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This dissertation concerns the study of canonical components of the

SL2(C) character varieties of hyperbolic 3-manifolds. Although character va-

rieties have proven to be a useful tool in studying hyperbolic 3-manifolds, very

little is known about their structure. Chapter 1 provides background on this

subject. Chapter 2 is dedicated to the canonical component of the Whitehead

link. We provide a projective model and show that this model is isomorphic

to P2 blown up at 10 points. The Whitehead link can be realized as 1/1 Dehn

surgery on one cusp of both the Borromean rings and the 3-chain link. In

Chapter 3 we examine the canonical components for the two families of hyper-

bolic link complements obtained by 1/n Dehn filling on one component of both

the Borromean rings and the 3-chain link. These examples extend the work

of Macasieb, Petersen and van Luijk who have studied the character varieties

associated to the twist knot complements. We conjecture that the canonical

components for the links obtained by 1/n Dehn filling on one component of
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the 3-chain link are all rational surfaces isomorphic to P2 blown up at 9n+ 1

points. A major goal is to understand how the algebro-geometric structure of

these varieties reflects the topological structure of the associated manifolds.

At the end of Chapter 3 we discuss common features of these examples and

explain how our results lend insight into the affect Dehn surgery has on the

character variety. We conclude, in Chapter 4, with a description of possible

directions for future research.
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Chapter 1

Introduction

Character varieties are a point of interest in several areas of mathemat-

ics and their study has revealed connections between dynamical systems, topol-

ogy and algebraic geometry. This dissertation concerns the study of character

varieties of discrete groups, particularly fundamental groups of hyperbolic 3-

manifolds. These algebraic sets provide an interesting connection between

topology and algebraic geometry, and a basic question is to understand which

algebraic sets arise as character varieties of hyperbolic 3-manifolds. In my re-

search I have determined topologically the character variety for the Whitehead

link complement along with that of other two component 2-bridge hyperbolic

link complements. These results expand the work of Macasieb, Petersen and

van Luijk who have studied the character varieties associated to the twist knot

complements.

Since the seminal work of Culler and Shalen, character varieties have

proven to be a powerful tool for studying the topology of hyperbolic 3-manifolds;

for example they provide efficient means of detecting essential surfaces in hy-

perbolic knot complements ([6], [4], [26]). Continuing to determine and study

these types of models will help us understand how the algebro-geometric struc-
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ture of a character variety reflects the topological structure of the associated

3-manifold.

As interesting and useful as character varieties can be, very little is

known about their structure. For instance, Dehn surgery on a 3-manifold M

naturally gives rise to subvarieties of the character variety for M . Identifying

which subvarieties are character varieties associated to manifolds obtained by

Dehn filling is a challenging problem we are interested in studying. The canon-

ical components of the character varieties for the two component 2-bridge links

we studied are complex surfaces. Although the birational equivalence class of

the projective model for these varieties does not depend on the compactifica-

tion, the isomorphism class does. Hence, for complex surfaces, there is some

ambiguity in deciding which smooth model to take as the character variety.

What determines the “right” projective completion is a major concern in alge-

braic geometry. Better understanding the structure of these character varieties

will help us determine what we mean by the “right” compactification in this

context.

This chapter is devoted to introducing the main results and building

the necessary background information. Chapter 2 is devoted to the study of

the canonical component for the Whitehead link and Chapter 3 the structure

of the canonical components of two families of hyperbolic link complements

obtained by Dehn filling a cusp of a fixed 3-manifold. Chapter 4 discusses the

implications of these results and presents direction for future research.

2



1.1 Main Results

The character variety can be defined for any Lie group G and any

finitely generated group Γ. Let Hom(Γ, G) denote the set of group homomor-

phisms from Γ to G. Formally, the G-character variety is the GIT quotient

X(Γ, G) = Hom(Γ, G)//G where G acts on Hom(Γ, G) by conjugation.

This thesis primarily concerns SL2(C) character varieties for hyperbolic

3-manifolds. LetM be a hyperbolic 3-manifold. Then the interior ofM admits

a complete finite volume hyperbolic structure and M is isomorphic to H3/Γ

where Γ is a discrete, torsion free subgroup of Isom+(H3) ∼= PSL2(C). The

(P )SL2(C) character variety for Γ = π1(M) reflects topological information

about M . In this context, the character variety X(Γ) coincides with the set of

characters {χρ|ρ ∈ Hom(Γ, G)} where χρ : Γ → C is the map χρ(γ) = tr(ρ(γ))

([6]). Characters corresponding to discrete faithful representations capture

hyperbolic structures on M since PSL2(C) parameterizes the orientation pre-

serving isometries of 3-dimensional hyperbolic space. Let Y0 = Y0(Γ) ⊂ Y (Γ)

be a component of the PSL2(C) character variety containing a character y0

which corresponds to a discrete faithful representation ˜rhoo. For hyperbolic

manifolds of finite volume, Y0 is unique (up to orientation) [27]. Fix a lift ρ0

of ρ̃0 to SL2(C). The character x0 = xρ0 is contained in a unique component

X0 = X0(Γ) ⊂ X(Γ) of the SL2(C) character variety. We call X0 the canonical

component. Thurston’s Hyperbolic Dehn Surgery Theorem implies that for an

orientable, hyperbolic 3-manifold of finite volume, with n-cusps, the canoni-

cal component has complex dimension n. Much of the theory developed thus
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far is particular to case when n = 1. For a 1-cusped hyperbolic 3-manifold,

the canonical component is a complex curve whose geometric genus coincides

with the topological genus. Using the ideal points of this curve, we can detect

incompressible surfaces in M ([26]).

Of particular interest is determining explicit models for Xo. This is

a difficult problem for even the simplest hyperbolic link complements. Only

recently have explicit models for the canonical components of a full family of

hyperbolic knots been determined ([17]). Macasieb, Petersen and van Luijk

studied a family of 2-bridge knots which include the twist knots. The twist

knots can be obtained by 1/n Dehn filling on the Whitehead link where Dehn

filling on a link complement is a gluing that identifies via homeomorphism the

boundary of a solid torus with a boundary torus of the link complement. The

Whitehead link is thus a simple two component 2-bridge link whose character

variety contains as algebraic sets those associated to the twist knots. Hence,

it is a natural example to study and determining the canonical component

explicitly extends the work of [17]. Chapter 2 is dedicated to proving the

following theorem.

Theorem 1.1.1. (L [16]) The canonical component of the character variety

of the Whitehead link complement is a rational surface isomorphic to P2 blown

up at 10 points.

Rational surfaces (surfaces birational to P2) are well-understood algebro-

geometric objects. Smooth rational surfaces are isomorphic either to P1 × P1

or to P2 blown-up at n points. Although we are ultimately interested in the
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isomorphism class, the birational equivalence class still carries a lot of infor-

mation. For complex surfaces, although there may be more than one smooth

model in a birational equivalence class, there is a notion of a minimal smooth

model, i.e. the smooth birational model containing no (−1) curves ([14]). For

rational surfaces, there are two possible minimal smooth models: P1 × P1 and

P2. The minimal smooth model for the canonical component of the White-

head link is P2. Identifying the birational equivalence class for this surface

is not that different than identifying the isomorphism class for the canonical

components of the knots studied in [17]. For curves, the birational equivalence

class and the isomorphism class coincide.

The Whitehead link can be realized as 1/1 Dehn filling of one cusp

of the Magic manifold (i.e. 3-chain link complement). It is natural to ask

whether the character varieties of the link complements obtained by 1/n Dehn

filling one of the cusps of the Magic manifold exhibit any similarities.

Conjecture 1.1.2. The canonical component of the character variety obtained

by 1/n Dehn surgery on one cusp of the Magic manifold is a rational surface

birational to a conic bundle and isomorphic to P2 blown up at 1 + 9n points.

Conjecture 1.1.2 is based on our calculations for n = 1, . . . , 4 which we

discuss in Section 3.1. That these link complement examples exhibit similar

yet more complicated recursive relations than the knots studied in [17] moti-

vates the conjecture. Verifying Conjecture 1.1.2 would yield a 2-dimensional

generalization of our understanding of twist knot character varieties. These

rational surfaces are also all birational to conic bundles. Conic bundles can
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be realized as smooth hypersurfaces in P2 × P1, cut out by a polynomial of

bidegree (2, n). The twist knot character varieties are all hyperelliptic, mean-

ing they can be realized as smooth hypersurfaces in P1 × P1 cut out by a

polynomial of bidegree (2, n) ([17]). These surfaces birational to conic bundles

are subvarieties of the canonical component of the character variety associ-

ated to the Magic manifold, which yields a 3-dimensional analogue. Namely,

the canonical component for the Magic manifold is not only rational but also

birational to a fiber bundle over P1 × P1 with conic fibers.

All of the character varieties for the examples we have thus far dis-

cussed have a single component. We are interested in investigating how the

number number and type of components of the character variety reflect the

topology of associated manifolds. In particular, we would like to qualify the

conditions for which types of varieties arise as components of the character va-

rieties associated to hyperbolic manifolds. In Section we discuss the character

varieties for the manifolds which result upon 1/n Dehn filling on one cusp of

Borromean rings Mbr. These link complements are hyperbolic two component

2-bridge link complements ([15]). For n = 2, 3, 4, we shown that the character

variety of Mbr(1/n) has multiple components, one of which is rational.

Theorem 1.1.3. For n = 2, 3, 4, the character variety of Mbr(1/n) has a

component which is a rational surface isomorphic to P2 blown up at 7 points.

6



1.2 Preliminary Material

Here we provide a description of the SL2(C) and PSL2(C) represen-

tation and character varieties. Standard references for this include [6] and

[26].

1.2.1 Representation Varieties

A (P )SL2(C) representation for a group Γ is a homomorphism

ρ : Γ → (P )SL2(C). We say ρ is irreducible if there are no nontrivial sub-

spaces of C2 invariant under the action of ρ(G). Otherwise ρ is reducible. Two

representations ρ and ρ′ are equivalent if they differ by an inner automorphism

of (P )SL2(C). Associated to every representation ρ is a character χρ which

is the map χρ : Γ → C defined by χρ(γ) = Tr(ρ(γ)). Equivalent represen-

tations have the same character since the trace function is invariant under

inner automorphisms. Irreducible representations are determined, up to con-

jugacy, by their character. This is not the case for reducible representations.

In fact a reducible representation always shares its character with an abelian

representation.

Let R(G) and R̄(G) denote the set or SL2(C) and PSL2(C) represen-

tations respectively. For any finitely generated group Γ = ⟨g1, . . . , gn|r1, . . . ⟩,

R(Γ) and R̄(Γ) have the structure of an affine algebraic set [6]. Consider

R(Γ). We can write R(Γ) = {(x1, . . . , xn) ∈ (SL2(C))n|rj(x1, . . . , xn) = I}.

By appealing to the Hilbert basis theorem, we can assume {rj} is finite, say

{r1, . . . , rm}. Notice then that R(Γ) can be identified with r−1(I, . . . , I) where
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r : (SL2(C))n → (SL2(C))m is the map r(x) = (r1(x), . . . , rm(x)). That R(Γ)

is an algebraic set follows from the fact that r is a regular map. Identifying

SL2(C)n with a subset of C4n, we can view R(Γ) as an algebraic set over C.

We can argue similarly for R̄(Γ) by replacing SL2(C) with PSL2(C) above.

We should note that the isomorphism class of R(Γ) does not depend on the

group presentation and in general, is not irreducible. In fact the abelian rep-

resentations (i.e. representations with abelian image) comprise a component

of this algebraic set [6].

1.2.2 Character Varieties

Let X(Γ) and Y (Γ) denote the space of SL2(C) and PSL2(C) charac-

ters. Since this thesis primarily concerns X(Γ) for hyperbolic 3-manifolds, we

will focus on X(Γ) here. For each g ∈ Γ there is a regular map τg : R(Γ) → C

defined by τg(ρ) = χρ(g). Let T be the subring of the coordinate ring on R(Γ)

generated by 1 and τg, g ∈ Γ. In [6] it is shown that the ring T is finitely gener-

ated, for example by {τgi1gi2 ...gik |1 ≤ i1 < i2 < · · · < ik ≤ n}. In particular any

character χ ∈ X(Γ) is determined by its value on finitely many elements of Γ.

As a result, for t1, . . . , ts generators of T , the map t = (t1, . . . , ts) : R(Γ) → Cs

defined by ρ 7→ (t1(ρ), . . . , ts(ρ)) induces a mapX(Γ) → Cs. Culler and Shalen

use the fact that this map is injective to show that X(Γ) inherits the structure

of a closed algebraic subset of Cs ([6]). From this it follows that X(Γ) is an

affine algebraic variety with coordinate ring TX = T ⊗ C.

From here onward we will view the map t as a map from R(Γ) to X(Γ),

8



identifying (t1(ρ), . . . , ts(ρ)) with χρ. Let R0 be an irreducible component of

R(Γ). Since t is a regular map, t(R0) is an affine algebraic set. We are partic-

ularly interested in the case where Γ = π1(M) for M a hyperbolic 3-manifold.

Mostow-Prasad rigidity guarantees the existence of a discrete faithful repre-

sentation, ρ̃0 : π1(M) → Isom+(H3) ∼= PSL2(C). It it well known that ρ̃0

lifts to a discrete faithful representation ρ0 : π1(M) → SL2(C). Let x0 be

the character t(ρ0). The canonical component of X(π1(M)) is the irreducible

component containing x0 and is denoted by X0(π1(M)). For hyperbolic knot

and link complements, as x0 is a smooth point of X0(π1(M)), X0(π1(M)) is

unique up to orientation ([27]). In this context, Thurston’s Hyperbolic Dehn

Surgery theorem ([27] Theorem 4.5.1) can be stated as follows.

Theorem 1.2.1. LetM be an orientable hyperbolic 3-manifold of finite volume

with n-cusps. Then dimC(X0(π1(M))) = n.

We have thus far been working with affine algebraic sets. What we are

most interested in are smooth projective models. In this work, we obtain pro-

jective models, which may or may not be smooth, by compactifying in P2×P1.

If the projective model is not smooth, we obtain a nonsingular model by re-

solving the singular points. Throughout this thesis we will refer to the affine

algebraic setsX(π1(M)) andX0(π1(M)) as the affine SL2(C)-character variety

and affine canonical component of M . We use X̃(π1(M)) to denote a projec-

tive model for the SL2(C)-character variety and X̃0(π1(M)) to mean a smooth

projective model for canonical component. The canonical component for the
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character varieties associated to hyperbolic 1-cusped manifolds (e.g knot com-

plements) are complex curves. For these varieties, the birational equivalence

class contains a unique smooth model (up to isomorphism). In this sense there

no ambiguity in choosing a projective model. The birational equivalence class

for varieties of higher dimension do not admit unique smooth models. For com-

plex surfaces, however, there is still a notion of a minimal smooth model, i.e.

the smooth birational model containing no (−1) curves. To some extent, iden-

tifying the birational class for a complex surface is consistent with identifying

the isomorphism class for a complex curve because for curves, the birational

equivalence class coincides with the isomorphism class. In Chapters 2 and 3

we determine the birational equivalence class for the canonical component of

the Whitehead link and that for other two component 2-bridge link comple-

ments. For our examples of hyperbolic two component link complements we

identify the minimal model and describe topologically the isomorphism class

for a specific projective model.

1.3 Some Basic Algebraic Geometry

In this section we discuss the algebro-geometric concepts relevant to

the main proof of this paper. For more details see [14] or [24] .

1.3.1 Definitions and Notations

Let X ⊂ An be an algebraic set over the ground field k. We denote

the coordinate ring of X by k[X]. When X is irreducible we can consider

10



the function field k(X) of X. Let Θx denote the Zariski tangent space of X

at x and let dimxX denote maximum dimension ranging over the irreducible

components of X containing x. A point x ∈ X is nonsingular or smooth if

dimΘx = dimxX. Otherwise the point is singular. When X is a variety (i.e.

an irreducible algebraic set) defined by the ideal generated by f1, . . . , fs ∈

k[x1, . . . , kn], this is equivalent to the condition that the partial derivatives

∂fj
∂xi

do not all simultaneously vanish at x. If x is not a smooth point we say

that x is a singularity or a singular point of X.

In algebraic geometry we often work up to birational equivalence. Two

algebraic sets, X and Y are birational if for some dense open sets U ⊂ X

and V ⊂ Y there is a polynomial map ψ : U → V whose inverse is also

polynomial. Birational varieties are not generally isomorphic. However, the

birational equivalence does carry a lot of information about a variety. For

instance, birational varieties have isomorphic function fields. In the case of

curves, there is a unique (up to isomorphism) smooth projective model for

each equivalence class. The canonical component of the character variety for

hyperbolic 1-cusped 3-manifolds is a complex curve. The model we use to iden-

tify this component is the unique smooth projective model of the birational

equivalence class. For hyperbolic 3-manifolds with 2-cusps, the canonical com-

ponent of the character variety is a complex surface. In this case, the model

with which to identify this component is not as obvious. Unlike curves, smooth

projective models do not determine the birational equivalence class for vari-

eties of higher dimension. For surfaces there is, however, still a notion of a

11



minimal smooth model i.e. the smooth birational model containing no (−1)

curves ([14]). Aside from rational surfaces (those birational to P2) and ruled

surfaces (P1 bundles over a curve), the minimal model is unique. Although

we are ultimately interested in the isomorphism class, determining the bira-

tional equivalence class for the canonical component of the character varieties

for 2-cusped hyperbolic 3-manifolds is not that different than identifying the

isomorphism class for the canonical components associated to hyperbolic 1-

cusped manifolds because for curves, the birational equivalence class and the

isomorphism class coincide.

1.3.2 Divisors

Algebro-geometric invariants such as the geometric genus and the canon-

ical divisor are helpful tools in determining the birational equivalence class and

understanding the topological structure of a variety. For divisors, there are

two commonly used flavors: Weil divisors and Cartier divisors. These notions

agree on non-singular varieties over algebraically closed fields.

A Weil divisor D on a variety X is a formal sum of codimension 1

subvarieties D1, . . . , Dn. Namely, D = k1D1 + · · ·+ knDn where ki are integer

multiplicities. We writeD = 0 if all the ki = 0 and we callD effective if all ki ≥

0 and for some i, ki > 0. If Di is an irreducible codimension 1 subvariety with

multiplicity 1, we say Di is a prime divisor. Since any two divisors, D and D′

can be expressed as a formal sum of the same prime divisors, we add divisors by

adding corresponding multiplicities and the set of divisors on X form a group

12



DivX isomorphic a free Z module. For any prime divisor C of X, let vC be the

valuation on k(X) that takes f ∈ k[X] to its order of vanishing on C and takes

1
f
to −vC(f). The divisor of f is divf = ΣvC(f) taken over all prime divisors

of X. We say a Weil divisor D is a principal divisor if D = divf for some

f ∈ k(X). The set of principal divisors, P (X), forms a subgroup of Div(X)

and the quotient group Cl(X) = Div(X)/P (X) is the divisor class group. For

projective varieties Cl(Pn) = Z and Cl(Pn1 ×· · ·×Pnk) = Zn1 ×· · ·×Znk . We

say two divisors are linearly equivalent if they are in the same divisor class.

To each divisor D we associate the vector space L (D) of all f ∈ K(X) such

that divf +D is effective. When X is a projective variety L (D) is finite with

dimension (D).

Principal divisors are, in some sense, a fundamental class in the group

of Weil divisors. Cartier divisors are constructed so that every divisor can be

realized as locally principal. For a variety X, a compatible system of functions

is a collection of functions {fi} together with corresponding open set Ui of

a finite cover X = ∪Ui such that fi are not identically 0 and
fi
fj

and
fj
fi

are

regular on the overlap Ui∩Uj. Two compatible systems {fi} corresponding to

Ui and {gj} corresponding to Vj are equivalent if
fi
gj

and
gj
fi

are regular and

nonzero on Ui∪Vj. A Cartier divisor on a variety X is a compatible system of

rational functions. A Cartier divisor naturally gives rise to a Weil divisor. Let

{fi} corresponding to {Ui} be a Cartier divisor on X. For each prime Weil

divisor C let kC = VC(fi) if Ui ∩ C ̸= ∅ where C and fi are considered as a

divisor and rational function on Ui. The compatibility condition guarantees
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that the values kC are independent of the choice {fi} and {Ui}. Hence the

system defines a divisor D = ΣkCC and on each Ui, D can be realized as

divfi. Conversely, every Weil divisor can be realized as a Cartier divisor. For

any prime divisor C, near any point x ∈ X there is a neighborhood Ux in

which C is defined by the local equation ϕ. Consider any divisor D = ΣkiCi

where Ci are defined by locally by ϕi in Ux. Then, in Ux, D = div(gi) where

gi = Πϕki
i . In this way, choosing a finite covering {Ui} for X gives rise to a

Cartier divisor D. The product of two compatible systems {fi} associated to

{Ui} and {gj} associated to {Vj} is the compatible system {figj} associated

to {Ui ∩ Vj}. Under this multiplication, Cartier divisors form a group and the

principal divisors form a subgroup. We often work with the divisor classes in

this quotient group which is called the Picard group of X and denoted Pic(X).

A particular divisor class, called the canonical class, carries informa-

tion about the variety X. This class corresponds to top dimensional rational

differential forms on X and can be described as follows. Suppose X is an n-

dimensional variety and ω ∈ Ωn[X] be any n-form. For any point x ∈ X, there

is a neighborhood Ux in which ω = gdu1
∧
· · ·

∧
dun. We can take a finite cover

{Ui} for X such that on each Ui, ω = g(i)du
(i)
1

∧
· · ·

∧
du

(i)
n . On the overlap

Ui ∩ Uj, g
(i) = g(j)J(

u
(i)
1 ,...u

(i)
n

u
(j)
1 ,...u

(j)
n

) where J is the determinant of the Jacobian.

These rational functions {gi} associated to {Ui} form a compatible system

and hence define a divisor, denoted divω, on X. Each n-form can be written

ω = fω1 for some fixed n-from ω1 since Ωn[X] is a 1-dimensional vector space

over k(X). When X is smooth all n-forms are linearly equivalent because, in
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this case, div(fω) = div(f)div(ω) for all f ∈ k(X). This linear equivalence

class is the canonical class KX . We will use ωk to denote a representative divi-

sor in the canonical class. We can and often do view KX as the class of global

sections of line bundles Γ(X,ωk) over X. For points y in a neighborhood Ux

of x ∈ X, the fiber corresponds to the set of forms {fdu1
∧

· · ·
∧
dun} where

f ∈ k(X). Global sections correspond to the compatible systems and hence

divisors in the canonical class.

The vector space L(KX) corresponds precisely to Ωn[X] since div(ω)

is effective whenever ω ∈ Ωn[X]. The dimension l(KX) = dimk(Ω
n[X]) is a

birational invariant called the geometric genus, pg(X). In the case of complex

curves, the geometric genus coincides with the topological genus and thus

identifies the birational equivalence class.

1.3.3 Geometric genus

The geometric genus, pg, of a projective variety, S, is the dimension of

the vector space of global sections Γ(X,ωk) of the canonical divisor wk. For a

complex curve, the geometric genus coincides with the topological genus and

can thus be used to topologically determine the character varieties of hyper-

bolic knot complements. Unfortunately for complex surfaces, the geometric

genus does not carry as direct topological information (for instance it appears

as h2,0 in the Hodge decomposition [12]). However, as it may still be helpful in

determining which varieties can arise as the character varieties of hyperbolic

two component link complements, it it worth keeping track of this value. For

15



a hypersuface, Z, in P2 × P1 defined by a polynomial f of bidegree (a, b) the

geometric genus is pg(Z) =
(a−1)(a−2)(b−1)

2
.

We give a brief description of this here. As the group of linear equiva-

lence classes of divisors for P2 × P1 is Pic(P2 × P1) ∼= Z× Z, we think of the

divisors of P2 ×P1 as elements of Z×Z. For a linear class with representative

divisor D on P2 × P1, there is an associated vector space, L(D) of principal

divisors E such that D+E is effective. The vector space L(D) is in one-to-

one correspondence with the vector space of global sections of the line bundle

L(D) on P2 × P1. As the vector space of global sections of L(D) corresponds

to the space of polynomials over P2×P1 with the same bidegree as that which

cuts out D, the restrictions of these polynomials to S which are nonzero on S,

correspond to the vector space of global sections of D on S. That is to say the

kernel of the surjective map L(D) � L(D)|S is those polynomials which vanish

on S. When D is the canonical divisor KS of the surface S, assuming all the

restricted polynomials are nonzero on S, the geometric genus of the surface

gg(S) is then just the dimension of the vector space of these polynomials.

For the hypersurface S defined by f , we can use the adjunction formula

to determine KS. Namely, KS = [KP2×P1 ⊗O(S)]|S where O(S) is the divisor

class of S in P2×P1. The canonical divisorKP2×P1 of P2×P1 is (−3,−2) ∈ Z×Z

and the divisor class O(S) = (a, b) ∈ Pic(P2 × P1) ∼= Z×Z where (a, b) is the

bidegree of f . Hence, KS = (a− 3, b− 2). Since the linear class of divisors of

KS = (a− 3, b− 2) corresponds to a polynomials of bidegree (a− 3, b− 2), the

global sections of line bundle associated to KS = (a− 3, b− 2)|S correspond to
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polynomials of bidegree (a−3, b−2). Since S is a hypersurface defined by the

irreducible polynomial f , no polynomial of bidegree (a − 3, b − 2) can vanish

on all of S. Hence, the geometric genus of the surface gg(S) is then just the

dimension of the vector space of polynomials over P2 × P1 of bidegree (a, b).

Determining this dimension is a matter of counting monomials of bidegree

(a− 3, b− 2) for which there are (a−1)(a−2)(b−1)
2

.

1.3.4 Projective models for character varieties

The affine varieties with which we are concerned are all hypersurfaces

in C3 i.e. they are zero sets Z(f̃) of a single smooth polynomial f̃ ∈ C[x, y, z].

Finding the right projective completion is tricky, especially with complex sur-

faces since different projective completions may result in non-isomorphic mod-

els. It might seem natural to take projective closures in P3. One problem with

compactifying in P3 is that, generally, this projective model has singularities

which take more than one blow up to resolve. Following the work of [17] it is

more natural to consider the compactification in P2×P1. This compactification

does result in a singular surface. However, the singularities are manageable

and away from the singularities this model has the nice structure of a conic

bundle. Hence, for these reasons, this is the projective model we choose to use

for our examples.

Given an affine variety Z(f̃) defined by a polynomial f̃ ∈ C[x, y, z], we

construct the projective closure by homogenizing f̃ . Let a be the degree of

f̃ when viewed as a polynomial in variables x and y. Let b be the degree of
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f̃ when viewed as a polynomial in the variable z. The projective model in

P2 × P1 of the affine variety Z(f̃) is cut out by the homogeneous polynomial

f = uawbf̃(x
u
, y
u
, z
w
) where x, y, u are P2 coordinates and z, w are P1 coordi-

nates. Notice that every monomial which appears in f has degree a in the P2

coordinates and degree b in the P1 coordinates so f has bidegree (a, b).

1.3.5 Conic bundles

The character varieties for many of our examples have a component

which is birational to a conic bundle. A conic is a curve defined by a polynomial

over P2 of degree 2. Smooth conics have the genus zero ([24]) so are spheres.

A degenerate conic consists of two spheres intersecting one one point. In this

paper the term conic bundle will be used to mean a conic bundle over P1

i.e. over a sphere. Conic bundles are nice algebro-geometric objects. Whilst

there is no classification of complex surfaces, there is a classification for the

subclass of P1 bundles over P1 which are slightly different than conic bundles

in the sense that conic bundles may can have fibers with singularities. Any

P1 bundle over P1 comes from a projectivized rank 2 vector bundle over P1.

As the rank 2 vector bundles are parametrized by Z, the P1 bundles over

P1 are parameterized by Z. Each vector bundle over P1 can be written as

E = O⊕O(−e) ([1], [14]). Here O denotes the trivial rank 2 vector bundle over

P1 and O(−e) denotes the vector bundle whose section has self-intersection

number e.

Proposition 1.3.1. A conic bundle is a rational surface.
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Proof. Any conic bundle T can be realized as a hypersurface defined by a

polynomial fT of bidegree (2,m) over P2 × P1. In particular a generic fiber of

the coordinate projection of T to P1 is a nondegenerate conic. This means that

T is locally, and hence birationally, equivalent to P1 ×P1 which is birationally

equivalent to P2.

Another way to see that T is rational is by looking at the canoni-

cal divisor. The canonical divisor KT of T is the canonical divisor KP2×P1of

P2 × P1 twisted by the divisor class of T , all restricted to T . Namely KT =

(OP2×P1(−3,−2) ⊗ OP2×P1(2,m))|T = OP2×P1(−1,m − 2)|T . In particular, the

canonical divisor KT corresponds to the line bundle OP2×P1(−1,m − 2)|T the

number of global sections of which are characterized by the number of poly-

nomials of bidegree (−1,m − 2). Since there are no polynomials of bidegree

(−1,m− 2) there are no global sections on T . The only surfaces in which the

canonical bundle has no global sections are rational and ruled (i.e. birational

to P2 and a fibration over a curve with P2 fibers).

Corollary 1.3.2. A conic bundle is isomorphic to either P1 ×P1 or P2 blown

up at n points for some integer n.

It is a known fact ([14] Chapter V) that for two birational varieties the

birational equivalence between them can be written as sequence of blow ups

and blow downs. In particular, the varieties birational to P2 are P1 × P1 and

P2 blown up at n points. Hence any rational surface is isomorphic to P1 × P1

or to P2 blown up at n points.
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1.3.6 Blow ups

Blowing up varieties at points is a standard tool for resolving singular-

ities and determining isomorphism classes of surfaces and we make repeated

use of such in this paper.

Since blowing up is a local process, we can do all of our blow ups in

affine neighborhoods. For our purposes, understanding what it means to blow

up subvarieties of A2 and A3 at a point should be sufficient. For more details

we refer to [14] or [24].

Intuitively blowing up A2 at a point can be described as replacing a

point in A2 by an exceptional divisor (i.e. a copy of P1). To understand this

more concretely, we will describe the blow up of A2 at the origin. Consider

the product A2 × P1. Take x, y as the affine coordinates of A2 and t, u as

the homogeneous coordinates of P1. The blow up of A2 at (0, 0) is the closed

subset Y = {[x, y : t, u]|xu = ty} in A2 × P1. The blow up comes with a

natural map γ : Y → A2 which is just projection onto the first factor. Notice

that the fiber over any point (x, y) ̸= (0, 0) ∈ A2 is precisely one point in

Y . However, the fiber over (x, y) = (0, 0), is a P1 worth of points in Y (i.e.

{(0, 0, t, u)} ⊂ Y ). Since A2 − {(0, 0)} ≃ Y − γ−1(0, 0), γ is a birational map

and A2 is birational to Y . Blowing up A2 at a point p ̸= 0 simply amounts to

a change in coordinates.

Suppose we want to blow up a subvariety X ⊂ A2 at a point, p. Take

the blow up Y of A2 at p. Then the blow up Bl|p(X) of X at p is the closure
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γ−1(X − p) in Y where γ is as described above. We note that Bl|p(X) is

birational to X − p and if Bl|p(X) is smooth, γ−1(p) will intersect Y in a zero

dimensional variety.

For our paper we need to understand how blowing up a surface at a

smooth point affects the Euler characteristic.

Proposition 1.3.3. The Euler characteristic of a surface X blown up at a

smooth point p is

χ(Bl|p(X)) = χ(X) + 1 .

Proof. To blow up X at a smooth point p we work locally in an affine neigh-

borhood about p. Near p, X is locally A2 at 0. Hence the result of blowing

up X at p is the same as blowing-up A2 at 0. In terms of the Euler character-

istic this amounts to replacing a point with an exceptional P1. In particular

χ(Blp(X)) = χ(X − {p}) + χ(P1) = χ(X) + 1 .

In order to resolve singularities we will need to blow up subvarieties

of A3 at a point. Taking x1, x2, x3 as affine coordinates for A3 and y1, y2, y3

as projective coordinates for P2, the blow up of A3 at the origin is a closed

subvariety, Y ′ = {[x1, x2, x3 : y1, y2, y3]|x1y2 = x2y1, x1y3 = x3y1, x2y3 = x3y2}

in A3 × P2. Just as in the case of A2, this blow up comes with a natural map

γ : Y ′ → A3 which is simply projection onto the first factor. Just as before,

the fiber over any point (x1, x2, x3) ̸= (0, 0, 0) ∈ A3 is precisely one point in
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Y ′. However, the fiber over (x1, x2, x3) = (0, 0, 0), is a P2 worth of points in Y ′

(i.e. {(0, 0, 0, y1, y2, y3)} ⊂ Y ′ ). Since A3 − {(0, 0, 0)} ≃ Y ′ − γ−1(0, 0, 0), γ is

a birational map and A3 is birational to Y ′. Blowing up A3 at a point p ̸= 0

simply amounts to a change in coordinates. To blow up a subvariety X ⊂ A3

at a point, p. Take the blow up Y ′ of A3 at p. Then the blow up Bl|p(X) of

X at p is the closure γ−1(X − p) in Y ′. We note that Bl|p(X) is birational to

X − p and if Bl|p(X) is smooth, γ−1(p) will intersect Y ′ in a smooth curve.

In this paper we obtain smooth surfaces by resolving singularities. As

the Euler characteristic of these smooth surfaces helps us determine the iso-

morphism class we keep track of how blow up singular points affects the Euler

characteristic.

Proposition 1.3.4. If the blow up Bl|p(X) of a surface X at a singular point

p is smooth, then the Euler characteristic of Bl|p(X) is χ(Bl|p(X)) = χ(X)+

2g + 1 where g is the genus of the curve γ−1(p) in Bl|p(X).

Proof. Away from the point p, X is isomorphic to Blp(X)\γ−1(p). Hence,

χ(Blp(X)) = χ(X − p) + χ(γ−1(p)). The preimage γ−1(p) in Blp(X) is a

smooth codimension-1 subvariety of the fiber over p in Blp(A3). Since the fiber

over p in Blp(A3) is a P2, γ−1(p) in Blp(X) is a smooth curve of genus g. Hence

χ(γ−1(p)) = 2g+2 and χ(Blp(X)) = χ(X−{p})+χ(γ−1(p)) = χ(X)+2g+1

.
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1.3.7 Total transformations

For the proof of Proposition 2.2.4 we will use a total transform to extend

a map ϕ between projective varieties. The description we provide here comes

from [14] (pg 410). We begin by setting up some notation. Let X and Y be

projective varieties.

Definition 1.3.1. A birational transformation T from X to Y is an open

subset U ⊂ X and a morphism ϕ : U → Y which induces an isomorphism on

the function fields of X and Y

Since different maps must agree on the overlap for different open sets, we take

the largest open set U for which there is such a morphism ϕ. It is common to

say that T is defined at the points of U and

Definition 1.3.2. The fundamental points of T are those in the set X − U .

For G the graph of ϕ in U × Y , let G be the closure of G in X × Y . Let

ρ1 : G → X and ρ2 : G → Y be projections onto the first and second factors

respectively.

Definition 1.3.3. For any subset Z ⊂ X the total transform of Z is T (Z) :=

ρ2(ρ
−1
1 (Z)) .

For a point p ∈ U , T (p) is consistent with ϕ(p); while for a point p ∈ X − U ,

T (p) is generally larger than a single point (in our examples it will be a copy

of P1).
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1.3.8 Intersection numbers of curves

A smooth curve C in P1 × P1 is cut out by a polynomial g which is

homogenous in each of the P1 coordinates. We say g has bidgree (a, b) where a

is the degree of g viewed as polynomial over the first factor and b is the degree

of g viewed as a polynomial over the second factor. In the proof of Theorem

2.2.1 we will determine the number of intersections of two smooth curves in

P1 × P1 based solely on the bidegrees of their defining polynomials. Suppose

C1 and C2 are two smooth curves cut out by irreducible polynomials g1 and g2

of bidegrees (a1, b1) and (a2, b2) respectively. Counting multiplicities, C1 and

C2 intersect in a1b2 + a2b1 points ([14] 5.1).
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Chapter 2

The Whitehead Link

This chapter focuses on the canonical component of the character vari-

ety for the Whitehead link complement. The Whitehead link is a two compo-

nent 2-bridge link whose complement is a hyperbolic 3-manifold with 2 cusps.

Hence, the canonical component of its character variety is a complex surface by

Theorem 1.2.1 . Compactifying in P2×P1 we prove that canonical component

for the Whitehead link complement is topologically P2 blown up at 10 points.

We begin by constructing the affine model for the canonical component in C3.

2.1 The affine model

LetW denote the complement of the Whitehead link in S3 and let ΓW =

π1(W ). Then ΓW = ⟨a, b|aw = wa⟩ where w is the word w = bab−1a−1b−1ab.

a

b

Figure 2.1: Whitehead link
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Proposition 2.1.1. X(W ) is a hypersurface in C3.

Proof. To determine the defining polynomial for X(W ) in C3 we look at the

image of R(W ) under the map t = (t1, . . . , ts) : R(W ) → Cs as defined in

Section 3.3.1. We begin by establishing the defining ideal for R(W ). Any

representation of ρ ∈ R(W ) can be conjugated so that

ā = ρ(a) =

(
m 1
0 m−1

)
b̄ = ρ(b) =

(
s 0
r s−1

)

The polynomials which define R(W ) then come from the relation w̄ā− āw̄ = 0.

Writing ρ(w) =

(
w11 w12

w21 w22

)
, we see that

w̄ā− āw̄ =

(
−w21 w11 + w12(m

−1 −m)− w22

w21(m−m−1) w21

)

Hence, the representation variety is cut out by the ideal ⟨p1, p2⟩ ⊂ C[m,m−1, s, s−1, r]

where p1 = w21 and p2 = w11 + w12(m
−1 −m)− w22 .

For the Whitehead link

p1 = m−2s−2r(r −m2r +ms−m3s+ 2mr2s−m3r2s− rs2

+4m2rs2 −m4rs2 +m2r3s2 −ms3

+m3s3 −mr2s3 + 2m3r2s3 −m2rs4 +m4rs4)

p2 = m−2s−3(−1 + s)(1 + s)(r −m2r +ms−m3s+ 2mr2s
−m3r2s− rs2 + 4m2rs2 −m4rs2 +m2r3s2

−ms3 +m3s3 −mr2s3 + 2m3r2s3 −m2rs4 +m4rs4)
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Neither p1 nor p2 are irreducible. In fact their GCD is nontrivial. Let p =

GCD(p1, p2). That is

p = m2s3(r −m2r +ms−m3s+ 2mr2s−m3r2s
−rs2 + 4m2rs2 −m4rs2 +m2r3s2 −ms3

+m3s3 −mr2s3 + 2m3r2s3 −m2rs4 +m4rs4)

Setting g1 =
p1
p
= rs and g2 =

p2
p
= s2 − 1, we can view the representa-

tion variety as Z(⟨g1p, g2p⟩) = Z(⟨g1, g2⟩) ∪ Z(⟨p⟩). The ideal ⟨g1, g2⟩ defines

the affine variety Ra = {(m,m−1, s, s−1, r) = (m, 1/m,±1,±1, 0)} ⊂ C5 which

is just two copies of A1. Representations with r coordinate zero and s coor-

dinate ±1 are abelian as they send the generator b of ΓW to ±I. Hence the

variety Ra consists of abelian representations of R(W ).

Since we are interested the components of the representation variety

which contain discrete faithful representations, we can focus our attention on

the component R = Z(⟨p⟩) of R(W ). In particular, the canonical component

X0(W ) of the character variety is in image of R under the regular map t.

As discussed in Section 3.3.1, we can express the map t in terms of

generators of the coordinate ring Tw for X(W ). The coordinate ring Tw is

generated by the trace maps {τa, τb, τab}. With these generators the map t =

(τa, τb, τab) : R → C3 is t(ρ) = (m+m−1, s+ s−1,ms+m−1s−1+ r) = (x, y, z).

LetX ′ denote the image ofR under t. We determine the defining polynomial(s)

for X ′ by appealing to the induced injective map t∗ : C[X ′] → C[R] on the

coordinates rings ofX ′ and R. The algebraic set R is defined by the polynomial
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ideal ⟨p⟩ and so its coordinate ring is C[R] = C[m,m−1, s, s−1, r]/⟨p⟩. The

coordinate ring C[X ′] is the image of C[R] under t∗, that is

C[X ′] = C[m,m−1, s, s−1, r]/⟨p, x = m+m−1, y = s+s−1, z = ms+m−1s−1+r⟩

which is isomorphic to C[x, y, z]/ < f̃ > where f̃ = −xy − 2z + x2z + y2z −

xyz2+z3 . Since f̃ is smooth, it follows that X ′ is the affine variety Z(f̃). Now

X ′ is a smooth affine surface in C3 containing the surface X0. Hence X
′ = X0

and so X0 is the hypersurface Z(f̃).

2.2 The smooth model

We use the compact model obtained by taking the projective closure

of X0(W ) in P2 × P1. Throughout the rest of this section we will denote this

projective closure of X0 by S. With x, y, u the P2 coordinates and z, w the P1

coordinates, this compactification for the canonical component is defined by

f = −w3xy − 2u2w2z + w2x2z + w2y2z − wxyz2 + u2z3.

This surface S is not smooth. It has singularities at the four points:

s1 = [1, 0, 0, 1, 0]

s2 = [0, 1, 0, 1, 0]

s3 = [1,−1, 0, 1,−1]

s4 = [1, 1, 0, 1, 1]
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Our goal is to determine topologically the smooth surface S̃ = X̃(W )0 obtained

by resolving the singularities of S . We do this in the following theorem.

Theorem 2.2.1. The surface S̃ is a rational surface isomorphic to P2 blown

up at 10 points.

The Euler characteristic of S̃ together with the fact that S̃ is rational is enough

to determine S̃ up to isomorphism.

Lemma 2.2.2. S̃ is birational to a conic bundle.

Proof. Consider the projection πP1 : S → P1. The fiber over [z0, w0] ∈ P1 is

the set of points [x, y, u : z0, w0] which satisfy −w3
0xy − 2u2w2

0z0 + w2
0x

2z0 +

w2
0y

2
0z − w0xyz

2
0 + u2z30 = 0. This is the zero set of a degree 2 polynomial in

P2 which is a conic. Away from the four singularities, S is isomorphic to a

conic bundle. Hence, S is birational to a conic bundle. Since S̃ is obtained

from S by a series of blow ups, S̃ is birational to S and so birational to a conic

bundle.
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Applying Proposition 1.3.1 we now have that S̃ is rational surface. It

follows from Corollary 1.3.2 that S̃ is isomorphic either to P1 × P1 or to P2

blown up at some number of n points. Since S has degenerate fibers, S̃ is not

isomorphic to P1 × P1 (see figure 2.2).

P
1

P
1

double

  line

Figure 2.2: Canonical component of the Whitehead link.

So S̃ is topologically P2 blown up at n points and determining the

isomorphism class reduces to determine n. It follows from Proposition 1.3.3

that χ(S̃) = χ(P2) + n = 3+ n. Thus we can determine n and from the Euler

characteristic of S̃ .

To calculate the Euler characteristic of S̃ we use the Euler characteristic

of S. Since the smooth surface S̃ is obtained from S by a series of blow ups,

we can use Proposition 1.3.4 to write χ(S̃) in terms of χ(S).
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Lemma 2.2.3. χ(S̃) = χ(S) + 4

Proof. The smooth surface, S̃, is obtained by resolving the four singularities,

si, of S listed above. Above the singularities, a local model for S̃ can be

obtained by blowing up S in an affine neighborhood of each of the singular

points. Away from the singularities we can take the local model for S as a

local model for S̃ since S and S̃ are locally isomorphic there. Each of the

singularities is nice in the sense that it takes only one blow up to resolve them.

Hence, in terms of the Euler characteristic, we have

χ(S̃) = Σ4
i=1χ(S − {si}) + Σ4

i=1χ(s̃i) (2.1)

where for i = 1 . . . 4, s̃i denotes the preimage of si in S̃. Determining the Euler

characteristic of S̃ in terms of that for S reduces to determining s̃i.

To blow up S at s1 = [1, 0, 0, 1, 0] we consider the affine open set A′
1

where x ̸= 0 and z ̸= 0. Noticing that the singularities s3 and s4 are in A
′
1, we

look at the blow up of S at s1 in the affine open set A1 = A′
1 \ {s3, s4}. Local

affine coordinates for A1
∼= A3 are y, u, w. So to blow up S at s1 we blow up

X1 = Z(f |x=1,z=1) at [y, u, w] = [0, 0, 0] in A1. As described in Section 1.3.6,

the blow up of X1 at [0, 0, 0] is the closure of the preimage of X1 − [0, 0, 0] in

Bl|[0,0,0](A1). Using coordinates a, b, c for P2, the blow up Y1 of X1 at [0, 0, 0]

31



is the closed subset in A1 × P2 defined by the equations

f1 = f |x=1,z=1 = u2 + w2 − 2u2w2 − wy − w3y + w2y2 (2.2)

e1 = yb− ua (2.3)

e2 = yc− wa (2.4)

e3 = uc− wb (2.5)

We determine the local model above s1 and check for smoothness by looking

at Y1 in the affine open sets define by a ̸= 0, b ̸= 0, and c ̸= 0.

First we look at Y1 in the affine open set defined by a ̸= 0 (i.e. we can

set a = 1). In this open set the defining equations for Y1 become

f1 = u2 + w2 − 2u2w2 − wy − w3y + w2y2 (2.6)

e1 = yb− u (2.7)

e2 = yc− w (2.8)

e3 = uc− wb (2.9)

Using equations e1 and e2 and substituting for u and w in f1 we obtain the

local model, y2(−b2 + c − c2 − c2y2 + 2b2c2y2 + c3y2). The first factor is the

exceptional plane, E1 and the other factor is the local model for Y1. Notice

that E1 and Y1 meet in the smooth conic −b2+c−c2. So, in this affine open set,

the local model above the singularity s1 is a conic, and therefore isomorphic

P1. Since the only places all the partial derivatives of the second factor vanish

are over the singular points s3 and s4, this model is smooth in A1 × P2.
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Next we look at Y1 in the affine open set defined by b ̸= 0. In this open

set the defining equations for Y1 become

f1 = u2 + w2 − 2u2w2 − wy − w3y + w2y2 (2.10)

e1 = y − ua (2.11)

e2 = yc− wa (2.12)

e3 = uc− w (2.13)

Substituting into f1, we obtain the local model, u2(1−ac+c2−2c2u2+a2c2u2−

ac3u2). Again, the first factor is the exceptional plane, E1 and the other factor

is the local model for Y1. Notice that E1 and Y1 meet in the smooth conic

1 − ac + c2. So, in this affine open set, the local model above the singularity

s1 is a conic. Since all the partial derivatives of the second factor do not

simultaneously vanish, this model is smooth in A1 × P2.

Finally we look at Y1 in the affine open set defined by c ̸= 0. In this

open set the defining equations for Y1 become

f1 = u2 + w2 − 2u2w2 − wy − w3y + w2y2 (2.14)

e1 = yb− ua (2.15)

e2 = y − wa (2.16)

e3 = u− wb (2.17)

Substituting into f1, we obtain the local model, w2(1− a+ b2 − aw2 + a2w2 −

2b2w2). The first factor is the exceptional plane, E1 and the other factor is the
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local model for Y1. Notice that E1 and Y1 meet in the smooth conic 1−a+ b2.

So, in this affine open set, the local model above the singularity s1 is a conic.

Since the only places all the partial derivatives of the second factor vanish

simultaneously are s3 and s4, this model is smooth in A1 × P2.

Rehomogenizing we see that blowing up yields a smooth local model

which intersects the exceptional plane above s1 in the conic defined by c2 −

a+ b2. Hence χ(s̃1) = 2.

Blowing up S at s2, s3 and s4 is similar to blowing up S at s1. For the

sake of completion, we provide detailed calculations here.

To blow-up S at s2 = [0, 1, 0, 1, 0] we consider the affine open set A′
2

where y ̸= 0 and z ̸= 0. Noticing that the singularities s3 and s4 are in A
′
2, we

look at the blow-up of S at s2 in the affine open set A2 = A′
2 − s3, s4. Local

affine coordinates for A2
∼= A3 are x, u, w. So to blow-up S at s2 we blow-up

X2 = Z(f |y=1,z=1) at [x, u, w] = [0, 0, 0] in A2. Using coordinates a, b, c for P2,

the blow-up Y2 of X2 at [0,0,0] is the closed subset in A2 × P2 defined by the

equations

f2 = f |y=1,z=1 = u2 + w2 − 2u2w2 − wx− w3x+ w2x2 (2.18)

q1 = xb− au (2.19)

q2 = xc− aw (2.20)

q3 = uc− wb (2.21)
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In the affine open set defined by a ̸= 0, the local model is defined by

x2(−b2 + c − c2 − c2x2 + 2b2c2x2 + c3x2). The first factor is the exceptional

plane E2 and the second factor is the local model for Y2. The exceptional

plane E2 and Y2 meet in the smooth conic −b2 + c− c2. Since all the partial

derivatives of the second factor do not vanish simultaneously anywhere, this

model is smooth in A2 × P2.

In the affine open set defined by b ̸= 0, the local model is defined by

u2(1−ac+c2−2c2u2+a2c2u2−ac3u2). The first factor is the exceptional plane

E2 and the second factor is the local model for Y2. Here, the exceptional plane

E2 and Y2 meet in the smooth conic 1− ac + c2. No where do all the partial

derivatives of the second factor vanish simultaneously and so this model is

smooth in A2 × P2.

In the affine open set defined by c ̸= 0, the local model is defined by

w2(1− a+ b2 − aw2 + a2w2 − 2b2w2). The first factor is the exceptional plane

E2 and the second factor is the local model for Y2. Here, the exceptional plane

E2 and Y2 meet in the smooth conic 1−a+ b2. Since all the partial derivatives

of the second factor vanish simultaneously only above the singularities s3 and

s4, this model is smooth in A2 × P2.

Rehomogenizing we see that blowing-up yields a smooth local model

which intersects the exceptional plane above s2 in the conic defined by c2 −

ac+ b2. Hence χ(s̃2) = 2.

To blow-up S at s3 = [1,−1, 0, 1,−1] we consider the affine open set
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A′
3 where x ̸= 0 and z ̸= 0. Noticing that the singularities s1 and s4 are in A

′
3,

we look at the blow-up of S at s3 in the affine open set A3 = A′
3−s1, s4. Local

affine coordinates for A3
∼= A3 are y, u, w. So to blow-up S at s3 we blow-up

X3 = Z(f |x=1,z=1) at [y, u, w] = [−1, 0,−1] in A3. Using coordinates a, b, c for

P2, the blow-up Y3 of X3 at [-1,0,-1] is the closed subset in A3 ×P2 defined by

the equations

f3 = f |x=1,z=1 = u2 + w2 − 2u2w2 − wy − w3y + w2y2 (2.22)

e1 = ((y + 1)b)− ua (2.23)

e2 = ((y + 1)c)− (w + 1)a (2.24)

e3 = uc− (w + 1)b (2.25)

In the affine open set defined by a ̸= 0, the local model is defined by

(1+y)2(−1+b2+2c−4b2c−c2+2b2c2+2cy−4b2cy−3c2y+4b2c2y+c3y−c2y2+

2b2c2y2 + c3y2). The first factor is the exceptional plane E3 and the second

factor is the local model for Y3. The exceptional plane E3 and Y3 meet in the

smooth conic −1 + b2 + c2. Since they only place all the partial derivatives of

the second factor vanish simultaneously is above the singularity s1, this model

is smooth in A3 × P2.

In the affine open set defined by b ̸= 0, the local model is defined

by u2(−1 + a2 − c2 + 4cu − 2a2cu + ac2u + c3u − 2c2u2 + a2c2u2 − ac3u2).

The first factor is the exceptional plane E3 and the second factor is the local

model for Y3. Here, the exceptional plane E3 and Y3 meet in the smooth conic
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−1+a2−c2. No where do all the partial derivatives of the second factor vanish

simultaneously and so this model is smooth in A3 × P2.

In the affine open set defined by c ̸= 0, the local model is defined

by (1 + w)2(−b2 − w + aw + aw2 − a2w2 + 2b2w2). The first factor is the

exceptional plane E3 and the second factor is the local model for Y3. Here, the

exceptional plane E3 and Y3 meet in the smooth conic 1 − a2 + b2. Since all

the partial derivatives of the second factor vanish simultaneously only above

the singularities s1 and s4, this model is smooth in A3 × P2.

Rehomogenizing we see that blowing-up yields a smooth local model

which intersects the exceptional plane above s3 in the conic defined by c2 −

a2 + b2. Hence χ(s̃3) = 2.

Finally, to blow-up S at s4 = [1, 1, 0, 1, 1] we consider the affine open

set A′
4 where x ̸= 0 and z ̸= 0. Noticing that the singularities s1 and s3 are in

A′
4, we look at the blow-up of S at s4 in the affine open set A4 = A′

4 − s1, s3.

Local affine coordinates for A4
∼= A3 are y, u, w. So to blow-up S at s4 we

blow-up X4 = Z(f |x=1,z=1) at [y, u, w] = [1, 0, 1] in A4. Using coordinates

a, b, c for P2, the blow-up Y4 of X4 at [1,0,1] is the closed subset in A4 × P2

defined by the equations

f4 = f |x=1,z=1 = u2 + w2 − 2u2w2 − wy − w3y + w2y2 (2.26)

e1 = ((y − 1)b)− ua (2.27)

e2 = ((y − 1)c)− (w − 1)a (2.28)

e3 = uc− (w − 1)b (2.29)
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In the affine open set defined by a ̸= 0, the local model is defined by (−1 +

y)2(−1+ b2+2c− 4b2c− c2+2b2c2− 2cy+4b2cy+3c2y− 4b2c2y− c3y− c2y2+

2b2c2y2 + c3y2). The first factor is the exceptional plane E4 and the second

factor is the local model for Y4. The exceptional plane E4 and Y4 meet in the

smooth conic −1 + b2 + c2. Since they only place all the partial derivatives of

the second factor vanish simultaneously are above the singularities s1 and s3,

this model is smooth in A4 × P2.

In the affine open set defined by b ̸= 0, the local model is defined

by u2(−1 + a2 − c2 − 4cu + 2a2cu − ac2u − c3u − 2c2u2 + a2c2u2 − ac3u2).

The first factor is the exceptional plane E4 and the second factor is the local

model for Y4. Here, the exceptional plane E4 and Y4 meet in the smooth conic

−1+a2−c2. No where do all the partial derivatives of the second factor vanish

simultaneously and so this model is smooth in A4 × P2.

In the affine open set defined by c ̸= 0, the local model is defined

by (−1 + w)2(−b2 + w − aw + aw2 − a2w2 + 2b2w2). The first factor is the

exceptional plane E4 and the second factor is the local model for Y4. Here, the

exceptional plane E4 and Y4 meet in the smooth conic 1 − a2 + b2. Since all

the partial derivatives of the second factor vanish simultaneously only above

the singularities s1 and s3, this model is smooth in A4 × P2.

Rehomogenizing we see that blowing-up yields a smooth local model

which intersects the exceptional plane above s4 in the conic defined by c2 −

a2 + b2. Hence χ(s̃4) = 2.
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In each case, we have shown that the local model for Bl|si(S) intersects

the exceptional plane above si in a smooth conic. Hence χ(s̃i) = 2 for i =

1, . . . , 4 and

χ(S̃) = χ(S − {si}) + Σ4
i=1χ(s̃i) (2.30)

= χ(S)− Σ4
i=1χ(si) + Σ4

i=1χ(s̃i) (2.31)

= χ(S)− 4 + 4(2) (2.32)

= χ(S) + 4 (2.33)

Proposition 2.2.4. The Euler characteristic of the surface S is χ(S) = 9.

To calculate the Euler characteristic we will appeal to the map ϕ : S → P1×P1

defined by [x, y, u : z, w] → [x, y : z, w] on a dense open subset of S. That the

map ϕ is generically 2-to-1 makes it an attractive tool in determining the Euler

characteristic of S. However, in order to calculate the Euler characteristic of S

we must understand the map ϕ everywhere not just generically. To this affect,

there are four aspects we need to consider. The map ϕ is neither surjective

nor defined at the three points P = {(0, 0, 1, 0, 1), (0, 0, 1, 1,± 1√
2
)}. Over six

points in the P1×P1 the fiber is a copy of P1. Finally, the map is branched over

three copies of P1. We explain how to alter the Euler characteristic calculation

to account for each of these situations.
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Lemma 2.2.5. The image of ϕ on U = S − P is P1 × P1 −Q where

Q = P1 × {[0, 1]}�{[1, 0, 0, 1], [0, 1, 0, 1]}

∪ P1 × {[1, 1√
2
]}�{[ 1√

2
, 1, 1, 1√

2
], [
√
2, 1, 1, 1√

2
]}

∪ P1 × {[1,− 1√
2
]}�{[− 1√

2
, 1, 1,− 1√

2
], [−

√
2, 1, 1,− 1√

2
]}

Proof. We can see that this is in fact the image by viewing f as a polynomial

in u with coefficients in C[x, y, z, w]. Namely f = g+u2h where g = −w3xy+

w2x2z+w2y2z−wxyz2 and h = z(z2 − 2w2). The image of ϕ is the collection

of all points [x, y, z, w] ∈ P1 × P1 except those for which f(x, y, z, w) ∈ C[u]

is a nonzero constant. The polynomial f(x, y, z, w) is a nonzero constant

whenever h = 0 and g ̸= 0. It is easy to see that h = 0 whenever [z, w] =

{[0, 1], [1,± 1√
2
]}. For each of the z, w coordinates which satisfy h, there are

two x, y coordinates which satisfy g(z, w). Hence the image of ϕ on U is all of

P1 × P1 less the three twice punctured spheres as listed above.

Lemma 2.2.6. The map ϕ smoothly extends to all of S.

Proof. We can extend the map ϕ to all of S by using a total transformation.

Let U = S−P . Then U is the largest open set in S on which ϕ is defined. Let

G(ϕ, U) be the closure of the graph of ϕ on U . We can then smoothly extend

the map ϕ to all of S by definingϕ at each pi ∈ P to be ϕ(pi) := ρ2ρ
−1
1 (pi)
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where ρ1 : G → S and ρ1 : G → P1 × P1 are the natural projections. Note

that, for s ∈ U , ρ2ρ
−1
1 (s) coincides with the original map so that this extension

makes sense on all of S. Now, the closure of the graph is G = {[x, y, u, z, w :

a, b, c, d]|f = 0, ay = bx, cw = dz}. So, ϕ extends to S as follows:

ϕ((0, 0, 1, 0, 1)) = {[a, b, 0, 1]}

ϕ((0, 0, 1, 1, 1√
2
)) = {(a, b, 1, 1√

2
)}

ϕ((0, 0, 1, 1,− 1√
2
)) = {(a, b, 1,− 1√

2
)}

Notice that the set Q ⊂ P1 × P1, which is not contained in the image of ϕ

on U , is contained in the image of ϕ on P . That the extension ϕ maps three

points in S to not just three disjoint P1’s in P1 × P1 but to the three disjoint

P1’s which are are missing from the image of ϕ on U will be important for the

Euler characteristic calculation.

Lemma 2.2.7. There are six points in P1×P1, the collection of which we will

call L, whose fiber in S is infinite.

Proof. Thinking of f as a polynomial in the variable u with coefficients in

C[x, y, z, w], we see that the points in P1 × P1 which are simultaneously zeros

of these coefficient polynomials are precisely the points in P1 ×P1 whose fiber

is infinite. We note here that the points of L are precisely the punctures of
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the three punctured spheres which are not in the image of ϕ|U . The preimage

of L in S is the union of six P1’s each intersecting exactly one other P1 in

one point. These three points of intersection are the points on the P1’s where

the coordinate u goes to infinity which is equivalent to the points where the

x and y coordinates go to zero. Thus these intersection points are precisely

the points in P. The points in L along with their infinite fibers in P2 × P1 are

listed below.

[1, 0, 0, 1] has fiber {[1, 0, u, 0, 1]} ⊃ [0, 0, 1, 0, 1]

[0, 1, 0, 1] has fiber {[0, 1, u, 0, 1]} ⊃ [0, 0, 1, 0, 1]

[1,
√
2, 1, 1√

2
] has fiber {[1,

√
2, u, 1, 1√

2
]} ⊃ [0, 0, 1, 1, 1√

2
]

[1, 1√
2
, 1, 1√

2
] has fiber {[1, 1√

2
, u, 1, 1√

2
]} ⊂ [0, 0, 1, 1, 1√

2
]

[1,−
√
2, 1,− 1√

2
] has fiber {[1,−

√
2, u, 1,− 1√

2
]} ⊃ [0, 0, 1, 1,− 1√

2
]

[1,− 1√
2
, 1,− 1√

2
] has fiber {[1,− 1√

2
, u, 1,− 1√

2
]} ⊃ [0, 0, 1, 1,− 1√

2
]

In calculating the Euler characteristic we will use the fact that the preimage

of L in S are six P1’s which intersect in pairs at ideal points in the set P ⊂ S.

In fact, each point in P appears as the intersection of two of these fibers and

the image of P under ϕ is precisely L.

Let B denote the branch set of ϕ in P1 × P1. We have the following

lemma.
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Lemma 2.2.8. χ(B) = 2.

Proof. The branch set, or at least the places where ϕ is not one-to-one, consists

of the points in S which also satisfy the coordinate equation u = 0. The image,

B ⊂ P1×P1, of this branch set, is the union of the three varieties, B1, B2, and

B3 defined by the respective three polynomials f1 = wy − xz, f2 = wx − yz,

and f3 = w which are all P1 ’s. From the bidegrees of the fi we know that B3

intersects each of B1 and B2 in one point ([0, 1, 1, 0] and [1, 0, 1, 0] respectively)

while B1 and B2 intersect in two points ( [1,−1,−1, 1] and[1, 1, 1, 1] ). Again

thinking of f as a polynomial in u we can write f as f = A + u2B where A

and B are polynomials in C[x, y, z, w]. Since L cut out by the ideal < A,B >

and B is cut out by the ideal < A >, L is a subvariety of B. That each of six

points in P1 × P1 whose fiber is infinite is also a branch point is necessary for

the Euler characteristic calculation.

Now that we understand the map ϕ everywhere we can calculate the

Euler characteristic of S and prove Proposition 2.2.4.

Proof. (Proposition 2.2.4) Since the set of points in P1 × P1 whose fibers are

infinite coincide with the image L of the fundamental set P , and L is the

intersection of Q and the branch set B ,
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χ(s) = 2χ(P1 × P1 −B −Q) + χ(Q+B − L) + χ(ϕ−1(L))

= 2χ(P1 × P1)− χ(Q)− χ(B)− χ(L) + χ(ϕ−1(L))

The Euler characteristic of P1×P1 is χ(P1×P1) = 4. As Q is the disjoint union

of three twice-punctured spheres, χ(Q) = 3(χ(P1) − 2) = 0. Since B is three

P1 ’s which intersect at four points, χ(B) = 3χ(P1) − 4χ(point) = 2. Now

L is just six points so χ(L) = 6. That ϕ−1(L) is the union of six P1’s which

intersect in pairs at a point implies that χ(ϕ−1(L)) = 6χ(P1)−3χ(points) = 9.

All together this gives χ(S) = 9.

Corollary 2.2.9. The Euler characteristic of S̃ is χ(S̃) = 13

Proof. We have χ(S̃) = χ(S) + 4 = 9 + 4 = 13.

We are now ready to prove Theorem 2.2.1.

Proof. (Theorem 2.2.1) It follows from Lemma 2.2.2 and Corollary 1.3.3 that

χ(S̃) = χ(P2) + n. By Corollary 2.2.9, n must be 10 and S̃ must be P2 blown

up at 10 points.
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Chapter 3

Character Varieties for Other Two component

2-Bridge Links

We examine the character varieties associated to the two families of

link complements obtained by 1/n Dehn filling on the Borromean rings and

on the Magic manifold (3-chain link complement). Studying these families of

varieties lends insight into the problem of identifying which subvarieties of a

character variety correspond to character varieties of manifolds obtained by

Dehn filling.

The Whitehead link complement can be realized as 1/1 Dehn filling on

one cusp of both the Borromean rings and the Magic manifold. It is natural to

ask whether the character varieties of link complements obtained by 1/n Dehn

surgery on these two manifolds exhibit any similarities. For n = 1, . . . , 4 we

are able to determine explicit models for certain components of these character

varieties. One striking similarity among these varieties is that they exhibit

components birational to conic bundles. For the character varieties associated

to manifolds obtained by 1/n Dehn filling on the Magic manifold the rational

component coincides with the canonical component.

The process for determining the isomorphism class of these rational
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components is similar to that for determining the isomorphism class for the

canonical component associated to the Whitehead link. Detailed calculations

can be obtained from the author upon request. Here we summarize the process.

Using the standard techniques (cf. [23], [6]) we obtain explicit coordinates in

C3 for the canonical component of the character varieties of these 2-bridge

links. Following the work of [17] we take the projective completion in P2 × P1

and realize the canonical component as a hypersurface, S, cut out by a single

polynomial of bidegree (2, n). That S is birational to a conic bundle indicates

S is a rational surface [14]. One of the primary complications is that S is not

smooth. After resolving the singularities to obtain a smooth rational surface, it

is isomorphic either to P1 × P1 or P2 blown-up at n points [14]. Knowing how

the Euler characteristic behaves under blow-ups allows us to determine the

isomorphism class from the Euler characteristic of S. The surface S exhibits

a double line fiber. Otherwise we could calculate χ(S) using its conic bundle

structure as χ(fg)χ(B) + d where fg is a generic fiber, B is the base and d

is the number of degenerate fibers. Rather than using normal stabilization to

resolve this double line, we determine χ(S) by appealing to the total transform

of a map that projects S onto P1 × P1.

Section 3.1 concerns the character varieties for the links obtained by

1/n Dehn filling on the Magic manifold and Section 3.2 focuses on those for

links obtained by 1/n filling on the Borromean rings. We explain how these

results relate to the canonical components for the Magic manifold and twist

knot character varieties in section 3.3.
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3.1 Links obtained by 1/n Dehn Surgery on the Magic
Manifold

The Magic manifold, Mm in this thesis, is the complement of the 3-

chain link in S3. Its volume, 5.33, is the smallest currently known among

hyperbolic 3-cusped manifolds and most hyperbolic manifolds as well as non-

hyperbolic fillings on cusped manifolds can be realized by Dehn filling on Mm.

The Whitehead link is realized as 1/1 Dehn filling on one cusp of Mm. The

manifolds obtained by 1/n Dehn filling on one cusp of Mm are all hyperbolic

two component 2-bridge links of Schubert normal form (3, 6n+ 2) .

1/n

. . . 

2n

Figure 3.1: 1/n Dehn surgery on the Magic manifold.

That these links are hyperbolic follows from [19]. To see that the links
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obtained by 1/n Dehn filling on one component of Mm have Schubert normal

form (3, 6n + 2) we notice that they are isotopic to links pictured in Figure

3.2.

.

.

.

2n

Figure 3.2: Link diagram with Conway notation [2n 1 2] .

The link in Figure 3.2 is the diagram corresponding to the Conway notation

[2n 1 2]. This tuple [2n 1 2] gives rise to the partial fraction 1
2n+ 1

2+1
2

= 3
6n+2

and hence determines the Schubert normal form (3, 6n+ 2).

The fundamental groups of these two component 2-bridge links have a

presentation of the form Γ = ⟨a, b |aw = wa⟩ with w = bϵ1aϵ2 . . . bϵ6n+1 where

ϵi = (−1)⌊
i(4n−1)

8n
⌋. For these links this word is w = (ba)n(b−1a−1)nb−1(ab)n.
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For n = 1, . . . , 4 we were able to use Mathematica to determine the

polynomials which define the character varieties of Mm(1/n). All of these

character varieties have exactly one component; the canonical component.

Compactifying in P2 × P1, the resulting singular projective models Smn for

canonical components associated to the links obtained by 1/n Dehn filling on

Mm are hypersurfaces defined by a polynomial of bidegree (2, 3n). As reflected

in the bidegree, all of these components are birational to conic bundles and so

are rational surfaces. Since the surfaces Smn exhibit fibers with singularities,

they all have minimal model P2. Hence the smooth projective models S̃mn ob-

tained by resolving the singularities of Smn are rational surfaces with minimal

model P2. Determining the isomorphism class for S̃mn requires understanding

how all the singularities resolve. That these surfaces Smn exhibit so many sin-

gularities makes it difficult to actually specify the isomorphism class. At this

point, we can only offer a conjecture regarding the isomorphism class for S̃mn .

In Section 3.1.1, we describe the models for Smn and discuss this conjecture.

At the end of this chapter we provide specific details for the case n = 2 in

Section 3.1.2.

These link complement examples exhibit similar yet more complicated

recursive relations than the knots studied in [17]. Hence we conjecture that

S̃mn are rational surfaces with minimal model P2 for all n, and verifying this

would yield a 2-dimensional generalization of our understanding of the twist

knot character varieties. We discuss this conjecture and its consequences in

next section . In Section 3.3.1, we consider the canonical component of the
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character variety for the Magic manifold. This variety yields a 3-dimensional

analogue. It is not only rational but also birational to a fiber bundle over

P1 × P1 with conic fibers.

3.1.1 Models Smn for n = 2, 3, 4

For n = 2, 3, 4, we give specific coordinates and discuss the structure for

the singular projective models Smn . Each of these varieties is a hypersurface in

P2×P1 cut out by a single polynomial fmn ∈ C[x, y, u : z, w] of bidegree (2, 3n).

The polynomials fmn can all be expressed as gmn +u
2hmn where hmn ∈ C[z, w]

and gmn ∈ C[x, y, z, w]. For n = 2, 3, 4 the defining polynomials are

fm2 = wz(w2x+ wyz − xz2)(w2y + wxz − yz2)
+u2[w6 + 6w4z2 − 5w2z4 + z6]

fm3 = w(w − z)(w + z)(w3y − 2w2xz − wyz2 + xz3)
× (w3x− 2w2yz − wxz2 + yz3)

+u2[z(w2 − wz − z2)(w2 + wz − z2)(5w4 − 5w2z2 + z4)]

fm4 = wz(2w2 − z2)(w4x+ 2w3yz − 3w2xz2 − wyz3 + xz4)
× (w4y + 2w3xz − 3w2yz2 − wxz3 + yz4)

+u2[(w6 − 3w5z − 6w4z2 + 4w3z3 + 5w2z4 − wz5 − z6)
× (w6 + 3w5z − 6w4z2 − 4w3z3 + 5w2z4 + wz5 − z6)]

That all of these varieties are birational to conic bundles follows easily

from the bidgree of fmn . Consider the projection map Smn → P1. The fiber

over a generic point [z0, w0] ∈ P1 is the curve cut out by fmn(x, y, u, z0, w0)

which is a conic since the degree of fmn over P2 is 2. Locally Smn is isomor-

phic to a conic bundle and therefore birational to such. The surfaces Smn
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are all singular with 4, 8, 12, and 16 singular points for n = 1 2, 3, 4 re-

spectively. Hence none of the surfaces Smn are isomorphic to P1 × P1. From

Proposition 1.3.1 and Corollary 1.3.2 the resolved varieties ˜Smn are all ratio-

nal surfaces isomorphic to P2 blown up at nmn points. By Proposition 1.3.3,

nmn = χ(S̃mn) − 3. Using Proposition 1.3.4 we can calculate χ(S̃mn) from

χ(Smn) depending on how each of the singularities resolve. While we have yet

to resolve the singularities explicitly, it is reasonable to guess that each of the

singularities for Smn resolves into a conic after a single blow up so that

Conjecture 3.1.1. For n = 1, . . . , 4, χ(S̃mn) = 4n+ χ(Smn).

The surfaces Smn have a similar structure to that of the Whitehead

link. The Euler characteristic can be computed by appealing to the same map

ϕ : Smn → P1×P1 defined by [x, y, u : z, w] 7→ [x, y : z, w]. As in the case of the

Whitehead link, ϕ is a 2-to-1 map almost everywhere. By extending ϕ so that

it is defined on all of Smn , examining the branch set Bmn , and determining the

set of points Lmn in P1 × P1 whose fiber is infinite, we can use ϕ to calculate

the Euler characteristic of Smn .

Proposition 3.1.2. For n = 1, . . . , 4, the Euler characteristic of Smn is

χ(Smn) = 4 + 5n.

Proof.

χ(Smn) = 2χ(P1 × P1 −Bmn) + χ(Bmn − Lmn) + χ(ϕ−1(Lmn))
= 8− χ(Bmn)− χ(Lmn) + χ(ϕ−1(Lmn))
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The points [x, y : z, w] ∈ Lmn are those which simultaneously satisfy

gmn and hmn . Since hmn ∈ C[z, w] has degree 3n and gmn ∈ C[x, y : zw] has

degree 2, Lmn consists of 6n points and χ(Lmn) = 6n. The preimage of Lmn

under ϕ is the union of 6n P1’s which intersect in pairs at points of the form

[0, 0, 1, z, w] where [z, w] satisfy hmn . Hence χ(ϕ−1(Lmn)) = 6nχ(P1) − 3n =

9n. The branch set Bmn ⊂ P1×P1 is the zero set of gmn and thus contains Lmn

as a subset. For n = 1, . . . , 4, the polynomials gmn have 2 + n factors. From

the bidegrees of these factors we see that Bmn is the union of 2+n P1’s which

intersect in a total of 4n points. Hence, χ(Bmn) = (2+n)χ(P1)−4n = 4−2n.

All together we have

χ(Smn) = 8− χ(Bmn)− χ(Lmn) + χ(ϕ−1(Lmn))

= 8− (4− 2n)− 6n+ 9n

= 4 + 5n

Conjecture 3.1.1 together with Propositions 3.1.2 and 1.3.3 would imply

that, for n = 1, . . . , 4, S̃mn is isomorphic to P2 blown up at 9n + 1 points.

That these link complements examples exhibit similar yet more complicated

recursive relations than the knots studied in [17] leads us to make the following

conjecture:

Conjecture 3.1.3. The canonical components S̃mn for the link complements

obtained by 1/n Dehn filling on one cusp of the Magic manifold are isomorphic

to P2 blown up at 9n+ 1 points.
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In addition to understanding the isomorphism class of the canoni-

cal components for these link complements, we want to understand how the

algebro-geometric structure reflects the topological structure of the associated

manifolds. For n = 1, . . . , 4, the surfaces Smn are P1 bundles over P1. One

striking common feature among these examples is the existence of a double

line fiber, a fiber in which every point is a singularity. Double lines are a fairly

rare feature to conic bundles. More precisely, all conics can be parameterized

by P5 and double lines correspond to a codimension 3 subvariety ([12]). Hence

a conic bundle with a double line fiber corresponds to a line which passes

through a particular codimension 3 subvariety in P5 which is a rare occur-

rence. We are still working to determine what topological properties these

double lines may reflect.

3.1.2 Calculation: 1/2 Dehn surgery on the Magic manifold

Figure 3.3: Mm(1/2)
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The manifold Mm(1/2) (shown in Figure 3.3) has partial fraction co-

efficients [4 1 2] and Schubert normal form (3, 14) . Its fundamental group is

π1(M) = [a, b |aw = wa] where w = (ba)2(b−1a−1)2b−1(ab)2. The character

variety consists of a single component, the canonical component. The affine

model for the canonical component is a hypersurface in C3 defined by the

polynomial

−1− xyz + 6z2 − x2z2 − y2z2 + xyz3 − 5z4 + x2z4 + y2z4 − xyz5 + z6

We obtain a projective model Sm2 by compactifying in P2 × P1. The defining

polynomial for Sm2 is

fm2 = wz(w2x+ wyz − xz2)(w2y + wxz − yz2)
+ u2(w6 + 6w4z2 − 5w2z4 + z6)

where x, y, u are P2 coordinates and z, w are P1 coordinates. Examining the

partial derivatives of fm2 , we find that Sm2 has 8 singular points [x, y, u : z, w]

[0, 1, 0 : 1, 0]
[0, 1, 0 : 0, 1]
[1, 0, 0 : 1, 0]
[1, 0, 0 : 0, 1]

[1,−1, 0 : −1−
√
5

2
, 1]

[1,−1, 0 : −1+
√
5

2
, 1]

[1,−1, 0 : 1−
√
5

2
, 1]

[1,−1, 0 : 1+
√
5

2
, 1]

Theorem 3.1.4. The singular projective model Sm2 for the canonical compo-

nent of the manifold Mm(1/2) is a rational surface with Euler characteristic

16.

54



The proof of Theorem 3.1.4 is similar to the proof of Theorem 2.2.1.

We show Sm2 is a rational surface and then determine its Euler characteristic.

Lemma 3.1.5. Sm2 is a rational surface.

Proof. To show that Sm2 is rational, we show that Sm2 is birational to a conic

bundle. Consider the projection πP1 : Sm2 → P1. The fiber over [z0, w0] ∈ P1

is the set of points [x, y, u : z0, w0] which satisfy −u2w6
0 −w5

0xyz0 +6u2w4
0z

2
0 −

w4
0x

2z20 −w4
0y

2z20 +w3
0xyz

3
0 − 5u2w2

0z
4
0 +w2

0x
2z40 +w2

0y
2z40 −w0xyz

5
0 + u2z60 = 0.

This is the zero set of a degree 2 polynomial in P2 which is a conic. Hence

Sm2 is birational to a conic bundle. By Proposition 1.3.1, Sm2 is a rational

surface.

Since the surface Sm2 exhibits singular fibers, it is not isomorphic to

P1×P1. It follows that P2 is the minimal model for both the singular projective

surface Sm2 and the smooth projective surface S̃m2 . The isomorphism class

of S̃m2 is determined by its Euler characteristic. We can determine the Euler

characteristic of S̃m2 from that for Sm2 by keeping track of how the Euler

characteristic changes with each resolution of a singularity. Resolving each

of the 8 singularities is tedious. In this thesis, we merely calculate the Euler

characteristic for Sm2 .

Proposition 3.1.6. The Euler characteristic of the surface Sm2 is χ(Sm2) = 14.

We prove Proposition 3.1.6 through a series of lemmas. The proof of

Lemma 3.1.5 shows that Sm2 is a fiber bundle over P1 with conic fibers. If
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none of the fibers were double lines we could calculate χ(Sm2) as χ(B)χ(f)+d

where B is the base of the fiber bundle, f is a generic fiber and d is the number

of fibers exhibiting a single singularity. However, like the canonical component

for the Whitehead link, the projective model Sm2 exhibits a double line fiber

over the point [z, w] = [1, 0]. To calculate the χ(Sm2) we appeal to the map

ϕ : Sm2 → P1 × P1 defined by [x, y, u : z, w] 7→ [x, y : z, w]. The map ϕ is

almost everywhere 2-to-1. By understanding this map everywhere we can use

it to calculate χ(Sm2) in terms of χ(P1 × P1). There are four aspects we need

to consider. The map ϕ is neither surjective nor defined at 6 points, the set of

which we denote by Pm2 . Over 12 points, in P1 × P1 the fiber is a copy of P1.

Finally, the map is branched over three P1’s.

The map ϕ is not defined at the points Pm2 = {[0, 0, 1 : z, w] |fm2 = 0}.

Namely, Pm2 consists of the 6 points [0, 0, 1 : z, 1] where z is

z1 = 1
3F

+ 72/3

3( 1
2
(−1+3i

√
3))1/3

+ 1
3
(7
2
(−1 + 3i

√
3))1/3

z2 = 1
3
− (7/2)2/3(1+i

√
3)

3(−1+3i
√
3)1/3

− 1
6
(1− i

√
3)(7

2
(−1 + 3i

√
3))1/3

z3 = 1
3
− (7/2)2/3(1−i

√
3)

3(−1+3i
√
3)1/3

− 1
6
(1 + i

√
3)(7

2
(−1 + 3i

√
3))1/3

z4 = −1
3
+ 72/3

3( 1
2
(1+3i

√
3))1/3

+ 1
3
(7
2
(1 + 3i

√
3))1/3

z5 = −1
3
− (7/2)2/3(1+i

√
3)

3(1+3i
√
3)1/3

− 1
6
(1− i

√
3)(7

2
(1 + 3i

√
3))1/3

z6 = −1
3
− (7/2)2/3(1−i

√
3)

3(1+3i
√
3)1/3

− 1
6
(1 + i

√
3)(7

2
(1 + 3i

√
3))1/3
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Lemma 3.1.7. The image of ϕ on Um2 = Sm2 − Pm2 is P1 × P1 −Qm2 where

Qm2 is the union the 6 twice punctured spheres

Qi = P1 × {[zi, 1]}�{[1, zi
z2i −1

, zi, 1], [1,
z2i −1

zi
, zi, 1]} .

Proof. To see that P1×P1−Qm2 is the image of ϕ we view fm2 as a polynomial

in u with coefficients in C[x, y, z, w]. Namely fm2 = g + u2h where g =

zw(w2x+ wyz − xz2)(w2y + wxz − yz2) and h = −w6 + 6w4z2 − 5w2z4 + z6.

The image of ϕ is the collection of all points [x, y, z, w] ∈ P1 ×P1 except those

for which fm2(x, y, u, z, w) ∈ C[u] is a nonzero constant. The polynomial fm2

is a nonzero constant whenever h = 0 and g ̸= 0. Using Mathematica we see

h = 0 for [z, w] = {[zi, 1]}. For each of the z, w coordinates that satisfy h,

there are two solutions [x, y] = {[1, zi
z2i −1

], [1,
z2i −1

zi
]} that satisfy g(z, w). Hence

the image of ϕ on Um2 is all of P1 ×P1 less the six twice punctured spheres Qi

listed above.

Lemma 3.1.8. The map ϕ smoothly extends to all of Sm2.

Proof. We can extend the map ϕ to all of Sm2 by using a total transformation.

Let Um2 = Sm2 − Pm2 . Then Um2 is the largest open set in Sm2 on which ϕ is

defined. Let G(ϕ, Um2) be the closure of the graph of ϕ on Um2 . We can then

smoothly extend the map ϕ to all of Sm2 by definingϕ at each pi ∈ Pm2 to be
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ϕ(pi) := ρ2ρ
−1
1 (pi) where ρ1 : G → Sm2 and ρ1 : G → P1 × P1 are the natural

projections. Note that, for s ∈ Um2 , ρ2ρ
−1
1 (s) coincides with the original map

so that this extension makes sense on all of Sm2 . Now, the closure of the graph

is G = {[x, y, u, z, w : a, b, c, d]|fm2 = 0, ay = bx, cw = dz}. So, ϕ extends to

Sm2 as follows:

ϕ((0, 0, 1, z1, 1)) = {[a, b, z1, 1]}

ϕ((0, 0, 1, z2, 1)) = {[a, b, , z2, 1]}

ϕ((0, 0, 1, z3, 1)) = {[a, b, z3, 1]}

ϕ((0, 0, 1, z4, 1)) = {[a, b, 0, z4, 1]}

ϕ((0, 0, 1, z5, 1)) = {[a, b, 0, z5, 1]}

ϕ((0, 0, 1, z6, 1)) = {[a, b, 0, z6, 1]}

Notice that the set Qm2 ⊂ P1 × P1, which is not contained in the image of ϕ

on Um2 , is contained in the image of ϕ on Pm2 . That the extension ϕ maps

six points in Sm2 to not just six disjoint P1’s in P1 × P1 but to the six disjoint

P1’s which are are missing from the image of ϕ on Um2 will be important for

the Euler characteristic calculation.

Lemma 3.1.9. There are 12 points in P1×P1, the collection of which we will

call Lm2, whose fiber in Sm2 is infinite.
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Proof. Thinking of fm2 as a polynomial in the variable u with coefficients in

C[x, y, z, w], we see that the points in P1 × P1 which are simultaneously zeros

of these coefficient polynomials are precisely the points in P1 ×P1 whose fiber

is infinite. We note here that the points of Lm2 are precisely the punctures of

the six punctured spheres which are not in the image of ϕ|Um2
. The preimage

of Lm2 in Sm2 is the union of 12 P1’s each intersecting exactly one other P1

in one point. These six points of intersection are the points on the P1’s where

the coordinate u goes to infinity which is equivalent to the points where the x

and y coordinates go to zero. Thus these intersection points are precisely the

points in Pm2 .

The points [x, y, z, w] in Lm2 are {[1, zi
z2i −1

, zi, 1], [1,
z2i −1

zi
, zi, 1]} where the

zi are those listed in 3.1.2. The infinite fiber over [1, zi
z2i −1

, zi, 1] is {[1, zi
z2i −1

, u, zi, 1]{

and the infinite fiber over [1,
z2i −1

zi
, zi, 1] is {[1, z

2
i −1

zi
, u, zi, 1]} . Both of these

fibers contain the point [0, 0, 1, zi, 1] ∈ Pm2 .

In calculating the Euler characteristic we will use the fact that the preimage

of Lm2 in Sm2 are 12 P1’s which intersect in pairs at ideal points in the set

Pm2 ⊂ Sm2 . In fact, each point in Pm2 appears as the intersection of two of

these fibers and the image of Pm2 under ϕ is precisely Lm2 .

Let Bm2 denote the branch set of ϕ in P1 × P1. We have the following

lemma.
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Lemma 3.1.10. χ(Bm2) = 0.

Proof. The branch set, or at least the places where ϕ is not one-to-one, consists

of the points in Sm2 which also satisfy the coordinate equation u = 0. The

image, Bm2 ⊂ P1×P1, of this branch set, is the union of the four varieties, B0,

B1, B2, and B3 defined by the respective three polynomials g0 = z, g1 = w,

g2 = (w2x + wyz − xz2), g3 = (w2y + wxz − yz2) which are all P1 ’s. From

the bidegrees of the gi we know that B0 intersects each of B2 and B3 in one

point ( [0, 1, 0, 1] and [1, 0, 0, 1] respectively), B1 intersects each of B2 and B3

in one point ( [0, 1, 1, 0] and [1, 0, 1, 0] respectively), and B2 and B3 intersect

in four points ([1, 1, 1,−1
2
(1 +

√
5)], [1,−1, 1, 1

2
(1 +

√
5)], [1, 1, 1, 1

2
(−1 +

√
5)],

[1,−1, 1, 1
2
(1−

√
5)]). Since Bm2 is the union of four P1’s which intersect in a

total of 8 points, χ(Bm2) = 4χ(P1)− 8 = 0.

Again thinking of fm2 as a polynomial in u we can write fm2 as f =

g+u2h where g and h are polynomials in C[x, y, z, w]. Since Lm2 is cut out by

the ideal < g, h > and Bm2 is cut out by the ideal < g >, Lm2 is a subvariety

of Bm2 . That each of 12 points in P1×P1 whose fiber is infinite is also a branch

point is necessary for the Euler characteristic calculation.

Now that we understand the map ϕ everywhere we can calculate the

Euler characteristic of Sm2 and prove Proposition 3.1.6.
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Proof. (Proposition 3.1.6) Since the set of points in P1 × P1 whose fibers are

infinite coincide with the image Lm2 of the fundamental set Pm2 , and Lm2 is

the intersection of Qm2 and the branch set Bm2 ,

χ(Sm2) = 2χ(P1 × P1 −Bm2 −Qm2) + χ(Qm2 +Bm2 − Lm2) + χ(ϕ−1(Lm2))

= 2χ(P1 × P1)− χ(Qm2)− χ(Bm2)− χ(Lm2) + χ(ϕ−1(Lm2))

The Euler characteristic of P1 × P1 is χ(P1 × P1) = 4. As Qm2 is the disjoint

union of six twice-punctured spheres, χ(Qm2) = 6(χ(P1)− 2) = 0. Since Bm2

is four P1 ’s which intersect at 8 points, χ(Bm2) = 4χ(P1) − 8χ(point) = 0.

Now Lm2 is just 12 points so χ(Lm2) = 12. That ϕ−1(Lm2) is the union of 12

P1’s which intersect in pairs at a point implies that χ(ϕ−1(L)) = 12χ(P1) −

6χ(points) = 18. All together this gives χ(Sm2) = 14.
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3.2 Links obtained by 1/n Dehn Surgery on the Bor-
romean Rings

1/n

Figure 3.4: 1/n Dehn surgery on the Borromean rings.

LetMbr denote the complement of the Borromean rings. The manifolds

which results from 1/n Dehn filling on one of the cusps of Mbr are ([15]) two

component 2-bridge link with Schubert normal form S(8n, 4n+1). The funda-

mental group of these two component 2-bridge links has a presentation of the

form Γ = ⟨a, b|aw = wa⟩ with w = bϵ1aϵ2 . . . bϵ8n−1 where ϵi = (−1)⌊
i(4n−1)

8n
⌋ .

For n = 1, . . . , 4 we were able to use Mathematica to determine the polynomi-

als which define the character varieties ofMbr(1/n). For n ≥ 4 the polynomials

are a bit too large for mathematica to handle.

Although we have few examples, there are some trends among these

character varieties which make them worth noting. We can look at the number

of components and the number of canonical components which comprise these

character varieties. Although the defining polynomials for certain components
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may not be smooth, their bidegree and how they change with the surgery

coefficient n is still of interest. Below we summarize this information.

Character Varieties for Mbr(1/n)

Manifold component canonical component bidegree

Mbr(1/1) 1
√

(2,3)

Mbr(1/2) 1 (2,2)
2

√
(4,5)

Mbr(1/3) 1 (2,2)
2 (2,2)
3

√
(6,7)

Mbr(1/4) 1 (2,2)
2 (4,4)
3

√
(8,9)

Possibly the most interesting characteristic these character varieties

share is the existence of a component which is defined by a polynomial of

bidegree (2, k) where k = {2, 3}. All of these components are P1 bundles over

P1. Although they are not conic bundles due to the existence of singularities,

they all share a common feature. Over the same P1 coordinate ([z, w] = [1, 0]),

they all have a double line fiber. See figure 3.5.
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P
1

P
1

double

  line

Figure 3.5: component birational to a conic bundle for Mbr(1/n)

Away from a few points all of these components look like conic bundles.

All conics are parameterized by P5 and so we can think of conic bundles as

curves in P5. All the degeneracies live in a hypersurface in P5 and all the double

lines live in a codimension two subvariety inside this hypersurface. Hence, it is

fairly uncommon for a curve in P5 to intersect the subvariety which corresponds

to double line fibers.

All of these components are defined by polynomials that have singular-

ities (four for the Whitehead link and two for each of the other Dehn surgery

components). While these P1 bundles are not isomorphic to conic bundles,

they are birational to such. Since surfaces birational to conic bundles are ra-

tional, all of these components are rational surfaces and thus isomorphic either

to P1×P1 or P2 blown up at some number of points. As we did for the White-

head link complement, we can use the Euler characteristic to determine these

character varieties components topologically. Aside from the Whitehead link
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all of these components of these character varieties are hypersurfaces defined

by a singular polynomial of bidegree (2, 2) in P2 × P1. Each of these defining

polynomials has two singularities which each resolve into a conic after a single

blow up. Hence the Euler characteristic of the smooth models are equal to

that of the singular models plus two. The way we calculate the Euler charac-

teristic of these singular models is very similar to way to we calculated such

for the Whitehead link. It turns out that all of these singular (and so smooth)

models have Euler characteristic 10 and hence are all isomorphic to P2 blown

up at 7 points. From an algebro-geometric perspective P2 blown up at 7 points

is interesting in the sense that is has only finitely many (precisely 49) (−1)

curves.

What we have just described is a brief outline of the proof of Theo-

rem 1.1.3.

Theorem 3.2.1. For n = 2, . . . , 4, the character variety of Mbr(1/n) has a

component which is a rational surface isomorphic to P2 blown up at 7 points.

The proof is very similar to that for 1.1.1. We include the the details in Section

3.2.1. Below we list the singular defining polynomials for these conic bundle

components.
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Conic bundle components for Mbr(1/n)

Manifold Singular defining polynomial χ Smooth
for conic bundle component Surface

P2

blown up at

Mbr(1/1) −w3xy + w2x2z + w2y2z − wxyz2 + u2(z3 − 2w2z) 13 10 points
Mbr(1/2) w2x2 + w2y2 − wxyz + u2(z2 − 2w2) 10 7 points
Mbr(1/3) w2x2 + w2y2 − wxyz + u2(z2 − 3w2) 10 7 points

w2x2 + w2y2 − wxyz + u2(z2 − w2) 10 7 points
Mbr(1/4) w2x2 + w2y2 − wxyz + u2(z2 − 2w2) 10 7 points

3.2.1 Proof of Theorem 3.2.1

.

Throughout this section we will refer to the projective completion in

P2×P1 of the rational component of Mbr(1/2) as S2. The defining polynomial

for S2 is f2 = w2x2+w2y2−wxyz+u2(z2−2w2) where x, y, u are P2 coordinates

are z, w are P1 coordinates. Now, f2 is not smooth. It is singular at the two

points

s1 = [1, 0, 0, 1, 0]

s2 = [0, 1, 0, 1, 0]

Our goal is to determine topologically the smooth surfaces S̃2 obtained

by resolving the singularities of S2.
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Theorem 3.2.2. The surface S̃2 is a rational surface isomorphic to P2 blown

up at 7 points.

Like the canonical component for the Whitehead link, the Euler charac-

teristic of S̃2 together with the fact that S̃2 is rational is enough to determine

S̃2 topologically. Since S̃2 is obtained from S2 by a series of blow ups,

Lemma 3.2.3. S̃2 is birational to a conic bundle.

Proof. Consider the projection πP1 : S2 → P1. The fiber over [z0, w0] ∈ P1 is

the set of points [x, y, u : z0, w0] which satisfy

w2
0x

2 + w2
0y

2 − w0xyz0 + u2(z20 − 2w2
0) = 0

This is the zero set of a degree 2 polynomial in P2 which is a conic. Away

from the two singularities, S2 is isomorphic to a conic bundle. Hence, S2 is

birational to a conic bundle. Since S̃2 is obtained from S2 by a series of blow

ups, S̃2 is birational to S and so birational to a conic bundle.

Proposition 1.3.1 implies that S̃2 is rational. Since S2 has degenerate

fibers, it is isomorphic to P2 blown-up at n points by Corollary 1.3.2. By

proposition 1.3.3 χ(S̃2) = 3+ n . Hence we can determine S̃2 topologically by

calculating χ(S̃2).

To calculate the Euler characteristic of S̃2 we use the Euler character-

istic of S2. Since the smooth surface S̃2 is obtained from S2 by a series of blow

ups, we can use proposition 1.3.4 to write χ(S̃2) in terms of χ(S2).
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Lemma 3.2.4. χ(S̃2) = χ(S2) + 2

Proof. The smooth surface, S̃2, is obtained by resolving the two singularities,

si, of S2 listed above. This process of blowing up singularities is a local one.

Above the singularities, a local model for S̃2 can be obtained by blowing up

S2 in an affine neighborhood of each of the singular points. Away from the

singularities we can take the local model for S2 as a local model for S̃2 since

S2 and S̃2 are locally isomorphic there. Each of the singularities is nice in the

sense that it takes only one blow up to resolve them. Hence, in terms of the

Euler characteristic, we have

χ(S̃2) = χ(S2 − {s1, s2}) + χ(s̃1) + χ(s̃2) (3.1)

where, s̃i denotes the preimage of si in S̃2. Determining the Euler characteristic

of S̃2 in terms of that for S2 amounts to determining s̃i.

To blow up S2 at s1 = [1, 0, 0, 1, 0] we consider the affine open set A1

where x ̸= 0 and z ̸= 0. Local affine coordinates for A1
∼= A3 are y, u, w. So

to blow up S2 at s1 we blow up X1 = Z(f2|x=1,z=1) at [y, u, w] = [0, 0, 0] in A1.

Using coordinates a, b, c for P2, the blow up Y1 of X1 at [0,0,0] is the closed

subset in A1 × P2 defined by the equations

g1 = f2|x=1,z=1 = u2 + w2 − 2u2w2 − wy + w2y2 (3.2)

e1 = yb− ua (3.3)

e2 = yc− wa (3.4)

e3 = uc− wb (3.5)
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We determine the local model above s1 and check for smoothness by looking

at Y1 in the affine open sets define by a ̸= 0, b ̸= 0, and c ̸= 0.

First we look at Y1 in the affine open set defined by a ̸= 0. In this open

set the defining equations for Y1 become

g1 = u2 + w2 − 2u2w2 − wy + w2y2 (3.6)

e1 = yb− u (3.7)

e2 = yc− w (3.8)

e3 = uc− wb (3.9)

Substituting, we obtain the local model, y2(−b2+c−c2−c2y2+2b2c2y2).

The first factor is the exceptional plane, E1 and the other factor is the local

model for Y1. Notice that E1 and Y1 meet in the smooth conic −b2+ c− c2. In

this affine open set, the local model above the singularity s1 is a smooth conic;

a P1. Since all the partial derivatives of the second factor do not simultaneously

vanish, this model is smooth in A1 × P2.

Next we look at Y1 in the affine open set defined by b ̸= 0. In this the

local model for Y1 above [0, 0, 0] is u2(1 − ac + c2 − 2c2u2 + a2c2u2). Again,

the first factor is the exceptional plane, E1 and the other factor is the local

model for Y1. Here, E1 and Y1 meet in the smooth conic 1 − ac + c2. In this

affine open set, the local model above the singularity s1 is a conic. Since all

the partial derivatives of the second factor do not simultaneously vanish, this

model is smooth in A1 × P2.
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Finally we look at Y1 in the affine open set defined by c ̸= 0. In this

open set the local model for Y1 above [0, 0, 0] is (w
2(1−a+ b2+a2w2−2b2w2).

The first factor is the exceptional plane, E1 and the other factor is the local

model for Y1. Here, E1 and Y1 meet in the smooth conic 1 − a + b2. In this

affine open set, the local model above the singularity s1 is a conic. Since all

the partial derivatives of the second factor do not simultaneously vanish, this

model is smooth in A1 × P2.

Rehomogenizing we see that blowing up yields a smooth local model

which intersects the exceptional plane above s1 in the conic defined by c2 −

ac+ b2. Hence χ(s̃1) = 2.

To blow up S2 at s2 = [0, 1, 0, 1, 0] we consider the affine open set A2

where y ̸= 0 and z ̸= 0. Local affine coordinates for A2
∼= A3 are x, u, w. So

to blow up S2 at s2 we blow up X2 = Z(f2|y=1,z=1) at [x, u, w] = [0, 0, 0] in A2.

Using coordinates a, b, c for P2, the blow up Y2 of X2 at [0,0,0] is the closed

subset in A2 × P2 defined by the equations

g2 = f2|y=1,z=1 = u2 + w2 − 2u2w2 − wx+ w2x2 (3.10)

q1 = xb− au (3.11)

q2 = xc− aw (3.12)

q3 = uc− wb (3.13)

In the affine open set defined by a ̸= 0, the local model is defined by

x2(−b2 + c− c2 − c2x2 + 2b2c2x2). The first factor is the exceptional plane E2
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and the second factor is the local model for Y2. The exceptional plane E2 and

Y2 meet in the smooth conic −b2+c−c2. Since all the partial derivatives of the

second factor do not vanish simultaneously, this model is smooth in A2 × P2.

In the affine open set defined by b ̸= 0, the local model is defined by

u2(1 − ac + c2 − 2c2u2 + a2c2u2). The first factor is the exceptional plane E2

and the second factor is the local model for Y2. Here, the exceptional plane

E2 and Y2 meet in the smooth conic 1− ac + c2. No where do all the partial

derivatives of the second factor vanish simultaneously and so this model is

smooth in A2 × P2.

In the affine open set defined by c ̸= 0, the local model is defined by

w2(1−a+ b2+a2w2− 2b2w2). The first factor is the exceptional plane E2 and

the second factor is the local model for Y2. Here, the exceptional plane E2 and

Y2 meet in the smooth conic 1− a+ b2. Since all the partial derivatives of the

second factor do not vanish simultaneously, this model is smooth in A2 × P2.

Rehomogenizing we see that blowing up yields a smooth local model

which intersects the exceptional plane above s2 in the conic defined by c2 −

ac+ b2. Hence χ(s̃2) = 2.

We have shown that for i = 1, 2, s̃i is a smooth conic. Hence χ(s̃i) = 2

for i = 1, 2 and
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χ(S̃2) = χ(S2 − {s1, s2}) + χ(s̃2 + χ(s̃2 (3.14)

= χ(S2)− χ({s1, s2}) + 2χ(conic) (3.15)

= χ(S)− 2 + 2(2) (3.16)

= χ(S) + 2 (3.17)

Proposition 3.2.5. The Euler characteristic of the surface S2 is χ(S2) = 8.

To do this we again appeal to the map ϕ : S2 → P1 × P1 defined by

[x, y, u : z, w] → [x, y : z, w] on a dense open set U of S2. In order to use ϕ

to calculate the Euler characteristic we must understand ϕ everywhere. Let G

denote the graph of ϕ. Rather than first extending ϕ to all of S2 and then using

the extension to calculate χ(S2) we will use the projection map ρ2 : G → S2

to calculate χ(S2) in terms of χ(G) which we will then determine using the

projection ρ2 : G→ P1 × P1.

Here, ϕ is generically 2-to-1. In calculating the Euler characteristic of

S2 there are four aspects we need to consider. The map ϕ is neither surjective

nor defined at the two points P = {(0, 0, 1,±
√
2, 1)}. Over four points in the

P1 ×P1 the fiber is a copy of P1. Finally, the map is branched over two copies

of P1.
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Lemma 3.2.6. The image of ϕ on U = S2 − P is P1 × P1 −Q where

Q = P1 × {[
√
2, 1]}�{[

√
2
2
(1± i), 1,

√
2, 1], }

∪ P1 × {[
√
2, 1]}�{[−

√
2
2
(1± i), 1,−

√
2, 1]}

Proof. We can see that this is in fact the image by viewing f as a polynomial

in u with coefficients in C[x, y, z, w]. Namely f = g + u2h where g = w2x2 +

w2y2−wxyz and h = u2(z2−2w2). The image of ϕ is the collection of all points

[x, y, z, w] ∈ P1 × P1 except those for which f(x, y, z, w) ∈ C[u] is a nonzero

constant. The polynomial f(x, y, z, w) is a nonzero constant whenever h = 0

and g ̸= 0. It is easy to see that h = 0 whenever [z, w] = {[±
√
2, 1]}. For each

of the z, w coordinates which satisfy h, there are two x, y coordinates which

satisfy g(z, w). Hence the image of ϕ on U is all of P1 × P1 less the two twice

punctured spheres as listed above.

Lemma 3.2.7. The map ϕ smoothly extends to all of S2.

Proof. Let U = S2 − P . Then U is the largest open set in S2 on which

ϕ is defined. Let G(ϕ, U) be the closure of the graph of ϕ on U . We can

then smoothly extend the map ϕ to all of S2 by taking a total transform.

By abuse of notation we will again call this total transform ϕ. For s ∈ U ,

ϕ(s) = ρ2ρ
−1
1 (s) coincides with the original map. Since the closure of the

73



graph is G = {[x, y, u, z, w : a, b, c, d]|f = 0, ay = bx, cw = dz}, ϕ extends to

S2 as follows:

ϕ((0, 0, 1,
√
2, 1)) = {[a, b,

√
2, 1]}

ϕ((0, 0, 1,−
√
2, 1) = {(a, b,−

√
2, 1)}

Notice that the set Q ⊂ P1 × P1, which is not contained in the image of ϕ

on U , is contained in the image of ϕ on P . That the extension ϕ maps two

points in S2 to not just two disjoint P1’s in P1 × P1 but to the two disjoint

P1’s which are are missing from the image of ϕ on U will be important for the

Euler characteristic calculation.

Lemma 3.2.8. There are four points, the collection of which we will call L,

in P1 × P1 whose fiber in S2 is infinite.

Proof. Thinking of f as a polynomial in the variable u with coefficients in

C[x, y, z, w], we see that the points in P1 × P1 which are simultaneously zeros

of these coefficient polynomials are precisely the points in P1 ×P1 whose fiber

is infinite. The points of L are precisely the punctures of the two punctured

spheres which are not in the image of ϕ|U . The preimage of L in S2 is the

union of four P1’s each intersecting exactly one other P1 in one point. These

two points of intersection are the points on the P1’s where the coordinate u

goes to infinity which is equivalent to the points where the x and y coordinates
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go to zero. Thus these intersection points are precisely the points in P. The

points in L along with their infinite fibers in P1 × P1 are listed below.

[1,
√
2
2
(1 + i),

√
2, 1] has fiber {[1,

√
2
2
(1 + i), 1,

√
2, 1]} ⊃ [0, 0, 1,

√
2, 1]

[1,
√
2
2
(1− i),

√
2, 1] has fiber {[1,

√
2
2
(1− i), 1,

√
2, 1]} ⊃ [0, 0, 1,

√
2, 1]

[1,
√
2
2
(−1 + i),−

√
2, 1] has fiber {[1,

√
2
2
(−1 + i),−

√
2, 1]} ⊃ [0, 0, 1,−

√
2, 1]

[1,
√
2
2
(−1− i),−

√
2, 1] has fiber {[1,

√
2
2
(−1− i),−

√
2, 1]} ⊃ [0, 0, 1,−

√
2, 1]

In calculating the Euler characteristic we will use the fact that the preimage of

L in S2 are four P1’s which intersect in pairs at ideal points in the set P ⊂ S2.

In fact, each point in P appears as the intersection of two of these fibers and

the image of P under ϕ is precisely L.

Lemma 3.2.9. The branched set B in P1 × P1 is the union of two P1’s which

intersect in two points.

Proof. The branched set B ⊂ P1 × P1 is the zero set of w2x2 + w2y2 − wxyz.

From the factorization w(wx2 +wy2 − xyz), we see that B is the union of two

P1’s of bidegree (0, 1) and (2, 1) over P1 × P1. Hence these two P1’s intersect

each other in two points.

Proposition 3.2.10. χ(S2) = χ(G)− 2
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Proof. In P2 × P1, taking the closure, G, of the graph of ϕ is equivalent to

blowing up S2 at the points p ∈ P . Each blow up increases the Euler char-

acteristic by one. Since |P | = 2, we have χ(G) = χ(S2) + 2. We can see

this by looking at the coordinates of G as well. Let f denote the polynomial

which cuts out S2 in P2 × P1. The graph G = {[x, y, u, z, w : a, b, c, d]|f =

0, a = x, b = y, z = c, w = d} ⊂ (P2 × P1) × (P1 × P1). The closure of G

is cut out by the smallest prime ideal whose solutions contains G and thus

G = {[x, y, u, z, w : a, b, c, d]|f = 0, ay = bx, cw = dz} . For every point

s ∈ U = S2 − P , there is exactly one point s ∈ G. The Euler character-

istic χ(G) = χ(S2 − P ) + χ(ρ−1
1 (P )) = χ(S2) − χ(P ) + χ(ρ−1(P )) where

ρ1 : G → S2 is the projection map. Now, for each of the two points pi ∈ P ,

there is a copy of P1 in G. Assuming these two copies of P1 are disjoint,

χ(G) = χ(S2)− 2χ(point) + 2χ(P1) = χ(S2) + 2. Looking at the coordinates

(listed below) for pi ∈ P and their corresponding images, pi in G we see that

these exceptional divisors are indeed disjoint .

for p1 = (0, 0, 1,
√
2, 1) p1 = {[a, b :

√
2, 1]}

for p2 = (0, 0, 1,−
√
2, 1) P2 = {[a, b,−

√
2, 1]}

Proposition 3.2.11. χ(G) = 10

Proof. In order to calculate the Euler characteristic of G we appeal to the

projection map ρ2 : G → P1 × P1. On Γ = G − {ρ−1
1 (P )}, ρ1 is injective and
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ϕ is generically 2:1 so ρ2|Γ = ϕ ◦ ρ1|Γ is generically 2:1. The image of Γ under

ρ2 is P1 × P1 − Q . In the branched set B, there are four points, L, whose

preimage under ϕ is the union of two pairs of two P1’s which intersect in a

point. In U = S2 − P , the preimage of L under ϕ is four disjoint punctured

P1’s, which we will denote LU . Now, the closure of pullback of LU in the graph

G is precisely the preimage of L in G under ρ2. Since this closure of these four

punctured P1’s in G is the collection of four disjoint P1’s, the preimage of L

in G is four disjoint P1’s.

The Euler characteristic of G is then

χ(G) = 2χ(P1 × P1 −B −Q) + χ(Q+B − L) + χ(ρ−1
2 (L))

= 2χ(P1 × P1)− χ(Q)− χ(B)− χ(L) + χ(ρ−1
2 (L))

We know that 2χ(p1×P1) = 8. Since B is the union of two P1’s which intersect

in two points, χ(B) = 2χ(P1)− 2 = 2. With L a set of four points, χ(L) = 2.

Now, Q is the union of two twice punctured spheres so χ(Q) = 2(χ(P1)−2) = 0.

Since ρ−1
2 (L) is the union of four disjoint P1’s, χ(ρ−1

2 (L)) = 4χ(P1) = 8. All

together this gives χ(G) = 10.

We can now complete the proof of Proposition 3.2.5.

Proof. (Proposition 3.2.5) We have that χ(G) = 10 from Proposition 3.2.11

and χ(S2) = χ(G)− 2 from Proposition 3.2.10. Hence χ(S2) = 8.
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Corollary 3.2.12. The Euler characteristic of S̃2 is χ(S̃2) = 10

Proof. From Lemma and Proposition 3.2.5 we have χ(S̃2) = χ(S2) + 2 =

8 + 2 = 10.

We are now ready to prove Theorem 3.2.2.

Proof. (Theorem 3.2.2) Since S̃2 is both rational and ruled we know that S̃2

is topologically equivalent to P2 blown-up at some n points. This together

with the fact that each blow up of P2 increases the Euler Characteristic by

one gives χ(S̃2) = χ(P2) + n. With χ(S̃2) = 10, n must be 7 and S̃2 must be

P2 blown-up at 7 points.
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3.3 Painting the Bigger Picture

The canonical components of character varieties associated to the two

families of link complements obtained by 1/n Dehn filling on the Borromean

rings and on the Magic manifold all exhibit rational components. Rational sur-

faces are well understood algebro-geometric objects. The isomorphism classes

are P1 ×P1 and P2 blown up at n points. For n ≤ 8, the surfaces P2 blown up

at n points are nice in the sense they exhibit only finitely many (−1) curves

that is curves with self-intersection number −1. The rational components as-

sociated to the two families of link complements obtained by 1/n Dehn filling

on the Borromean rings and on the Magic manifold are all P1 bundles over P1

which exhibit the uncommon feature of a double line fiber (refer to the end of

Section 3.1.1 for a discussion of this). In the case of the Borromean rings, the

rational components do not coincide with the canonical components. However,

being isomorphic to P2 blown up at 7 points, they do have only finitely many

(i.e. 56) (-1) curves.

In the case of the Magic manifold the rational components coincide

with the canonical component. As these surfaces are birational to conic bun-

dles, they can be realized as smooth hypersurfaces in P2 × P1, cut out by a

polynomial of bidegree (2, n). The twist knot character varieties are all hy-

perelliptic, meaning they can be realized as smooth hypersurfaces in P1 × P1

cut out by a polynomial of bidegree (2, n) ([17]). These surfaces birational to

conic bundles are subvarieties of the canonical component of the character va-

riety associated to the Magic manifold, which yields a 3-dimensional analogue.
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Namely, the canonical component for the Magic manifold is not only rational

but also birational to a fiber bundle over P1×P1 with conic fibers (see Section

3.3.1)

3.3.1 The character variety for the Magic manifold

In this section we briefly describe the canonical component of the char-

acter variety for the Magic manifold Mm, which by Theorem 1.2.1 is a 3-

dimensional complex variety. The fundamental group forMm has presentation

⟨a, b, c|ac−1 = c−1a, ab2cb = bcb2a⟩ ([5]). In these coordinates, the meridians

and longitudes of the three cusps are

m0 = a l0 = a2c−1

m1 = c−1ab−1 l1 = ab2ab−1

m2 = ab l2 = abab−1cb−1

First we establish the defining ideal for the representation variety R(Mm). Any

representation ρ ∈ R(Mm can be conjugated so that

ā = ρ(a) =

(
m 1
0 m−1

)
b̄ = ρ(b) =

(
p 0
q p−1

)
Since a and c−1 commute, they have the same fixed points. Hence ρ

maps c−1 to

¯c−1 = ρ(c−1) =

(
s s−s−1

m−m−1

0 s−1

)
In these coordinates, the polynomials which define R(Mm) come from the

relation āb̄2c̄b̄ − b̄c̄b̄2ā = 0. For i, j ∈ {1, 2}, let pij denote the coordinate
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polynomials of ρ(ab2cb − bcb2a). Then R(Mm) is cut out by the ideal ⟨pij⟩ ∈

C[m,m−1, s, s−1, p, p−1, q] where

p11 = q(−p2−p4+m2p4+mpq+mp3q−s2+m2s2+m2p2s2−mpqs2−mp3qs2)
(−1+m)(1+m)p2s

p12 = (−1+p)(1+p)(−p2−p4+m2p4+mpq+mp3q−s2+m2s2+m2p2s2−mpqs2−mp3qs2)
(−1+m)(1+m)p3s

p21 = q(−p2−p4+m2p4+mpq+mp3q−s2+m2s2+m2p2s2−mpqs2−mp3qs2)
mp2s

p22 = q(−p2−p4+m2p4+mpq+mp3q−s2+m2s2+m2p2s2−mpqs2−mp3qs2)
(−1+m)(1+m)p2s

None of the pij are irreducible. In fact their GCD is nontrivial. Let pm = GDC(pij)

that is

pm = −p2−p4+m2p4+mpq+mp3q−s2+m2s2+m2p2s2−mpqs2−mp3qs2

(−1+m)m(1+m)p3s

Setting gij =
pij
pm

, we can view the representation variety as Z(⟨gijpm⟩) =

Z(⟨gij⟩) ∪ Z(⟨pm⟩). Since g1,1 = −g2,2 = mpq, g1,2 = −m(−1 + p)(1 + p),

and g2,1 = −(−1 +m)(1 +m)pq, the ideal ⟨gij⟩ defines an affine variety in C4

which is the union of four P1’s and two P2’s. This affine subvariety of R(Mm)

consists of reducible representations. We are interested in the components of

R(Mm) which contain discrete faithful representations all of which lie in the

subvariety Rm = Z({pm}). Hence the canonical component X0(Mm) is in the

image of Rm under the map t.

As discussed in Section , we can express the map t in terms of generators

of the coordinate ring Tm = TMm for X(Mm). We know from [6] that trace

maps {τa, τb, τc, τab, τac, τbc, τabc} generate the coordinate ring Tm ([6]). In this
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case, however, the coordinate ring is generated by a smaller subset of trace

maps. Namely, {τa, τb, τac, τbc} is a generating set. With these generators the

map t = (τa, τb, τc, τbc) : Rm → C4 is

t(ρ) = (m+m−1, p+ p−1,ms−1 + sm−1, sp−1 + ps−1 +
q(s− s−1)

m−m−1
).

Let Xm denote the image of Rm under t.

We determine the defining polynomial(s) for Xm by appealing to the

induced injective map t∗ : C[Xm] → C[Rm] on the coordinates rings of Xm and

Rm. The algebraic set Rm is defined by the polynomial ideal ⟨pm⟩ and so its

coordinate ring is C[Rm] = C[m,m−1, s, s−1, p, p−1, q]/⟨pm⟩. The coordinate

ring C[Xm] is the image of C[Rm] under t
∗, that is C[Xm] is

C[m,m−1, s, s−1, p, p−1, q]/

⟨pm, x = m+m−1, y = p+ p−1, v = ms−1 + sm−1, w = sp−1 + ps−1 + q(s−s−1)
m−m−1 ⟩

which is isomorphic to C[x, y, z, w]/⟨f̃m⟩ where

f̃m = f̃mo f̃m1 = (4− v2 − 4w2y2 + w2x2y2)(v2 − x2).

Hence the image Xm has two components, Z(f̃m0) and Z(f̃m1). By specializing

to the case where the meridian a is parabolic (and x = 2), we determine

Z(f̃m0) as the affine canonical component for the character variety of the Magic

manifold. Since f̃mo is nonsingular, X0m is a smooth affine model.

To determine the birational equivalence class of X0m we consider the

projective model obtained by compactifying in P2 × P1 × P1. With v, w, r

the P2 coordinates, x, h one set of P1 coordinates, and y, k the second set of
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P1 coordinates, this compactification Sm for the canonical component X0m is

defined by fm0 = 4r2h2k2 − v2h2k2 − 4w2y2h2 +w2x2y2. That Sm is birational

to a fiber bundle over P1×P1 with conic fibers follows easily form the tridegree,

(2, 2, 2) of fm0 . Consider the projection map Sm → P1 × P1. The fiber over a

generic point [x0, h0 : y0, k0] ∈ P1×P1 is the curve cut out by fm0(v, w, r, x0, h0 :

y0, k0) which is a conic fm0 has degree 2 over P2. Locally Sm is isomorphic

to a conic bundle over P1 × P1 and therefore birational to such. Since Sm is

birational to conic bundles over P1 × P1, it is birational to P3 and hence is a

rational variety.
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Chapter 4

Future Research

We plan to continue to extend our understanding of character varieties

by developing examples and tools to study character varieties of link comple-

ments since most of the previous work is particular to one dimension. Complex

surfaces, while still tractable algebro-geometric objects, are more complicated

than complex curves. Within a birational equivalence class, different compact-

ifications yield different smooth models with different points at infinity.

Question 4.1. Which compactification do we take as the canonical component

of a character variety associated to a hyperbolic 3-manifold with n > 1 cusps?

In their work, Macasieb, Petersen and van Luijk noticed a potential

relationship between the number of components of the character variety and

the symmetry group of the corresponding link complement. For knots J(k, l)

with l ̸= k the symmetry group is Z2 ⊕ Z2 and the character variety exhibits

one component. When l = k, the knot complements exhibit an extra ro-

tational symmetry and the character varieties exhibit two components. We

studied the character varieties for two component 2-bridge links obtained by

1/n Dehn surgery on one cusp of both the Magic manifold and the Borromean

rings. Aside from the Whitehead link, those with character varieties contain-

ing exactly one component all have a dihedral symmetry group of order 4
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while those with character varieties containing multiple components all have

a dihedral symmetry group of order 8.

Question 4.2. For a hyperbolic link complement, is a symmetry group of

order greater than 4 a necessary condition for the associated character variety

to have more than one component?

In [17] the authors showed that for hyperbolic 2-bridge knots J(2, l)

with l ̸= −1, 0, 1, 2, the genus of the canonical component is equal to the

[F (J(2, l)) : Q] − 1 where F (J(2, l)) is the invariant trace field. Upon real-

izing the conical components as smooth hypersurfaces in P1 × P1, both the

genus and the degree of the invariant trace field can be determined from the

defining polynomial ([24], [27]). Similarly, the canonical components of the

link complements obtained by 1/n Dehn filling on one cusp of the Borromean

rings can all be realized as singular hypersurfaces in P2 × P1 and the bidegree

of the defining polynomial appears to coincide with the degree of the invari-

ant trace field ([16], [5]). Drawing connections between the geometric genus is

much more difficult in this case since the defining polynomials are not smooth.

Hence we ask the following.

Question 4.3. For hyperbolic link complements, how is the degree of the in-

variant trace field related to the canonical component of the character variety?

Complex curves of every geometric genus pg are realized as character

varieties of hyperbolic knot complements ([17]). Unlike the 1-dimensional case

where the geometric genus is the topological genus, the geometric genus for

complex surfaces does not identify the isomorphism class.
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Question 4.4. What isomorphism classes of which geometric genera arise as

canonical components of character varieties associated to hyperbolic 3-manifolds.

Question 4.5. What are the obstructions for a complex surface to be a com-

ponent of a character variety of a hyperbolic 3-manifold?

Many of our examples of character varieties of hyperbolic link com-

plements have components which are rational surfaces. These varieties have

pg = 0 and a defining algebro-geometric feature is (−1) curves. Rational sur-

faces isomorphic to P2 blown-up at n < 8 points exhibit finitely many (−1)

curves. The rational components associated to 1/n Dehn filling on the Bor-

romean rings are P2 blown-up at 7 points which has exactly 56 (−1) curves.

When these surfaces can be viewed as fiber bundles over P1, a few of the (−1)

curves appear as degenerate fibers. We hope to identify all the (−1) curves

and determine what topological information they reflect.

The results of Theorem 1.1.1 and the conjecture extending Theorem

1.1.2 provide a partial answer to the question of which rational surfaces arise

as canonical components of character varieties of hyperbolic link complements.

For n ≥ 1 rational surfaces isomorphic to P2 blown-up at 1 + 9n points are

realized as canonical components of character varieties of hyperbolic 2-bridge

links. For examples of canonical components with pg > 0 we look to the

character varieties of manifolds which result from 1/n Dehn filling on one cusp

of the Borromean rings, Mbr. These are hyperbolic two component 2-bridge

links with Schubert normal form S(8n, 4n+1) ([15]). Our explicit Mathematica

calculations for Mbr(1/n) for n = 1, . . . , 4 support the following conjecture.
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Conjecture 4.0.1. The canonical component for the hyperbolic link comple-

ments obtained by 1/n Dehn filling on one cusp of the Borromean rings is a

hypersurface in P2×P1 defined by a singular polynomial of bidegree (2n, 2n+1)

Doing Dehn filling amounts to adding a relation to the fundamental

group of the original manifold. It seems reasonable to expect to be able to

realize the Dehn filled character variety as a subvariety; however even deter-

mining how the twist knot character varieties sit inside the Whitehead link

character variety is still an open problem because finding the common zero

set is nontrivial. In our work, the rational surfaces we see as components of

character varieties associated to the hyperbolic links obtained by 1/n Dehn

filling are all birational to conic bundles which exhibit a double line i.e. a

fiber in which every point is singular. All conics can be parameterized by P5

and those which are double lines correspond to a codimension 3 subvariety

([12]). Hence a conic bundle with a double line fiber corresponds to a line

which passes through a particular codimension 3 subvariety in P5 which is a

rare occurrence. That all of these conic bundle components exhibit a double

line lends insight into the affect Dehn surgery has on the character variety.

We have studied character varieties only for hyperbolic 3-manifolds with

torus boundary. We would like to extend our work to hyperbolic manifolds

M exhibiting boundary components of higher genus. The deformation space

of hyperbolic structures on M can be viewed as a set of discrete and faithful

representation. Although, geometers have studied the subset of these varieties

consisting of representations that are discrete and faithful, little is currently
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known about how this subset relates to the algebraic structure of the variety.

We hope to use the dynamics of the action of Out(π1(M)) to gain insight into

the algebro-geometric structure of the character variety and as well as defor-

mation space of hyperbolic structures on M . In particular we hope to address

the open problem of determining when the all the connected components of

the deformation space ofM lie in the same component of the character variety.
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