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In this dissertation, we introduce a graph-based model of instance-based us-

age meaning that is cast as a problem of probabilistic inference. The main aim

of this model is to provide a flexible platform that can be used to explore multiple

hypotheses about usage meaning computation. Our model takes up and extends the

proposals of Erk and Padó [2007] and McCarthy and Navigli [2009] by representing

usage meaning as a probability distribution over potential paraphrases. We use

undirected graphical models to infer this probability distribution for every content

word in a given sentence. Graphical models represent complex probability distribu-

tions through a graph. In the graph, nodes stand for random variables, and edges

stand for direct probabilistic interactions between them. The lack of edges between

any two variables reflect independence assumptions. In our model, we represent

each content word of the sentence through two adjacent nodes: the observed node

represents the surface form of the word itself, and the hidden node represents its
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usage meaning. The distribution over values that we infer for the hidden node is a

paraphrase distribution for the observed word. To encode the fact that lexical seman-

tic information is exchanged between syntactic neighbors, the graph contains edges

that mirror the dependency graph for the sentence. Further knowledge sources that

influence the hidden nodes are represented through additional edges that, for ex-

ample, connect to document topic. The integration of adjacent knowledge sources

is accomplished in a standard way by multiplying factors and marginalizing over

variables.

Evaluating on a paraphrasing task, we find that our model outperforms

the current state-of-the-art usage vector model [Thater et al., 2010] on all parts of

speech except verbs, where the previous model wins by a small margin. But our

main focus is not on the numbers but on the fact that our model is flexible enough

to encode different hypotheses about usage meaning computation. In particular, we

concentrate on five questions (with minor variants):

Nonlocal syntactic context Existing usage vector models only use a word’s

direct syntactic neighbors for disambiguation or inferring some other meaning rep-

resentation. Would it help to have contextual information instead “flow” along the

entire dependency graph, each word’s inferred meaning relying on the paraphrase

distribution of its neighbors?

Influence of collocational information In some cases, it is intuitively plausi-

ble to use the selectional preference of a neighboring word towards the target to
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determine its meaning in context. How does modeling selectional preferences into

the model affect performance?

Non-syntactic bag-of-words context To what extent can non-syntactic infor-

mation in the form of bag-of-words context help in inferring meaning?

Effects of parameterization We experiment with two transformations of MLE.

One interpolates various MLEs and another transforms it by exponentiating point-

wise mutual information. Which performs better?

Type of hidden nodes Our model posits a tier of hidden nodes immediately

adjacent a surface tier of observed words to capture dynamic usage meaning. We

examine the model by varying the hidden nodes such that in one the nodes have

actual words as values and in the other the nodes have nameless indexes as values.

The former has the benefit of interpretability while the latter allows more standard

parameter estimation.

Portions of this dissertation are derived from joint work between the author

and Katrin Erk [submitted].

vii



Table of Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Chapter 1. Introduction 1

1.1 Graded word sense and probabilistic modeling . . . . . . . . . . . . . 9

1.2 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Plan of the dissertation . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2. A background on word meaning 19

2.1 Word sense disambiguation . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Disjoint word sense . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Low interannotator agreement . . . . . . . . . . . . . . . . . . 23

2.1.3 All-words word sense disambiguation . . . . . . . . . . . . . . 24

2.2 Usage based models of word meaning . . . . . . . . . . . . . . . . . . 25

2.2.1 Vector space models of word meaning . . . . . . . . . . . . . . 27

2.2.2 Graded word sense . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.1 Lexical substitution . . . . . . . . . . . . . . . . . . . 29

2.2.2.2 A probabilistic digression on LexSub . . . . . . . . . 30

Chapter 3. Model 31

3.1 Representing word meaning: Word meaning as probability mass func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Probabilistic graphical models . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Directed versus undirected graphical models . . . . . . . . . . 41

viii



3.2.2 Undirected graphs and factor graphs . . . . . . . . . . . . . . 47

3.2.3 Inference, belief propagation and loopy belief propagation . . 51

3.2.4 Graphical models in computational linguistics . . . . . . . . . 53

3.3 Probabilistic modeling of graded word sense . . . . . . . . . . . . . . 54

3.3.1 Evidence and graph transformations . . . . . . . . . . . . . . 55

3.3.1.1 The sentence as evidence: Sequential order . . . . . . 55

3.3.1.2 The sentence as evidence: Dependency parses . . . . 58

3.3.1.3 Wider document context (lda) . . . . . . . . . . . . . 68

3.3.1.4 Sentence bag-of-words context . . . . . . . . . . . . . 69

3.3.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Defining factors . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3.1 Surface injected paraphrases . . . . . . . . . . . . . . 73

3.3.3.2 Factors over nameless hidden nodes and parameter es-
timation . . . . . . . . . . . . . . . . . . . . . . . . . 76

Chapter 4. Data and Evaluation measures 80

4.1 Test sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Testing convergence of inference . . . . . . . . . . . . . . . . . . . . . 83

4.5 Smoothing constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6.1 Generalized Average Precision (GAP) . . . . . . . . . . . . . . 84

4.6.2 Precision out of ten (P10) . . . . . . . . . . . . . . . . . . . . 84

4.6.3 Weighted Accuracy (wAcc) . . . . . . . . . . . . . . . . . . . . 85

4.6.4 Precision and Recall . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.5 Evaluating model with nameless hidden nodes and parameters 86

Chapter 5. Experiments and Results 90

5.1 LexSub: Evaluation against benchmark and baseline models . . . . 90

5.2 Model output examples . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Influence of collocational information . . . . . . . . . . . . . . . . . . 99

5.3.1 Collocation isolated from semantic vector space . . . . . . . . 100

ix



5.4 Parameters for selectional factors . . . . . . . . . . . . . . . . . . . . 102

5.5 Analysis of precision and recall . . . . . . . . . . . . . . . . . . . . . 102

5.6 Document topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Bag-of-words sentence context . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Learning curve experiments . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 Nonlocal syntactic context . . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Number of syntactic neighbors . . . . . . . . . . . . . . . . . . . . . 118

5.11 Experiments with nameless hidden nodes . . . . . . . . . . . . . . . 121

5.12 Miscellaneous experiments on LexSub . . . . . . . . . . . . . . . . . 122

5.12.1 Blocked information flow in paraphrase nodes . . . . . . . . . 122

5.12.2 Retention of function words . . . . . . . . . . . . . . . . . . . 123

5.13 twsi dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.14 M/L dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 6. Conclusion 127

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Automatic extraction of paraphrase sets . . . . . . . . . . . . 129

6.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1.3 More flexible notions of evidence . . . . . . . . . . . . . . . . . 130

6.1.4 Further exploration of model with nameless hidden nodes . . . 131

Bibliography 132

Vita 153

x



List of Tables

5.1 LexSub data: GAP and wAcc scores. Evaluation on the full dataset
(all), and by target POS. Condition for pd parameters: epmi, at. . . 90

5.2 LexSub: Number of conditions for which there is a significant neg-
ative correlation between lemma or paraphrase frequency and model
performance (p ≤ 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 LexSub data: GAP and wAcc scores by corpus, graph transforma-
tion and factor type. GT=graph transformation. . . . . . . . . . . . 99

5.4 LexSub data: GAP and wAcc scores by POS with u+b+g. GT=graph
transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Collocational baseline scores for GAP and wAcc by POS with u+b+g.
GT=graph transformation. Selectional factors are epmi . . . . . . . 101

5.6 Models with and without document topic factors. All models (except
lda only) shown only in at condition. . . . . . . . . . . . . . . . . . . 105

5.7 Sentence bag-of-words factor experiment results . . . . . . . . . . . . 113

5.8 Gain in performance in terms of GAP and wAcc in learning curve ex-
periments by transformation type (GT=graph transformation). The
“10&20” header indicates absolute performance gain from corpus 10
to corpus 20. The “20&21” header indicates absolute performance
gain from corpus 20 to 21. . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 Comparing global models to models restricted to local syntactic con-
text: L=local model better, G=global model better. GT = graph
transformation. ∗∗: difference significant at p < 0.01. Only results
with performance distance ≥ 0.05 . . . . . . . . . . . . . . . . . . . . 116

5.10 Experiment results on model with nameless hidden nodes . . . . . . 121

5.11 Augmented paraphrase set experiment results . . . . . . . . . . . . . 122

5.12 Experiment results for when function words have not been discarded 123

5.13 twsi data: GAP and wAcc scores by corpus, graph transformation
and factor type. Experiment parameters are derived from counts in
ukWaC and bnc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.14 twsi data: GAP and wAcc scores for baselines. seq uses epmi. Ex-
periment parameters are derived from counts in ukWaC and bnc . 125

5.15 M/L data: Spearman’s ρ. pd parameters estimated using u+b+g.
ρ for prior M/L and EP08 models on right. All results significant at
p < 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



List of Figures

1.1 Lexical substitution example items for charge. The four digit numbers
at the end of each sentence are the unique identifiers in the corpus.
The column on the right lists the sense items with non-zero weights
in the labeling scheme, i.e. items that have been chosen by at least
one annotator for the target charge. The integers to the left of the
sense items correspond to weights—the number of annotators who
have chosen the given sense item. . . . . . . . . . . . . . . . . . . . . 8

3.1 Examples of graphical models. (a) is a directed graph. (b) is an
undirected graph. The only difference graphically is that the former
has arrows for edges and the latter has unadorned edges. . . . . . . . 41

3.2 Left: a simple undirected graphical model with three nodes A,B,C.
Right: Two possible factor graphs (out of many) for this undirected
graphical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Conversion of a factor graph with explicit factors and with observed
variable arguments to a smaller graph . . . . . . . . . . . . . . . . . 49

3.4 Conversion of directed graphical model to factor graph . . . . . . . . 50

3.5 A hidden paraphrase distribution node m augmented by a topic vari-
able z specific to document D. By marginalizing out z, we can define
a new unary factor fD over m. . . . . . . . . . . . . . . . . . . . . . 68

3.6 Sentence level bag-of-words representation . . . . . . . . . . . . . . . 69

5.1 LexSub log lemma frequency by parts-of-speech . . . . . . . . . . . 93

5.2 LexSub log paraphrase frequency by parts-of-speech . . . . . . . . . 94

5.3 LexSub: Sample pd model output (u+b+g, epmi) on the sentences
of Figure 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 LexSub: Sample pd model output (u+b+g, epmi) on the sentence
at top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 LexSub data: Precision/recall graphs over threshold by graph trans-
formation. Results from u+b+g epmi parameters. . . . . . . . . . . 103

5.6 LexSub data: Precision/recall graphs over threshold by graph trans-
formation. Results from bnc epmi parameters. . . . . . . . . . . . . 104

5.7 Entropy of LexSub paraphrases and top 30 words of all LDA topics. 107

xii



5.8 Plot of GAP score by average entropy of paraphrases for given target
words. Correlation, while negative is insignificant with Spearman’s
ρ= − 0.04353575(p=0.6044) . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Plot of GAP score by average entropy of paraphrases for given target
words. Correlation is negative and significant with Spearman’s ρ=−
0.2317619(p=0.005189) . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Plot of LDA baseline experiments where only number of topics is
varied. x-axis is number of topics and y-axis is GAP score. . . . . . 111

5.11 Plot of LDA baseline experiments where only number of topics is
varied. x-axis is number of topics and y-axis is wAcc score . . . . . 112

5.12 Learning curve for GAP and wAcc by training corpus size for selec-
tional factors. By at, ct, and cat condition. Tick marks on x-axis
from 1 to 20 represent approximately 0.1 billion to 2 billion words
of ukWaC. 21st tick mark represents combined corpus of ukWaC,
bnc, and Giga. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.13 GAP by degree of target node in graph. By part-of-speech. . . . . . 119

5.14 wAcc by degree of target node in graph. By part-of-speech. . . . . . 120

xiii



Chapter 1

Introduction

Word sense disambiguation (WSD) is the dominant task in the subfield of

computational linguistics that deals with the meaning of words in context [Agirre and Edmonds,

2006], i.e. computational semantics. In WSD, a system is given a naturally occur-

ring sentence that contains a target word of interest and a disjoint candidate sense

inventory, generally a list of dictionary definitions for the word. The goal of the

system is then to choose the item out of the inventory that best fits the target word

in the sentence. The system is evaluated based on some aggregate measure over the

system’s output on all the target words for all the sentences that it has been handed

to disambiguate.

Consider this old and frequently cited example in WSD and machine trans-

lation:1

(1.1) Little John was looking for his toy box. Finally he found it. The box was

in the pen. John was very happy.

The hypothetical situation posited by Bar-Hillel is that a machine translation system

has been given the above text. Presumably, the most challenging aspect of the text

1The example is from Bar-Hillel [1960], an influential report that determined the course of
machine translation research in the 60s and 70s. This example was cited in Gale et al. [1992] and
Agirre and Edmonds [2006] among many others.
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sample for the system is that pen is ambiguous and can mean (or map to) one of

two disjoint sense items: (1) a writing implement (2) an enclosure. And Bar-Hillel’s

conclusion was that:

no existing or imaginable program will enable an electronic computer

to determine that the word pen in the given sentence within the given

context has the second of the above meanings.

and that the preposterousness of a program that can properly disambiguate pen and

the like is an insurmountable barrier to machine translation.

The assumption underlying Bar-Hillel’s assertion is that WSD is a critical

component to the success of any machine translation (MT) system. However, it’s

obvious that this isn’t entirely the case when some of the most influential models

in contemporary MT have been able to significantly improve on existing rule-based

models of MT without incorporating WSD [Brown et al., 1993]. Similarly WSD was

once assumed to be a critical component for building information retrieval (IR) sys-

tems. The overwhelming success of an Internet search engine [Brin and Page, 1998]

that does not have a WSD component indicates that there are ways of effectively

sidestepping the issue of ambiguity in natural language.

Nonetheless, it is clear that ambiguity is an inherent component of human

language and existing systems will at some point have to address the issue if fur-

ther improvements in performance are to be gained. Furthermore, some recent

research has been able to show that integrating WSD into an application such as

MT [Carpuat and Wu, 2007, Chan et al., 2007] or IR [Stokoe, 2005] can improve

2



performance.

Though the original motivation for WSD lay in applications, the task has im-

portant implications that are not applied and has given birth to many subtasks and

variants that ask or influence important questions regarding the definition of word

meaning itself, cognitive issues about word senses, computationally oriented practi-

cal issues of data curation, modeling and evaluation and much more. These concerns

are partly what initiated the first open challenge workshop for WSD systems in 1998

called SensEval [Kilgariff and Palmer, 1998, Kilgarriff and Palmer, 2000]. There is a

broad consensus on what the critical issues with the dominant WSD task paradigm

are and these have been highlighted since the first SensEval, at both SensEval and

elsewhere [Wilks, 2000, Agirre and Edmonds, 2006]. Some of the important issues

that have been raised are that: (1) the sense inventories are inconsistent [Kilgarriff,

1997, Wilks, 2000] (2) human annotators often have a hard time using the inven-

tories [Kilgarriff and Rosenzweig, 2000] (3) the notion of disjoint word sense is too

restrictive and cognitively invalid [Erk and McCarthy, 2009, Erk et al., 2009].

For the moment, we focus only on the last issue of disjoint word sense. We

will discuss the other issues in more depth in Chapter 2. Consider the following

example:

(1.2) This can be justified thermodynamically in this case, and this will be done

in a separate paper which is being prepared.

The example is taken from SemCor [Fellbaum, 1998] which is a corpus that has been

sense-tagged—i.e. tagged with a predefined sense inventory—for all content words.
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The sense inventory comes from WordNet [Miller, 1995]. In an extensive discussion

in Erk and McCarthy [2009] the seven potential sense items for paper according to

WordNet and SemCor are defined as follows:

1. a material made of cellulose pulp derived mainly from wood or rags or certain

grasses

2. an essay (especially one written as an assignment)

3. a daily or weekly publication on folded sheets; contains news and articles and

advertisements

4. a medium for written communication

5. a scholarly article describing the results of observations or stating hypotheses

6. a business firm that publishes newspapers

7. the physical object that is the product of a newspaper publisher

According to SemCor, the answer is 5. Erk and McCarthy, who had no involvement

in the creation of SemCor, conducted confirmatory human experiments by asking the

subjects to judge the applicability of each of the seven senses above to Example 1.2

on an integer grade of 1 to 5, with 5 being the most applicable and 1 the least. It

turned out that human subjects gave several items that are not 5. scholarly article,

high scores. In other words, though the creators of SemCor labeled Example 1.2 such

that scholarly article would be the only answer accepted as correct, people asked

to judge the candidates found that other candidates such as 2. essay or 4. medium

4



were quite plausible. Though the task for SemCor was set up under the simplifying

assumption that the candidate senses are disjoint, people judged otherwise.

The problem becomes even more stark for lexical items that have only ab-

stract definitions. Consider the following example with the target arguments:

(1.3) This question provoked arguments in America about the Norton Anthology

of Literature by Women, some of the contents of which were said to have

had little value as literature.

The example is taken from the corpus created for the task defined in Mihalcea et al.

[2004] and is extensively examined in Erk et al. [2009]. Mihalcea et al. similarly

used WordNet for labeling noun targets. In WordNet, the possible definitions/sense

items for argument are:

1. a fact or assertion offered as evidence that something is true

2. a contentious speech act; a dispute where there is strong disagreement

3. a discussion in which reasons are advanced for and against some proposition

or proposal

4. a summary of the subject or plot of a literary work or play or movie

5. (computer science) a reference or value that is passed to a function, procedure,

subroutine, command, or program

6. a variable in a logical or mathematical expression whose value determines the

dependent variable; if f(x)=y, x is the independent variable

5



7. a course of reasoning aimed at demonstrating a truth or falsehood; the me-

thodical process of logical reasoning

Unlike SemCor, the annotators for Mihalcea et al. [2004] were allowed to assign as

many senses that wanted to each target and for this particular example, they chose

items 1, 2, 3 and 7. Erk et al. [2009] again independently conducted confirmatory

experiments of human judgments and this time found that the overlap between their

subjects and the original annotators for this example was decent.

The above methods of creating and evaluating corpora based on WSD of

disjoint senses suffer from certain defects, at least one of which is that the inventories

are not as disjoint as they should be [Snyder and Palmer, 2004]. That this would

be a problem is obvious in a way because it is highly unlikely that all the meanings

for all people of all words in all contexts can be partitioned such that (1) such

a set is countable (2) such a set is pairwise disjoint. Yet that is the assumption

that underlies the proposition of disjoint word sense. A more practical problem is

that the sense inventories are manually compiled and this is usually expensive and

time-consuming.

These problems have led researchers to investigate other representations of

word meaning that are not wedded to a particular lexical inventory, are not disjoint,

perhaps are not even enumerable. One such alternative definition is based on the

notion of paraphrases, i.e. the use of semantically similar and syntactically valid

substitutions of the target word in context to represent the meaning of the target.

The benefit of this approach is that the paraphrases are generally not disjoint.

6



Furthermore, the paraphrase inventory can be compiled manually, automatically, or

through a mixture of both as opposed to definitions in a dictionary which always

require trained lexicographers to create.

We illustrate the notion of paraphrases with the following example:

(1.4) Some payments occurred after the traffickers had been indicted by federal

law enforcement agencies on drug charges, in others while traffickers were

under active investigation by these same agencies.

Here, the target of interest is charges. McCarthy and Navigli [2009] asked several

people to propose words which could be replaced with charges without changing the

meaning of the sentence too much. The annotators proposed accusation, allegation,

offence, indictment to varying degrees which were converted to weights. The target

was then labeled with all four items and the weight with which they were proposed.

This alternative proposal frees us from having to choose a single best sense

even when there are several good options. It also frees us from having to provide

verbal descriptions or definitions of the senses of accusation, allegation, offence,

indictment. Our proposal—which is just a rehash of what has been proposed by

Erk and Padó [2007] and McCarthy and Navigli [2009]—is that the meaning of a

word in context is the set of paraphrases that can be proposed for it along with

their weights.

This novel representation of “graded word sense” was proposed program-

matically by Erk and Padó [2007] and took its motivation from prototype theories

of sense representation in cognitive science [Rosch, 1975] where word types (among

7



Sentence Substitutes

Some payments occurred after the traffickers had been in-
dicted by federal law enforcement agencies on drug charges,
in others while traffickers were under active investigation by
these same agencies. (# 1812)

accusation 2;
allegation 2;
offence 1;
indictment 1

We study the methods and concepts that each writer uses to
defend the cogency of legal, deliberative, or more generally
political prudence against explicit or implicit charges that
practical thinking is merely a knack or form of cleverness .
(# 1813)

accusation 2;
allegation 3;
criticism 1

Figure 1.1: Lexical substitution example items for charge. The four digit numbers at
the end of each sentence are the unique identifiers in the corpus. The column on the
right lists the sense items with non-zero weights in the labeling scheme, i.e. items
that have been chosen by at least one annotator for the target charge. The integers
to the left of the sense items correspond to weights—the number of annotators who
have chosen the given sense item.

others) can belong to different prototypes with varying degrees of membership. It

has also been established as an open task in SemEval 2007 [McCarthy and Navigli,

2007]. It has been further investigated upon in Erk et al. [2009], Erk and McCarthy

[2009], Erk and Pado [2010], Thater et al. [2010] inter alia.

A labeled corpus that can test models of graded sense representation was

created by McCarthy and Navigli [2009]. The labeled corpus is called the English

Lexical Substitution dataset (LexSub). The corpus was labeled by asking multiple

annotators to propose substitutes (i.e. paraphrases) for a target word in a sentence.

Each annotator was allowed to propose up to three paraphrases for the target and

each proposal was given a count of one. Then for each paraphrase for a target, the

number of annotators who proposed it is tabulated and defined to be the weight for

that paraphrase for that target in that sentence.
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We reexamine Example 1.4 in Figure 1.1. The four digit numbers at the end

of each sentence are the unique identifiers in the corpus. The column on the right

lists the paraphrases with non-zero weights in the labeling scheme. The weights are

merely the number of annotators who proposed the given paraphrase for the word

in question. Only the items that have been chosen by at least one annotator for the

target charge in the given sentences are listed. The integers to the left of the sense

items correspond to weights—the number of annotators who have chosen the given

sense item.

The two usages of charge in sentences #1821 and #1813 are highly similar

and in fact share two substitutes: accusation and allegation. This representation

captures subtlety that disjoint sense representation as a winner-take-all scheme is

incapable of. It shows that there are elements of the paraphrase criticism in sen-

tences #1813 which #1812 does not display. On the other hand, there are conno-

tations of offence and indictment in #1812 that are not in #1813. Even among the

shared accusation and allegation, we see that there are varying degrees of member-

ship.

1.1 Graded word sense and probabilistic modeling

The notion of graded word sense is a fairly novel idea and as such most prac-

titioners in the field of computational semantics will find it unfamiliar. Nonetheless,

we hope they find the idea intuitive and useful. Here we provide a brief sketch of

how the notion of graded word sense can be transformed to integrate into a proba-

bilistic model. Once the transformation is complete, matters such as computability
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and inference are conventional and standard within the framework of probabilistic

graphical models. There is a vast literature on probabilistic graphical models that

the reader can consult [Beal, 2003, MacKay, 2003, Wainwright and Jordan, 2008].

Since our investigation adds nothing new to the field of probabilistic graphical mod-

els, we will mostly focus on the modeling aspects of graded word sense.

Because graded word sense is defined over a high-dimensional feature space

that is still finite (i.e. all the paraphrases that are possible for the words in a

language) and because the weights associated with each paraphrase for each context

is non-negative, the program lends itself easily to probabilistic modeling. The basis

elements of the feature space (again, all the paraphrases that are possible for the

words in the language) can be mapped one-to-one to values of a single random

variable. The non-negative weights over all paraphrases can be normalized to sum

to one.

The meaning of a word can be defined to be a posterior distribution over the

paraphrases for the target word in context. Furthermore, if we take this redefinition

of graded word sense as posterior distribution over paraphrases given some evidence

even further, we can utilize the framework of probabilistic graphical models to de-

fine what we mean by context with considerable flexibility and conduct marginal

inference.

By conducting inference to discover word meaning in context, we can no

longer refer to the activity of the probabilistic models we are about examine as

disambiguation. Disambiguation has a firmly entrenched sense of picking the best

candidate for a target word from a finite inventory. In contrast, there is no concept of
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choosing best or worst in marginal inference.2 Instead, marginal inference provides

a complete picture of all the potentialities of a random variable in the presence of

external influence. Once the shape of the graph within which the target resides has

been determined and the parameters that determine interaction between vertices in

the graph have been provided, the process of marginal inference doesn’t generate a

best element but a complete distribution. In other words, marginal inference returns

a function that is sensitive to the context.

We will not discuss the details of probabilistic graphical models and how

they can relate to graded word sense any further. We leave that for Chapter 3

where it is given a more extended treatment. The important thing to note is that

the representation generated by these models is highly attuned to the context that

a target occurs in and builds distinct representations for each occurrence or usage

of a word. This is opposed to the standard disjoint representations used in WSD

where the sense inventory is permanently fixed and any chosen sense item for a given

target is more or less a fixed square peg hammered into a constantly shifting hole.

The marriage of graded word sense with probabilistic graphical models gives

us considerable power and flexibility to explore diverse aspects of the types of evi-

dence that can influence word meaning. It has long been known that incorporating

diverse sources of evidence such as syntactic dependency labels, bag-of-words con-

text within some finite window, immediate left and right context, etc. helps perfor-

2The issue is one of terminology rather than what is or what isn’t possible with probabilistic
graphical models. Finding the set of best or maximum values for a set of random variables is solved
through the max-product algorithm and should be distinguished from marginal inference. They
are both, however, instances of probabilistic inference.
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mance in WSD [McRoy, 1992, Bruce and Wiebe, 1994]. Furthermore, much of the

literature hints that local information (e.g. left and right context, immediate depen-

dency parents and children) is much more important than global information (e.g.

document level bag-of-words context) [Yarowsky, 1993, Padó and Lapata, 2007].

These known facts about building WSD systems can be incorporated easily

and flexibly within a probabilistic graphical framework and we will investigate ac-

cordingly. Furthermore, this framework allows us to do something that, to the best

of our knowledge, has never been done before: infer the meaning of every word in

a sentence in relation to the inferred meaning of every other word in the sentence.

The analogy with WSD would be if every word in a sentence is disambiguated not

only based on the surface evidence but also based on how the words in the sentence

are disambiguated. Our experiments in terms of this type of global inference have

been moderately disappointing but we believe it is because we have not yet fully

explored all possibilities.

1.2 Overview of the dissertation

In this dissertation, we introduce a graph-based model of instance-based,

usage meaning that is cast as a problem of probabilistic inference. Models that

consider usage meaning ask fundamental questions about knowledge sources to be

used in inference/computation. Therefore, the main aim of this model is to provide a

flexible platform that can be used to explore multiple hypotheses about usage mean-

ing computation. Our model takes up and extends the proposals of Erk and Padó

[2007] and McCarthy and Navigli [2009] by representing usage meaning as a proba-
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bility distribution over potential paraphrases. We use undirected graphical models

to infer this probability distribution for every content word in a given sentence.

Graphical models represent complex probability distributions through a graph. In

the graph, nodes stand for random variables, and edges stand for direct probabilis-

tic interactions between them. The lack of edges between any two variables reflect

independence assumptions. In our model, we represent each content word of the

sentence through two adjacent nodes: the observed node represents the surface form

of the word itself, and the hidden node represents its usage meaning. The distribu-

tion over values that we infer for the hidden node is a paraphrase distribution for the

observed word. To encode the fact that lexical semantic information is exchanged

between syntactic neighbors, the graph contains edges that mirror the dependency

graph for the sentence. Further knowledge sources that influence the hidden nodes

are represented through additional edges that, for example, connect to document

topic. The integration of adjacent knowledge sources is accomplished in a standard

way by multiplying factors and marginalizing over variables.

Evaluating on a paraphrasing task, we find that our model outperforms

the current state-of-the-art usage vector model [Thater et al., 2010] on all parts of

speech except verbs, where the previous model wins by a small margin. But our

main focus is not on the numbers but on the fact that our model is flexible enough

to encode different hypotheses about usage meaning computation. In particular, we

concentrate on five questions (with minor variants):
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Nonlocal syntactic context Existing usage vector models only use a word’s

direct syntactic neighbors for disambiguation or inferring some other meaning rep-

resentation. Would it help to have contextual information instead “flow” along the

entire dependency graph, each word’s inferred meaning relying on the paraphrase

distribution of its neighbors? Consider Example 1.5 and Example 1.6. The word

class has multiple readings, including group of students and social caste. The con-

text undergraduate in Example 1.5 makes it clear that group of students is the

intended reading. This in turn makes the speak to reading of address much more

likely than the alternative apply oneself to; social class as an abstract concept is

not a group of people and hence is not usually talked to, while student bodies often

are.3 Existing usage vector models4 do not use information from more distant nodes

in the syntactic graph, but our model can use it because its graph edges mirror the

complete dependency graph.

(1.5) The teacher addressed the undergraduate class.

(1.6) [The parliament introduced new laws]. They address class as an issue.

Influence of collocational information In some cases, it is intuitively plausi-

ble to use the selectional preference of a neighboring word towards the target to

determine its meaning in context. To contextualize take in Example 1.7, where it

3The presence and absence of determiners also plays a role in determining the meaning of class

in a given context. We will also examine whether the presence of such functions words can influence
inference.

4These are models of word meaning in context that compute individual representations for each
word instance as points in vector space. For example, Kintsch [2001], Erk and Padó [2008], Erk
[2009].
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means something like ride, it will be helpful to know that bus has paraphrases like

autobus, coach, omnibus, as this yields more information than the observed word

bus alone. However, in Example 1.8, the paraphrases of long will be irrelevant or

maybe even harmful for computing a paraphrase distribution for take because take

long is a collocation. We can test the influence of collocations in our model through

the graph nodes that stand for the observed words.

(1.7) They took the bus.

(1.8) It didn’t take long.

Non-syntactic bag-of-words context To what extent can non-syntactic infor-

mation in the form of bag-of-words context help in inferring meaning? Though it

seems like this should be always, it’s more the case that this information is relevant

sometimes and sometimes it isn’t [Leacock et al., 1998]. To examine the complex

interaction between bag-of-words context, local syntactic context and non-local syn-

tactic context, we examine two different types of bag-of-words context in relation

to the remaining features. For one, we examine the effects of document level bag-

of-words in the form of document topic. We do this through a standard topic

model [Blei et al., 2003]. For the other, we examine the effects of bag-of-words as

sentence where every content word is connected to every other content word. This

is equivalent to considering a sentence as a complete graph over its content words

without regard to the syntactic relations between the tokens.
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Effects of parameterization We use maximum likelihood estimates derived from

large, parsed corpora as parameters for potential functions between two connected

nodes over a syntactic relation. However, it is well-known that raw frequency counts

often have pernicious effects on inference tasks. Therefore, we experiment with two

transformations of MLE. One interpolates various MLEs and another transforms it

by exponentiating pointwise mutual information. Which performs better?

Type of hidden nodes Our model posits a tier of hidden nodes immediately

adjacent to the surface tier of observed words to capture dynamic usage meaning.

Our first formulation is simpler in that it assumes valid paraphrases constitute the

value space of the hidden nodes. Any and all words that can substitute for a sur-

face word form the value space. This makes the model output easy to interpret

since the inferred meaning of a word is a probability mass function over meaningful

paraphrases. However, to fit this notion of paraphrases, we take an unorthodox ap-

proach in estimating parameters over hidden paraphrase transitions5 from surface

dependency relation counts. To examine a more orthodox perspective, we inves-

tigate an alternative formulation where the hidden nodes are nameless indexes as

are found in unsupervised part-of-speech tagging [Moon et al., 2010] or topic mod-

eling [Blei et al., 2003]. For this formulation, we learn parameters from the training

data through Gibbs sampling.

5To facilitate understanding, this is analogous to state transition parameters in state sequence
models except that the graphs in our models are not sequential.
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1.2.1 Plan of the dissertation

In Chapter 2, we provide more in-depth background on the task of word sense

disambiguation (WSD) including its history and developments up to the current

day. We address issues faced by current practice in WSD when using meaning

representations that posit word sense as finite and disjoint. We then discuss the

alternative meaning representation that is taken up by the dissertation—that of

graded word sense—with discussions of related literature and corpora.

We unveil our model and discuss it in much greater depth in Chapter 3. First,

we present how word meaning in context is represented as a probability distribution

with extensive examples. We then provide a summary overview of graphical models

including directed and undirected graphical models, issues regarding inference with

such models, and close the section with related literature. We finally discuss the

model proper in terms of the diverse graph topologies it can accommodate, the

evidence it can take into account, the different parameterizations, and how marginal

inference is conducted with loopy belief propagation due to the presence of loops in

the graphs.

We next describe the data and software tools we use and list some imple-

mentation details in Chapter 4. We also discuss the evaluation measures for our

experiments: generalized average precision and weighted accuracy.

In Chapter 5, we discuss experiments and their results. We begin by tab-

ulating the results from our best performing model variant and contrast it with

state-of-the-art benchmarks and baseline models, both of which it beats. We then
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show example output from the models and discuss in great detail all the variants of

the models that have been experimented with—variants in terms of graph topology,

evidentiary nodes, parameterization, etc.

We conclude with an overview and a discussion of directions for future work

to cover some of the deficiencies in the current work Chapter 6.

1.2.2 Contributions

The primary contributions of the dissertation lie in (1) the novel applica-

tion of undirected graphical models to word meaning (2) recasting the program of

graded word sense as proposed in Erk and Padó [2007] and McCarthy and Navigli

[2009] to one where word meaning is represented as a probability distribution. With

the application of undirected graphical models to word meaning as probability dis-

tribution, the problem of resolving the meaning of a word in context becomes a

problem of marginal inference. Features in vector space models of word meaning

become evidentiary nodes in graphical models which provide a unified framework

for conducting inference in a tractable manner over such evidence that scales well

in the face of increased complexity—e.g. the model can implicitly incorporate en-

tire dependency trees as features which is impossible for vector space models at

the moment. The most expansive model that we are aware of [Thater et al., 2010]

incorporates second degree vectors over dependency edges; and there are no models

which incorporate third degree or higher vectors for obvious reasons of tractability.
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Chapter 2

A background on word meaning

The topic of the meanings of words and the even more general issue of se-

mantics as it arises in natural language is one of the central issues in computational

linguistics and is properly called lexical semantics. It is for the almost tautological

fact that words are foundational building blocks of meaning in human language. In

this field of inquiry lexical inventories such as dictionaries or thesauri that were com-

piled by linguists and lexicographers have played a central role. As such, we discuss

these inventories and the notion of discrete word sense and further examine how

the use of such inventories influenced the development of word sense disambigua-

tion (WSD) as a task in §2.1. We then look into an important alternative family

of meaning representations that each derive customized representations for every

different use of some target word. These representations fall under the umbrella of

word usage models and give us considerable flexibility in the phenomena we can

examine. Finally, we discuss how these new representations help us move away from

fixed lexical inventories and end with graded word sense which is the representation

used in our models.
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2.1 Word sense disambiguation

As noted in the introduction, word sense disambiguation (WSD) is the most

widely and frequently tackled task in lexical semantics. Kilgarriff [1997] defines word

sense disambiguation as follows:

Many words have more than one meaning. When a person understands a

sentence with an ambiguous word in it, that understanding is built on the

basis of just one of the meanings. So, as some part of the human language

understanding process, the appropriate meaning has been chosen from

the range of possibilities.

Under this definition, WSD is also one of the oldest tasks in computational linguistics

and still remains challenging today. The task itself was conceived in an influential

position paper [Weaver, 1949] on using computers to automatically conduct machine

translation (MT). It was obvious early on that the ambiguity of words should be a

considerable challenge for MT. Since then, there has been considerable work on WSD

from the 60s and on [Masterman, 1961, Weiss, 1973, Lesk, 1986]. The broad outlines

of the task remained more or less the same as described previously; until a signifi-

cant change occurred when the first open challenge workshop in WSD was held in

1998 called SensEval [Kilgariff and Palmer, 1998, Kilgarriff and Palmer, 2000]. It

was sponsored by the Association for Computational Linguistics and modeled on

“DARPA competitive evaluations for speech recognition, dialogue systems, infor-

mation retrieval and information extraction.” [Kilgarriff and Palmer, 2000]. Since

then, four more SensEval/SemEval workshops in WSD have been held every three
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years1 with each bringing new perspectives that highlighted or attempted to resolve

previous limitations and problems in WSD.

Diversity was introduced to the problem by adding more languages and creat-

ing larger data sets. Each workshop no longer dealt with a monolithic WSD problem

but introduced a group of smaller problems, subtasks, variations and more along

with the standard WSD. For example, some problems were expanded so that there

may be more than one target of interest in a given sentence [Snyder and Palmer,

2004, Agirre et al., 2010]. Or certain subtasks allowed more than one sense item to

be proposed and accepted as the answer [Litkowski, 2004, McCarthy and Navigli,

2007]. The tasks were expanded even further to incorporate tasks which did not

fit under the fold of WSD. Some important tasks that fall under lexical semantics

but are not WSD are semantic role labeling [Litkowski, 2004] and textual entail-

ment [Yuret et al., 2010].

Today, state-of-the-art performance on WSD for WordNet senses—a stan-

dard lexical database developed by Miller [1995] which provides the sense inven-

tory that is used to label training and test corpora used in many WSD tasks—

is at only around 70-80% accuracy [Edmonds and Cotton, 2001, Mihalcea et al.,

2004]. One reason for this less than optimal performance was due to the fact

that sense distinctions in WordNet are too fine-grained. This led Palmer et al.

[2007] to combine fine-grained senses into coarse-grained senses. This correction

has led to considerable advances in WSD performance, with accuracies of around

1They were held in 2001 [Edmonds and Cotton, 2001], 2004 [Mihalcea and Edmonds, 2004],
2007 [Agirre et al., 2007], 2010 [Erk and Strapparava, 2010]

21



90% [Pradhan et al., 2007]. But this figure averages over lemmas, and the problem

remains that while WSD works well for some lemmas, others, like leave.v, continue

to be tough [Chen and Palmer, 2009].

2.1.1 Disjoint word sense

In WSD, polysemy is typically modeled through a list of dictionary senses

thought to be mutually disjoint, such that each occurrence of a word is character-

ized through one best-fitting dictionary sense. However, the underlying assumption

that each word has clear, disjoint senses has been drawn into question by linguists,

lexicographers and psychologists [Tuggy, 1993, Cruse, 1995, Kilgarriff, 1997, Hanks,

2000, Kintsch, 2007]. Nonetheless, there are many practical reasons for making

such assumptions. In many cases, the discrete sense inventories came from machine

readable dictionaries [Lesk, 1986] or thesauri [Masterman, 1961]. Since the late 90s,

when important non-traditional lexical databases such as WordNet [Miller, 1995] or

FrameNet [Baker et al., 1998] grew in popularity, the notion of discrete sense has

become more expansive.

But regardless of the details of the source of the inventory, in following this

program of word meaning or participating in a WSD task, one is implicitly agreeing

that the sets of meanings of words are finite, discrete and pairwise exclusive. Fur-

thermore, while the context of a word may help to disambiguate or choose among

the set of candidates, any possible meanings are bound to the set that has been de-

fined in such databases. It has often been argued that this simplistic view of words

having a finite, disjoint set of meanings is restrictive [Erk and Padó, 2007, Erk,
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2009], not realistic, and even from an application oriented viewpoint, very difficult

to integrate into existing systems such that it enhances performance [Sanderson,

2000, Agirre and Edmonds, 2006]. It should be noted, however, that promising ini-

tial discoveries have been made very recently with regard to the utility of WSD

for applications such as information retrieval [Stokoe, 2005] and machine transla-

tion [Carpuat and Wu, 2007, Chan et al., 2007].

2.1.2 Low interannotator agreement

The inadequacy of disjoint representation is evident in low agreement be-

tween annotators (more often called inter-annotator agreement or ITA in the liter-

ature) when creating labeled corpora for these tasks. To ensure the quality of the

labels in training data, often a minimum of two people are independently employed

to label a subset of target words with the correct sense item in the inventories for

such operations. A high level of ITA generally indicates one or more of the following:

(1) the task is well-defined (2) people have little difficulty learning and executing

the annotation guidelines (3) the label definitions are cognitively valid. Unfortu-

nately for sense labeling tasks, it is usually the case that the degree of agreement

between annotators for the same target when sense labeling are much lower than

it is for other well-defined tasks such as part-of-speech tagging [Kilgarriff, 1999].

In one experiment [Furnas et al., 1987], the rate of agreement was less than 20%

between annotators. In some of the more commonly used data sets, however, the

ITA has ranged from 69% [Kilgarriff and Rosenzweig, 2000] to 78.6% [Landes et al.,

1998] for different corpora with their own lexical inventories. The discrepancy in
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ITA between the two tasks of part-of-speech tagging and word sense labeling led

Wilks [2000] to say:2

. . .if humans do not have this skill [to label tokens with senses] then we

are wasting our time trying to automate it. I assume that fact is clear

to everyone: whatever may be the case in robotics or fast arithmetic,

in the NLP parts of AI there is no point modelling or training for skills

that humans do not have!

Sarcasm from one of the luminaries of the task notwithstanding, it is only valid

to ask whether there might be fundamental problems with such a representation if

even the people tasked with annotating the data cannot agree on the labels for a

substantial portion of the corpus. And if such a representational scheme constitutes

the bedrock of the most dominant task in computational lexical semantics—word

sense disambiguation—then it deserves even more to be questioned.

2.1.3 All-words word sense disambiguation

All-words WSD approaches, which typically disambiguate all words in a

sentence at the same time and in relation to each other, usually with little or no

training data, was first attempted in Cowie et al. [1992] on a small data set of 50

sentences. It has since been expanded upon and integrated as a SensEval task in

2004 [Snyder and Palmer, 2004].

Similarly, our approach can be viewed as an all-words paraphrasing model.

Among the all-words WSD approaches, the model of Nastase [2008] is most closely

2This is sarcasm on the part of Wilks and means the opposite of what it says.
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related to ours. In the model, words that are neighbors in a dependency graph

mutually disambiguate each other using word sense relatedness scores determined

through a heuristic. Preferred senses are computed in two passes through the depen-

dency graph (one top-down, one bottom-up). The setting that we use allows us to

use a more principled solution for inference using loopy belief propagation, in which

information is passed through the graphical model until convergence. Note that we

cannot use all-words WSD datasets for evaluation for our model, as they are labeled

with a single best sense for each word, while our aim is to explore alternative, more

flexible ways of characterizing meaning.

2.2 Usage based models of word meaning

The difficulty of doing WSD, together with these more fundamental issues,

leads to the question of whether it may be useful to consider alternative compu-

tational models of word meaning that do not represent a word instance through

a single best sense but instead build dynamic, context-dependent representations

for each individual instance [Erk, 2010]. There have recently been several mod-

els of word meaning in context that launch off of similar motivations. Many of

these models compute individual representations for each word instance as points

in vector space [Kintsch, 2001, Mitchell and Lapata, 2008, Erk and Padó, 2008,

Erk and Pado, 2010, Thater et al., 2010]. We will call these models word usage

models (where a usage is a word occurrence in a particular context).

Instead of assigning each usage a single best dictionary sense, word usage

models based on the distributional hypothesis compute representations that can be
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distinct for each usage. All existing usage models do this by representing word

usages as points in vector space. The simplest such model computes the meaning

of a word w in a context c (which may consist of multiple words) by summing up

the vectors for w and c [Landauer and Dumais, 1997]. Kintsch [2001] computes a

representation for a predicate w in the context of an argument a by determining

the near neighbors of a that are most similar to w and computing their centroid.

Mitchell and Lapata [2008] propose a general framework for semantic composition

through vector combination that combines the vectors u, v for two constituents in

a given syntactic relation and context. The models evaluated in the paper, how-

ever, disregard syntactic relation and context, and instantiate vector combination

as either addition (yielding the Landauer and Dumais model) or component-wise

multiplication. Mitchell and Lapata find better performance for component-wise

multiplication. Erk and Padó [2008] (below EP08) propose a model in which a pair

of syntactic neighbors mutually contextualize each other using selectional preference

vectors. Take the following examples:

(2.1) The teacher addressed the undergraduate class.

(2.2) [The parliament introduced new laws]. They address class as an issue.

A verb like address.v in Example 2.1 is associated with a vector that describes typical

direct objects of address.v (computed by summing over vectors of observed direct

objects in a parsed corpus), and conversely a noun like class.n is associated with a

vector that describes predicates that typically take class.n as an object. The usage

vector for class.n is then computed by combining the context-independent vector
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for class.n with the direct object preference vector of address.v, and conversely for

the contextualization of address.v. Erk and Padó [2009] report that using more than

one syntactic neighbor for contextualization does not improve performance of this

model.

2.2.1 Vector space models of word meaning

Approaches that derive vector space representations for whole phrases ei-

ther explore how to encode syntactic structure [Smolensky, 1990, Grefenstette et al.,

2011] or simpler structures [Mitchell and Lapata, 2008, 2010, Baroni and Zamparelli,

2010] in a vector, and how to model phrase similarity. Vector space models for larger

expressions have sometimes been used as usage vector models. For example, a vector

for the phrase address class can also be used as a vector for address.v in the context

of class.n. In fact, the Mitchell and Lapata [2008] model is a phrase model, but has

been used as a benchmark in the evaluation of word usage models. The model that

we present in this paper derives a separate representation for each word in context,

rather than a joint representation for a phrase. It is thus a word usage model, but

not a model for larger expressions.

2.2.2 Graded word sense

Thater et al. [2009, 2010] (below TFP10) also use selectional preferences

for contextualization, but they use all syntactic neighbors instead of just one. They

represent each word through two vectors. The first-order vector for a word w has

dimensions 〈rel , v〉 for co-occurrence of w with v in syntactic relation rel. For

example, address.v could have a dimension 〈obj, problem.n〉 showing co-occurrence
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of address.n with problem.n as direct object. The second-order vector for a word

w consists of separate subvectors for each dependency relation rel. The subvector

for rel is a combination of first-order vectors of rel-neighbors of w, similar to the

selectional preference vectors of EP08. To compute a usage vector for address.v

in Example 2.1, the TFP10 model modifies the second-order vector of address.v by

combining its subj-subvector with the first-order vector for teacher.n, and combining

its obj-subvector with the first-order vector for class.n. This is the model if w is

a verb or noun. For adjectives and adverbs, the model computes the usage vector

for the headword of w in the dependency graph as the usage vector of w. This

step improves performance, but having the meaning of a word be the meaning of

its headword is hard to interpret. Also note that while the Thater et al. model

uses all syntactic neighbors for contextualizing a word w, these neighbors act on

independent sub-vectors of w rather than on a common structure. Erk and Pado

[2010] (below EP10) argue that the whole sentence context, rather than just local

syntactic context, should be used to contextualize a word. However, their model

represents a sentence as a bag of words, ignoring syntax.

Like these models, our model computes an individual representation for each

usage. In contrast to usage vector models, we represent meaning in context through

a distribution over paraphrases. Among the models discussed above, the ones most

closely related to our model are EP10 and TFP10, which both use selectional pref-

erences for contextualization, as syntactic neighborhood is the main source that our

model uses for inference. In contrast to EP10 and TFP10, we aim to provide a

general, uniform mechanism for inference that uses as knowledge sources all direct
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syntactic neighbors, nodes at greater distance in the dependency graph, and docu-

ment context. EP08 only consider a single, selected syntactic neighbor. TFP10 use

all direct syntactic neighbors, but have them modify separate subvectors rather than

act on a common structure. They also employ different representations depending

on the part of speech of the word to be contextualized. None of them use nonlocal

syntactic context.

2.2.2.1 Lexical substitution

McCarthy and Navigli [2009] proposed representing word usages through

weighted paraphrases (see Figure 3.1). In the Lexical Substitution (below, Lex-

Sub) dataset that they introduced for the 2007 SemEval task, each paraphrase

is weighted by the number of annotators who proposed it.3 Participants had to

perform two tasks: determining paraphrase candidates for each target, and rank-

ing candidates for each usage. Participating systems mostly collected paraphrase

candidates from manually created resources, mainly WordNet [Fellbaum, 1998].

The most common methods for ranking candidates (e.g., [Giuliano et al., 2007,

Hassan et al., 2007, Yuret, 2007]) were to substitute the candidate for the tar-

get in the given sentence context and to search for the resulting phrase in an n-

gram corpus [Brants and Franz, 2006], or to use a language model. The LexSub

dataset focuses on paraphrases for single words. In contrast, approaches to learn-

ing paraphrases from text usually consider both single-word and multi-word para-

phrases (e.g., Bannard and Callison-Burch [2005], Barzilay and McKeown [2001]).

3Annotators could also generate more than one paraphrase per item.
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Approaches to learning inference rules from text consider not only (single- and

multi-word) paraphrases but also other types of rules, such as enablement (fight →

win) and happens-before (buy → own) [Lin and Pantel, 2001, Chklovski and Pantel,

2004, Szpektor and Dagan, 2008, Berant et al., 2010]. A related task is to determine

the applicability of an inference rule in a given sentential context [Pantel et al., 2007,

Szpektor et al., 2008, Poon and Domingos, 2009, Ritter et al., 2010]. Approaches to

this problem use similarity in selectional preferences as well as similarity in sentence

context to determine whether an inference rule applies in a given context.

2.2.2.2 A probabilistic digression on LexSub

There is a very interesting frequentist undercurrent to how both graded word

sense and the lexical substitution task is defined. The motivations are implicitly

frequentist in terms of how word senses are defined. The weight associated with

each paraphrase for a given target is the number of people who have proposed that

paraphrase. Given enough people, the definition of the weight associated with each

paraphrase in the English Lexical Substitution task corresponds to “frequencies of

outcomes in random experiments” [MacKay, 2003] or in the case of LexSub the

frequencies at which each paraphrase has been proposed.

In this situation, it is more satisfying to state that the meaning of a word

is the ratio over the aggregate counts of the paraphrases that are proposed for the

word by the entire speech community. Yet, it would be interesting for no other

reason than satisfying curiosity whether a strongly Bayesian approach as is implicit

in our model can derive or match results that are frequentist in motivation.
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Chapter 3

Model

We define word meaning in context to be a probability mass function over

a set of paraphrases. This definition further defines the modeling and inferential

framework to be used for inferring the meanings of words in the face of evidence:

probabilistic graphical models. This framework determines how the evidence is se-

lected and transformed and how inference is conducted over this evidence. The

paraphrases are defined to be the values for the random variable that represent

meaning—we will call this random variable the paraphrase node—and the prob-

ability mass function—we will call this the paraphrase distribution—over this

paraphrase node in relation to any relevant evidence is taken to represent what a

word means. By allowing the surrounding evidence to determine the mass function,

we take this meaning to be dynamic and be influenced by its surrounding context. It

therefore falls under a more general word usage model where individual instances

of words in context and their derived representations take center stage rather than

a predefined sense inventory. With such a definition, we gain several advantages in

that everything in the model, from representation to learning to inference can be

dealt with in the unified framework of probabilistic graphical models [Jordan, 2004].

In this chapter, we first discuss what it means to represent word meaning as a

probability mass function in context—more accurately a conditionally defined prob-
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ability mass function. We then provide a brief overview of probabilistic graphical

models as it relates to our model. We next describe the various sources of evi-

dence that are available and how they may be incorporated into the study. We then

describe the value space of our paraphrases and the definition of our parameters.

3.1 Representing word meaning: Word meaning as probability mass
function

As mentioned in the previous Chapters 1 and 2, our models will learn how to

represent words in context as probability mass functions, or paraphrase distributions

over paraphrase nodes, in context. We will then build concrete evidence structures

and inference procedures around it.

As a concrete example, consider the following sentences where the word we’re

interested in is brightest:1

(3.1) In fact, during at least six distinct periods in Army history since World

War I, lack of trust and confidence in senior leaders caused the so-called

best and brightest to leave the Army in droves.

(3.2) An evening of classical symphonic music, played by the next generation

stars in the American orchestral scene, can be savored at the New World

Symphony, a special Miami institution that nurtures the best and brightest

young symphonic musicians.

1These are sentences 5 and 6, respectively, from the English Lexical Substitution task at
SemEval-2007[McCarthy and Navigli, 2007, 2009]
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An important goal of our model is to resolve the meaning of the word brightest within

the contexts that it appears in above and represent the resolved meaning as a

probability distribution. More specifically, we represent the meaning of a given

word as a conditional probability distribution that is dependent on context. The

probability distribution over the meaning of the word brightest, whose meaning we

will associate with the random variable m, is conditioned on the entire sentence s

(or possibly some other context) in which it appears. In other words, we want to

calculate the conditional probability mass function:

P (m|s)

We refer to the value of the context provided by sentence (3.1) as s1 and the context

provided by sentence (3.2) as s2. Then our goal is to derive or infer the mass

functions

P (m|s = s1)

and

P (m|s = s2)

respectively and we take each of the functions themselves as representing

the meaning of brightest in each respective context. Also, to emphasize, the

random variable m is associated with the meaning of brightest and is therefore

hidden; it is not an observed random variable that is associated with brightest itself.

However, we note that, for the core variant of our model, the hidden variables are

not nameless indexes such as can usually be found in unsupervised models of part-

of-speech tagging [Moon et al., 2010] or document topic modeling [Blei et al., 2003].
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The values of the hidden nodes are meaningful and as such will relate to the

surface statistics of observations in greater degree than is usual for a model that

posits hidden nodes.

An important question for fleshing out these functions then is to define the

range of values that m can assume. A first solution is to posit that the entire finite

vocabulary for English according to some lexical resource constitutes the range of

values for m. Listing each of the possible values that m can take on in alphabetical

order, from the first word to the last word,2 this would be:

P (m = a|s = s1) = 0

. . .

P (m = zymosan|s = s1) = 0

for brightest in the context of sentence (3.1) and where the ellipsis stands in for every

word in between a and zymosan. To be thorough, we also show the probability mass

function for the other sentence:

P (m = a|s = s2) = 0

. . .

P (m = zymosan|s = s2) = 0

for brightest in the context of sentence (3.2).

2These are the first and last words according to the online Merriam-Webster dictionary
(www.merriam-webster.com). Also, zymosan is defined as “an insoluble largely polysaccharide
fraction of yeast cell walls”
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That is, the meaning of brightest within the context of some sentence is not

represented by the probability of P (m = a|s) or by P (m = zymosan|s) but by

the entire probability mass function itself whose domain stretches from m = a to

m = zymosan. Obviously, not all of the values of m have a probability mass of zero,

but we assume that the vast majority of them do. Furthermore, taking a vaguely

Bayesian stance, it seems natural to assume that no probability mass is allotted to

either a or zymosan to represent the meaning of brightest in context.

Ignoring the majority with zero probability mass, we say that the meaning

of the word brightest in the context of sentence (3.1) is

P (m = capable|s = s1) = 0.11

P (m = clever|s = s1) = 0.22

P (m = intelligent|s = s1) = 0.33

P (m = motivated|s = s1) = 0.11

P (m = promising|s = s1) = 0.11

P (m = sharp|s = s1) = 0.11

Any value of m that has not been listed above is defined to have probability mass

zero.3

Similarly for brightest in sentence (3.2), the values with non-zero probability

3These numbers or weights are taken from the gold data of the English Lexical Substitution
task [McCarthy and Navigli, 2009]. The weights are non-negative integer counts in the gold and
we have normalized them here to sum to one.
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are

P (m = gifted|s = s2) = 0.14

P (m = promising|s = s2) = 0.14

P (m = skilled|s = s2) = 0.14

P (m = talented|s = s2) = 0.43

P (m = up-and-coming|s = s2) = 0.14

To facilitate comparison, we present the mass functions again, side by side:

m s=sent.(3.1) s=sent.(3.2)

capable 0.11 0

clever 0.22 0

gifted 0 0.14

intelligent 0.33 0

motivated 0.11 0

promising 0.11 0.14

sharp 0.11 0

skilled 0 0.14

talented 0 0.43

up-and-coming 0 0.14

where the first column on the left lists some possible values of m and the second

and third columns list the probability masses of the values in the context of sen-

tences (3.1) and (3.2), respectively. The only value of m where there is any overlap in

terms of both distributions having non-zero values is promising. This reflects that

both usages of brightest are related semantically and are not disjoint in meaning.

There are several interpretations that can be given to the above functions.

One possible interpretation is that, in the context of sentence (3.1), 33% of the
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meaning of brightest is captured by intelligent, 22% by clever, 11% by capable

and so forth. Similarly, 43% of the meaning of brightest is captured by talented,

14% by gifted and so forth in the context of sentence (3.2). This can be reworded

so that the above probability values represent soft cluster membership. That is,

there are clusters that are labeled with words such intelligent and zymosan and

brightest in the context of sentence ( 3.1) belongs 33% to the intelligent cluster

and 0% to the zymosan cluster and so forth. Equivalently, it can be restated as a

mixture model.

The above functions also tell us that most other words—the words that are

in our vocabulary but are not listed above because they had zero probability—do

not represent the meaning of brightest in these contexts in any way. Again, from a

vaguely Bayesian viewpoint, it seems plausible that P (m = zymosan|s) = 0 when

s = s1 or s = s2 or even in virtually any other context that the word brightest can

occur in.

What about words which can capture the meaning of brightest but had zero

probability in the above examples? What about words such as luminous or shiny

that are related in meaning to bright in the right context? Consider the following

example where again the word of interest is bright:45

(3.3) The roses have grown out of control, wild and carefree, their bright bloom-

ing faces turned to bathe in the early autumn sun.

4Our model will treat sets of words such as bright and brightest as belonging to the same type
or as instances of the same lemma

5This is sentence 3 from the English Lexical Substitution task [McCarthy and Navigli, 2009]

37



We will refer to this sentence as s3. Here we say that the meaning representation of

bright in the above sentence as a probability mass function is:6

P (m = brilliant|s = s3) = 0.2

P (m = colorful|s = s3) = 0.4

P (m = gleam|s = s3) = 0.2

P (m = luminous|s = s3) = 0.2

In this case there is no overlap with the previous meaning representations of

bright/brightest:

m s=sent.(3.1) s=sent.(3.2) s=sent.( 3.3)

brilliant 0 0 0.2

colorful 0 0 0.4

gleam 0 0 0.2

luminous 0 0 0.2

capable 0.11 0 0

clever 0.22 0 0

gifted 0 0.14 0

intelligent 0.33 0 0

motivated 0.11 0 0

promising 0.11 0.14 0

sharp 0.11 0 0

skilled 0 0.14 0

talented 0 0.43 0

up-and-coming 0 0.14 0

Given the three instances of bright in sentences (3.1) ∼ (3.3), it seems plau-

sible to say that the usages in sentences (3.1) and (3.2) are more closely related to

6Again, these weights are taken from the gold data of the English Lexical Substitution
task [McCarthy and Navigli, 2009]
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each other while the usage of bright in sentence (3.3) is quite distinct from the previ-

ous two. The argument for greater similarity is based purely on the fact that there

is at least one value of m, namely m=promising, where P (m|s=s1) ·P (m|s=s2)6=0

whereas such a value doesn’t exist for either P (m|s=s1)·P (m|s=s3)6=0 or P (m|s=s2)·

P (m|s=s3)6=0. Or we could use an established measure such as Jensen-Shannon

divergence or Kullback-Leibler divergence, but the presence of many zeros in the

distributions involved means a tweak would be required for either to work. Though

we, as humans, might intuitively grasp that one of these is not like the others, the

goal of our model is to capture such intuitions by dint of numbers only.

Such a representational structure lends itself to probabilistic graphical mod-

els wherein we can manipulate not just the output of an inference but lay down the

scaffolding upon which we conduct parameter learning. Before we can talk about the

structure of the evidence and how information can flow, we first discuss probabilistic

graphical models in general.

3.2 Probabilistic graphical models

When modeling complex stochastic phenomena, there will be differing de-

grees of interaction or dependence between the some of the subsets of the random

variables involved. For various reasons, it is often necessary to posit that certain

subsets of random variables are independent of other subsets, which lead to different

factorizations over the same set of random variables. The reasons are diverse and

always results in some kind of simplification of the models. The reason could be

a practical issue such as computational tractability so that any calculations termi-
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nate within a reasonable period. The reason could be a formal or representational

issue that has to do with the coherence and comprehensibility of the model so that

humans can easily understand important interactions and correlations—or at least

assumptions of such correlations—between variables. The reason could simply be

that certain independence assumptions are justified by investigating and statisti-

cally testing levels of interaction between independent variables and deriving a valid

model based on such exploratory analysis. In many cases, even though this last ap-

proach (where dependence and independence assumptions derive from exploratory

statistical analysis) is the most valid and justified, independence assumptions must

be made for the reason that the computational challenges in terms of time or space

are too great.

Simplifying such concerns, such a probabilistic model can be represented

through a graph where the random variables constitute the nodes or vertices, edges

between pairs of nodes model statistical dependencies between such nodes, and lack

thereof between pairs of nodes reflect independence assumptions or knowledge of

statistical independence between such nodes. Such a composition of a probabilistic

model and its representation as a graph is called a probabilistic graphical model. One

can build a visual representation of the statistical dependencies and independence

assumptions between random variables of interest and this facilitates understanding

of the model on a global level with a larger view.

With the definition of our current model as a probabilistic graphical model,

we gain benefits of standardized procedures for inference and learning. Inference

refers to the process of reaching conclusions given the structure of the graph. Learn-
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ing refers to the process wherein we learn the parameters necessary for conducting

inference.

3.2.1 Directed versus undirected graphical models

A B

C

(a)

A B

C

(b)

Figure 3.1: Examples of graphical models. (a) is a directed graph. (b) is an undi-
rected graph. The only difference graphically is that the former has arrows for edges
and the latter has unadorned edges.

There are two basic types of probabilistic graphical models: directed graphi-

cal models and undirected graphical models. Directed models represent assumptions

of causality between relevant random variables whereas undirected models represent

assumptions of dependence or correlation without implying causality between the

variables. Regardless of the distinction, the shape of a graph over a set of random

variables determines the factorization over some probability density or mass function

associated with these random variables.

Formally, we define a graph G = (V,E) where V = {x1, . . . , xn} is the set of

nodes which correspond to random variables and E ⊂ V ×V is the set of edges. If the

graph is undirected, then if (xi, xj) ∈ E where xi, xj ∈ V , then (xj , xi) refers to the

same edge. If the graph is directed, then edges are properly treated as ordered pairs.

Here and in what follows, when discussing directed graphs—including dependency
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parses and its transformations—we will maintain the convention that in the pair

(xi, xj) the parent is on the left and the child is on the right, or xi → xj.

In directed graphs, which are also called Bayesian networks, for a given node

xi, its parent nodes π(xi) ⊂ V are defined to be π(xi) = {xj ∈ V : (xj , xi) ∈ E}.

Following convention, we define a variable x = V as the set of random variables that

is equivalent to V , but for use within distribution functions. In a directed graph G,

the distribution p(x) factorizes as follows:

p(x) =
∏

xi∈V

p(xi|π(xi)) (3.4)

For now, we also take the liberty of defining functions by their arguments—e.g.

p(xi) and p(xj) are distinct functions when xi 6= xj—and dispense with devising

separate indexes for functions. With this general definition, the directed graphical

model defined in Figure 3.1a factorizes to:

p(A,B,C) = p(C|A,B)p(A)p(B) (3.5)

It is important to note that the factorization of a distribution also defines in practice

the functions—near equivalently, the parameters that define the functions—that

are expected to exist a priori or are expected to be learned. In the example of

Figure 3.1a and its factorization above, the functions p(A), p(B), p(C|A,B) are the

basic building blocks from which other functions such as marginal distributions or

conditional distributions are derived.

In the case of undirected models, which are also called Markov random

fields (MRF), the factorization is similarly defined over nodes that are connected
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but without the distinction of parents or children. However, we no longer call

the functions associated with groups of random variables probability mass/density

functions. Instead they are called potential functions, which we denote with F .

These potential functions are generally defined over the maximal cliques in the

graph [Wainwright and Jordan, 2008], where a maximal clique C is a fully connected

subset of V such that (xi, xj) ∈ E for all xi, xj ∈ C and, for all xk ∈ V \C, there is

some xi ∈ C such that (xi, xk) /∈ E. Calling the set of maximal cliques C ∈ C, we

can factorize p(x) as:

p(x) =
1

Z

∏

C∈C

f(xC) (3.6)

where Z is a suitable normalization constant such that
∑

x
p(x) = 1. Following con-

vention, we define a separate variable for C when referencing them within potential

functions. We define xC to be the set of random variables equivalent to C.

To illustrate this with the toy graph Figure 3.1b, the distribution factorizes

into:

p(A,B,C) =
1

Z
f(A,C)f(B,C) (3.7)

Again, the functions f(A,C) and f(B,C) form the basic building blocks for sub-

sequent derivations and no further decomposition is defined for either f(A,C) or

f(B,C).

As can be seen, one immediate distinction between the factorizations over

directed models and undirected models is that one uses conditional distributions

and the other doesn’t. While this isn’t a categorical distinction, it is common in
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practice. There is another important distinction between Bayesian networks and

MRFs. This is that the product terms in the factorization of the latter, which are

more commonly called potential functions, are not subject to the same summation

constraints as the former. Whereas product terms in Bayesian networks need to be

probability distributions that sum to one, the only constraint on individual potential

functions is that they be non-negative and bounded.

One reason for the distinction between directed and undirected models is

in conducting inverse inference or learning given observations. If we have little

knowledge of the parameters involved in the models except perhaps the parametric

form and we have observed the realizations of certain random variables, we can hold

the random variables that have been observed fixed and make more informed guesses

as to the random variables that have not been observed. Or if the parameters are

known, conditioning on certain variables will reduce the uncertainty involved in the

remaining variables [Cover and Thomas, 2005].

The difference between directed models and undirected models comes into

play when attempting to factorize these conditional distributions. We can show how

this is so for the simple examples in Figure 3.1, where the observed variable B which

is also the conditioning variable is filled in. For the directed graph of Figure 3.1a,

the factorization over its unconditioned distribution is defined as in eq. (3.4). But

if conditioned on C:

p(A,B|C) 6= p(A|C)p(B|C)

in general.
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In contrast, the following does hold for the undirected graph in 3.1b: 7

p(A,B|C) = f(A|C)f(B|C)

where

f(A|C) =
f(A,C)

∑

A f(A,C)

and

f(B|C) =
f(B,C)

∑

B f(B,C)

and the normalization constant Z naturally cancels.

Another important point that will influence how calculations are conducted

in our (to be defined) undirected model is the parameter tying that occurs when

variables such as C are marginalized out. In the case of Figure 3.1b, assume we are

marginalizing out the variable C. The operation of marginalizing over C refers to

summing over the values of C such that a new function without C is derived:

p(A,B) =
∑

C

p(A,B,C) =
∑

C

1

Z
f(A,C)f(B,C)

The difference between the directed and undirected version of the three node graphs

in Figure 3.1 is that the factorization of

p(A,B) = p(A)p(B)

7For a quick proof: p(A,B|C) = P (A,B,C)
P

A,B P (A,B,C)
= f(A,C)f(B,C)

P

A,B f(A,C)f(B,C)
= f(A,C)f(B,C)

(
P

A f(A,C))(
P

B f(B,C))
=

f(A|C)f(B|C). Note that this generalizes even to cases where A, B, C are sets of variables rather
than single variables.
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is possible for the directed graph. This is possible since
∑

C p(C|A,B) = 1 and

therefore

p(A,B) =
∑

C

p(A,B,C) =
∑

C

p(C|A,B)p(A)p(B) = p(A)p(B)

In comparison, it is usually the case that

p(A,B) 6= p(A)p(B)

where

p(A,B) =
∑

C

p(A,B,C) =
∑

C

1

Z
f(A,C)f(B,C)

for undirected models.

For directed models, the derivation of dependence and independence be-

tween sets of random variables due to marginalization or conditioning in a directed

graphical model is a little more complicated than is implied by the simple example

in Figure 3.1a. Since Bayesian networks are immaterial to our model of word mean-

ing, we refer the reader to [Bishop, 2006, Chap. 8] for an in-depth discussion. In

contrast, our discussion of 3.1b above draws a complete picture of what occurs when

marginalizing or conditioning over sets of variables in an undirected graph. Given

three maximal cliques C1, C2, C3 and if all paths between C1 and C3 go through C2,

then it will hold that (1) C1 and C3 are independent of each other conditioned on C2

and (2) C1 and C3 are not independent of each other in general if C2 is marginalized

out.
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3.2.2 Undirected graphs and factor graphs

In discussing undirected graphical models in the previous section, we stated

that it’s “generally” the case that potential functions are defined over maximal

cliques. This is because the correspondence between factorizations into potential

functions and a graphical model is not one to one. Consider the example of 3.2a.

A B

C

(a)

A B

C

f

(b)

A B

C

f1

f2 f3

(c)

Figure 3.2: Left: a simple undirected graphical model with three nodes A,B,C.
Right: Two possible factor graphs (out of many) for this undirected graphical model.

There might be situations where it is more advantageous to posit factoriza-

tions at the pairwise level such that

p(A,B,C) = f(A,B)f(B,C)f(C,A) (3.8)

However, under general practice, p(A,B,C) should be defined such that no

factorizations are possible. And so the graph in Figure 3.2a is ambiguous between

the factorization of eq. (3.8) and no factorization at all.

An alternative formalism that removes such ambiguities is that of factor

graphs [Kschischang et al., 2001]. The computational machinery underlying factor

graphs in terms of incorporating evidence, learning from the evidence and reach-

ing conclusions based on this evidence is no different from what goes on with most
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directed and undirected graphical models. Instead, factor graphs are a more ex-

plicit formalism that require each and every product term in a factorization to be

represented as individual nodes in the graphical presentation.

Formally, a factor graph is a bipartite graph with two types of nodes: fac-

tor nodes—represented as filled square nodes—and variable nodes—represented as

empty round nodes. As a bipartite graph, edges exist only between factor nodes

and variable nodes. Edges between factor nodes and factor nodes or between vari-

able nodes and variable nodes are illegal within the framework. Finally, edges are

established between a factor node and one or more variable nodes if and only if the

variables are arguments of the factor node.

Taking the example of Figure 3.2a again, there are at least two possible

factorizations. The first is when

p(A,B,C) = f(A,B,C) (3.9)

where no subsequent factorization is possible over p(A,B,C). The second is when

p(A,B,C) = f(A,B)f(B,C)f(C,A) (3.10)

No matter which factorization represents the underlying model, the formalism of

Markov random fields allows only the representation in 3.2a.

When we use the alternative formalism of factor graphs, we are able to

distinguish between eq. (3.9) and eq. (3.10) in our graphical representation. Since

the former has only one product term (or factor) involved, this factor is mixed into

the existing set of variable nodes as a new factor node. Then edges are built between
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the arguments of the factor—which is all three of A,B,C—and the factor node. This

becomes Figure 3.2b where the factor nodes are represented with filled square nodes.

With eq. (3.10), in contrast, there are three factors, each of which takes a different

set of arguments. As such, we give each of the factors different labels—f1, f2, f3

for convenience—and connect each factor with its respective arguments. This is

represented in Figure 3.2c.

Furthermore, we can use factor graphs to remove notational clutter. For

example, if we know that some random variables are observed variables and therefore

act as constants in terms of an implementation, we can remove such random variables

and integrate them into the factors themselves with the understanding that such

variables are held fixed within any calculations involved.

A B

C

f1

f2 f3

(a)

A

C

fB

(b)

Figure 3.3: Conversion of a factor graph with explicit factors and with observed
variable arguments to a smaller graph

Consider the model in Figure 3.3a where B is an observed variable. Since

we know that the value of B is fixed to, say, b, all calculations over eq. (3.10)

actually only vary over two variables, A and C. We therefore create a new factor

that incorporates the following

p(A,B = b, C) = f1(A,B = b)f2(A,C), f3(B = b, C)
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into a new function

fB(A,C) , p(A,B = b, C) = f1(A,B = b)f2(A,C), f3(B = b, C)

and we obtain a simpler factor graph in Figure 3.3b which will help us remove some

clutter later on where more variables are involved or the model is presented in an

abstract manner.

A B

C

(a)

A B

C

f
fA fB

(b)

Figure 3.4: Conversion of directed graphical model to factor graph

As a final note, we show how a directed graph may be converted to a factor

graph. We consider again the simple directed graph in Figure 3.1a and its factor-

ization in eq. (3.5):

p(A,B,C) = p(C|A,B)p(A)p(B)

The graphical representation dictates that p(A,B,C) be factorized into the three

terms of p(C|A,B), p(A) and p(B). One part of the conversion to factor graphs is

straightforward since all that is required is that each of the product terms should

be represented through its own factor node and that each factor node should be

connected to its argument. We show the conversion of the directed model to a

factor graph in the two graphs of Figure 3.4 where eq. (3.5) is now

p(A,B,C) = f(A,B,C)fA(A)fB(B)
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It is obvious that there is some amount of information loss when moving from di-

rected graphs to factor graphs since what was explicitly a conditional probability

distribution (i.e. p(C|A,B)) is now a more general function which need not neces-

sarily follow the summation constraint of probability distributions which must sum

to one.

With these preliminaries in place, we are now ready to discuss inference over

graphs, i.e. the process of making informed decisions with probabilistic graphical

models. Another way in which this distinction between directed and undirected

models is critical when conducting inference over large sets of random variables

such as in our model. We discuss this in the following section.

3.2.3 Inference, belief propagation and loopy belief propagation

Once a graphical model has been formulated, there are standardized proce-

dures of conducting calculations over the nodes involved. In many cases, the goal

of the calculations is to conduct inference. Given that there are certain nodes that

are considered to be evidence and other nodes that can be considered to capture

the information emerging from the evidence to which they are connected, infer-

ence is a general catch-all term for methods that either process or summarize that

information. Within these inference methods, our specific interest is in marginal

inference.

More formally, the goal is to conduct marginal inference, which can be posed

as follows. Given a set of random variables m and some measure of its information

Ps(m) in relation to another set of random variables s, what do we know about a
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specific random variable mi ∈ m solely in relation to s? The answer to this question

is obtained by marginalizing out (i.e. summing over) the random variables that are

not mi:

Ps(mi) =
∑

m\{mi}

Ps(m) (3.11)

The above is often formulated by placing the evidentiary random variables s as argu-

ments to the functions involved—e.g. P (m, s)—but we will maintain the convention

of incorporating evidence as subscript to reduce the length of notation involved and

simplify some notation.

The left hand side of eq. (3.11) is known as the marginal of mi and such

functions as a whole in relation to Ps(m) (called the global function) are referred

to as marginals. In this most general form, this is an intractable problem, but if

some random variables are independent of each other or are assumed to be indepen-

dent, the ordering of the summation can be carefully arranged so as to make this

pliable. This is a result of the very simple fact that multiplication is distributive

over addition [Aji and McEliece, 2000]. Graphical representations of these indepen-

dence assumptions such as factor graphs help formalize and visualize the models

that derive from them.

There are standardized procedures for conducting exact marginal inference

such as the sum-product algorithm [Kschischang et al., 2001] or belief propaga-

tion [Yedidia et al., 2001]. The caveat is that such procedures are guaranteed to

be exact only for graphs without loops such as those in Figure 3.1. Such a guar-

antee cannot be made for arbitrary graphs including some of the graphs built from
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dependency trees that we use in our model because of the presence of loops. In such

situations, an alternative approach called the junction tree algorithm exists which

permits exact inference in spite of the presence of loops [Cozman, 2000]. However,

an internal step in the application of this algorithm—namely, the ordering of vari-

ables to be eliminated for message passing—is known to be an NP-hard problem for

arbitrary graphs [Beal, 2003]. Therefore, to conduct inference within our models, we

use loopy belief propagation [Murphy et al., 1999] which is a modified application

of the general belief propagation algorithm in spite of the presence of loops. This

has been shown to work well in practice [Murphy et al., 1999].

3.2.4 Graphical models in computational linguistics

In computational linguistics, undirected graphical models have mainly been

used in the shape of conditional random fields [Lafferty et al., 2001, Sutton et al.,

2007] and Markov Logic Networks [Riedel and Meza-Ruiz, 2008, Yoshikawa et al.,

2009, Poon and Domingos, 2009]. Such models have also occasionally been used

for structural tasks such as morphology-based word generation [Dreyer and Eisner,

2009], noun-phrase chunking [Sutton et al., 2007], and dependency parsing [Smith and Eisner,

2008]. Directed graphical models have seen much more use in computational lin-

guistics (e.g. topic models for semantics or HMMs for low-level syntax). In the

context of modeling word meaning, Brody and Lapata [2009] use topic models for

sense induction. They rely mainly on context word and word n-gram features, find-

ing dependency features to be very sparse. Deschacht and Moens [2009] define a

language model as a Hidden Markov Model in which observed words are generated
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by hidden variables ranging over the whole vocabulary. We cannot directly com-

pare to either of those models: The Brody and Lapata model cannot be mapped to

paraphrases in any straightforward way, and the Deschacht and Moens model does

not constrain the hidden word to be a paraphrase. We will evaluate a variant of

the Deschacht and Moens model that only considers paraphrases (below called the

sequential model).

3.3 Probabilistic modeling of graded word sense

The model that we introduce is a usage model of word meaning, where each

word representation is vector valued, context dependent and inferred dynamically.

Such a model contrasts with models in WSD which assume a fixed, discrete sense

inventory and are dominant in practice. While existing usage models represented

a target word in context through a vector of contextual co-occurrence dimensions,

we use a distribution over potential paraphrases of the target. In our case, the

task of computing a usage representation is defined as a probabilistic inference task

over graphs. We examine several probabilistic models to investigate how different

knowledge sources and graph topologies affect predicted word meaning.

Though all the models we investigate have slightly different graphs, they

share a common foundational node-node pair. As the building block for all our

models, we construct two adjacent nodes for each content word of the sentence:

one node (the observed node) represents the surface form of the word itself and the

other node (the hidden node) represents its usage meaning. We call the distribution

inferred over the hidden node given the evidence from its observed context the
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paraphrase distribution of the observed word. This observed context may include

evidence as diverse as the word’s heads and dependencies, its left and right context,

the entire sentence, or even the entire document. The integration of such knowledge

sources is accomplished in a standard way by summing over all hidden variables and

multiplying the corresponding factors. This process of integration is inference, and

contextualization is the inference of paraphrase distributions.

To briefly recap the previous sections, we will be using factor graphs to

represent our models. A factor graph is a bipartite graph over two types of nodes,

nodes that correspond to variables and nodes that correspond to factors. A factor

is a function whose arguments are the variable nodes adjacent to the factor node.

The factor graph as a whole represents the product of all the factors in it.

3.3.1 Evidence and graph transformations

Depending on the types of evidence that we want to use for contextualization,

we use different topologies in the graph over which we conduct inference. The first

piece of evidence that we consider is the sentence.

3.3.1.1 The sentence as evidence: Sequential order

When considering a sentence as the basic frame of evidence, the simplest

option is to take the surface left-to-right order of the sentence as given. Furthermore,

if we make the assumption that all information is strictly local, i.e. the meaning of

a word is only influenced by the words immediately to the left and right of it, we

have even simpler graphs which are star shaped graphs centered on the paraphrase
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node of interest.

Illustrating with the sentence of Example 1.1

the box was in the pen

we tag the words for part-of-speech and lemmatize the tokens:

the.DT box.NN be.VB in.IN the.DT pen.NN

We make the assumption that function words have no influence on paraphrase dis-

tributions and so remove them from consideration:

box.NN be.VB pen.NN

We do not consider non-auxiliary verbs such as be or do to be function words and so

retain them. The same applies to pronouns such as she or I. Then we duplicate the

nodes such that star shaped graphs centered on a content word of interest can be

created (we leave the POS-tags out to remove clutter) and we add the paraphrase

nodes attached to each content word of interest:

box

mb

be box be

mbe

pen be pen

mp

Then, because we want adjacent words to directly affect the paraphrase nodes, we

move the edges so that the adjacent words are directly connected to the paraphrase

nodes:
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mb

fbox fbe

mbe

fbox fbe fpen

mp

fbe fpen

And the paraphrase distribution for each paraphrase node is computed as:

p(mb) ∝ fbox (mb) fpen(mb)

p(mbe) ∝ fbox (mbe) fbe(mbe) fpen(mbe)

p(mp) ∝ fbe(mp) fpen(mp)

All that is involved in calculating the paraphrase distribution of, say, the paraphrase

node of be (mbe) is multiplying each of the three product terms that model the

influence that each of the adjacent observations have on the possible paraphrases

for be: fbox (mbe), fbe(mbe), and fpen(mbe). This reflects our assumption for this

variant of our model that information is strictly local.

More generally, for a given string of space delimited tokens (w1, . . . , wn)—

which have been suitably POS-tagged, lemmatized and stripped of function words—

we create a coindexed string of paraphrase nodes (m1, . . . ,mn) and graph compo-

nents centered on each of those paraphrase nodes that only include the observation

immediately to the left (if it exists) and to the right (if it exists) within a sentence

boundary. Therefore, for some paraphrase node mi, the only nodes of the compo-

nent centered on this node are mi, the factor node to the left f l
i−1 (if it exists), the

coindexed factor fi, and the factor node to the right f r
i+1 (if it exists). The super-

scripts l and r are to distinguish left and right factors since f l
i−1(mi) and f r

i (mi−1)
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are different functions. Then for the paraphrase node mi, its paraphrase distribution

is defined to be:

p(mi) ∝ f l
i−1(mi) fi(mi) f r

i+1(mi)

If either the left or right observations don’t exist because the word happens to

occur at a sentence boundary, then the corresponding left or right factor should be

removed.

3.3.1.2 The sentence as evidence: Dependency parses

The model variant in the previous section reflected the reductive assumption

that meaning is local and is determined by left-to-right surface order. One can make

a more informed assumption, instead, and assume that meaning is determined by

syntactic structure rather than left-to-right surface order. For the moment, we still

hold on to the assumption that meaning is local.

There are many different types of syntactic formalisms with attendant struc-

tures but we will use dependency parses. A dependency parse is a graph g where

g = (Vg, Eg, Rg). Vg is the set of words. We use the letters i, j, k for vertices/words

in the dependency parses. Eg is the set of directed edges defined as pairs over ver-

tices. Rg is the mapping from edges to dependency labels over edges or Rg : Eg → R

where R is the set of dependency labels such as subject, object, modifier, etc. Ele-

ments of Rg are indexed by variables such as rij : the first index i is the head and

the second index j is the dependent.

For the model variants described in this section, the basic frame of evidence

is the dependency parse. Take the case of the dependency parse of Example 1.1
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below:

the box was in the pen

subjectwb iobjwidetbd detpd

objectip

What this shows is structural dependencies in natural language that are obscured

by the left-to-right surface order.

We show the dependency parse of the example that we will actually be

working with:

the player ran to the ball

subjectrp ncmodrtdetbd detbd

objecttb

Compared to the previous sequential variant, we have more information on hand.

First, we have relation labels which further specify the joint distributions that we

work with. Also, the edges are directed and can point either left-to-right or right-to-

left with no constraints on the length of the edges as long as the edge is contained

within a sentence. Compare this with the sequential model where the edges are

strictly left-to-right and are constrained to only connect words that immediately

adjacent each other on the surface. Finally, with dependency edges, it is quite com-

mon to have a word have more than one dependency child (also called a dependent)

and, while less common, it is possible for a node to have more than one dependency

parent (also called a head).
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So here’s a broad outline of how we will be creating graphs: (1) Generate

dependency parse (2) Remove function words and simplify dependency edges (3)

Add paraphrase nodes (4) Add edges and create factor nodes (5) Remove original

edges (6) Remove original observed nodes

As with the previous sequential model, we first drop most function words

from the graph since we reductively assume they do not contribute to the meanings

of words:

player run to ball

subjectrp ncmodrt

objecttb

Then we modify dependency relations so that prepositions are incorporated

into labels and edges:

player run ball

subjectrp

mod-torb

Therefore, though prepositions do not have the status of nodes, they still contribute

information by specifying dependency labels. For example, we discarded information

on how the box is in the pen by reducing the sentence to “box be pen,” but we would

be able to avoid this information loss by having an edge labeled mod-in between

be and pen. And similarly, with the current example, we can distinguish between
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“player run ball” and “player run to ball” by having an edge labeled mod-to between

run and ball.

Next, we add the paraphrase nodes.

player

mp

run

mr

ball

mb

subjectrp

mod-torb

Then, same as the sequential model, we duplicate the observed words and

create component graphs centered on each of the content words:

player

mp

run

subjectrp

player run

mr

ball

subjrp mod-torb

run ball

mb

mod-torb

Note that, unlike the sequential model where there can be at most four nodes (three

factor nodes and one paraphrase node) to a component, there can be an arbitrary

number of factor nodes in a component for graphs based on dependency parses.

Finally, we take the observations and convert them to factor nodes. Two

different types of conversions are involved. For the immediate observation that is

paired with the paraphrase node (i.e. player for mp, run for mr, ball for mb),

it is converted immediately to fp for player, fr for runner and fb for ball. For

edges with relation labels, the conversion needs to retain more information: namely
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the relation labels themselves, the identity of the head, and the identity of the

dependent. Formally, we do this by writing the relation label and its head first

and dependent second as a subscript to the factor. For example, since player is the

dependent of run under the relation subject, we indicate this factor by fsrp where s

stands for subject, r on the left denotes that run is the head in the subject relation

and p on the right denotes that player is the dependent in the subject relation. Once

such conversions are complete, all factors are connected to the paraphrase node in

their respective component graphs:

mp

fp fsrp

mr

frfsrp fmrb

mb

frfmrb

where s=subject , m=mod−to, p=player , r=run , b=ball . The paraphrase distribu-

tion for each paraphrase node is then:

p(mp) ∝ fp(mp) fsrp(mp)

p(mr) ∝ fr(mr) fsrp(mr) fmrb
(mr)

p(mb) ∝ fp(mp) fmrb
(mr)

Adjacency transformation (at) To distinguish it from the sequential variant

that came before and the model variants that will follow, we give a name to this

particular transformation of dependency parses. We call it the adjacency trans-

formation (at). Formally, we describe each component centered on the content
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word w and its paraphrase node mw as follows:

mw

fwfr1,w

. . .

frn,w

frw,1

. . .

frw,m

where we have placed the factor nodes derived from the heads of w on the left and

the factor nodes derived from the dependents of w on the right. The distinction

between w being either the head or dependent in the relation is maintained by

placing w second in the subscript under r if w is a dependent (e.g. fr1,w
) and placing

it first under r if it is a head (e.g. frw,1). We call factors such as fw which capture

associativity between an observed word and its paraphrase node word factors.

Factors such as frw,1 which capture associativity between paraphrase nodes and

adjacent observations in the dependency parse word selectional factors.

Given some dependency parse, the paraphrase distribution for some compo-

nent centered on w is defined as:

p(mw|s) ∝ fw(mw)





∏

j∈Γh

frj,w
(mw)









∏

k∈Γd

frw,k
(mw)





where Γh is the set of heads of w and Γd is the set of dependents of w.

Though it is not necessary for this particular model variant, the factorization

of the global function over the set of all paraphrase nodes m within the full
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sentence as dependency parsed graph G is given as:

PG(m) ,
∏

i∈VG



fi(mi)
∏

j∈Γh
i

frji
(mi)

∏

k∈Γd
i

frik
(mi)





where Γd
i is the set of nodes that are dependents of node i in the dependency graph,

and Γh
i are nodes that are heads of node i.

Later in §3.3.3, we will discuss how we estimate the parameters for the

factors in our models. We experiment with two types of estimation. In one, we

do not learn the parameters for factors like fw, frij
using an iterative procedure.

Instead, we determine parameters using a simple surface count approach, based on

the assumption that interactions involving hidden values follow the same parameters

as interactions between observed words. In the other, we work with a different value

space for the parameter nodes and learn the parameters through Gibbs sampling.

Canonical transformation (ct) The previous variant made the simplifying as-

sumption that information was strictly local in the dependency parse. This is un-

satisfactory since it is obvious that most people generally do not forget or ignore

words that occur in the same utterance. Take the following examples:8

(3.12) The player ran to the ball.

(3.13) The debutante ran to the ball.

To correctly resolve the meaning of ball in these two contexts, it is necessary to

know that player or debutante is the the subject of run. However, in the two

8These examples are due to Raymond Mooney
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variants that we defined above—the sequential model and the adjacency transformed

model—player and debutante are ignored because they exist outside the immediate

neighborhood of ball. Thus ball means the same thing in the two sentences above

according to our previous two model variants.

To correct this, we examine a new variant, one where paraphrase nodes are

connected to other paraphrase nodes instead of being connected to observations.

We call this transformation the canonical transform (ct) since one of the most

canonical structures in NLP—the hidden Markov model—is a special case of this

transform.

For our example, “the player ran to the ball,” the transformation of its

dependency parse generates the following factor graph:

mp mr mb

fp fr fb

fsrp fmrb

where edges between content words are established only for the hidden para-

phrase nodes. This models the assumption that semantic information in a sentence

flows through a dedicated layer that is not observed, but mirrors the structure of the

observed dependency parse. For this particular example, the shape of the graph is

nearly identical to that of an HMM. Then the graph G corresponds to the following

factorization of the global function over all paraphrase nodes m:

FG(m) ∝ fp(mp) fsrp(mr,mp) fr(mr) fmrb
(mr,mb) fb(mb)
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It should be noted that factors such as fsrp and fmrb
with dependency relation

subscripts have been overridden so that they are binary factors (i.e. factors that

take two arguments). Contrast this with the previous definition of fsrp and the

like in §3.3.1.2 where factors that involved dependency relations were unary factors.

Furthermore, the order of the arguments is important and is not commutative.

For example, fsrp(mr,mp) cannot be written as fsrp(mp,mr). This is to maintain

the convention of heads preceding dependents. While we called the unary factors

involving dependency relations in the previous at variant word selectional factors,

we will call the binary factors defined for the current variant selectional factors.

More generally, for some set of paraphrase nodes m transformed from some

dependency parse G, the canonical transformation of a dependency graph results in

the following factorization of the global function:

PG(m) ∝
∏

i∈VG

fwi
(mi)

∏

(j,k)∈EG

frjk
(mj,mk) (3.14)

Canonical+Adjacency transformation (cat) This is a combination of the

canonical transformation and the adjacency transformation. It models both colloca-

tional strength of adjacent observations (i.e. at) as well as generalized information

from the entire sentence (ct). The example transformation of “the player ran to the

ball” is given below:

mp mr mb

fsrp fr fmrb

fsrp fmrb

fsrp

fp

fmrb

fb
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This particular variant is the reason why we avoided giving observed words

their own nodes in the graph representations and in the functions for the factoriza-

tions. See the following factorization of the transformed graph:

PG(m) ∝fp(mp) fr(mr) fb(mb) (word factors)

fsrp(mp) fsrp(mr) fmrb
(mr) fmrb

(mb) (word selectional factors)

fsrp(mr,mp) fmrb
(mr,mb) (selectional factors)

Given that there are far more terms involved, we have labeled sets of product terms

in parentheses on the right. The first line corresponds to the unary word factors

that capture associativity between an observed word and its own paraphrase node.

The second line lists the unary word selectional factors that capture associativity

between a dependency connected observation and a paraphrase node. The final

line lists the binary selectional factors that capture associativity between hidden

paraphrase nodes and allow information to flow throughout the entire sentence. Note

how, similar to argument-dependent lookup in programming languages, we give the

same name to factors such as fsrp(mp) and fsrp(mr,mp) but allow the number of

arguments to disambiguate which is being used. Finally, to indicate that fsrp(mp)

takes a dependency parent as its argument while fsrp(mr) takes a dependency child

as its argument, we rely on the fact that the subscript of mp is the same as the second

subscript of srp and that the subscript of mr is the same as the first subscript of

srp.
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m z

f̂Df̂T

m
fD

Marginalize over z and
define new doc-
ument factor fD

Figure 3.5: A hidden paraphrase distribution node m augmented by a topic variable
z specific to document D. By marginalizing out z, we can define a new unary factor
fD over m.

In full generality, the canonical+adjacency transformation of a dependency

graph results in the following factorization of the global function:

PG(m) ∝





∏

(i,j)∈EG

frij
(mi,mj)





∏

i∈VG



fwi
(mi)

∏

j∈Γh
i

frji
(mi)

∏

k∈Γd
i

frik
(mi)





where Γh
i denotes the set of heads for node i in the original dependency parse and

Γd
i denotes the set of dependents.

3.3.1.3 Wider document context (lda)

It was established early on that modeling bag-of-words context at the docu-

ment level can help in word sense disambiguation for certain words [Yarowsky, 1995].

Given this evidence, and not quite convincing recent work that incorporate docu-

ment level information through more sophisticated topic models [Boyd-Graber et al.,

2007], we also examine the effects of document topic in inferring graded word sense.

We include evidence on wider document context through a topic model [Blei et al.,

2003]. Given a document D, the topic model defines a document specific distribution

over topics f̂D(z) and a distribution over words given a topic, f̂T (m, z) (fig. 3.5). By

marginalizing over z, we characterize the likelihood of each paraphrase candidate
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mp

fp fr fb

mr

fp fr fb

mb

fp fr fb

Figure 3.6: Sentence level bag-of-words representation

given the document and thus define a unary factor for a paraphrase distribution:

fD(m) ,
∑

z

f̂T (m, z)f̂D(z)

All graph transformations above can be augmented with this unary factor. For

example, the nodes mp,mr,mb in the transformations of “the player ran to the

ball” can be linked to the additional document factor fD. Such a joint model

incorporates lexical and syntactic evidence from the local sentence as well as topical

evidence from the global document context.

3.3.1.4 Sentence bag-of-words context

It has been found in Erk and Pado [2010] that modeling graded word sense

based only on sentence level bag-of-words features can help performance. To exam-

ine such evidence within our model, we consider a model where all content words

influence all other content words without regard for dependency relations. In line

with our previous models, observed content words are incorporated into unary fac-

tors and all such factors deriving from content words are connected to a paraphrase

node. If we had pursued a different formulation with Markov random fields where

surface tokens were given their own nodes, then this model would be represented

with a complete graph. Since we have chosen to work with factor graphs and to
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incorporate constant-valued observed variables into any connected factors, we can-

not define bag-of-words context as a complete graph. Instead, we follow with our

current practice and create separate sets of factor nodes corresponding to obser-

vations for every paraphrase node. Using the example of “the player ran to the

ball,” there are three paraphrase nodes associated with each observation, and for

each paraphrase node we create three new factors which correspond to girl, catch,

and ball and attach them to their respective paraphrase node. This is laid out in a

diagram in Figure 3.6.

3.3.2 Inference

In graphs that are trees or polytrees, the sum-product algorithm can be used

for inference. However, some dependency parsers (including the one that we use)

generate graphs that are not polytrees, so we assume that the graphical models

over which we conduct inference may contain loops. Therefore, we use loopy belief

propagation [Murphy et al., 1999] to approximate marginals. For graphs free of

loops, loopy BP will converge to the correct marginal, and for graphs with loops the

algorithm is known to perform well in practice [Weiss, 2000].

Because it is not possible to perform exact inference of the marginal for mi

(eqn. (3.11)) given a transformed dependency parse with loops, loopy BP instead

approximates the marginal of mi at some iteration t+1 based only on the values

of the approximate marginals of its neighbors from the previous iteration t. In the

sequence, we indicate this approximate, loopy marginal at iteration t by P (t)(mi),

dropping the subscript from PS for notational clarity. We will simply call this “the
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marginal” in what follows, but it should not to be understood as an exact marginal.

Because of the variety of our models, we present the loopy BP update formula

for the most specific model, cat+lda. The update equations for all other models can

be derived from this by removing unnecessary terms from the formulas.

The update equation for the marginal of mi for the cat+lda model variant

at iteration t+1 is given by

P (t+1)(mi) = C(mi)
∏

j∈Γh
i

(

∑

mj

frji
(mj ,mi)P

(t)(mj)

)

∏

k∈Γd
i

(

∑

mk

frik
(mi,mk)P

(t)(mk)

)

where Γh
i and Γd

i are as above, and we define

C(mi) , fD(mi)fwi
(mi)

∏

j∈Γh
i

fwj ,rji
(mi)

∏

k∈Γd
i

fwk,rik
(mi)

C(mi) is merely the product of unary factors that do not change values over it-

erations: the document factor fD, the word factor fwi
, and the word selectional

factors fwj ,rji
and fwk,rik

. The two terms that involve P (t)(mj) and P (t)(mk) above

(marginals for head Γh
i and dependent Γj

i paraphrase nodes, respectively, of mi)

do not require messages from their neighbors as would be the case for exact sum-

product updates. Instead, they approximate this by having incorporated at iteration

t the marginal values that their neighbors had at iteration t−1. These values are

then marginalized over at iteration t+1 for the node mi.

Before the first iteration, all values for all nodes are set to one, so P (0)(mi) =

1. Then loopy BP is run until convergence or until a fixed number of maximum

iterations is reached. In our case, we tested convergence by examining whether all
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probability values of the paraphrase distributions for all nodes changed less than a

certain threshold over a single iteration. For the at model, a truncated version of

the above loopy BP algorithm is the same as exact inference so it “converges” in

one iteration.

To ensure numerical stability, the paraphrase distributions were renormal-

ized to sum to one at each iteration.

3.3.3 Defining factors

A distinct advantage of using factors that derive from an undirected graphi-

cal model is that there are few restrictions on how the parameters for such factors are

defined. It would be senseless to set the parameters with random values—though we

could—but we are also not constrained by any requirement to abide by asymptotic

notions of occurrence as would be for models with frequentist motivations—though,

again, we could.

In our model, all that is required of the factors is that they reflect some form

of associativity between the arguments involved: between an observed word and its

paraphrases, between a paraphrase and another paraphrase connected through a

dependency edge (as we do with the ct transform), or between a paraphrase and an

adjacent observation connected through a dependency edge (as we do with the at

transform).

In the following subsections, we discuss two different approaches to estimat-

ing these parameters. The first is estimated in a straightforward way from token

counts. It is associated with the notion of paraphrase nodes as actual paraphrases.
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The second is estimated through Gibbs sampling. Here, the value space of the

paraphrase nodes is nameless indexes and have no inherent meaning.

3.3.3.1 Surface injected paraphrases

When the value space of the paraphrase nodes comprises real vocabulary

items instead of nameless indexes, a simple solution to defining interactions be-

tween paraphrase nodes and paraphrase nodes (or paraphrase nodes and adjacent

observed nodes) is to assume that the interactions model the selectional preferences

of the relevant paraphrases or observations over some dependency relation. Under

this interpretation, the paraphrase nodes are not hidden nodes in the conventional

sense that they generate the observations or that they model some class label for

the observations. Instead, the paraphrase nodes, which have the entire vocabu-

lary as value space, can be understood as instantiating an alternative realization of

selectional preference as constrained by the surface observations.

For example, consider the example of “the player ran to the ball,” specifically

the transformation as we defined it with the adjacency transformation in §3.3.1.2.

Assume we are interested in learning the paraphrase distribution over the paraphrase

node of run in this sentence. For convenience, there are only two valid paraphrases

for run: move and manage. Then, straying from the notation of the previous

sections, the paraphrase distribution in full is defined as follows:

P (move) ∝ f(move, run)f(move, subj,player)f(move,mod-to,ball)

P (manage) ∝ f(manage, run)f(manage, subj,player)f(manage,mod-to,ball)
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The word factors f(move, run) and f(manage, run) where run is the observed con-

stant define the associativity between run and move and run and manage in the

absence of context. The remaining factors instantiate the alternative realization of

selectional preference defined above. Ignoring the observation run for the moment

and the dependency relations over the edges, the word selectional factors assign dif-

ferent weights to the sequences “player move ball” and “player manage ball” through

the weights associated with each of the factors and the different paraphrases: move

and manage.

There are differing degrees of constraints placed on the paraphrase nodes by

the surface observation. With the ct transformation of dependency trees, paraphrase

nodes are constrained only by their corresponding word factors (i.e. observations)

and adjacent paraphrase nodes whose inference is complete. For the at and cat trans-

formations, in contrast, there is a selectional constraint placed on the paraphrases

by the adjacent observations, in addition to, or instead of some of the constraints

that are placed on the ct transform.

We then make the assumption that the selectional preferences that are re-

flected in the surface counts over our training corpora are legitimate parameters for

modeling the alternative realization of selectional preference over paraphrase nodes

or between paraphrase nodes and observations. As such, these surface injected

parameters derive directly from plain surface counts over observed (head, depen-

dency relation, dependent) triple counts in our training corpora. There is no iterative

estimation procedure involved for learning these parameters.
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Selectional factors: interpolated surface counts (int) We model the inter-

action between two paraphrase distributions mi, mj with respect to a relation rij as

the maximum likelihood estimate for values of mi occurring in relation rij to values

of mj. Because this estimate is likely to be sparse, we interpolate with bigram and

unigram MLEs.

frij
(mi,mj) , λ1P (mi,mj|rij)+λ2P (mi,mj)+λ3P (mi|rij)P (mj |rij)+λ4P (mi)P (mj)

where the weights λi sum to one. We describe how the interpolation parameters λi

are determined in §4.5.

Selectional factors: exponentiated PMI (epmi) Raw frequency counts are

known to adversely affect selectional preferences and are often transformed through

pointwise mutual information, the log of two likelihood ratios. However, because fac-

tors/potential functions must be non-negative, we take the exponential of pointwise

mutual information and end up with the original ratio:

frij
(mi,mj) ∝

P (mi,mj |rij)

P (mi|rij)P (mj |rij)
+ βs

where the P s are MLEs and βs is some small smoothing constant.9

We derive the unary word selectional factor fwi,rij
directly from frij

. This

factor is merely one where the paraphrase node in either the head or dependent

position has been swapped out for an observation and thus becomes a constant.

9Note that this definition for selectional factors uses P (mi, mj |rij) without interpolation.
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Word factors: using vector space similarity We design the unary factor

fwi
(mi) to model semantic similarity between the observation wi and the paraphrase

distribution mi, but only for actual paraphrase candidates. Let Pi be a set of known

paraphrase candidates for wi, let vi ∈ M (where M is the set of all words) be a value

of mi, and let ~wi, ~vi be unit-length vectors for the two words, if they exist. (vi may

not have a vector due to insufficient attestations.) Then we define the factor, with

smoothing constant βw, as

fwi
(vi) ∝







exp( ~wi
T ~vi) + βw if vi ∈ Pi and ~vi exists

βw if vi ∈ Pi and ~vi does not exist
0 else

3.3.3.2 Factors over nameless hidden nodes and parameter estimation

In this subsection, we discuss an alternative formulation of the value space

for paraphrase nodes and how the parameters will be estimated. In contrast with

the previous subsection, the paraphrase nodes defined here have a nameless set

of indexes as its value space instead of words. With this approach, we lose the

interpretability that came with using real words as the values of paraphrase nodes.

On the other hand, our model is now more coherent in terms of parameter inference

and learning, since the learned parameters derive from the same graphical structure

to which the inference procedure is applied. Because our model is defined over

arbitrary graphs, no closed form procedure exists for estimating the parameters.

Therefore, we use Gibbs sampling for estimation.

We define some collection G of labeled dependency parses qua graphs g ∈ G

where g = (Vg, Eg, Rg). Vg is the set of vertices. We use the letters i, j, k for
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vertices in the dependency parses. Eg is the set of directed edges defined as pairs

over vertices. Rg is the mapping from edges to dependency labels over edges or

Rg : Eg → R where R is the set of dependency labels. Elements of Rg are indexed

by variables such as rij : the first index i is the head and the second index j is the

dependent.

Then we can perform the usual canonical (ct), adjacency (at), or canoni-

cal+adjacency (cat) transforms on these parses. For concreteness, we only discuss

cat. As a reminder, with such a transformation, each i generates two nodes, an

observed node wi and a hidden node mi. An edge is established between the two.

Relation edges are inserted between (mi,mj) pairs, (wi,mj) pairs, and (mi, wj)

pairs iff rij ∈ Rg. Then the observed words wi, wj are incorporated into (1) the

word selectional factor nodes frij
and frij

and (2) the word factors fwi
and fwj

.

For convenience, we will refer to this transformed graph as g also. All subsequent

mentions of g refer to the transformed graph and not the original unless explicit

mention is made of sets such as Vg or Eg.

The probability mass function for the transformed graph g is defined as

follows:

p(g) =
∏

(p,q)∈Eg

frpq(mp,mq)
∏

i∈Vg



fwi
(mi)

∏

j∈Γh
i

frji
(mi)

∏

k∈Γd
i

frik
(mi)



 (3.15)

where Γd
i is the set of nodes that are dependents of node i in the dependency graph,

and Γh
i are nodes that are heads of node i.

We are taking a Bayesian approach so there exists a set of hyperparameters
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h. Therefore, there’s also a corresponding set of prior distributions Θ such that

p(g|h) =

∫

p(g|Θ)p(Θ|h)dΘ

We will be assuming Dirichlet priors and using collapsed Gibbs sampling for learning,

so the prior Θ will not be an issue in implementation. For concision, we leave out

hyperparameter h from all probability statements above and below. In full, they

should all read p(g|h).

Given the factorization in (3.15), we have four different factors/parameters

with a different hyperparameter for each:

Factor Hyper Description

frpq(mp,mq) δ A transition parameter from paraphrase node to
paraphrase node

fwj ,rji
(mi) β A transition parameter from observed node to

paraphrase node

fwk,rik
(mi) γ A transition parameter from paraphrase node to

observed node

fwi
(mi) α An emission parameter between observed node

and its paraphrase node

Because the probability mass function applies over the entire corpus, the full

statement is as follows:

p(G) =
∏

g∈G

p(g)

where G is the collection of dependency parses over the entire corpus.

For the collapsed Gibbs sampler, we are interested in the following con-

ditional distribution, the conditional probability of a paraphrase random variable
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given all other states and observations:

p(mg
i |g\{m

g
i }) ∝

#(wi,mi) + αwi

#(mi) +
∑

w αw
∏

j∈Γh
i

((#(wj , rji,mi) + βmi
) (#(mj, rij ,mi) + δmi

))

∏

k∈Γd
i

(

#(mi, rik, wk) + γwk

#(mi, rik) +
∑

w γw

#(mi, rik,mk) + δmk

#(mi, rik) +
∑

m δm

)

where #(·) indicates the counts of the variables. mg
i is the random variable corre-

sponding to the paraphrase node for observation i in the graph g.

Then from the above posterior sampling step, we derive the following pa-

rameters:

fw(m) =
#(w,m) + αw

#(m) +
∑

w′ αw′

(3.16)

frhd
(mh,md) =

#(mh, rhd,md) + δmd

#(mh, rhd) +
∑

m δm

(3.17)

fwd,rhd
(mh) =

#(mh, rhd, wd) + γwd

#(mh, rhd) +
∑

w γw

(3.18)

fwh,rhd
(md) =

#(wh, rhd,md) + βmd

#(wh, rhd) +
∑

m βm

(3.19)
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Chapter 4

Data and Evaluation measures

4.1 Test sets

Word usage models are typically evaluated on a paraphrasing task, often

using the LexSub dataset (illustrated in ex 3.1). While the original Lexical Substi-

tution task involved both the generation of paraphrase candidates and the compu-

tation of their weights for a given usage, EP08 and subsequent approaches focus on

the second half of the task. They take the list of paraphrase candidates as given and

weight them in a given context. Another paraphrasing dataset has been provided

by Mitchell and Lapata [2008] (below M/L). It has human ratings for paraphrase

appropriateness (on a scale of 1-7) for verbs in the context of different subject nouns.

Given a target verb and subject noun, for example discussion strayed, participants

rated the goodness of a paraphrase for the verb in this context, for example digress.

Bieman and Nygaard [2010] provide a dataset of paraphrases for nouns in context

(below twsi) collected on Amazon Mechanical Turk as a first step towards group-

ing usages into discrete senses. It contains paraphrases for the most frequent nouns

of the English language, with sentence contexts taken from the English Wikipedia.

The format of this dataset is similar to LexSub.

We use all three datasets for evaluation. For LexSub, we follow EP08 in

focusing on the second half of the task, paraphrase weighting, taking the list of para-
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phrase candidates as given.1 LexSub consists of 2000 instances of 200 target words

(verbs, nouns, adjectives, and adverbs) in sentential contexts, which were taken

from the English Internet Corpus [Sharoff, 2006]. To compile the list of potential

paraphrases for a target, we proceed as follows: We first pool all paraphrases that

LexSub annotators proposed for the target, and add all synonyms in all synsets of

the target in WordNet 3.0. For address.v, the list of potential paraphrases contains,

among others, speak.v, direct.v, call.v and handle.v. For use with a topic model,

we use the full documents containing the LexSub sentences.2 The M/L dataset

comprises a total of 3,600 human similarity judgements for 120 experimental items.

Mitchell and Lapata split the dataset by participants into a development and a test

portion. For comparability, we evaluate on the test portion that they used. To the

best or our knowledge, the twsi dataset has not so far been used to evaluate para-

phrase ranking or word usage models. We use version 1 of the data,3 using the raw

data with substitutions for all sentence contexts rather than only the contexts that

were assigned to senses later.4 This dataset comprises 7577 sentences with para-

phrases for 392 nouns. We compile lists of paraphrase candidates in the same way

as for LexSub. The twsi dataset contains a high number of multi-word expressions

(about 20%) among paraphrase candidates. Since our model currently cannot deal

with multi-word paraphrases, we omit them for now.

1This means that we cannot compare our results directly with those of participants of the
SemEval Lexical Substitution task.

2We thank Diana McCarthy for making the full documents of the LexSub sentences available
to us.

3Maintained at the aclweb repository
4We thank Chris Biemann for making the raw data available to us.

81

http://www.aclweb.org/aclwiki/index.php?title=TWSI_Turk_bootstrap_Word_Sense_Inventory_(Repository)


4.2 Parsing

We use the C&C parser [Clark and Curran, 2007] to parse the LexSub and

twsi datasets as well as the corpora from which we estimate probabilities. We

transform prepositions from nodes to edge labels, and we retain only content words.

All words are lemmatized.

4.3 Parameter estimation

For estimating selectional factor parameters, we use C&C parses of three

corpora—the British National Corpus (bnc, 100 million words), the English Gi-

gaword corpus (LDC2003T05, Giga, 1 billion words), and ukWaC [Baroni et al.,

2009] (2 billion words)—and combine them (u+b+g). Giga and bnc also serve as

training corpora for benchmark purposes. The TFP10 model computes its vector

space on Giga while EP10 computes on bnc.

All words are lemmatized and paired with their part of speech. Word factor

parameters are estimated based on the paraphrase lists described in the previous

paragraph. Vectors for these paraphrases are computed using the DependencyVec-

tors package5 with log-likelihood ratio transformation. To learn topic model param-

eters, we randomly take 26000 documents from ukWaC and combine them with the

full LexSub documents. This is a total of 14,227,219 tokens. We then learn topic

parameters with MALLET [McCallum, 2002].

5http://www.nlpado.de/~sebastian/dv.shtml, Padó and Lapata [2007]
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4.4 Testing convergence of inference

To test convergence, we examine whether all probability values of the para-

phrase distributions for all nodes change less than 1e-4 over a single iteration. If

there is no convergence by 1000 iterations, we terminate inference and collect the

values at the last iteration. In the majority of sentences, the algorithm converges in

less than 20 iterations.

4.5 Smoothing constants

For smoothing constant βs, we take the smallest non-zero value of the re-

spective unsmoothed factor and multiply that by 1e-4. We set βw to 0.1. The inter-

polated smoothing parameters are set to λ1 = 0.9999, λ2 = 9e−5, λ3 = 5e−6, λ4 =

5e−6. The values were set after a few experiments indicated that the model per-

formed better as the value for λ1 increased but still required a very small amount

of smoothing with interpolated values to prevent all inferred probabilities from col-

lapsing to zero.

4.6 Evaluation measures

In this section, we discuss the evaluation measures used in the dissertation.

The first two measures, generalized average precision (GAP) and precision out of

ten (P10), we use are measures that reflect recall. The third, weighted accuracy

(wAcc), is a more stringent one intended to reflect how precisely the model reflects

the human counts on LexSub. The fourth and final is a modified precision and

recall and is designed to capture precision and recall performance over thresholded
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probability values.

4.6.1 Generalized Average Precision (GAP)

For a LexSub, M/L, or twsi target word w, we use as our model’s pre-

diction the probabilities computed for the matching paraphrase distribution node,

restricted to the paraphrase candidates for that target word in the dataset. Like

previous papers, we evaluate performance on M/L using Spearman’s rho, a non-

parametric rank correlation measure. For LexSub, Thater et al [Thater et al., 2009]

use Generalized Average Precision (GAP). Let A be a list of gold paraphrases for a

given sentence, with gold weights 〈a1, . . . , am〉. Let B = 〈y1, . . . , yn〉 be the list of

model predictions as ranked by the model, and let 〈b1, . . . , bn〉 be the gold weights

associated with the model predictions (assume bi = 0 if yi 6∈ A). Let I(bi) = 1 if

yi ∈ A, and zero otherwise. We write bi = 1
i

∑i
k=1 bk for the average gold weight of

the first i model predictions, and analogously ai. Then

GAP(A,B) =
1

∑m
j=1 I(aj)aj

n
∑

i=1

I(bi)bi (4.1)

We report macro-averaged GAP.6

4.6.2 Precision out of ten (P10)

Earlier, the SemEval task defined a “precision out of ten” (P10) measure for

LexSub [McCarthy and Navigli, 2009]. It uses the model’s ten top-ranked para-

phrases as its prediction, and scores them by their gold weights. Let A and B be as

6Since the model may rank multiple paraphrases the same, we averaged over 10 random permu-
tations of equally ranked paraphrases.
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above. Let B10 = 〈y1, . . . , y10〉 be the model’s 10 top predictions. Then

P10(A,B) =

∑

yi∈A∩B10
bi

∑m
i=1 ai

We report macro-averaged P10. However, even though both evaluation measures

carry the name “precision”, they have more in common with recall measures, as

they report the gold weight recovered by the model relative to the full gold weight.

Also, they both take gold weights into account, but not model weights, using only

the ranking predicted by the model.

4.6.3 Weighted Accuracy (wAcc)

Therefore we propose the use of additional evaluation measures. The first is

a measure of weighted accuracy (wAcc), which compares gold and model weights,

testing how much of the model-assigned weight is allocated to the right paraphrases.

Let 〈bm
1 , . . . , bm

n 〉 be the model weights associated with the prediction list B such that

the sum of weights is the same for gold and model:
∑

i ai =
∑

i b
m
i . Then we define

weighted accuracy as

wAcc(A,B) =

∑m
j=1 min(ai, b

m
i )

∑

i ai
(4.2)

When computing wAcc below, we normalize gold paraphrase weights to sum to one.

Weighted accuracy is a variant of the weighted precision and recall scores defined

by Erk and McCarthy [2009]. When the sum of weights is the same for gold and

model, both their weighted precision and recall reduces to our weighted accuracy.

We report macro-averaged wAcc. Note that wAcc is a stricter evaluation measure

than GAP and P10, as it considers the weights that the model assigns, not just the

ranking that it produces.
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4.6.4 Precision and Recall

In addition, we use precision and recall, computed at different model weight

thresholds θ. Model predictions at θ are the paraphrases whose model weight is

at or above θ: Bθ = {yi ∈ B | bm
i ≥ θ}. Ignoring gold weights, we then compute

precision and recall of Bθ with respect to A as usual.

4.6.5 Evaluating model with nameless hidden nodes and parameters

Here, we describe how we transform and evaluate output from the model

with nameless hidden nodes (which we will call nh) and concordant parameters

described in §3.3.3.2.

Because the value space of the hidden nodes are nameless, it is not possible

to evaluate directly on LexSub whose gold data is composed of meaningful lexemes.

Therefore, we transform the output from nh into a form that is compatible with the

entries in LexSub.

Each target lemma w has a set of possible paraphrases Mw that we derive

from either WordNet or LexSub. For each test sentence that a target lemma occurs

in, we generate |Mw| new sentences from this by removing the target from the test

sentence, then placing the paraphrases in the spot vacated by the target. We then

conduct standard loopy BP inference on this new sentence.

Taking the example of Example 3.2, again, we have the original sentence

with the target brightest:

An evening of classical symphonic music, played by the next genera-
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tion stars in the American orchestral scene, can be savored at the New

World Symphony, a special Miami institution that nurtures the best and

brightest young symphonic musicians.

For the lemma bright, WordNet and LexSub provide the paraphrases (among oth-

ers): intelligent, luminous, clear.

. . . that nurtures the best and brightest young . . .

We replace the original target with the paraphrases and generate a new sentence for
each one:

. . . that nurtures the best and intelligent young . . .

. . . that nurtures the best and luminous young . . .

. . . that nurtures the best and clear young . . .

We conduct inference on each of the new sentences and compare the distribu-

tion inferred over brightest with each of the paraphrases in terms of Jensen-Shannon

divergence (JS), since the values of JS are non-negative and the function is sym-

metric over its arguments. To be specific, we define sint to be the sentence with

intelligent in place of brightest and sbr to be the original sentence. Then we

define P (mint|sint) and P (mbr|sbr) to be the probability mass functions inferred for

the paraphrase nodes of intelligent and brightest, respectively, given the observed

sentences. Then we measure JS between the two distributions. We also measure

distances between brightest and luminous, brightest and clear and so forth for all

possible paraphrases Mbrightest. Therefore, the final list of probability values that
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will be evaluated in terms of GAP, P10 and wAcc could be:

P (m = intelligent|sbr) = JS(P (mint|sint), P (mbr|sbr))

P (m = luminous|sbr) = JS(P (mlum|slum), P (mbr|sbr))

P (m = clear|sbr) = JS(P (mcle|scle), P (mbr|sbr))

This is actually incorrect. JS, being a measure of difference, will place larger values

on more dissimilar distributions whereas we want larger values on more similar

distributions. Therefore, we flip the above values by finding the maximum of all JS

between brightest and each paraphrase in Mbrightest and subtracting each JS from

the maximum. With examples, we call this maximum value maxJS:

P (m = intelligent|sbr) = max
JS

−JS(P (mint|sint), P (mbr|sbr))

P (m = luminous|sbr) = max
JS

−JS(P (mlum|slum), P (mbr|sbr))

P (m = clear|sbr) = max
JS

−JS(P (mcle|scle), P (mbr|sbr))

and normalize it to sum to one.

We now formalize the above. Given a target word w, a set of possible

paraphrases Mw and a context sw, for each paraphrase r ∈ Mw, we generate |Mw|

new sentences sr for each r ∈ Mw. We infer a probability distribution p(mr|sr)

over each paraphrase node mr in context sr. We also infer the usual probability

distribution p(mw|sw) over paraphrase node mw for the original target sentence

88



with the original target word w. We then calculate JS values between p(mw|sw)

and each p(mr|sr) for each r ∈ Mw. We also find the maximum JS value

max
JS

, max
r∈Mw

JS(p(mw|sw), p(mr|sr))

Then the final “probability distribution” that is evaluated is defined as

P (m = r|sw) ∝ max
JS

−JS(p(mw|sw), p(mr|sr))
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Chapter 5

Experiments and Results

In this section we discuss experimental results on the task of predicting

paraphrase appropriateness on the LexSub, twsi and M/L datasets. We refer to

our group of models as pd for paraphrase distribution models. As mentioned before,

our focus is not on numerical comparison to existing systems, but on the ability to

test many knowledge sources and their interactions.

5.1 LexSub: Evaluation against benchmark and baseline models

Table 5.1 uses the LexSub dataset to compare the best performing variant

(the at variant) of the pd model and the sequential variant (§3.3.1.1) to benchmark

1TFP10 do not provide a joint GAP across all parts of speech.

GAP wAcc
all verb noun adj adv

seq (u+b+g) 45.88 41.74 45.89 46.46 51.98 25.73
pd (u+b+g) 47.76 44.90 48.51 47.60 51.49 26.70
pd (Giga) 46.68 42.92 46.86 46.18 53.58 24.94
pd (bnc) 43.42 38.88 44.39 43.61 48.98 22.28
singl 36.5 30.8 37.1 38.5 41.5 21.72
rand 30.0 27.4 30.3 28.1 36.3 21.34
TFP10 (Giga) -1 45.17 46.38 43.21 51.43 -
EP10 (bnc) 38.6 36.9 41.4 37.5 - -

Table 5.1: LexSub data: GAP and wAcc scores. Evaluation on the full dataset
(all), and by target POS. Condition for pd parameters: epmi, at.
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and baseline results. We list two benchmarks, TFP10 and EP10. TFP10 reports

better results than any previous syntax-based usage vector model, including EP08,

so it constitutes the current state of the art. We also list EP10 because of its dif-

ferent modeling choice: It is based on a bag-of-words representation of the sentence

rather than syntactic neighborhood. Note that TFP10 uses Giga as a basis, while

EP10 uses bnc, so those two approaches do not compare directly, and should be

compared to variants of pd trained on Giga and bnc respectively. The pd condi-

tions shown are the best model variant (at+epmi) with parameters from the joint

u+b+g (ukWaC+bnc+Giga) corpus, from the bnc corpus only, and from Giga.

The sequential variant also uses epmi parameters.

We list two baselines: singleton and random. The singleton baseline (singl)

assumes that the target paraphrase distribution is connected only to its observation,

i.e. there is no contextual information. The random baseline (rand) assigns random

probabilities to the paraphrases.

On verbs, TFP10 shows the best performance as measured by GAP. On all

other parts of speech, the pd variants with u+b+g parameters and Giga param-

eters have the best performance, with an especially large advantage on adjectives.

Compared to the bnc and Giga conditions, u+b+g shows better results for nouns

and verbs in particular. The Giga condition performs best for adverbs. The con-

trast of bnc with Giga and u+b+g indicates that the use of more data to estimate

selectional factors has a considerable impact. Comparing bnc and seq, we see that

using surface structure with more data improves over using dependency structure

with less data. The singleton baseline is higher than the random baseline, but lower
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than any other model.

Weighted accuracy scores (given only for pd as this is a new evaluation

measure not reported in previous papers) show that the best pd model allocates

about a quarter of its weight correctly. One reason for this is that pd assigns

nonzero weights to many more paraphrase candidates than are listed among the

gold paraphrases. The scores also confirm that wAcc is a very strict measure, as

the random baseline, at 21.34, is not far below the best result of 26.70.

We also report P10 scores for completeness, but do not show them in further

analyses, as they evaluate more or less the same properties of the models as GAP.

The pd variant with u+b+g parameters attained the highest overall score with

69.46. The sequential variant scored 67.34. For the baselines, the scores are 62.54

(singl) and 59.61 (rand). TFP10 report a P10 of 75.43 for verbs, but do not give the

score for other parts of speech. For comparison, the pd variant with Giga achieves

a P10 of 67.97 on verbs. EP10 do not report P10.

The GAP scores by part of speech follow a familiar pattern – for all ap-

proaches except TFP10 – in that results for verbs are lower than for all other parts

of speech. However, the figures in Figure 5.1 suggest another explanation besides

the general difficulty of verb contextualization. It shows log-transformed frequen-

cies for LexSub lemmas by part of speech. Frequencies for LexSub verbs go higher

than those for any other part of speech. As is well known, high-frequency lemmas

tend to be more ambiguous, which makes them more difficult to contextualize. This

is a problem for all approaches that evaluate on the LexSub data.

One possible reason why TFP10 achieves the highest scores for verbs is that
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Figure 5.1: LexSub log lemma frequency by parts-of-speech
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Figure 5.2: LexSub log paraphrase frequency by parts-of-speech
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lemma freq. paraph. freq.
corpus GAP wAcc GAP wAcc
bnc 10 (83%) 6 (50%) 10 (83%) 2 (16.7%)
u+b+g 10 (83%) 5 (41.7%) 9 (75%) 8 (66.7%)

Table 5.2: LexSub: Number of conditions for which there is a significant negative
correlation between lemma or paraphrase frequency and model performance (p ≤
0.05)

the vectors used by TFP10 have much higher dimensionality than the paraphrase

state space of pd. Perhaps having more dimensions is especially beneficial for verbs

in modeling fine sense distinctions. It would be interesting to test whether modeling

a larger state space that includes more than paraphrases improves pd performance.

Another possible explanation is that TFP10 uses the target’s headword as a stand-in

for the target for adjectives and adverbs. This may be suboptimal for estimating

similarity to the target’s paraphrases. A third possible reason lies in paraphrase fre-

quencies. The figures in Figure 5.2 show log-transformed frequencies for paraphrases

(both WordNet- and LexSub-derived) of LexSub lemmas. Verb lemmas not only

tend to be of higher frequency, but often have higher-frequency paraphrases as well.

This may make things especially difficult for our model, as selectional preference pa-

rameters can be expected to be of lower quality for high-frequency paraphrases. We

tested whether this is indeed the case by measuring correlation (using Spearman’s

rho) between average paraphrase frequency and performance. Table 5.2 shows the

results. Here and below, we concentrate on bnc and u+b+g and omit Giga, which

was only included for comparability with TFP10. Of the 12 conditions for each cor-

pus (at, ct, cat with and without lda), many show a significant correlation between

lemma frequency and paraphrase frequency on the one hand, and model perfor-
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mance on the other hand. The correlation is negative: Performance goes down as

lemma or paraphrase frequency rises. The correlation is more pronounced for GAP

analysis than for wAcc.

5.2 Model output examples

Figures 5.3 and 5.4 show examples of the pd model’s output for the sen-

tences from Figure 1.1. The distributions are sorted in descending order. We are

listing LexSub paraphrase candidates only, omitting paraphrases from WordNet.

Gold paraphrases for each datapoint are boldfaced. Here and in general, the model

produces highly skewed distributions with few high-probability items. For both sen-

tences, the three model variants produce similar paraphrase rankings, no matter

whether the selectional information comes from observed words or hidden variables.

For sent. 1812, there is a modifier relation between drug and charge, and thus words

typically modified by drug (and its paraphrases) are ranked highly. In sent. 1813,

charge is the dependent of a mod-against relation, so words which are typical de-

pendents of mod-against such as criticism and accusation are highly ranked by the

model. In sent. 1813, the probability distributions produced by at and ct happen to

coincide for charge, even though they differ for other content words in the sentence.
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sent. 1812 . . . by federal law enforcement agencies on drug charges, in others while

traffickers . . .

ct at cat

issue 3.26e-01 control 5.00e-01 issue 5.73e-01
control 1.38e-01 issue 3.96e-01 control 2.98e-01

authority 8.35e-02 payment 3.00e-02 payment 6.37e-04
power 6.69e-02 allegation 2.38e-07 authority 1.16e-11

payment 4.95e-03 offence 2.14e-08 power 5.95e-12
offence 5.66e-08 expense 1.54e-09 offence 6.76e-15

cost 4.95e-10 authority 2.34e-11 allegation 1.07e-23
allegation 1.17e-14 power 2.10e-11 expense 2.98e-27

expense 7.66e-17 tariff 1.57e-17 cost 1.83e-27
tariff 4.14e-17 cost 1.25e-18 tariff 4.45e-33

command 1.10e-17 prosecution 7.91e-19 prosecution 7.46e-36
prosecution 2.09e-18 accusation 5.81e-19 accusation 2.73e-36
accusation 1.53e-18 fee 4.35e-20 fee 2.51e-38

fee 1.15e-19 indictment 8.11e-27 command 2.61e-43
indictment 2.14e-26 criticism 7.81e-27 indictment 5.08e-52

criticism 2.06e-26 command 5.46e-27 criticism 4.90e-52

Figure 5.3: LexSub: Sample pd model output (u+b+g, epmi) on the sentences of
Figure 1.1
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sent. 26 If you don’t take the risk of dying by driving to the store, your house could

collapse on you and kill you anyway.

ct at cat

tolerate 8.21e-01 assume 1.99e-01 assume 4.27e-01
consider 4.21e-02 run 1.29e-01 run 1.79e-01

get 1.43e-02 accept 9.48e-02 accept 9.72e-02
run 8.58e-03 tolerate 6.93e-02 tolerate 5.21e-02
be 7.28e-03 consider 6.53e-02 consider 4.62e-02

include 3.34e-04 happen 5.60e-02 happen 3.40e-02
risk 3.87e-07 risk 3.56e-02 risk 1.39e-02

happen 7.40e-08 be 1.53e-02 be 2.54e-03
grasp 6.51e-08 grasp 1.23e-02 grasp 1.64e-03

assume 5.59e-08 get 7.12e-03 get 5.50e-04
accept 3.30e-08 include 2.11e-03 include 4.83e-05

grow 1.28e-09 occur 2.02e-03 occur 4.40e-05
occur 1.22e-09 grow 1.60e-03 grow 2.77e-05

last 6.46e-10 start 9.55e-04 start 9.88e-06
start 3.80e-10 collect 3.67e-04 collect 1.46e-06

collect 2.79e-10 undergo 3.46e-04 undergo 1.29e-06
undergo 2.28e-10 begin 1.48e-04 begin 2.37e-07

begin 2.19e-10 occupy 9.97e-05 occupy 1.08e-07
gather 1.34e-10 gather 8.72e-05 gather 8.24e-08
occupy 2.78e-11 last 9.81e-12 last 8.25e-17

Figure 5.4: LexSub: Sample pd model output (u+b+g, epmi) on the sentence at
top.

98



5.3 Influence of collocational information

Table 5.3 compares different variants of the pd model on the LexSub dataset.

Best bnc and best u+b+g scores are boldfaced. at and cat GAP scores are con-

sistently higher than those achieved by ct, and at consistently outperforms ct in

terms of wAcc. So we can conclude that in the context of these experiments, at

least, including collocational information improves performance. Comparing at and

cat, while there are only negligible differences in GAP between the two, there is a

noticeable difference in terms of wAcc. This means that at is better at apportioning

probability mass in the paraphrase distributions so that it more closely aligns with

LexSub.

Table 5.4 shows GAP and wAcc results by POS for models trained on

u+b+g. For both evaluation measures, we see that at shows the best performance

across the board. The only exception is that cat achieves better performance for

nouns under epmi factors. Comparing only between at variants, the epmi+at condi-

tion beats the int+at condition. Surprisingly, it is at with int that performs best on

adverbs in terms of GAP. Both tables show that cat does better than ct on ranking

paraphrases (GAP), but has more problems than at and ct when assigning weights

u+b+g bnc
int epmi int epmi

GT GAP wAcc GAP wAcc GAP wAcc GAP wAcc

ct 42.16 22.11 46.13 24.24 42.28 20.62 42.45 20.85
at 43.14 22.91 47.76 26.70 42.56 20.73 43.48 22.28
cat 42.82 20.73 47.77 23.22 42.52 17.48 43.44 20.23

Table 5.3: LexSub data: GAP and wAcc scores by corpus, graph transformation
and factor type. GT=graph transformation.
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int epmi

GT verbs nouns adj adv verbs nouns adj adv

G
A

P ct 36.36 42.19 42.86 50.78 42.97 48.00 45.23 50.01
at 37.24 43.76 43.86 50.77 44.91 48.51 47.60 51.49
cat 36.52 43.06 43.77 51.45 44.34 48.70 47.50 52.37

w
A

cc ct 18.60 22.65 21.94 27.68 22.51 24.31 24.61 27.14
at 19.58 24.09 22.25 27.99 25.56 26.10 27.21 29.69
cat 15.39 21.72 21.44 26.83 21.33 23.57 22.76 27.16

Table 5.4: LexSub data: GAP and wAcc scores by POS with u+b+g. GT=graph
transformation.

(wAcc).

5.3.1 Collocation isolated from semantic vector space

Here, we examine the contributions of collocational information isolated from

the influence of the semantic vector space factor—i.e. the word factor—defined in

§3.3.3.1. Instead of a sophisticated vector space model2 defining the associativity

between words and their potential paraphrases, the variant examined here merely

assumes a uniform association between words and their potential paraphrases that

derive from WordNet and LexSub. For example, if the paraphrases for the content

word bright are promising, luminous, shiny, then the word factor fbright(m) is

defined to be:

fbright(m = promising) = 1/3

fbright(m = luminous) = 1/3

fbright(m = shiny) = 1/3

2derived from the DependencyVectors package (http://www.nlpado.de/~sebastian/dv.shtml)
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That is, the uniform probability mass function over the three possible paraphrases

for bright.

GT all verbs nouns adj adv

G
A

P ct 44.43 42.37 45.38 43.63 47.56
at 46.49 44.94 47.00 45.94 49.15
cat 46.62 44.24 47.07 46.05 50.86

w
A

cc

ct 23.45 22.22 23.07 23.65 26.54
at 26.68 25.84 26.29 26.92 29.30
cat 23.07 21.32 23.21 22.64 27.13

Table 5.5: Collocational baseline scores for GAP and wAcc by POS with u+b+g.
GT=graph transformation. Selectional factors are epmi

Table 5.5 shows the collected results by part-of-speech with GAP and wAcc

scores for this variant. The only difference between our best, standard model and

this collocational variant is that this variant assumes a uniform distribution whereas

the standard model does not, instead deriving its parameters from a sophisticated

vector space model of word meaning. Comparing this with the standard model

allows us to determine how much in performance we are gaining through such a

vector space model. In Table 5.1, the score is 47.76 for the best model and 46.49

for the collocational variant. While the difference is statistically significant, the dif-

ference is far less than that between the best model and the singleton baseline. The

singleton baseline is the complement of the collocational baseline, where the sophis-

ticated vector space model has been retained but all selectional factors reflecting

collocation are removed. The situation is similar by part-of-speech and by graph

transformation. The removal of the vector space model decreases performance but

in the limited range of one to two percentage points.
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5.4 Parameters for selectional factors

Comparing performance for u+b+g and bnc in Tables 5.3 and 5.4, we find

that scores for u+b+g are better than corresponding bnc scores across the board,

so estimating selectional factors from more data is consistently helpful. In comparing

int and epmi, we see that epmi consistently outperforms int. This shows that it is

important to dampen frequency-related noise when using selectional factors.

While TFP10 used a cutoff on both counts and pmi values, we do not apply

any sort of cutoff.3 This indicates that the core model with epmi is capable of

effectively incorporating very small counts to make reliable inferences.

5.5 Analysis of precision and recall

The plots in Figures 5.5 and 5.6 show precision and recall at different weight

thresholds θ for epmi parameters derived from the u+b+g and bnc corpora re-

spectively. Points are shown in the order from highest to lowest θ, 0.9 - 0.0, in

steps of 0.05. At θ between 0.0 and 0.2 (rightmost points), we have high recall of

close to 90% at a precision of around 20%. This underscores again that pd model

variants tend to report nonzero probabilities for many more paraphrase candidates

than are listed among the gold paraphrases. (Note, though, that we evaluate only

on words that are LexSub paraphrase candidates, not paraphrase candidates from

WordNet.) With higher θ, recall drops fast, showing that most paraphrases in the

models have probability between 0.0 and 0.1, as can also be seen for some examples

3We leave out details of experiments where we varied cutoff values and found that no cutoff of
any sort performed the best.
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Figure 5.5: LexSub data: Precision/recall graphs over threshold by graph trans-
formation. Results from u+b+g epmi parameters.
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Figure 5.6: LexSub data: Precision/recall graphs over threshold by graph trans-
formation. Results from bnc epmi parameters.

104



in Figures 5.3 and 5.4. Precision keeps rising as the threshold rises, indicating that

the paraphrases with particularly high predicted probability tend to be correct. As

in the GAP analysis, we get a performance ordering of at > cat > ct, in particular

for high thresholds.

5.6 Document topic

We next compare results of pd models with and without lda derived factor

nodes. We present results in Table 5.6 only for the at condition; results for other

conditions are comparable. The first line shows the result of a baseline lda experi-

ment where each target node was given no syntactic context (i.e. equivalent to the

singleton baseline) and augmented only with the document based lda factor. We

note that it is even lower than the singleton baseline. Combining selectional infor-

mation through int with topic information via lda provides stronger results on GAP

for bnc over parameters derived from u+b+g. With u+b+g, there is a insignifi-

cant numerical improvement over the results from bnc in terms of wAcc. Outside

of the slight anomaly where bnc beats u+b+g in terms of GAP with int+lda, the

only observation that holds across experiment settings is that lda detracts from

bnc u+b+g
Model GAP wAcc GAP wAcc

lda only 32.24 15.41
int 42.56 20.73 44.56 22.98
int+lda 37.32 16.49 36.68 16.69
epmi 43.47 22.28 47.13 26.53
epmi+lda 42.21 19.20 45.10 22.57

Table 5.6: Models with and without document topic factors. All models (except lda

only) shown only in at condition.
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performance, though less so when the parameters are epmi.

Overall, the contribution of LDA-derived factor nodes is disappointing, a

marked difference to the usefulness of document context features in traditional WSD.

One possible reason is that LDA topics may not provide much information for the

words in our paraphrase distributions. LDA information will be most useful for

words whose probability differs strongly across topics. We compute the entropy of a

word across topics as a measure for its “topicality”. Figure 5.7 shows density plots

for the entropies of the paraphrases of LexSub lemmas, as well as for the top 30

words in all LDA topics that we used. The dotted line plots the entropy for the top

LDA topic words, and the solid line plots the entropy of the LexSub paraphrase

candidates. We see that paraphrases have two modes, one at high entropy, which

indicates low “topicality”, and another in the middle but still higher than a sizable

portion of the highly ranked words. So using a topic model, though intuitively the

most obvious approach to including document topic information, might not be the

most suitable for this data set, but a different model of document context still may

be.

To evaluate whether this discrepancy in entropy between words of high top-

icality according to the topic model and the entropy of the targets in LexSub has

an influence on model performance, we conducted a rank correlation test (Spear-

man’s rho) comparing performance for each datapoint with the average entropy of

the paraphrases for that datapoint’s target. We found no significant correlation for

GAP, but did find highly significant correlation (p < 0.01) for wAcc. In a plot of

entropy by GAP (Figure 5.8) and a plot of entropy by wAcc (Figure 5.9), a negative
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get words. Correlation, while negative is insignificant with Spearman’s ρ= −
0.04353575(p=0.6044)
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Figure 5.9: Plot of GAP score by average entropy of paraphrases for given
target words. Correlation is negative and significant with Spearman’s ρ= −
0.2317619(p=0.005189)
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correlation is visible in both plots. Nonetheless, the correlation is only significant

between wAcc and entropy. In related work [Kilgarriff and Rosenzweig, 2000], a

strong correlation between entropy and performance in a pure WSD was noted. In

fact, entropy was more indicative of the difficulty of a target word than the degree of

polysemy for the target. Though there are non-trivial differences between the work

in Kilgarriff and Rosenzweig and our model, we believe that a similar argument can

be made in our case. The relatively higher entropy of the targets in LexSub com-

pared to the entropy of highly topical words in the topic models makes an LDA

based factor less than effective for LexSub.

To examine whether performance could be improved by varying the number

of topics, we conducted experiments where we trained the topic models with 100,

200, 300, . . ., 2000 topics. We then ran baseline models where only the document

factor and vector space word factor were retained. The selectional factors were

removed. These results are plotted in Figure 5.10 for GAP and Figure 5.11 for

wAcc. As can be seen, there is no relation between the number of topics and

performance.
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Figure 5.10: Plot of LDA baseline experiments where only number of topics is varied.
x-axis is number of topics and y-axis is GAP score.
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Figure 5.11: Plot of LDA baseline experiments where only number of topics is varied.
x-axis is number of topics and y-axis is wAcc score
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5.7 Bag-of-words sentence context

GAP wAcc

baseline 34.00 12.27

ct 36.89 12.30

at 38.19 13.60

cat 39.17 13.40

Table 5.7: Sentence bag-of-words factor experiment results

Sentence bag-of-words features were shown to be effective in Erk and Pado

[2010] within a vector space approach. Here, we examined whether such features

could be incorporated within our framework successfully as evidence. The results

are tabulated in Table 5.7 and it is clear that they are not helpful. The baseline

results are based on experiments using only the bag-of-words factors described in §5.7

and the vector space word factor in §3.3.3.1. The remaining ct, at, and cat results

incorporate the previous bag-of-words factors and the vector space word factors and

use epmi selectional factors. There is evident deterioration in performance across

the board compared to the results in Table 5.1. The most severe decrease is in wAcc

where the scores underperform even the random baseline. One point of interest in

these results is that the cat result is one percentage point higher than at for GAP.

This is the widest difference between cat and at experiments among all experiments,

all other things being equal.

5.8 Learning curve experiments

It is clear from the preceding discussion that the selectional factor is the

most important component in the performance of our model. As such, we examine it
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Figure 5.12: Learning curve for GAP and wAcc by training corpus size for selectional
factors. By at, ct, and cat condition. Tick marks on x-axis from 1 to 20 represent
approximately 0.1 billion to 2 billion words of ukWaC. 21st tick mark represents
combined corpus of ukWaC, bnc, and Giga.
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GAP wAcc
GT 10&20 20&21 10&20 20&21

at 0.79 0.93 0.87 0.56

ct 0.47 0.78 1.02 0.53

cat 0.62 1.05 0.85 0.51

Table 5.8: Gain in performance in terms of GAP and wAcc in learning curve exper-
iments by transformation type (GT=graph transformation). The “10&20” header
indicates absolute performance gain from corpus 10 to corpus 20. The “20&21”
header indicates absolute performance gain from corpus 20 to 21.

further. In §5.4, we examined whether int or epmi is more effective in inferring graded

word meaning. In addition to these two different transformations of maximum

likelihood estimates, we can see from 5.1 that there are noticeable performance

gains as we increase the size of our training corpus from bnc to Giga to u+b+g.

To investigate the effect of corpus size in more detail, we conducted learning curve

experiments, where everything was held constant except the size of the training

corpus. The word factor was defined as the vector space parameter in 3.3.3.1.

No document or sentence level bag-of-words context was incorporated. Selectional

factors used the epmi parameters. The results of these experiments are plotted for

GAP and wAcc and for at, ct and cat in Figure 5.12. The tick marks on the x-

axis from 1 to 20 indicate subdivisions of ukWaC. From 1 to 20, each represents

approximately 0.1 billion to 2 billion words, the last of which is the full ukWaC

corpus. Finally, the 21st corpus combines all of ukWaC, bnc, and Giga; the last

two add some 1.1 billion words for a total of 3.1 billion words. First, we can see that

more data is better. The second thing we notice is that the jump from corpus 20

to 21—where Giga and bnc are added—is considerable. In fact, the performance

gain for GAP that comes from adding the last one billion words is actually greater
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than the gain that comes from adding one billion words of ukWaC to an existing

one billion words of ukWaC—i.e. the jump from corpus 10 to 20. Though there is

a similar performance jump in wAcc from corpus 20 to 21, the amount gained here

does not exceed the change from 10 to 20. The results are tabulated in Table 5.8.

The former result on GAP improvement shows that not all data is equal and strongly

suggests that diversity of the domain is an important consideration as well when

building training corpora.

bnc u+b+g
GT Model GAP wAcc GAP wAcc
cat int L∗∗ L∗∗ - -
ct int - - - -
cat int+lda L∗∗ L∗∗ - -
ct int+lda L∗∗ - - -
cat epmi G∗∗ - - -
ct epmi G∗∗ G∗∗ G∗∗ -
cat epmi+lda - L∗∗ - -
ct epmi+lda - G∗∗ - -

Table 5.9: Comparing global models to models restricted to local syntactic context:
L=local model better, G=global model better. GT = graph transformation. ∗∗:
difference significant at p < 0.01. Only results with performance distance ≥ 0.05

5.9 Nonlocal syntactic context

The ct and cat models receive information not only from their syntactic

neighbors. They infer paraphrase distributions by marginalizing over connected

paraphrase nodes, which eliminates d-separation4 between any given paraphrase

node and observed variables. This allows each paraphrase node to infer a para-

4For undirected graphs, two connected nodes X and Z are d-separated by node Y iff all paths
between X and Z pass through Y . By marginalizing over Y , X and Z are no longer d-separated
and thus any existing factorization properties for connected nodes X and Z no longer hold.
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phrase distribution based on evidence from the entire parsed sentence as well as

the hidden paraphrase nodes. Thus, from a linguistic modeling viewpoint, this is

more satisfying than at, which only requires knowledge of its immediately adjacent,

observed environment and does not incorporate its neighbors’ paraphrase distribu-

tions.

This raises the question of whether the cat and ct variants successfully incor-

porate observed evidence from the entire sentence. We test this by using a pruned

dependency graph consisting of only the LexSub target word and its immediate

neighbors. We then transform this pruned dependency graph via cat or ct as before.

In this local model, we still have mutual disambiguation between the target and

its syntactic neighbors, but no influence from the wider syntactic context in the

sentence.5 We call the original graph the global model. We compare the local and

global model by computing 99% confidence intervals with bootstrap resampling.

The results of these experiments are shown in Table 5.9: L are conditions

where the local model is significantly better with an absolute difference in perfor-

mance of ≥ 0.05. G are conditions where the global model is significantly better

with the same minimum difference in performance. Looking at the bnc parameters,

the local model shows better performance with int factors, while the global model

works better for epmi factors. This could indicate that selectional factors computed

from raw co-occurrence counts do not yield a clear enough signal for non-local syn-

tactic context to be usable, while epmi-based selectional factors do. The local model

5Note that in this subgraph the LexSub target’s neighbors are still contextualized, but are
contextualized only by the target. This is in contrast to existing approaches like EP08 and TFP10,
which always contextualize the target based on non-contextualized context vectors.
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again achieves better scores for int combined with lda, so lda factors may yield some

of the same information that the non-local syntactic context would have supplied.

With epmi plus lda, we may be getting mixed signals, resulting in one case where

the local model works better and one where the global model does. With param-

eters from u+b+g, the picture is very different, where with the exception of one

condition—namely, GAP for epmi, where the global model outperforms the local

model—there is no significant difference between the performance of the local and

global models. We hypothesize that any differentiating factors that come from the

local vs. global topology of the graphs are overridden by the size of the corpora

from which the parameters are derived.

5.10 Number of syntactic neighbors

Next we examine whether the model is able to successfully integrate contex-

tualizing information from multiple syntactic neighbors. Erk and Padó [2009] found

that use of multiple syntactic neighbors did not improve the EP08 model. We find

that this is different in the pd model. Figures 5.13 through 5.14 plot performance

against the degree of the LexSub target node for different parts of speech, based

on parameters from u+b+g with the cat+epmi condition. Other conditions show

a similar picture. The x-axes indicate the degree of the target node in the trimmed

dependency parse with only context words. The y-axes show either GAP or wAcc.

We can see that for verbs and nouns, there is a large increase in GAP for nodes

with at least two neighbors. For wAcc, the most pronounced increase is from zero

to one neighbors, with a small increase for two neighbors, again underscoring the
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Figure 5.13: GAP by degree of target node in graph. By part-of-speech.
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Figure 5.14: wAcc by degree of target node in graph. By part-of-speech.
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difficulty of achieving an improvement in weighted accuracy. In contrast, the model

performs best for adjectives and adverbs when there is exactly one neighbor, which

makes sense, as they typically have fewer dependency neighbors. We conclude that

having multiple neighbors helps our model in terms of GAP for verbs and nouns,

and doesn’t harm it in terms of wAcc.

5.11 Experiments with nameless hidden nodes

GAP wAcc

at 28.39 20.32

cat 28.93 20.37

ct 29.23 20.30

Table 5.10: Experiment results on model with nameless hidden nodes

In this section, we present the results of the model with nameless hidden

nodes (nh). The training of the model was described in §3.3.3.2 and its evaluation

was described in §4.6.5. The models were all trained on the 1.15M word Brown

corpus [Francis et al., 1982]. 50 states were posited for all models. All hyperparam-

eters α = β = γ = δ were set to 5. Parameters were determined from 1000 samples

that were collected with a lag of 5 iterations after a burn-in period of 500 iterations.

Once the parameters had been learned, inference was conducted identically to the

named models.

The results from these experiments are tabulated in Table 5.10. As can

be seen, the results are worse than the random baseline for GAP and wAcc. One

interesting result is that both ct and cat outperform at (with at least p < 0.05)

though the difference between ct and cat itself is not significant.

121



For comparison’s sake, we conducted the standard pd variant of at+epmi

with meaningful paraphrases values. The parameters were derived from Brown.

The results were 38.51 (GAP) and 18.22 (wAcc). So there is a substantial 10 point

gain in terms of GAP when actual paraphrases are used as values for the paraphrase

nodes. More surprising is that nh displays a 2 point gain over pd in terms of wAcc.

For the moment, we can only say that we will conduct further investigations into

the issue.

5.12 Miscellaneous experiments on LexSub

Here, we describe additional experiments that we conducted but are not

critical for the overall evaluation of the model.

5.12.1 Blocked information flow in paraphrase nodes

GAP wAcc

at 47.78 26.70

cat 47.77 23.22

ct 46.13 24.24

Table 5.11: Augmented paraphrase set experiment results

When we create a paraphrase node for a given observation, the valid para-

phrase values over which the distribution can have non-zero values is restricted by

a predefined set that derive from LexSub and WordNet. However, because we

are defining such paraphrase nodes for every content word node in a sentence, the

coverage is generally insufficient for most words and therefore when a word does

not have an entry in either database, we take the stopgap measure of only allowing
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one valid paraphrase value for such words, namely its own self. This has the un-

fortunate result of “blocking” information flow between paraphrase nodes that are

d-separated. To overcome this limitation, we tried augmenting the non-zero values

for paraphrase nodes given some target word. This was done by taking some fre-

quent items that shared the same part-of-speech with the target and adding them

to set of paraphrases in addition to the synonyms in WordNet and the paraphrases

from LexSub. Specifically, we conducted unigram counts over u+b+g, then for all

word types in a given part-of-speech, we took the 200 types which had frequency

rank 2001 to 2200 and added them to existing sets of paraphrases if there was

only one valid paraphrase for some target with a given part-of-speech. The results

are tabulated in Table 5.11. There is a numerical, but not significant, increase in

performance for cat.

5.12.2 Retention of function words

GAP wAcc

cat 47.72 26.54

at 47.65 24.12

ct 46.03 23.03

Table 5.12: Experiment results for when function words have not been discarded

The current set of models remove non-content words from the dependency

graph. While justified from the viewpoint of practice and practicality, we wondered

whether there is information loss and examined alternatives that retain non-content

words. Specifically, all function words that were not prepositions attached to mod

relations were retained. Prepositions attached to mod relations were transformed

123



as with all other models examined in this dissertation.6 Part of the motivation

for this investigation is that one of the relevant variables in distinguishing between

the address in Example 1.5 and the address in Example 1.6 is the existence of a

determiner that specifies the former address. The results of these experiments are

tabulated in 5.12. This time, there is a slight numerical deterioration in performance

compared to 5.11 and 5.1 but the differences were not significant.

5.13 twsi dataset

It is to be expected that the twsi dataset will be harder to model than

LexSub. It focuses on the most frequent nouns, which will in general be harder to

contextualize than medium-frequency lemmas. However, we consider it important

to access additional datasets for the evaluation of usage models to avoid overfitting

the LexSub data. Table 5.13 shows GAP and wAcc scores on twsi by selectional

factor type, graph transformation, and parameter source. Table 5.14 shows baseline

results. The parameters are based on counts from ukWaC and bnc. Giga was

6For example, the dependency parse output of the C&C parser [Clark and Curran, 2007] on the

noun phrase “measure of height” would be measure
ncmod
−−−−→ of

dobj
−−−→ height. As input to our current

models, we remove the non-content word of and transform this graph to measure
mod-of
−−−−→ height

u+b bnc
int epmi int epmi

GT GAP wAcc GAP wAcc GAP wAcc GAP wAcc

ct 32.48 19.18 33.26 16.67 32.62 19.24 32.53 13.88
at 33.06 19.88 34.01 19.45 33.04 19.85 33.01 16.03
cat 32.88 16.40 34.31 15.22 32.80 16.26 33.08 12.76

Table 5.13: twsi data: GAP and wAcc scores by corpus, graph transformation and
factor type. Experiment parameters are derived from counts in ukWaC and bnc
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GAP wAcc

seq 32.48 16.24
singl 33.96 19.72
rand 23.62 18.57

Table 5.14: twsi data: GAP and wAcc scores for baselines. seq uses epmi. Experi-
ment parameters are derived from counts in ukWaC and bnc

excluded. The scores confirm that this dataset is relatively hard to model. The

random baseline in Table 5.14 is considerably lower than for LexSub, indicating that

there is on average a greater number of paraphrase candidates for twsi datapoints.

The best pd model variants improve over the random baseline by about 11 points

in GAP, and 1 point in wAcc, while the improvement on the LexSub dataset is 17

points for GAP and 5 points for wAcc. The singleton baseline is exceptionally strong:

The difference in GAP between that baseline and the best model variant is only 0.3

points, and the difference in wAcc is negligible. So on this dataset, context-aware

models barely manage to rise above a model that ranks paraphrases just by similarity

to the target without taking sentential context into account. Focusing on the left

side of Table 5.13, the results confirm the trend in the LexSub experiments where

cat and at models perform the strongest on GAP, while at models show the best

performance in terms of wAcc. However, on this dataset, cat actually outperforms

at in terms of GAP. What is surprising is that for wAcc, the best factor type is not

epmi but int for both u+b and bnc parameters.
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u+b+g bnc
SF ct at cat ct at cat

int 0.193 0.207 0.195 14.10 14.93 14.55
epmi 0.305 0.311 0.311 13.82 19.82 19.14

M/L 0.24
E&P 0.27

Table 5.15: M/L data: Spearman’s ρ. pd parameters estimated using u+b+g. ρ
for prior M/L and EP08 models on right. All results significant at p < 0.01.

5.14 M/L dataset

Table 5.15 shows the results on the M/L dataset. Mitchell and Lapata es-

timate the ceiling (inter-rater agreement) at ρ = 0.4. The correlation of the best

pd model condition, at with epmi parameters, at 0.311 exceeds the best results re-

ported by M/L and EP08. However, these results are based on the u+b+g corpus,

while both M/L and EP08 use the bnc, Using bnc parameters, the pd model’s

performance is lower than those of M/L and EP08, maybe due to the impover-

ished syntactic context of the M/L datapoints. Even though the dataset is different

and the evaluation measure is different, the results mainly confirm our findings on

LexSub: using epmi transformation on the selectional factor parameters strongly

improves performance, and the at condition results in the best performance.
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Chapter 6

Conclusion

In this dissertation, we have introduced a usage model of word meaning that

is inference-based, characterizing a word’s meaning within context as a distribution

over potential paraphrases. The main aim has been to create a model that is general

and flexible enough for testing and integrating multiple knowledge sources for the

task of contextualization. The model framework of probabilistic graphical models

is itself dependent upon a novel choice of representation: graded word sense over

paraphrases. We normalized this to create paraphrase distributions. This represen-

tation granted us considerable flexibility in capturing word meaning as well as more

cognitive validity [Erk and McCarthy, 2009]. Furthermore, though it does not apply

to the current work, the creation of the main data set we used—LexSub—required

far less lexical expertise than for a lexical inventory such as WordNet. The lower

threshold allows and will allow convenient creation or expansion of such inventories

such as LexSub. Given these positives, we believe that graded word sense is a

meaningful and lasting contribution to the study of lexical semantics.

We summarize our findings in a format that mirrors the list of questions in

the introduction:

• Influence of collocational information
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Modeling collocation in the form of edges between paraphrase nodes and adja-

cent observations is significantly more useful than solely having edges between

paraphrase nodes

• Nonlocal syntactic context

Model variants that laid edges between paraphrase nodes implicitly allow in-

formation to flow throughout an entire sentence. The conclusion is that this

information flow is not harmful in terms of GAP as long as local, collocational

information is also considered.

• Non-syntactic bag-of-words context

Variants that incorporated bag-of-words context at the document level through

topic models or at the sentence level through complete graphs severely under-

performed models that did not incorporate this information.

• Effects of parameterization

Comparing parameters based on normalized frequency counts and epmi trans-

formed parameters, it is clear that the latter performs much better.

• Type of hidden nodes

In terms of the value space over the paraphrase nodes, actual paraphrases are

highly more beneficial compared to nameless indexes.

Happily, it was found that many variants of our core model outperformed the state-

of-the-art model [Thater et al., 2010] on the LexSub task for all parts-of-speech

except verbs (i.e. nouns, adjectives and adverbs).
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Beyond the above summarization, the fact that the adjacency transform (at)

variant with exponentiated pointwise mutual information (epmi) performed best in

terms of GAP and wAcc on LexSub strongly indicates that (1) the choice of lexical

targets in LexSub is skewed towards words which have high correlation with words

which occur in dependency adjacent nodes (2) incorporating all the arbitrary number

of observed neighbors around a target through simple product rules is much more

effective than most vector space models which can only consider a fixed number of

neighbors (usually one or two). Further experiments are required to find whether

similar performance gains would hold under a different data set.

6.1 Future work

In this section, we discuss some of the deficiencies of the current work and

what must be further studied to develop a more complete picture of the model and

validate its potential.

6.1.1 Automatic extraction of paraphrase sets

For reasons of tractability, the set of real word paraphrases that have non-

zero values for a given target varies. For charge this will include accusation, alle-

gation and a few more words. For bright, this would be light, promising and a few

more. Compared to the overall vocabulary, these are much smaller subsets. And we

obtained these subsets from WordNet and the LexSub corpus. To reduce the level

of supervision required even further, removing this reliance on previously compiled

sense inventories is critical. We believe this to be an important issue and plan on
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dealing with it in the long term. One possible solution is to evaluate the pairwise

similarity between words in some vector space and only consider words which exceed

some similarity threshold in relation to some other word to be valid paraphrases of

this word.

6.1.2 Applications

The experiments in the dissertation concentrated on data sets that evaluated

either graded word sense—LexSub [McCarthy and Navigli, 2009] and twsi [Bieman and Nygaard,

2010]—or selectional preference—M/L [Mitchell and Lapata, 2008]. While impor-

tant for examining the properties and capabilities of our model in itself in relation

to other existing models, and while it is important for examining the phenomenon

and representation of graded word sense, there is a pressing need to investigate

its performance in terms of real-world applications such as information retrieval or

question answering. One fruitful application we have in mind is in machine trans-

lation. For example, language models used to generate a target sentence could be

strengthened by incorporating information from the adjacency transformed version

of our model.

6.1.3 More flexible notions of evidence

It is clear from the results here (§5.6) as well as elsewhere [Leacock et al.,

1998] that different types of words are dependent on different sources of evidence

for disambiguation. For example, our experiments on incorporating document topic

model as evidence suggest that the target words in LexSub are poorly suited

for inferring the meanings of words with low topicality. In contrast, topic mod-
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els can be used profitably in word sense disambiguation given the right set of

words [Boyd-Graber et al., 2007].

An effective model should be able to distinguish which pieces of evidence

are relevant or irrelevant and effectively promote or downgrade such evidence when

inferring meaning. Our hope was that the process of factorization and marginaliza-

tion in a graphical model would be able to implicitly conduct such promotion and

demotion of evidence. Our experiments show that, for the data we have and under

the parameterizations and estimation procedures that we used, this is not the case.

We will require more experiments under more diverse settings to conclusively decide

whether a new model is necessary and how this new model may be defined if this is

the case.

6.1.4 Further exploration of model with nameless hidden nodes

The results presented in §5.11—based on the model with a nameless set of

indexes as its value space described in §3.3.3.2—are clearly of a preliminary nature.

Different hyperparameter values as well as different model sizes (i.e. the number

of nameless hidden states K) need to be examined extensively with larger corpora.

The restriction of the size of the hidden states to K = 50 states was due to memory

issues. For example, experiments with K = 100 proved untenable on machines

with 50G of memory. Once solutions have been devised and more experiments have

been conducted, we will be able to make more conclusive statements regarding the

performance of these models.
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Eneko Agirre, Llúıs Màrquez, and Richard Wicentowski, editors. Proceedings of the

Fourth International Workshop on Semantic Evaluations (SemEval-2007). Asso-

ciation for Computational Linguistics, Prague, Czech Republic, June 2007. URL

http://www.aclweb.org/anthology/S/S07/S07-1.
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