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The Multilevel Approach to Repeated Measures for
Complete and Incomplete Data

CORA J. M. MAAS1 and TOM A. B. SNIJDERS2

1Department of Methodology and Statistics, University of Utrecht; 2Department of Statistics and
Measurement Theory, University of Groningen

Abstract. Repeated measurements often are analyzed by multivariate analysis of variance (MAN-
OVA). An alternative approach is provided by multilevel analysis, also called the hierarchical linear
model (HLM), which makes use of random coefficient models. This paper is a tutorial which indicates
that the HLM can be specified in many different ways, corresponding to different sets of assumptions
about the covariance matrix of the repeated measurements. The possible assumptions range from the
very restrictive compound symmetry model to the unrestricted multivariate model. Thus, the HLM
can be used to steer a useful middle road between the two traditional methods for analyzing repeated
measurements. Another important advantage of the multilevel approach to analyzing repeated meas-
ures is the fact that it can be easily used also if the data are incomplete. Thus it provides a way to
achieve a fully multivariate analysis of repeated measures with incomplete data.

Key words: MANOVA, incomplete data, missing at random, hierarchical linear model, Hotelling’s
test, Wald test, compound symmetry model.

1. Introduction

Repeated measures data are common in many disciplines. Procedures for analysing
such data are treated, e.g., in O’Brien and Kaiser (1985), Maxwell and Delaney
(1990), and Stevens (1996). In the period before 1985, mainly the compound sym-
metry model and the closely related sphericity model were used. The compound
symmetry model represents the dependence between the several data obtained from
a single individual by a random main effect of the individual. The paper by O’Brien
and Kaiser (1985) marks the transition to the use of procedures based on mul-
tivariate analysis of variance (MANOVA). In the MANOVA model, no assumptions
are made about the covariance matrix of the repeated measurements. The only
assumptions are independence and identical distributions within treatment groups,
homoscedasticity between groups, multivariate normality, and complete data. The
last assumption means that, if there are p measurement occasions, for each subject
in the data set the measurements on all p occasions are available.

Since the seminal paper by Laird and Ware (1982), random coefficient mod-
els, or linear mixed models, have been increasingly used for analysing repeated
measurements. These models have also been used in multilevel analysis (Bryk and
Raudenbush, 1992; Goldstein, 1995; Snijders and Bosker, 1999), a methodology
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for the analysis of clustered data in general. Repeated measurements are one type
of clustered data (measurements clustered within individuals), but other types of
clustering (e.g., pupils within classes, classes within schools; clients within therap-
ists; voters within voting precincts) are also frequent. In the multilevel literature,
the hierarchical linear model (HLM) is the term used for the linear mixed model
with nested random coefficients. The multilevel analysis of repeated measures is
treated in, e.g., Bryk and Raudenbush (1992, Chap. 6), Goldstein (1995, Chaps. 4
and 6), Rogosa et al. (1982), Snijders and Bosker (1999, Chap. 12), and Van Der
Leeden (1998).

The present paper explains the relations between the random coefficient, or mul-
tilevel, approach to repeated measurements, and the traditional treatments based
on the compound symmetry model and the MANOVA model, paying special at-
tention to incomplete data. The specification of the random coefficient model will
be shown to imply specific assumptions for the covariance matrix of the p re-
peated measurements, with the compound symmetry model and the unrestricted
MANOVA model as special cases. Understanding the assumptions implied by the
random coefficient model is important, because the analysis may lead to erroneous
conclusions if these assumptions are not satisfied.

The reformulation of the unrestricted MANOVA model as a multilevel model is
not usual (although by no means new; cf. Goldstein, 1995), and therefore special
attention is given to this formulation. An important advantage of the multilevel
approach is that incompleteness of the data on the dependent variable does not
complicate the analysis, provided that missingness is at random. The missing ob-
servations simply can be omitted from the data set. This implies that the multilevel
approach allows the analysis of incomplete repeated measures data without restrict-
ive assumptions on the covariance matrix. However, the multivariate F -tests of the
MANOVA approach, which are exact for the case of one or two groups, are replaced
in the multilevel approach by likelihood ratio (deviance) or by Wald tests, which
rely on large sample approximations. It is explained below for some basic repeated
measures designs how the Wald tests correspond to the multivariate F -tests.

2. Missing Observations in Repeated Measures

Incompleteness of data is common in empirical research. In this paper we consider
only missingness of the dependent variable, because in repeated measures analysis
the independent variables usually are completely observed. An essential question is
about the mechanism that causes incompleteness of data, called here the response
process. A classification of the missing-data mechanism can be made according
to how the response process depends on the observed and unobserved values
(Little and Rubin, 1987). If the response process is independent of all variables,
whether observed or missing, the missing data are “missing completely at random”
(MCAR). Loosely speaking, if the response process depends on observed but not
on unobserved variables, the data are “missing at random” (MAR). A more formal
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way of expressing this is that the conditional probability of observing the response,
given all variables (observed as well as unobserved), is the same as the conditional
probability of observing the response, given only the observed variables. A generic
example of MCAR is incompleteness due to randomly failing apparatus. Examples
of MAR are recording failures depending on group or measurement occasion,
but not otherwise on the (unrecorded) value; and termination of the observations
after recording a value above or below a given threshold. An example of non-
MAR is drop-out from a therapy comparison study as a consequence of recovery
or of psychological breakdown without this being predictable from the data that
were observed earlier. In the cases of MAR or MCAR data, valid likelihood-based
statistical inference is possible without modeling the response process (Little and
Rubin, 1987; Schafer, 1997). If the probability of response depends on the unob-
served dependent variable (and not only as a function of the independent variables),
the missingness itself is informative, and it is preferable to specify a model that
employs this information.

2.1. TRADITIONAL TREATMENTS OF MISSING DATA

The multivariate F -tests of the MANOVA approach to repeated measures require
a complete data matrix. When data are incomplete, and MAR is a reasonable
assumption, researchers often choose either of the following options:
1. all cases with any missing values are removed (“listwise deletion”);
2. the missing data are estimated (“imputed”, cf. Little and Rubin, 1987) and

analysis for a complete data set is performed.
In the first situation, valuable information is lost. In the second situation, the ques-
tion is: “how to estimate the missing data” and “how good are these estimates and
the resulting tests”. Better than single imputation methods is multiple imputation,
cf. Rubin (1987) and Schafer (1997).

Procedures for estimating repeated measures with incomplete data and an un-
restricted covariance matrix are discussed, a.o., by Berk (1987), Jennrich and
Schluchter (1986), Little and Rubin (1987), and Schafer (1997). Procedures for
estimating repeated measures with incomplete data and a structured covariance
matrix were proposed by Laird and Ware (1982) and Jennrich and Schluchter
(1986). Such procedures are now incorporated in SAS Proc Mixed (Littell, Milliken
et al., 1996) and in BMDP-5V (Dixon, 1992).

The multilevel packages MlwiN (Goldstein et al., 1998) and HLM (Raudenbush
et al., 2000) can also be used to obtain estimates and tests for repeated measures
data under various specifications for the covariance matrix for complete as well
as incomplete data. (For the MlwiN commands see Snijders and Maas, 1996). The
tests available for incomplete data are likelihood ratio (‘deviance’) and Wald tests,
which are large-sample tests respecting the level of significance only approxim-
ately, whereas the F -tests and multivariate F -tests for complete data are exact for
homoscedastic multivariate normal data.
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3. Basic Assumptions

Throughout this paper we assume that p treatments (the levels of one within-
subjects factor) are being tested in a repeated measures design. In other words,
there are p measurement occasions and N subjects, and subject i provides ob-
servation Yij on measurement occasion, or treatment, or condition, j . In the case
of complete data, each subject provides p measurements, Yi1 to Yip, combined
in the vector Yi . The standard assumption is that Yi has a multivariate normal
distribution. Under this assumption, the relevant parameters of the distribution of
Yi are the vector of means and the covariance matrix. The tested hypotheses usually
refer to the vector of means, the covariance matrix playing the role of a nuisance
parameter. The population mean of Yij is denoted by µj .

In the compound symmetry model, which is the basis of the classical “univari-
ate” approach to repeated measures (see, e.g., Maxwell and Delaney, 1990, Chap.
11), the data are represented as the sum of the population mean for occasion j , the
subject main effect Ui , and random error:

Yij = µj + Ui + Eij . (1)

The compound symmetry model implies that all variances have a common value
and all covariances have a common value. By contrast, in the multivariate approach
(e.g., Maxwell and Delaney, 1990; Stevens, 1996) no assumptions are made with
respect to the covariance matrix of Yi .

4. The Multilevel Formulation of Repeated Measures Data

The multilevel model (or Hierarchical Linear Model) for two levels (where level 1
is understood to be nested in level 2) is composed of three parts: the fixed part, rep-
resenting fixed effects; and the random part at level 1 and the random part of level
2, representing unexplained variability. The multilevel model is a special case of
the mixed model (e.g., Hays, 1988), and is also called a random coefficient model.
In the multilevel representation of repeated measures, the measurement occasions
constitute the first level and the individuals the second. The data are represented in
a format where each “case”, or record, is identified by its subject (“level-2 unit”) i
and its measurement occasion (“level-1 unit”) j , so that to each case there belongs
a single measurement Yij . (In the literature on multilevel analysis the converse
notation is usual, with j indicating the level 2 unit and i indicating the level 1
unit. In this paper we stick to the conventional repeated measures notation.) Data
are represented in this way also in the classical “univariate” approach to repeated
measures (e.g., Maxwell and Delaney, 1990, Chap. 11). The fixed part defines the
vector of means and the random part defines the covariance matrix.

The random coefficient approach to repeated measures is often, but not neces-
sarily, based on polynomial trend models. If the time moment associated with
measurement occasion j is denoted by tj , such models are based on functions
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fh(tj ) (h = 1, . . . , H) defined as polynomial functions of time. Function fh is
then a polynomial of degree h − 1 and f1 = 1 is constant. The functions can
be defined by fhj = fh(tj ) = th−1

j but also by a set of orthogonal polynomials.
Depending on the research topic one may use any other linearly independent set
of functions fh instead of polynomials. A random coefficient trend model then is
defined as

Yij =
H∑

h=1

πhfhj +
q∑

h=1

Uhifhj + Eij , (2)

with, usually, q ≤ H . The parameters πh are parameters defining the vector of
means. In a between-subjects design, πh also depends on the group (between-
subjects factor). Associated to individual i are the correlated random variables U1i

to Uqi . These random variables are defined at level 2, the level of the individual
subject. The assumption for the N vectors Ui = (Ui1, . . . , Uiq) is that they are in-
dependent and identically distributed across subjects, having a multivariate normal
distribution with mean 0 and arbitrary covariance matrix. Finally, Eij is a random
error with population mean 0 and variance σ 2

E .
This model can be regarded as a decomposition of the measurements Yij into an

individual-specific curve,

H∑
h=1

πhfhj +
q∑

h=1

Uhjfhj ,

plus a random error Eij (the random part at level 1). The individual-specific curve
is the sum of a mean population curve

H∑
h=1

πhfhj

(the fixed part of the model) and an individual deviation

q∑
h=1

Uhifhj .

(the random part at level 2 which represents inter-individual variation). The
individual-dependent coefficient Uhi is the random component of the slope of the
level-one variable fh. The variables f1 to fq have fixed as well as random effects,
whereas fq+1 to fH have only fixed effects.

A saturated (i.e., unrestricted, and perfectly fitting) model for the fixed part is
obtained when the number of terms H is equal to the number of observations p
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and the coefficients πh are unrestricted. In that case there is a one-to-one corres-
pondence between the vector of occasion means (µ1, . . . , µp) and the vector of
coefficients (π1, . . . , πp), defined by the equations

µj =
p∑

h=1

πh (j = 1, . . . , p).

It is a matter of convenience whether one prefers the parametrisation by µ or by π .

4.1. COVARIANCE MATRICES IMPLIED BY THE MULTILEVEL MODEL

Let us assume for a moment that a saturated model is indeed used for the fixed
part. Then the specification of the random coefficient model amounts to the choice
of the number q and the functions f1, . . . , fq ; this choice implies the selection
of a set of possible covariance matrices. The simplest choice is q = 1 with the
constant value F1ij = 1 (all i, j ). This yields exactly the compound symmetry
model defined in (1). In multilevel terminology this is the random intercept model.
Another possibility is to have q = 2 random coefficients and define f1ij = 1,
f2ij = tj . This is a trend model where the individuals follow individual curves
which deviate from the population average by a constant term and a linear trend,
both being individual-specific. If the fixed part is represented by occasion means
µj , this random slope model is given by

Yij = µj + U1i + U2itj + Eij , (3)

where the random intercept U1i and the random slope U2i are allowed to be cor-
related. More generally, any number q < p of polynomial (or other) functions of
time can be given correlated random slopes.

Denote the variances and covariances of the repeated measurements by σjj =
σ 2
j = var (Yij ) and σjk = cov (Yij , Yik). Then model (3) with the single random

slope implies the covariance matrix defined by

σjk = τ 2
1 + (tj + tk)τ12 + tj tkτ

2
2 + δjkσ

2
E,

(for j , k = 1, 2) where τ 2
1 , τ 2

2 , and τ12 denote the variances and covariance of the
random coefficients U1i and U2i and δjk = 1 for j = k, and 0 otherwise. Generally,
for q random slopes,

σjk =
q∑

h,m=1

fhjfmkτhm + δjkσ
2
E.

Thus, random coefficient model (2) describes the covariance matrix of the p re-
peated measurements by means of q(q + 1)/2 + 1 parameters, viz., the covariance
matrix of (U1i , . . . , Uqi) plus the variance of Eij .
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Thus we see that random coefficient models with one or more random coeffi-
cients imply restrictions on the covariance matrix which are intermediate between
the compound symmetry model and the fully multivariate model. E.g., the com-
pound symmetry model has two parameters for the covariance matrix (viz., τ 2

1 and
σ 2
E), model (3) with one random slope has four parameters, but the total covariance

matrix has p(p + 1)/2 independent entries which all are free parameters in the
fully multivariate model.

The lowest number of individual-dependent random terms is q = 0, correspond-
ing to independent measurements; the next is q = 1, for the compound symmetry
model; the highest is q = p − 1, because q = p would lead to p(p + 1)/2 + 1
parameters, one more than the total number of free parameters in the covariance
matrix. For q = p − 1, however, the model for the covariance matrix is not yet
saturated, since it still has p(p+1)/2−{p(p−1)/2+1} = p−1 parameters less
than the full covariance matrix. An unrestricted model can be obtained by using
p terms in the random part at level 2 and omitting the random part at level 1. The
resulting model is

Yij =
H∑

h=1

πhfhj +
p∑

h=1

Uhifhj (4)

with covariance matrix

σjk =
p∑

h,m=1

fhjfmkτhm. (5)

It was mentioned above that, in principle, any set of linearly independent func-
tions of j can be used for f1, . . . , fq . For the unrestricted model (4), where
H = q = p, one convenient possibility proposed by Goldstein (1995, Chap. 4)
is to use dummy coding defined by

zhj =
{

1 h = j

0 h �= j.
(6)

In words, p dummy variables are used, one for each measurement occasion. These
variables have correlated random slopes at level 2, and the constant term (normally
used for the random intercept) is not used. With this dummy coding, the covariance
matrix of the observed variables is equal to the covariance matrix of the random
terms Uhi , i.e., σjk = τjk in (5).

It can be concluded that the multilevel, or random coefficient, model can rep-
resent a variety of covariance matrices, ranging from the complete independence
and compound symmetry models to the fully multivariate model.
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4.2. FITTING A COVARIANCE MATRIX

If not enough parameters are used to model the covariance matrix, the risk is that
this matrix is wrongly specified. Tests about the vector of means may be incorrect.
On the other hand, these tests will have unnecessarily low power if too many para-
meters are used to represent the covariance matrix (cf. Reinsel, 1984 and Ware,
1985). It is important to have a well-fitting model for the covariance matrix, but
– especially for small and intermediate sample sizes – to refrain from overfitting.
The literature accordingly contains warnings against using the compound sym-
metry model unless one is confident that its assumptions are satisfied (Maxwell
and Delaney, 1990; O’Brien and Kaiser, 1985).

In the context of the random coefficient model (2) for the covariance matrix,
this means that, given a meaningful choice of the functions fh , one should choose
q large enough but not too large. A good procedure is first to choose an adequate
model for the covariance matrix while using a saturated model (i.e., H = p) for the
vector of means; with the resulting fitted model for the covariance matrix, one can
proceed to test the interesting hypotheses about the vector of means. To determine
an adequate model for the covariance matrix, the fully multivariate model (4) and
random coefficient models (2) with different values of q can be compared by means
of stepdown likelihood ratio (also called deviance) tests described below. Using the
deviance (defined as minus twice the maximized log-likelihood) of the unrestricted
model (4) as the point of departure, one can go stepwise to model (2) and determine
the lowest number q of random coefficients for which (2) still yields an acceptable
fit. The stepdown tests are carried out by comparing the model having q random
slopes with the model having q−1 random slopes, starting from q = p, decreasing
q by 1 when the result is non-significant and stopping at the first significant result.
The smallest value of q which yielded a non-significant test is chosen for the fitted
model. If to express the true covariance matrix in the population a minimum of
q0 random slopes is required, then the probability that this stepdown procedure
leads to a value smaller than q0 (i.e., an error of the first kind is made in the
total procedure) is less than or equal to the significance level used in the separate
stepdown tests.

4.3. DIFFERENTLY STRUCTURED COVARIANCE MATRICES

There are other families of covariance matrices which also provide a middle road
between the compound symmetry model and the fully multivariate. Within the
multilevel framework, the model can be extended by letting the variance of Eij

depend on j (see Chapter 8 of Snijders and Bosker, 1999, on heteroscedasticity).
Other models are outside the multilevel framework. A well-known model is the
autoregressive model, where each measurement is regressed on preceding meas-
urements. A stationarity first order autoregressive model has a correlation matrix
of the form σjk = σ 2

0 ρ
|j−k| where ρ is the autocorrelation coefficient. Another

model is the moving average model, where the covariance matrix is banded, i.e.,
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σjk depends arbitrily on the “time lag” |j −k| for |j −k| smaller than some number
q, the order of the moving average, and is 0 for larger values of |j − k|. These two
models are often used in time series analysis.

4.4. INCOMPLETE DATA

A nice thing about these “univariate-type” formulations is that they are not affected
by missing data. Complete data are represented by a data set with np records, each
record containing the three numbers i, j , and Yij , and codes for any between-
subject factors. Incomplete data are simply represented by a data set with less
records. Since the data is represented in (2) and (4) not by a vector but by sums in-
volving fixed and random coefficients, the representation is the same whether data
are complete or incomplete. The number of available measurements per subject
may range from 1 to p. Estimation methods and tests can be applied to incomplete
as well as to complete data, with the caveat that the standard errors and significance
levels rely on asymptotic approximations, in contrast to the exact tests available for
complete data for the compound symmetry model and the fully multivariate model
with one or two groups.

The F -tests for the compound symmetry model also are valid under the
weaker assumption of sphericity, defined by the requirement that a complete set
of orthonormal contrasts has constant variances and zero correlations (see, e.g.,
Maxwell and Delaney, 1990, or Stevens, 1996). This was generalized to incomplete
data by Schwertman (1978).

5. Estimation and Testing

There are two major estimation procedures for random coefficient models: max-
imum likelihood (ML) and residual (or restricted) maximum likelihood (REML)
estimation (see Bryk and Raudenbush, 1992 or Goldstein, 1995). REML estimation
takes into account, in the estimation of the parameters of the random part, the loss
of degrees of freedom resulting from the estimation of the parameters of the fixed
part. This has an indirect effect on the estimates of the fixed part. For large sample
sizes these two estimation procedures do not differ much.

In the case of incomplete data, the usual “naive” procedure is to estimate means,
variances, and covariances on the basis of the available data (with pairwise deletion
for covariances). The ML and REML estimates of the parameters differ from these
estimates (mostly only slightly, unless there are many missing data and correlations
are high) and are statistically more efficient, as may be deduced from Little and
Rubin (1987).

Hypothesis tests can be based on the deviance, defined as minus twice the
natural logarithm of the maximized likelihood (which is the probability density
function, filling in the estimated parameter values). The deviances can be used for
hypothesis tests. If two models M0 and M1 are compared, where M0 has the role of
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the null hypothesis and is a sub-model of M1, the deviance difference between the
two models is the test statistic, which if M0 is true has an asymptotic chi-squared
distribution, the number of degrees of freedom being the additional number of free
parameters in M1 as compared to M0 .

Another test is the Wald test (described for general models, e.g., in Rao (1973,
section 6e); for multilevel models see Bryk and Raudenbush (1992, formula [3.73])
or Snijders and Bosker (1999, formula (6.4))), which can be applied to test an
arbitrary vector of linear combinations of the fixed parameters. The Wald statistic
for an r-dimensional subparameter θ is defined by

W = θ̂ ′"̂−1
θ̂

θ̂ (7)

where θ̂ is the ML estimate for θ and "̂θ̂ is the ML estimate for the covariance
matrix of the parameter estimate θ̂ . The Wald statistic has asymptotically (for large
sample sizes), if θ = 0, a chi-squared distribution with r degrees of freedom. It
is also possible to base the Wald test on the REML estimates. This yields slightly
different but asymptotically equivalent results.

Example 1
Hand and Taylor (1987) present data from a study of the effects of drinking alco-
hol on salsolinol excretion. Subjects are N = 14 alcohol dependent individuals,
divided into two groups (group 1 is moderately, group 2 severely alcohol depend-
ent). There are p = 4 consecutive days of measurement. The dependent variable
is logarithmically transformed salsolinol concentration in a urine sample. The 14
subjects provided complete data. These data are used in the examples throughout
this paper. The F -tests can be calculated for complete data by software imple-
menting the MANOVA repeated measures model like SPSS, SAS, and BMDP. The
Wald tests and deviance tests can be calculated by software for random coefficient
models like HLM, MlwiN, and SAS. Random coefficient models were fitted with a
saturated fixed part and random parts defined by polynomial trends as in (2), where
fhj = (j − 2.5)(h−1). Table 1 contains the deviances and the number of parameters
for the covariance matrix for the fully multivariate model (q = 4) and for the
model with q = 0, 1, 2, 3 trend terms in the random part at level 2, not using the
division into two groups.

The deviances for q = 2 and 3 are equal, and the same holds for q = 0 and
1. This happens occasionally, and means that for q = 1 and 3, the maximum
likelihood estimate occurs at a boundary point of the parameter space where one
of the variance parameters equals 0. It is no reason for concern.

Since the sample size is small and the purpose of this part of the analysis is
to arrive at a well-fitting covariance matrix, it is reasonable to use a significance
level of 0.10 for the stepdown tests. The first stepdown test has χ2 = 135.46 −
127.81 = 7.65, d.f. = 10 − 7 = 3, p = 0.054. At a significance level of 0.10, the
fully multivariate model fits better than the model with q = 3 random slopes, and
therefore is retained for the analysis of the fixed part.
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Table I. Deviance values for the covari-
ance matrix of the salsolinol data with
unrestricted fixed part. p-values are for the
chi-squared test comparing the models for
q and q + 1.

q # parameters deviance p

4 10 127.81 –

3 7 135.46 0.054

2 4 135.46 1.00

1 2 139.36 0.14

0 1 139.36 1.00

If the stepdown tests would have used the significance level of 0.05, the first
stepdown test would be passed, just like all subsequent stepdown tests. Then the
final model would be the model with q = 0, i.e., the complete independence model.

5.1. TESTING HOMOGENEITY OF MEANS

Consider the one-group design, which has no between-subject factors. A basic null
hypothesis is the equality across treatments of the mean responses, expressed by

H0 : µ1 = µ2 = · · · = µp.

The usual procedure in the MANOVA approach is to transform the p dependent
variables to p−1 contrasts, e.g., difference contrasts Dij = Yi,j+1 −Yij , combined
into the vector Di = (Dil, . . . ,Di,p−1). The null hypothesis of homogeneity of the
means of Yij corresponds to the hypothesis that the population mean of Di is 0.
This hypothesis is tested by means of Hotelling’s T 2 test statistic (Anderson, 1984;
Stevens, 1996). The test statistic is defined by

T 2 = ND̄
′
S−1
D D̄,

where D̄ is the mean and SD the observed covariance matrix of Di (i = 1, . . . , N).
To test the significance, an exact F transformation of T 2 is given by

F = N − p + 1

(N − 1)(p − 1)
T 2,

with (p−1) and (N −p+1) degrees of freedom. The choice of the p−1 contrasts
does not affect the value of T 2, provided that the contrasts are linearly independent.

The null hypothesis of homogeneity of means is represented in (2) or (4) by
H = 1. The only variable with a fixed effect then is the constant (always equal to
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1). Thus we see that the analysis of repeated measures leads to multilevel models
where some variables have a random but not a fixed effect, which is unusual in
most applications of multilevel modeling.

In the multilevel approach to repeated measures, the transformation to the con-
trasts Dij is superfluous, because the null hypothesis is expressed by (2) or (4) as a
model for the original variables Yij rather than for the contrasts.

Suppose that homogeneity of means is tested within the context of the fully
multivariate model (4). If the data are complete, the deviance (likelihood ratio) test
statistic is a non-linear increasing function of Hotelling’s T 2 (cf. Anderson, 1984,
p. 159):

deviance difference = N ln

(
1 + 1

N − 1
T 2

)
. (8)

(This is proved by Anderson for the log likelihood ratio defined for the contrast
vectors. For complete data, the transformation to the contrasts entails no difference
for the likelihood ratio.)

5.2. WALD TESTS

The Wald test can be calculated for θ consisting of r = p − 1 linearly independent
contrast vectors, e.g., difference contrasts θj = µj+1 − µj for j = 1, . . . , p − 1.
The contrasts now refer to the parameters instead of the observations, which is
the reason why calculation of the observation contrasts Dij is unnecessary. For
parameters estimated by ML, the Wald statistic produced for complete data is equal
to W = {N/(N−1)}T 2. The Wald statistic based on REML estimates here is equal
to T 2 . The REML Wald test may be expected to have a closer approximation to
the type I error probability than the ML Wald test.

For complete data, this gives us three tests: the asymptotic chi-squared likeli-
hood ratio test, the asymptotic chi-squared Wald test, and the exact Hotelling’s test.
The three tests are closely related, which is seen as follows. A first-order Taylor
series of the function (8) shows that the deviance difference can be approximated
by

deviance difference ≈ N

N − 1
T 2 = N

N − p + 1
(p − 1)F.

(This approximation is poor if T 2/(N − 1) is large.) F denotes the exact F -
transform of the T 2 statistic. When N tends to infinity, the factor N/(N − p + 1)
tends to 1 and the distribution of (p − 1)F tends to a chi-squared distribution with
p − 1 degrees of freedom. This implies that the three tests will coincide for large
sample sizes, unless T 2/(N − 1) is rather large (but then all tests will yield very
small p-values anyway). The tests all are functions of the same test statistic T 2, but
use different rejection regions. Since Hotelling’s test is exact, it is to be preferred.
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Example 2
The example about salsolinol excretion is continued without taking into account
the two groups. The fully multivariate (“MANOVA”) approach is used.

For the test of the effect of “day”, Hotelling’s T 2 yields F(3, 11) = 1.55 (p =
0.26) while the Wald test based on ML estimation is W = 5.92 (d.f. = 3, p =
0.12) and the Wald test based on REML estimation is WR = 5.50 (p = 0.14).
This is in accordance with the formulae above with N = 14, p = 4. Although
the “day” effect is non-significant by either test, this example does illustrate that
using the exact F -test rather than the asymptotic chi-squared test is an important
modification for this relatively small sample size.

5.3. INCOMPLETE DATA

The use of the multilevel approach has an important advantage in the case of in-
complete data. Recall that it is assumed throughout this paper that the missing data
are MAR or MCAR. Parameter estimates and the Wald test statistic can still be
calculated by software for random coefficient models when data are incomplete,
without any change in model specification or setup. The Wald test still is valid
asymptotically (when for each treatment condition, the number of available cases is
large). However, referring the Wald statistic to the chi-squared distribution does not
take into account the fact that the covariance matrix is estimated so this asymptotic
approximation will be liberal in small samples.

Continuation example 2
For each of 8 subjects one measurement was deleted. The deleted measurements
were distributed evenly over the 4 time points. The REML version of the Wald
test yields WR = 4.96. With d.f. = 3, this result has p > 0.20 in a chi-squared
distribution. This illustrates that the analysis still is possible, although the test is
valid only asymptotically (and therefore not very accurate for this small sample
size), and the loss of data leads to a loss of power.

6. Multivariate Tests in between-within Designs

A between-within design (e.g., Maxwell and Delaney, 1990, Chap. 14; Stevens,
1996, Chap. 13) contains at least one between-subjects factor (grouping or clas-
sification variable for the subjects) and at least one within-subjects factor (a
classification for the measurement occasions). We consider a design with one
between-subjects and one within-subjects factor, and refer to these as “group” and
“condition”, respectively.

The overall multivariate null hypothesis is that the groups have identical vectors
of population means. This is decomposed into two sub-hypotheses. The first is the
hypothesis of no main group effect: the sum score over the repeated measures has
the same population mean in the various groups. The second is the hypothesis
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of no group by condition interaction: the differences between conditions have the
same population means in the various groups. The group by condition interaction
usually is the most important for the research question investigated. For incomplete
data, the tests for the main group effect and the group by condition interaction
effect need no longer be orthogonal, as they are in the case of complete data. This
is analogous to the situation of two-way between-subjects designs with unequal
numbers of subjects per cell, cf. Kleinbaum et al. (1988, Chap. 20).

Multivariate tests of these hypotheses, for complete as well as for incomplete
data, can be carried out in the multilevel framework according to the same pro-
cedure as indicated above. We focus on Wald tests for the fully multivariate model
(without a restriction on the covariance matrix), which are equivalent to Hotelling
T 2 tests for the designs for which this test is available. The procedure can be
summarized as follows:
1. fit a model where the fixed part expresses the alternative hypothesis, the ran-

dom part at level 1 is empty, and the random part at level 2 incorporates
correlated random slopes of p variables (e.g., polynomial or dummy codings)
representing the p conditions;

2. express the null hypothesis as a set of linear constraints on the vector of fixed
parameters, and test these by a Wald statistic.

6.1. MULTILEVEL FORMULATION OF BETWEEN-WITHIN DESIGNS

In the usual repeated measures notation the dependent variable is denoted by Yijk ,
where k denotes the group. We find it more convenient here to employ the mul-
tilevel usage where the number of indices of the dependent variable reflects the
number of hierarchical levels. The grouping variable here is a categorical variable
defined for the subjects, not a level of nesting in the multilevel sense (the latter
representation would imply a random group effect, whereas the hypothesis now is
about fixed group effects). Subject number i runs from 1 to N , and by g(i) we
denote the group of subject i. The number of groups is m. We define the dummy
variable wk by wki = 1 if subject i is in group k (i.e., g(i) = k) and wki = 0
otherwise.

The model for m groups with p conditions now can be expressed as

Yij = µg(i),j + Uij =
m∑

k=1

p∑
h=1

µkhwkizhj +
p∑

h=1

Uihzhj , (9)

where µkh denotes the population mean under condition h for group k, while the
occasion dummies zhj are defined by (6) and the meaning of the random effects
Uih is as above. The random part is the same as that of model (4), and represents
an unrestricted homoscedastic covariance matrix. The fixed part is formed by the
mp product dummy variables wkzh .
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The three hypotheses can be represented as linear constraints on the parameters
µkh of the fixed part. The overall hypothesis of equality of the m populations is
given by

µk+1,h − µkh = 0 (k = 1, . . . , m − 1;h = 1, . . . , p). (10)

The hypothesis that there is no main effect of group can be formulated as

p∑
h=1

(µk+1,h − µkh) = 0 (k = 1, . . . , m − 1). (11)

The hypothesis of no group by condition interaction is

µk+1,h+1 − µk+1,h − µk,h+1 + µkh = 0

(k = 1, . . . , m − 1;h = 1, . . . , p − 1). (12)

The restrictions (11) and (12) jointly are equivalent to (10).

6.2. TESTS

In the case of two groups and complete data, hypothesis (10) can be tested by
Hotelling’s two-sample T 2 test (e.g., Stevens, 1996, Chap. 4), while hypothesis
(12) can be tested by the same test applied to the vectors of contrasts Di defined
above. Hypothesis (11) can be tested for complete data, for an arbitrary number
of groups, by a univariate F test applied to the sum scores. For complete data
and more than two groups, hypotheses (10) and (12) are tested by multivariate
F tests, in some cases exact and otherwise carried out using tables or very good
approximations (e.g., Anderson, 1984, Chap. 8; Maxwell and Delaney, 1990, Chap.
14; Stevens, 1996, Chap. 5; Tatsuoka, 1988, Chap. 8).

For complete data, Wald tests are equivalent to certain of these F tests. This
is of practical importance because Wald tests can be calculated routinely by mul-
tilevel software. To elaborate this, we use the transformations of T 2 statistics to
F distributions given in the mentioned literature. The Wald test statistic for the
multivariate null hypothesis (10) is denoted by W (multi), for null hypothesis (11)
of no group main effect by W(G) and for null hypothesis (12) of no group by
condition interaction by W(G × C). The corresponding Wald test statistics based
on REML estimates are denoted using WR instead of W .

The F statistic for the main effect of group – null hypothesis (11) – can, in the
case of an arbitrary number m of groups and complete data, be expressed as

F(G) = N − m

N(m − 1)
W(G) = 1

m − 1
WR(G). (13)
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For the multivariate tests, first consider m = 2 groups. For the multivariate test
of equality of the two vectors of population means, the T 2 test statistic for the
complete data case is again a multiple of the Wald statistic,

T 2(multi) = WR(multi) = N − 2

N
W(multi) (14)

and can be transformed to an exact F -distribution by

F(multi) = N − p − 1

(N − 2)p
WR(multi). (15)

This statistic has, under the null hypothesis, the F -distribution with p and N−p−1
degrees of freedom. This test can also be used for p-dimensional multivariate data
without a repeated measures structure.

The situation for the group by condition interaction closely parallels the test of
the hypothesis of multivariate equality of means. For m = 2 groups with complete
data, the Wald and T 2 statistics are related by

T 2(G × C) = WR(G × C) = N − 2

N
W(G × C) (16)

and transformed to an exact F(p − 1, N − p) distribution by

F(G × C) = N − p

(N − 2)(p − 1)
WR(G × C). (17)

Continuation example 3
We continue the example of the salsolinol excretion data. There are m = 2 groups
and p = 4 measurements, so in representation (9) there are 2 dummy variables wki

and 4 dummy variables zhij , leading to 8 product variables wkizhij .
For the test of the main group effect, F(1, 12) = 2.48 (p = 0.14). It follows

from (13) and m = 2 that this F statistic is equal to the Wald statistic WR(G). For
the multivariate test of equality of the 2 group means, F(4, 9) = 1.101 (p = 0.41)
while WR (multi) = 5.87. This corresponds with (15). For the group by condition
interaction, F(3, 10) = 0.197 (p = 0.90) while WR(G×C) = 0.71, in accordance
with (17). None of the tests leads to a significant result.

The situation is more complicated for testing multivariate equality of the group
means, or group by condition interaction, for more than 2 groups. These testing
problems can be treated simultaneously by defining r = p for the former and
r = p − 1 for the latter hypothesis. There are various multivariate F -tests for the
complete data case (see, e.g., Anderson, 1984 or Tatsuoka, 1988). It was proven
by Kleinbaum (1973) that, of these tests, it is the Lawley–Hotelling trace L (also
called the Hotelling trace) that corresponds to the Wald test. More specifically,

L = 1

N
W = 1

N − m
WR.
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In this context, (N − m)L = WR is also called the Hotelling T 2
0 statistic. Gen-

erally valid approximations of its null distribution by a transformed F -distribution
are not available, but special approximations and tables exist for its null distribu-
tion (cf. Anderson, 1984, and Pillai, 1983). The asymptotic distribution of WR is
chi-squared with r(m − 1) degrees of freedom.

7. Summary and Discussion

In the statistical treatment of repeated measures, an important distinction is
between the traditional mixed model approach, also called the univariate approach,
and the multivariate (MANOVA) approach (e.g., Maxwell and Delaney, 1990;
Stevens, 1996). The multilevel (or hierarchical linear model) approach, mentioned
by Goldstein (1995), steers a middle road between the traditional mixed model,
which includes only the main subject effect as a random effect, and the multivariate
approach, which makes no restrictions on the covariance matrix except the require-
ment of homoscedasticity in the multi-group case. The multilevel approach is based
on random coefficients of linear and non-linear functions of the within-subject vari-
ables, and implies assumptions for the covariance matrix of the repeated measures
which are intermediate between the very strict assumptions of the traditional mixed
model and the very loose assumptions of the multivariate approach.

Since the multilevel approach allows the researcher to select a parsimonious
and well-fitting model for the covariance matrix, the associated tests of fixed effects
may be expected to have good power properties (cf. Reinsel, 1984 and Ware, 1985).
Further investigations are necessary to study the importance of this gain in power,
and to compare these tests with the epsilon-adjusted tests defined in the mixed
model framework (as explained, e.g., by Maxwell and Delaney, 1990).

The usual implementation of the traditional approaches does not allow incom-
plete data. The multilevel approach, which includes the traditional mixed model
and the fully multivariate model as boundary cases, allows incomplete data without
any problems and can be implemented by multilevel software like HLM and MlwiN
and by mixed model software like SAS Proc Mixed. Fixed effects are tested in
multilevel analysis usually by means of deviance (i.e., likelihood ratio) or Wald
tests. These tests are valid for large sample sizes. The advantage of the MANOVA
approach is that under the normality assumption it yields exact tests also for small
sample sizes. We indicated how deviance tests and Wald tests provided by multi-
level software can be modified so that they are equal to these exact tests in the case
of complete data.

Finally, we would like to signal an extension of this model. The multilevel
formulation easily allows heteroscedastic models for multi-group data. This is
done by letting the covariance matrices of the random slopes Uih depend on the
groups (cf. the remarks in Goldstein (1995) about complex variation and Snijders
and Bosker (1999, Chap. 8), about heteroscedasticity). Thus a statistical treatment
of heteroscedastic models for within-between designs is obtained which can be
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applied to complete as well as incomplete data. Due to the asymptotic nature of the
deviance and Wald tests, this procedure currently is useful mainly for intermediate
and large sample sizes.
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