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YET ANOTHER MASTERMIND STRATEGY

Barteld Kooi1

University of Groningen, The Netherlands

ABSTRACT

Over the years many easily computable strategies for the game of Mastermind have been proposed.
In this paper we present a new strategy (at least to our knowledge) that performs better than the well-
known strategies: guess the code that has the highest number of possible answers. It is motivated
and compared to four well-known strategies. Some empirical results are presented and discussed.

1. INTRODUCTION

Mastermind2 is a two-player zero-sum game of imperfect information. First, Player 1 secretly chooses a com-
bination of four pawns drawn from six colours. Then Player 2 can ask up to eight combinations of four pawns
as guesses of this secret combination. If she3 finds the secret combination within eight guesses, Player 2 wins
the game, otherwise Player 1 wins the game. Each time Player 2 proposes a guess, she receives an answer by
Player 1 that expresses the accuracy of the guess. The answer consists of two numbers: (1) the number of pawns
that are both of the right colour and in the right place, and (2) the number of pawns that are of the right colour,
but are not in the right place. For example, when the secret combination is “AABB” and the guess is “BBAB”
then the answer is: one pawn is in the right place and two pawns have the right colour but are not in the right
place (I will abbreviate this answer to (1,2)).

There are many winning strategies for Player 2 guaranteeing that the secret combination is found within eight
guesses. There is even a strategy (the “Worst-Case Strategy”) that guarantees that the solution is found within
five questions (see Table 7). So, there seems little more to say about the game. However, most of the strategies
for Mastermind proposed in the literature apply to a slight variation of the game.

A range of papers have been published about Mastermind since the game was first sold in the 1970s. One
particular paper by Koyoma and Lai (1993) seems to be the final paper on Mastermind strategies. The authors
found the optimal strategy for Player 2 by depth-first search on a supercomputer. With this strategy, the expected
number of guesses needed by Player 2 is 4.340. In most of the earlier papers, strategies were put forward which
can be calculated more easily. Although these strategies are not optimal, it still seems worthwhile to study
them since their limited computational complexity makes these strategies easy to generalize to other settings
and variations of the game (e.g., more colours or more pawns). In Section 2, four of the well-known and easily
computable Mastermind strategies are presented.

Among the easily computable strategies that have been proposed over the years, one strategy is lacking, namely:
make the guess that leads to the highest number of possible answers. This (surprisingly simple) strategy needs
only 4.373 guesses on expectation. It is presented and motivated in Section 3. We provide some empirical results
in Section 4. The results are discussed in Section 5 and possible explanations are given for the poor behaviour of
some of the strategies. In Section 6, we draw conclusions and indicate ideas for further research.

1Department of Philosophy, University of Groningen, Groningen, The Netherlands. Email: barteld@philos.rug.nl.
2The name “Mastermind”, the toy, and the distinctive likenesses thereof are the TM properties of Hasbro Inc. The game Mastermind is

very similar to the older game “Bulls and Cows”, which is played on paper with numbers instead of with coloured pegs. [Editor’s note]
3For clarity, the first player will be referred to as “he”, the second player as “she”.



14 ICGA Journal March 2005

2. FOUR WELL-KNOWN MASTERMIND STRATEGIES

In this section we introduce four of the easily computable strategies that have been proposed over the years: (1)
A Simple Strategy, (2) The Worst-Case Strategy, (3) An Expected-Size Strategy, and (4) The Entropy Strategy.
After dealing with the first strategy, we provide some insight into the question how to exploit the informativeness
of the guesses.

2.1 A Simple Strategy

The first strategy is given by Shapiro (it is also published in Sterling and Shapiro (1994)): it is called “A Simple
Strategy”. It works as follows: all possible combinations are ordered (usually lexicographically) and the first
combination is taken as the first guess. The answer is received. The next guess is the first combination in the
ordering that is consistent with the answers given so far. This goes on until the secret combination is cracked. A
crucial drawback of this strategy is that it observes the informativeness of the guesses only marginally: Player 2
is only certain that she does not know the answer already, and that is all.

2.2 How to exploit the informativeness of guesses

Before describing the second strategy, we focus on the question how the informativeness of guesses can be ex-
ploited. In Mastermind, each guess partitions the set of possible combinations. This can be seen in the following
example. Consider a simplified Mastermind game with only two pawns and four colours (A,B,C, and D). The
set of possible combinations can be represented as in Figure 1. Figure 2 provides a representation of the answers
on the guess (AA), while Figure 3 does so for the guess (DA).

DA DB DC DD

CA CB CC CD

BA BB BC BD

AA AB AC AD

Figure 1: A representation.

1, 0 0, 0 0, 0 0, 0

1, 0 0, 0 0, 0 0, 0

1, 0 0, 0 0, 0 0, 0

2, 0 1, 0 1, 0 1, 0

Figure 2: Guess AA.

2, 0 1, 0 1, 0 1, 0

1, 0 0, 0 0, 0 0, 1

1, 0 0, 0 0, 0 0, 1

1, 0 0, 1 0, 1 0, 2

Figure 3: Guess DA.

It is obvious that the guess DA is more informative than the guess AA, but how can this intuition be motivated?
The main idea of the three strategies presented below (including our new strategy) is that the choice for a guess
is based solely on the size of the partitions of the remaining possibilities that a guess generates.

Answer AA AB
0, 0 9 4
0, 1 0 4
0, 2 0 1
1, 0 6 6
2, 0 1 1

Table 1: Answer combinations for Master-
mind with two colours only.

In this respect, in the simplified game above, only two different
kinds of guesses are possible at the start of the game: a guess with
one colour (e.g., AA), or a guess with two colours (e.g., AB). This
is summarized in Table 1. Each number represents the number of
combinations for which the answer (in front of the row) would be
given to the guess. For example, in Figure 2, there are 9 combina-
tions where the answer is (0, 0) for guess AA.

In Table 2, the five different possible partitions for the first guess
in a standard Mastermind game (four pawns and six colours) are
provided. For example, there are 625 combinations for which the
answer is (0, 0) when the first guess is AAAA. It seems obvious
that question AAAA is not a good question, but what more can be
said?
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Answer AAAA AAAB AABB AABC ABCD
0,0 625 256 256 81 16
0,1 0 308 256 276 152
0,2 0 61 96 222 312
0,3 0 0 16 44 136
0,4 0 0 1 2 9
1,0 500 317 256 182 108
1,1 0 156 208 230 252
1,2 0 27 36 84 132
1,3 0 0 0 4 8
2,0 150 123 114 105 96
2,1 0 24 32 40 48
2,2 0 3 4 5 6
3,0 20 20 20 20 20
4,0 1 1 1 1 1

Table 2: Answer combinations for the first guess in Mastermind. For each guess and each answer, the number
of combinations that would yield that answer to the guess is given. The positive numbers can also be seen as the
sizes of the elements of the partition generated by the guess.

2.3 The Worst-Case Strategy
Guess Largest element
AAAA 625
AAAB 317
AABB 256
AABC 276
ABCD 312

Table 3: The sizes of the largest
partition elements in Table 2.

Assume that Player 2 wants to minimize the number of guesses required
to find the secret combination. Then the number of combinations Player 2
considers possible, gives an indication of the number of guesses it will
take. The worst thing that can happen to Player 2 in this respect, is that
the answer to a guess leaves her with the largest element of the partition
(see Table 3). The Worst-Case Strategy, described by Knuth (1976-1977),
suggests to pick the guess that minimizes the largest partition element. Ac-
cording to Table 3, Player 2 should guess AABB (with minimum 256).

2.4 The Expected-Size Strategy

Player 2’s decision for a guess might be based on the expected case instead of the worst case, when she wants
to maximize her expected payoff. Therefore, one might consider to look at the expected size of the resulting
partition elements. The expected size of a partition element is the probability of getting the answer corresponding
to that partition element, multiplied with the size of the partition element. This expectation is defined as follows
for the first question in Mastermind. Let A be the set of possible answers ai and let a(x, g) be the function that
produces the answer for combination x on guess g. The expected size of the resulting partition elements for the
first guess in Mastermind with C colours and p pawns is:

∑

ai∈A

Pg(ai).#({x | x ∈ Cp ∧ a(x, g) = ai})

where Pg(ai) is the probability that the answer to g is ai and # stands for the cardinality of a set. If one assumes
a uniform distribution over all possible combinations, then:

Pg(ai) =
#({x | x ∈ Cp ∧ a(x, g) = ai})

#(Cp)

For example, PAAAA(0, 0) = 625
64 = 625

1296 . So the expected size E(g) is:

E(g) =
∑

ai∈A

#({x | x ∈ Cp ∧ a(x, g) = ai})
2

#(Cp)
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For the first guess, the expected sizes are shown in Table 4. From this point of view, Player 2 should pick AABC
as the first guess. The expected-size strategy is described by Irving (1978-1979)4.

Guess g E(g)
AAAA 511.9
AAAB 235.9
AABB 204.5
AABC 185.3
ABCD 188.2

Table 4: The expected size of the partition elements in Table 2.

2.5 The Entropy Strategy

There is a measure that gives an ordering on partitions entropy (see Cover and Thomas, 1991). The concept of
entropy plays an important role in information theory, since it measures the amount of information contained in
messages. Entropy can be used for a Mastermind strategy too, as described by Neuwirth (1982). Such a strategy
can be motivated by the following example. Assume we have a guessing game. Player 1 picks a card randomly
from a deck of cards. Player 2 has to determine which card Player 1 picked using as few yes/no questions as
possible. For instance, if there are eight cards, one needs three questions to determine which card it is (since
log2(8) = 3). The logarithm gives an approximation of the expected number of yes/no questions needed (in fact,
it is the limit of the expected number of questions for an infinite number of simultaneously played games).

0 1p

1

E
nt

ro
py

Figure 4: Entropy of a par-
tition with two elements.

Assume we have a partition V = {V1, . . . , Vm} of a set A. The probability
pi (whether an element of A is in Vi) is #(Vi)

#(A) when the distribution is uni-
form. The expected number of yes/no questions can then be represented as
∑m

i=1 pi log(#(Vi)). Trying to minimize this measure is the same as trying to
maximize the entropy, which is defined as −

∑m
i=1 pi log(pi), since log(pi) =

log
(

#(Vi)
#(A)

)

= log(#(Vi)) − log(#(A)). Figure 4, displays the entropy for par-
titions with two elements. The variable for the x-axis is the probability p of one
of the elements of the partition, the entropy is given on the y-axis. So, the graph
shows the function −p log p − (1 − p) log(1 − p). As can be seen in this figure,

the highest entropy occurs for the partition in which both parts have equal probability.

Mastermind is very much like the guessing game introduced above, and one can simply calculate the entropies of
the first guesses, see Table 5. On the basis of this strategy, Player 2 should start with ABCD.

Guess Entropy
AAAA 1.498
AAAB 2.693
AABB 2.885
AABC 3.044
ABCD 3.057

Table 5: The entropy of the partitions in Table 2.

4Irving’s paper contains a number of strange (irreproducible) results. First of all he claims that a closer investigation of Knuth’s strategy
reveals that the total number of guesses required for all 1296 combinations is 5804, whereas it should be 5801, according to our calculations.
This can be explained by a minor programming error (the same that we made), but we cannot explain any of his other results. He states that
his strategy selects the first two guesses on the basis of the expected number of remaining possibilities and the rest by exhaustive search.
When we regard the second guess according to his strategy, my calculations disagree with his on five cases. In four of those he does not take
the first of the list available to him. In the other case it is simply wrong. His first guess is AABC. If the reply to the guess is (3,0), according
to Irving, the next guess should be FBAC. (One immediately wonders why not DBAC.) According to our calculations, the expected
size of the set of remaining possibilities after this guess is 4.7. However, if one guesses ABCC the expected size is 3.6. One difference
between these two guesses is that Irving’s guess FBAC partitions the remaining possibilities in 8 parts, whereas ABCC partitions the set of
remaining possibilities in 7 parts. So it might be the case that he took the average number of remaining possibilities, instead of the expected
size, but we still are not able to reproduce his results.
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3. A NEW STRATEGY: MOST-PARTS STRATEGY

In this section we suggest another approach to guessing games. Assume again that Player 2 has to guess which
card Player 1 would have drawn randomly from an ordinary deck of cards. Player 2 wins 1$ if the guess is correct.
There are 52 possibilities. Before Player 2 guesses she can ask one yes/no question, which is truthfully answered
by Player 1. Which question is best? Intuitively one would think that the question “Is it the Queen of hearts?” is
a bad question and that the question “It it a red card?” is a good question. However, all yes/no questions appear
to be equally good. This can be seen as follows. Assume the two piles have sizes x and y. Assume that the card
is in group x with probability x/52. The probability of guessing the right card if it is in this group is then 1/x.
Now assume that the card is in group y with probability y/52. The probability of guessing the right card if it is
in this group is 1/y. Hence, the expected gain is:

x

52
·
1

x
· 1$ +

y

52
·
1

y
· 1$ =

2

52
$

So it does not matter what the sizes of x and y are (as long as they are positive).

This principle can be generalized. Assume there is a set A and we have to guess what element of A we are
dealing with. We also have to assume that the probability distribution on A is uniform. Before we guess we can
ask a question that can be seen as a partition V = {Vi, . . . , Vn}. The probability of guessing correctly, once we
learn in which part of V the element is:

n
∑

i=1

#(Vi)

#(A)
·

1

#(Vi)
=

n

#(A)

So in these cases, the sizes of the elements of the partition do not matter, only the size of the partition, i.e., the
number (n) of elements of the partition matters.

This can also be generalized further to games with more than one round, using the principle of complete induction.
Assume that the probability of guessing the element of any set A correctly in a game with r rounds is the number
of parts into which partition A can be divided with r questions, divided by the cardinality of A, where the player’s
question can depend on the answer to the previous questions (i.e., the induction hypothesis). In case of a game
with r + 1 rounds, Player 2 can ask r + 1 questions, and then has to guess the secret element of A. Let the
first question lead to a partition V = {V1 . . . Vn}. Let ni indicate the number of parts into which Vi can be
partitioned with the rest of the questions. Using the induction hypothesis, we infer that when the game is played
in r rounds for Vi, the probability of guessing the element of Vi equals ni divided by the cardinality of Vi. Then
the probability of guessing correctly in r + 1 rounds for the set A is:

m
∑

i=1

#(Vi)

#(A)
·

ni

#(Vi)
=

m
∑

i=1

ni

#(A)

So, the probability of guessing the element of set A correctly in a game with r + 1 rounds equals the number of
parts into which A can be partitioned with r + 1 questions divided by the cardinality of A. By induction one can
conclude that this holds for any r and any set A.

This multi-round guessing game is similar to Mastermind, although the questions are guesses themselves. This
means that in Mastermind, if one wants to maximize the number of combinations for which one would win in a
certain round, one should maximize the number of parts into which the set of all combinations is partitioned in
the previous round. It appears not to be feasible to calculate the optimal choice for as many as five rounds, but
the idea can be used as a motivation for a strategy. The partitions of the first guess in Table 2 lead to the number
of partition elements in Table 6.

Guess Number
AAAA 5
AAAB 11
AABB 13
AABC 14
ABCD 14

Table 6: The number of partition elements in Table 2.

So, Player 2 should start with either guess AABC or
ABCD. In our strategy, first the guesses that maxi-
mize the number of parts are selected. Then, if pos-
sible, the consistent guesses are selected from these.
Finally, lexicographical order is used to select a sin-
gle guess. So, the first guess of Player 2 in our strat-
egy is AABC.
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4. EMPIRICAL RESULTS

Table 7 shows for each of the five strategies for how many combinations the game is won in a particular round of
the game. In other words: each strategy produces a game tree and the table shows for every depth of the tree how
many leaves (nodes without successors) there are.

Round
Strategy 1 2 3 4 5 6 7 8 9 Total Expected
Simple 1 4 25 108 305 602 196 49 6 7471 5.765
Worst case 1 6 62 533 694 0 0 0 0 5801 4.476
Expected size 1 10 54 645 583 3 0 0 0 5696 4.395
Entropy 1 4 71 612 596 12 0 0 0 5722 4.415
Most parts 1 12 72 635 569 7 0 0 0 5668 4.373

Table 7: Number of combinations for which the strategy produces a win in the specified rounds. The last two
columns give the total number of guesses needed and the expected number of guesses.

The table also shows how many guesses are needed in total in the strategy (the sum of the lengths of all the paths
from the root of the tree to a leaf) and the expected number of guesses needed (the expected length of a path to a
leaf). The last four strategies compare quite favourably to Koyoma and Lai’s (1993) result of 4.340.

5. DISCUSSION

In this section we discuss the empirical results. It seems quite surprising that the Simple Strategy performs so
badly with respect to the maximum number of rounds required and the expected number of rounds required. This
strategy does not even guarantee that one wins in eight rounds. It seems that the first guess is not a good choice.
This can easily be improved by choosing another combination than AAAA for the first guess and let the rest be
ordered lexicographically. Starting with AABB, for example, gives the results as presented in Table 8, which is
considerably better. But it still performs badly in comparison to the other strategies.

Round 1 2 3 4 5 6 7 8 9
Count 1 12 71 253 588 286 78 7 0

Table 8: Number of combinations for which the Simple Strategy starting with AABB, produces a win in the
specified rounds.

One of the reasons of the bad performance can be explained by the following example. Assume that six com-
binations remain: ABAA, ABAB, ABAF , ABDE, AEAE, AFAE. In Table 9, for each of these remaining
possibilities the answers are shown for the guess in the column.

ABAA ABAB ABAF ABDE AEAE AFAE ABFA
ABAA 4, 0 3, 0 3, 0 2, 0 2, 0 2, 0 3, 0
ABAB 3, 0 4, 0 3, 0 2, 0 2, 0 2, 0 2, 1
ABAF 3, 0 3, 0 4, 0 2, 0 2, 0 2, 1 2, 2
ABDE 2, 0 2, 0 2, 0 4, 0 2, 0 2, 0 2, 0
AEAE 2, 0 2, 0 2, 0 2, 0 4, 0 3, 0 1, 1
AFAE 2, 0 2, 0 2, 1 2, 0 3, 0 4, 0 1, 2

Table 9: Answers for the guesses in the columns for each one of the secret combinations in the rows.

A consistent guess (i.e., a guess that is possibly the secret combination) is not able to distinguish between all six
combinations, but guess ABFA, which is not one of the six remaining combinations, is able to do so, as can be
seen in the table. In this way, both the maximum number of guesses required and the expected number of guesses
required can be reduced. In all strategies except the Simple Strategy inconsistent guesses occur.



Yet Another Mastermind Strategy 19

Round
Strategy 1 2 3 4 5 6 7 8 9
Worst case 1 8 65 522 696 4 0 0 0
Expected size 1 10 54 646 582 3 0 0 0
Entropy 1 4 70 613 596 12 0 0 0
Most parts 1 12 72 636 568 7 0 0 0

Table 10: Number of combinations for which the strategy pro-
duces a win in the specified rounds, using reversed lexicograph-
ical ordering.

Another interesting observation is that, al-
though the strategies cannot distinguish be-
tween optimal guesses, the actual selection in-
fluences the empirical results. When instead
of the first, the lexicographically last guess is
selected by the algorithms in case of a tie be-
tween optimal combinations, the results of the
strategies change slightly, as can be seen in Ta-
ble 10.

The Simple Strategy is left out of this table,
because these considerations do not affect this
strategy. The differences are very small. They are largest in case of Knuth’s Worst-Case Strategy. In my opinion
this simply means that only looking at the partition is not very robust.

Why the results are so very different in the Worst-Case Strategy is because of the following. After the first guess
has been answered, the number of ways the set of remaining possibilities can be partitioned in is quite large. As
we know, there are only five types of guesses in the initial state. But after the first guess has been answered there
are many more. Table 11 shows the number of guesses that can be asked if the first answer is 1, 0.

First guess Partitions
AAAA 12
AAAB 53
AABB 34
AABC 125
ABCD 52

Table 11: Number of partitions af-
ter the first guess and answer 1,0.

So in the Worst-Case Strategy, there are already 34 different kinds of par-
titions possible after the first guess. This strategy only looks at one aspect
of these partitions and apparently this is not fine-grained enough to yield a
robust strategy. If there are already 34 guesses possible after the first guess,
this will even be worse after more guesses.

The Expected-Size Strategy is straightforward, and indeed it requires 6
rounds, but on average it is better than the Worst-Case Strategy.

One of the surprising results is that the Entropy Strategy does so bad, al-
though its motivation seems to be theoretically sound. A possible explana-

tion is that when one calculates the entropy, the base of the logarithm is important when one compares partitions
that have a different number of elements. When one compares partitions with the same size, entropy is a good
measure, otherwise it is not so good. Perhaps another new strategy could be based on taking entropy where the
base of the logarithm depends on the size of the partition.

Answer AAAA AAAB AABB AABC ABCD
0,0 14 14 14 13 8
0,1 0 14 14 14 13
0,2 0 9 12 14 14
0,3 0 0 7 10 11
0,4 0 0 1 2 4
1,0 13 14 14 14 13
1,1 0 13 14 14 14
1,2 0 7 10 11 11
1,3 0 0 0 4 4
2,0 11 12 12 12 12
2,1 0 9 10 11 9
2,2 0 3 4 4 4
3,0 5 8 8 8 7
4,0 1 1 1 1 1

Total 44 104 121 132 125

Table 12: Number of answers in the second round.

The Most-Parts Strategy is the best
strategy when regarding the expected
number of questions. The only prob-
lem is that theoretically the number of
rounds matters, whereas this is ignored
in selecting a guess. From Table 7 it
follows that up to rounds 2,3, or 4, the
Most-Parts Strategy is better than the
other strategies. However, in calculat-
ing the next guess this strategy only
looks one step ahead. Table 12 gives
results for looking two steps ahead.

The numbers in the table represent the
number of different answers one could
get on a guess, after the initial guess
and the initial answer. The total num-
ber at the bottom is the total number of
parts of the partition that results from
asking two guesses. So if the game consists of three rounds, it is best to start with AABC. Unfortunately,
looking two steps ahead is computationally more expensive.
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6. CONCLUSION AND QUESTIONS FOR FURTHER RESEARCH

In this paper we introduced a new strategy for Mastermind, called Most-Parts Strategy, which is easy to calculate
and performs best among the five presented easily computed strategies on the standard Mastermind game. In
the range of possible strategies based on partitions generated by guesses, it is an extreme. It only looks at the
“breadth” (size) of a partition. On the other side of the spectrum is Knuth’s Worst-Case Strategy which only looks
at the “depth” (maximal element) of a partition. The Expected-Size Strategy and the Entropy Strategy seem to
find a midway between these two extremes. There are probably many more strategies that can be found.

One of the anonymous referees pointed out that the selection of the first question is crucial. The first question
should be AABC, just as in Koyoma and Lai’s (1993) optimal strategy. It seems that the standard version of
Mastermind is quite limited with respect to these strategies. It might be worthwhile to look at other versions of
the game to be able to tell how well these strategies do in general. However, that was beyond the scope of this
paper. Fortunately, there are still many questions remaining about Mastermind.
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