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S duality and dyonic p-brane solutions in type II string theory

Eric Bergshoeff* and Harm Jan Boonstra†

Institute for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Nether

Tomás Ortı́n‡

Department of Physics, Queen Mary and Westfield College, Mile End Road, London E1 4NS, United Kin
~Received 8 September 1995!

We show how a solitonic ‘‘magnetically’’ chargedp-brane solution of a given supergravity theory, with the
magnetic charge carried by an antisymmetric tensor gauge field, can be generalized to a dyonic solution
discuss the cases of ten-dimensional and eleven-dimensional supergravity in more detail and a new d
five-brane solution in ten dimensions is given. Unlike the purely electrically or magnetically charged five-br
solution the dyonic five-brane contains nonzero Ramond-Ramond fields and is, therefore, an intrinsically
II solution. The solution preserves half of the type II spacetime supersymmetries. It is obtained by applyi
solution-generating SL(2,R)3SL(2,R) S duality transformation to the purely magnetically charged five-bran
solution. One of the SL(2,R) duality transformations is basically an extension to the type II case of th
six-dimensionalZ2 string-string duality. We also present an action underlying the type IIB supergravity theo
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I. INTRODUCTION

Recently, an active field of research has been the sea
for p-brane solutions~i.e., solutions withp translational
spacelike isometries! in supergravity theories~for some re-
cent reviews, see, e.g.,@1–3#!. One of the motivations is that,
in case the supergravity theory is an effective superstr
theory, it might give us information about the strong
coupling behavior of the superstring. Two particularly inte
esting examples corresponding to the ten-dimensional h
erotic string effective action are the fundamental strin
solution found by Dabholkaret al. @4# and the five-brane
soliton found by Strominger@5#. Many morep-brane solu-
tions have been found, both inD510 @1–3,6,7# as well as in
D511 @8#.

Most of thep-brane solutions found so far are either e
ementary solutions requiring a singular source term~that we
will call ‘‘electrically charged’’! or solitonic solutions
~‘‘magnetically charged’’!. It is natural to investigate the
possibility of constructingdyonic p-brane solutions. So far,
most of the research has concentrated on the study of fo
dimensional dyonic black holes (0-branes!, see, e.g., Refs.
@9,10#. In this work we will consider this problem for highe
p and higher dimensions.1 To explain the basic idea we star
by succinctly describing the ten-dimensional five-bran

*Electronic address: bergshoe@th.rug.nl
†Electronic address: boonstra@th.rug.nl
‡Present address: CERN Theory Division, CH-1211, Gene`ve 23,

Switzerland. Electronic adderess: t.ortin@qmw.ac.uk

1We will construct solutions with nonzero Ramond-Ramon
fields. Since the Ramond-Ramond fields do not couple via a st
dard sigma model action to the type II string it is nontrivial to de
with source terms. In this paper we postpone a proper treatmen
this issue and only solve the source-free equations of motion.
5321/96/53~12!/7206~7!/$10.00
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electric-magnetic~EM! Z2 map. Any ten-dimensional het-
erotic five-brane solution 5(10) can be reinterpreted via di-
mensional reduction as a six-dimensional string (1-bran!
solution 1(6) . If the original 5(10) solution does not give rise
to six-dimensional vector fields, then one can use the strin
string duality symmetry@11,12# to generate another six-
dimensional solution 1(6)8 , which in turn can be reinterpreted
via ‘‘inverse dimensional reduction’’ as another ten
dimensional five-brane solution 5(10)8 . Since the six-
dimensional transformation is an EM duality transformatio
on the axion two-form, we get aten-dimensional EM duality
for heterotic five-branes.

As an example, let us consider, the magnetic 5(10)m
solution2 @5# in the string frame3:

5
„10…mH ds25~dx0!22~dx1!22~dxm!22e2f̂dxa dxa,

Ĥabc5
2
3 eabcd]

df̂,
~1!

where xm̂5(x0,x1,xm;xa),mP$6,7,8,9%,aP$2,3,4,5%. The
five-brane world-volume is parametrized by$x0,x1,xm%. The

dilaton only depends on thexa’s and satisfieshe2f̂50
whereh5dab]a]b . This solution can be reinterpreted as
string in six dimensions by eliminating thexm’s:

1
„6…mH ds25~dx0!22~dx1!22e2f~dxa!2,

Habc5
2
3 eabcd]

df,
~2!

d
an-
al
t of

2Our conventions are those of Ref.@13#. We only discuss the
so-called ‘‘neutral five-brane’’@14,15#. This example has previ-
ously been studied in Refs.@16–18#.
3The Einstein frame metricĝm̂n̂

E and the string frame metricĝm̂n̂
S in

ten dimensions are related byĝm̂n̂
E 5e21/2f̂ĝm̂n̂

S .
7206 © 1996 The American Physical Society
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53 7207S DUALITY AND DYONIC p-BRANE SOLUTIONS IN TYPE . . .
where the dilaton satisfies4 he2f50. Now we make use of
the six-dimensionalZ2 EM duality. This is most easily de-
scribed in the Einstein frame5 by

f852f, H85e22f*H, ~3!

with * the six-dimensional Hodge star. In the string fram
this transformation acts on the metric. The result is thesix-
dimensional fundamental string solution

1
„6…eHds25e2f@~dx0!22~dx1!2#2~dxa!2,

B015e2f. ~4!

Observe that the dilaton now satisfieshe22f50. Finally,
we can reinterpret this solution as a five-brane solution in t
dimensions:6

5
„10…eH ds25e2f̂@~dx0!22~dx1!2#2~dxm!22~dxa!2,

B̂015e2f̂.

~5!

The dilaton depends only on thexa’s and satisfies

he22f̂50. This solution can be thought of as an electr
ten-dimensional heterotic five-brane solution which is th
EM dual of the solitonic five-brane 5(10)m .

It is natural to try to generalize the EM dualityZ2 to
SL(2,R) so that we can use it to build dyonic solutions. I
doing so we encounter the following two problems.

~1! We have restricted ourselves to the case in which
six-dimensional vector fields arise. Otherwise, in the fram
work of the heterotic string compactified onT4, the dual
theory does not coincide with the original theory. A way o
seeing this is the following. In the presence of vector fiel
there are Chern-Simons terms in the field-strength for t
axion. In dualizing the theory, these Chern-Simons terms
interchanged with topological terms in the action and, vi
versa, every topological term in the action gives rise to
Chern-Simons term7. Therefore, the duality just described
can only be a symmetry of the equations of motion if fo
every Chern-Simons term there is a corresponding topolo
cal term. However, in the heterotic case there are no to
logical terms whatsoever. Therefore, the duality just d
scribed would not be a symmetry of the equations of moti
of a single theory, but would relate two different~dual string!
theories.

4We express all solutions in terms of their own dilatons.
5The Einstein frame metricgmn

E and the string frame metricgmn
S in

six dimensions are related bygmn
E 5e2fgmn

S .
6The 5(10)e solution can be viewed as a special case of the Da

holkar string 1(10)e where the eight-dimensional Laplace equatio
for the dilaton has been solved in the presence of four extra iso
etries. As a consequence, the Dabholkar string has an ei
dimensional spherical symmetry while the 5(10)e solution has a
four-dimensional spherical symmetry.
7For instance, in four dimensions, the axion field strength h

Chern-Simons terms soH5]B1
1
2AF and there are no topologica

terms present in the action. In the dual theory the axion is sub
tuted by the pseudoscalara and the topological termaF!F appears
in the action.
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~2! To extend theZ2 symmetry to SL(2,R) one needs
more fields coupled to the axion in a specific way. This i
similar to the four-dimensional case where, in the absence
the pseudoscalar axiona, one only has aZ2 EM duality. The
introduction ofa suitably coupled to the vectors enhance
the symmetry to SL(2,R).

The solution to both of these problems lies in the type
theories: In the type IIB theory there are topological term
present from the beginning, and they are such that they g
interchanged with the Chern-Simons terms that appear in t
compactification, leaving the theory invariant. At the sam
time, in these topological terms the axion is coupled to th
four-form D̂ @which is a Ramond-Ramond~RR! field# in the
‘‘right way,’’ so we can extend the above five-braneZ2 to an
SL(2,R) and we can build dyonic five-branes. The price to
pay is that, although we can always start with a type I five
brane, in general we will obtain type II five-branes with extr
nonzero RR fields which seem to be necessary for the sy
metry enhancement~see, however, the conclusions!.

In the following section we will briefly review type IIB
supergravity. As a new result, which is useful for our prese
purposes, we will present an action underlying the type II
theory. In the next section we will dimensionally reduce thi
action using an ansatz simple but rich enough to show t
symmetry enhancement mechanism. In Sec. IV we will ob
tain a new ten-dimensional type II dyonic five-brane solutio
which continually interpolates between the 5(10)m and 5(10)e
solutions given in~1! and ~5!, respectively. Finally, in the
conclusions we will discuss more general applications of o
techniques.

Part of the results of this article have been presented
Ref. @19#.

II. D510 TYPE IIB SUPERGRAVITY
It is known@20# that the field equations ofD510 type IIB

supergravity@21# cannot be derived from a covariant action
Nevertheless, it is useful to think about an ‘‘action’’ in the
restricted sense explained below. The only equation of m
tion that cannot be obtained from an action is that of th
four-form gauge fieldD̂. This equation of motion states that
the field strengthF̂ of D̂ is self-dual:F̂5!F̂. It follows that
if one setsF̂50 everywhere in the equations of motion, one
should be able to obtain the resulting reduced set of equ
tions from an action, by varying with respect to all fields bu
D̂. This was done in Ref.@13#.

We will show in this section that one can even write dow
an action involvingF̂. A useful property of such an action is
that, when properly used, it leads to the correct action for th
dimensionally reducedtype IIB supergravity theory. We thus
may avoid the dimensional reduction of the ten-dimension
type IIB field equations which is more complicated. This
property will be exploited in the next section.

The idea is the following: we keepF̂ different from zero
but eliminate the self-duality constraint. Of course, we woul
like to have an equation of motion forD̂ replacingF̂5!F̂.
As a matter of fact, there is a perfect ‘‘spare equation o
motion’’ at our disposal. One of the consequences of th
self-duality constraint is that the equation of motion ofD̂ is
equal to its Bianchi identity. Therefore, it is natural to take

b-
n
m-
ght-
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l
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as the equation of motion8 for D̂,

¹m̂F̂
m̂m̂1m̂2m̂3m̂45

3

5!4
e i j em̂1 . . . m̂10Ĥm̂5m̂6m̂7

~ i !
Ĥm̂8m̂9m̂10

~ j ! . ~6!

This equation is compatible with the self-duality constrai
~which we have temporarily abolished!, but it does not imply
it. So, in fact, we have just eliminated the self-duality co
straint in a consistent way.

Now, is there an action for the new set of equations
motion obtained by eliminating the self-duality constrain
and substituting it with Eq.~6!? Note that in the original
equations, the self-duality ofF̂ was already taken into ac-
count and therefore onlyF̂ occurs. In this nonself-dual
~NSD! theory we expect bothF̂ and !F̂ to occur. The NSD
theory is defined by the property that it has the same fie
content as the original theory butF̂ is not self-dual and, if
one imposes self-duality in the field equations, one recov
it.

It turns out that the easiest way to find the NSD theo
and its action is to make the most obvious ansatz for
action: add to the action for theF̂50 case anF̂2 ~kinetic!
term and a topological term with numerical factors to b
adjusted. One easily finds that the action we are looking f
in the string frame and with the notation and conventions
Ref. @13#, is given by9

ŜNSD-IIB
string 5

1

2E d10xA2 ̂H e22ŵ@2R̂~ ̂!14~]ŵ !2

2 3
4 ~Ĥ~1!!2#2 1

2 ~] l̂ !22 3
4 ~Ĥ~2!2 l̂ Ĥ~1!!22 5

6 F̂
2

2
1

96A2 ̂
e i j eD̂Ĥ~ i !Ĥ~ j !J . ~7!

For the sake of completeness we list the definitions of t
field strengths and gauge transformations for the type
fields $D̂ m̂n̂r̂ŝ ,̂m̂n̂ ,B̂m̂n̂

( i ) , l̂ ,ŵ%, (i51,2):

Ĥ~ i !5]B̂~ i !, dB̂~ i !5]Ŝ~ i !,

F̂5]D̂1 3
4 e i j B̂~ i !]B̂~ j !, dD̂5]r̂2 3

4 e i j ]Ŝ~ i !B̂~ j !.
~8!

Varying with respect to all the fields one gets the equ
tions of motion of the NSD theory and, imposing the se
duality constraint, these become the equations of the type
theory.

The NSD theory defined by Eq.~7! has all the symmetries
of the type IIB theory, including the global SL(2,R) IIB , and
an additional globalZ2 EM duality of theD̂ field that inter-

8The term at the right-hand side~RHS! follows from the Chern-
Simons term inF̂, see below.
9In this paper we will use the convention thatŵ is the dilaton and

B̂ (1) the NS-NS axion. Note that other definitions of the dilaton an
Neveu-Schwarz–Neveu-Schwarz~NS-NS! axion are possible

which differ from ŵ andB̂(1) by an SL(2,R) rotation.
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changesF̂ and !F̂. To exhibit the SL(2,R) IIB symmetries, it
is useful to go to the Einstein frame because the Einste
metric is inert under them:

SNSD-IIB
Einstein5

1

2E d10xA2ĝF2R̂1 1
4 Tr~]mM̂]mM̂21!

2 3
4 H̃̂~ i !Ĥ

~ i !2 5
6 F̂

22
1

96A2ĝ
e i j eD̂Ĥ~ i !Ĥ~ j !G ,

~9!

where ĝm̂n̂5e21/2ŵ ̂m̂n̂ is the Einstein-frame metric,M̂ is
the 232 matrix

M̂5~M̂ i j !5
1

Iml S ul̂u2 2Rel̂

2Rel̂ 1 D , ~10!

wherel̂5 l̂ 1 ie2ŵ is a complex scalar that parametrizes S
(2,R) IIB and

H̃̂ ~ i !5Ĥ~ j !M̂ j i . ~11!

The action~9! is invariant under the SL(2,R) IIB transfor-
mations

Ĥ85LĤ,

M̂85~L21!TM̂L21. ~12!

If L is the SL(2,R) IIB matrix

L5S d c

b aD , ~13!

the transformation Eq.~12! of the matrix M̂ implies the
usual transformation of the complex scalarl̂:

l̂85
al̂1b

cl̂1d
. ~14!

Although this symmetry does not involve any EM duality
rotation Ĥ→*Ĥ in the ten-dimensional space-time, from
the string theory point of view it is a genuineS duality sym-
metry @22# since some of its transformations (l̂8521/l̂)
interchange the strong- and weak-coupling regimes of stri
theory and world-sheet elementary excitations~NS-NS
states! with solitons~RR states! @13#. In fact, as we will see
in Sec. IV, it is the SL(2,R)IIB which transforms electric
solutions into magnetic solutions and which can be used
itself to construct dyonic solutions. However, these dyon
solutions are restricted in the sense that if the electric~mag-
netic! charge is carried by the NS-NS axion then the ma
netic ~electric! charge is carried by the RR axion. In the nex
section we will introduce another SL(2,R) transformation,
which we will call SL(2,R)EM , and which will enable us to
construct dyonic solutions where both axions carry an ele
tric as well as a magnetic charge.

d
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Finally, we expect that a NSD type IIB theory includin
fermions can also be found. Of course, the full NSD type II
action cannot be supersymmetric. However, the supersy
metry should be recovered in the field equations when
~super-! self-duality constraint is imposed.10

III. TYPE II EM DUALITY IN SIX DIMENSIONS

In this section we will reduce the NSD type IIB action~7!
to six dimensions using the following simplified ansatz fo
the fields (m,n, . . . aresix-dimensional spacetime indice
andm,n, . . . are thefour internal directions!11:

̂mn5mn , ̂mn52eḠdmn ,

B̂mn
~ i ! 5Bmn

~ i ! ,

~15!

D̂mnrs5Dmnrs , D̂mnpq5Dmnpq,

l̂ 5l , ŵ5w̄1Ḡ.

All other components are zero. This ansatz contains ex
scalars~as compared to the ansatz used in the example of
introduction! which are the RR fields necessary to exten
Z2 to SL(2,R) as we will show below. Note that for theD
field we only consider the scalars that arise in six dimensio
consistently with self-duality. This gives precisely one sc
lar: D5emnpqDmnpq. In the dimensional reduction we dual
ize the field strengthF(D)m1 . . . m5

to the field strength of a

scalarD̃ and a suitable normalization turns the self-duali
constraint intoD̃5D, which can now be substituted into th
action. The kinetic and topological terms forD and D̃ then
give equal contributions to the reduced action. Therefore
suffices to collect theDmnpq terms only and multiply these
terms by a factor of 2.

The resulting reduced action is

S5
1

2E d6xA2$e22w@2R~!14~]w!22~]Ḡ!2

2 3
4 ~H~1!!2#2 1

2 e
2Ḡ~]l !22 3

4 e
2Ḡ~H~2!2l H~1!!2

2 1
7272e

22Ḡ~]D !21 1
8 DH

TL*H%, ~16!

where (*H)mnr5 (1/6A2 j ) emnrabgH
abg and where we

have introduced the 232 matrix

L5S 0 1

21 0D . ~17!

As we did in the Introduction we go to the Einstein metr
g5e2w and obtain

10We thank M. Green for a discussion on this point.
11It turns out that notw̄,Ḡ but combinations of them for which we

reserve the namesw,G, naturally fit into a SL(2,R) coset.
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S5
1

2E d6xA2gS 2R~g!1
2]l]l̄

~l2l̄!2
1

2]k]k̄

~k2k̄ !2

2k2H
TM̂H1k1H

TL*H D . ~18!

The complex scalarsl,k are

k5k11 ik25
1
8D1 3

4 ie
2G,

l5l11 il25l 1 ie2w, ~19!

with

w5Ḡ1w̄, 2G5Ḡ2w̄. ~20!

There are two SL(2,R)/U(1) scalar cosets in the action
~18! and correspondingly there are two SL(2,R) symmetries
of the equations of motion. One of them is the original
SL(2,R) IIB symmetry of the NSD type IIB action~7!. Note
thatG ~not Ḡ) is SL(2,R) IIB invariant. The second is the EM
SL(2,R) EM duality of the two-form potentials we were look-
ing for, and it is only a symmetry of the equations of motion.
It acts onk andH as

k85
pk1q

rk1s
,

Hmnr8 5~rk11s!Hmnr1rk2LM̂*Hmnr , ~21!

with ps2qr51. Note that these SL(2,R)EM transformations
are similar in form to theS duality of the heterotic string
compactified to four dimensions,12 with vector fields re-
placed by two-form fields and with the axion/dilaton field
replaced by13 k.

We finally recall that the complete noncompact symmetry
group ofD56 type IIA supergravity@24# is SO(5,5). In this
section we have dimensionally reduced a truncated versio
of the type IIB theory, using the special ansatz~15!. In this
way we recovered an

SO~2,2![SL~2,R!EM3SL~2,R! IIB ~22!

noncompact symmetry of the equations of motion. In the
next section we will apply this symmetry to construct a clas
of dyonic five-brane solutions.

IV. DYONIC FIVE-BRANES

Using the solution-generating transformations constructe
in the previous section, it is now straightforward to construc
ten-dimensional dyonic five-brane solutions 5(10)d . To this
end we apply the most general SL(2,R) IIB3SL(2,R)EM
transformation, with parametersa,b,c,d(ad2bc51) and
p,q,r ,s(ps2qr51), respectively, to the 5(10)m solution
given in ~1!. The result is given by14

12See, e.g., the review of Ref.@23#.
13This is the reason that we use the name SL(2,R)EM .
14All results in this section are ten-dimensional and in string

frame. We omit all carets.
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ds25A@~dx0!22~dx1!2#2B~dxm!22Ae2C~dxa!2,

SH~1!

H~2!D 5S asH2 3
4 bre

22C*H

csH2 3
4 dre

22C*H
D , ~23!

e2w5
e2C

a21b2e22C ,

l 5
ac1bde22C

a21b2e22C ,

Dmnpq5
1
3 emnpq

qs1 9
16 pre

22C

s21 9
16 r

2e22C
,

where the functionsA,B andHabc are functions ofC,

A5Aa21b2e22CAs21 9
16 r

2e22C,

B5
Aa21b2e22C

As21 9
16 r

2e22C
, ~24!

Habc5
2
3 eabcd]

dC, ~25!

andC depends only on thexa’s and satisfieshe2C50.
A characteristic feature of the above dyonic five-bran

solutions is that nonzero RR fields are needed in order for
solution to carry electric as well as magnetic charge. Sett
the RR axion and the other RR fieldsl andDmnpq equal to
zero, leads to a purely electric or purely magnetic solutio

The above family of dyonic five-brane solutions con
tains the known four purely electrically or magneticall
charged fivebrane solutions~see Introduction! as special
cases. First of all, fora5d5p5s51, b5c5q5r50 ~unit
transformation! we recover 5(10)m which we call 5(10)m

(1)

here.15

Secondly, the (Z2)IIB transformationb5p5w51, c
521,a5d5q5r50, when acting on the 5(10)m

(1) solution,
leads to the electrically charged solution16

15The superscript(1),(2) indicates that the charge of the solutio
is carried by the NS-NS or RR axion, respectively.
16Note that according to our point of view this solution is o

electric character because the string coupling constantew is small
(e22w is singular!. This property is due to the fact that the axio
involved is a RR axion which from the string theory point of view
is a ~world-sheet! soliton.All solutions have the property that the
dilaton corresponding to the electrically~magnetically! charged so-
lutions satisfieshe22w50(he2w50). In this way the electric and
magnetic solutions are always connected via a strong or weak c
pling duality.
e
the
ing

n.
-
y

5
„10…e
~2! H ds25ew@~dx0!22~dx1!22~dxm!2#2e2w~dxa!2,

Habc
~2! 5 2

3 eabcd]
dw,

w5w~xa!, he22w50 .
~26!

Thirdly, the 5(10)e
(1) solution in Eqs.~5! is obtained by ap-

plying the (Z2)IIB3(Z2)EM transformation
b51, c521, q523/4, r54/3, a5d5p5s50 on the
5(10)m
(1) solution.
Finally, by applying the (Z2)EM transformation

a5d51, q523/4, r54/3, b5c5p5s50 on the 5(10)m
(1)

solution we obtain the second magnetically charged soluti
5(10)m
(2)

5
„10…m
„2… H ds25e2w@~dx0!22~dx1!2#2ew@~dxm!21~dxa!2#,

B01
~2!52e22w,

w5w~xa!, he2w50 .
~27!

Observe that the original EMZ2-transformation discussed
in the Introduction that transforms the 5(10)m

(1) solution into
the 5(10)e

(1) solution, is the product of a (Z2)IIB and a
(Z2)EM .

Finally, the 5(10)m
(1) and 5(10)e

(1) solutions are also solutions
of the heterotic superstring whereas the 5(10)m

(2) and 5(10)e
(2) so-

lutions are solutions of the type I superstring@25#. These
particular solutions have been used in@25# to confirm the
ten-dimensional duality between the heterotic and type I s
perstring.

V. CONCLUSIONS AND OUTLOOK

In this article we have constructed dyonic five-brane s
lutions in ten dimensions by applying a solution-generatin
SL(2,R) IIB3SL(2,R)EM S duality transformation. The ten-
dimensional dyonic five-brane solutions can also be inte
preted as six-dimensional dyonic string solutions. It is inte
esting to compare our results with the six-dimension
dyonic string solution that was recently constructed in Re
@26#. Our solution differs from that of Ref.@26# in the fol-
lowing two respects. First of all, the dyonic string of Ref
@26# contains no RR fields whereas our solution does. F
instance, our solution contains two axions while the one
Ref. @26# contains one. Secondly, the solution of Ref.@26# is
a heterotic solution that breaks 3/4 of the spacetime sup
symmetries. Our solution is a type II solution that breaks 1
of the type II spacetime supersymmetries. This is necessa
so because the purely electrically or magnetically charg
five-brane has this property and we know that theS
(2,R) IIB3SL(2,R)EM-transformation, viewed as a noncom
pact symmetry of six-dimensional supergravity is consiste
with the full set of type II supersymmetries. One could als
compare the dyonic solutions of this paper with those of Re
@26# in ten dimensions. The solutions constructed in Re
@26# contain 3 arbitrary functions. One difference is that ou
solution contains 1 dilatonic scalar (f) and two RR scalars
(l andD), whereas those of Ref.@26# contain a single dila-
tonic scalar. In order that the two types of solutions coincid
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one should therefore takel 5D50 in our case. This imme-
diately leads to one of the 4 special cases that are pur
electrically or magnetically charged. There seems to be
further overlap between the dyonic solutions of Ref.@26# and
those constructed in this work.

Although we give in this article explicit results only for
the five-brane in ten dimensions, we expect that the te
niques we use can be applied to more general cases.
explain the basic idea,17 consider a supergravity theory con
taining a metricgmn , dilaton f and a (p11)-form gauge
field18 Bm1•••mp11

. The Lagrangian for these fields takes
standard form, as in Ref.@3#. From the general analysis o
Ref. @3# it follows that this theory has an elementar
p-brane solutionpe and a solitonic (D2p24)-brane solu-
tion (D2p24)m . We next observe that the dual of
(p11)-form field is again a (p11)-form field in 2(p12)
spacetime dimensions. In order to allow for aZ2 S duality
transformation we therefore reinterpret the (D2p24)m so-
lution in D dimensions as apm solution in 2(p12) dimen-
sions via a dimensional reduction overD22p24 spacelike
world volumedirections. Similarly, a dimensional reduction
of thepe solution inD dimension overD22p24 spacelike
transversedirections leads to ape solution in 2(p12) di-
mensions. Given the standard form of the Lagrangean inD
dimensions, and assuming a simple ansatz for
D-dimensional fields that includes theD-dimensionalpe and
(D2p24)m solutions @as in ~15!#, one can show that the
field equations corresponding to the dimensionally reduc
theory in 2(p12) dimensions are invariant under aZ2 S
duality transformation that maps thepe andpm solutions into
each other. In summary, the special case of thepe solution in
D dimensions where there are (D22p24) extra Abelian
isometries in the transverse directions can be viewed, vi
Z2 S duality transformation in 2(p12) dimensions, as the
purely ‘‘electrically’’ charged partner (D2p24)e of the
‘‘magnetically’’ charged (D2p24)m soliton solution inD
dimensions.

It is instructive to consider a few examples of the abo
general analysis. Consider for instance ten-dimensional t
IIA supergravity. The theory contains a 1,2- and 3-for
gauge fields and therefore has the following solutions~see,
e.g., Ref.@16# or the table in Ref.@27#!:

~0e ,6m!, ~1e ,5m!, ~2e ,4m!. ~28!

Applying the above analysis forD510 andp50,1,2, re-
spectively, we see that all the elementary solutions can
reinterpreted as purely ‘‘electrically’’ charged parners of th
‘‘magnetically’’ charged soliton solutions by aZ2 S duality
transformation in 4, 6, and 8 dimensions, respectively:

0e→6e , 1e→5e , 2e→4e . ~29!

17The discussion below is similar to that of Ref.@16#.
18We only considerp-brane solutions where the charge is carrie

by Bm1•••mp11
. In particular, we do not consider herep-brane solu-

tions where the charge is carried by a vector component ofg and/or
B.
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Note that only the string/five-brane solution can also be co
sidered as a solution of the heterotic superstring.

Next, we consider type IIB supergravity. It contains a
complex 2-form and a self-dual 4-form gauge field. Th
complex 2-form gauge field leads to the following solutions

~1e11e ,5m15m!. ~30!

In addition, the self-dual 4-form gauge field leads to the sel
dual three-brane solution 3EM of Ref. @6,7#. By reducing to
six dimensions we find that

1e11e→5e15e . ~31!

The self-dual 3EM solution is special in the sense that ou
general formulas given above lead to aZ2-duality transfor-
mation in ten dimensions itself. However, since type IIB
supergravity is already self-dual there is no suchZ2
transformation.19

Finally, we consider the case of eleven-dimensional s
pergravity. There is only one three-form in eleven dimen
sions which leads to an elementary membrane 2e and a soli-
tonic five-brane 5m . By performing a Z2 S duality
transformation in 8 dimensions we find that

2e→5e . ~32!

The results of this work suggest that in all examples give
above, theZ2 S duality transformation can be extended to a
SL(2,R) transformation in a relatively simple way. The
SL(2,R)-transformations so obtained can then be applied
construct dyonic 4, 5- and 6-brane solutions inD510 and a
dyonic 5-brane solution inD511. It would be interesting to
construct these dyonicp-brane solutions and to investigate
their properties, like, e.g., their singularity structure.

Note added:After this work was completed, an interest-
ing paper appeared@28# where, for quite different purposes,
also the reduction ofD510 type II supergravity onT4 is
considered. The authors of@28# reduce the type IIA theory
while in this letter the reduction of the~truncated! type IIB
theory is considered.
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