffic demands as input to our optimization. As in simulation, it is robust

to the inaccuracy in traffic demand estimation in testbed. Its performance under no

error is close to that under the relative error of 0.5.
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3.8.2 Impact of Unknown External Interference and Loss Fluctuation

3.8.3 Simulation
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Figure 3.13: Simulation results under 2 noise sources with varying on-time in 25-
node 802.11a random topologies.

Methodology: We create external interference by randomly placing two external

noise sources in 25-node random topologies. All protocols compute routes and rate

limits without considering the external noise, and we measure the throughput of

using the derived routes and rate limits under external noise. The noise sources have
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uniformly distributed on and off time, where the average on-time is 0.25 second

and the total simulation time is 20 seconds. We vary the average off-time so that

every noise source is on 10% to 80% of time. During on-time, each noise source

broadcasts 802.11 packets (with 1024-byte payload) as fast as possible.

Model validation: First, we compare actual throughput under external noise versus

estimated throughput derived without considering the noise sources. As shown in

Figure 3.13(a), the accuracy of our protocol degrades gracefully as we increase the

on-time of each noise source. The fractions of runs that achieve within 30% error

are 99% under 10% noise on-time, 76% under 20% noise on-time, and 56% under

30% noise on-time. Moreover, even with 30% noise on-time, it achieves much

higher predictability than the one with CG model under no external noise.

Performance comparison: As shown in Figure 3.13(b), the ranking of different

protocols remains the same across all noise levels. Our protocol consistently out-

performs all other protocols. Even when every noise source is active 80% of time,

it out-performs the one with CG by 18%, shortest path with rate limiting by 75%,

MORE by 209%, and shortest path without rate limiting by 535%. Moreover, the

performance of different protocols degrades smoothly as the on-time of each noise

source increases.

3.8.4 Testbed

Methodology: We also evaluate the sensitivity in an 802.11b testbed consisting of

22 nodes. As before, we randomly select flows in our network. As common prac-

tice, we run the link loss measurements at night, which has low network activity.
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Figure 3.14: Amount of external traffic from the campus network and loss fluctua-
tion in our 802.11b testbed.

Then we run all evaluation during the day. This allows us to evaluate the sensitivity

against unknown external interference and loss fluctuation. In particular, our build-

ing has an active 802.11g campus network, whose traffic directly interferes with

our wireless mesh traffic. We treat traffic from the campus network as unknown

external interference. Figure 3.14(a) plots the CDF of the average campus network

traffic measured by all mesh nodes in promiscuous mode every 30 seconds. The
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Figure 3.15: Scatter plots of actual versus estimated throughput in our 802.11b
testbed under unknown external interference and loss fluctuation.

median and mean are both 15.5 Kbps. Moreover, loss fluctuates from nights to day-

time. Figure 3.14(b) plots a CDF of DeliveryRatio(night)− DeliveryRatio(day)

over all links that have ≥ 5% delivery rates. We observe loss fluctuation, because

during the day time (i) more people sit near mesh nodes and cause more attenuation,

and (ii) more people move around and close/open doors and cause frequent changes

to the RF environment.
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Figure 3.16: Unicast throughput in our 802.11b testbed under unknown external
interference and loss fluctuation.

Model validation: Figure 3.15 shows the scatter plot of actual versus estimated

throughput from the 802.11b testbed. We also plot y = x and y = 0.8x for ref-

erence. Our protocol continues to exhibit high predictability: 78% of runs have

within 20% error.

Performance comparison: As shown in Figure 3.16, our protocol continues to

perform the best. Different from simulation, MORE sometimes performs worse

than shortest path without rate limiting because the network congestion in MORE

is more severe in a dense network like our 802.11b testbed.

3.9 Summary

In this chapter, we present the first protocol that can accurately optimize

the performance of opportunistic routing in IEEE 802.11 networks. Our frame-
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work consists of three key components: (i) a simple yet accurate wireless network

model, (ii) a novel algorithm for optimizing different performance objectives, and

(iii) an opportunistic routing protocol that effectively maps solutions resulted from

our optimization into practical routing configurations. Through testbed implemen-

tation and simulation, we show that the performance of our protocol is close to our

estimation, and is much better than state-of-the-art shortest path routing and oppor-

tunistic routing protocols. Moreover, it is robust against inaccuracy introduced by

a dynamic network and consistently out-performs the existing schemes. To further

enhance the robustness against traffic and topology variations, in the future we plan

to extend the robust traffic engineering techniques developed in the Internet to opti-

mize wireless networks. In particular, a traffic engineering system usually collects

a set of traffic matrices and uses their convex combination to cover the space of

common traffic patterns for optimization. These new demand constraints are com-

pact and can be easily incorporated into our framework. We plan to extend this

technique to cope with both traffic and topology variations in wireless networks.
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Chapter 4

Link Layer

After detailing an optimized opportunistic routing protocol to combat losses

in the Network Layer, we now present a solution to mitigate loss in the Link Layer.

The contents of this chapter are based on work published in [128].

4.1 Introduction

This chapter presents ER, an efficient retransmission mechanism to support

reliable unicast, broadcast, and multicast in WLANs. The design of ER can also

easily be extended to multihop wireless networks. We illustrate the idea of ER

using the following two simple examples.

Consider two clients C1 and C2 associated with an access point (AP). The

AP has two packets to send: p1 destined to C1 and p2 destined to C2. The links

AP − C1 and AP − C2 both have 50% loss rates. Using the traditional unicast

in IEEE 802.11 [1], on average 4 transmissions are required to successfully send

packets to both clients. Due to the broadcast nature of wireless medium, C1 may

lose p1 but receive p2; similarly, C2 may lose p2 but receive p1. Whenever this case

occurs, ER reduces the number of transmissions by letting AP retransmit p1 + p2,

which is p1 xor-ed with p2, instead of sending p1 and p2 separately. Then C1 can
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extract p1 by xoring p2 with p1 + p2, and similarly C2 can extract p2 by xoring p1

with p1 + p2. In this way, the AP reduces the number of transmissions (including

the original transmissions) from 4 to 3 to successfully deliver both packets.

Now consider a multicast example. Since broadcast is a special case of

multicast, in this chapter we consider multicast without loss of generality. Suppose

the AP wants to send both packets p1 and p2 to the clients C1 and C2. If both

clients only receive one packet and the packets they receive are different, then AP

can retransmit p1 + p2 instead of retransmitting them separately, thereby using one

transmission to recover two packet losses.

In both unicast and multicast examples, ER takes advantage of wireless

broadcast medium and minimizes the number of transmissions by effectively com-

bining packets. As we will show later, the coding benefit further increases with the

number of clients and/or the number of packets.

The design of ER is inspired by several recent works on network coding,

in particular, COPE [73]. ER complements the previous work in several impor-

tant ways. First, the existing network coding approaches target multihop wireless

networks and there are no coding opportunities for single hop paths. Instead we

show that the coding benefit also exists in widely-used single-hop WLANs. Sec-

ond, the existing coding schemes, such as COPE, maximize efficiency by coding

the original transmissions destined to different receivers, but relies on MAC-layer

retransmissions to recover lost packets. In comparison, ER improves the efficiency

of MAC-layer retransmissions by reducing the number of retransmissions required

to recover the losses. Therefore ER can be applied to wireless LANs and multihop
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wireless networks to achieve efficient retransmission. When combined with COPE,

it helps achieve high efficiency in both original transmissions and retransmissions

of lost packets. Third, the coding opportunities in the previous work are determined

by traffic demands. For example, coding opportunities arise in COPE when traffic

heading towards different directions meet at the same intermediate router. Instead

the coding opportunities in ER are determined by the loss patterns – more cod-

ing opportunities arise when different receivers lose different sets of packets. So

understanding the coding benefits under realistic packet loss characteristics is an

interesting and open question.

In this chapter, we develop and implement ER to provide reliable unicast,

broadcast, and multicast in WLANs. An important component in the design of ER,

as well as other network coding schemes, such as COPE [73] and broadcast cod-

ing [84], is which set of packets should be coded together to minimize the number

of required transmissions. We formally study the problem, and show it is NP-

hard. We describe several practical heuristics and use empirical evaluation to study

their effectiveness. Our extensive simulation and testbed experiments show that

ER significantly reduces the number of retransmissions compared to the existing

retransmission scheme, which retransmits the lost packets by themselves.

The rest of the chapter is organized as follows. In Section 2.2, we review

the existing work on providing reliable communication in WLANs. In Section 4.2,

we present our approach. We describe our simulation methodology and results in

Section 4.3, and present the implementation and experimental results in Section 4.4.

We conclude in Section 3.9.
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4.2 Our Approach

ER can be applied to single-hop WLANs and multihop wireless networks

in the same way. In the following description, a sender refers to an AP in a wireless

LAN, or refers to a traffic source or an intermediate router in a multihop wireless

network.

4.2.1 Overview

First, we consider unicast transmissions. In ER, a sender maintains two

packet queues: one for new packets and the other for retransmission packets. In

the new packet transmission mode, the sender sends packets from its new packet

queue, following 802.11’s contention mechanism. Since ER is a replacement of the

MAC-layer retransmission in 802.11, the sender disables the default MAC-layer

retransmission by setting the MAC retry count (i.e., the maximum number of re-

transmissions at MAC-layer) to 0. ER retransmits the packet above the MAC-layer

until its receiver acknowledges the packet or the retry count in ER is reached. To

provide the same level of reliability, the retry count in ER is set to the original MAC

retry count.

The receivers periodically send feedback of which packets are received suc-

cessfully. Based on the feedback, the sender puts the packets that require retrans-

missions into the retransmission queue. In the retransmission mode, the sender ex-

amines all the packets in its retransmission queue to determine which sets of packets

to code together in order to minimize the number of retransmissions. The sender

uses MAC-layer unicast to send both new and retransmitted packets, while all the
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other nodes use promiscuous mode monitoring so that they can receive packets des-

tined to other nodes, which is necessary to create coding opportunities. Unicast

is used in this case because its binary exponential backoff can help reduce colli-

sion losses under high load and it also allows the use of RTS/CTS to avoid hidden

terminals (if needed).

ER can be applied to multicast traffic in a similar manner. As in unicast,

the sender also maintains two queues and switches between them for sending new

and retransmitted packets. The receivers report to the sender the set of packets that

they receive, and a packet is retransmitted until all its receivers acknowledge the

packet or the retry count in ER is reached. Multicast packets can be sent either us-

ing MAC-layer multicast or MAC-layer unicast with promiscuous monitoring. Our

implementation uses the latter approach: packets are unicast to one of the receivers

in the multicast group, and the other receivers in the group use promiscuous mode

monitoring to extract their data. We choose this implementation because it unifies

the unicast and multicast implementation and also allows potential use of exponen-

tial backoff and RTS/CTS. However this choice is not fundamental, and ER can

also be built on top of MAC-layer multicast.

Note that ER can be applied to both encrypted and unencrypted data packets.

When encryption (e.g., WPA) is used, the sender xors encrypted packets and adds

ER’s header in plain text to specify which packets are combined, and the receiver

uses the ER’s header information to extract the new packet and then decrypt its

content. Therefore the benefit of ER extends to corporate wireless networks using

WPA.
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Several important design issues should be addressed in order to realize ER.

• First, how should the receivers give timely feedback to the sender without

incurring much overhead?

• Second, when to retransmit data? This question involves two parts: (i) how

should the sender determine that a packet requires a retransmission? (ii) when

the medium is available for the sender to transmit, which packet to send – a

new packet or a lost packet? The answers to these questions affect the retrans-

mission delay, the number of unnecessary retransmissions, and the potential

coding benefit.

• Third, which set of packets should be coded together to minimize the number

of retransmissions?

To address the above issues, ER consists of the following three components:

(i) a light-weight receiver feedback scheme, (ii) a scheduling algorithm to determine

which packets need retransmissions and when to transmit a new or lost packet, and

(iii) a coding algorithm to optimize which set of packets to be coded together.

4.2.2 Receiver Feedback

Our receiver feedback scheme is built on COPE [73], where a node sends

reception reports to inform which set of packets it has recently received. As in

COPE, we use selective/cumulative ACKs to minimize the impact of ACK losses.

Specifically, the report contains two fields: (i) the starting sequence number of
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the out of order ACKs (start), and (ii) a bit-map of out of order ACKs. All the

packets up to start are assumed to be received, and i-th position in the bitmap is

1 if and only if the start + i-th packet is received. Our implementation differs

from COPE in the following ways. First, to increase the reliability of feedback, we

send feedback using MAC-layer unicast, which will automatically retransmit lost

feedback. Second, the length of bitmap increases from 1 byte in COPE to 8 bytes

in ER so that it is more resilient to high ACK losses at a cost of a small increase

in ACK overhead. We find this small cost increase is worthwhile since its benefits

under ACK losses is significant. Third, COPE has separate ACKs and reception

reports, where the former acknowledge the receipt of packets destined to itself and

the latter acknowledge the receipt of packets destined to other nodes; furthermore

these two types of reports are sent in different time scales. For the purpose of ER,

the difference between ACK and reception reports is no longer necessary because

in order to determine which packets to retransmit and how to code them, the sender

needs both ACKs and reception reports. Therefore, our implementation unifies

ACK and reception reports. Finally, when retransmitting a multicast packet, the

sender specifies the nodes to which multicast packets are destined; and only the

nodes that are specified as destinations will send feedback. In this way, we can

reduce the receiver feedback especially when the multicast group is large but only

a small number of nodes need the packet.
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4.2.3 Scheduling Algorithm

Next we need to decide (i) when a packet needs a retransmission and (ii)

when the medium is available for the sender to transmit, which packet should the

sender transmit – a new packet or a lost packet?

if (T is the first RTT measurement)
SRTT = T;
RTTVAR = T/2;
RTO = SRTT + K*RTTVAR;

else
RTTV AR = (1− β)×RTTV AR+ β × |SRTT − T |;
SRTT = (1− α)× SRTT + α× T ;
RTO = SRTT +K ∗RTTV AR;

end

Figure 4.1: Estimation of RTO.

To address the first question, we use a standard approach to estimate retrans-

mission timeout (RTO), similar to TCP. Specifically, for every packet that has not

been retransmitted, a node measures the time difference between when the packet

is transmitted and when the corresponding ACK in ER is received. Let T denote

the measured round-trip time of the current packet. Then the node updates its RTO

based on smoothed RTT and RTT variance as shown in Figure 4.1. RTO is ini-

tialized based on the MAC data rate. Our evaluation uses K = 4, α = 1/8, and

β = 1/4 as in TCP [110].

To answer the second question, we make the following observation. If the

sender retransmits a packet whenever the retransmission queue is non-empty, it

achieves lowest retransmission delay. On the other hand, such aggressive retrans-

mission would reduce or even eliminate coding opportunities. In the extreme, there

is only one packet in the retransmission queue, and the packet has to be sent by
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itself and results in 0 coding gain. To strike a good balance between low delay and

high coding gain, we use the following heuristic: retransmit the packet when the

retransmission queue reaches a certain threshold or the packets in the retransmis-

sion queue timeout. The first condition increases the coding gain, and the second

condition bounds retransmission delay. Our evaluation uses 25 as the threshold for

the retransmission queue, and uses 250 msec as the timeout.

4.2.4 Coding Problem and Algorithms

Another important design issue is how to code packets together to minimize

the number of transmissions. In this section, we first formally study the coding

problem and show that it is NP-hard to solve. Then we describe several practical

coding algorithms.

4.2.5 Problem Specification

First, we introduce some notation. Let N(i) denote the set of nodes that

need packet i, and H(i) denote the set of nodes that have packet i. A sender only

codes packets together if the coded packet can be decoded right after its reception.

This condition is commonly used in existing coding algorithms to simplify decod-

ing algorithms [73, 84]. Under the above condition, two packets i and j can be

coded if and only if N(i) ⊆ H(j) and N(j) ⊆ H(i), which we call coding condi-

tion. Essentially it means that i and j can be coded if and only if any nodes that need

j have i, and any nodes that need i have j. To show the forward direction holds,

i and j can be coded means that any node in N(i) can decode the packet Pi + Pj
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immediately after its reception; since nodes in N(i) do not have Pi, the only way

for decoding to succeed is that N(i) have Pj so that they can xor Pi + Pj with Pj .

Similarly for N(j). To show the reverse direction holds, since N(i) ⊆ H(j), every

node in N(i) has Pj . Then after receiving the coded packet Pi + Pj , it can extract

Pi by xoring Pi + Pj with Pj . Similarly for N(j).

Based on the coding condition, we construct the following coding graph.

Each packet is denoted by a vertex in the coding graph. For any two packets that

can be coded together, we draw an edge between their corresponding vertices. It

is not difficult to see that a transmission can be decoded if and only if the trans-

mission only involves packets corresponding to a clique in the coding graph, where

a clique is a set of vertices such that there is an edge between every pair of the

vertices. This is a simple generalization of the coding condition from 2 packets to

N packets. Therefore the coding problem, i.e., transmitting a given set of packets

using a minimum number of transmissions, is essentially finding a minimum clique

partition [69], which is stated as follows. Given a graph G = (V,E), where V are

vertices and E are edges in G, partition V into a minimum number of disjoint sub-

sets V1, V2, ..., Vk such that the subgraph induced by Vi is a complete graph. Next

we show the coding problem is NP-hard. We prove this by reducing the minimum

clique partition problem, which is known to be NP-hard, to the coding problem.

Given a graphG = (V,E) for a minimum clique partition problem, we con-

struct the coding problem that consists of three types of input: (i) a set of packets,

(ii) for each packet i which clients need it – N(i), and (iii) for each packet i which

clients have it – H(i). For each vertex i in G of the minimum partition problem, we
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create a corresponding packet Pi in the coding problem. Each packet Pi is needed

by a distinct receiver Ri, i.e., N(i) = {Ri}. Based on the coding condition, we

assign H(i) as follows:

H(i) = {Rj|∀j s.t.(i, j) ∈ E}

To show the above assignment of H(i) satisfies the coding condition, we need to

show that (i) any two adjacent nodes i and j satisfyN(i) ⊆ H(j) andN(j) ⊆ H(i),

and (ii) any nodes that satisfy N(i) ⊆ H(j) and N(j) ⊆ H(i) are adjacent. The

former holds because for ∀ (i, j) ∈ E, N(i) = {Ri} ⊆ {Rk|∀k s.t. (k, j) ∈ E} =

H(j), similarly for N(j) ⊆ H(i). The latter holds because for ∀N(i) = {Ri} ⊆

H(j) = {Rk|∀k s.t. (k, j) ∈ E}, we have (i, j) ∈ E. Therefore with the above

construction, finding a minimum clique partition is essentially finding the optimal

solution to the coding problem. Hence the coding problem is NP-hard.

4.2.6 Coding Algorithms

We describe three practical heuristics to solve the coding problem. Given

the NP-hard nature of the problem, these heuristics are not guaranteed to yield

optimal results. However as we will show in Section 4.3 and Section 4.4, they

work well in practice. In addition, we also present an exhaustive search algorithm.

While the algorithm is guaranteed to give an optimal solution, it is computational

very expensive and can only run on small-sized problems. So it just serves as an

interesting baseline comparison.

Sort by time: The heuristic described in COPE [73] can be directly applied here.

This heuristic is greedy in nature. Packets are sorted according to their arrival time
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with the first packet being the one that arrives the earliest. Every time the sender

starts with the first packet in the queue, and iteratively combines with subsequent

packets in the queue as long as the combined packet can be decoded (i.e., all the

receivers of the combined packet already have all but one packets in the combined

packet).

Sort by utility: We find the order in which packets are examined for potential cod-

ing is important. The previous heuristic codes the packet in the order of their arrival

time. In the sort-by-utility heuristic, each packet is assigned a utility, defined as the

number of receivers that need the packet. Intuitively, the packet that is required by

more receivers is more important, and should be transmitted earlier. Therefore we

examine the packet in the non-increasing order of utility and using arrival time for

tie-break. Specifically, the sender starts with the packet having the highest utility,

and iteratively codes subsequent packets as long as the combined packet can be de-

coded. Note that this algorithm is useful for broadcast and multicast. In unicast,

each packet is needed by one client, and has the same utility of 1. So it is equivalent

to the sort-by-time heuristic under unicast.

Maximum clique: As shown in Section 4.2.5, the coding problem can be cast

as finding a minimum clique partition in a coding graph. Therefore another ap-

proach is to employ heuristics for minimum clique partition. One of the commonly

used heuristics to minimum clique partition is to first find a maximum clique in the

graph; then remove the clique from the graph and find another maximum clique,

and iterate. Note that the maximum clique problem itself is NP-hard, but has a

simple heuristic, which starts with the vertex of highest degree and iteratively adds
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additional vertices to the clique as long as they maintain the clique property – there

is an edge between every pair of vertices in a clique.

Exhaustive search: We develop an exhaustive search algorithm to minimize the

number of retransmissions. This algorithm is computationally very expensive and

is not for practical use. Instead it serves as an interesting baseline comparison to

quantify the effectiveness of the other coding algorithms.

First, we introduce a few notations. Let M denote the number of packets

required for retransmissions. Let S denote a state, indicating for each packet iwhich

nodes need it and which nodes have it, namely (N(i), H(i)). The exhaustive search

algorithm first generates all possible packet combinations. There are 2M packet

combinations, since each packet either belongs to a packet combination or not. The

goal is to find a smallest number of packet combinations that converts the current

state to the state where every node gets the packets it needs (i.e., N(i) = {} for

every i). To identify a minimum set of packet combinations, we build the following

coding tree. The root of the tree is the current state. Starting from the root, we try

every packet combination. A packet combination is considered useful if it allows

at least one receiver to get a packet it needs if there is no loss. For each useful

packet combination, we add a child node to the root; we also label the edge of to

the child with the packet combination and label the node with the state after all

nodes receive the packet combination. Packets combinations that are not useful are

simply ignored. After going through all the packet combinations, we then repeat the

process – for each of the child nodes we identify the useful packet combinations and

add them to the next level of the tree. The process continues until we reach a state
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where every node gets the packet that it needs. The depth of the tree at that node

is the minimum number of transmissions required (assuming the depth of a root is

0). Moreover, the packet combinations marked along the path from the root to that

node are the set of packets to transmit that minimizes the number of transmissions.

4.3 Simulation Methodology and Results

In this section, we first describe our simulation methodology and then present

performance results.

4.3.1 Simulation Methodology

To evaluate the performance of various retransmission schemes presented

in Section 4.2.6, we simulate the behavior of the algorithms under both unicast and

multicast using a variety of network topologies. In our simulation, we generate

network topologies consisting of a sender and a varying number of receivers with

varying loss rates.

We consider both homogeneous and heterogeneous loss rate assignments

between a sender and each of its receivers. In homogeneous cases, the loss rates

between the sender and all its receivers are the same, and are varied from 10% to

90%. In heterogeneous loss cases, we assign the loss rates between the sender and

its receivers randomly chosen between 0 and an upperbound, where the upperbound

is varied from 10% to 90%. Therefore some receivers may see loss rate as low as 0,

while other receivers may see loss rates close to the upperbound. For both homo-

geneous and heterogeneous cases, we generate losses using Bernoulli and Gilbert
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models. In the Bernoulli model, each packet is dropped with a fixed probability de-

termined by the loss rate of the link. In the Gilbert model, the link moves between

a good state and a bad state, where no packets are dropped at the good state and

all packets are dropped at the bad state. Following [104, 108], we use 35% as the

probability of remaining in the bad state. The other state-transition probabilities are

determined to match the average loss rate with the loss rate assigned to the link.

The high-level simulation evaluates a simplified scheduling algorithm, where

a sender sends a constant-sized batch of packets at a time before starting retransmis-

sions. Unless otherwise specified, the batch size is 20. In addition, we also evaluate

the impact of varying batch sizes. Note that the batch-based scheduling tries to

approximate the effect of the scheduling algorithm presented in Section 4.2.3. The

simulation does not directly evaluate the latter scheduling, because it requires mod-

eling timing dynamics, which the high-level simulation does not model. The testbed

evaluation will directly evaluate the scheduling algorithm in Section 4.2.3.

We use retransmission ratio to quantify the performance of different re-

transmission schemes. The retransmission ratio is defined as the total number of

retransmissions using the current scheme divided by the total number of retrans-

missions using a basic retransmission scheme, which retransmits each lost packet

by itself without coding and corresponds to the retransmission scheme in IEEE

802.11. A lower retransmission ratio indicates fewer retransmissions, and hence

is preferred. We calculate the retransmission ratio for every 200 new packets that

sender sends to each of the clients. Then we compute the average and standard

deviation of retransmission ratios over 10 runs. Under all cases, the standard devi-
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ation of retransmission ratios is low – typically around 0.02 and no more than 0.08

over all the runs. So in the interest of space and clarity, we only present the average

retransmission ratios in the following evaluation results.

To ensure the same level of reliability, all retransmission schemes use an un-

limited number of retransmissions so that they all achieve 100% delivery rate. Our

results of bounded retransmissions are qualitatively similar. The only difference

is that under extremely high loss rates (e.g., 90%), the retransmission ratio under

bounded retry count approaches 1 because the numbers of retransmissions under

both the basic and coding algorithms are determined by the retry count. In such

cases, the coding based retransmission schemes deliver more packets successfully.

Therefore in the interest of brevity, we will focus on the performance of unbounded

retry count in this section.

4.3.2 Simulation Results

First we present the simulation results of multicast by varying the number

of receivers, loss rates, and batch sizes. Then we present the unicast performance

results.

4.3.3 Multicast Results under Homogeneous Loss Rates

Varying the number of receivers: Figure 4.2 and Figure 4.3 show retransmission

ratios with a varying number of clients under Bernoulli and Gilbert loss models,

respectively. We make the following observations.

First, in all cases the coding-based retransmissions yield retransmission ra-
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Figure 4.2: Multicast comparison under a varying number of receivers with homo-
geneous Bernoulli losses.

tios below 1. This indicates that the coding-based retransmissions is more efficient

than the basic retransmission. The lowest ratios achieved are around 0.4, reducing

the total number of retransmissions by 60%.
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Figure 4.3: Multicast comparison under a varying number of receivers with homo-
geneous Gilbert losses.

Second, the retransmission ratios decrease with the number of receivers,

which suggests that the benefit of coding-based retransmissions increases with the

number of receivers. This is because a larger number of receivers makes it easier to

find receivers that lose different packets and create coding opportunities.
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Figure 4.4: Multicast with 3 clients under a varying loss rate with homogeneous
Bernoulli losses.
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Figure 4.5: Multicast with 5 clients under a varying loss rate with homogeneous
Bernoulli losses.

Third, comparing the three different coding algorithms, we observe the sort-

by-utility algorithm out-performs the maximum clique, which out-performs the

sort-by-time. Their performance difference is larger under the Gilbert loss model
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than under the Bernoulli loss model. The good performance of the sort-by-utility al-

gorithm is likely because packets lost at many nodes are harder to find other packets

to code with (in the extreme, the packets lost at all nodes have to be retransmitted

by itself); sending them earlier makes it easier to find packets to code with since

there are more candidates to choose from. In addition, sending them earlier helps to

create coding opportunities for future retransmissions as coding opportunities arise

after enough packets are received. The larger benefit under the Gilbert loss model is

likely because utility distribution is more skewed under the Gilbert loss model and

the sort-by-utility algorithm makes a larger difference. In the interest of brevity,

below we present the results under the Bernoulli loss model, and comment on the

the Gilbert results whenever their difference is significant.
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Figure 4.6: Multicast with 10 clients under a varying loss rate with homogeneous
Bernoulli losses.

Varying loss rates: Next we evaluate the performance by varying loss rates. Fig-

ures 4.4, 4.5, and 4.6 summarize the results under 3, 5, and 10 receivers, respec-
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tively. For 3 receivers, we also plot the results of the exhaustive search; the results

of the exhaustive search under a higher number of receivers are not available due to

its high computational complexity. Under 3 receivers, the practical coding schemes

perform almost the same as the exhaustive search, with all curves overlapping with

each other. This further confirms the effectiveness of the coding heuristics. Under

5 and 10 receivers, the retransmission ratios of three coding heuristics are between

0.35 and 0.8, cutting the number of retransmissions by 20% to 65%. The sort-by-

utility continues to perform the best. In all cases, the ratios are lowest under low

packet loss rates because the packets lost at different receivers are more likely to be

different under low loss rates and create more coding opportunities.

Varying batch sizes: We further evaluate the impact of batch sizes. As shown

in Figure 4.7, with an increasing batch size, the retransmission ratio decreases and

coding benefit increases. When the batch size is 5 packets, the coding-based re-

transmission schemes already achieve the ratio below 0.6. When the batch size

increases to 50, the ratios are as low as 0.3. This shows that there is a tradeoff

between packet delay and bandwidth saving. The good news is that only a small

batch (or delay) is needed to achieve significant saving.

4.3.4 Multicast Results under Heterogeneous Losses

So far we consider similar loss rates between the sender and all its receivers.

In the following evaluation, we consider heterogeneous loss rates. We assign the

average loss rate to each client, randomly chosen between 0 and the loss bound. In

this case, the difference between loss rates across different clients is up to the loss
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Figure 4.7: Multicast comparison under a varying batch size with 10 receivers and
20% homogeneous Bernoulli loss rates.

bound.

Varying the number of receivers: Figure 4.8(a) and (b) show the results under

20% and 50% loss bounds, respectively, where the number of receivers varies from

2 to 20. As we can see, the coding-based retransmission schemes significantly out-

perform the basic retransmission, with retransmission ratios ranging between 0.4

and 0.8. However, the difference across different coding algorithms is small under

Bernoulli losses. The difference under the Gilbert loss model (not shown) is larger,

with the same ranking as before and the sort-by-utility out-performing the sort-by-

time by up to 25%.

Varying loss bounds: We further evaluate the heterogeneous cases by varying the

loss bound. Figure 4.9 summarizes the results under 5 and 10 receivers. As the loss

bound increases, loss heterogeneity increases, which increases the retransmission
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Figure 4.8: Multicast comparison under a varying number of receivers with hetero-
geneous Bernoulli losses.

ratio and decreases the coding benefit. This is expected because under higher loss

heterogeneity most of the retransmissions are sent to one or few receivers and such

imbalanced retransmission load makes it hard to find coding opportunities.
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Figure 4.9: Multicast comparison under a varying loss bound with heterogeneous
Bernoulli losses.

4.3.5 Unicast Results under Homogeneous Losses

In the following two sections, we evaluate the performance of unicast re-

transmission schemes under homogeneous and heterogeneous losses. Since the

sort-by-utility and sort-by-time algorithms are equivalent under unicast, we only
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compare the sort-by-time and maximum clique with the basic retransmission.
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Figure 4.10: Unicast comparison under a varying number of receivers with homo-
geneous Bernoulli losses.

Varying the number of receivers: Figure 4.10(a) and (b) show the results under

a varying number of receivers when the loss rate to each receiver is 20% and 50%,

respectively. In both cases, the coding-based schemes achieve retransmission ratios
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between 0.6 and 0.8. As in multicast cases, with an increasing number of receivers,

the retransmission ratio decreases and the coding benefit increases.
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Figure 4.11: Unicast comparison for 3 clients under a varying loss rate with homo-
geneous Bernoulli losses.
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Figure 4.12: Unicast comparison for 5 clients under a varying loss rate with homo-
geneous Bernoulli losses.

Varying loss rates: Figures 4.11, 4.12, and 4.13 show the results under a vary-
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Figure 4.13: Unicast comparison for 10 clients under a varying loss rate with ho-
mogeneous Bernoulli losses.

ing loss rate for 3, 5, and 10 receivers, respectively. Under 3 receivers, the coding

heuristics are compared against the exhaustive search, and they all perform simi-

larly, indicating the effectiveness of the heuristics. Compared with the multicast

performance in Figures 4.4, 4.5, and 4.6, the coding benefit of unicast retransmis-

sions under the corresponding loss rates are smaller. This is because coding gain in

multicast cases arises whenever receivers obtain different sets of packets, whereas

coding in unicast not only requires the above condition but also requires that pack-

ets that the receivers lose are destined to them (i.e., receivers do not care if they

lose packets destined to other nodes). The additional coding constraint reduces the

coding opportunities.

Varying batch sizes: Figure 4.14 shows the result of varying batch size. As the

batch size increases, the retransmission ratio decreases and coding benefit increases.

This is consistent with multicast results, since a larger batch size has more packet
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Figure 4.14: Unicast comparison under a varying batch size with 10 receivers and
20% homogeneous Bernoulli loss rates.

combinations to choose from and increases the coding benefit.

4.3.6 Unicast Results under Heterogeneous Losses

We also evaluate the retransmission schemes under unicast traffic using het-

erogeneous losses.

Varying the number of receivers: First we vary the number of receivers with

the loss bound of either 20% or 50%. As shown in Figure 4.15, in both cases,

the retransmission ratio is between 0.6 and 0.8. As in multicast cases, the lower

retransmission ratios (or higher coding benefit) is achieved under a larger number

of receivers due to more coding opportunities.

Varying loss bounds: We further evaluate the performance by varying the loss

bounds while setting the number of receivers to 5 or 10. Figure 4.16 shows that
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Figure 4.15: Unicast comparison under a varying number of receivers with hetero-
geneous Bernoulli losses.

the retransmission ratio initially decreases and then increases with the loss bound.

The later increase is due to the same reason as in the multicast cases, where under

higher loss bounds most retransmissions are towards one or few receivers and hard

to code them with other packets. The initial decrease is likely because coding uni-
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cast retransmissions requires an additional constraint that different nodes miss their

own packets, and increasing the loss bound initially helps to increase the likelihood

of satisfying this constraint.
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Figure 4.16: Unicast comparison for unicast under a varying loss bound with het-
erogeneous Bernoulli losses.

121



4.3.7 Summary

The simulation results show that coding-based retransmissions are effec-

tive in reducing the number of retransmissions required to recover packet losses.

Their performance benefit increases with the number of receivers and the batch

size. Moreover their performance gain is larger for multicast traffic. Comparing

different coding-based heuristics, the sort-by-utility performs the best.

4.4 Implementation and Testbed Experiments

In addition to high-level simulation, we also implement different retransmis-

sion mechanisms in a wireless testbed. Testbed experiments are valuable because

they allow us to evaluate the ER protocol under realistic scenarios. In this section,

we first describe our testbed implementation and evaluation methodology, and then

present the performance results.

4.4.1 Implementation

Our implementation is built on the COPE source code [31], which performs

network coding at intermediate nodes in multihop wireless networks. We make the

following modifications to support ER. We modify the receiver feedback scheme in

COPE as described in Section 4.2.2. We implement the scheduling algorithm de-

scribed in Section 4.2.3 to determine whether a packet needs a retransmission and

when a retransmission should be sent. In addition, we disable MAC-layer retrans-

missions used in COPE. Instead, we implement two retransmission mechanisms

above the MAC-layer: (i) the basic retransmission, which keeps sending a lost
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packet until all the intended receivers acknowledge it or the maximum retry count is

reached, and (ii) the coding-based retransmission using the sorted by time heuristic.

The maximum retry count is 7 in both basic retransmission and the coding-based

retransmission to achieve similar level of reliability, and 7 is commonly used retry

count in IEEE 802.11. We plan to evaluate the performance of other coding heuris-

tics as part of our future work.

4.4.2 Experiment Methodology

We set up a wireless testbed that consists of 7 DELL Dimension 1100 PCs.

The testbed spans one floor of an office building. Each machine has a 2.66 GHz

Intel Celeron D Processor, and runs Fedora Core 4 Linux. Each is equipped with

802.11 a/b/g NetGear WAG511 using MadWiFi. RTS/CTS is disabled as in the

default setting. Our experiments use 802.11b. To avoid interference with resident

wireless networks, we run our experiments during nights and weekends. We use 1

AP as a sender, and use up to 6 clients as receivers. The loss rates between the AP

and clients are generated in a controlled manner to evaluate the performance under

various loss scenarios. We impose a specific loss rate on each wireless link by arti-

ficially dropping traffic at the receivers, and the dropped packets are not acknowl-

edged by the receiver’s feedback in ER. Unless otherwise specified, the packets are

dropped using the Bernoulli loss model and all clients experience similar loss rates.

For each scenario (i.e., a given number of receivers and loss rate), we run seven

times, where each time we obtain the retransmission ratio (defined in Section 4.3.1)

by letting the AP send 1000 packets. We then plot retransmission ratios using er-
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rorbars, where the center of an errorbar corresponds to the mean and the length

of the errorbar is twice the standard deviation over seven runs. In addition, we

compare the total throughput of ER and the basic retransmission by running a 30-

second UDP transfer, and report throughput ratio, defined as the ratio of the ER’s

throughput against that of the basic retransmission scheme. A higher throughput

ratio indicates a larger performance gain from ER.

4.4.3 Experiment Results

4.4.3.1 Multicast Evaluation
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Figure 4.17: Multicast experiment results under a varying loss rate.

We first evaluate the multicast performance of ER by varying the loss rates.

Figure 4.17 summarizes the results under 2 and 5 clients. The retransmission ratio

is between 0.7 – 0.8 for 2 receivers, and between 0.4 – 0.7 for 5 receivers. These

results are consistent with the simulation results, indicating that the benefit of ER

extends to real wireless networks.
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Figure 4.18: Multicast experiment results under a varying number of clients.

We further evaluate the performance using a varying number of receivers

while keeping the loss rate to each client around 50%. As shown in Figure 4.18, the

retransmission ratio decreases from 0.7 to 0.5 as the number of receivers varies from

2 to 6. This shows that the benefit of ER increases with the number of receivers,

which is consistent to the simulation results.

Finally we compare the throughput of ER and basic retransmission by vary-

ing the loss rate to each client. As shown in Figure 4.19, the throughput gain from

ER can be quite significant: up to 21% gain for 2 clients, and up to 50% gain for 5

clients. Moreover, the throughput gain tends to increase with loss rate, because ER

improves the efficiency of retransmission, which is more important under high loss

rates.
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Figure 4.19: Compare throughput against the basic scheme for multicast under a
varying loss rate.

4.4.3.2 Unicast Evaluation

Next we evaluate the unicast performance of ER. Figure 4.20 shows that the

retransmission ratios are between 0.6 and 0.8 as the loss rate varies from 0.1 to 0.8.

The retransmission ratio is lower under 5 clients than under 2 clients, as we would

expect.

To further quantify how the loss patterns affect the coding benefit, we im-

pose a different loss characteristic – only packets destined to the receivers are

dropped according to the specified loss rate, while all the other packets incur no

artificial losses. In this case, the packets lost at different receivers are guaranteed

to be different, and this increases the coding opportunities. Therefore we observe a

lower retransmission ratio, between 0.2 and 0.8, as shown in Figure 4.21.

We also evaluate the performance by varying the number of clients and

126



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

R
et

ra
ns

m
is

si
on

 r
at

io

Loss rate

2 clients
5 clients

Figure 4.20: Compare retransmission mechanisms for unicast under a varying loss
rate.
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Figure 4.21: Compare retransmission mechanisms for unicast under a varying loss
rate, where only packets destined to the receivers are dropped.

keeping the loss rate to each client to be around 0.5. As shown in Figure 4.22, the

retransmission ratio is between 0.6 and 0.7. Moreover, the ratio tends to decrease

with the number of receivers, as we would expect.
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Figure 4.22: Unicast experiment results under a varying number of clients.

Finally we evaluate the performance in terms of throughput ratio by varying

the loss rate to each client. As shown in Figure 4.23, the improvement of ER under

unicast is generally less than under multicast, as we would expect. Nevertheless,

we observe that throughput improves by up to 17% for 2 clients and up to 25% for

5 clients. As in multicast, the performance gain of ER under unicast also increases

with loss rates, since ER helps to reduce more packet retransmissions under higher

loss rates.

4.5 Summary

In this chapter, we develop ER to efficiently support retransmissions in wire-

less networks for both unicast and broadcast/multicast traffic. ER reduces the num-

ber of required transmissions to recover packet losses by coding packets lost at

different receivers. Using simulation and experiments, we show that ER is effective
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Figure 4.23: Compare throughput against the basic scheme for unicast under a
varying loss rate.

over a wide range of scenarios.
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Chapter 5

Physical Layer

After investigating how to reduce loss in the Link Layer, we now turn our

attention to the Physical Layer. We present our case study below.

5.1 Introduction

Motivation: Our motivation is to enable the next generation of wireless applica-

tions. We envision bandwidth-intensive, real-time application systems that need to

rely on a robust wireless link. Specifically, we are interested in supporting a high

throughput link with low latency. There are a variety of potential uses for such a

link. For example, high definition security and video conferencing systems may

depend on real-time information. Commercial products have shown high-definition

video can be streamed over high-throughput channels [100, 125, 152], but we want

to know if we can support these videos in real-time. One potential near-term appli-

cation is high-definition gaming systems. For instance, the Nintendo Wii U [107]

has a wireless controller with a screen to stream video content. If multiple video

streams (say up to four) are included, each with a 20 Mbps bitrate (1080p video

under the H.264/AVC codec [140]), then 80 Mbps total is required to support all

four clients. Furthermore, latency requirements are typically low for these systems,

130



and the given that all nodes may be sharing the same frequency, a delay constraint

of 4 ms could be imposed. 1

Approach: However, under traditional 802.11a/b/g technologies, 80 Mbps is not

achievable. The maximum physical layer data rate is 54 Mbps, but that number is

not even achieved in practice due to MAC-layer overheads. Therefore, we focus our

attention on the 802.11n standard [2]. Products today support 3x3 MIMO commu-

nication with physical-layer bitrates up to 450 Mbps (although the standard allows

for up to 4x4 MIMO and 600 Mbps). The goal of our study is to ask ourselves

if we can achieve high throughput and low latency with today’s 802.11n technolo-

gies. To this end, we present a case study of 802.11n technologies in a living room

environment. Our goal is to see when the signal strength is strong, what bounds

in terms of throughput and latency can 802.11n technologies provide. In our ap-

proach, we examine the performance of the wireless link under a variety of 802.11n

configurations. The 802.11n standard provides much more flexibility than previ-

ous standards. Nodes can support multiple rates, multiple spatial streams, multiple

channel widths, and multiple preamble formats. We examine the performance of

the link while varying these parameters.

Findings: In our experiments, we find that static and stable wireless environments

can come close to meeting both high throughput and low latency demands. How-

ever, when a typical use case is encountered, client mobility, we find that signif-

icant delays can be imposed on wireless traffic. We examine the source of these

11080p60 video displays 60 frames per second, which equates to 16 ms per frame. If there are
four clients, then a new frame is received every 4 ms
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delays and find that they are due to burst errors. Burst errors are compounded in

802.11n technologies because the standard relies on packet aggregation in order to

reduce MAC-layer inefficiencies. When multiple aggregated packets are lost con-

secutively, the latency on the channel can reach up to 40-60 ms. We find that this

happens regardless of the client’s configuration. To that end, we debug the burst

losses and find that a significant number of them are not due to a few corrupt bits

within the payload of the packet. Instead, consecutive aggregate packets are getting

lost.

From this debugging, we then set out to make recommendations to reduce

loss in mobile environments. Our recommendations center around ensuring the

packets do not get completely lost. We outline our recommendations and bench-

mark possible solutions. To further the case study, we examine previous work to

see if it is effective in mitigating the problem.

5.2 Methodology

In this section, we discuss the platform developed to measure the results, the

hardware and client configurations used, and describe how the tests were performed.

Configurations: In order to ensure our results are general, we first employ a variety

of 802.11n chipsets. Each chipset is manufactured by a different vendor. Specif-

ically, we evaluate the Atheros AR9380 chipset, the Quantenna QHS600 solution,

the Marvell Smart Wi-Fi 3x3 450 Mbps Dual-band Access Point and the Broad-

com Intensi-fi 802.11n Dual-Band 3x3 chip. Each chip is capable of 3x3 MIMO
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communication. Our goal is to see if there are any main differences between the

performance of each chip-maker and if there are any problems that are consistent

across chip-makers.

In 802.11n, clients have a variety of configuration options. For instance,

cards can be configured to work with 20/40 Mhz channels, varying levels of packet

aggregation, data rates and spatial streaming. Furthermore, optional 802.11n fea-

tures, like the Greenfield preamble, can be enabled. In our tests, we look to enable

and disable these features and measure the performance under varying client con-

figurations. We want to ensure that potential limitations are not a product of an

incorrect client configuration. For all tests, we disable beam-forming and retrans-

missions, and set the guard interval to the long guard interval.

Platform: While we investigate the performance of a variety of chipsets, we focus

mostly on results obtained from the Atheros and Marvell cards. We find these cards

to be the most stable (for instance, the Quantenna system’s processor was not fast

enough to handle high 3x3 data rates) and the best performers. Our results presented

typically focus on those two chipsets, but the trends that we see were witnessed

across all chipsets. We specifically focus on Atheros because it gave us the most

control over the wireless card. The Atheros chipset was installed in a Linux laptop

with the ath9k open-source driver. The other chipset solutions were provided as

stand-alone boxes, and therefor getting detailed per-packet information from them

proved challenging.

We modified the ath9k driver to support our needs. We provided function-

ality to easily change wireless settings. For instance, on the sender, we allowed dif-
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ferent fixed packet aggregation sizes. The hardware in the Atheros chipset limited

the number of packets in an aggregate to 32. However, our modifications allowed

smaller aggregates to be fixed so we could evaluate different packet sizes. We fur-

ther modified the rate-control algorithm to send at a pre-specified, fixed wireless

rate. By altering the rate, we also dictate how many spatial streams are used for

communication.

The main goal of our work was to measure the throughput and latency of

the wireless link. Measuring the throughput is easy, and we used the iperf open-

source application [60] to measure saturated UDP throughput. We saturate the

medium because we want to quantify the exact behavior of the link. If the medium

isn’t saturated, potential packet losses could occur during the inter-packet arrival

times that aren’t in use. We minimize this effect by constantly sending consecu-

tive packets. To measure the latency, we make several modifications to the driver.

We integrate the driver with iperf-specific sequence numbers. We intercept each

packet before it is sent on the wireless card and replace the iperf sequence num-

ber embedded in each packet with our own counter in the MAC layer. This ensures

that any packets dropped in any buffers between the application layer and MAC

layer will not be counted as wireless losses. Each individual packet is also modified

to contain information about the AMPDU (the aggregated packet it is a part of). We

also add a AMPDU sequence number and the AMPDU size, allowing the receiver

to detect how many AMPDUs were lost and how many packets may have been lost

inside a partially-received AMPDU aggregated packet. During the transfer, we log

all outgoing packets and AMPDUs at the sender and modify the driver to provide
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debug-level output about which packets are lost. We can correlate the two traces to

obtain insights about the loss patterns in the network.

Testing: We conduct tests by having the sender send UDP traffic to the receiver.

The sender sends 1500 byte packets. We place our two nodes in close proximity

(about 3 feet apart) in order to achieve high received signal strength. All tests

have a direct line-of-sight from the sender to the receiver and the sender sends

with maximum transmit power. When we do mobility experiments, we place the

receiver on a cart and walk slowly (about 1 m/s) away from the sender and then

back (at most 15-20 ft away). We repeat this motion for the total length of the

experiment. To ensure there is limited interference, all of our results are run late

and night and during the weekends. There are few people in the office during this

time. We have tried different mobility patterns and have witnessed consistent trends.

Furthermore, we monitor the wireless channels to ensure they aren’t being used and

pick the cleanest channel. We also repeated some experiments late at night in an

underground parking garage (4 stories underground) to confirm the results we saw

were consistent with previous results done in the office.

5.3 Measurements

In this section, we present the measurement results from our case study. We

first briefly measure throughput and then focus on latency.
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Figure 5.1: Measuring Marvell 802.11n throughput with strong signal strength.

5.3.1 Throughput

We measure the throughput in an ideal, static environment. The sender and

receiver are close by, as described in Section 5.2. We send saturated UDP traffic,

with packet sizes of 1500 bytes. We let the driver aggregate as many packets as pos-

sible into its AMPDUs. We plot the performance of the Marvell card in Figure 5.1

for each MCS index from 0 to 23. MCS rate indices 1-7 use one spatial stream,

indices 8-15 use two spatial streams, and indices 16-23 use three spatial streams.

We see that the throughput increases within each spatial stream. We see that there

are quite a few rates that have no troubles supporting high throughput. There are

many streams that provide over 80 Mbps throughput (5-7, 11-14, and 18-23). We

also found that MCS indices higher than 19 were less stable across all the chipsets

(the same applies for MCS 15): the losses they suffered were more sporadic and

inconsistent in nature, and furthermore the Quantenna chipset typically maxed out

at 150 Mbps. Since we are interested in low latencies and controlled experiments,

this thesis will only focus on the most robust and consistent rates.

Next, we look what happens when we impose artificial limits on the AM-

PDU size. We pick five MCS rate indices that perform well (11, 12, 18-20) and plot
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Figure 5.2: Measuring 802.11n throughput when varying aggregate sizes.

the throughput of each for a varying aggregate size. The results are in Figure 5.2.

For MCS11, an aggregate size of 8 represents a small reduction in throughput.

However, for higher rates, the overhead becomes much higher (17% for MCS12,

13% for MCS18, 25% for MCS19 and 31% for MCS20). Without any aggregation

(aggregation size set to 1), the throughput of the slowest rate (MCS11) drops by

57% to only 36 Mbps.

Summary: We can see that 802.11n provides high throughput under high signal

strength environments. There are multiple rates available that can provide high

throughput, so it is important to see the latency provided under each rate. We see

that packet aggregation can have a potentially large impact on performance, and

that some aggregation should be used in order to maintain efficiency.

5.3.2 Latency

In order to effectively support real-time communications, the latency of a

wireless link must be low. In the previous subsection, we saw that packet aggre-

gation is necessary to maintain high MAC efficiency, and thus throughput. In this

section we analyze how wireless losses, coupled with packet aggregation, impact
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the latency on a wireless link. We look at a variety of environments (static versus

mobile) and client configurations.

5.3.2.1 Environment Comparison
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Figure 5.3: Time-series loss for static environment for two different vendors.

Static Nodes: For these tests, we fix the rate to MCS11, which gives a throughput

of around 90 Mbps, and send saturated UDP traffic from the sender to the receiver.

Of all the rates, we found that MCS11 seemed to be the most stable– it provides high

throughput consistently under a variety of chipsets and still allows for additional

receiver diversity since it only utilizes 2 spatial streams. Packet sizes are 1500

bytes and they are typically aggregated into an AMPDU that contains 32 packets.

In MCS11, the maximum aggregate size is 32 and the one aggregated packet takes

roughly 4 ms to transfer. The graphs in Figure 5.3 show a time-series of the loss

of a 60 second transfer for the Atheros and Marvell chipset. Each point represents

a burst loss, or a series of consecutively lost packets. We can see that bursts occur

infrequently, and when they do happen, they typically have a short duration.
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Figure 5.4: Time-series loss for mobile environment for two different vendors.

Mobile Nodes: Next, we make the client nodes mobile. As detailed earlier, we

slowly move the clients (about 1 m/s) away from the sender and back. We repeat

this movement throughout the run. The results are shown in Figure 5.4. We can see

that now the burst losses increase in size and frequency. In the Atheros case, the

worst burst loss is 5 AMPDUs long, which equates to roughly 20 ms of wasted air

time. In the Marvell case, the worst case has up to 10 AMPDUs lost consecutively,

which equates to roughly 40 ms of wasted time. The periods with no loss in the

Atheros graphs represent starting and stopping mobility. We can see that mobility

imposes significant delay on the wireless link. In the worst case, up to 20-40 ms of

channel time is wasted because consecutive AMPDUs are lost.

5.3.2.2 Rate Comparison

Now we only examine the performance of the Atheros chipset because we

were able to modify the driver to give us fine-grained trace collection. The perfor-

mance of the other chipsets are comparable and are omitted for brevity. First we
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need to define a metric that quantifies burstiness. A traditional model to classify

burstiness is the Gilbert-Elliot model [45]. This model is a Markov model with

two states: one for good (a packet is delivered successfully) and the other for bad

(a packet is lost). The state transitions provide a notion of burstiness, especially

the transition from the bad state to the bad state, referred to as P(bad|bad). The

Gilbert-Elliot model from the Atheros mobility results is presented in Figure 5.5.

Here, we can see the effects of a bursty channel: the probability of staying in a bad

channel state is 93%. We also note that overall the loss is low. Typically the loss in

all experiments is no greater than 5%.

Equipped with the Gilbert-Elliot model, we can now present the results of

varying the data rate. The results are in Figure 5.6. Here, we only plot the probabil-

ity of a burst loss– that is the conditional probability of staying in a lossy state when

140



already in a lossy state. We can see that independent of rate, the likelihood to stay

in a lossy state is high. Most rates have a 90% chance of staying in a lossy state.

It is interesting that a few points in this graph have lower probabilities to stay in a

lossy state (MCS 7, 13-14, and 19). This is a result of using less robust modulation

techniques, which increases packet CRC errors. The packet CRC errors tend to be

less bursty in nature because they corrupt only a portion of the data payload, rather

than affecting the whole aggregate. This will be examined in further detail when

we debug the losses in the next section.

Varying the rate also varies the amount of diversity the receiver can use.

The receiver constantly receives on all three of its antennas. For example, when the

sender uses a rate with only 1 stream (say MCS 4), the receiver is using all three

of its antennas to receive the packet. It is interesting to note that even with low

modulation techniques and one stream, we still witness burst losses.
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Figure 5.7: Varying 802.11n preamble modes.

5.3.2.3 Preamble Setting Comparison

802.11n comparison: In 802.11n, there are two preambles. There is an op-

tional Greenfield preamble that is not backwards compatible with 802.11a/b/g, and
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a mandatory Mixed Mode preamble designed to be backwards compatible. We are

interested to see if the preamble makes a difference. Figure 5.7 shows the condi-

tional probability of staying in a bad state for each preamble setting. We see that

there is little difference between the two preambles. Given that the channels we

use for evaluation are clean, the Greenfield preamble should not suffer from any

worse loss than the Mixed Mode preamble. However, the Mixed Mode preamble

is slightly longer and has more overhead, so there is a possibility that its preamble

could be more susceptible to loss. This result seems to indicate the Mixed Mode

preamble isn’t any less robust than the Greenfield preamble.
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Figure 5.8: Time-series loss for mobile environment for 802.11a and 802.11n.

802.11a comparison: We were also interested if the performance of 802.11a would

exhibit similar burst losses. The preamble for 802.11a is simpler and shorter than

the 802.11n Mixed Mode preamble. Furthermore, 802.11a uses 20 Mhz channels,

where as our results up to this point have used 40 Mhz channels. Since 802.11a

provides significantly lower data rates than 802.11n, we were interested in seeing if

the best 802.11a data rate performed in a similar manner to its equivalent 802.11n
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data rate. We set the 802.11a data rate to 54 Mbps and set the 802.11n sender to

20 Mhz and the equivalent modulation rate using 1 spatial stream. The results for

latency are shown in Figure 5.8. We can see that 802.11a suffers from burst errors,

causing latencies on the order of 35 ms.
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Figure 5.9: Varying 802.11n channel width.

5.3.2.4 Channel Width Comparison

Next we vary the channel width under 802.11n. We present the results of the

probability of transitioning back into a bad state from a bad state in Figure 5.9. In

this graph, we fix the modulation rate to MCS11 for the 40 Mhz channel and fix the

modulation rate to MCS3 for the 20 Mhz channel (both MCS values use the same

modulation type and coding rate). The probability for 40 Mhz channels is 0.88 and

the probability for 20 Mhz channels is 0.93. Also note that the results from 802.11n

in Figure 5.8 also use a 20 Mhz channel. These results confirm burstiness regardless

of channel width.
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Figure 5.10: Time-series loss for mobile environment with varying aggregation
size.
5.3.2.5 Aggregate Size Comparison

Finally, we vary the maximum number of packets that can be included in an

aggregate. Figure 5.10 plots the time-series for burst loss under (a) 8 packets in an

aggregate and (b) 1 packet in an aggregate (this effectively disables aggregation).

We can see that under 8 packets in an aggregate, unacceptable latencies are still

encountered. However, when aggregation is disabled, the delay due to burst errors

is a maximum of about 10 ms. This corresponds to 24 packets lost in a row. The

maximum latency decreases because the frame size is smaller, and thus frames are

sent more quickly. Therefore, there is a higher probability to successfully receive a

packet in the midst of a long duration of burst errors. Disabling aggregated frames

is not an acceptable solution, however, because the throughput suffers significantly.

Figure 5.2 shows a 40-75% reduction in throughput when disabling aggregation.
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5.3.2.6 Summary of Measurements

We find that supporting a high-throughput, low latency link encounters a

number of challenges. The 802.11n standard provides high throughput, but can

suffer from increased latencies under a mobile environment. In this section, we

have analyzed a variety of client configurations and found burst errors to occur in

each scenario. Latencies of 20-40 ms are often encountered on the wireless link.

5.4 Loss Analysis

In this section, we try to dig deeper to understand the burst losses in more

detail. We make modifications to the ath9k driver in order to obtain additional

loss information. Specifically, we enable counters in the driver that track status

errors returned by the firmware. There are two counters that we found to be con-

sistently updated during our tests: ATH9K RXERR CRC and ATH9K RXERR PHY.

TheATH9K RXERR CRC error indicates that the packet was received, but some of

the payload is corrupt (and thus the packet does not pass the cyclic redundancy

check). The ATH9K RXERR PHY errors indicate that the packet was detected, but

was unable to be received correctly. The ATH9K RXERR PHY errors can occur for

a variety of reasons: OFDM frequency and timing synchronization errors and in-

correct checksum in the signal field of the preamble that can be caused by false

preamble detection, weak signal, interference, and/or incorrect AGC settings that

can lead to ADC saturation.

We keep track of these counters during our tests. When losses occur, we
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Figure 5.11: Fraction of losses that are a total aggregate loss or a partial packet loss.

can compare the number of losses we’ve observed to the counters in the driver. If

the sum of the two counters is less than the number of packets, then we know that

some packets were not detected at all. We use these three indicators (deemed CRC,

PHY and None) to better understand what is happening under bursty losses.

5.4.1 Partial or Full Losses?

The first question we wanted to ask was what was happening when a string

of packets were lost. Say for instance that we loss 32 packets in a row. Are these

losses 32 packets with CRC errors inside of an aggregate, or is the whole aggregate

lost? We define losses due to CRC errors as partial losses and losses due to the

whole aggregate being lost as full losses. In Figure 5.11, we examine the fraction of

packet losses that are a whole aggregate loss versus the fraction of packet losses that

are partially lost. We see that for rates that use a high modulation type, the partial

packet losses can dominate (MCS rates 5-7, 13-15 and 19 all use 64-QAM). The

rates that do not use 64-QAM typically have much fewer CRC errors. For these

rates, the burst losses are dominated by full aggregate losses; the full aggregate

losses typically account for around 90% of the total losses.
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Figure 5.12: Analysis of the type of loss for MCS 11.

5.4.2 Full Loss Analysis

We are interested to see what is happening during full packet losses. There-

fore, we zoom in on a specific rate, MCS 11, and analyze the type of losses ex-

perienced. In Figure 5.12, we show the fraction of total losses that CRC, PHY and

None account for. There are several things to note from this graph. First, we see a

correspondence between the partial losses in Figure 5.11 and fraction of CRC errors

in this plot. Second, we notice that the fraction of CRC errors is relatively small

compared to the fraction of PHY errors. This implies that the aggregated frames are

not being received at the receiver. The last classification, None, account for only a

small fraction of losses in this test.

Next, we show the same analysis for all of the single stream rates in 802.11n.

The results are presented in Figure 5.13. The channel used in these experiments is

20 Mhz in order to compare against 802.11a, which we will analyze next. The

results show that again, PHY errors dominate. We the modulation type increases, so
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Figure 5.13: Analysis of losses for 802.11n.
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Figure 5.14: Analysis of losses for 802.11a.

does the fraction of CRC errors. Note that the fraction of None errors were quite

small, typically less than 2%, so they were omitted from this graph for clarity.

The last set of full loss analysis is presented in Figure 5.14. Here, we plot

the fraction of losses for each loss type under 802.11a. The x-axis looks at two

different data rates: rate index 4 (24 Mbps) and rate index 7 (54 Mbps). For each

rate index, we examine two different packet sizes, 1500 bytes and 3750 bytes. We

denote rate index as “Ri” in the legend, and packet size as “Ps”. There are a few

things to note here. First, we typically see a small fraction of CRC errors for rate

index 4. As we increase the rate, we see more CRC errors. Furthermore, with the

larger packet size, there are also more CRC errors. The interesting result here is that
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there is a much larger fraction of None errors. Typically about 20% of the errors

are None errors. This is in contrast to the 802.11n results, which had very few

of these errors. This may indicate that the added receiver diversity in 802.11n is

making the receiver more robust towards packet detection.
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Figure 5.15: Probability density function of packets in an aggregate with CRC er-
rors.

5.4.3 Partial Loss Analysis

We were also interested to see what the partial losses look like. Here, an

aggregated frame is being received with some CRC errors. This implies that at least

one packet inside the aggregate is corrupted. We examine all aggregate packets in

the trace that suffer from CRC errors and then plot the probability of each packet

offset within the aggregate being exposed to error. The results are presented in

Figure 5.15. Here, we show the PDF for both Atheros and Marvell chipsets for

MCS11. Other rates provided consistent results. We see that regardless of the

chipset, the most packet losses are concentrated near the end of the aggregate. This

is likely because the channel starts to become stale from the initial channel estimate

during the preamble. We find these results to be consistent with the results presented

in [54].
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5.4.4 Summary

We find that packet lost in burst errors are typically due to full aggregated

frames being lost. Furthermore, when the whole aggregated packet is lost, it is not

because every packet within the aggregate is corrupted. Rather, the aggregate is not

even detected or suffers from an error after detection.

5.5 Recommendations

Given the analysis in the previous section, in this section we present some

recommendations for reducing loss. We use our findings in the previous section

to recommend future research directions. First, we examine a technique to reduce

CRC errors in packets. Next, we focus on the fact that a high number of burst losses

are due to whole aggregates being lost. Therefore, we examine the potential of two

techniques that aim to eliminate the possibility of a whole aggregate getting lost.

Afterwards, we present a short case study to analyze the effectiveness of prior work

to solve our problem.

5.5.1 Addition of a Midamble

Discussion: In Section 5.4.3, we found that CRC errors within an aggregated

packet are typically distributed toward the end of the aggregate. More than likely,

this trend is due to the fact that the channel conditions, which are derived during the

preamble, can become stale at the end of the aggregate [54]. In order to avoid the

channel conditions becoming stale, a mid-amble can be added to the middle of the

aggregated packet. The mid-amble will allow the receiver to re-synchronize with
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the sender. This can help reduce the loss at the end of the packet to rates similarly

seen at the beginning of the packet (so the loss at offset 31 will become the loss at

offset 15 in Figure 5.15).

We analyze the possible benefits of adding a mid-amble via a simple, custom-

built simulator. The simulator models a single wireless link, and uses the measure-

ment data seeded from Figure 5.15 to impose loss on packets. That is, from the

trace we get the probabilities of suffering a CRC error for each packet within an

aggregate, and then use an uniform distribution to determine if a packet suffers a

CRC error. In this analysis, we omit PHY errors. When the mid-amble technique is

used, we reset the probability of suffering a CRC error: for packet x, the probability

of losing the packet to a CRC error is determined by x’s position in the aggregate

if x < 16 and x − 16’s position in the aggregate if x ≥ 16. We set the data rate to

MCS 11, which allows for 32 packets in an aggregate.
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Figure 5.16: Overhead of the midamble scheme compared to the base.

Results: To analyze the scheme, we measure its overhead and the throughput

benefit compared to a scheme without the midamble. The overhead is plotted in

Figure 5.16. For MCS 11, we vary the packet size and plot the fraction of overhead
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Figure 5.17: Throughput improvement of midamble scheme over the base.

the midamble scheme consumes. When the packet size is small, the overhead is

still less than 12%. When the packet size is large (64 Kb is the maximum aggregate

size), the overhead shrinks to less than 1%.

The throughput improvement of the midamble scheme is plotted in Fig-

ure 5.17. For varying overall loss rates, we plot the throughput improvement of the

midamble scheme over the baseline approach (no midamble). As we can see, the

improvement scales linearly with the loss. This is because most of the losses in

the baseline scheme are concentrated near the end of the aggregate. The midamble

technique reduces the losses at the end of the aggregate to be similar to the losses

experienced during the first half of baseline aggregate. Since these losses are very

small, the midamble scheme is effective in increasing the throughput by being more

robust to loss.
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5.5.2 Changing the Preamble

Discussion: In 802.11, the preamble consists of two parts: a short training se-

quence and a long training sequence. The short training sequence is used for signal

detection, automatic gain control, diversity selection, timing synchronization and

coarse frequency offset. From our previous results, we find that packets that are not

detected are the potential cause of the burst losses.

In 802.11, only 12 sub-carriers are used to send the short training sequence [1].

The sub-carriers that are not used are filled with 0 values. The zero padding allows

for the frequency offset to be calculated: more padding allows a larger frequency

offset to be tolerated [149]. The data sent on the 12 sub-carriers consists of a PN se-

quence. Autocorrelation techniques, such as Schmidl and Cox [132], are typically

used to detect the packet by correlating incoming symbols by the PN sequence used

in the preamble. When the autocorrelation values spike, it triggers the packet de-

tection algorithm.

Therefore, a simple approach is to decrease the amount of zero padding in

the preamble. This reduces the amount of frequency offset a radio can tolerate.

A radio that uses this approach would have to be calibrated, potentially increasing

its cost. The benefit is that we can use more sub-carriers to include a longer PN

sequence in the preamble. A larger PN sequence will give larger autocorrelation

spikes, which should help detect packets.

Results: We provide a micro-benchmark to these scheme by implementing two

different preambles in GNU Radio [46]. One preamble consists of a PN sequence
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Figure 5.18: Improvement of the autocorrelation values for a training sequence with
no zero-padding over one with zero-padding in every-other sub-carrier.

with every-other sub-carrier set to a 0. The other preamble consists of a PN se-

quence without any zeros. We manually tune the frequency offset of the radios and

then run a transfer from the sender to the receiver. We vary the transmit power at the

sender, and for each preamble scheme, we log the autocorrelation values that are

used to detect the packet. Figure 5.18 shows the results. It shows the improvement

over the magnitude of the spike for the PN sequence without any zeros over the

magnitude of the spike for the PN sequence that is zero padded. The expected im-

provement would be a factor of two, since each sub-carrier that does not have a zero

can increase the autocorrelation value. In these results, we see the improvement is

close to the expected value.

We are also interested in how changing the PN sequence can help with

packet detection. There are two metrics that are important: the number of false

positives (how many times we detect a packet when one isn’t there) and the num-

ber of false negatives (how many times we do not detect a packet when one is

present). The number of false positives is plotted in Figure 5.19 and the number

of false negatives is plotted in Figure 5.20. The plots are generated over a packet
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Figure 5.19: False Positives.
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Figure 5.20: False Negatives.

trace containing 58 packets. The y-axis shows the number of packets in error (false

positives or negatives) and the x-axis shows a threshold used in packet detection.

Note that Figure 5.19 has a log scale. The default OFDM implementation in GNU

Radio averages the incoming correlation values over every sample with an EWMA

(each new sample is weighted α = 0.001). The ratio of the correlation value to

the average is taken, and when that ratio exceeds a threshold, it triggers a packet

detection.
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In the figures, we can see that for a given threshold, the preamble with no

zero padding performs better in terms of minimizing false positives and false nega-

tives. This allows more flexibility and robustness when designing packet detection

schemes. This also has an impact on performance. False negatives have an obvious

impact on performance: missed preambles equate to a lost packet. False posi-

tives can also have an impact on performance: false positives can hurt performance

when the demodulator tries to lock onto a false preamble, potentially missing a true

preamble in the process [131]. While these occurrences may be low, it is none-

the-less important to minimize their possibility if minimizing loss is at a premium.

Finally, it may look as though certain threshold values well (10-12 in the graphs).

However, under low energy levels (the lowest two levels in Figure 5.18), this thresh-

old is too large, and thus it results in 100% false negative detection (graph omitted

for brevity).

5.5.3 Preamble ACK Scheme

Another scheme that has the potential to help mitigate full aggregate loss

is to have an explicit acknowledgement after the preamble is sent. This scheme is

effective because it works regardless of whether there is a PHY error or if the packet

is simply not detected.

To examine the effectiveness of the approach, we implemented such a scheme

in a simple simulator. We assume that there is separate and independent preamble

loss and data loss. For a packet to be successfully received, it must first successfully

receive the preamble, and then successfully receive the payload. If the preamble is
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not detected, or if the receiver indicates a PHY error, it will not send an acknowl-

edgement for the preamble. Then, the sender will retransmit the preamble until

the receiver successfully receives the preamble. After the preamble is successfully

received, the data will be transmitted.

Our results indicate that the improvement of the preamble acknowledge-

ment scheme is a function of the preamble loss rate. This is because the scheme

that doesn’t acknowledge the preamble will transmit the whole packet when the

preamble is lost. In the preamble acknowledgement scheme, the node will retrans-

mit the preamble. This takes a small portion of time compared to the data packet.

Therefore, not much time is wasted when a preamble is lost. If the preamble ac-

knowledgement scheme suffers from a data loss, it is no worse off than the normal

scheme. Figure 5.21 show the throughput improvement when the data loss proba-

bility is fixed to 0.10 and the preamble loss rate is varied. The loss distribution in

this graph is uniform, but we find the trends still hold for other loss distributions, as
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Figure 5.22: Maximum latency of preamble acknowledgement scheme and legacy
approach.

well as trace-based Gilbert-Elliot model-based runs (see below).

Figure 5.22 shows the maximum latency encountered for each scheme dur-

ing a five minute simulated run. In this graph, the sender uses MCS 11, 40 Mhz

channel width, and Greenfield preambles. The data loss rate is fixed to 0% and we

use the Gilbert-Elliot model to dictate the preamble loss rate. We seed the transition

probabilities from the bad state (P(G|B) and P(B|B)) from our loss measurements

and artificially vary the other transition probabilities (P(B|G) and P(G|G)). The plot

shows the maximum latency experienced as a function of the probability of transi-

tioning into a bad state from a good state (P(B|G)). The reason that the maximum

latency is not monotonically increasing is because the results depend on the ran-

domness of each run. While the latencies in the legacy case are on the order of

20-30 ms, the latencies of the Preamble Acknowledgement scheme are quite low.

In fact, they are typically less than 1 ms. This is because the time to send a preamble

and the time to acknowledge the preamble are very small. Since the data loss is set
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to zero, retransmitting the preamble multiple times will still result in latencies < 1

ms.

5.5.4 Multiple Radio Diversity

In this subsection, we implement the multi-radio diversity (MRD) scheme

described in [98]. Briefly, MRD increases the robustness of a wireless link by em-

ploying multiple radios. The radios combine the packets received into one stream

and export the unified stream to the higher layer. Therefore, in order for a packet to

be successfully received by a node, it only has to be received by at least one of its

radios.
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Figure 5.23: Time-series loss for each radio in MRD case study.

In our tests, we employ two radios at the receiver. We then conduct the

mobility experiments with MCS 11. The results are gathered over 10 minutes of

mobility. We use the same trace to compare MRD versus the single radio case.

That is, we log the burst errors on the primary radio and use these for the single

radio results. We then post-process and combine the trace on the secondary radio

159



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0  100 200 300 400 500 600

B
ur

st
 D

ur
at

io
n 

(m
s)

Time (Sec)

Figure 5.24: Time-series for MRD scheme.

to approximate MRD. The results are shown in Figure 5.23 (time-series for each

radio) and in Figure 5.24 (results for MRD). Here, we can see the single radio

results, as before, suffer from bursts of up to 50 ms. However, these bursts are

greatly reduced in MRD. In fact, the largest burst size is only 2 ms. Over the

whole 10 minute run, there were only 14 instances of loss. This indicates that MRD

is an effective solution to providing low latency, high throughput wireless links.

The reason why MRD is effective is because the loss on the two radios appears

to be mostly independent. For instance, let A be the event a packet is lost on the

first radio, and let B be the event that a packet is lost on the second radio. We

measured P(A) = 0.00103 and P(A|B) = 0.00107. The results were similar for P(B)

and P(B|A), helping confirm that each radio sees independent losses.

The main trade-off, of course, is that MRD requires multiple radios. There-

fore, this approach may prove ineffectual for mobile or constrained clients because

multiple radios require increased energy, size, cost and add additional complexity

on the receiver. Future research directions should aim to reduce these overheads.
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5.5.5 Summary

In this section, we present recommendations for reducing wireless loss.

Techniques for future research directions are proposed based on the findings in

our loss analysis. We provide micro-benchmarks that indicate adding a midamble,

changing the preamble, or providing a preamble acknowledgement have the poten-

tial to reduce loss. Furthermore, we perform a case study that shows previous work

on multi-radio diversity provides an effective solution to the problem if multiple

radios are a practical design constraint.

5.6 Physical Layer Conclusion

In this section we presented a case study for physical layer losses in wireless

networks. We were motivated by the potential for a high throughput, low latency

wireless link, and conducted measurements and analysis to assess its viability. We

found that mobility can impose latencies on the link that may not support real-

time communications. Further analysis of the losses indicated that the burst errors

were typically due to whole aggregated packets being lost. Therefore, we presented

recommendations for mitigating this type of loss.
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Chapter 6

Conclusion

Wireless networks are ubiquitous in today’s world. A wide variety of net-

works are being deployed and the networks are being relied on for more and more

applications. A fundamental problem that all wireless networks must face is loss.

Loss can greatly impact the performance of a network and must be reduced or elim-

inated in order for wireless networks to reach their full potential.

In order to avoid degraded network performance, the goal of this dissertation

is to combat loss at varying network layers in order to allow wireless technologies to

realize their full potential. Attacking loss at each level of the network stack provides

increased robustness: if a coping mechanism fails in one layer, the adjacent lower

layer can be employed to mitigate the problem. For the purposes of this dissertation,

loss is tackled in the Network Layer and below.

In the Network Layer, we develop an accurate model for IEEE 802.11

broadcast transmissions and design a model-driven optimization algorithm to jointly

optimize opportunistic routes and rate limits. Our evaluations show the model is

highly accurate: the predicted performance is within 80% of the achieved perfor-

mance most of the time. Furthermore, we evaluate the effectiveness of our approach

through simulations and a testbed implementation. We find that our protocol per-
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forms significantly better than state-of-the-art shortest path routing and opportunis-

tic routing protocols (e.g., its total throughput is 2-13 times ETX’s throughput and

1.5-10 times MORE’s throughput). Furthermore, we evaluate its performance in

dynamic and uncontrolled environments, and find it is robust against inaccuracy in-

troduced by a dynamic network and consistently out-performs the existing schemes.

In the Link Layer, an Efficient Retransmission (ER) scheme is proposed to

reduce the number of retransmissions by coding together multiple retransmissions

in a single packet. The design a protocol and implement ER in real IEEE 802.11

networks in order to evaluate its performance. We find the approach can effectively

reduce the number of retransmissions in the network and also lead to throughput

gains.

Finally, a case study is discussed in the Physical Layer to investigate loss

patterns of packets in dynamic environments. We impose strict performance re-

quirements on the wireless link, demanding high throughput and low latency. We

first find when these requirements can be met and then investigate problems that

occur under moderate mobility and high signal strength. We measure and analyze

losses under a variety of configurations, and find that burst losses can cause high

delays regardless of the configuration. We debug the burst losses to gain further

insights into their possible causes and find that most burst losses are due to consec-

utive aggregated packet being lost. Based on these findings, we make recommen-

dations to help reduce losses. Future research directions can focus on making the

preamble more robust to mitigate loss, and we conclude by briefly examining the

potential of several promising techniques: adding a preamble acknowledgement to
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avoid losing a whole aggregated packet, changing the preamble structure to make

packet detection more robust, adding a midamble to help reduce CRC errors and

finally utilizing multiple radios to increase receiver robustness.
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