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The fabrication of semiconductor devices is a highly competitive and capital 

intensive industry.  Due to the high costs of building wafer fabrication facilities (fabs), it 

is expected that products should be made efficiently with respect to both time and 

material, and that expensive unit operations (tools) should be utilized as much as 

possible.  The process flow is characterized by frequent machine failures, drifting tool 

states, parallel processing, and reentrant flows.  In addition, the competitive nature of the 

industry requires products to be made quickly and within tight tolerances.  All of these 

factors conspire to make both the scheduling of product flow through the system and the 

control of product quality metrics extremely difficult.  Up to now, much research has 

been done on the two problems separately, but until recently, interactions between the 

two systems, which can sometimes be detrimental to one another, have mostly been 

ignored.  The research contained here seeks to tackle the scheduling problem by utilizing 

objectives based on control system parameters in order that the two systems might 

behave in a more beneficial manner. 
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A non-threaded control system is used that models the multi-tool, multi-product 

process in a state space form, and estimates the states using a Kalman filter.  

Additionally, the process flow is modeled by a discrete event simulation.  The two 

systems are then merged to give a representation of the overall system.  Two control 

system matrices, the estimate error covariance matrix from the Kalman filter and a square 

form of the system observability matrix called the information matrix, are used to 

generate several control-based scheduling algorithms.  These methods are then tested 

against more tradition approaches from the scheduling literature to determine their 

effectiveness on both the basis of how well they maintain the outputs near their targets 

and how well they minimize the cycle time of the products in the system.  The two 

metrics are viewed simultaneously through use of Pareto plots and merits of the various 

scheduling methods are judged on the basis of Pareto optimality for several test cases. 
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Chapter 1 

Introduction 

1.1 BRIEF OVERVIEW OF SEMICONDUCTOR MANUFACTURING 

The fabrication of semiconductor devices is viewed as the most complicated and 

technologically demanding volume manufacturing process in the world [5, 51].  The 

industry is driven by competition on the international level and the desire to continuously 

fulfill Moore’s law.  Moore’s law states that the number of transistors on an integrated 

circuit (IC) doubles every 18 to 24 months [61].  This path of development has led from 

small-scale integration (SSI) in the early 1960’s with fewer than 100 transistors on a chip 

to today’s ultra-large-scale integration (ULSI) with more than a billion transistors on a 

chip (see Table 1.1 for the progression of integration levels) [63].  Maintaining such a 

rapid pace of advancement requires innovations in product design and process technology 

and in management and control of the process environment. 

 

Integration Level Time Period Number of Devices per Chip 
Small-Scale Integration (SSI) 1960–65 2–100 
Medium-Scale Integration (MSI) 1965–75 100–10,000 
Large-Scale Integration (LSI) 1975–85 10,000–500,000 
Very-Large-Scale Integration (VLSI) 1985–95 500,000–5,000,000 
Ultra-Large-Scale Integration (ULSI) 1995–Present > 5,000,000 

Table 1.1: Progression of integration levels from 1960 to Present 

The fabrication of semiconductor devices begins with blank, polished silicon 

wafers, which have increased in diameter from 150 mm in the 1980’s to 200 mm in the 

1990’s to the current standard of 300 mm.  Periodic increases in diameter are necessary to 
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enable the economies of scale required for the maintenance of Moore’s law [62].  The 

fabrication process ends with wafers that have many completed integrated circuits (IC'S), 

also known as die, on their surfaces.  Forming the circuitry of the finished IC's requires 

many hundreds of complex chemical and physical processing steps in which layers of 

metal, semiconductor, and insulator are deposited and patterned.  The unit operations 

necessary to produce these layers include implantation of dopant molecules to alter the 

electrical properties of the of the underlying silicon, deposition of thin films, patterning 

of films using lithography, rapid thermal processing (RTP), etching, and chemical-

mechanical planarization (CMP). 

The aforementioned processes constitute what is known as wafer fabrication.  

Wafer fabrication and testing of the IC's on the completed wafer (i.e., wafer probe) 

comprise the so called front end of the line (FEOL).  The back end of the line (BEOL) 

processes involve cutting the wafers into individual dies and packaging them to make the 

finished products (e.g., microprocessors or memory chips) and then testing these products 

for performance.  Figure 1.1 gives a diagram of the overall manufacturing process [60].  

The interested reader is referred to [1, 2, 5, 9, 12, 52] for more detailed descriptions of 

processing steps and unit operations. 
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Figure 1.1: A simplified diagram of semiconductor manufacturing.  The upper row of 
boxes represents the product flow, while the middle row represents the 
process flow. 

Due to the extremely small size of the features on the surface of the wafers, IC 

devices are particularly sensitive to any particles (e.g., dust) that may settle on their 

surfaces while they are being manufactured.  Therefore, wafers are processed in a “clean 

room” environment where highly efficient filters tightly control air quality and 

employees must wear specialized suits to prevent the introduction of foreign matter from 

their persons.  Building a clean room large enough to house all of the machinery 

necessary for the production of IC’s is expensive. 

Additionally, the tools themselves are quite costly.  For example, a single 

photolithography stepper tool costs around $20 million and with the trend towards sub-50 

nm devices, the price is expected to reach more than $50 million [61].  Building a modern 

wafer fabrication facility, or fab, currently costs billions of dollars [49].  Therefore, it is 

expected that the expensive tools should be utilized as much as possible in order to 

recoup their initial cost rapidly.  Additionally, products should be made as quickly as 

possible and with a very high yield in order to minimize wasted material and keep the 

facility competitive with other manufacturers.  Generating a high percentage of devices 
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with the required functionality (i.e., a high yield) is also difficult due to the miniscule 

dimensions of modern IC's and the complex processes necessary for their production. 

The economic pressures of the industry combined with the inherent difficulty of 

manufacturing such complex parts to extremely tight tolerances, confronts both process 

control and scheduling researchers with a unique and an exceptionally demanding set of 

problems. (Here, the term scheduling is used in the most general sense to represent any 

type of control used to manage the flow of products within the manufacturing 

environment.  A more detailed description of individual scheduling terms will be given in 

the next chapter.) 

1.2 INTERACTIONS BETWEEN PROCESS CONTROL AND SCHEDULING SYSTEMS 

Up to this point in time, large amounts of research have been conducted in the 

area of advanced process control (APC) of semiconductor processes.  See, for example, 

[1, 9, 10, 50, 51, 52] for surveys of the field.   The same can also be said for research in 

the field of scheduling (see [3, 5, 6, 7, 8, 31]).  The responses to a survey of industrial 

practitioners in both areas [8] indicates that the interplay between scheduling and APC 

systems exists, as decisions made by one system can sometimes affect the performance of 

the other, but studies of these interactions and methods for their management have been 

largely ignored. 

However, a few exceptions do exist.  Ruiz et al. [37] use a fault detection system 

(FDS) to supply supplementary information to a rescheduling system for a batch 

chemical production facility.  It is shown that the integration of the FDS with the 

rescheduling system allows for better overall performance of the plant than with the 

scheduling system alone. 

More recently, the interest in extending semiconductor control methods to multi-

product and multi-process systems [38] has led to several studies where control and 
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scheduling are considered together.  Chen et al. examine the effect of wafer sequencing 

on the effectiveness of run-to-run (R2R or RtR) control for a chemical mechanical 

polishing (CMP) tool [39].  Under the assumption that R2R controllers, as negative 

feedback controllers, are effective at rejecting low-frequency disturbances, they define a 

method for arranging incoming wafers in such a way that they mimic a low-frequency 

disturbance.  Rather than letting the wafers enter the system at random, they are ordered 

from thinnest to thickest or vice versa.  Patel [40] uses a dynamic game methodology to 

design a dispatch system which takes into account the effect of dispatching decisions on 

future controller performance for threaded EWMA controllers. 

Anderson and Hanish [133] give a brief review of some dispatch rules used in 

industry and then use data from a CMP process to test two dispatch rules for their ability 

to minimize cycle time (CT).  The first rule is a simple random selection using FIFO; the 

second is a two step rule that uses historical data from the measurement and control 

systems.  The first half of the new rule forms a priority queue by selecting products based 

on their incoming thickness (based on previous measurement information), placing 

wafers with thinner layers to be removed first.  The second half of the dispatch rule 

selects tools based on an SPT (shortest processing time) rule that uses historical data from 

the control system to determine the tool (from those available) with the highest removal 

rate.  It is found at low system volumes, that queues are mostly empty and only the 

second part of the new dispatch is in affect and results in CT reduction of 2–5%.  

Conversely, high volume systems rarely have idle tools so only the first portion of the 

rule is active; here the priority queue yields improvements of up to 50% over the random 

selection.  In medium volume systems, the rule showed little effect.  The paper finishes 

with some general observations on possible interactions between dispatching and control 

including benefits and conflicts. 
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In the thesis by Pasadyn [41] and related papers with Edgar et al. [53, 54, 55], a 

Kalman filter based run-to-run controller for multi-product and multi-machine systems is 

studied.  In the multiple product/process environment, it is found by way of some small 

scale example problems (only 20 samples and one replicate) that the way in which jobs 

and measurements are scheduled can greatly affect the controller performance.  Using the 

trace of the state estimate error covariance matrix as a measure of controller performance, 

several simple, scheduling-related objective functions for the minimization of controller 

error are proposed and studied. 

The approach of Pasadyn is used as a starting point for this research.  The system 

model is developed in a state space form and a Kalman filter is used for state estimation.  

Some adjustments are made to the model and several updating schemes are tested for 

control performance and schedule performance using simulations.  The results from these 

tests are compared to some of the basic methods that are sometimes employed in industry 

and in other academic works.  The objective of the algorithms employed is to alter the 

schedule (hopefully not too far from the optimal schedule) in order to improve the 

controller performance and keep the outputs close to their targets. 
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Chapter 2 

Background and Literature Review 

2.1 SCHEDULING FOR SEMICONDUCTOR MANUFACTURING 

"Scheduling" is often used as a general term in industry to refer to any number of 

different activities that involve the control of material movement throughout the 

manufacturing process.  This type of control actually takes place on several different 

levels, each with their own time scales and scopes.  Figure 2.1 diagrams the various 

levels of "scheduling" activity as they are defined in a pair of industrial surveys [7, 8].  

See Appendix A for concise definitions of the terms used in Figure 2.1. 

 

Figure 2.1: A flow diagram demonstrating the various levels of product flow control. 
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The highest level activity is production planning, which uses plant capacity 

models and market demand forecasts to assess the fab's ability of meet customer orders.  

Here, decisions are made that affect such things as the mix of products, staffing levels, 

and number of tools needed.  Immediately below planning is the order release system, 

which acts as the link between the planning system and the actual shop floor.  The order 

release system is often called the lot release system because it does exactly what this 

name implies: it decides what type of lots to send to manufacturing, how many, and at 

what rate they will be introduced. 

Once the lots reach the shop floor, there are several options for control of their 

movement.  Ideally, a detailed schedule describing the exact movement of all lots in the 

system would be made using mathematical programming methods.  Unfortunately, this is 

usually impossible due to the high complexity of the fabrication setting.  Therefore, 

scheduling is usually done with a time horizon of one shift, one day, or one week and 

serves as a guideline for production over this period.  Scheduling is considered to be 

more global in nature than other lower level methods and takes into account such 

information as planned tool maintenance, product mix changes, tool utilization, queue 

sizes, etc.  The scheduling system may also contain a rescheduling or reactive scheduling 

portion that takes action in response to sudden changes in the system.  When a 

disturbance occurs, a rescheduling algorithm generates an entirely new plan for the fab 

[36] while a reactive scheduler makes necessary alterations to the existing plan [34, 35, 

37]. 

Finally, at the lowest level, the dispatching system handles the movement of 

wafers in real-time.  Typically, a system of rules is established that determines which lot 

in a given tool's queue will be run when that tool becomes available.  These systems will 
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be discussed in more detail later after a description of the manufacturing process from a 

scheduling point of view. 

From the perspective of a single wafer, the production process can be viewed as a 

flow shop [57] where the wafer moves through an ordered series of machines until it 

reaches completion, but this is an oversimplification.  Previously, it was stated that the 

number of layers needed to make a finished device is so large that the total processing 

steps necessary for its completion can reach well into the hundreds.  Also, the tools 

involved in the manufacturing of IC's are incredibly expensive, and floor space within the 

fab is valuable and limited.  Consequently, it is impossible to dedicate a single tool to 

every step of the process for a given product. 

Fortunately, most layers of the devices are similar and can be made through the 

same series of operations.  This results in recirculation of each wafer through the line 

where it visits the same (or same type of) machine multiple times before it is finished.  A 

cyclic process of this type is referred to as reentrant [3, 4].  Additionally, many fabs are 

high mix, i.e., they make many different products, each with their own unique set of 

processing steps and/or tool settings.  Also, fabs have multiple identical tools at each step 

of the process (i.e., parallel processors) to allow for sufficient capacity and to offer a 

degree of redundancy in the event of breakdowns.  Because the semiconductor fab is 

characterized by multiple types of jobs visiting a given number of stations with several 

identical machines in a reentrant fashion, it is sometimes viewed as a flexible job shop 

with recirculation [30, 58].  Alternatively, other researchers view the products as being 

roughly equivalent and consider the fab to be a flexible flow shop with reentrancy [6, 59]. 

Large quantities of process steps and reentrancy are just a few characteristics of 

the semiconductor line that greatly complicate the scheduling task [5, 6].  Others include: 
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1. Multiple equipment types: Some equipment processes one wafer at a time, while 

others process entire lots (usually 25 wafers), and still others can process several 

lots together in a batch.  Additionally, many batch tools do not require the batch 

to be the same size for every run so that finding the "best" batch size is an open 

question.  Some pieces of equipment also have large sequence-dependent setup 

times when changing from processing one type of product to another. 

2. Random machine downtime: Many of the tools used for semiconductor 

production rely on cutting edge technology that is not completely (or even well) 

understood, and the error tolerances for the tiny chip features are very tight.  This 

combination often causes tools to be taken out of service for producing products 

that fall outside of quality specifications.  The time to repair varies widely 

depending on how long it takes plant personnel to troubleshoot the problem (e.g. 

the problem might be fixed by recalibration or it might require replacement of 

worn parts).  Preventive maintenance (PM) is also performed at regular intervals 

based on how long the tool has been in production or how many wafers it has 

processed.  These rules are somewhat arbitrary and another area of research lies in 

determining the best time to perform PM. 

3. Shared facilities: It is not uncommon for a production line to be used for other 

purposes such as development or pilot runs of new products or test and 

qualification lots which are used to by control engineers to gage the current states 

of the tools.  These lots are not accounted for in the planning stage and therefore, 

serve as disruptions to the scheduler [8]. 

4. Demand based due dates: Increasingly, the semiconductor industry has 

transitioned from a make-to-stock environment to a make-to-order environment 

[5, 30].  The desire to reduce inventories and the advent of application-specific 
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integrated circuits (ASIC) has increased the importance of meeting due dates 

established by the production planning entity.  The need to meet due dates greatly 

complicates the scheduling task. 

As mentioned earlier in this section, the complexity of the fab environment and 

the large amounts of uncertainty involved in running the production line make it 

impractical to attempt a detailed optimization of the system for scheduling purposes.  

Also, owing to the uniqueness of the system, scheduling approaches from other industries 

are not easily transferred to semiconductor fabrication [6]. 

In the semiconductor industry, it is more common for manufacturers to focus shop 

floor control efforts on the dispatching system than on higher level, supervisory 

scheduling systems.  As lots move through the fab, they will invariably end up waiting in 

queue for a tool that can perform their next processing step.  When a tool of the correct 

type becomes available, the dispatcher sends the lot with the highest priority to that tool 

for processing.  Industrial surveys [7, 8] indicate that simple, localized rules such as first-

in-first-out (FIFO), as well as more complex, global rules that incorporate due dates, 

starvation avoidance for bottleneck machines, and combinations of two or more rules 

[32], are employed.  Very few of the approaches studied in academia, such as those based 

on rescheduling, robust scheduling [34, 35, 36], and control theory [28, 29], have been 

implemented in industry.  One finding that seems consistent in both industry and 

academia is that the policies implemented by the order release system to the shop floor 

can have a high impact on dispatch system performance [30].  For this reason, order 

release and dispatching are sometimes lumped together into a single procedure referred to 

as workload control [6].  For further reading on fab related scheduling, several review 

papers have been written which explore this area of research [5, 6, 31, and 33]. 
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2.2 RUN-TO-RUN CONTROL FOR SEMICONDUCTOR MANUFACTURING 

While process control practices have been well established for many decades in 

other, more mature businesses such as the chemical, refinery, and aerospace industries, 

they have only come into widespread use in the semiconductor industry over the last 

fifteen to twenty years [52].  Several factors inherent to the unit operations used in the 

semiconductor fabrication have prevented the implementation of many of the established 

control technologies that are used in other industries.  These factors include [9, 10, 11, 

52]: 

1. It is the nature of many of the processes to induce disturbances.  The manner in 

which some tools age can cause a drift disturbance or cause process data to be 

autocorrelated.  The rate of drift may also vary due to different materials being 

deposited or different products being run on the same tool.  Eventually, the tool 

may drift too far from the acceptable operating region and maintenance will be 

necessary; the sudden change in the tool state caused by the maintenance activity 

appears as a step disturbance to the control system.  Such problems occur in 

deposition tools where the material deposited on the wafers is also deposited on 

the walls of the chamber and builds up over time causing a drift disturbance.   

Eventually, the accumulated material must be cleaned off causing a step 

disturbance [11]. 

2. The unit operations employ highly complex technologies.  Often, the chemical 

and/or physical phenomena on which process tools are based are not well 

understood from a theoretical standpoint.  Because of the rapid pace of 

development in the industry, technologies that have been proven to work 

empirically are deployed to production even though comprehensive theoretical 

models of their underlying chemistry and physics are unavailable.  In other cases 
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where detailed models of a process are available, they are so highly nonlinear that 

their solution time is much larger than the sampling time of the process.  

Accordingly, it is often impractical to use modeling from first principals for 

control purposes.  This lack of process knowledge coupled with the fact that 

process variables are often highly correlated can make the selection of variables 

for any control algorithm difficult [1, 9, 52]. 

3. The availability of measurements is limited.  Frequently, important process and 

quality variables that would allow for the use of feedback control during a given 

processing step are not available because appropriate measurement technology 

does not exist or cannot be implemented in situ due to the harshness of the 

processing environment.  Typically, the tool parameters (e.g., gas flow rates or 

chamber pressures) are kept at constant setpoints by individual PID controllers.  

The collection of PID setpoints is known as the process recipe.  In general, the 

recipe is given before a run begins and may change based on some predetermined 

timing for a process but not in response to any real time feedback of the on-wafer 

state.  Additionally, even post-process measurements of wafers made ex situ can 

be infrequent because it is too costly or time consuming to obtain them on a more 

regular basis [1, 9, 12, 52]. 

To contend with the difficulties listed above, practitioners and researchers 

developed a paradigm known as run-to-run (R2R or RtR) control.  Also called run-by-run 

(RbR) control or supervisory control, R2R control combines the ideas of engineering 

process control (EPC) with those from the area of statistical process control (SPC). 

SPC is used throughout the semiconductor industry as a means of monitoring 

various processes.  SPC uses a set of monitoring charts based on the mean and variance 

of process variables and outputs.  In the early years of semiconductor process control, 
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SPC was used to make infrequent, manual corrections in an ad hoc manner to the process 

recipe in order to compensate for disturbances that moved the process far away from the 

statistically measured “normal” operating region.  When applied to a drifting process in 

which the output steadily moves away from the target and outside of the control limits, 

two corrective actions are possible.  The first choice is to adjust the recipe to bring the 

process back into the acceptable region.  Alternatively, if it is not possible to correct the 

process through recipe adjustment because of physical constraints on the inputs, then a 

maintenance operation is necessary to bring the tool back to its original physical state 

(e.g., cleaning a deposition chamber to remove build up). 

Unfortunately, several assumptions that underlie the basic use of SPC made it a 

poor fit as the primary source of control for many semiconductor processes.  Firstly, SPC 

is designed for stationary processes with uncorrelated data, but the propensity of many 

semiconductor processes to drift as a function of run number or experience sudden shifts 

makes this assumption incorrect [14].  Secondly, it is assumed that sources of error in the 

process can be isolated and removed and that input adjustments are infrequent due to 

their high cost.   For semiconductor tools, the disturbances mentioned previously are 

inherent to the process and cannot be removed, and as machines have become more 

automated, input adjustments are quite easy.  For early practitioners who were trying to 

apply control in the ad hoc manner mentioned above, the number of SPC alarms and 

manual adjustments became difficult to manage, and it was apparent that new approaches 

to solving the control problem were necessary.  Thus the principle of automatic feedback 

control was introduced from the area of EPC, and a supervisory controller was created for 

the correction of output errors from one run to the next. 

In the late 1980’s and early 1990’s, several papers from outside of the 

semiconductor industry studied the relationship between SPC and automated process 
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control (APC), for example, see [64] and subsequent responses in the same issue.  This 

research led to the development of so called algorithmic process control (ASPC), which 

integrates a feedback controller with a statistical monitoring system [65, 66].  In short 

order, similar approaches were applied to semiconductor processes; the concept of 

feedback was incorporated into existing SPC monitoring schemes and the first run-by-run 

controllers were developed. 

Early R2R controllers used the strengths of feedback control to offset the effects 

of slow process drifts and other smaller disturbances in what was called the “gradual 

mode.”  SPC was applied to detect the point at which the process had drifted too far from 

the controllable region and at this point a “rapid mode” was used to make larger 

corrections [14, 67].  Eventually, the SPC portion of advanced process control (APC) 

became more strongly associated with the realms of fault detection and classification 

(FDC) and tool maintenance scheduling.  At the same time, most research in the area of 

run-to-run control has focused on compensating for drifting disturbances and smaller 

shifts not associated with maintenance events by taking post-processing measurements 

and using them to adjust the recipe on the tool before the next run. 

2.2.1 EWMA and its Extensions 

2.2.1.1 EWMA Control 

The basic structure of the R2R controller is divided into three parts: a process 

model, an observer, and a control law.  The early R2R controllers of Sachs et al. [14, 64] 

employed a linear process model, with an exponentially weighted moving average 

(EWMA) filter for the observer and a dead beat control law.  Because this set up has 

proven to be both simple to use and quite robust, it is used quite widely in the industry. 
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In general, the process is considered to be pure gain system which is described 

well by a linear model of the form 

 k k k ky u xβ ε= + +  (2.1) 

where y, u, β, x, and ε represent the output, input, process gain, intercept and noise, 

respectively.  Methods such as response surface modeling (RSM) or linear regression are 

performed on data taken from designed experiments during qualification of the tool in 

order to find an estimate of the gain; this estimate is denoted as b.  Often, drift 

disturbances are considered to be slow enough that the gain is left as a constant between 

qualification events and the disturbances and noise are lumped into the estimate of the 

intercept term.  Thus, the resulting estimate equation is 

 ˆ ˆ .k k ky bu x= +  (2.2) 

The recursive calculation employed to generate EWMA charts in the realm of 

SPC is used as a filter to give updated estimates of the disturbance, b.  The EWMA 

equation is of the form 

 1
ˆ ˆ( ) (1 )k k k kx y bu xλ λ+ = − + −  (2.3) 

where k represents the run index, yk is the measured value of the output from the current 

run, uk is the recipe used for the current run, ˆ
kx  is the current disturbance estimate that 

was calculated from the previous run, 1
ˆ

kx +  is the one-step-ahead disturbance estimate 

made from the current run's data and will be used to calculate the next run's recipe, and λ 

is the EWMA tuning constant where λ ∈ [0,1].  Note that a value of λ equal to zero will 

give a disturbance estimate equal to the last value, so smaller values make for a less 

sensitive filter (i.e., more robust to noise).  Conversely, values of λ closer to one place 

more emphasis on the recent measurement and give a faster acting filter. 
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Rearranging equation (2.3) and substituting equation (2.2) allows the update for 

the intercept to be written in terms of the output estimate error (also called the output 

residual) and yields the following equation (see Appendix B-I for the derivation): 

 1
ˆ ˆ ˆ( ).k k k kx x y yλ+ = + −  (2.4) 

From this form, it has been shown that the EWMA R2R controller is equivalent to an 

integral controller with a measurement delay of one [14]. 

Once the updated estimate for the disturbance is known, it can be applied to the 

control law in order to get the new values for the process inputs that will drive the next 

run to target.  The simplest and most aggressive control law is the dead beat controller 

which is just an inversion of the process model.  Here, the quality target for the output, T, 

is substituted for the output in (2.3) and the equation is solved for uk, the new recipe to be 

used for the current run as shown in equation (2.5). 
 

 1
1

ˆ
.k

k

T x
u

b

+
+

−
=  (2.5) 

A summarized version of the EWMA run-to-run control algorithm can be found in 

Appendix B-II. 

Because of its ease of implementation and wide usage in the semiconductor 

industry, the EWMA controller has been extensively studied.  Ingolfsson and Sachs [68] 

give stability conditions and formulas for mean output error as functions of EWMA 

weighting, plant and model gains, and disturbance parameters for both single input/single 

output (SISO) and multiple input/single output (MISO) systems.  These results are 

extended to include more types of disturbances by Del Castillo [69] and multiple 

input/multiple output (MIMO) systems by Tseng et al. [71].  Adivikolanu and Zafiriou 

[11] use the equivalence of EWMA control to internal model control (IMC) in order to 

discuss the robustness of EWMA controllers in the presence of measurement delays and 
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model errors; both SISO and MISO systems are explored.  Finally, Good and Qin [70] 

explore the stability criteria for MIMO EWMA controllers operating in systems where 

measurements are delayed by more than one run. 

2.2.1.2 Extensions to EWMA with Static Models 

One shortcoming of EWMA controllers is that they will cause an offset of the 

output from the target in the presence of a large drift or ramp disturbance.  This problem 

was first addressed by Butler and Stefani [15] in their development of the predictor 

corrector controller (PCC).  The PCC splits the intercept term into two terms: one for the 

usual disturbances and one specifically for the drift.  Each of these disturbance terms has 

its own EWMA estimator; because the controller now employs two filters, it is often 

referred to as a double EWMA (DEWMA) controller.  The authors apply the PCC to an 

etch process and demonstrate improved control over previous approaches for the drifting 

process.  In the EWMA robustness paper mentioned previously [11], the PCC is also 

studied and an IMC formulation is given. 

Chen and Guo [16] reformulate the PCC into what they call the age-based double 

EWMA controller, which gives a larger control region and allows for more straight 

forward usage.  Del Castillo [75] studies the stability characteristics of the DEWMA 

controller and gives a theoretical method for optimal selection of the tuning parameters 

for both SISO and MISO systems.  In general, the author finds that smaller values of the 

weights for the two EWMA filters give better asymptotic stability (i.e., long run output 

performance) but can lead to sluggish transient performance (i.e., larger errors at the 

beginning of a run).  Tseng et al. [76] find similar results to Del Castillo [75] but for a 

more general class of disturbance models (i.e., the results in [75] represent a specific case 

of the general results given in [76]).  As a follow up to [75], Del Castillo and Rajagopal 

[72] extend the usage of DEWMA controllers to MIMO systems and again give stability 
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conditions and recommendations on how to choose tuning parameters.  Good and Qin 

[77] study a DEWMA controller where the weights for the two filters are identical, and 

they calculate the stability regions for the controller in the presence of model mismatch 

and measurement delay for both SISO and MIMO systems. 

Building upon the logic behind DEWMA controllers which add a drift term to the 

process model and estimate it with an additional EWMA filter, Fan et al. [80] add an 

output autocorrelation term in their process model and a third EWMA filter.  The 

resulting triple EWMA (TriEWMA) controller is developed only for SISO systems and is 

shown through extensive simulations to outperform both DEWMA and ST controllers.  

The largest improvements are shown for processes with colored noise and high positive 

autocorrelation of the output values.  The authors also provide guidelines for selection of 

the three EWMA parameters. 

Rather than adding more disturbance terms to the process model and additional 

EWMA filters to generate estimates of these new terms, Smith and Boning [81] instead 

alter the form of the input/output model.  Rather than relying on the linear gain model of 

(2.1), the authors employ an artificial neural net (ANN) model to map the nonlinear 

relationship between inputs and outputs.  Essentially, the buk term of the controller model 

(2.2) is replaced by the ANN model, and the rest of the controller functions as before.  

The resulting controller is found to be robust in the presence of model errors and noise 

and can maintain stability for second order systems where as an EWMA controller with a 

linear model cannot. 

Wang et al. [82] construct R2R controllers based on the recursive least squares 

(RLS) algorithm with a single forgetting factor to discount older data.  The disturbance is 

represented by a polynomial whose order is determined from process data, and the 

parameters of the polynomial are found by minimizing a cost function that is the 
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weighted summation of the process innovations.  The authors show that both EWMA and 

DEWMA can be derived from the RLS framework and that in these cases, the RLS 

formulations have the same asymptotic behavior.  Simulation examples are then used to 

compare the performance of the RLS controllers against EWMA, DEWMA, and IMC 

controllers for three different disturbance types and in systems with measurement delays.  

Finally, an application to the shallow trench isolation (STI) etch process is shown. 

2.2.1.3 Adaptive Methods 

As opposed to the approaches above that employ a static process model and 

constant filter parameters, other researchers have developed alternative methods that 

reject disturbances by adapting the gain of the linear model as the process is run.  Qin et 

al. [79] begin with a linear model for the preheat recipe of a rapid thermal annealing 

(RTA) process and develop an adaptive algorithm for the gain of the process model.  The 

gain is updated at each run by using a linear least squares regression of available process 

data.  A control chart is used to monitor for drifts in the process; using a set of Western 

Electric rules, the decision on whether to alter the recipe for the next step is made. 

Castillo and Hurwitz [10] suggest several self-tuning (ST) controllers in which a 

recursive least squares algorithm is utilized to estimate model parameters associated with 

process gain, autocorrelation of outputs, and deterministic drifts.  The resulting ST 

controllers are found to be more robust to a variety of disturbances than the typical 

EWMA controllers in the case of a SISO system.  This approach is later extended to the 

MIMO case in [73] and is the predecessor to the Optimizing Adaptive Quality Controller 

(OAQC) developed by Del Castillo and Yeh [78]. 

Hankinson et al. [74] study the control of reactive ion etching (RIE) and develop a 

methodology called knowledge-based interactive run-to-run control (KIRC).  The KIRC 

algorithm takes experimental data from designed experiments and models them using 
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neural networks (NN) so that missing operating points can be filled in by interpolation.  

A decision tree algorithm is then used to classify all response surface data (both 

experimental and model generated) so that incoming process data can be put into a 

particular group and decisions on how to adjust the next run can be made. 

As opposed to adapting the input/output model as the process is run, some 

researchers propose to adapt the weights of the EWMA filter in order to make the 

resulting controllers more responsive to disturbances.  In the paper by Smith and Boning 

[17], the authors choose to adapt the weights of the MIMO EWMA controller rather than 

the gain (or other parameters) of the process model using an ANN model.  Through 

Monte Carlo simulation, the authors develop a mapping from the disturbance values to 

the optimal EWMA tuning parameters.  The ANN portion of the controller is then able to 

take disturbance estimates from the EWMA filter and determine the optimal EWMA 

weighting that should be used given the current state of the process. 

Patel and Jenkins [18] create an adaptive optimization scheme which seeks to 

adjust the EWMA weight over the series of all runs in order to minimize the limit of the 

mean squared error of the output as number of runs approaches infinity.  With this 

objective in mind, they design a recursive formulation based on an approximation of the 

signal to noise ratio that will adjust the EWMA parameter at each run.  The system is 

applied to an industrial lithography process and shown to perform well while reducing 

the amount of engineering time spent retuning the controllers and monitoring their 

performance. 

2.2.1.4 Model Predictive Control (MPC) Approaches 

Developed in the last 30 years, MPC is a methodology that has found wide 

acceptance in the chemical and petroleum processing industries.  In their MPC review 

paper, Qin and Badgwell [23] list over 4500 instances of MPC controllers used in 
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industrial applications as of 1999, but that number is known to have increased greatly 

since then.  Mullins et al. [83] first suggested applying MPC to run-to-run control 

because MPC can easily handle MIMO systems with input and output constraints.  Also, 

with MPC, constant time delays and dynamics such as a drift can be incorporated into the 

process model itself.  Mullins’ paper, which gives a brief example of a CMP process, and 

subsequent work by Campbell [25] (also on CMP) and Bode [26] (photolithography 

overlay) use a linear model predictive control (LMPC) formulation originally proposed 

by Muske and Rawlings [20].  The general form of LMPC can use a process model like 

the one in (2.1) but presents it in state space form. 

 1k k kx Ax Bu+ = +  (2.6) 

 .k ky Cx=  (2.7) 

In equations (2.6) and (2.7), xk, uk, and yk are vectors representing the states, inputs, and 

outputs of the system, respectively.  A, B, and C are matrices of parameters that define the 

system; and for the R2R application, k represents the run index rather than a time index. 

Often, a Kalman filter is used to give updated estimates of the states which cannot 

be measured directly.  In order to use the Kalman filter theory, the state space model is 

reformulated as follows: 

 1k k k w kx Ax Bu G w+ = + +  (2.8) 

 k k ky Cx v= +  (2.9) 

where wk and vk represent process and measurement noise respectively and are assumed 

to be zero-mean, white noise signals with covariances of ( )E T

k kQ w w=  and 

( )E T

k kR v v= , respectively.  Additionally, the noise terms should be uncorrelated with 

one and other and also with the initial condition for the state, x0, where 0 0 0( , )x x P∼ . 

The equivalence of the state space system to the process model of the EWMA 

example can easily be shown.  If     1A C= =  and   B b= , (2.8) and (2.9) can be 
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combined to give (2.2) with     k k kw vε = + .  As Mullins et al. [83] indicate, the fact that 

the noise term can be split into contributions from the process and the measurements 

gives MPC another advantage over other forms of run-to-run control. 

The estimates for states, x̂ , at the next step, k+1, given information up to the 

current step, k, are given by the equation 

 1| | 1 | 1
ˆ ˆ( )k k k k k k k kx Ax Bu L y Cx+ − −= + + +  (2.10) 

where L is the Kalman filter gain.  If the covariances of the noise terms and the initial 

condition of the state can be assumed zero mean Gaussian, then the tuning parameter, L, 

has an optimal value that is calculated by a set of discrete time Riccati equations (see 

Appendix B); otherwise, it is found empirically.  Estimation by Kalman filtering is 

discussed further in Chapter 3. 

The final part of LMPC is the control law which consists of an objective function 

that is minimized by finding an input trajectory, u
N, over a control horizon, N.  The 

objective function is normally a quadratic equation of the form 
 

 
0

min ( )
N

T T T

k j k j k j k j k j k jju
J y Qy u Ru u S u

∞

+ + + + + +=
= + + ∆ ∆∑  (2.11) 

where Q, R, and S are weighting matrices and Q and S are symmetric, positive 

semidefinite while R is symmetric, positive definite.  These matrices can be used to 

weight the importance of the various terms so their magnitudes relative to each other are 

more important than their absolute values.  The first term of J minimizes output 

deviation, the second term minimizes input deviation, and the third term minimizes the 

rate of change of the input. 

Equations (2.8) and (2.9) are combined with the following inequalities to define the 

quadratic program: 
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 (2.12) 

As can be seen from (2.12), the MPC formulation can be used to restrict the inputs, 

outputs, and the size of the input moves to user or system defined ranges.  Implementing 

these types of min/max constraints is much more difficult to accomplish with the typical 

EWMA controller. 

Muske [84] gives solution methods for the above optimization problem for a 

number of conditions including stable and unstable systems.  Before each new run, the 

quadratic program is solved to find [ ]1 -1

TN

k k k Nu u u u+ += …  but only the first control 

move, uk, is implemented.  At the next time step, the entire process is repeated to find the 

new optimal trajectory, and again, only the first move is implemented.  For the interested 

reader, several reviews and tutorials on the subject of MPC are available in the literature 

[21, 22, 23, 24]. 

2.2.2 Multi-tool, Multi-product Process Control Methods 

Due to the fact that processing tools used in fabs are very expensive, it is expected 

that their utilization be maximized.  It is also true that many fabs are of a high mix nature 

and therefore, are not able to dedicate tools to the processing of only one type of product 

or processing layer.  An example of this is "mix and match" processing [45, 85] in the 

photolithography area.  Lithography tools (or steppers) are the most expensive machines 

employed in the fab and also have one of the longest processing times.  Therefore, it is 

common to run many different types of products on the same stepper in order to reduce 

bottleneck effects at these machines.  Because all tools of a similar type do not behave in 

exactly the same manner and because making different products on a tool can give 
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different results, the process control in a high mix environment is more complex than the 

simple single product/single tool scenario discussed in most R2R control papers. 

The problem of running multiple products and processes on tools was first 

addressed by Miller [38].  He begins by identifying different types of disturbances that 

occur in semiconductor processing and classifying them into three categories. 

1. Tool based disturbances such as drift disturbances caused by buildup on etch 

chamber walls.  These will affect all products processed on the tool. 

2. Disturbances caused by inconsistent quality of raw materials.  The example given 

is of photoresist used in the photolithography step; this type of disturbance affects 

all wafers that use the particular raw material. 

3. Product based disturbances such as the incoming layer thickness and uniformity 

of wafers entering a CMP step.  These disturbances are particular to a given type 

of product and should be rejected in such a manner that they do not affect other 

product types.  Feedforward measurements can be used to compensate for 

incoming product specific inconsistencies, but this requires additional modeling 

effort. 

Miller also discusses the complications associated with design of R2R control 

schemes for multi-product and -process systems and suggests several different 

approaches along with advantages and disadvantages of each.  He first discusses three 

methods that can be classified as multi-product/tool extensions of the methods reviewed 

in Section 2.2.1 while the final control methodology discussed is termed cooperative 

control.  Section 2.2.2.1 will discuss the first three approaches and Section 2.2.2.2 will 

discuss cooperative controllers. 
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2.2.2.1 Threaded and Composite Controllers 

The first two control methods discussed in [38] fall into a category known as 

threaded control.  The first approach uses independent controllers which model the 

individual relationships between each combination of product and tool in the fab—these 

combinations (along with some other information such as processing layer or previous 

step for example) are often called processing threads [86] or contexts [53, 54].  In a large 

system with many tools and products, the independent controller approach requires the 

management of a substantial number of different control models. 

One advantage of independent controllers is that the disturbance estimate for one 

product on a machine is unaffected by disturbances that are attributable to other products.  

Unfortunately, the same is not true for tool based disturbances because they will affect all 

products.  Because the disturbance estimate of each model is actually a combination of 

effects from the tool and the product in the context, information on the tool related 

portion is lost when the context is changed (i.e., when different products are run 

consecutively on the same machine). 

A simple example of two products running on a tool with a gradual drift 

disturbance is used in [38] to demonstrate the shortcomings of independent controllers.  

A plot of the system with a product switch can be seen in Figure 2.2 (please note that no 

noise is injected into the system so that the trends are easier to see).  If Product 1 is run 

for an extended period time, its controller is able to compensate for the tool drift 

disturbance by incorporating it into the updated disturbance estimate after each run.  On 

the other hand, the model for Product 2 does not receive updated information on the 

growth of the tool disturbance while Product 1 is being run.  As can be seen in Figure 2.2, 

this results in the first run of Product 2 (run number 26 in the figure) being far from target 

and the drifting tool disturbance appears as a step disturbance to the controller for 
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Product 2.  Because the controllers for the products are tuned to compensate for the 

drifting disturbance, there are several off target runs of Product 2 before the controller is 

able to recover the process and completely reject the large step disturbance. 

Figure 2.2: Example of a controller switch in the presence of a gradual disturbance [38]. 

In order to reduce the number of switches between products, Miller suggest the 

idea of grouping controllers.  This method is similar to independent controllers except 

that different contexts are grouped if they demonstrate similar performance to one 

another.  Grouping offers several advantages.  Fewer controllers are necessary because 

one model can be used for several different contexts rather than every context needing its 

own model.  Additionally, it will be easier to update the models with fresh information 

because measurements for all contexts in the group can be used.  The main disadvantage 
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to grouping is choosing which products to gather together to form the various groups 

(i.e., how close is close enough when comparing the similarity of two or more contexts). 

Finally, there is the limiting case in which the number of groups goes to one (i.e., 

all contexts will be controlled using the same model), which is known as composite 

control.  Having a single controller eliminates problems associated with context 

switching, but has other drawbacks.  It is highly unlikely that a single global model can 

be developed that will be able to sufficiently account for the all of the interactions 

between various tools and products.  The other problem results from various processes 

having different setpoints.  A controller that can handle setpoint changes may not be as 

adroit at rejecting disturbances and will suffer from reduced performance. 

Multi-product systems with switching like the one illustrated above were studied 

in depth by Zheng et al. [87].  Using a two product, one tool system like the one 

illustrated for independent controllers above, two different EWMA based controllers are 

compared and their stability properties are examined.  Analytical results for the output 

and asymptotic mean squared error (AMSE) are also given.  For a more detailed 

summary and discussion of the results in [87], see Appendix C, which also includes 

equations and figures. 

Zheng et al. first discuss what they call "tool-based" control, which is a blend of 

independent and composite control.  Separate input/output models like equation (2.2) and 

control models like equation (2.5) are defined for each product, but the noise estimate, b, 

is shared across all products.  In other words, there are as many gain estimates, a, process 

models, (2.2), and control laws, (2.5), as there are products, but there is only one EWMA 

estimator and only one disturbance estimate, b.  Except for the trivial cases where either 

the mismatch between β and b is zero or the disturbance is nothing but stationary, white 

noise, the tool-based controller is found to be unstable. 
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As it relates to the discussion in [38], tool-based control with different 

plant/model mismatches can be thought of as the case where two controllers are grouped 

but are not actually similar.  In this case, the same process, controller, and estimation 

models are used for both products, but their underlying behaviors (plant models from a 

simulation perspective) are actually different.  Therefore, according to the results in [87], 

grouping products whose behaviors are not similar can lead to long run instability.  From 

a practical standpoint, the effect of this instability may be insignificant if the products are 

sufficiently similar and the number of runs is low enough. 

The second type of control studied in [87] is labeled "product-based" control 

which is the same as the independent control approach discussed in [38].  Product-based 

control is shown to be stable for a wide range of operating conditions, but as shown by 

Miller, long break lengths between runs of given product in the presence of a non-

stationary process can lead to large offsets in the output after a switch.  As would be 

expected, it is found that products that make up a larger portion of the product mix will 

suffer less from disturbances created by switching because they have a shorter break 

length (i.e., time between runs) than other products that comprise a smaller percentage of 

the product mix.  When dealing with a drifting process, Zheng et al. suggest tuning the 

controllers for low running products more aggressively (i.e., setting λ closer to one than 

to zero) than the controllers for high running products. 

2.2.2.2 Cooperative Controllers 

The final type of controller suggested by Miller is called a cooperative controller.  

The idea behind such a control scheme is to share information across tools and products 

so that the disturbance estimate for each context will reflect the most up to date 

information.  Additionally, many fabs are now run in a high-mix fashion which greatly 

increases the number of context items in one or more categories (e.g., tools, products, 
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layers, etc.).  In a threaded control system, the number of states to estimate increases as 

the product of the number of context items in each category, but in a non-threaded control 

system, the number of states grows only as the sum of the number of context items in 

each category.  For example in a system with three context groups labeled tools, 

products, and layers with each group having three, four, and two items, respectively, a 

threaded control system must estimate 24 different states, while the non-threaded system 

estimates only nine.  Therefore, as the size of the system increases, the estimation effort 

required to control the system is greatly reduced in a non-threaded (i.e., cooperative) 

control system. 

Campbell [25] applies the MPC formulation described previously to the CMP 

process.  Because wafer surfaces of different product types have different topographies, 

the polishing rate varies from one product to another even though the tool being 

employed remains constant.  To account for the difference between polish rates, a unique 

topography factor is assigned to each product being run on the tool. Campbell then uses 

an observer scheduling technique in which the topography factor used in the observer is 

changed according to the product being run.  For the single tool case, the use of blank 

oxide wafers to identify the polish rate independent of the product being run is drastically 

reduced because this information is now shared across controllers for different products. 

Patel et al. [90] develop a R2R control scheme for multiple CMP tools and 

multiple products.  First, qualification (also called qual) wafers are defined as unpatterned 

wafers with a blanket (i.e., uniform) oxide film on their surface.  A sheet film equivalent 

(SFE) for each product is then defined as the amount of oxide that would be removed 

from a qual wafer in the same amount of time it would take to polish the product wafer 

from its incoming (i.e., pre-polish) target thickness to its outgoing (i.e., post-polish) target 

thickness.  Additionally, an effective blanket polish rate is defined for each tool.  



 31 

Through a series of control loops, the SFE for each product and blanket polish rate for 

each tool are estimated so that the polish time for any incoming wafer on any tool can be 

calculated before the run is started.  The system can also account for drift disturbances, 

metrology delays and feedforward measurements of the incoming oxide thickness.  

Simulations and data from an industrial application show that the control scheme has 

distinct advantages over the previously used EWMA controller with static product 

dependent factors (i.e., independent controllers). 

Similar to the work by Patel et al. [90], other cooperative controller approaches 

begin by assuming that the disturbance for a context can be divided into contributions 

from the various parts of the context.  One of the earliest examples of this approach is the 

just-in-time adaptive disturbance estimation (JADE) run-to-run controller proposed by 

Firth [88].  JADE uses a controller process model similar to the one in equation (2.2) 

except the intercept term, ˆ
kx , is a sum of contributions from several different sources.  

The equation is now 

 ,
ˆ ˆ

k k tot ky bu x= +  (2.13) 

where, 

 , ,ˆ ˆ .tot k i k

i

x x= ∑  (2.14) 

The example for a photolithography overlay process is given with the resulting 

equation for the disturbance being 

 , ( ), ( ), . ( ), . ( ),
ˆ ˆ ˆ ˆ ˆ .tot k tool k k reticle k k ref tool k k ref reticle k kx x x x x= + + +  (2.15) 

In this case, the disturbance is a function of the tool, reticle, reference tool, and reference 

reticle used to process the product.  Once all of the context items are identified, the full 

set of equations like (14) can be summarized in matrix form: 

 0totx A x=  (2.16) 
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where xtot is a vector of total offsets calculated from the measured inputs and outputs to 

the process for each context, that is, 

 ,tot i i ix y bu= −  (2.17) 

for the ith context.  The vector x has entries that are states which represent the disturbance 

contribution of each individual context item (e.g., tool, reticle, product, etc.).  The matrix 

A0 consists of ones and zeros and ensures the proper summation of individual disturbance 

states to form the total disturbance state for a thread.  The example of a two tool, two 

product system is given as an example.  In this case, there are 2 2 4× =  possible contexts 

and the full matrix equation looks like 
 

 

1 1

2 2

3 1
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1 0 1 0

1 0 0 1
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0 1 1 0

0 1 0 1
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tot tool

tot prod

prodtot

x x

x x

x x

xx

    
    
    =    
    
       

 (2.18) 

The JADE observer uses a recursive least squares algorithm [89] to calculate the 

state updates. The least squares objective function seeks to minimize the square of the 

residuals: 

 ( ) ( )1
0 02 .

T

tot totJ c A c c A c= − −  (2.19) 

A normal equation gives the optimal solution and has the form: 
 

 ( ) 1

0 0 0 .T T

totc A A A c
−

=  (2.20) 

In order to solve the normal equation, the term ( ) 1

0 0
TA A

−
 must be invertible which implies 

that A0 must be full rank.  Unfortunately, A0 is always rank deficient as can be seen in the 

example equation (17).  To overcome this problem, Firth augments A0 with an identity 

matrix and the recursive equation for the observer is formulated as follows: 
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for brevity. 

After the problem of rank deficiency of A is addressed, Firth then reformulates the 

least squares objective function and adds a weighting matrix, Q, which contains tuning 

weights similar to those in EWMA control for the discounting of older data.  The matrix 

Q also contains parameters that allow the user to weigh the relative importance of 

different context items against one another.  The new weighted recursive least squares 

objective function is 

 ( ) ( )1
1 1 12( ) ,

T

k k kJ c c Ac Q c Ac+ + += − −ɶ ɶ  (2.22) 

which is solved with the following normal equation 
 

 ( ) 1

1 .T T

kc A QA A Qc
−

+ = ɶ  (2.23) 

Through simulation the JADE algorithm is shown to outperform a threaded 

EWMA system for both photolithography overlay and CMP control.  The improved 

control is due to the fact that the JADE observer is able to share information across tools 

and products.  One other advantage occurs when a tool state needs to be reset after a 

maintenance event or when a new product is added to the system.  During these events, 

the new states can be calculated without affecting other existing states.  On the other 

hand, a threaded EWMA system must recalculate all disturbance states that contain a 

contribution from the reset tool or the new product. 

Applying a process model similar to the one used by Firth [88] in which the 

disturbance is split into contributions from a context's tool and product, Pasadyn [41] 

develops an estimation format based on state space modeling and Kalman filtering.  He 
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also discusses ways in which this type of estimation might be useful in conjunction with 

scheduling systems.  This system is the basis for the work discussed in Chapters 3 and 4. 

In order to insure observability of the state space system, Pasadyn utilizes 

qualification runs which give an independent measurement of the tool state.  As discussed 

by other authors [25, 90], qual runs should be minimized because they do not produce 

any sellable products but have an associated cost due to the purchase of additional wafers 

and time spent by tools running non-product wafers.  In order to address the problem of 

needing qual runs to ensure system observability, Jang and his coworkers [91–93] present 

approaches based on analysis of variance (ANOVA) and analysis of covariance 

(ANCOVA) models.  By using ANOVA and ANCOVA model forms, observability of 

the system is assured because of the equality constraints placed on the states by these 

models.  The authors find that these systems provide not only good control but also 

estimates of the individual tool and products states which mimic the behavior of the 

actual states.  Finally, they demonstrate a method for reinitializing products states that 

have experienced a period on nonproduction. 

In [127], Patel uses a set of equality constraints similar to the ANOVA models 

above accept that the tool states are left unconstrained.  Thus tool states are assumed to 

contain all random variations while states for other context items are assumed constant 

and centered around an arbitrary constant.  Using a Kalman Filter, the new model is 

tested against threaded EWMA for a simulated system and real but unspecified 

processing system.  The non-threaded model is found to be superior. 

Finally, Wang et al. [123], use term non-threaded control (coined in [86]) when 

discussing state space based, cooperative controllers and show that a system without 

quals can be transformed to a system which has states that are linear combinations of the 

original states.  While the original system is not fully observable, the transformed system 
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is, and unbiased estimates of the new states can be found.  This is sufficient for control 

because the controller model requires only a good estimate of the current context (which 

is a linear combination of the original states) and not necessarily exact estimates of the 

original states themselves.  The Kalman filter, recursive least squares (RLS), and JADE 

are all shown to be specific examples of the general scheme to find the Best Linear 

Unbiased Estimate (BLUE) and are tested and compared with threaded EWMA on 

simulation and process data.  Additionally, Bayesian enhanced versions of the Kalman 

filter and RLS are proposed to account for shift disturbances. 

One particular advantage of non-threaded controllers compared to their threaded 

counterparts, which is alluded to in the discussion of Figure 2.2 and examined in more 

detail in [123] and [86], is their improved performance for initialization of threads.  In 

non-threaded control, each wafer is modeled as the sum of linear contributions from the 

various context items, and each item is estimated.  Alternately, threaded control estimates 

a single lumped parameter for each thread that represents the combined effect of the 

context items for that thread [86]. 

To demonstrate the differences, a threaded control system which employs EWMA 

filters to estimate the lumped context states is run on the test systems of Section 4.6 for 

comparison.  In the EWMA implementation, the input-output gain is left constant and the 

EWMA parameter, lambda, is used to tune filter performance.  In practice, a lambda of 

0.1 to 0.3 is commonly used [13].  Here 0.3 is chosen from this range as the best value.  If 

the state estimates of the threads are initialized in the same manner as in non-threaded 

control (i.e., 50% error in product states), the outputs slowly converge to the target due to 

the low setting for lambda (see dashed blue line in Figure 1).  In simulation work, this is 

normally compensated for by initializing threads when they first appear with the true 

state values; the advantage of this approach is clear in Figure 1 where the solid red line 
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represents the output errors when the system is run with thread initialization.  Not only is 

the system output better centered about the target over the length of the simulation, but 

larger errors are avoided when a product arrives to a tool on which it has not been 

previously processed. 

In practice, initialization is accomplished by separating several wafers from the 

new product lot to make a child or send-ahead lot.  The child lot is sent to the new tool 

while the rest of the lots of this product are put on hold.  Additionally, depending on 

operating requirements, the tool itself may be put on hold [130].  The hold time is a 

function of the processing, measurement, and analysis times required to characterize the 

new product on the tool.  This obviously has a major detrimental impact on the tool 

utilization and throughput of the system and is therefore discouraged [123, 130, 131].  

Additionally, there is a strong possibility that child lots will have measurements that are 

out of tolerance specifications [132], leading to rework or scrap.  Therefore, send-ahead 

lots can have a strong negative effect on both scheduling and process control. 
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Figure 2.3: Threaded control with and without thread state initialization 

By comparison, the non-threaded control simulations in Section 4.6 initially have 

output errors that are much higher than those of an initialized threaded EWMA system, 

but they do not have the same advantage of optimized tuning.  When the value of Q used 

by the Kalman filter is decreased to give better noise rejection, the control is greatly 

improved (this includes the elimination of unstable results seen for some systems with 

delays).  With better tuning, the output error results for the non-threaded system are 

comparable to those of the threaded system for purely white noise disturbances but 

without the need for send-ahead lots. 

The major difference in performance between the two control systems is observed 

when non-stationary disturbances such as shifts, drifts, and IMA(1,1) noise are present.  
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Table 2.1 shows a comparison of the threaded and non-threaded control systems based on 

root mean squared error (RMSE) of the outputs for the eight test systems with non-

stationary disturbances and a FIFO schedule.  It is clear from Table 1 that the non-

threaded control is superior to the threaded control, especially in cases where the system 

is larger (Tests5, 6, and 10 have more products and/or tools than the other systems).  It is 

also noted that the threaded control system does not experience any estimation delay 

because each thread is controlled individually, and it is not possible for the same thread 

(i.e., tool/product combination) to run more than once at any given time.  Despite this 

fact, the threaded system with estimation delays still outperforms the threaded system. 

 

Test Threaded Non-threaded 

Number EWMA Ideal Delayed 

1 0.270 0.206 0.211 

2 0.272 0.209 0.213 

3 0.271 0.206 0.209 

4 0.270 0.204 0.213 

5 0.382 0.239 0.257 

6 0.363 0.229 0.237 

7 0.284 0.219 0.224 

8 0.804 0.439 0.574 

Table 2.1: RMSE of outputs for threaded vs. non-threaded control with non-stationary 
disturbances, which demonstrate the superiority of non-threaded control.  
The scheduling policy used is FIFO. 

The only way to improve the performance of the threaded control system is to 

allow more send-ahead lots as the processing proceeds.   Typically, the use of these 

additional child lots is determined by counting the number of runs since the last 

appearance of the next thread to be processed.  If this number exceeds a predetermined 

threshold, then the thread is reinitialized through the use of a send-ahead lot.  Obviously, 
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the more quickly the underlying states change in a non-stationary manner, the more child 

lots are required to maintain good control.  This is a major drawback to threaded control. 
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Chapter 3 

Kalman Filter Based Estimation for Multi-tool, Multi-product Systems 
with Qualification Runs 

3.1 INTRODUCTION 

In the previous chapter, the research of Pasadyn and coworkers [41, 53–55] is 

given as an example of a cooperative control scheme for systems with multiple products 

and tools.  Also discussed in these works are some possibilities for using the ordering of 

products to enhance control performance.  Because Pasadyn’s system can be used in this 

way, it offers a convenient framework for the study of process control and scheduling 

interactions and will be used as the basis for much of the work in this thesis.  The current 

chapter reviews the work in [41] and related papers [53–55] to provide a background for 

models used in the current work and also gives further analysis of system properties 

(especially observability).  Additionally, adjustments to the model are made for multi-

input systems, a new form of the model, which eliminates the “adjustment” state, is 

presented, and the use of qualification runs is analyzed. 

3.2 SYSTEM MODEL 

In the dissertation by Pasadyn [41], a CMP example is used to show how the 

process model can be written for multiple tools and products.  The basic model of the 

CMP process is given as x r t f= ⋅ ⋅  where x  is the average amount of material 

removed from the surface, r  is the average rate of removal for the tool, t  is the average 

time for removal, and f  is a product dependency factor that accounts for the difference 

in removal rate due to product characteristics such as topography.  This equation is then 
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linearized about the nominal operating point ( )0 0 0, ,r t f  to give an expression for the 

deviation from the nominal removal: 

 0 0 0 0 0 0y r tf rt f r t f= + +  (3.1) 

where r, t, and f represent deviations from the nominal values. 

Equation (3.1) can be put into a state space form if t is considered to be the input 

to the system, y is considered to be the output, and r and f are considered to be the tool 

and product related states, respectively.  The resulting state space equations can be 

written as 
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where the adjustment state, xadj, is used to represent the input to the process.  In the 

general form, the state space equations are written as 

 1k k kx Ax Bu+ = +  (3.4) 

 ,k ky Cx=  (3.5) 

where (3.4) and (3.5) are the same as (3.2) and (3.3), respectively. 

In the multi-tool/product system, equation (3.1) can be written for all contexts that 

contain a tool from the set, i, and a product from the set, j: 

 0 0 0 0 0 0 .ij i jy r f t t f r r t f= + +  (3.6) 

For the case of two tools ( )1, 2i =  and two products ( )1, 2 ,j =  the set of output 

equations is 
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11 0 0 0 0 1 0 0 1

12 0 0 0 0 1 0 0 2
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 (3.7) 

which can be expressed in state space form as 
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To simplify the presentation, all parameters (r0, t0, f0) are assumed to equal one.  

Also, the rates are represented by the tool states, 
it

x , the product factors are represented 

by the product states, 
jpx , and the time, tk, is represented by the input, uk.  The resulting 

state space equations are 
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3.3 SYSTEM OBSERVABILITY 

In order to successfully estimate the states, the system must be observable (i.e., 

the system states can be reconstructed from the available measurements) [94].  To test the 

observability of a system with n states, the following matrix is calculated: 
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 (3.12) 

If the matrix OΓ (called the observability Gramian) is full rank, then the system is 

considered fully observable. 

For the two tool, two product system above, the observability matrix (after 

eliminating duplicate rows due to the fact that 2 3 4A A A A= = = ) is 
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which has a rank of four.  Therefore, the system is not observable and the model needs to 

be adjusted. 

Pasadyn [41] suggests several methods for ensuring the observability of the 

system.  One method is to choose a tool or product that has a known nominal bias as a 

reference state.  The problem with this approach is that the reference value may not 

remain accurate for very long in a manufacturing setting with high variability.  A second 

method is to add constraints to the system which effectively reduces the number of states 

to be identified, as in [91-93].  Other researchers have used alternative methods of model 

reduction [122, 123] or model regularization [127].  The final approach is to add more 

measurements; specifically measurements of qualification runs.  A qualification run 

uniquely identifies the bias of the tool on which it is performed (i.e., it gives a direct 

measurement of the tool state). 

For the two tool case demonstrated earlier, the two new outputs are 

 1 1y r=  (3.14) 

and 

 2 2.y r=  (3.15) 

After adding the measurements in equations (3.14) and (3.15) to the system, the output 

equation for the state space model becomes 
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and the new observability matrix is 
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which has a rank of five.  Thus, the new system is fully observable.  In general, the 

observable system with quals has ( )1t p +  outputs (where number of toolst =  and 

number of productsp = ) as opposed to the original system which had tp outputs. 

One fact not pointed out in [41] is that adding the qualifications on both tools in 

order to make the system observable is not actually necessary; the system is fully 

observable if only one of the tool states is directly measurable.  However, adding qual 

runs for both tools to the system is advantageous because it allows for more flexibility.  

From the standpoint of the estimator, information on the states can be shared more 

efficiently when quals are not always run on the same tool.  As Pasadyn [41] illustrates, if 

the state of one tool is identified with a qual (thus reducing its estimate variance greatly), 

then subsequently running the same product on the qualified tool and then on another tool 

will help to reduce the variance in the state estimate of the second tool.  In larger systems, 

this “trickle down” effect would take longer if quals were only allowed on one tool, 

whereas variance reduction in the tool states is accomplished more quickly by allowing 

quals on all tools.  From a scheduling standpoint, allowing the number of qualification 

wafers to be distributed over all tools prevents a build up of non-production wafers on 

one tool, and thus, exceedingly low tool utilization for this tool. 



 46 

Because physical constraints require that only one of the products can be 

processed on a given tool at a given time, the real manufacturing system can not run all 

outputs of the process model at the same time.  Therefore, only a subset of the rows in the 

output equation (3.16) can be used for modeling and estimation during a given process 

run.  As an example, consider the case where product 2 is processed on tool 2.  In this 

case, only the fourth row of (3.16) is needed and the resulting equation is 
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 (3.18) 

The observability matrix for this reduced system is 
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 (3.19) 

which has a rank of two so that only two of the system states are observable from the 

measurement of y22.  Likewise, many other reduced systems created by possible run 

combinations allowed by the physical system are found to have rank deficient 

observability Gramians.  Table 3.1 shows the full range of physically possible subsets 

and their observability. 

At any given run time, it is apparent from Table 3.1 that only Cases 5, 6, and 15 

are fully observable.  These cases involve the processing of nothing but qualification 

wafers, so that any run that includes production wafers will be only partially observable.  

As Pasadyn [41] notes, such a system is similar to one seen in continuous processes with 
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multiple sampling rates where only a subset of the outputs are available for measurement 

at each time step.  This leads to a system in which the observability is time varying [95], 

but Pasadyn states that the major requirement is that the full system is fully observable.  

In the next subsection, the subject of observability in systems where only a subset of the 

full system is active at any given run is more thoroughly addressed. 

 

Case 
Number 

Row(s) of 
Output 

Equation Used 

Product 
Run on 
Tool 1 

Product 
Run on 
Tool 2 

Number of 
States Used 
in Subsytem Rank Γo 

1 1 1 - 3 2 

2 2 2 - 3 2 

3 3 - 1 3 2 

4 4 - 2 3 2 

5 5 Qual - 1 1 

6 6 - Qual 1 1 

7 1 and 3 1 1 4 3 

8 1 and 4 1 2 5 3 

9 1 and 6 1 Qual 4 3 

10 2 and 3 2 1 5 3 

11 2 and 4 2 2 4 3 

12 2 and 6 2 Qual 4 3 

13 5 and 3 Qual 1 4 3 

14 5 and 4 Qual 2 4 3 

15 5 and 6 Qual Qual 2 2 

Table 3.1: Analysis of observability for model subsystems; fully observable systems 
shaded. 

3.3.1 Partial Observability and Switched Systems Theory 

While the multi-tool/product system can be thought of as a multi-rate sampled 

system, this may not be the best way of approaching the observability problem.  Most 

literature on multi-rate sampled systems assumes some periodic form of the 
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measurements with the frequency of at least one measurement being a common 

denominator (c.f., [107] and references therein).  Such constraints could be imposed on 

the system studied in this work but requiring the various outputs to be periodic is far from 

realistic in practice. 

Another way of approaching the problem is to consider the system to be a 

switched linear system.  Switched linear systems are a subclass of hybrid systems which 

use a combination of continuous and discrete models to control a process [104, 106].  In a 

switched linear system, the system matrices are restricted to linear models whose system 

matrices are allowed to change during the course of the process run.  The possible values 

for the system matrices form a finite set and are called the modes of the system, while the 

order in which the system changes from one mode to the next is called the switching 

signal, switching rule, switching path, or mode signal [105]. 

Some research in the field of switched systems focuses on the case where all 

system matrices are allowed to change (c.f., [109, 112]).  Other papers focus on the case 

where only the state transition matrix, A, changes [108], only the output matrix, C, 

changes [111], or both of these are allowed to change [110].  Obviously, the scenario 

where only C changes is most similar to the multi-tool/product system in this work, but 

results from analysis of any system where C changes can be applied. 

Another factor that also differentiates the papers on switched linear systems is 

whether the switching rule is unknown and needs to be identified [109, 110] or is known, 

in which case it can be arbitrary [111] or used as an input [112].  In the multi-tool/product 

system, the mode is known because the composition of the measurement matrix is 

determined by the tool being used and the product being run.  In the case where product 

ordering is determined by a dispatch rule like FIFO, the switching signal is considered 
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arbitrary, but in the case where product ordering is changed to enhance system 

performance it is considered a control variable. 

As the interest in switched linear systems has increased over the last ten to fifteen 

years, many researchers have focused their efforts on analysis of the fundamental 

properties of observability [109, 111, 112, 114], controllability [112, 114], and 

stabilization [112, 113, 115].  Several papers focus on the fact that systems with time 

variant A and/or C matrices also have time variant observability [111, 114, 116, 117].  

Further more, the extent to which the states are observable indicates the quality of their 

estimates [116, 117].  In [111, 114], Babaali and Egerstedt discuss the concept of 

pathwise observability for switched linear systems.  In [114], the authors study a linear 

system in which A, B, and C all change values depending upon the switching signal, 

which is labeled θ.   The switching signal has a path length, N, and can take on values in 

set {1, 2,…, s}.  The path-dependent observability Gramian for such a system is defined 

thusly: 

Given ( ) ( ),  ,k kA Cθ θ  where { }1,2, ,k sθ ∈ …  and 1,2, , ,k N= …  
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and for systems in which A is not dependent upon the switching signal [111] 
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The second definition of the Gramian above is more appropriate for the multi-

tool/product system and can be simplified further because A is the identity matrix.  Thus, 

the pathwise observability Gramian becomes 
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The implication of the definition of pathwise observability for the multi-

tool/product system is that the observability matrix in (3.22) is always full rank for a 

given path when all tools are utilized, at least one qual is run and every product is run at 

least once.  While this is interesting from a theoretical standpoint, it gives no incite into 

path selection and observability at individual runs.  Much like the observability Gramian 

test for a non-switched, LTI system in Section 3.2.1.1, the rank of (3.22) only gives a yes 

or no answer for the observability of a particular path. 

To gain more insight into the instantaneous behavior of a changing system’s 

observability, a third branch of the literature that involves the study of sensor fusion for 

multi-sensor, time-varying systems is investigated.  A major application of this research 

is flight guidance systems that integrate information from various measurement devices 

such as global positioning systems (GPS), inertial navigation systems (INS), radar, etc.  

Because the models for such systems can be placed in a state space form similar to those 

of switched linear systems, results from their analysis are also useful in the study of the 

multi-tool/product system. 

In [116], Chen studies the concept of local observability for a discrete time, linear 

system with n states and a single output whose measurement matrix is time varying.  At a 

given run number, k, the path length needed for local observability is shown to be n (the 
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total number of states), and the Gramian for the rank test is similar to (3.20)  but is 

defined for steps k through 1k n+ − : 
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which reduces to 
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for the multi-tool/product system. 

If ( )rank ( )O k n=  for all k, then the system is completely observable.  If 

( )rank ( )O k n<  for some k, then the system is only locally observable at runs where 

( )rank ( ) .O k n=   For the multi-tool/product system studied here, the only way to 

guarantee complete observability of the system (i.e., ( )rank ( )   O k n k= ∀ ) is to abide by 

the following four conditions for every block of n consecutive samples: 

1. Include exactly one qual run. 

2. Include at least one run of each product. 

3. Include at least one production run on each tool. 

4. Each tool should process at least one product which has also been processed by at 

least one other tool. 

As they relate to the system as a whole, the processing requirements for full 

observability outlined above lead to the following interesting results: 
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1. As the number of states increases, complete observability can be maintained with 

a lower qual run frequency because as n gets larger, the proportion of quals within 

each block, 1/n, gets smaller.  This works in favor of real manufacturing settings 

where quals need to be minimized in order to reduce costs and there are many 

more tools and products than in the smaller examples studied thus far in this 

work. 

2. Additionally, if the above constraints are enforced when selecting the contexts for 

processing over a block of length n, then the contexts in the selected set will be 

unique.  While this does not necessarily preclude the same product from being run 

multiple times, it does preclude any product from being run more than once on the 

same tool in the given block of n runs.  In other words, the above processing rules 

for full observability discourage tool dedication. 

Unfortunately, for cases in which the local observability Gramian is not full rank, 

the previous problem of the rank test only giving a yes/no type answer still exists.  

Therefore, Chen suggests for single output systems, that the condition number of O(k) 

can be used to determine the degree of local observability.  For this method, the multi-

tool/product system can be framed as a single output system if concurrent starts are not 

allowed on multiple machines (i.e., only one row of the output equation is used at each 

run).  In testing of small multi-tool/product systems like those studied so far, this method 

does not work well because most Gramians, O(k), which are rank deficient will have a 

condition number of infinity.  In larger scale systems with Gramians that are rank 

deficient and also of the same rank, small differences in the condition numbers of the 

Gramians are observed.  Thus, in larger systems, it may be possible to use ( )( )cond O k  

as the objective to be minimized when choosing a schedule for the next n runs or 

choosing the next run based on the past n-1 runs. 
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As an improvement upon Chen’s work, Hong et al. [117], study observability 

measures for time-varying systems with multiple outputs and propose a new measure 

based on the information matrix, L0,k, where 

 1
0, ,0 ,0

0

,
k

T T

k i i i i i

i

L A C R C A−

=

= ∑  (3.25) 

with Ai,0 being the product of all state transition matrices from the initial value to step i: 

 ,0 1 0.i i iA A A A−= …  (3.26) 

For the multi-tool/product system where A is the identity matrix, the information matrix 

is can be simplified to 

 1
0,

0

.
k

T

k i i i

i

L C R C−

=

= ∑  (3.27) 

Note that the information matrix is a square form of the observability Gramian 

and is scaled by the output noise variance, R.  Like the error covariance matrix, the 

information matrix is non-negative and symmetric with size n n× .  The authors show that 

using the information matrix to determine the degree of observability is preferred to using 

the error covariance matrix because methods based on the latter are much more sensitive 

to errors in the process and noise models [117]. Additionally, the value of Pk is sensitive 

to its initial value, P0, and this can give erroneous results when testing for the degree of 

observability.  The authors also reiterate the fact presented above that while methods 

based on the rank of the observability Gramian can determine whether or not the system 

is observable, they do not give a good indication as to the degree of observability. 

In order to measure the degree to which the system is observable, Hong et al. 

[117] perform a singular value decomposition (SVD) on the information matrix [118], 

i.e., 

 0, ,T

k k k kL U UΣ=  (3.28) 
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where Σk is a diagonal matrix with the singular values of L0,k ordered from largest to 

smallest along the diagonal, and Uk contains the singular vectors associated with each 

singular value.  The singular vectors represent subspaces of the overall state space, and 

their associated singular values give an indication of the degree of observability for each 

of the individual subspaces.  In this case, the smallest singular value of L0,k is associated 

with the least observable subspace, and because this subspace is a part of the overall state 

space, its singular value is considered to be the measure of the degree observability for 

the entire state space at run k. 

The methods described in this section are useful for monitoring the observability 

of switched or time varying systems.  Because the multi-tool/product system discussed in 

this work can be categorized as either type of system, the above methods are applicable 

and are used later in this chapter in the development of control friendly scheduling 

algorithms. 

3.4 CONTROLLER 

3.4.1 Feedback Control Law 

Similar to many of the run-to-run algorithms reviewed in Chapter 2, Pasadyn’s 

[41] work uses a deadbeat control law.  To construct the control law, the state equation 

(3.4) is substituted into the output equation (3.5).  Because the actual values of the states 

are unknown, estimates of the states, | 1
ˆ

k kx − , are used and because the process targets are 

the desired values of the outputs, a vector of process targets, T, is substituted for the 

output vector, yk.  The resulting equation is 

 ( )| 1ˆ .k k kT C Ax Bu−= +  (3.29) 

Equation (3.29) is then solved for uk, the input needed to return the estimated output to 

the target at the next run; 
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 ( ) ( )1

| 1ˆ .k k ku CB T CAx
−

−= −  (3.30) 

Equation (3.30) is given for a case where all outputs are run at the same time (i.e., 

the full C matrix is used).  As mentioned earlier, running all contexts simultaneously is 

not possible and a reduced version of the C matrix, Cr, should be employed.  When 

multiple tools start at the same time (e.g., Cases 7–15 of Table 3.1), Cr has more than one 

row, but the matrix B is constructed for a single input system and therefore, has only one 

column.  The resulting controller gain (CrB)-1 is then the inverse of a non-square matrix.  

In such a case, the Moore-Penrose pseudoinverse can be used to obtain a least squares 

solution for the single input that minimizes the sum of the predicted output errors for the 

two contexts being run.  The non-square gain matrix discussed above results from 

representing a system with multiple machines that can start simultaneously with a model 

that has only a single input.  This problem can be addressed by adding individual inputs 

for each tool to the system model, an approach which is demonstrated in the next 

subsection. 

3.4.2 Model Adjustments for Multiple Simultaneous Starts 

As was mentioned in the previous subsection on the controller model, the current 

form of the combined model for the multi-tool/product system does not allow for 

multiple inputs.  This can be problematic if there are occasions where multiple tools are 

started simultaneously.  This shortcoming can be corrected easily by adding additional 

inputs along with their corresponding adjustment states to the state equation.  Thus, the 

new state equation for an example system with two tools and two products is 
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and the new output equation is 
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 (3.32) 

The problem with this form of the model is that for every new tool added to the 

system, not only are a new tool state and input added to the equations but also a new 

adjustment state.  Because the inputs are well known, this represents a waste of 

computational effort to calculate estimates for the many adjustment states.  Fortunately, it 

is possible to alter the model form in order to do away with the adjustment states. 

3.4.3 Controllability and Elimination of Adjustment States 

Upon inspection of the system equations, it becomes clear that the adjustment 

states may not be necessary.  First, the form of the state equation (3.31) is examined.  It is 

obvious from the form of the input matrix, B, that at the update time k+1, the adjustment 

states are the only states that are functions of the input.  It is also apparent from the form 

of the state transition matrix, A, that none of the updated tool and product states are 

functions of the current adjustment states.  This is easily demonstrated by looking at the 

usual test for controllability of the states.  Controllability is the ability to use the system 
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input(s) to steer the states from an initial value at step k0 to a zero value at step fk < ∞  

[99].  A related concept is reachability which implies that the states at a nonzero initial 

condition can be steered by the input to the origin in a finite number of steps (i.e., 

fk < ∞ ).  If all states in the system are controllable (reachable), then the system is said to 

be completely controllable (reachable). 

Similar to the measure for observability, a controllability Gramian is calculated as 

follows: 

 [ ] 2 1, .n

C A B B AB A B A BΓ − =  ⋯  (3.33) 

If the controllability Gramian is full rank, then the system is considered to be completely 

controllable.  For the system with two tools and two products in equation (3.10), the 

controllability Gramian (after eliminating duplicate rows due to the fact that 

2 3 4A A A A= = = ) is 
 

 [ ]

1 0

0 0

, ,0 0

0 0

0 0

C A BΓ

 
 
 
 =
 
 
  

 (3.34) 

which has a rank of 1.  For the system in (3.31), the controllability Gramian (after 

eliminating duplicate rows due to the fact that 2 5A A A= = =… ) is 
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0 0 0 0
, ,
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C A BΓ

 
 
 
 

=  
 
 
 
  

 (3.35) 

which has rank of two.  It is clear that the only controllable states are the adjustment 

states (i.e., the adjustment states make up the controllable subspace).  Finally, from the 
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form of the output matrix, C, one can see that the adjustment states serve simply to 

transfer the input from the state equation to the output equation. 

Fortunately, it is quite easy to alter the form of the model to eliminate the need for 

adjustment states.  By adding a feed-forward matrix, D, the input can be added directly to 

the output equation without the use of adjustment states, thus creating a more 

parsimonious model.  The system equations in the new feedforward model now take on 

the general form 

 1k kx Ax+ =  (3.36) 

 .k k ky Cx Du= +  (3.37) 

For the two tool, two product system, (3.36) and (3.37) are 
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As another alternative, the input and its corresponding gain can simply be subtracted 

from both sides of Equation (3.39) and the open-loop output of the form 

 k k ky y u= −ɶ  (3.40) 

can be used. 

A final note on the elimination of the adjustment state concerns the stability of the 

estimation scheme.  Condition number can be thought of as an indication of the nearness 
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to singularity of a matrix and a smaller condition number is favorable.  Because both the 

matrices A and C are used in the update equations for the estimate error covariance 

matrix, which is in turn used to update the Kalman filter gain for estimate updates, it is 

interesting to study the effect that a change from the adjustment state form of the model 

to the feedforward form of the model has on the condition number of P.  It has also been 

suggested that in a non-threaded control system, monitoring of the condition number of P 

is useful to determine when estimates are becoming biased [93].  Table 3.2 shows the 

condition number of P for several different systems under the two different model forms. 

The first row gives values for the full system, assuming it is possible to obtain the entire 

measurement matrix at every step.  For this ideal case, the stability of the estimation is far 

superior with the new model matrices.  The last three rows of Table 3.2 give values for a 

system operating under the partial measurement policy (i.e., only one row of C is used at 

a time).  The three systems employ different proportions of qualification runs, and again 

it is seen that the values of the condition number of P are far superior with the 

feedforward model.  Additionally, the values for the feedforward system trend downward 

as the number of qualification runs is increased, which is to be expected. 

 

  Mean condition number of P 

  With xadj Without xadj 

Steady State 2.65E+03 1.40E+01 

Zero Quals 3.08E+06 2.05E+06 

5% Quals 3.12E+06 1.65E+04 

10% Quals 3.16E+06 2.72E+03 

Table 3.2: Values of the condition number of P for several test systems. 
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3.5 STATE ESTIMATOR 

3.5.1 Kalman Filtering 

In order to obtain estimates of the process states, Pasadyn employs a discrete time 

Kalman filter [96].  The Kalman filter was introduced earlier in Section 2.2.1.4 which 

covered MPC methods.  Pasadyn’s model can be formulated as a discrete-time linear 

system like the one in equations (2.8) and (2.9) with process noise, wk, and measurement 

noise, vk.  If the noise terms conform to the assumptions given in Section 2.2.1.4 and are 

also Gaussian (i.e., (0, )kw N Q∼  and (0, )kv N R∼ ), then the discrete Kalman filter is 

known to give optimal estimates of the states.  Otherwise, it is the best linear estimate of 

the states. 

Because the system is driven by white noise processes (i.e., the terms wk and vk), 

the states and outputs are considered to be random variables.  The goal of the Kalman 

filter is to find the best estimate of the states conditioned on the measurements up to the 

present time [97, 98].  To do this, the filter must propagate the conditional mean of the 

state (i.e., the state estimate) and the covariance of the state estimate error from one time 

step to the next.  In other words, the measurement information is used to give an unbiased 

estimate of the state and by way of the covariance, an indication of how confident one 

can be in this estimate.  The state estimate and the estimate error covariance can be 

described in terms of expected values as follows: 

 ( )ˆ Ek kx x=  (3.41) 

 ( )E T

k k kP x x= ɶ ɶ  (3.42) 

where the estimate error is defined as ( )ˆ
k k kx x x= −ɶ . 

Unlike the Kalman filter equation (2.10) given in the previous chapter, a 

predictor-corrector form is used by Pasadyn.  As implied by its name, the predictor-

corrector form of the Kalman filter gives a prediction of the states at the beginning of a 
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step (e.g., a wafer start on a tool), and then corrects the estimates when measurements are 

received.  In the first step, also called the time update, the state equation is used to give 

the a priori estimate of the states using (2.8): 

 1| |
ˆ ˆ

k k k k kx Ax Bu+ = +  (3.43) 

where 1|
ˆ

k kx +  represents the one-step-ahead prediction of the state given measurements up 

to step k.  Similarly, a time update for the estimate error covariance matrix, P, is found 

from the following Lyapunov equation [96]: 

 1| | .T T

k k k kP AP A GQG+ = +  (3.44) 

Note that a time update will increase the value of the elements of P, that is, a prediction 

step will decrease the confidence in the state estimates. 

Once a measurement is received, a second update is done so the estimator can 

incorporate the new information.  First, the state estimate is updated using the following 

equation: 

 ( ) 1

1| 1 1| 1| 1| 1 1|ˆ ˆ ˆ( )T T

k k k k k k k k k k kx x P C CP C R y Cx
−

+ + + + + + += + + −  (3.45) 

where the last term in parentheses, 

 
11 1|

ˆ( ),
kk k ky y Cx

++ += −ɶ  (3.46) 

is called the residual or innovation.  Since the residual is the difference between the 

measured output and the expected (estimated) output, it gives an indication of the error in 

the state estimates.  To determine how much of the residual should be incorporated into 

the new state estimate (i.e., the level of confidence in the measurement as opposed to the 

previous state estimate), the residual is multiplied by the term 

 ( ) 1

1| 1| 1|
T T

k k k k k kL P C CP C R
−

+ + += +  (3.47) 

which is referred to as the Kalman gain.  With the noise covariance matrices, Q and R, 

specified by the user, the equations of the Kalman filter are designed to produce a gain 

that offers the optimal balance between information contained in the previous estimate 
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and information contained in the measurement.  Notice the similarity of (3.45) to the 

EWMA update equation (2.4), which uses the constant gain, λ, instead of the Kalman 

gain. 

To acquire a better understanding of the effect of the Kalman gain on the 

contributions to the a posteriori state estimate, 1| 1
ˆ

k kx + + , a simple analysis of some limiting 

cases can be insightful.  Looking at the two cases where P and R become small, the effect 

of the Kalman gain in (3.45) can be seen.  First, if the a priori estimate error covariance is 

small compared to the measurement noise covariance, then there is higher confidence in 

the a priori estimate than the measurement and the contribution by the innovation to the a 

posteriori state estimate will be small.  On the other hand, if the measurement noise 

covariance is small compared to the estimate error covariance, then there is higher 

confidence in the measurements than the estimates and the contribution of the residual to 

the a posteriori estimate is larger.  Table 3.3 gives a summary of this analysis. 

 

High confidence in: Measurement Estimate 

Change in covariance 0R →  1| 0k kP + →  

Effect on Kalman Gain 
1

1|
0

lim k k
R

L C−
+→

=  
1|

1|
0

lim 0
k k

k k
P

L
+

+→
=  

Residual contribution to a 
posteriori estimate 

HIGH LOW 

Table 3.3: Analysis of Kalman filter gain for limiting cases and effects on state estimates. 

The error covariance is also updated during the correction step using the 

following equation which is written in terms of the Kalman gain: 

 1| 1 1| 1|( ) .k k k k k kP I L C P+ + + += −  (3.48) 

Alternatively, the a posteriori error covariance can first be written in terms of the a priori 

error covariance as 
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 1 1 1
1| 1 1|( ) ,T

k k k kP P C R C− − −
+ + += +  (3.49) 

and the Kalman gain can then be written in terms of the a posteriori error covariance as 

 1
1| 1| 1 .T

k k k kL P C R−
+ + +=  (3.50) 

Note that the measurement update step decreases the error covariance, that is, it increases 

the confidence in the state estimates. 

3.5.2 Run-varying Kalman Filter 

Similar to the situations encountered with the process model and control law, the 

estimator requires some adjustments when used with the multi-tool/product system.  

Again, a reduced version of the C matrix, called Cr, must be used, where Cr contains only 

the rows that correspond to the contexts being made during the present run.  Also, a 

properly sized version of the measurement noise covariance matrix, R, must be chosen.  

Here only the entries of R that are at the intersections of rows and columns corresponding 

to the measured outputs are used in the reduced version of the measurement covariance 

matrix, called Rr.  Appendix D gives an example of pseudo-code for calculating Rr.  

Generally, the measurements are considered independent of one another and R is a 

diagonal matrix.  In this case, Rr is an appropriately sized diagonal matrix with nonzero 

elements corresponding to the noise variances of the outputs which are measured. 

It is important to note that the estimate error covariance matrix, and therefore the 

Kalman gain, are dependent on the run index, k.  Under normal circumstances where the 

system matrices (A, B, C) are unchanged from one run to the next, the a priori and a 

posteriori error covariance matrices and the Kalman gain reach steady state values after a 

short transition period.  In fact, for time invariant processes, the optimal, steady state 

value of the Kalman gain can be calculated off-line before starting the process, and this 

gain can then be used for every run from start to finish [94, 96].  In the case of the multi-
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tool/product system, the C matrix varies amongst the different values of Cr depending on 

which product-tool combination is being run.  In this case, the matrix P is not able to 

reach a steady state value, and as a result, neither is the Kalman gain. 

3.6 EFFECT OF QUALIFICATION RUNS ON SYSTEM PERFORMANCE 

It was previously stated that the usage of qual runs causes the incursion of 

additional costs; therefore, it is important to gage the importance of the qual runs to the 

control system.  It is stated in Wang et. al [123] that the outputs of a multi-tool/product 

system can be controlled well by a non-threaded control system without qualification 

runs because the controller does not need exact estimates of the individual states, but 

rather an exact estimate of the predicted output for the context(s) being run.  The input 

move calculated by the controller model (Equation (3.30)) is a function of the difference 

between the output target, T, and the predicted open loop output based on the state 

estimates.  It is therefore unimportant from a control stand point that the individual states 

be exact estimates of the true states as long as the sums of the individual states for each 

context are good estimates of the outputs for the contexts.  It is also shown in [123] that a 

system without quals can give unbiased estimates of the outputs, but unbiased estimates 

of the individual tool and product states cannot be found.  Therefore, qual runs are not 

strictly necessary for good control of the system outputs, but their use does offer the 

advantage of accurate estimates of the individual tool and product states.  As stated in 

[93] and [127], this can be very useful in terms of process monitoring; therefore, 

including qual runs could be a good strategy in a system where improved monitoring 

provides a cost savings that offsets the added costs of running qualifications. 

To demonstrate the effects discussed above, a series of simulation studies are 

performed in which the number of qualification runs, as a percentage of the total number 

of runs, is varied from zero to ten percent in increments of one percent.  The basic system 
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(called Test 1) under consideration has three tools and three products with an equal 

percentage of each product in the product mix.  Additionally, each product has its own 

distinct processing time which also differs from the processing time of a qual run.  In 

order to demonstrate the effects of different process variables, five other system setups 

are tested in addition to the basic system (Test 1).  In the Test 2 system, the processing 

times for the qual runs and products are reversed.  In the Test 3 system, the traffic 

intensity (a measure of the product volume in the system) is decreased from a high 

volume setting to a low volume setting, and in the Test 4 system, the product mix is 

unevenly divided among the three products.  Finally, the Test 5 system has six tools 

instead of three, and the Test 6 system has six products instead of three.  Table 3.4 

summarizes the variable settings for the five test cases. 

 
                                      Test 
Variable 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

Num of Tools 3 3 3 3 6 3 

Num of Prods 3 3 3 3 3 6 

Product 1 Processing Time 1 4 1 1 1 1 

Product 2 Processing Time 2 3 2 2 2 2 

Product 3 Processing Time 3 2 3 3 3 3 

Product 4 Processing Time - - - - - 4 

Product 5 Processing Time - - - - - 5 

Product 6 Processing Time - - - - - 6 

Qual Processing Time 4 1 4 4 4 7 

Product Mix* All 1/p All 1/p All 1/p (0.6, 0.3, 0.1) All 1/p All 1/p 

Traffic Volume High High Low High High High 

 Table 3.4: Summary of variable settings for different test cases; differences from the 
base case are highlighted.  *Indicates the fraction of each product in the mix 
where p is equal to the number of products. 
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To test the performance of the estimator and controller with different disturbance 

models, four different types of test signals are used with each having a different set of 

disturbances added to the states.  Test signal one (Sig1) has only stationary white noise 

added to the states.  In the other three tests (Sig2-3), non-stationary disturbances are 

added to the states.  For Sig2, IMA(1,1) disturbances (see Appendix C for more 

information on IMA(1,1) models) are added to all states.  For Sig3, shift and drift 

disturbances are added to the tool states with only white noise added to product states, 

while Sig4 employs a combination of disturbances with shifts and drifts added to tool 

states and IMA(1,1) added to the product states.  In all cases, small white noise 

disturbances (compared to the size of the state disturbances) are added to the outputs.  A 

summary of the disturbance signals for the states can be found in Table 3.5. 

 

Signal Description 

1 White noise added to all states 

2 IMA(1,1) disturbance added to all states 

3 White noise added to all states, shift and drift added to tools 

4 IMA(1,1) added to product states; white noise, shift, and drift added to tools 

Table 3.5: Summary of disturbance signals applied to test systems. 

Each simulation is a combination of three factors: test system, disturbance signal, 

and qualification percentage, and can be labeled for easy identification as (Test, Signal, 

Qual Percentage) = (i,j,k) with [ ] [ ] [ ]1,5 , 1,4 , 0,10i j k∈ ∈ ∈ .  Each simulation is run over 

a campaign length of 500 runs with qual runs spaced as evenly as possible while also 

trying to insure an equal distribution of qual runs across the tools.  The root mean squared 

errors for outputs (RMSEy) and state estimates (RMSExest) are recorded over the last 450 

steps.  Note that the RMSExest is the sum of errors over all states.  Each of the 

experiments is replicated 50 times with the results being averaged to get smoothed values 
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of RMSEy and RMSExest.  The estimates for tool states are initialized at the true values 

while the initial values for product states have a 50% error.  The matrix R is diagonal and 

has entries equal to the covariances of the white noise disturbances added to each output.  

The only exception is that the elements of R corresponding to qual runs are set to a value 

one order of magnitude smaller than those of other outputs so the estimator has greater 

sensitivity to these measurements.  Initially, the matrix Q is also diagonal with entries 

equal to the covariances of white noise signals used to generate the disturbances for each 

state; call this matrix, Qplant.  However, this tuning is found to be too aggressive, 

especially in systems with delays (see Section 4.5.2.2), and is decreased for better noise 

rejection; the final value is equal to Qplant /5000. 

Results for the base case (Test 1) with all four disturbance signals are shown in 

Figure 3.1.  Note all output error points in Figure 3.1 are scaled by the RMSEy  value for 

the Test1, Sig1, zero qual (1,1,0) case for easier comparison and plotting; the same is 

done for estimate error points using RMSExest (1,1,0).  As the qual percentage is 

increased from zero to ten, it is clear that the impact on the output error (solid lines in 

Figure 3.1) is minor except for systems with shift and drift disturbances (Sig3 and Sig4); 

for these cases, most of the improvement is seen in the transition from zero quals to one 

percent quals.  For the state estimate error (dashed lines in Figure 3.1), there is large drop 

in error from zero quals to one percent quals which is due primarily to the initial offset 

between the product state estimates and the actual states.  Without a way to get unique 

measurement of any of the states, the zero qual system is never able to overcome this 

initial error.  Once quals are introduced to the system, however, the rate of decrease in 

estimate error is much slower after the one percent qual level; this is evident from the 

plots of the state estimate errors which are relatively level in the section that spans one 

percent quals to ten percent quals.  As with the output errors, decreases after the one 
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percent qual level are more noticeable in the estimate errors for the cases with 

disturbance signals containing shift and drift errors. This is due primarily to larger errors 

immediately after shifts, and the addition of extra quals aids in the mitigation of such 

errors. 

Figure 3.1: Output error from target (solid lines) and state estimate error (dashed lines) 
for Test1 system with four different disturbance models. 

Simulation results for Test 2 (product processing times reversed from the base 

case), Test 3 (plant run in lower volume regime), and Test 4 (unbalanced product mix) 

are similar to those of Test 1 and are therefore, not shown here.  The effects of the 

variable changes for these cases are more interesting once the scheduling portion of the 

system is added to the simulations (see Chapter 4) because the idealized system used here 
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treats the outputs as if they are run in series rather than representing the outputs true 

behavior in the plant where several products can run in parallel.  There is one interesting 

observation contained in the Test4 results; the unbalanced product mix of this system 

causes the output and estimate errors for the three products to be quite different from one 

another.  Despite the fact that the sums of errors over all products or all states in Test 4 

are similar to those of the base case (where individual product errors are roughly the 

same for all products), the individual errors for each product in Test 4 are inversely 

proportional to their percentage in the product mix (i.e., product 1, which is 60% of the 

mix, has the lowest error while product 3, which is 10% of the mix, has the highest). This 

effect is expected since more frequently run products have more samples available for 

feedback to the estimator. 

The results for Test5 (six tools) and Test6 (six products) are plotted in Figures 3.2 

and 3.3, respectively.  Note that like Figure 3.1, all data points in Figures 3.2 and 3.3 are 

scaled by the case (1,1,0) values which allows for comparison across tests.  In 

comparison to the base case (Test 1), the output errors for a system with purely white 

noise disturbances (Sig1) perform about the same when additional states are added.  

However, an increase in output error is more apparent in the larger systems (Tests 5 and 

6) when non-stationary disturbances are injected (Sig2–4).  The addition of extra states 

has little effect on the estimation errors except in the zero qual case; notice that the 

RMSExest values for (4,j,0) are smaller than those in (1,j,0) while the same values in 

(5,j,0) are larger.  As was discussed earlier, the zero qual system has difficulty 

overcoming the initial 50% errors of the product states, so in Test 5, where the number of 

products is larger, the estimate errors for the zero qual case are larger and in Test 6, 

where the number of tools is larger, the estimate errors are smaller. 
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Figure 3.2: Output error from target (solid lines) and state estimate error (dashed lines) 
for Test 5 (six tool) system with four different disturbance models. 
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Figure 3.3: Output error from target (solid lines) and state estimate error (dashed lines) 
for Test 6 (six product) system with four different disturbance models. 

3.7 CONCLUSIONS 

In this chapter, the methods described by Pasadyn [41, 53] for the non-threaded 

control of a multi-tool, multi-product system are reviewed and studied.  Included are a 

state space model of the system, a run-varying Kalman filter for estimation, and a 

controller based on model inversion.  In addition to some review of previous 

observability analysis of this system based on the full system matrices, analyses based on 

the partial and pathwise observability of the run-varying system are also performed.  

These analyses are important because they form the basis for scheduling algorithms 

presented in the succeeding chapter.  Also, the system model is adjusted to eliminate 
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additional states that track the inputs to the system and to allow for multiple inputs.  This 

has the added benefit of increasing the stability of the observer as well. 

Finally, the effects of varying percentages of qual runs in the system are studied 

under a wide range of conditions.  It is found that the percentage of qual runs used has 

little effect on the estimation error after the three to five percent level is reached.  

Furthermore, the output errors show very little improvement in performance with 

additional quals; only the systems with shift and drift disturbances show any 

improvement.  The models and methods described in this chapter are important as they 

are used in the next chapter to create and test a combined scheduling and control system.
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Chapter 4 

Integration of Process Control and Scheduling with Control-friendly 
Scheduling Algorithms  

4.1 INTRODUCTION  

After establishing the necessary modeling approach for the multi-tool, multi-

product system in the previous chapter, the current chapter identifies methods for using 

the control system model to make scheduling decisions with the goal of improving 

estimation and control performance.  Control-friendly scheduling algorithms are 

developed based on the partial observability analysis performed in the previous chapter 

and are compared with other methods from previous work on both the basis of control 

and scheduling performance.  In order to do these comparative studies, simulations for 

both systems are constructed and integrated. 

4.2 USE OF PROCESSING DECISIONS TO IMPROVE ESTIMATION 

4.2.1 Objective Function Based on Estimate Error Covariance 

After observing that the error covariance matrix continuously varies over the 

course of the runs in the multi-tool/product system, Pasadyn [41, 54] proposes the idea 

that by manipulating the order of the runs, the performance of the estimator can be 

improved.  A simple one tool, one product system with two states and two outputs (i.e., a 

production run and a qualification) is used to demonstrate the effect that processing order 

can have on the state estimate variance.  Using simulation experiments, he shows that a 

series of runs that alternates between the two outputs gives better estimation results than 

two alternative sequences which use long runs of each product consecutively (i.e., tool 

dedication).  When saying the estimation is “better,” it is in the sense that, of the three 
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orderings, the alternating schedule gives the minimum variance for the state estimation 

error (i.e., the diagonal elements of the P matrix are kept the smallest).  A re-creation of 

the above experiment can be found in Appendix C and can be used for comparison to 

other methods presented later this chapter. 

Building upon the simple example above, Pasadyn [41, 54] discusses ways in 

which the quality of the estimation can be improved by changing the manner in which 

processing decisions are handled.  Starting with a reference set of twenty runs in which 

the product-tool pairings and processing order are already determined, three methods for 

minimizing the estimate error over the sample set are suggested: 

1. While maintaining the product-tool pairings and order of processing in the 

reference set, and assuming that measurements can only be made on a limited 

number of runs, determine which runs to measure (i.e., create a sampling plan). 

2. Given a sampling plan and maintaining the assignment of products to tools in the 

reference set, choose the order in which the runs should occur. 

3. Given a sampling plan and maintaining the order of products in the reference set, 

choose the tool on which each product should be run. 

In all cases, the objective function to minimize utilizes the trace (i.e. sum of the 

diagonal elements) of the error covariance matrix at each step.  The purpose of this 

design is to reduce the total estimate error over all states in the system over the course of 

the twenty runs.  In mathematical terms, the objective function, J, can be written as: 
 

 
20

1

( ).i

i

J trace P
=

= ∑  (4.1)  

To obtain the lowest total estimation error in each case above, an optimization 

problem is solved by changing the decision variables in order to minimize J in Equation 

(4.1).  The decision variables for cases 1–3 are, respectively, the sampling plan, the 
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processing ordering, and the assignment of products to specific tools.  Of the three 

problems listed, only the first does not have a solution space that grows exponentially as 

the number of states increases.  For Case 1, the global optimum can be found by complete 

enumeration for smaller systems, but the solution space for the other two systems is too 

large for such an approach.  Instead, the author uses a suboptimal approach where the 

context (Case 2) or tool (Case 3) selected for the next run is the one in the available set 

that gives the maximum reduction in trace(P) for the current step [41, 54].  This is 

equivalent to sequentially minimizing J at each step and can be categorized as a greedy 

heuristic. 

While trace(P) is a sensible choice for the control-friendly scheduling algorithm it 

is not the only one of several objectives based upon the estimate error covariance matrix 

that is tested here.  One such alternative objective is the trace of CPC
T, which is a 

transform of the estimate error covariance matrix and represents the output error 

covariance matrix; the trace of this matrix is equal to the total variance of the output 

estimate error.  The next P-based objective, which is similar to the previous one but is 

calculated only on the basis a single output, is ( )trace T

r rC PC .  Here only the variance of 

the output (or outputs in the case of simultaneous starts) that is used at each step is 

considered.  The final objective using P to be tested is the condition number of P.  

Because condition number is measure of numerical stability, the condition number of the 

error covariance matrix gives an indication of the accuracy of the estimates. 

To gain a better understanding of the behavior of the objectives that use the trace 

of P or one of its transformations, it is useful to expand the matrix in symbolic form and 

then perform the trace operation to see which entries of the error covariance contribute to 

the final objective function.  Additionally, the effect that particular measurement actions 

have on the entries of the error covariance matrix is important.  Viewing the effects that 
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different measurements have on P through the lens of the objectives in equation form 

gives a good insight into the algorithmic scheduling process. 

First the response of P to different measurements is discussed. In general, a 

qualification run decreases variance for all state errors (represented by the diagonal 

elements of P) and also the absolute values of the covariances between state errors (the 

off-diagonal elements).  The largest reductions are incurred by the variance and 

associated covariances of the tool state being qualified.  For measurements of production 

runs, the variance terms for the product and tool states that compose the output being 

measured decrease while the variance terms of the other states increase.  Also, the 

absolute value of the covariance between the measured product/tool combination 

increases while other covariance terms are affected very little.  The factors that affect the 

size of these changes are the size of the terms in the noise covariance matrices Q and R 

and the frequency with which states are measured.  Because the time update step of the 

Kalman filter adds Q in the update of P, states with larger noise and those that are 

measured less frequently tend to have larger variance terms in P, and the measurement of 

such states leads to larger drops in variance at the measurement update step.  Finally, it is 

noted that, normally, covariance within tools and within products is positive, while 

covariance between tool/product combinations is negative. 

The simplest of the three objectives uses trace(P) which is the sum of the 

variances of the state estimate errors. In equation form, the objective is 
 

 ( ) ( )
1 1

trace var
t p t p

ii i

i i

P P x
+ +

= =

= =∑ ∑ ɶ  (4.2) 

where ix~  is the estimate error for the ith state, t is the number of tools in the system, and 

p is the number of products.  Accordingly, a qual run always reduces this objective, while 

a production run will have varying effects depending on the size of increases and 
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decreases in the variance terms.  Typically, the longer a product goes without 

measurement, the larger its variance term becomes so that its selection is preferred when 

it does become available. 

The next objective uses the trace of the matrix CPC
T.  Recall that C is a matrix 

consisting of ones and zeros that is used by the output equation to combine tool and 

product states to make the various outputs.  The transformation, CPC
T, represents the 

error covariance matrix of the outputs, and its trace is equal to the sum of variances of the 

output errors.  The objective can be expressed as 
 

( ) ( ) ( ) ( ) ( )

( )

1 1 1 1

1 1 1 1

trace 1 var var 2 cov

1 2 .
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

ɶ ɶ ɶ ɶ

 (4.3) 

It is apparent from Equation (4.3), that the objective is a weighted combination of 

variance and covariance terms from P.  Interestingly, the product variance terms are 

weighted by the number of tools while the tool variances are weighted by the number of 

products plus one; the plus one is due to the quals.  Also, the only covariance terms 

included are those between tool/product pairs.  Because tool/product covariance terms are 

negative, quals tend to increase the third term of the objective while product runs tend to 

decrease this term.  As with the trace(P) objective, a qual run reduces the first two terms, 

but now at least some of these decreases are offset by the increase in the third term due to 

inclusion of covariance, and the likelihood of selecting a qual is decreased.  Conversely, 

product runs now have an additional decreasing term due to the covariance, and are more 

likely to be selected with this objective than with trace(P). 
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The final objective function studied in this section is ( )T

rr PCCtrace , where Cr 

represents a reduced form of the C matrix and is composed of the row of C corresponding 

to the output being run.  The equation form of the objective for a product run is 
 

 
( ) ( ) ( ) ( )trace var var 2cov

2 .

T

r r i j i j

ii jj ij

C PC x x x x

P P P

= + +

= + +

ɶ ɶ ɶ ɶ
 (4.4) 

which shows that it is made up of the variance and covariance terms for the tool, i, and 

product, j, that compose the output.  For a qual run, it is simply the variance of the tool 

being measured.  Because a product run causes all three terms of Equation (4.4) to 

decrease, once a particular tool/product combination has been measured, this objective 

favors running the same output over and over.  It is common with this objective to see 

long stretches of the same product being run on a particular tool. 

4.2.2 Objective Functions Based on Partial Observability Analysis 

In an attempt to develop other algorithms for comparison to the P-based heuristics 

above, the methods of Section 3.3.1 can be employed.  A dispatching method based on 

the research of Chen [116] was already discussed in Section 3.2.1.1 and may work well 

for larger systems with a single output.  Here the focus is on the work of Hong et al. 

[117] since it is developed for a broader range of systems.  As was explained in the 

earlier section on partial observability, the degree of observability for a time varying 

system can be quantified by performing a SVD on the information matrix.  Because the 

smallest singular value, σn, is associated with the least observable subspace (LOSS, for 

short), one can deduce that this subspace is most in need of measurement information in 

order to become more observable.  Therefore, the state(s) associated with the LOSS 

should be measured as soon as possible. 
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Because the rows of the output matrix, C, dictate which subspaces of the state 

space are measured at each output, it is logical to compare the rows of C to the least 

observable singular vector of the information matrix.  By doing such a comparison, the 

measurement which needs to be taken in order to increase the observability of the system 

can be determined.  To quantify the similarity between the singular vector in question and 

the rows of C, a measure of colinearity can be used (this is possible because all vectors in 

question have length n).  Finding the degree of colinearity between the measurable 

subspaces and the LOSS forms the basis for a new algorithm to select the next output to 

be run and measured when a tool becomes available.  First, the angles between each row 

of C corresponding to the available tool and the least observable singular vector are 

calculated: 

 ,1
,

min

cos ,
T

t p

t p

C

U

−
 

∠ =   
 

 (4.5) 

where Ct,p represents the row of C which corresponds to the available outputs at the 

current step, t is the tool selected from the set of available tools at the current step, and p 

is the product selected from the set consisting of all products and the qual(s) for the 

available tool(s).  Umin is the singular vector corresponding to the smallest singular value 

of Σk. 

After all angles have been calculated, the row of C with the smallest angle 

between itself and the singular vector is selected because it represents the measurable 

subspace that is closest to being collinear with the least observable subspace.  Finally, the 

product(s) and tool(s) associated with the selected row of C are chosen for processing the 

next run.  This procedure is the same as running the following optimization problem at 

each step: 

 ( ),
, ,

arg min t p
t T p P Q∈ ∈

∠  (4.6) 
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where T  is the set of available tools at the current step and Q  is the set of quals 

corresponding to the tools in T . 

The authors of [117] also show that the smallest singular value is the measure of 

the overall degree of observability for the system.  The smaller the value of the minimum 

singular value, the more unobservable the system is.  Therefore, a second objective is 

developed that seeks to choose the measurement from the outputs available that causes 

the largest increase in σn. 

4.3 COMPARISON OF CONTROL-FRIENDLY SCHEDULING OBJECTIVES ON SINGLE 
TOOL/SINGLE PRODUCT SYSTEM 

To demonstrate the performance of scheduling systems that use performance 

indices based on the estimate error covariance and partial observability, several small 

scale simulations are performed.  For the sake of comparison, the single tool, single 

product system from Section 4.2.1 and Appendix E is used, but rather than look only at 

the effect of product ordering on the estimate error covariance of the states, the values of 

several different objective functions are observed and compared. 

The simulated system from Appendix E has two states (one tool, one product) and 

two outputs (one production run and one tool qualification run).  The same set of three 

simulations is repeated and the values of the following different possible objective 

functions are observed: 

1. Trace of the estimate error covariance matrix, P.  Proposed by Pasadyn, and 

discussed in Section 4.2.1, this objective is the sum of the theoretical error 

variance for all state estimates (tools and products) in the system.  The goal is to 

choose the outputs which, when measured, will give the largest reduction in the 

trace of P. 
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2. Degree of colinearity.  As discussed in the previous section, this objective is 

calculated by finding the angles between the subspaces of the available contexts 

and the least observable subspace of the system state space. The subspaces for the 

available contexts are represented by the rows of the C matrix that correspond to 

available tools and products, and the least observable subspace is represented by 

the singular vector corresponding to the minimum singular value of the 

information matrix, L0,k.  When using this objective, the context with the smallest 

angle is chosen for the next run because it will provide the best improvement in 

system observability. 

3. Degree of observability.  Also discussed in the previous section is the fact that the 

smallest singular value of L0,k gives a measure of the relative degree of system 

observability.  With this objective, the context that will give the largest increase 

(or smallest decrease) in the degree of observability is chosen to be run at the next 

step. 

For each of the three sample schedules used in the simulations of Section 4.2.1 and 

Appendix C, Figures 4.1–4.3 show (a) the values for the estimate error covariance matrix, 

(b) the trace of P, (c) the degree of colinearity, and (d) the degree of observability. 

Figure 4.1 and 4.2 show the simulation results when a tool dedication schedule is 

used. In Figure 4.1, the schedule used consists of 25 consecutive runs of the product 

followed by an equally long run of tool qualifications, while the opposite schedule (qual 

runs followed by product runs) is used to generate Figure 4.2.  Plot (a) in each figure 

shows the behavior of the individual error variances for each state while plot (b) shows 

the trace of P.  Because the trace of P is simply a sum of the individual estimate error 

variances for all of the states in the system, plot (b) shows similar behavior to plot (a) in 

both figures.  In Figure 4.1, the large decrease in individual variances at the switching 
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point in plot (a) is also seen for the total variance in plot (b), and in Figure 4.2, the large 

decrease in product state error variance and small increase in tool state error variance 

apparent in plot (a) are seen as a large decrease in the total variance value seen in plot (b).  

Interestingly, the behavior of the plot of total variance, plot (b), is almost identical for 

both Figures 4.1 and 4.2, even though the two schedules are the reverse of one another.  

This occurs because, in this simulation example, the noise covariance matrix for the state 

equation, Q, is defined to be the identity matrix (i.e., both state noise variances have a 

value of one).  Having different noise variance values for each state (as would be more 

common in practice) would lead to less similar patterns in plots of the trace of P for 

different schedules. 



 83 

Figure 4.1: Single tool, single product system with tool dedication schedule; the first 25 
runs are of the product and the last 25 runs are qualifications.  (a) Estimate 
error variance for each state.  (b) Total error variance for the system (trace 
of P).  (c) Degree of colinearity of each output to the least observable 
subspace.  (d) Minimum singular value of the information matrix, L0. 
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Figure 4.2: Single tool, single product system with tool dedication schedule; the first 25 
runs are qualifications and the last 25 runs are of the product.  (a) Estimate 
error variance for each state.  (b) Total error variance for the system (trace 
of P).  (c) Degree of colinearity of each output to the least observable 
subspace.  (d) Minimum singular value of the information matrix, L0. 
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the trace of P is also a result of the simulation set up (i.e., being the identity matrix).  

Given non-identical values for the state noise variances, a stable pattern that looks like a 

triangle wave develops in the plot of the total estimate error variance (i.e., the trace of P) 

because changes in each individual estimate error variance, while still opposite in sign, 

are no longer equal. 

Figure 4.3: Single tool, single product system with an alternating schedule; the 25 
product runs are alternated with the 25 qualifications.  (a) Estimate error 
variance for each state.  (b) Total error variance for the system (trace of P).  
(c) Degree of colinearity of each output to the least observable subspace.  
(d) Minimum singular value of the information matrix, L0. 
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to the least observable subspace.  For the two tool dedication simulations, the plots of the 

degree of the colinearity show very different behavior.  In Figure 4.1, the initial long 

campaign of product runs causes the subspace associated with the quals to be closer to 

the least observable subspace as expected.  After the switch, the two angle values for the 

output subspaces move toward each other as the product subspace becomes less 

observable and the qual subspace becomes more observable during the long string of qual 

runs. 

When the order of the two campaigns is switched in the next simulation, the 

behavior of the two angle values is also reversed.  In Figure 4.2 (c), the rate of change of 

the angle values after the switching point is much more rapid than in the first plot.  In the 

first case, the two angles move slowly toward each other, but in the second case, their 

plots actually cross over one another with the qual subspace becoming closer to the least 

observable subspace after the 12th product run (37th run overall).  Clearly, the system 

favors qual runs as the means to provide more information about the least observable 

subspace.  This is also evident in the third scenario (Figure 4.3, plot (c)) where the two 

angles move toward their own steady state values but the qual angle remains smaller than 

the product angle. 

For the tool dedication schedules, the behavior of the colinearity measures ((c) 

and (d)) is unlike that of the state estimate error variances ((a)) when looking within the 

two individual campaigns of 25 runs.  For the variances, the order in which the two 

campaigns are run makes no difference.  During the long series of product runs (runs 1–

25 in Figure 4.1 and runs 26–50 in Figure 4.2), the two variances show the same trends; 

this is also true during long series of qual runs (runs 26–50 in Figure 3.1 and runs 1–25 in 

Figure 4.2).  On the contrary, the colinearity values show a dependence on the order in 

which the two campaigns are processed. 
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One last difference between the colinearity angles and the state variances 

concerns the sensitivity of the values to changes in the schedule.  It is apparent from the 

figures that the state variances change drastically at the switching points of the two tool 

dedication schedules, but the angles of colinearity change much more slowly.  Therefore, 

it is suggested that a moving window approach may be used with the colinearity angles in 

order to speed up their response to changes in the schedule.  Recalling the theory on local 

observability in Section 3.3.1 in which a path length of n (where n = total number of 

states) is suggested, a window length of two is used in this case to gage the effect of 

using the moving window approach with the angle based objective.  Figure 4.4 shows the 

results for the same set of simulations run in the previous examples, but here, the angles 

are calculated from an information matrix based on only the last two steps.  For the two 

tool dedication schedules, the angle values change much more drastically after the 

switching point than they did in the previous example.  Rather than slowly move toward 

each other with an eventual crossover, the two angles completely exchange values within 

two steps.  Similarly, with the third schedule, the angle values quickly reach their steady 

state values in two steps.  It is clear a moving window approach allows the angle based 

objective to respond much more quickly to changes in the schedule. 
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Figure 4.4: Degree of colinearity objectives using a moving window calculation (window 
size of two).  (a) Schedule 1: 25 product runs followed by 25 qual runs.  (b) 
Schedule 2: 25 qual runs followed by 25 product runs.  (c) Schedule 3: One 
product run alternated with one qual run for 50 runs. 
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a higher value until the end of the simulation.  This differs from the plots of the trace of 

P, which showed almost no difference between the two tool dedication schedules. 

For the final schedule, which alternates the two outputs, the singular value of the 

least observable subspace rises steadily throughout the course of the simulation.  In this 

case, a switch from a product run to a qual run causes a larger increase in the objective 

function than a switch from a qual run to a product run.  Therefore, the singular value 

based objective seems to favor qual runs and shares this trait with the angle based 

objective function. 

Interestingly, all three schedules result in the same final value for the smallest 

singular value, but the paths of the intermediate values are quite different.  This is plainly 

seen in Figure 4.5 where the singular value trends for all three schedules are shown on 

the same plot.  Judging by the mean value of the objective over the course of the runs, the 

alternating schedule (Schedule 3) maintains the highest degree of observability while the 

dedication schedule with production runs followed by qual runs (Schedule 1) maintains 

the lowest.  The mean values for Schedules 1-3 are 2.72, 3.35, and 4.82, respectively. 
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Figure 4.5: Values of the smallest singular value of the information matrix for the three 
different schedules on the single tool, single product system. 

Finally, recall that the information matrix is a square version of the observability 
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dependable measurement and more observations are needed for good estimation.  For the 

singular value based objective, lowering the noise level of one of the outputs tends to 

increase the value of the objective and vise versa.  Also, changing the noise level of the 

qualification output has a stronger effect on the objective than changing the noise level of 

the production run. 

After observing the behavior of the various objective functions for the single 

tool/single product system, testing on systems with more tools and products is necessary 

to observe the effects on these added complexities.  Additionally, because this work aims 

to gauge the effect of the control system on the scheduling system, the various schedules 

produced by the above control based objectives need to be evaluated against standard 

scheduling methodologies.  Therefore, the larger scale simulations need to have a 

component that allows for assignment of processing times to the various products in the 

system and a way of tracking the movement of the products.  The following section 

discusses the development of the scheduling portion of the simulations. 

4.4 MULTI-TOOL/PRODUCT SYSTEM FROM AN OPERATIONS RESEARCH 
PERSPECTIVE 

4.4.1 Introduction 

Thus far, the main focus of this chapter has been on the modeling, control, and 

estimation of the multi-tool/product system and the development of algorithms for 

improving process control performance by manipulating the processing order and tool 

allocation of products.  While good control performance is a key aspect of the 

manufacturing facility, it was stated in the earlier chapters that scheduling performance is 

also another important metric.  Therefore, it is important that the schedules obtained from 

the control-friendly heuristics need to be compared to schedules which are considered to 

be optimal in relation to some performance indices which are more typically used in the 
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operations research community (i.e., from a traditional scheduling point of view).  These 

types of criteria are usually based on the amount of time a product spends in the system 

(cycle time) and/or its completion date relative to its due date (tardiness).  Another 

important measure of schedule performance is the rate at which a system is able to make 

products (throughput). 

4.4.2 Discrete Event System Simulation 

To evaluate the scheduling performance of the multi-tool/product system, a 

simulation which keeps track of the relevant time based metrics must be built.  A discrete 

event simulation can be used to accomplish the aforementioned task.  In a discrete event 

simulation, the state of the system is described by a set of variables whose values 

completely express the condition of the system at a given point in time.  Further more, the 

state of the system is considered to change only at discrete points in time that correspond 

to some system related event [100]. 

For the simplified example of a single tool with multiple products, the events of 

interest are the arrivals of products to the buffer in front of the tool, the product starts on 

the tool, and the releases of products from the tool once processing is completed.  The 

times at which these events occur are important variables.  Other variables of interest are 

the status of the tool (i.e., busy or idle), the number of products in the buffer, the number 

of products in service, and the number of products in the system as a whole.  Note that 

one of the events listed and several of the variables listed are redundant.  The wafer start 

time for a given product is equal to either its arrival time or the completion time of the 

product ahead of it depending upon the value of the tool status.  If we assume that the 

tool is only idle when there are no products available for processing (i.e., an empty 

buffer) and there are no tool breakdowns, the tool status itself is a function of the number 

of products in the buffer.  It is also assumed that if the tool is not idle or broken down, 
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then the number of products in service is one.  Finally, the number of products in the 

system is simply equal to the sum of products in the buffer and in service, so that only 

two of the three values need to be tracked.   Table 4.1 shows a list of useful system 

variables.  Given these variables, the following relations hold: 

 ,q s aT t t= −  (4.7) 

 ,q s aT t t= −  (4.8) 

 .c c a a sT t t T T= − = +  (4.9) 

The use of Equations (4.7)–(4.9) is discussed further in section 4.4.3.1 on the setup and 

analysis of the discrete event simulation used in this work, but first the use of queueing 

theory to analyze the system is discussed. 
 

Variable Symbol 

Arrival Time ta 

Start Time ts 

Completion Time tc 

Time in Queue (wait time) Tq 

Service Time Ts 

Cycle Time Tc 

Table 4.1: Time related variables for discrete event simulation 

4.4.3 Queueing Theory Analysis 

Because manufacturing systems like those found in the semiconductor industry 

consist of a tool or set of tools with buffers for holding in process material, they are often 

analyzed using queueing theory.  A queueing system consists of a server (or servers) that 

will process the customers that arrive into the system.  In the manufacturing case, the 

servers are the tools and the products are the customers.  In the event that all servers are 

busy, there is a buffer (queue) where they can wait until a server becomes available.  A 
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brief review of notation and terminology for queueing systems can be found in Appendix 

E (see also [100], Chapter 22 and references therein for a more detailed discussion). 

Before proceeding further, some important system parameters and variables are 

defined.  The two major parameters which are used to define the queueing system are the 

arrival rate, λ, which has units of products (arriving) per unit time, and the service rate, µ, 

which has units of products (processed) per unit time.  The inverses of these two 

variables are called, respectively, the mean interarrival time (1/λ) and the mean service 

time (1/µ).  The term ρ λ µ=  is referred to as the traffic intensity.  Because it is 

normally desirable to keep the number of customers in the system bounded, ρ is usually 

required to be less than one (i.e., the service rate is higher than the arrival rate).  If 1ρ > , 

then the number of customers in the system will grow without bound because the service 

process can not keep pace with the arrival process.  From a manufacturing perspective, ρ 

is akin to the overall tool utilization for the system.  The term π0 represents the steady 

state probability that there are zero customers in the system, and for a system with no 

unforced idle time or breakdowns, it represents the percentage of time the system is idle.  

Depending upon the nature of the system, steady state probabilities for non-zero states 

may or may not be easily found. 

While the arrival rate and service time describe how the system operates, it is also 

important to gage the performance of the queueing system.  Typically one would like to 

know how much time (on average) customers spend in the queue waiting, in service, or in 

the system as a whole (i.e., the cycle time).  It may also be interesting to know how many 

customers are typically in line (i.e., the mean queue length).  Table 4.2 gives a list of the 

variables of interest with their symbols. 
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Variable Symbol 

Mean number of customers in the system L 

Mean number of customers in the queue Lq 

Mean number of customers in service Ls 

Mean time customer remains in the system W 

Mean time customer remains in the queue Wq 

Mean time customer remains in service Ws 

Table 4.2: Important steady state variables for queueing systems 

A useful property of queueing systems is given by Little’s queueing formulae, 

which state for any queueing system with a steady state distribution, the follow are true: 

 

,

,

.

q q

s s

L W

L W

L W

λ
λ

λ

=

=

=

 (4.10) 

These equations are quite useful in the analysis of queueing systems because if the 

average number of customers in the system, queue, or service area is known then the 

corresponding average time they spend there can be calculated. 

There is great value in modeling a process in terms of a queueing system.  If the 

process can be assumed to fit one of the standard queueing models it becomes possible 

(in many cases) to determine important system metrics such as average queue length (Lq), 

average cycle time of the products (W), etc., simply by specifying the parameters of the 

distributions for the arrival times and service times.  Little’s law can then be applied to 

find other variables of interest [100]. 

As an example, one of the most basic systems considered is the M/M/1 queue 

where the arrivals and service times are determined by Poisson processes (see Appendix 

E for a description of the relation between the Poisson distribution and queueing 

networks).  Through the use of Markov chains, one can easily derive expressions for L, 
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Lq, and Ls, as well as the steady state probabilities for particular system states [100].  

Once L, Lq, and Ls are found, Little’s Law can be used to find W, Wq, and Ws.  

Unfortunately, not all queueing systems allow for such easy and exact calculation of their 

mean, steady state values.  In such cases, many researchers have found approximations 

for these values or failing at that, upper and/or lower bounds. 

4.4.3.1 Single Tool Discrete Event Simulation with Queueing Theory Verification 

As mentioned in the previous section on queueing, there is much work on finding 

theoretical calculations for the steady state values of various queueing systems.  

Therefore, it makes sense to frame the process model of the system being studied in terms 

of a queueing system for which theoretical expressions of the steady state values exist.  

The steady state results of the discrete event simulation of the same system can then be 

checked for accuracy against the theoretical results from the queueing theory. 

As a starting point for the system simulation, a single tool, two product system is 

first modeled.  The arrivals of products to the tools are modeled by a Poisson process so 

that the interarrival times are exponential.  For the semiconductor system, each product is 

assumed to have its own constant processing time so that the service process is assumed 

to have a general distribution, and a first in first out (FIFO) scheduling discipline is used.  

In Kendall-Lee notation, this is considered an M/G/1 queueing system, and its steady 

state values can be calculated by using the Pollaczek-Khinchin (P-K) mean value 

formulae [100].  The equation for the mean number of products in queue is 
 

 
2 2 2

,
2(1 )qL

λ σ ρ
ρ

+
=

−
 (4.11) 

 

where σ2 is the variance of the service time.  Using Equation (4.11), Little’s law, 

and the following two relations: 
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 1/sW µ=  (4.12) 

 ,q sL L L= +  (4.13) 

all of the mean values in Table 4.2 are easily obtained. 

When setting up the discrete event simulation for an industrial system, the actual 

arrival rate of products and product service times can be derived from process data, and 

the traffic intensity can then be calculated.  In this work, the service times for different 

products are specified in order to study their effects on scheduling and the traffic intensity 

is then specified to study different plant conditions (i.e., light traffic versus heavy traffic).  

Given the service times and traffic intensity, the appropriate value for arrival rate is then 

calculated.  Additionally, the product mix must also be specified.  The percentage of each 

product in the mix determines which product randomly arrives at each arrival time and is 

also used with the deterministic service time for each product to calculate the mean and 

variance of the overall service time (i.e., the first and second moments of the service time 

distribution). 

With the values mentioned in the previous paragraph in hand, the discrete event 

simulation is first run for a single tool, two product system in which the products both 

have the same processing time.  This is equivalent to a single product system and is used 

first since the Pollaczek-Khinchin equations are intended for use with such a system.  In 

the second test of the simulation setup, the two products are given different processing 

times so that the first two moments of the service rate must be calculated using the 

percentages from the product mix.  The values used for variables which must be specified 

at the beginning of the simulation are given in Table 4.3.  Results for testing of the single 

product equivalent and two product systems with moderate traffic intensity ( 0 0.75π = ) 

are shown in Figure 4.6 and Figure 4.7, respectively.  Results for a high traffic intensity 

system are similar and can be found in Appendix G.  In the figures, the green dashed 
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lines indicate theoretical values from P-K equations while red dots indicate the mean 

values from simulations and blue bars show the 95% confidence intervals.  Steady state 

(i.e., long run) values of the system variables demonstrate good matching between the 

simulations and the theoretical results as the number of runs (indicated on the x-axis) 

increases.  This is evident in the figures where the mean values for the variables of 

interest approach the theoretical values given by Pollaczek-Khinchin and also have 

smaller 95% confidence intervals.  Assured that the setup of the discrete event simulation 

is correct for the smaller system, it is safe to expand it to larger systems for further study.  

For more detail on simulation setup and testing, see Appendix G. 
 

Variable Test 1 Value Test 2 Value 

Product 1 service time 2 2 
Product 2 service time 2 0.5 
Product 1 percentage of product mix 0.33 0.33 
Product 2 percentage of product mix 0.67 0.67 
Traffic intensity 0.75 0.75 

Table 4.3: Values of system variables which must be specified before running simulation 
for both tests. 
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Figure 4.6: Comparison of mean time in system (L), in queue (Lq), and idle time for 
discrete event simulations and Pollaczek-Khinchin theory for a low volume 
system with one tool and two products that have equal processing times. 
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Figure 4.7: Comparison of mean time in system (L), in queue (Lq), and idle time for 
discrete event simulations and Pollaczek-Khinchin theory for a low volume 
system with one tool and two products that have different processing times. 
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related objective for the M/G/1 system on which the simulations are based, it is a simple 

rule to implement and is often used as a baseline case for comparative studies.  On the 

other hand, under the SPT rule jobs with shorter expected processing times are processed 

first. SPT is known to minimize the average cycle time of all products in a multi-product 

M/G/1 type queue.  It is important to note that SPT minimizes the average cycle time 

over all products but not necessarily the cycle time of each individual product.  In fact, 

for a system like the one studied here, where processing times are deterministic, 

magnitudes of the mean cycle times for individual products correspond to the magnitudes 

of their processing times (i.e., smallest processing time equals smallest cycle time; largest 

processing time equals largest cycle time).  This can lead to large disparities in cycle 

times for the individual products, whereas the cycle times tend to be more balanced in a 

FIFO schedule. 

4.5 SIMULATION TESTING OF MULTI-TOOL/PRODUCT SYSTEM WITH INTEGRATION 
OF CONTROL AND SCHEDULING SYSTEMS 

4.5.1 Effect of Real-time Processing: Measurement Delay 

The integration of the discrete event simulation with the process control 

simulation leads to a more complex system.  In other studies of non-threaded control 

systems, it is assumed that outputs are processed in series with no overlap, but an actual 

system run in this fashion would require large idle times on the individual tool in order to 

allow each output to be completed and measured before the start of the next one. The 

resulting Gantt chart for a system run in this manner looks like the one in Figure 4.8, plot 

(a).  In a true fab setting, however, multiple tools run in parallel, and the processing times 

of many outputs end up overlapping; therefore, it is unlikely the current process run is 

able to wait for measurements from previously started runs on other tools before starting.  
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Using the same processing order and tool selection as in Figure 4.8, plot (a), a Gantt chart 

for the realistic, parallel processing scenario is shown in plot (b). 

Figure 4.8: Sample Gantt charts for a three product, three tool system in which two 
product runs are performed on each tool. (a) Idealized (from control 
perspective) schedule with large idle times.  (b) Practical (from 
processing/scheduling perspective) schedule with no forced idle times. 
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tool becomes available and is based solely upon information related to the products 

currently in queue and the currently available tool.  Once the product is chosen, the 

schedule is complete only up to the current product being started but not beyond (i.e., no 

scheduling of future starts is done).   Consequently, the control system has knowledge of 

the order of starts, but not necessarily the order of completions, and should order the 

estimation updates accordingly. 

As stated previously, problems with the estimation system arise in the parallel 

processing environment because products can begin (and sometimes finish) processing on 

one tool before the completion of a previously started product on another tool.  The 

dotted, vertical lines in plot (b) of Figure 4.8 are used to highlight occurrences of delayed 

and out of sequence measurements.  The second run on Tool 3 (labeled i) starts during 

the first run on Tool 2 (labeled ii) and completes after it.  Because the measurement of ii 

is unavailable at the start of i, the measurement of ii is considered to be delayed.  By 

contrast, i starts during the second run on Tool 1 (labeled iii), but completes before it.  

The measurement of iii occurs after the measurement of i and the measurements are 

considered out of order; this problem is commonly known as the “out of sequence 

measurement” (OOSM) problem [125]. 

For the systems studied in this work, it is assumed that measurements occur 

immediately at the completion of processing and before the start of the next product on a 

tool.  To look at it another way, one can assume that the measurement time is built into 

the processing time for the product.  Therefore, delays are only created by the differences 

in processing times for the various products.  To calculate the maximum possible delay 

for a measurement, we need to calculate the maximum number of starts which are 

possible on other tools during the time span between a product’s start and completion 

(i.e., its processing time).  Theoretically, the maximum delay would occur when a large 
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number of starts of the product with the smallest processing time take place during a run 

of the product with the largest processing time.  Using this fact, the following calculation 

gives the maximum delay (in steps) that a product could experience in the systems under 

consideration: 

 ( )1Max
Max

Min

Ts
d t

Ts

 
= − 

 
 (4.14) 

where dMax is the maximum number of runs that a measurement can be delayed, TsMax and 

TsMin are the maximum and minimum product service times, respectively, and t is the 

total number of tools in the system.  It is clear from Equation (4.14) that maximum delay 

grows as the ratio between the maximum and minimum processing times increases, and 

also, as the total number of tools in the system increases.  This is an important factor 

since the possible size of delays tends to increase as the number of tools in the system 

increases. 

The most direct solution to the measurement delay problem is to save the state 

estimate and covariance at the time of the last, in-order measurement.  When a 

measurement is delayed, the associated filter update is skipped and succeeding updates 

proceed as they would normally so that the controller has a working estimate.  When the 

delayed measurement arrives, the saved values and the processing order are used to 

recalculate the filter up to the time of the most recent, in-order measurement.  These new 

state and covariance estimates are then saved and the working estimate is calculated up to 

the present time.  This method, called “recalculating the filter through the delay period” 

[126], is described in greater detail by Pasadyn [41] as a way of implementing the 

Kalman filter in the fab, but it is not incorporated into later simulation testing by the 

author. 
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4.5.2 Simulation Testing of Combined Control/Scheduling System 

4.5.2.1 Effect of Changing Qualification Percentage in Systems with Delays 

In succeeding simulations in this work, the estimation updates occur in 

accordance with the start and completion times as they are defined by the discrete event 

simulator, and recalculation of the filter is done to compensate for delayed and out of 

sequence measurements.  The idealized system is also run for comparison.  To gage the 

effects of delayed measurements on system performance, the simulation tests of Section 

3.6 are repeated using the new integrated system.  To review, the simulations in Section 

3.6 consist of 6 different system setups (labeled Tests), four different disturbance signal 

types (Signals), and 11 different qual run percentages.  As in Figures 3.1-3, the plots of 

the new simulations are scaled by the corresponding output and estimate error values of 

the Test1 (base) case with white noise disturbances (Sig1), no quals, and no measurement 

delays; this case is labeled as (1,1,0,0) with the new fourth index now indicating no 

delays (0) or delays (1) in the system. 

When the simulations include measurement delays, the plots for the test systems 

with three tools look quite similar to those of their ideal counterparts but with higher 

levels of error (see Figures 4.9–14, which show side by side results for Tests1–6, 

respectively).  In terms of estimate error, the delayed measurements make little difference 

except at the one, two, and three percent qual levels where the error is noticeably higher 

for the delayed measurement case and a downward trend as the qual percentage increases 

is more apparent.  Also of note is that while the output errors increase in the delayed 

measurement systems for all disturbance signal types, the signals that include non-

stationary errors (Sig2, Sig3, and Sig4) experience greater increases than the purely white 

noise case (Sig1), indicating that measurement delays pose more of a problem in systems 

with disturbances more indicative of those found in practice. 
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Figure 4.9: Comparison of output and state estimate errors for the Test1 system without 
delays (left) and with delays (right). 
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Figure 4.10: Comparison of output and state estimate errors for the Test2 system without 
delays (left) and with delays (right). 
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Figure 4.11: Comparison of output and state estimate errors for the Test3 system without 
delays (left) and with delays (right). 
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Figure 4.12: Comparison of output and state estimate errors for the Test4 system without 
delays (left) and with delays (right). 
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Figure 4.13: Comparison of output and state estimate errors for the Test5 system without 
delays (left) and with delays (right). 
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Figure 4.14: Comparison of output and state estimate errors for the Test6 system without 
delays (left) and with delays (right). 

Table 4.4 shows the percentage change in output and state estimate errors for all 

of the three tool systems after the delayed measurement behavior is added to the 

simulations.  The calculation of the data in Table 4.4 does not include the zero qual cases 

(as was previously explained, without quals, the estimator is unable to overcome the 

offset in the product state estimates created by their 50% initial error from the true states).  

The large magnitudes of the errors in the zero qual case tend to mask the changes in the 

subsequent cases when the errors are summed.  It is clear from Table 4.4 that 

measurement delays have an adverse effect on system performance as errors in both 

outputs and state estimates increase. 

0 5 10
0

0.5

1

1.5

2

R
M

S
E

Qual Run Percentage in Product Mix

Output RMSE

State RMSE

Signal1

Signal2

Signal3

Signal4

0 5 10
0

0.5

1

1.5

2

R
M

S
E

Qual Run Percentage in Product Mix

Output RMSE

State RMSE

Signal1

Signal2

Signal3

Signal4

 



 112 

 

Test RMSEy RMSExe 

1 2% 42% 

2 2% 35% 

3 2% 37% 

4 7% 46% 

5 10% 84% 

6 6% 47% 

Table 4.4: Percent change in root mean square error of outputs, y, and state estimates, xe, 
for the six test systems after measurement delays are added to the 
simulations.  Errors are summed over all disturbance types (Sig1-4) for each 
test, and all qual percentage levels except for the zero qual cases. 

It is obvious from Table 4.4 that while the addition of measurement delays to the 

simulations causes an increase in error for outputs and states for all test cases, the effect 

is much greater in the case of Test5 which has twice as many tools (six) as the other 

cases.  Despite the large increase in error, the plot of estimate errors for Test5 (see Figure 

4.13) is similar in shape to the others.  There is, however, a difference in the estimate 

error results; in the case of Test5, the percentage of qualification runs has a stronger 

effect on the reduction in error as quals are added.  Figure 4.13 shows that systems with 

larger numbers of tools benefit more from an increase in the number of qual runs, at least 

in the range below 5%.  

Looking at the size of delays in the various systems, it is apparent they are related 

to the settings for the system parameters.  For Tests1–4, the systems have only three tools 

and three products and the ratio of largest processing time to smallest is four (three for 

the first test with no quals), so according to Equation (4.8), the maximum possible delay 

is eight (six).  For Test5 the max-to-min processing time ratio is still 4:1 (3:1 for zero 

qual case), but with six tools, the maximum possible delay is now 20 (15).  In the case of 

Test6, there are three tools but the processing time ratio increases to 7:1 (6:1), and the 
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maximum possible delay is 14 (12).  In this case, adding the extra tools to the system 

creates larger delays than adding products with processing times that increase in 

increments of one.  To check the results from Equation (4.14), delay statistics are 

gathered from the simulations.  In Table 4.5 the average maximum delay for each qual 

percentage and test system is given.  Note that the values in Table 4.5 are much smaller 

than those predicted by Equation 4.8 because the predicted values represent an upper 

bound.  A very specific (but rare) set of circumstances must occur in the real system for 

the maximum delay to reach the upper bound. 

From the data in Table 4.5, it is clear that Test5 has much larger maximum delays 

than the other systems; this is because the addition of extra tools makes it more probable 

that during the processing of the product at hand, additional product starts will occur on 

the other tools.  For all systems, the maximum delay trends upward as the number of 

quals in the system increases due to the fact that the qual runs, with the exception of 

Test2, have the largest processing times.  Therefore, as the occurrence of qual runs 

increases, so does the likelihood of longer delays. 

In the case of Test2, qual runs have the shortest processing time (PTQ=1) in the 

system.  Therefore, the insertion of a qual run on one tool increases the likelihood of 

longer delays on the products running simultaneously on the other tools.  Conversely, 

because the quals represent a small fraction of the total runs, Test2 has many fewer runs 

with a processing time of one when compared to the other three tool/three product 

systems, and so for a given qual percentage, it has a lower average maximum delay.  

Finally, Test4, owing to its unbalanced product mix, has greater average maximum 

delays than the same sized systems of Tests1–3.  Test4 has a larger proportion (60%) of 

products in the system with a processing time of one (the minimum processing time in 

the system).  Again this leads to a higher probability of an increase in the number starts 
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that occur during the processing of products that have longer service times.  In general, it 

appears that for a given system, adding more runs at the extremes of the processing time 

distribution leads to the occurrence of larger maximum delays. 

 
                   Max Delay 
Qual % 

Test1 Test2 Test3 Test4 Test5 Test6 

     0 5.29 4.00 5.11 5.87 11.14 6.31 

     1 5.46 4.13 5.28 6.48 11.81 6.44 

     2 5.61 4.28 5.34 6.87 12.13 6.47 

     3 5.70 4.31 5.40 6.93 12.58 6.49 

     4 5.78 4.49 5.53 7.15 12.67 6.56 

     5 5.90 4.54 5.62 7.28 12.80 6.65 

     6 6.10 4.59 5.82 7.36 13.12 6.62 

     7 6.02 4.59 5.73 7.45 13.10 6.71 

     8 6.11 4.65 5.79 7.46 13.03 6.74 

     9 6.15 4.80 5.83 7.56 13.15 6.80 

    10 6.20 4.72 5.94 7.56 13.07 6.82 

Table 4.5: Average maximum delays calculated from 50 replicate studies for each test 
system and qualification percentage.  Delays are measured not in time units 
but by the number of product starts that occur on other tools between the 
start and completion of the product under consideration. 

Similar to Table 4.5, the mean delays over all runs for each test (in Table 4.6) 

show similar behavior.  Test5 has noticeably longer delays than the other systems, and 

with the exception of Test2, the values increase as the number of qual runs in increased.  

In the case of Test2, the addition of quals with their brief processing time of one leads to 

extra runs with fewer delays, and apparently these more than counteract the additional 

delays created in longer running products.  Also, note that Test3 has the shortest average 

delays due to its low volume schedule.  When the system is run at a lower capacity, it 

allows for more tool idle time and therefore, fewer overlapping product runs. 
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                 Mean Delay 
Qual % 

Test1 Test2 Test3 Test4 Test5 Test6 

     0 1.92 1.92 1.68 1.92 4.75 1.92 

     1 1.93 1.92 1.69 1.93 4.77 1.92 

     2 1.93 1.91 1.70 1.94 4.79 1.93 

     3 1.94 1.90 1.71 1.95 4.81 1.94 

     4 1.95 1.90 1.73 1.96 4.83 1.95 

     5 1.95 1.89 1.73 1.97 4.85 1.95 

     6 1.96 1.89 1.74 1.97 4.87 1.96 

     7 1.96 1.88 1.75 1.98 4.88 1.96 

     8 1.97 1.87 1.76 1.98 4.89 1.97 

     9 1.97 1.87 1.77 1.98 4.90 1.97 

    10 1.97 1.86 1.78 1.98 4.91 1.97 

Table 4.6: Average delays for all runs in each test system by qualification percentage.  
Delays are measured not in time units but by the number of product starts 
that occur on other tools between the start and completion of the product 
under consideration. 

Comparing Tables 4.5 and 4.6 shows that adding qualification runs has a weaker 

effect on the mean delay than the maximum delay.  From the zero qual case to the 10% 

qual case, the average maximum delay changes anywhere from 8–29% depending on the 

test system observed, but changes in the mean delay over the same course of 

experimentation range only from 3–6%.  In the case of the mean delay, the qual runs are 

a relatively minor portion of the total runs and when the delay is averaged over all runs 

and replicates, the longer delays created by the quals have a small effect.  Conversely, in 

the case of the maximum delay, having more quals increases the likelihood of a single 

longer delay occurring, and within each replicate, a long delay only has to occur once to 

be included in the final average (based on 50 samples). 

In Section 3.6 and the current section, different settings for system parameters are 

explored and analyzed  The control system performs quite similarly for a variety of 
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disturbances, but is more strongly affected by increases in the number of tools in the 

system and by measurement delays.  In general, adding more long running or more short 

running products leads to an increase in the maximum possible delays that can be 

experienced but there is little effect on the average delay over all runs.  Also, an increase 

in the number of tools leads to larger delays in the system and thus degraded control 

results.  With these observations in mind, the control-friendly scheduling algorithms 

discussed in Section 4.2 are next integrated into the simulations so that their usefulness 

can be judged. 

4.5.2.2 Filter Tuning in Systems with Delays 

When settings for the simulation system are given in Section 3.6, the state noise 

covariance matrix, Q, is set to Qplant/5000.  This smaller value favors noise rejection over 

state tracking and leads to better control than is initially seen with plantQ Q= .  This is 

particularly true when estimation delays due to parallel processing are included; for the 

case with delays, unstable results such as the one shown in Figure 4.15 can occur when Q 

is too large.  The poor control is made worse as the delays increase such as in Test5; 

Figure 4.16 shows the results of running the same system as in Figure 4.13 but with 

plantQ Q=  instead of 
5000

plantQ
Q = .  Unlike in Figure 4.13, Figure 4.16 shows a large 

difference in performance for the delayed system when compared to the non-delay 

system and the effects of unstable results are seen in the spikes in output error for Sig3 

and Sig4 at the two and four percent qual levels.  Interestingly, the effects of the delays 

are mitigated by an increase in quals but overall, the control is not as good as the system 

with smaller Q. 
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Figure 4.15: Plot of outputs for unstable system: Test 5, zero quals, measurement delays, 
scheduling performed using Method 3 (trace(P)). 
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Figure 4.16: Comparison of output and state estimate errors for the Test5 system without 
delays (left) and with delays (right).  Here plantQ Q= . 

4.6 SIMULATION TESTING OF COMBINED SYSTEM WITH CONTROL-FRIENDLY 
SCHEDULING ALGORITHMS 

4.6.1 Simulation Setup 

A series of simulations are run to test the performance of the various scheduling 

approaches discussed earlier in this chapter.  This analysis includes both traditional 

scheduling policies and those explained in Section 4.2, which incorporate elements of the 

control model in order to enhance control system performance.  Table 4.7 gives a list of 

the tested methods along with a brief description of each and an assigned reference 

number. 
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The first two items in Table 4.7 are common scheduling policies and are used for 

comparison to the control-based methods.  The next method is the approach suggested by 

Pasadyn in which the trace of P is minimized (Method 3), but there also several other 

methods based on the estimate error covariance matrix which are tested.  Methods 4 and 

5 are based on the theoretical output covariance matrix which is a transform of the 

estimate error covariance matrix using the state transition matrix, C.  By using the 

objective of Method 4, a context is selected which minimizes the total output error 

variance of the system, whereas in Method 5, only the variance of the selected context is 

minimized.  The final approach that uses the error covariance matrix, Method 6, is 

designed to choose the context which minimizes the condition number of P at each step, 

this approach directly aids the stability and accuracy of the Kalman filter. 

The last six scheduling algorithms listed in Table 4.7 are based upon the partial 

observability measures discussed in Section 4.2.2.  All of these approaches make use of 

the information matrix, L0,k.  Method 7 seeks to maximize the smallest singular value of 

L0,k thereby increasing the degree of observability of the system.  Method 8 uses a similar 

approach but instead chooses the context (i.e., measurement) which is closest to the 

subspace associated with smallest singular value of L0,k.  The final four methods are the 

same as Methods 7 and 8 but use a moving window approach to the recursive calculation 

of L0,k rather than the full process history.  While Methods 9 and 11 use a window length, 

w, of n (the number of states in the system), Methods 10 and 12 use window length of 2n.



 
12

0 

N
u
m
b
e
r 
N
a
m
e 

D
es
cr
ip
ti
o
n
 

O
b
je
ct
iv
e 
to
 b
e 
o
p
ti
m
iz
ed
 

1 
F

IF
O

 
F

ir
st

 i
n,

 f
ir

st
 o

ut
 

no
ne

 

2 
S

P
T

 
S

ho
rt

es
t 

pr
oc

es
si

ng
 t

im
e 

M
in

im
iz

e 
av

er
ag

e 
cy

cl
e 

ti
m

e 

3 
tr

ac
e(

P
) 

T
ra

ce
 o

f 
es

ti
m

at
e 

er
ro

r 
co

va
ri

an
ce

 m
at

ri
x 

M
in

im
iz

e 
to

ta
l 

es
ti

m
at

e 
er

ro
r 

va
ri

an
ce

 

4 
tr

ac
e(

C
P

C
T
) 

T
ra

ce
 o

f 
ou

tp
ut

 e
rr

or
 c

ov
ar

ia
nc

e 
m

at
ri

x 
M

in
im

iz
e 

to
ta

l 
ou

tp
ut

 e
rr

or
 v

ar
ia

nc
e 

5 
tr

ac
e(

C
rP

C
rT

) 
T

ra
ce

 o
f 

co
nt

ex
t 

er
ro

r 
co

va
ri

an
ce

 m
at

ri
x 

M
in

im
iz

e 
va

ri
an

ce
 o

f 
se

le
ct

ed
 o

ut
pu

t 

6 
co

nd
(P

) 
C

on
di

ti
on

 n
um

be
r 

of
 P

 
M

in
im

iz
e 

co
nd

it
io

n 
nu

m
be

r 
of

 P
 

7 
D

eg
. O

bs
. 

S
m

al
le

st
 s

in
gu

la
r 

va
lu

e 
of

 L
0
 

M
ax

im
iz

e 
de

gr
ee

 o
f 

sy
st

em
 o

bs
er

va
bi

li
ty

 

8 
A

ng
. 

A
ng

le
 b

et
w

ee
n 

ou
tp

ut
 &

 L
O

S
S

 
M

in
im

iz
e 

an
gl

e 
be

tw
ee

n 
ou

tp
ut

 &
 L

O
S

S
 

9 
M

W
(D

eg
. O

bs
.)

, w
 =

 n
 

D
eg

. o
bs

. w
it

h 
m

ov
in

g 
w

in
do

w
 o

f 
si

ze
 n

 
M

ax
im

iz
e 

de
gr

ee
 o

f 
sy

st
em

 o
bs

er
va

bi
li

ty
 

10
 

M
W

(D
eg

. O
bs

.)
, w

 =
 2

n
 

D
eg

. o
bs

. w
it

h 
m

ov
in

g 
w

in
do

w
 o

f 
si

ze
 2

n
 

M
ax

im
iz

e 
de

gr
ee

 o
f 

sy
st

em
 o

bs
er

va
bi

li
ty

 

11
 

M
W

(A
ng

),
 w

 =
 n

 
A

ng
. w

it
h 

m
ov

in
g 

w
in

do
w

 o
f 

si
ze

 n
 

M
in

im
iz

e 
an

gl
e 

be
tw

ee
n 

ou
tp

ut
 &

 L
O

S
S

 

12
 

M
W

(A
ng

),
 w

 =
 2

n
 

A
ng

. w
it

h 
m

ov
in

g 
w

in
do

w
 o

f 
si

ze
 2

n
 

M
in

im
iz

e 
an

gl
e 

be
tw

ee
n 

ou
tp

ut
 &

 L
O

S
S

 

T
ab

le
 4

.7
: 

S
um

m
ar

y 
of

 v
ar

io
us

 s
ch

ed
ul

in
g 

m
et

ho
ds

 t
es

te
d 

vi
a 

si
m

ul
at

io
n.

  L
O

S
S

 =
 l

ea
st

 o
bs

er
va

bl
e 

su
bs

pa
ce

. 

 



 121 

In the following simulation studies, the control and scheduling systems each 

measure performance using their own distinct metrics; the level of output error or 

estimation error in the case of the control system and the average cycle time per product 

or level of tool utilization (i.e., the percentage of time tools are making products rather 

than processing quals or sitting idle) in the case of the scheduling system.  Because 

alterations to processing order, the placement of products on tools, or the use of qual runs 

result in changes to the performance of both systems, it is natural to treat the combined 

system as a bi-criteriate problem and generate Pareto plots for its analysis [57, 100]. 

For the simulations in this section, the same test systems introduced in Section 3.6 

(see Table 3.3) are used, but only Signal 1 (white noise) and Signal 4 (non-stationary 

disturbances) are used (see Table 3.4) to compare the most basic disturbance case to the 

most complex.  An additional test system is also introduced to give further insights into 

the performance of the various scheduling approaches.  Test 7 is the same as the Test 1 

except the noise levels for the tool states and product states are no longer uniform.  Table 

4.8 is similar to Table 3.4 and shows the difference between the new test and Test 1. 
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                              Test 
Variable 

1 
 

7 
 

Num. of Tools 3 3 

Num. of Prods 3 3 

Prod1 Proc. Tm. 1 1 

Prod2 Proc. Tm. 2 2 

Prod3 Proc. Tm. 3 3 

Prod4 Proc. Tm. - - 

Prod5 Proc. Tm. - - 

Prod6 Proc. Tm. - - 

Qual Proc. Tm. 4 4 

Product Mix All 1/p All 1/p 

Tool Noise Std. Dev. All 0.1 (0.25, 0.1, 0.05) 

Prod. Noise Std. Dev. All 0.1 (0.25, 0.1, 0.05) 

Traffic Volume High High 

Table 4.8: Summary of settings for new test systems compared to Test 1. 

As before, each simulation is 500 process runs long and is repeated 20 times with 

different seed values for the random number generator.  In each case, the first 50 runs are 

taken from the FIFO schedule with each scheduling policy taking over at the 51st run and 

dictating the processing order until the 500th run is reached.  Statistics are then calculated 

using the final 450 runs so that the different methods can be compared. 

For a given set of process conditions, a series of simulations is run with varying 

levels of quals and with the different schedules produced by the methods discussed 

previously.  Each combination of test conditions, disturbance type, qual percentage, and 

schedule is run for multiple replicates with the results being averaged to give output 

RMSE, state estimate RMSE, product cycle times, and tool utilizations.  The appropriate 
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combinations of control and scheduling metrics are then plotted against each other to 

produce the final Pareto plots.  From these plots, differences in both scheduling and 

control performance for the algorithms can be viewed simultaneously and those with 

desired characteristics can be chosen.  As with the comparisons between Sections 3.6 and 

4.5.2, the ideal systems, in which measurement delays do not occur, are run in parallel 

with the systems that include delays in order to judge differences in performance results. 

To help simplify the analysis and keep the plots from being overcrowded with 

symbols, only a few of the qual percentages are shown.  From the earlier studies on qual 

percentage it is seen that there is little to no improvement in control performance after the 

five percent level of quals is passed.  Therefore, no qual percentages above five are 

shown and initially, only every other percentage from one to five is shown along with 

zero percent. 

4.6.2 Pareto Analysis of Output RMSE versus Product Cycle Time 

The set of Pareto plots explored here compare the output RMSE and the average 

cycle time of products.  It was pointed out earlier that it is desirable to minimize both of 

these metrics so the methods which appear closer to the bottom left corner of the plot are 

of the greatest interest.  The particular methods in this region strike the best balance 

between the objectives of the two systems.  Initial results when looking at all methods 

over all tests do not indicate one clear winner.  Several general observations include: 

• SPT does give the minimum cycle time over products while FIFO tends to do the 

best job of balancing the cycle time amongst the products. 

• All of the control-based objectives give priority to quals except for Method 6. 

• The moving window versions of partial observability objectives give inconsistent 

results for these test systems due to a lack of information.  There are often ties 

when choosing among multiple products at a step; because the algorithm chooses 
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the product with the lowest product number in the event of a tie, the m.v. 

approaches are more weighted toward these products.  More research should be 

done to find an optimal window length and these methods are dropped from the 

remainder of the analysis. 

To try to narrow the field of potential scheduling algorithms, two specific cases which are 

common in practice are chosen to highlight the differences between the various 

scheduling approaches.  The first test chosen is Test 4 which uses an unbalanced mixture 

of products as is common in fabs today.  The second test chose is Test 7 in which the 

products and tools are differentiated from each other by their inherent levels state 

variance.  The results of the analysis of these to tests follows. 

4.6.2.1 Unbalanced Mix of Products (Test 4) 

One key test for the combined system is the case of low running products.  In 

most fabs, the mix of products is unbalanced with a few high running products 

comprising the majority of the production runs.  In many cases these high running 

products are considered low priced commodities while the lower running products are 

specialty orders that have higher value [92, 93].  It is therefore important for the low 

running products to be controlled well and to move through the fab quickly.  In 

simulations for Test 4, the mix is split amongst three products with products 1 and 2 

comprising 90% of the mix so that Product 3 only appears in the system, on average, 10% 

of the time.  Because the performance of the low running product is of high importance, 

Pareto plots of its cycle time and output error are shown in Figures 2 and 4 for qual 

percentages of zero, one, three, and five percent. 
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Figure 4.17: Pareto plot of output error v. cycle time for Product 3, the low running 
product in Test 4, for an ideal system with no Kalman update delays. 

Figure 4.17 presents the Product 3 Pareto plot in the ideal case where all 

measurements are received in order and without delays.  Here, the output error and cycle 

time for Product 3 are plotted for each schedule at four different qual percentages (zero, 

one, three, and five).  Note the while SPT leads to minimum average cycle time over all 

products, it gives very high cycle times for Product 3 because it has the longest 

processing time of the products.  The two schedules generated using the partial 

observability measures and all but one of those generated using the estimate error 

covariance matrix give very low cycle times for Product 3 across all qual levels.  The 
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exception is the objective that uses ( )T

rr PCCtrace  which incurs a heavy cycle time 

penalty negating its excellent control performance. 

The ( )T

rr PCCtrace  algorithm selects the thread from those available that has the 

minimum variance after measurement which can cause the scheduler to “stick” on certain 

threads for long stretches when they reach a state of low variance.  In an extreme case, 

the low running products can all get pushed to the end of the schedule; such a case occurs 

in one of the replicate simulations and is shown in the form of a Gantt chart in Figure 

4.18.  From this figure, it is also easy to see the long runs of single products on tools 

created by the scheduling algorithm. 
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Figure 4.18: Gantt chart showing order of runs on the three tools using the scheduling 

Method 5, minimizing ( )T

rr PCCtrace .  Settings: Test 4, Sig4, 5% quals.  
Only the last 250 runs are shown for ease of viewing. 

The same system seen in Figure 4.17 is presented in Figure 4.19 for the case with 

delays.  The simulations now include delays in the updates to Kalman filter estimates 

caused by the parallel processing environment, and the results are similar except the error 

levels are higher in general and are particularly so for the scheduling methods that had 

poor cycle time performance.  There is an especially drastic change in the output error 

values for the ( )T

rr PCCtrace  method.  This behavior points out the importance of using 

the discrete event simulator to more accurately model the behavior of the real parallel 

processing environment.  It is clear that in this more realistic case, the methods based on 
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partial observability methods are superior choices with several of the P-based metrics 

also doing well in terms of cycle time, but slightly worse in terms of control performance. 

Figure 4.19: Pareto plot of output error v. cycle time for Product 3, the low running 
product in Test 4, for a system with Kalman update delays. 

Looking at other products in the system, Product 2, which accounts for 30% of the 

product mix, has similar patterns of performance to Product 3 as seen in Figure 4.20.  In 

the case of Product 2, the partial observability measures and those based on condition 

number of P and trace of P strike the best balance between cycle time and control 

performance.  The only major change from the Product 3 case is that SPT is now 

competitive in terms of cycle time but is still inferior in terms of output error. 
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Figure 4.20: Pareto plot of output error v. cycle time for Product 2, the medium running 
product in Test 4, for a system with Kalman update delays. 

The final Pareto plot (Figure 4.21) for Test 4 is for Product 1 which is the highest 

running product and represents 60% of the mix.  For this product, all methods are fairly 

equal in terms of control performance at qual percentages beyond zero (the collection of 

symbols in the upper left corner of the plot represent results for zero quals simulations).  

As would be expected, the various scheduling methods have reversed themselves in terms 

of cycle time from the Product 3 case, but due to the dominance of Product 1 in the mix, 

this is not problematic.  Even in the extreme case discussed previously, if a partial 

observability method such as min(Angle) is used, all runs of Product 1 cannot be 

completely pushed back to the end of the production period.  In fact less than half of the 
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Product 1 runs are held off while the other half are distributed fairly evenly throughout 

schedule. 

Figure 4.21: Pareto plot of output error v. cycle time for Product 1, the low running 
product in Test 4, for a system with Kalman update delays. 

Finally, to address concerns that the results presented for the system with an 

unbalanced product mix are restricted only to this particular case, a variant of the 

experiment is performed in which the product processing times are reversed.  Thus, the 

low running product is given the lowest processing time rather than the highest and vice 

versa for the high running product.  While the values of the cycle times for each product 

change in accordance with the change in processing times, the relative performance of the 
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observability methods still yield superior performance by moving the low running 

products quickly through the system and with lower levels of error.  The only real change 

is that SPT now has similar cycle time performance to the desirable P-based and partial 

observability methods, but still has poorer control performance. 

Because the large majority of fabs now function in a fashion in which there are 

one or more low running products mixed in with a small number of high running 

products that dominate the product mix, it is an important test for any control or 

scheduling system to be able to handle the low running products effectively.  The results 

of Test 4 demonstrate that SPT is too dependent on product processing times and 

therefore does not deliver consistent results.  Additionally, FIFO is dependent upon the 

arrival sequence and therefore, is also limited in its effectiveness.  Of the six control-

based algorithms, all but Method 5 perform well, and one of the partial observability 

algorithms, Method 7, does a marginally better job of minimizing Product 3 error than the 

others. 

4.6.2.2 Differences in Performance within Tool and Product Groups (Test 7) 

An observed behavior of the fabrication process is that not all tools in a group 

perform alike and similarly for products.  To mimic this behavior, Test 7 uses different 

noise parameters for the states; the three tools are given high, medium, and low levels of 

noise for generating their disturbance trajectories and the same is done for the products.  

Given the nine possible tool/product combinations that generate the outputs, the outputs 

can range from those with very low variability to those with very high variability.  

Ideally, a successful scheduling algorithm would sacrifice some outputs at the low end of 

the spectrum in order to reduce the number at the high end of the spectrum, and thus 

decreasing the likelihood of excursions from the process limits.  Recall that products that 

fall outside of control limits lead to scrapping or reworking of wafers, both of which 
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reduce yield.  Here it is assumed that the low variance product is easily controlled (i.e., 

measurements fall well within control limits) while the high variance product operates 

very close to its control limits. 

Given the results of the previous test in the last section, and the fact that neither 

method performs particularly well for the current example, FIFO and SPT are eliminated 

from consideration.  To make interpretation of the Pareto plots easier, FIFO and SPT are 

not shown.  Despite the fact that the ( )T

rr PCCtrace  algorithm performed poorly in the last 

test, it is included because it shows an interesting behavior that contrasts with the 

behavior of the other P-based methods.  Finally, since the reduction in output error when 

moving from three percent quals to five percent rarely justifies the associated increase in 

cycle time, the 5% samples are also eliminated. 

In the particular test system used here, there is a uniform distribution of products 

and their processing times one, two, and three, respectively.  The products and tools both 

have noise variances that proceed from high to low as seen in Table 4.9.  Accordingly, it 

should be advantageous to process Product 1 more often on Tool 3 in order to reduce its 

level of error.  To minimize the effects of this shift, Product 3 should be processed on 

Tool 1 more often.  This is, in fact, the type of behavior demonstrated by all of the P-

based metrics except for Method 5.  Method 5 actually produces the opposite type of 

schedule with Tool 1 favoring Product 1 and Tool 3 favoring Product 3.  Figure 4.22 

shows the distribution of products across tools for the objective based on the condition 

number of P (Method 6).  Note that the number of Product 1 runs is heavily skewed 

toward Tools 2 and 3, while Product 3 shows the opposite behavior.  Additionally, the 

number of quals run on a tool is proportional to its variance (i.e., Tool 1 receives the most 

quals and Tool 3 the fewest). 
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State Variance 

Product 1 High 
Product 2 Medium 
Product 3 Low 
Tool 1 High 
Tool 2 Medium 
Tool 3 Low 

Table 4.9: Relative noise levels for various states in Test 7. 

Figure 4.22: Distribution of product and qual runs across tools for Method 6, based on 
cond(P), and three percent quals. 

Turning to the other P-based algorithms, it is found that Method 4 (trace(CPC
T)) 

performs similarly to Method 6 but that the distributions are not as strongly skewed.  

Method 4 results in about twice as many Product 1 runs on Tool 1 and a balanced number 

1 2 3
0

10

20

30

40

50

60

70

80

Tool

N
u

m
b

e
r 

o
f 

R
u

n
s

Prod1

Prod2

Prod3

Qual

 



 134 

of quals on Tools 1 and 2.  The algorithm which uses trace(P) (Method 3) has similar 

results to Method 4 except that it balances the quals across the tools; this difference is due 

to the fact that it does not consider any of the covariance terms in the P matrix.  Finally, 

Method 5, which seeks the single available output with minimum variance, prefers to run 

Product 3 on Tool 3, thus leaving the majority of Product 1 runs to Tool 1.  The 

distribution for this method is shown in Figure 4.23. 

Figure 4.23: Distribution of product and qual runs across tools for Method 6, based on 

( )T

rr PCCtrace  (Method 5), and three percent quals. 

The remaining two methods are those based on partial observability measures 

which use the information matrix L0,k.  Because the calculation of L0,k only uses Cr and 

the output noise covariance matrix, R, Methods 7 and 8 (unlike P-based methods) do not 
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have the additional information about differences between the states that is included in 

the state noise covariance matrix, Q.  Thus, the plot for Method 7 (Figure 4.24) shows 

that it maintains a balanced distribution of products and quals across the tools.  Method 8 

performs similarly. 

Figure 4.24: Distribution of product and qual runs across tools for Method 6, based on 
Method 7 (maximize degree of observability), and three percent quals. 
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Method 5, which produces the opposite type of schedule, does poorly for both 

performance metrics, and the partial observability algorithms fall somewhere in between. 

Figure 4.25: Pareto plot of output error v. cycle time for Product 1, the high variance 
product in Test 7, for a system with Kalman update delays. 
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error but also incurring the largest cycle times of the three.  Again, the other three 

methods perform poorly by comparison, but Method 5 is now lumped in with Methods 7 

and 8 instead of being far to the right and higher in the plot.  Conversely, the plot for 

Product 3 is the opposite of Figure 6; in this case, Method 5 is now the best, the other P-

based methods are the worst, and the partial observability measures fall in between.  

0 5 10 15 20 25 30 35 40 45 50
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

R
M

S
E

 O
u

tp
u

ts

Cycle Time

tr(P)

tr(CPC)

tr(CrPCr)

cond(P)

Deg. Obs.

Angle

 



 137 

These results are all expected as Method 5 favors reduction of error in Product 3 at the 

expense the other products, while the other P-based metrics sacrifice the performance of 

Product 3 in favor of improvements in the other two.  The more balanced schedules 

generated by Methods 7 and 8 lie between these two extremes. 

Finally, the Pareto plot over all products (Figure 4.26) shows that the schedules 

created by Methods 3, 4, and 6 which prefer reductions in output error for Products 1 and 

2 and increases in Product 3 produce better overall results than the opposite types of 

schedules generated by Method 5.  These schedules are also superior to the more 

balanced schedules generated by Methods 7 and 8.  Again, this is due to the fact that the 

P-based methods can incorporate information about the tools and products through use of 

the Q matrix which allows them to differentiate the states based on more than just the 

frequency and types of their combinations. 
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Figure 4.26: Pareto plot of output error v. cycle time for all products in Test 7 for a 
system with Kalman update delays. 
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The two cases highlighted here are the system with an unbalanced mix and a low 

running product (Test 4) and the system with different levels of variation in tool and 

product performance (Test 7).  In the first case, the cycle time and output error 

performance are especially important for the low running product, and FIFO, SPT, and 

the algorithm based on ( )T

rr PCCtrace  are eliminated based on poor performance for the 

low running product.  In the second test case, the major separation in the remaining 

methods is between those based on estimate error covariance, P, and those based on 

partial observability measures.  Due to the fact that the matrix, Q, which gives an 

estimate of the noise variance in the tool and product states, is a component of the 

calculation of P, Methods 3, 4, and 6 have a distinct advantage over Methods 7 and 8 in 

this scenario.  Method 6 in particular is able to use the knowledge about relative levels of 

variance in products and tools to match high variance products to low variance tools and 

also to increase the frequency of quals on the high variance tool.  Therefore, it should be 

preferred in cases like Test 7. 

4.7 CONCLUSIONS 

In this chapter, the idea of scheduling based on objectives related to the control 

system is explored.  Multiple methods based on either the error covariance matrix of the 

Kalman filter, P, or the system information matrix, L0,k, are proposed and described in 

detail.  Next, a discrete event simulation is setup and tested to act as the basis for a multi-

tool, multi-product processing system.  The use of the discrete event simulation 

introduces the complication of overlapping runs and measurement delays, and the 

estimation scheme is adjusted accordingly to operate under these conditions.  The new 

combined system is then simulated using the same set of tests used in Section 3.6, and it 

is found that the control system operates less effectively in the newer environment with 

delays.  Additionally, qualification runs play a larger role in maintaining good control as 
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the error levels show a more distinct downward trend as the number of quals in the 

system is increased, this is especially true for the larger system with added tools. 

Finally, the control based scheduling methods are tested against the more 

traditional methods, FIFO and SPT.  It is found that while SPT always leads to minimal 

mean cycle times for all products in the system, is not ever the best from a control point 

of view.  Also, because SPT is sensitive only to product processing times, it can create 

problems in systems where low running products exist; if the low runner has one of the 

higher processing times in the distribution, then it can experience long delays.  FIFO does 

a good job of balancing CT amongst the products and is often competitive from a control 

standpoint; however, much of this has to do with the fact that the underlying arrival 

process is already randomized so that good mixing of products across tools is inherent.  If 

the underlying arrival process were more like the schedules generated by Method 5, in 

which long strings of the same product are run while other products are left in queue, it 

would have the same weaknesses that Method 5 displays in Test 7 (i.e., trouble dealing 

with unequal noise levels in the process state). 

Through the use of two special cases (Tests 4 and 7), the better scheduling 

methods can be determined through a process of elimination.  For the reasons listed 

above, SPT and FIFO are eliminated as their weaknesses are particularly apparent when 

looking at results for individual products in Test 4.  In the case where an unequal 

distribution of products is the major distinguishing factor between products, all of the 

control based methods except Method 5 perform well.   If this method is also eliminated, 

and the remaining methods are run on Test 7 (unequal variance for tools and products), it 

is found that the remaining P-based methods outperform those based on L0,k.
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Chapter 5:  

Conclusions, Contributions, and Future Work 

5.1 CONCLUSIONS AND CONTRIBUTIONS 

5.1.1 Introduction and Comparison to Existing Work 

Two of the major systems involved in the automation of modern semiconductor 

manufacturing facilities are the advanced process control system and the scheduling 

system.  Practitioners note that conflicts can arise between the systems and that it maybe 

possible to regulate their interactions to minimize conflicts or generate mutually 

beneficial solutions [8].  With this in mind, a framework for studying the problem is built 

around a non-threaded control system which uses a Kalman filter as its estimator.  Such a 

controller is suggested in [54] and is shown to have potential for integration with 

scheduling for a series of small scale examples (only one replicate with 20 samples per 

experiment). 

Additionally, as the semiconductor industry has shifted toward high-mix 

environments with many tools and products, the use of threaded control has become more 

difficult to implement.  As a result, non-threaded control systems which share 

information from measurements in order to identify contributing factors from various 

sources such as tools and products have been suggested and studied [53, 86, 93, 121, 122, 

123, 127, 131].  By defining each output as the sum of individual contributions from each 

context group (tools, products, etc.), the system can be modeled in a state space form 

with the set of states equal to the full set of individual context items.  The obvious 

problem with this approach is a lack of system observability.  One solution is to allow for 
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qualification runs in the system to uniquely identify tool states which is the approach 

used in [53] and also in this work. 

The primary focus of previous non-threaded control studies has involved 

improving performance through changes to the model form or the estimator used.  The 

different forms of the system have been compared to each other and/or threaded EWMA 

systems on the basis of estimation performance.  In these tests, different outputs are 

generated by randomly selecting one item from each context group (products, tools, etc.) 

based on predetermined probabilities of occurrence, but the actual manner in which the 

runs occur in parallel processing systems is not considered.  Additionally, other than the 

small examples in [54] mentioned above, no thought is given to how the thread selection 

might effect the control performance. 

5.1.2 Unique System Setup 

The goal of this research is to expand upon the ideas in [54] by using a similar 

control system but with a more realistic process flow and scheduling system to test 

various scheduling methods on the basis of both control and scheduling performance.  

First, some improvements are made to the control system models from [53, 54].  Starting 

with the model equations for a multi-tool, multi-product, non-threaded control system 

(Equations 3.10–3.11) from [53], it is noted they are set up only for a single measurement 

system with inputs for all tools lumped together in u.  Therefore, the model is 

reformulated to allow for easier recording of inputs for each tool and to allow for the 

possibility of multiple measurements at a given step (Equations 3.31–3.32). 

Additionally, it is noted that the tool and products states are not functions of the 

input or the adjustment state which represents the input in the state vector.  Therefore, it 

is determined that this adjustment state can be removed and replaced by a feedforward 

input term in the output equation.  Alternatively, the output could be replaced by the 
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difference between the measurement and the input multiplied by the appropriate tool 

gain.  In either case, elimination of the adjustment state has the effect of simplifying the 

model and making the estimation more stable (see Table 3.2). 

To create a test environment that more realistically mimics the flow of products 

through tool groups in a fab (i.e., similar tools running in parallel and fed by a queue), a 

discrete event simulation (DES) system is built from scratch and tested against existing 

queueing theory for accuracy.  To represent the combined plant, the DES is then 

integrated with the state space estimation and control system to allow for interactions 

between the two.  Also, all system metrics can be tracked simultaneously including cycle 

times, tool utilizations, product distributions, output errors, and estimation errors. 

One major enhancement of the new combined system over previous studies is the 

ability to have overlapping runs in a parallel environment and track the runs from start to 

finish.  This feature creates scenarios such as delayed and out of sequence measurements 

(OOSM) as would happen when controlling a real parallel process.  The measurement 

delays are defined in terms of the number of product starts that occur on other tools 

between the start and measurement of the run under study.  These delays are quantified 

through simulations and an equation is given for their theoretical maximum in terms on 

the number of tools and products in the system. 

The updating scheme for the estimator is adjusted to run under these less than 

ideal conditions, but a separate idealized system in which all measurement information is 

received on time and in order also runs in parallel for comparison.  It is found that the 

delays in updates can cause large differentiation from the ideal system including 

instability if the Kalman filter is tuned too aggressively.  It is also seen in at least one 

instance during the Pareto analysis that these delays can cause a scheduling method to go 
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from one of the best in terms of output error for the ideal case to one of the worst in the 

realistic case. 

5.1.3 Development of New Scheduling Algorithms 

After integration of the DES with the control system, various scheduling 

algorithms were developed which actively use information from the control system to 

select the best tool/product combination for the next run based on a given control-based 

objective.  As suggested in [54], the trace of P (i.e., the total state error variance) can be 

used as one of these objectives.  Additionally, several other objectives based on P were 

suggested by the author: 

• The trace of CPC
T.  This objective represents the total error variance of the 

outputs rather than the states.  It incorporates not only the state variance but also 

information from the covariance terms between product and tool states. 

• The trace of T

rr PCC .  This objective is used to select the single output with the 

lowest error variance.  Used to see if minimizing a single output at each step 

yields better results than trying to minimize the total variance at each step. 

• The condition number of P.  Condition number indicates the sensitivity of a 

solution to perturbations or how well a problem is conditioned.  In this case it 

gives an indication of how accurate the estimates are.  By scheduling to minimize 

this number, better estimates should be found. 

In addition to the objectives that use the error covariance, alternative methods 

based on the theory of local or partial observability of systems with incomplete 

measurements were developed.  Two objectives that have their roots in the aerospace 

literature [116, 117] were adapted to the non-threaded control system and used for 

scheduling.  The local observability matrix, L0,k, can be updated at each step using the 

reduced C matrix, Cr, and the output noise covariance matrix, R, from the Kalman filter.  
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This matrix is then used to calculate the objectives through use of a singular value 

decomposition (SVD).  The two objectives are: 

• The degree of observability.  This is measured by the smallest singular value of 

L0,k, and gives an indication of how close the system is to full observability.  The 

scheduler seeks to maximize this value. 

• Angle to the least observable subspace.  The last singular vector of L0,k gives the 

direction of the least observable subspace; the available output that is most 

collinear to this vector is chosen.  Measurement of this output provides maximum 

information on the least observable subspace, thus increasing the observability of 

the system. 

Finally, after initial testing with a small two state system, it seems that the two 

objectives above are somewhat sluggish in their response to new measurements, so 

moving window approaches are proposed for both.  A window length of n is decided 

upon as this is the minimum path length for testing pathwise observability.  Additionally, 

a window length of 2n is also tested as a compromise between the shorter window and 

the full matrix information versions.  A summary of all of the methods is found in Table 

4.7. 

5.1.4 Conclusions from System Analysis 

Because information on tool availability, products in queue, and the current state 

of the controller are available to the algorithmic scheduler at every step, it is possible to 

do scheduling in conjunction with control on a run-by-run basis in a parallel processing 

environment.  Because all statistics are tracked for both systems simultaneously, it is also 

possible to evaluate the various scheduling methods on the basis of both control and 

scheduling performance.  Both of these capabilities are unique to this research. 
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To better understand the behavior of the systems, a series of tests is setup and 

simulation experiments are performed.  The first tests seek to gage the effects of qual 

runs on control system performance.  Quals are included in the model to ensure that the 

full system is observable.  The largest reductions in both output and estimation error are 

seen when going from zero quals to 1% quals and additional improvements are usually 

seen up to 3% quals before there is a leveling off.  This is truer for estimate error than for 

output error and for systems with step and drift disturbances than for other types of 

disturbances.  In practice, the 1-3% range for quals is acceptable for areas of the fab that 

use quals to identify the tool state so it is good that most of the process improvement is 

found in this range.  Obviously, fewer quals are better since they represent non-

production runs and the cycle time penalties incurred by the system make their use 

dubious beyond the 3% level considering the marginal improvements seen in control 

performance. 

Finally, the system performance is analyzed in terms of Pareto plots which can 

show control and scheduling metrics simultaneously.  Pareto plots for the all 

combinations of the seven test systems and two disturbance types (Sig1 and Sig4) are 

generated and studied.  Across the full range of tests there are only a few generalizations 

that can be made, but no scheduling method is clearly the best for all products in all 

situations.  Therefore, to eliminate some methods from consideration, two special 

scenarios seen in practice are selected and studied in more detail.  Some major 

conclusions from the Pareto analysis are as follows: 

• For the white noise only case (Sig1), there is little difference in control 

performance across the different scheduling methods.  The results that follow are 

valid for systems with disturbances that are more difficult to control; in particular 
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Sig4 which uses IMA(1,1) for the products and shift and drift disturbances for the 

tools. 

• An analysis of the Pareto plots for output RMSE v. mean cycle over all products 

for the various tests does not reveal a single best scheduling method.  The only 

consistent result is that, as expected, SPT yields the minimum mean cycle time 

over all products.  Unfortunately, depending on the system, SPT is a very poor 

choice when looking at results for individual products. 

• FIFO does a good job of balancing CT amongst the products and is often (but not 

always) competitive from a control standpoint; however, much of this has to do 

with the fact that the underlying arrival process is already randomized.  If the 

underlying arrival process is a poor fit from a control standpoint, FIFO does 

nothing to correct this. 

• The first special case is Test 4, which has an unbalanced mix of products.  Here 

the low running product is considered the most valuable.  The proposed control-

based methods all perform well accept for the one based on ( )T

rr PCCtrace  

(Method 5) which tends to put off processing the low runner for long periods of 

time.  SPT is only viable when the low runner also has the lowest processing time, 

but even in this case, its control performance is not as good as the control-based 

methods.  FIFO is found to be inconsistent due to its dependence on the incoming 

order of products.  The remaining control based methods all give priority to the 

low running product automatically and reduce both cycle time and output error 

compared to the other methods. 

• The second special case is Test 7, which has unequal noise variance applied to the 

states.  For both tools and products there is a high, medium, and low variance 

option.  In order to increase control performance, a desired scheduler should 
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assign the low variance (i.e., easier to control) product to the high variance tool 

and vice versa for the high variance product.  Due to results of Test 4, FIFO and 

SPT are eliminated outright.  The results for the other methods show that Method 

5 does the opposite of the desired scheduler while the rest of the P-based methods 

demonstrate the desired behavior.  In fact, the algorithm based on the condition 

number of P (Method 6) does the best by skewing the distributions of the high 

and medium variance products toward the low variance tool the most and does the 

opposite for the low variance product.  Additionally, Method 6 distributes quals 

according to the error level of the tool.  Methods 7 and 8 fall short of the 

performance demonstrated by the better P-based methods because the do not 

contain a mechanism for capturing and processing the information on the 

differences between the states (i.e., their objectives are not functions of Q). 

• Because the perform well and very well in Test 4 and Test 7 respectively, 

Methods 3 (trace(P)), 4 (trace(CPC
T)), and 6 (cond(P)) are preferred and 

especially Method 6 in a scenario like Test 7. 

5.2 FUTURE WORK 

5.2.1 Use of Multi-Objective Optimization Approaches 

While control-based scheduling methods are studied extensively in this research, 

there are definitely areas the can be expanded upon and improved.  As mentioned at the 

end of the previous section, there is no clear cut best method for reducing both process 

errors and cycle times.  Each method has its own strengths and weaknesses.  With two 

seemingly conflicting objectives, this is the type of problem that is often addressed with 

multi-objective optimization [128].  Because a large number of solutions are possible to 

balance the two objectives, genetic algorithms (GA) could be used to generate a set of 



 149 

Pareto optimal solutions, allowing the user to select the point on the tradeoff curve that 

best suits his or her needs [100]. 

Because all of the control-based objectives proposed for scheduling can be 

calculated without measurement information, it is possible to calculate the objectives for 

any schedule where the process order is specified.  Therefore, a suboptimal but real time 

solution could be a moving horizon-type approach where a schedule is generated over the 

horizon and the control-based scheduling objective is calculated for the schedule.  This is 

again a bi-criteria optimization problem, where the two objectives need to be weighted 

appropriately so that a suitable solution is found.  Once the full schedule is found, the 

first scheduled product in the new schedule is run.  As long as no new products arrive in 

the queue, the same schedule can continue to be used.  To keep from having to make a 

new schedule from scratch after each new product arrival, a reactive scheduling 

algorithm that makes appropriate adjustments to the old schedule could be employed [36] 

with a threshold on the value of the control-based objective determining whether to 

reactively adjust the schedule or reschedule completely. 

While many semiconductor processes use linearized models for control, there are 

examples of non-linear controllers being used for run-to-run control [129].  In the cases 

like [129], where an extended Kalman filter (EKF) is used, it is still possible to use 

approaches like those employed here to schedule according to a control-based objective.  

Many approaches have been developed in the realm of sensor selection in which 

observability measures for non-linear systems can be calculated.  In [130], the authors 

solve the sensor placement problems by performing PCA analysis on empirical 

observability Gramians which is similar to the approach used here of performing SVD on 

the information matrix.  They then define a penalty function based on sensor cost to 

constrain a GA and solve for the optimal sensor design.  A similar approach could be 
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implemented to generate schedules for the approaches mentioned above by having a 

penalty function based on cycle time, makespan, or some other scheduling based 

objective. 

5.2.2 Improvements to Control Based Objectives 

While many control based objectives are studied in this work there are other 

possible objective functions based on P and L0.  One other objective is created by making 

a slight change to the methods based on L0 that have already been suggested.  While it is 

true that the singular vector associated with the smallest singular value of L0, σn, 

represents the LOSS, it is possible that this is only a portion of the entire unobservable 

subspace.  As stated in [117], it is possible to set up a threshold that can be used to find 

all singular values associated with unobservable subspaces, and any singular value that 

falls below this threshold shall be identified as such.  The threshold for this test of 

observable subspaces is equal to σ1*ε, where σ1 is the largest singular value and ε is the 

machine roundoff error.  By using this threshold, the angle based scheduling method can 

be adjusted to include the full unobservable subspace rather than just the LOSS.  This 

should yield more accurate choices for the best measurement to choose when using the 

angle based metric. 

Finally, it should be noted that the methods outlined in [117] are similar to those 

of Ham and Brown presented in [119].  In [119], the authors scale the error covariance 

matrix with respect to its initial condition and then perform the SVD on the scaled matrix 

to find its singular values and singular vectors.  In this case the largest singular value 

represents the variance of the state or linear combination of states that is least observable.  

As the authors point out, this method greatly simplifies the analysis of the error 

covariance matrix for the following reasons.  Without performing the SVD step first, 
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there are 
( 1)

2

n n +
 unique elements (due to symmetry) in the error covariance matrix to 

examine, or if one attempts to simplify the analysis by looking only at the diagonal 

entries of P (i.e., the trace), n unique entries.  In the first case, the SVD step simplifies the 

task to looking only at the n singular values.  For the second case, the SVD based method 

has the same number of values to study but has a distinct advantage.  The simplified 

method of observing only the diagonal elements of P spots large variance for individual 

states but not for combinations of states.  In the SVD based method, singular vectors 

associated with large singular values can point out combinations of states which have 

higher variance and are least observable; therefore, these vectors can be used in an angle 

based scheduling method similar to the one above.  Additionally, the scaling of the error 

covariance matrix by its initial value should eliminate the problem of sensitivity of P to 

P0 mentioned in [117]. 

5.2.3 Suggestions for Further Testing 

While many simulations are run to test the performance of the various scheduling 

methods, the different systems change only one parameter at a time (e.g., number of tools 

or product mix).  It would be interesting to change multiple factors and see how the 

scheduling algorithms perform.  Additionally, it is seen in the results for Test 7, that by 

setting the entries of Q equal to the noise levels of the states, one can give preference to 

given products on given tools.  This could be tried in systems where such preferences are 

desired for reasons other than the inherent variance of the given products and tools. 

Also, while Method 5 is found to be a poor choice for the examples studied, one 

situation in which it would be useful is on a set of tools where setup avoidance at a 

change-over is important.  I such a scenario, there is large cycle time penalty associated 

with setting up the tool for a different product when a change-over occurs.  The algorithm 
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based on ( )T

rr PCCtrace shows a propensity for scheduling long campaigns of the same 

product on the same tool automatically so it could be useful in the setup avoidance case. 

Along these lines, it would be interesting to expand the scheduling simulation to 

include this scenario or others such as those studied in [134] where the metrology delay is 

considered separately from the processing time.  Additionally, [134] contributes to the 

literature on sampling plans in semiconductor processing.  All of the tests run in this 

work use only systems with full measurement data (i.e., every run is measured and fed 

back to the controller).  This is often not a realistic case in practice and the use of the 

control based schedulers studied here in the creation of sampling plans or in the presence 

of limited measurement information would be of great interest.  This has been done in a 

limited manner for the method based on trace(P) in [54] and [135]. 

Finally, it is noted that the scheduling algorithms proposed here are useful with 

other non-threaded control systems as well.  The P-based scheduling algorithms can be 

applied in any system that uses a Kalman filter as its estimator, and the partial 

observability methods can be used with any system that uses a state space model.  If the 

model doesn’t use a Kalman filter, then L0,k is calculated without using the matrix, R, for 

scaling.  Of particular interest are the systems that us equality constraints in place of qual 

runs to insure observability of the overall system such as [91–93] and [127]. 
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APPENDIX A: DEFINITIONS OF SCHEDULING TERMS 

The following definitions (with a slight modification to the term, scheduling) 

were used in the survey conducted for the FORCe I project [7] and were used for a new 

survey as part of the FORCe II [8] project as well. 

• Planning: The development of detailed capacity and material plans that assess the 

fab’s capability to meet market demands. Decisions here include determining 

product mix, new equipment purchases, staffing levels, etc. 

• Order Release: The determination of when to release lots to the manufacturing 

floor. 

• Scheduling: The creation of an overall plan of how lots will move through the fab.  

Scheduling generally encompasses a more holistic view of the fab than 

dispatching and may incorporate such knowledge as planned tool maintenance, 

product mix changes, demand forecasts, etc. In general, scheduling is performed 

on a shiftly, daily or weekly basis to provide a nominal schedule for the entire 

interval.  This step is optional. 

• Rescheduling: The re-evaluation of a scheduling rule decision within the original 

scheduling time period. This is typically done either at fixed intervals or when a 

schedule deviates from its original plan. 

• Dispatching: The immediate assignment of a specific resource to one of several 

possible lots. It answers the question: which lot should be processed on this 

machine now? If scheduling has been performed, the goal of dispatching is to 

choose the lots that best meet the schedule. If scheduling has not been performed, 

dispatching rules (such as FIFO, critical ratio) are chosen that have been shown to 

work well for a given factory measure(s). 
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The roles of scheduling, rescheduling, and dispatching are often collectively 

referred to as scheduling. In this work, the combination is referred to as 

scheduling/dispatching or where specified, just scheduling for easier reading.  Figure A.1 

gives a flow chart representation of the hierarchy of the various systems. 

 

 

Figure A.1: A flow diagram demonstrating the various levels of product flow control. 
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APPENDIX B: EWMA CONTROL 

B.1 Derivation of EWMA Controller in Integral Form 

Starting from the standard form of the EWMA controller (Equation (2.3)), the 

integral form (Equation (2.4)) is derived: 

 1
ˆ ˆ( ) (1 )k k k kx y bu xλ λ+ = − + −  (2.3) 

 1
ˆ ˆ ˆ

k k k k kx y bu x xλ λ λ+ = − + −  (B.1) 

 1
ˆ ˆ ˆ( )k k k k kx x y bu xλ+ = + − −  (B.2) 

 1
ˆ ˆ ˆ( ( ))k k k k kx x y bu xλ+ = + − +  (B.3) 

 1
ˆ ˆ ˆ( ).k k k kx x y yλ+ = + −  (2.4) 

B.2 The EWMA R2R Controller Algorithm 

A general form of the EWMA run-to-run controller for a single input, single 

output process is shown below: 

1. Given the gain, b, from experiments, a starting value for the state estimate, 0x̂ , and 

the target, T. 

2. Calculate the inputs, uk, from Equation (2.5). 

3. Using the inputs from Step 2 and the current value of ˆ
kx  with Equation (2.2), 

calculate the predicted value for the outputs, ˆ
ky . 

4. After the process step finishes, take a measurement of the output, yk. 

5. Using the output residual, ˆ
k ky y− , with the observer equation, (2.4), get an 

updated estimate for the disturbance, 1
ˆ

kx + . 

6. Go to Step 2 and repeat for the next run. 
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APPENDIX C: SUMMARY AND ANALYSIS OF RESULTS FROM ZHENG ET AL [87] 

C.1 Simulation Model 

In Zheng et al [87], the effect on an EWMA controller of switching between two 

different products on a single tool is evaluated.  In order to obtain systematic results, the 

two products are constrained to running in a cyclic fashion.  For example, a cycle length 

of four and a 50-50 product split would result in the following sequence of runs: 

[1 1 2 2 1 1 2 2 … 1 1 2 2 ]. 

The output from the two product, one tool system is defined as a linear function: 
 

 1 1

2 2

1

1
it n it n

it n

it n it n

X n j
Y

X j n i

α β η

α β η
+ +

+
+ +

+ + ≤ ≤
= 

+ + + ≤ ≤
 (C.1) 

where α1 and β1 are the product one intercept and slope, respectively, and α2 and β2 are 

the product two intercept and slope, respectively.  The variable i is the number of runs in 

a cycle (i.e., the campaign length), and j is the number of consecutive runs of product 1 in 

a cycle so that i - j is equal to the number of consecutive runs of product 2 in a cycle; this 

is also called the break length for product 1.  The index t is the cycle index and n is the 

intercycle index.  Therefore, ( )1, 2, ,it nY n j+ = ⋯ , and ( )1, 2, ,it nY n j j i+ = + + ⋯ are 

the outputs of products 1 and 2, respectively, and ( )1, 2, ,it nX n i+ = ⋯  are the control 

actions (inputs) at a given run number, it+n.  There is a common disturbance η which 

represents the change in tool condition and is modeled as an IMA(1,1) disturbance with 

drift: 

 1 1,k k k kη η δ ε θε− −− = + −  (C.2) 

where δ is the deterministic drift term, θ is the moving average parameter (θ = 1 is a 

random walk and  θ = 0 is white noise), and the noise term, εk is ( )20,N σ .   
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C.2 Tool Based EWMA Control 

A single, observed tool disturbance is found from input-output data and the linear 

models for the two products: 
 

 
( )
( )

1 1

2 2

1
ˆ

1
it n it n

it n

it n it n

Y a b X n j

Y a b X j n i
η + +

+
+ +

− + ≤ ≤
= 

− + + ≤ ≤
 (C.3) 

where a1 and b1 are fixed model parameters found from experiments that approximate α1, 

β1, and a2 and b2 are similar parameters that approximate α2, β2. 

The observed “tool noise” is filtered using an exponentially weighted moving 

average (EWMA) to get an estimate of the disturbance: 

 ( ) 1
ˆ 1 ,it n it n it nη λη λ η+ + + −= + −ɶ ɶ  (C.4) 

where 0 1λ≤ ≤  is the EWMA weighting factor. 

The disturbance estimate is then fed into deadbeat control laws with output targets 

of zero for the two products: 
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X
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η
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ɶ

ɶ
. (C.5) 

By substituting the expressions for ˆ
it nη +  and it nX +  into (C.4), the expression 

simplifies to the familiar integral form of the EWMA controller: 

 1.it n it n it nYη λ η+ + + −= +ɶ ɶ  (C.6) 

Finally, an important parameter in discussion of the controller performance is the 

plant-model mismatch for the gain, ξ: 
 

 

1  

,  1  

1  

no mismatch

where gain overestimated
b

gain underestimated

ξ
β

ξ ξ
ξ

=


= <
 >

. (C.7) 
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The relationship of the plant-model mismatch to other system parameters can be seen by 

substituting equation (C.5) into equation (C.1) to derive the closed-loop output equation: 
 

 
( )
( )

1 1 1 1

2 2 2 1

1

1
it n it n

it n

it n it n

a n j
Y

a j n i

α η ξ η
α η ξ η

+ + −
+

+ + −

+ − + ≤ ≤
= 

+ − + + ≤ ≤

ɶ

ɶ
. (C.8) 

C.2.1 System Stability and Simulation Results for Tool-based Control 

Figures C.1-3 display the outputs of simulations that demonstrate several of the 

previously mentioned scenarios.  In Figure C.1, the system is simulated with tool-based 

EWMA control with the mismatch parameters having different values and a stationary 

disturbance (i.e., 0δ θ= = ).  As mentioned before, this is a trivial case and the system is 

stable.  In Figure C.2, the opposite approach is taken; the mismatch parameters are 

identical, and the drift and integrating parts are added to the disturbance term.  As 

expected, the system is stable; in fact, the system is equivalent to a single product system.  

Because of the drift term, the controlled output has a steady state offset from the target 

value of zero.  The red line shows the mean value of the simulated output, which is equal 

to 0.118.  According to Del Castillo [120], the steady state offset of a single product 

system under EWMA control will have an offset equal to δ λξ , which in this case is 

equal to 0.119.  It is well known that a double EWMA (DEWMA) controller can be used 

to compensate for the drift in this sort of disturbance and eliminates the offset.  Results of 

a DEWMA filter applied to the same simulation can be seen in Figure C.3.  

Unfortunately, the DEWMA controller still demonstrates the same instability problems as 

the EWMA.  Several unstable systems are demonstrated in Figures C.4-6 where it can be 

seen that the drift disturbances cause the system instability to grow quickly (e.g., Figure 

C.4) while the integrating portion of the disturbance term causes an unbounded 

oscillation (e.g., Figure C.5).  For these simulations, the drift is the more dominant 

instability when both terms are included (e.g., Figure C.6). 
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Figure C.1:  Tool-based EWMA control with different plant-model mismatch for each 
product and a stationary disturbance.  The system is stable.  Parameter 
values: λ = 0.7, δ = 0, θ = 1, ξ1 = 1, ξ2 = 1.2, i = 10, j = 5.  
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Figure C.2: Tool-based EWMA control with the same plant-model mismatch for both 
products and a non-stationary disturbance.  The system is stable, but the 
output mean is offset from the target value of zero.  Parameter values: λ = 
0.7, δ = 0.1, θ = 0.5, ξ1 = 1,    ξ2 = 1.2, i = 10, j = 5. 
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Figure C.3: Tool-based DEWMA control with the same plant-model mismatch for each 
product and a non-stationary disturbance.  The system is stable and the 
offset seen with EWMA control is eliminated.  Parameter values: λ1 = 0.7,  
λ2 = 0.1, δ = 0.1, θ = 0.5, ξ1 = ξ2 = 1.2, i = 10, j = 5. 
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Figure C.4: Tool-based EWMA control with different plant-model mismatch for each 
product and drift added.  The system is unstable.  Parameter values: λ = 0.7, 
δ = 0.1, θ = 1, ξ1 = 1, ξ2 = 1.2, i = 10, j = 5. 
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Figure C.5: Tool-based EWMA control with different plant-model mismatch for each 
product and integrating noise term added.  The system is unstable.  
Parameter values: λ = 0.7, δ = 0, θ = 0.5, ξ1 = 1, ξ2 = 1.2, i = 10, j = 5. 
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Figure C.6: Tool-based DEWMA control with different plant-model mismatch for each 
product and a non-stationary disturbance. The system is unstable.  Parameter 
values: λ1 = 0.7, λ2 = 0.1, δ = 0.1, θ = 0.5, ξ1 = 1, ξ2 = 1.2, i = 10, j = 5. 
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each switching point as a function of the cycle number (a mathematical proof is provided 

in [87] where an equation for the product 1 output at the switching point is given). 

Figure C.7: Tool-based EWMA control with different plant-model mismatch for each 
product and drift added.  The system becomes unstable as the output error at 
the switching points increases over time.  Parameter values: 

1 20.7, 0.1, 1, 1, 1.2, 100, 50.i jλ δ θ ξ ξ= = = = = = =  
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same product, rather than the previous run in which a different product may have been 

processed. 

The noise estimate is the same as before, but the equation used to calculate it is 

product dependent.  The filter equations for product 1 are 
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and the deadbeat control law for product 1 is 
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For the two product system, the filter equations for product 2 are 
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and the deadbeat control law for product 2 is 
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Because the estimates used in equations (C.9) and (C.10) are based only on results 

of product 1 runs, the quality of product 1 is no longer dependent on the measurements of 

the other product (or products) made during the break time between campaigns of 

product 1 (i.e., runs ( ) where 1it n j n i+ + ≤ ≤ ).  Therefore, from the viewpoint of 

product 1, it is unimportant whether a single product or a variety of products is produced 

in the runs during the break [87]. 
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The product based control is stable for systems with equal or unequal plant-model 

mismatches; this is true regardless of whether the disturbance includes either drift or 

integrating parts or both [87].  Figures C.8 and C.9 display the output of a system with 

unequal plant-model mismatches and a disturbance with both the drifting and integrating 

parts added.  In the case of Figure C.8, the drifting portion of the disturbance is more 

dominant, but in Figure C.9, the integrating portion of the disturbance is more dominant.  

As with the tool-based system, the major deviations in the output for both cases occur at 

switching points, but in this case, the error from target is bounded.  Also, the error at 

switching seems to be proportional to the break length for each product.  Notice that the 

errors at switching points are larger for product 1 than for product 2 and that product 1 

has the longer break length because it represents a smaller portion of the product mix.  

This is explored further in following section. 
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Figure C.8: Product-based EWMA with a drift-dominant disturbance.  The process is 
stable and errors from the target are bounded.    Parameter values: 

1 20.5, 0.1, 0.9, 1, 0.8, 200, 40.i jλ δ θ ξ ξ= = = = = = =  
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Figure C.9: Product-based EWMA with a disturbance in which the integrating portion is 
dominant.  The process is stable and errors from the target are bounded.    
Parameter values: 1 20.5, 0.01, 0.5, 1, 0.8, 200, 40.i jλ δ θ ξ ξ= = = = = = =  
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runs; this effect is especially apparent in systems with drift.  Note the difference in results 

for product 1 between (a) and (b) of Figure C.10.  In both cases, product 1 is a low 

volume product (5% of the product mix), but in case (b), lambda is closer to one than in 

case (a).  The error in the first run of product 1 after a switch is high for both cases but 

the error for subsequent runs (i.e., runs 2–j) is much lower for case (b) because older 

information about the disturbance is discarded more quickly.  Even though the estimator 

is more sensitive to noise, the output error due to noise sensitivity is small compared to 

the output error when the system is slow to compensate for large changes in the 

disturbance signal.  This is made clear by comparing the mean output error of product 1 

for the two cases when they are run for 50 cycles; scenario (a) has a mean squared error 

of 26.6, while scenario (b) has a mean squared error of 18.1.  Using a larger value of 

lambda after a switch over is akin to the “rapid mode” approach employed by Sachs et al 

in [14] to compensate more quickly to shift disturbances. 
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Figure C.10: Product-based EWMA control for an infrequent product (product 1 is only 
5% of the product mix).  In (a), λ = 0.5 and the system adjusts slowly after 
the change from product 2 to product 1 resulting in multiple large deviations 
from the target of zero. In (b), λ = 0.95 and the system adjusts rapidly to the 
large disturbance at the switch.  Parameter values: 

1( ) 1( ) 2 1 20.5, 0.95, 0.3, 0.1, 1, 1, 1.2, 100, 5.a b i jλ λ λ δ θ ξ ξ= = = = = = = = =  

C.4 AMSE for Product Based Control During Long Runs Between Switches 

In [87], the following formula for asymptotic mean squared error (AMSE) is 

derived: 
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where the variables Spd and Sps are defined as 
 

95 100 105 110 115
-2

0

2

4

6

8

10

Run Number
(a)

O
u

tp
u

t
Output

Product 1

Product 2

95 100 105 110 115
-2

0

2

4

6

8

10

Run Number
(b)

O
u

tp
u

t

Output

Product 1

Product 2

 



 173 

 ( ) ( )
21

1

1 1

1
,

1 1

n

pd j

q i j
S n

q q

− −
+ 

− − 
≜  (C.14) 

and 
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respectively. 

From plots of the system (e.g., Figure C.8), it is observed that the individual 

product outputs reach what appears to be a steady state between switches as long as the 

campaign length is long enough (i.e. large enough j for the case of product 1).  So if a 

point, n, is selected sufficiently far away from one but still less than or equal to j, then it 

lies in, what is effectively, a steady state region and behaves similarly to a run in a single 

product system that has reached a steady state. 

For reasonable values for λ and ξ,  the term, 1 11 ,q λξ= −  goes rapidly toward 

zero when raised to higher powers (see, for example, Figures C.11 and C.12 for q1 raised 

to the 10th and 20th powers, respectively).  So for n and j, sufficiently large (i.e., points in 

the steady state region), assume that terms of the form ( )1 , where , ,pq p f n j=  go to zero, 

and the following simplifications to the above equations are made: 
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Del Castillo [120] derives the following equation for AMSE(Yn) for a single 

product system with an IMA(1,1) disturbance with drift as: 
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which is identical to the final equation derived above in Equation (C.18).  Thus it is 

shown that products in a two product system which are run sufficiently long enough after 

a switching point take on the characteristics of those in a single product system. 
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Figure C.11: Values of q1 to the 10th power for various values of λ and ξ1. 
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Figure C.12: Values of q1 to the 20th power for various values of λ and ξ1. 

C.5 AMSE for Product Based Control at Switching Points in Drift Dominant 
Systems 

At the point when a drift dominant process switches from product 2 back to 

product 1 at the beginning of a new cycle, the run index is equal to one (i.e., 1n = ) and 

the equations for the calculation of AMSE can be simplified as follows (for the drift 

dominant process, theta is assumed equal to one): 
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For processes with large enough j, many q1 terms go to zero (as demonstrated in 

the previous section) and Equation (C.20) can be simplified further, as follows: 
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For the above case, the AMSE at switching for product 1 becomes a strong 

function of ( )2
i j−  (i.e., the square of the break length between campaigns of product 1).  

Using a pair of simulations for a drift dominant system where the break length of product 

1 is doubled from the first simulation to the second, the above effect is demonstrated.  In 

both cases, the product mix is 20 percent product one, but in the second simulation, i and 

j are both doubled from their values in the first simulation.  It is clear from a visual 

inspection of Figure C.13 that the error from target for product 1 at switching points 

approximately doubles from plot (a) to plot (b).  Calculations of the AMSE at switching 

points of product 1 from both the simulation data and the derived equation show that it 

approximately quadruples (i.e., it is a strong function of ( )2
i j− ). 
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Figure C13: Output response for product based EWMA.  (a) i = 100 and j = 20; the 
switch points for product 1 have a mean error of 8.16 and an AMSE of 66.6.  
(b) i = 200 and j = 40; the switch points for product 1 have a mean error of 
16.2 and an AMSE of 261. 
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APPENDIX D: CREATING A REDUCED MEASUREMENT NOISE COVARIANCE MATIX 

D.1 Pseudo-code 

The measurement noise covariance matrix, R, is square by definition and size 

,p p×  where p is the length of the output vector.  In cases where not all outputs are 

measured, it is necessary to create a “reduced” version of the output equations which 

includes only the rows corresponding to the measured outputs.  Therefore, it is necessary 

to create a reduced version of the covariance matrix which is still square but contains 

only the information related to the measured outputs. 

1. (Define reduction vector, r)  The reduction vector, r, has size 1,mp × where pm is 

the number of measured outputs, and contains the row numbers corresponding to 

the measured outputs.  For example, if outputs 1 and 3 are measured, then 

[ ]1 3 .
T

r =  

2. (Given R and r, create the reduced version of R, Rr) 
 

 

( )
( )

( ) ( ) ( )( )

For 1: length

For j 1: length

, , ;

End

End

r

i r

r

R i j R r i r j

=

=

=  (D.1) 

In MatLab, pseudo-code (D.1) can be implemented simply as 

 ( ),rR R r r=  (D.2) 

D.2 A Three Tool, Two Product Example 

For this example, there are six contexts and three qualification runs and therefore, 

nine outputs.  The 9x9 measurement noise covariance matrix is 
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2
11 12 13 14 15 16 17 18 19

2
21 22 23 24 25 26 27 28 29

2
31 32 33 34 35 36 37 38 39

2
41 42 43 44 45 46 47 48 49

2
51 52 53 54 55 56 57 58 59

2
61 62 63 64 65 66 67 68 69

2
71 72 73 74 75 76 77 78 79

8

R

σ θ θ θ θ θ θ θ θ
θ σ θ θ θ θ θ θ θ
θ θ σ θ θ θ θ θ θ
θ θ θ σ θ θ θ θ θ
θ θ θ θ σ θ θ θ θ
θ θ θ θ θ σ θ θ θ
θ θ θ θ θ θ σ θ θ
θ

=

2
1 82 83 84 85 86 87 88 89

2
91 92 93 94 95 96 97 98 99

.

θ θ θ θ θ θ σ θ
θ θ θ θ θ θ θ θ σ

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (D.3) 

In this example, assume all three tools run product one at the same time; 

therefore, 

 [ ]1 3 5
T

r =  (D.4) 

and 

 

2
11 13 15

2
31 33 35

2
51 53 55

.rR

σ θ θ
θ σ θ
θ θ σ

 
 

=  
  

 (D.5) 

A final note: Usually, R is diagonal so that all cross covariance terms, θij, are zero; in this 

case, the pseudo-code given above can be greatly simplified and therefore, made much 

more efficient. 
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APPENDIX E: ONE-TOOL, ONE-PRODUCT EXPERIMENT FROM PASADYN [41, 54] 

In [41] and [54], the author uses a system with a single tool and single product to 

demonstrate the effect of run ordering on the estimate error variance of the various states 

in the system.  The state and output equations for the system in open-loop form (i.e., no 

inputs) are 

 1 1

1 1

1 1

2 21 1

1 0 1 0

0 1 0 1

t t

p pk kk k

x xx w

x x x w
+ +

         
= = +         

            
 (E.1) 

and 

 11

1

1 1

2 211

1 0
,

1 1

tt

pk kk k

xyy v

y x vy

      
= = +      

         
 (E.2) 

respectively. 

The first output, 
1t

y , is a qual run for the tool and the second output, 11y , is 

production run of product 1 on tool 1.  Three simulations, each with a different 

processing order, are run on the same set of 50 outputs (25 runs each of 
1t

y  and 11y ).  In 

the experiments, a set of runs in which the system alternates between the two outputs is 

compared to a sequence of runs in which a long string of one output is followed by an 

equally long string of the other output.  In other words, an output sequence of the form [2, 

1, 2, 1,…, 2, 1] is compared to two output sequences that have the form [1, 1,…, 1, 2, 

2,…, 2] and [2, 2,…, 2, 1, 1,…, 1].  Plots of the estimate error variance of the two system 

states for each of the three simulations are shown in the following figures. 
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Figure E.1: All 25 production outputs, y2, are run first and are then followed by the 25 
qualification runs, y1. 
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Figure E.2: All 25 qualification runs, y1, are run first and are then followed by the 25 
production outputs, y2. 
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Figure E.3: The system switches back and forth between single runs of each output. 

It is clear from the first two figures that when y1 is run for a long stretch, there is 

no information available for the product state and its variance rises quickly.  On the other 

hand, when y2 is run for continuously for many runs, the measurement is a combination 

of the two states and there is no way to determine the unique contributions from each 

state, and variances for both states rise together.  Finally, Figure E.3 demonstrates that 

alternating the two measurements allows the variance of both states to remain low. 
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APPENDIX F: BRIEF REVIEW OF QUEUING TERMINOLOGY AND NOTATION 

F.1 Kendall-Lee Notation [100] 

The Kendall-Lee notation for queuing systems is the standard manner in which 

queuing systems are described.  There are six attributes which each have their own set of 

abbreviations depending upon the type of system being studied.  The applicable 

abbreviations are expressed in a standard order separated by forward slashes as follows: 

1/2/3/4/5/6. 

Characteristic 1 indicates the type of arrival process.  That is, it gives the 

distribution used to describe the manner in which products arrive at the queue in terms of 

their interarrival times (i.e., the amount of time that passes between product arrivals).  

Four abbreviations are used for this characteristic: 

• M: interarrival times are independent and identically distributed (iid) random 

variables with an exponential distribution. 

• D: iid and deterministic; that is, the variance is of the interarrival times is zero so 

they are constant. 

• Ek: iid with an Erlang distribution having shape parameter k.  The Erlang 

distribution has two parameters that can be changed to give many different 

shapes.  For certain values of the parameters, the Erlang distribution can be made 

to take on the shape of the exponential, normal, or deterministic distributions. 

• GI: iid with some general distribution (e.g., normal, uniform, etc.) 

Characteristic 2 indicates the service process.  That is, it gives the distribution 

used to describe the service times (i.e., the amount of time it takes a tool to process a 

product).  This characteristic uses the same set of abbreviations as the previous one. 
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Characteristic 3 denotes the number of parallel servers in the system.  In general, 

if there is more than one server in the system, they are all assumed to be equivalent (i.e., 

homogenous). 

Characteristic 4 tells what type queue discipline is used in the system.  The queue 

discipline specifies how the next customer is selected from the queue when server 

becomes available.  The four most common abbreviations used are: 

• FCFS: first come, fist served, also called first in, first out (FIFO).  The earliest 

arriving customer (the customer in queue the longest period of time) is selected. 

• LCFS: last come, first served, also called last in, first out (LIFO).  The latest 

arriving customer (the customer in queue the shortest period of time) is selected. 

• SIRO: service in random order.  The next customer is randomly selected from the 

queue. 

• GD: some general discipline is used. 

Characteristic 5 gives the maximum number of customers allowed in the system 

at any given time.  This maximum includes all customers in queue and those in service.  

Often the queue is considered to be sufficiently large enough to handle all unserviced 

customers who might arrive to the system; in this case, it is considered infinite. 

Characteristic 6 dictates the size of the population outside of the system from 

which customers are obtained.  This pool of potential customers is usually considered 

infinite if it is not very close in value to the number of servers. 

It is important to note that many of the models studied in the literature consider 

the last three characteristics to be GD/∞/∞.  In this case, the model will be described 

using only the first three characteristics and the last three are not shown but assumed to 

be GD/∞/∞. 
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F.2 The Exponential and Poisson Distributions 

The exponential distribution is often used to model interarrival times in queuing 

systems because it is characterized by the no memory property.  The no memory property 

implies the current interarrival time is independent of the past interarrival times; that is, 

the time until the next arrival is not dependent on how long it has been since the last 

arrival.  The probability density function for the exponential distribution of a continuous 

random variable is 

 

1
for 0

( ) ,

0 otherwise

xe x
f x

α

α
− >

= 


 (F.1) 

where the parameter α is the both the mean and standard deviation of the distribution 

[101]. 

The exponential distribution is closely related to the Poisson distribution.  Where 

as the exponential distribution is used to describe the waiting time between random 

events, the Poisson distribution can be used to model the rate at which the same events 

occur.  The Poisson distribution for a discrete random variable has the following 

probability function: 

 ( )
  for 

,!

0          otherwise

ye
x

f y y

λλ−
+

∈
= 




ℤ
 (F.2) 

where λ is both the mean and variance of the distribution [101].  Practically, λ represents 

the rate of occurrence in a given period of time and the arrivals are said to be Poisson 

with rate λ (denoted Poi(λ)). 

In terms of queuing systems, λ is considered to be the arrival rate.  It is proven 

that if the number of arrivals in an interarrival time of length x follows a Poisson 

distribution with parameter λx, then the interarrival times follow an exponential 



 188 

distribution with parameter 1α λ=  [100].  By using the Poisson distribution with 

occurrence rate multiplied by the interarrival time produces the probability that the 

number of arrivals in x is equal to y, that is, 

 ( ) ( )
,

!

yx

a

e x
P n y

y

λ λ−

= =  

where na is the number of arrivals in the time period x.  This leads to the exponential 

distribution for the interarrival times with parameter 1α λ=  as follows: 

 ( ) .xf x e λλ −=  (F.3) 

In this case, the mean interarrival time will be 1 λ  [100]. 



 189 

 APPENDIX G: DISCRETE EVENT SIMULATION CODE AND VERIFICATION TESTING  

G.1 Simulation Algorithm Pseudo-code 

For the discrete event simulations, only the time stamps at which events occur are 

important.  Therefore, a list of events with their corresponding time stamps are first 

generated.  To check the accuracy of the simulations, they are constructed so that their 

long-run mean results are easily comparable to equations derived from queuing theory. 

1. (Create random sequence of Poisson arrivals)  In order to apply queuing theory, 

interarrival times for products need to be exponentially distributed, which leads to 

Poisson distributed arrival times.  Given a mean arrival rate, λ, of products to the 

system, a sequence of exponentially distributed product interarrival times with 

mean, 1m λ= , is constructed.  These interarrival times can then be used to 

construct a series of Poisson distributed arrivals with mean λ. 

a. Generate a sequence of random numbers, R, from a uniform distribution 

on the interval (0,1) on length n: 

 ( ),R rand n=  (G.1) 

b. Convert R to a random sequence from an exponential distribution to get 

the desired sequence of interarrival times, I: 

 ( )( )ln .I m R= −  (G.2) 

c. (Calculate the sequence of arrival times)  The arrival time of the k
th 

product is generated by summing the 1st through kth interarrival times; call 

the sequence of arrival times A: 

 
1

.
k

k i

i

A I
=

= ∑  (G.3) 

2. (Calculate the start and completion times of the products)  Use the set of n 

products and their associated arrival times and processing times, s, to calculate 
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their start times, S, and completion times, C.  Here, a one tool system and FIFO 

queue discipline are assumed. 

a.  (Initialize start times)  Initial start time is set equal to the first arrival time: 

 1 1.S A=  (G.4) 

b. (Initilize completion times)  Initial completion time equals the sum of the 

first start and processing times: 

 1 1 1.C S s= +  (G.5) 

c. (Calculate remaining Sk and Ck)  Future start times are determined by 

comparing the arrival times of the products to the completion times of the 

previous products; if a product arrives after the completion of the product 

preceding it in the queue then it starts immediately and its start equals its 

arrival time; otherwise, start time equals the completion time of the 

preceding product.  Completion times are calculated by checking the type 

of product being run and adding the appropriate processing time to the 

start time (i.e., using Equation (G.5) with k substituted for 1). 
 

 

1

1

1

If ;

    Then ;

Else ;

    Then ;

End.

k k

k k

k k

k k

A C

S A

A C

S C

−

−

−

>

=

≤

=

 (G.6) 

3. (Calculate the long run statistics for simulations)  The mean number of products 

present and mean residence time of products for both the queue and the system as 

a whole are calculated as well as the idle time for the system. 

a.  (Construct event timeline matrix)  Arrival, start, and completion times are 

labeled with an identifier, or EID, where, EID = 1 for arrivals, EID = 2 for 

starts, and EID = 3 for completions. 
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1

2

1

2

1

2

1

1

1

2

2
.

2

3

3

3

n

n

n

A

A

A

S

S
timeline

S

C

C

C

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
   

⋮ ⋮

⋮ ⋮

⋮ ⋮

 (G.7) 

b. (Sort timeline)  Sort according to the times in the second column.  All 

event times are now in chronological order and each has an EID. 

 ( )sort .timeline timeline=  (G.8) 

c. (Calculate times between events)  Let T equal the second column timeline 

and use it to make a new vector of time increments between events called 

Tb. 

 1ib i iT T T+= −  (G.9) 

d. (Track the number of wafers in queue and in system)  A running count of 

wafers in queue (InQ) and in system (InS) can then be kept for each time 

between events depending on the event occurring at the beginning of the 

time interval, Tbi. 
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1,

1 1

1,

1 1

1,

1 1

If 1;

    Then 1  &  1;

ElseIf 2;

    Then 1  &  ;

Else 3;

    Then        &  1;

End.

i

i i i i

i

i i i i

i

i i i i

timeline

InQ InQ InS InS

timeline

InQ InQ InS InS

timeline

InQ InQ InS InS

− −

− −

− −

=

= + = +

=

= − =

=

= = −

 (G.10) 

e. (Calculate average number of products in the system, L)  The number of 

products in the system during each interval between events is multiplied 

by the length of the interval; all of these values are summed and divided 

by the total length of simulation, which is equal to the final completion 

time, Cn. 

 
( )1

1
*

.i

n

i bi

n

InS T
L

C

−

==
∑

 (G.11) 

f. (Calculate average number of products in the queue, Lq)  The number of 

products in the queue during each interval between events is multiplied by 

the length of the interval; all of these values are summed and divided by 

the total length of simulation, which is equal to the final completion time, 

Cn. 

 
( )1

1
*

.i

n

i bi

q

n

InQ T
L

C

−

==
∑

 (G.12) 

g. (Calculate the mean time in the system for the products) 

 mean( ).W C A= −  (G.13) 

h. (Calculate the mean time in the queue for the products) 

 mean( ).qW S A= −  (G.14) 

4. (Calculate the percentage of time the system is idle, π0)  Because unforced idle 

time is not allowed in the system (i.e., if the system is empty, any product 
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entering the queue immediately begins processing), then the system can only be 

idle when it is empty. 

a. (Find index of 0 entries in set InS)  Identify inter-event intervals where the 

system is empty. 

 ( ) find 0 .emptyindex InS= ==  (G.15) 

b. (Calculate total idle time, IT)  IT equals the sum of the initial idle time 

(i.e., before the first arrival) and all idle times when the system is empty. 

 1.i

empty

b

i index

IT T A
=

= +∑  (G.16) 

c. (Calculate percent idle time, π0) 

 0 .nIT Cπ =  (G.17) 

G.2 Testing Simulation Against Theoretical Results 

For a M/G/1 system with FIFO queuing discipline, the Pollaczek-Khinchin mean 

value formulae can be used to get the long-run mean statistics for the system [100].  

These theoretical results are compared to the simulations of the same system to determine 

the accuracy of the simulations.  The following two examples use a one-tool, two-product 

system to demonstrate this process.  First the product mix, the service time for each 

product, and the system traffic intensity are specified, then the remaining values are 

calculated.  In both examples the simulation results compare favorably with their 

theoretical counterparts. 

G.2.1 Example with Identical Service Times for Each Product 

Set the percentage of product 1, PP1, in the mix to be 1
3 : 1

31 .PP =  

Therefore, the percentage of product 2, PP2, in the mix is 2
3 : 2

32 .PP =  

Set the service times for both products to be 2. 
Product 1 service time: 1 12 1 .s µ= =  

Product 2 service time: 2 22 1 .s µ= =  

Total mean service time: ( ) ( ) ( ) ( )1 2
3 31 1 2 2 2 2 2T P Ps P s P s= + = + =  
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Product 1 deterministic service rate: 1
21 11 .sµ = =  

Product 2 deterministic service rate: 1
22 21 .sµ = =  

Total mean service rate: 1
21 .T Tsµ = =  

Set a total traffic intensity of 0.75: 3
4 .Tρ =  

Then the total mean interarrival rate is: 0.375T T Tλ µ ρ= =  

And the mean arrival rates for the two products are: 

( ) ( )31 1
3 8 81 1  ;P TPλ λ= = =  

( ) ( )32 1
3 8 42 2 .P TPλ λ= = =  

The mean interarrival times are:  

1 2

1 1 12.67 ; 8 ; 4.
Tλ λ λ= = =  

The variance of the service time is: 

( ) ( ) ( ) ( )2 2 2 22 1 2
3 31 1 2 2 2 2 2 2 0P T P TP s s P s sσ = − + − = − + − =  

Mean number of products in queue and the system according to Pollaczek/Khinchin: 

( ) ( )
( )

2 222 2 2 3 3
4 4

3
4

0
1.125

2(1 ) 2 1qL
λ σ ρ

ρ

++
= = =

− −
 

9 3
8 4 1.875qL L ρ= + = + =  

The steady state results for the simulation and P-K theorem match well. 
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Figure G.1: Comparison of mean time in system (L), in queue (Lq), and idle time for 
discrete event simulations (21 simulation runs) and Pollaczek-Khinchin 
theory for a low volume system ( 0 0.75π = ) with one tool and two products 

that have equal processing times. Mean values (red dots), P-K values (green 
dashed line), 95% confidence interval (solid blue bars).  Means approach 
predicted steady state values and confidence intervals shrink as the number 
of product runs increases. 
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Figure G.2: Comparison of mean time in system (L), in queue (Lq), and idle time for 
discrete event simulations (21 simulation runs) and Pollaczek-Khinchin 
theory for a high volume system ( 0 0.95π = ) with one tool and two products 

that have equal processing times. Mean values (red dots), P-K values (green 
dashed line), 95% confidence interval (solid blue bars).  Means approach 
predicted steady state values and, after initial transition where number of 
product runs is low, confidence intervals shrink as the number of product 
runs increases. 

G.2.2 Example with Different Processing Times for Each Product 

Set the percentage of product 1, PP1, in the mix to be 1
3 : 1

31 .PP =  

Therefore, the percentage of product 2, PP2, in the mix is 2
3 : 2

32 .PP =  

Set the service times for both products. 
Product 1 service time: 1 12 1 .s µ= =  

Product 2 service time: 1
22 21 .s µ= =  

Total mean service rate ( ) ( ) ( ) ( )1 2 1
3 3 21 1 2 2 2 1T P Ps P s P s= = + = + =  
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Product 1 deterministic service rate: 1
21 11 .sµ = =  

Product 2 deterministic service rate: 2 21 2.sµ = =  

Total mean service rate: 1 1.T Tsµ = =  

Set a total traffic intensity of 0.75: 3
4 .Tρ =  

Then the total mean interarrival rate is: 0.75T T Tλ µ ρ= =  

And the mean interarrival rates for the two products are: 

( ) ( )31 1
3 4 41 1  ; P TPλ λ= = =  

( ) ( )32 1
3 4 22 2 .P TPλ λ= = =  

The mean interarrival times are: 

1 2

1 1 11.33 ; 4 ; 2.
Tλ λ λ= = =  

The variance of the service time is: 

( ) ( ) ( ) ( )2 2 2 22 1 2 1 1 1 1
3 3 2 3 6 21 1 2 2 2 1 1P T P TP s s P s sσ = − + − = − + − = + =  

Mean number of products in queue and the system according to Pollaczek/Khinchin: 

( ) ( )
( )

2 22 2 2 3 31
4 2 4

3
4

1.6875
2(1 ) 2 1qL

λ σ ρ
ρ

++
= = =

− −
 

27 3
16 4 2.4375qL L ρ= + = + =  

As seen below, the results of the simulations match well. 
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Figure G.3: Comparison of mean time in system (L), in queue (Lq), and idle time for 
discrete event simulations (21 simulation runs) and Pollaczek-Khinchin 
theory for a low volume system ( 0 0.75π = ) with one tool and two products 

that have different processing times. Mean values (red dots), P-K values 
(green dashed line), 95% confidence interval (solid blue bars).  Means 
approach predicted steady state values and confidence intervals shrink as the 
number of product runs increases. 
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Figure G.4: Comparison of mean time in system (L), in queue (Lq), and idle time for 
discrete event simulations (21 simulation runs) and Pollaczek-Khinchin 
theory for a high volume system ( 0 0.95π = ) with one tool and two products 

that have different processing times. Mean values (red dots), P-K values 
(green dashed line), 95% confidence interval (solid blue bars).  Means 
approach predicted steady state values and, after initial transition where 
number of product runs is low, confidence intervals shrink as the number of 
product runs increases. 
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