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 This dissertation aims to identify the main changes in monsoon activity observed 

over the American monsoon and Amazonian regions during the last decades and the 

possible links between such changes. To address this, several observational and 

reanalysis datasets were used. The results suggest the occurrence of two regime types of 

the North American monsoon during 1948-2009: two dry regimes during 1948-1959 and 

1990-2009 and one wet regime during 1960-1989. The occurrence of such regimes is 

modulated by the Atlantic Multidecadal Oscillation. However, the two dry regimes have 

different causes. In particular, the more recent dry regime is mainly due to both an 

anomalous westward expansion of the North Atlantic Subtropical High and a northward 

displacement of the subtropical jet stream over the United States. The former enhances 

the low-level flow from the Gulf of Mexico to the Great Plains and weakens moisture 

transport to Mexico and the southwestern US.  
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 In addition to such a weakening of the North American monsoon during the last 

two decades, this research shows that the American monsoon systems have shortened 

after 1978 due to a trend toward earlier retreats of the North American monsoon and 

delayed onsets of the southern Amazon wet season. These changes produce a longer 

transition season between both monsoon systems. Whether these changes are caused by a 

common factor or they are the consequence of independent and unrelated causes was not 

clear previously. The results discussed here indicate that the observed changes in the 

American monsoons are partially a consequence of the westward expansion of the North 

Atlantic surface high observed since 1978. Such a westward expansion enhances the 

activity of easterly waves over the southern Caribbean Sea and northern South America, 

producing a dominant easterly flow over the region, which in turn prevents the reversal of 

the cross-equatorial flow necessary to transport moisture to the southern Amazon and the 

South American monsoon domain and contributes to its delayed onset. 

 

 This investigation provides evidence that the shortening and weakening of the 

American monsoons and the lengthening of the transition season between them are 

associated with the same large-scale forcing, which may be caused by anthropogenic 

influence. 
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Chapter 1 

General introduction 

 

 Summer precipitation over both North and South America contributes with more 

than half of their total annual precipitation (Figueroa and Nobre 1990; Higgins et al. 

1997). Such rainfall amounts are produced by the monsoon systems that take place over 

both continents. The regions affected by the North American monsoon system (NAMS) 

are among the zones with most rapidly growing population of the United States (US) and 

Mexico whereas the South American monsoon system (SAMS) affects large and highly 

populated regions of Brazil, Argentina, and Paraguay. The circulation patterns 

established by these monsoon systems control the summer weather over these regions and 

have important implications in both economy and society. 

 

 The American monsoon systems share many of the characteristics exhibited by 

the Asian monsoon (Vera et al. 2006a). Some of these features include (i) the strong land-

sea thermal contrast, (ii) the thermally direct circulation with continental rising motion 

and oceanic subsiding motion, (iii) the local land-atmosphere interactions due to the 

presence of elevated topography, (iv) the surface low pressure (due to the strong land 

heating) and the upper-troposphere anticyclonic circulation, (v) the strong moisture 

transport from the adjacent oceans to the continent, and (vi) the associated seasonal 

rainfall changes over the continent (increases in summer and decreases in winter). 

Furthermore, Ramage (1971) proposed a criterion that demands that a monsoon may be 
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characterized by a large-scale wind regime that reverses between winter and summer. 

Although the Americas experience a strong seasonal cycle in rainfall, the dominant wind 

direction is mainly unchanged between winter and summer (Slingo 2002). However, 

Zhou and Lau (1998) demonstrated that the main features of such a reversal of the 

seasonal circulation over South America are observed when the annual mean winds are 

removed. 

 

 The seasonal cycle of precipitation over the subtropical Americas exhibits strong 

regularity. Furthermore, both the NAMS and the SAMS can be considered as the 

extremes of such a cycle (Vera et al. 2006a). The NAMS rainfall starts by early to mid 

June over southwestern Mexico and advances to northwestern Mexico and the 

southwestern (SW) US by July (e.g., Douglas et al. 1993; Higgins et al. 1997; Barlow et 

al. 1998). During this evolution, large amounts of moisture are transported from the Gulf 

of California (at surface) and the Gulf of Mexico (at mid-levels in the atmosphere) to the 

monsoon region (Higgins et al. 1997; Adams and Comrie 1997). Once the NAMS is fully 

developed, precipitation amounts are larger over the Mexican domain (influenced by 

abundant tropical moisture and thunderstorms) and lighter over the SW US (influenced 

by midlatitude effects and gulf surges) (Higgins et al. 1999; Stensrud et al. 1995). The 

NAMS retreats by late September-October in association with diminished precipitation 

over the SW US and western Mexico. Simultaneously to this retreat, the convection 

migrates from Central America into South America, initiating the wet season over the 

equatorial Amazon by September. The onset of the wet season starts in the equatorial 
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western Amazon and spreads quickly to the east and the southeast. By October, monsoon 

activity starts over the southern Amazon and the Brazilian highlands whereas it reaches 

southeastern Brazil by November (e.g., Vera et al. 2006a; Marengo et al. 2010, and 

references cited therein). The mature phase of the SAMS occurs from late November to 

late February, when large amounts of precipitation fall across the Amazon basin (Wang 

and Fu 2002). During this phase, the monsoon core is located over central Brazil. The 

convection produced by the southern Amazon wet season and the South Atlantic 

Convergence Zone (SACZ) is an important feature of the SAMS mature phase (Lenters 

and Cook 1995). The monsoon upper-level circulation is characterized by the 

establishment of a strong anticyclone known as the “Bolivian High”, which is a response 

to the strong convective heating over the Amazon and central Brazil. Throughout this 

evolution, important moisture amounts are transported by a northerly low-level cross-

equatorial flow (Wang and Fu 2002) and the South American low-level jet, which 

transports moisture between the Amazon and the La Plata basins (Berbery and Barros 

2002). During March to May, the regions of large precipitation over subtropical South 

America reduce in size and migrate slowly toward the equator, indicating the retreat of 

the SAMS.  

  

 Different studies have focused on the variability of the American monsoons at 

different timescales. This variability appears to be partially modulated by both local 

changes of sea surface temperatures (SSTs) and anomalies induced by the remote 

influence of different ocean-atmosphere variability modes (Vera et al. 2006a and 
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references therein). The NAMS is affected at interannual and interdecadal time scales by 

the Pacific Decadal Oscillation (PDO), the El Niño Southern Oscillation (ENSO), the 

Atlantic Multidecadal Oscillation (AMO), and the Arctic Oscillation (AO) (e.g., Higgins 

and Shi 2000; Enfield et al. 2001; Castro et al. 2001, 2007; Schubert et al. 2004; McCabe 

et al. 2004; Seager et al. 2005; Hu and Feng 2008, 2010; Kushnir et al. 2010; Mo 2010). 

On the other hand, the SAMS is mainly influenced by the Atlantic SST anomalies 

(Mechoso et al. 1990; Giannini et al. 2001) although the PDO and ENSO also contribute 

to rainfall variability over the region (Moura and Shukla 1981; Pisciottano et al. 1994; 

Grimm et al. 1998; Marengo et al. 2004). The SST changes associated with these ocean-

atmosphere variability modes influence the land-sea thermal contrast necessary for 

monsoon circulation and/or induce circulation anomalies that modify the moisture 

transport to both monsoon regions. 

 

 Monsoon precipitation over the Americas is also affected by intraseasonal activity 

related to the Madden-Julian oscillation (MJO; Madden and Julian 1994). Such an 

influence on the NAMS could be induced by changes in tropical cyclones activity 

associated with the MJO (Higgins and Shi 2001) or modulation of tropical easterly wave 

and gulf surge activity (Higgins et al. 2004). On the other hand, the MJO modulates the 

persistence of intense SACZ events (Carvalho et al. 2004), which in turn affect the 

SAMS. 
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 Large scale circulations associated with teleconnection patterns such as the 

Pacific-North American (PNA) and the Pacific-South American (PSA) patterns also 

modulate monsoon activity over both continents. The PNA pattern is associated with 

changes in the upper-troposphere NAMS anticyclone (Higgins et al. 1998) whereas the 

PSA pattern causes anticyclonic (cyclonic) anomalies that enhance (reduce) precipitation 

over southeastern South America (Grimm et al. 2000). Although both patterns are 

partially influenced by ENSO, other independent factors also contribute to their 

variability (Higgins et al. 2000b; Silvestri and Vera 2003).   

  

 In addition, land surface conditions such as evaporation and recycling (Anderson 

et al. 2004; Li and Fu 2004; Zhu et al. 2007), synoptic-scale transient systems (Gonzalez 

et al. 2007; Douglas and Englehart 2007), and cold air incursions (Li and Fu 2004; Raia 

and Cavalcanti 2008) also modulate monsoon rainfall over the Americas. 

 

 Recent publications have reviewed the main characteristics of the American 

monsoons, the recent advances in understanding their variability, and the most important 

challenges to improve the modeling, prediction, and predictability of these monsoon 

systems (Vera et al. 2006a; Marengo et al. 2010). Moreover, a unified view of the 

American monsoon systems has begun to emerge in association with the development of 

the World Climate Research Programme/Climate Variability and Predictability/ 

Variability of the American Monsoon Systems (WCRP/CLIVAR/VAMOS) program 

(Vera et al. 2006a). However, whether these monsoon systems have changed during the 
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recent decades and whether there exists an interaction between both systems is still not 

clear. Therefore, the investigation presented in this dissertation aims to identify the main 

changes in monsoon activity observed over the American monsoon regions during the 

last decades and the possible links between such changes.  

 

 This dissertation is divided in three main chapters. Each chapter corresponds to an 

independent manuscript, already published or in revision, where different data sets and 

approaches were used to answer the scientific questions raised. Chapter 2 focuses on the 

study of cloud changes over the Amazon forests, which lead to changes of the diabatic 

heating, important for the SAMS onset. Although rainfall variability and its recent 

changes over the SAMS domain and the Amazon basin has been investigated in the past, 

changes in cloudiness over these regions, which are deeply related to those in 

precipitation, have not been studied in detail. Since convection over the Amazon basin 

plays an important role during the SAMS, the main objective of Chapter 2 is to 

investigate whether cloudiness and surface solar radiation have changed over this region 

from 1984 to 2007, and if so, how these changes are linked to tropical decadal climate 

variability. The material presented in this chapter is already published in Climate 

Dynamics (Arias et al. 2010). 

 

 Chapter 3 investigates the changes in the NAMS regime during 1948-2009 with 

particular emphasis on its retreat phase. Although the NAMS onset and its variability 

have been widely documented, the variability of its retreat has not received as much 
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attention. For this reason, the main objective of Chapter 3 is to identify the possible 

changes in the decay phase of the NAMS during the last decades, their implications to the 

monsoon strength, and their possible causes. The material discussed in this chapter is 

under review by Journal of Climate (Arias et al. 2011). 

 

 Finally, Chapter 4 combines the results obtained in Chapter 3 with those 

documented by Fu et al. (2011). In particular, Fu et al. (2011) showed evidence of a 

lengthening of the dry season over the southern Amazon since 1978 in association with a 

delayed onset of the wet season whereas Chapter 3 identifies a shorter and weaker NAMS 

due to an earlier retreat of the monsoon. Thus, the ultimate goal of this chapter is to 

determine whether there is a common factor that induces such changes in the American 

monsoon systems or they are the consequence of independent and unrelated causes. This 

chapter corresponds to a third publication to be submitted to Journal of Climate in the 

next weeks (Arias and Fu 2011). In addition, the author of this dissertation also 

contributed to the research presented by Fu et al. (2011), especially to the analysis of the 

wet season onset and the dry season length over the southern Amazon and its links to 

thermodynamic stability. 

 

 Each one of the chapters described above is organized using the same structure. 

Thus, they are presented in five sections: (i) introduction, (ii) data and methodology 

description, (iii) results and their analyses, (iv) discussion, (v) and concluding remarks. 
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Finally, a fifth chapter summarizes the global conclusions and findings obtained from this 

dissertation. 
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Chapter 2 

Changes in cloudiness over the Amazon rainforests during 1984-2007 

 

2.1. Introduction 

 

 Tropical forests contain as much as 40% of the carbon stored as terrestrial 

biomass and account for 30 to 50% of terrestrial productivity (Phillips et al. 1998).  

Approximately 55% of the contingent rainforest is located in the Amazon basin. This 

river basin also provides ~18% of global fresh water discharge. Through its control on 

evapotranspiration and runoff, the Amazon rainforest plays an important role in 

regulating the water cycle in this basin. The Amazon hosts the wettest tropical rainforest 

with a mean annual rainfall of 1500 to 3000 mm. These forests exhibit flushes of new 

leaf growth with increased photosynthesis in the dry season that closely coincide with 

seasonal peaks in solar irradiance (Myneni et al. 2007; Wright and van Schaik 1994), 

indicating that photosynthesis in these rainforests is radiation limited (Shuttelworth 

1989), instead of water limited. The balance of the Amazon forest is primarily 

determined by land use and climate change and has important consequences to the global 

carbon and water cycle.  

  

 Recent studies have reported a widespread increase of the growth and mortality 

rates of mature rainforest (Phillips et al. 1998; Nemani et al. 2003; Lewis et al. 2004a).  

Such a growth rate increase is more robust over the forests that are least disturbed by 
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human activities (e.g. the western Amazon), suggesting that a direct impact of land use is 

unlikely to be the cause. Several other causes have been hypothesized including CO2 

fertilization, climate change, increasing aerosol induced diffuse light, and nutrient 

recycling (Laurance et al. 2004; Nemani et al. 2003; Gu et al. 2003; Artaxo et al. 2002, 

Lewis et al. 2004b). Among them, CO2 fertilization has received the most attention 

(Lewis et al. 2004a,b; Laurance et al. 2004). However, Nemani et al. (2003) and Ichii et 

al. (2005) suggested that the increased rate of forest growth is too large to be explained 

by CO2 fertilization alone and proposed changes in solar radiation, most likely due to 

changes in cloudiness, as a possible contributor. However, whether cloudiness has 

significantly changed over the tropical forests, and if so, what is the cause of such a 

change has not been clear. 

 

 Decadal changes of cloudiness over the global tropics have been previously 

detected (Wieliki et al. 2002; Chen et al. 2002). Over South America, Warren et al. 

(2007) found a declining trend in cloudiness by analyzing an in-situ product. Other 

studies indirectly associated with cloudiness suggest mixed conclusions. The analysis of 

long-term rain gauges in the Amazon basin suggest that decadal change of rainfall is 

insignificant over the southern Amazon (5-15S) and marginally significant in the 

northern Amazon (5S-5N; Marengo 2004). Although the decadal runoff changes are 

significant, such changes have been attributed either to evapotranspiration changes 

(Gedney et al. 2006) or to land use (Coe et al. 2009). The association of these previous 

studies with decadal changes of cloudiness is not clear. 
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 What processes could potentially cause decadal variability of the cloudiness over 

the Amazon?  Many previous studies have explored the empirical links between rainfall 

changes in South America and several well-known sources of decadal variability in the 

tropics. For example, Marengo (2004) identified a correlation between wetter conditions 

over the entire forest during 1946-1975 associated with the cold phase of the Pacific 

Decadal Oscillation (PDO; Mantua et al. 1997) and drier conditions over the western 

Amazon during 1976-1998 associated with the warm phase of the PDO. Kayano and 

Andreoli (2007) found that El Niño-Southern Oscillation (ENSO) effects in rainfall over 

South America are enhanced (weakened) when ENSO and the PDO are in the same 

(opposite) phases. Using a set of model simulations, Knight et al. (2006) show that the 

positive Atlantic Multidecadal Oscillation (AMO; Kerr 2000) phase is associated with a 

northward displacement of precipitation over the tropical Atlantic Ocean, along with a 

northward cross-equatorial wind anomaly. These changes imply a shift in the mean 

Intertropical Convergence Zone (ITCZ) to the north of its climatological March-April-

May (MAM) position, and hence a reduction in northeastern Brazil rainfall. 

 

 The positive phase of the Indian Ocean Dipole (IOD; Saji et al. 1999) also has 

been found to be correlated with an anomalous divergence and negative rainfall anomaly 

over central Brazil (Chan et al. 2008). Saji and Yamagata (2003) showed that positive 

IOD events are associated with warm land surface anomalies and reduced rainfall over 
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Brazil.  How the changes of these tropical decadal modes influence cloudiness over the 

Amazon has not been investigated thoroughly.  

 

 In addition to tropical influences, the Amazon rainfall is also modulated by 

extratropical variability. Wave trains extending along the south Pacific link convective 

pulses to the South Pacific Convergence Zone (SPCZ) and South Atlantic Convergence 

Zone (SACZ) regions (Kalnay et al. 1986; Grimm and Silva Dias 1995; Nogues-Paegle 

and Mo 1997; Lenters and Cook 1995). Positive rainfall anomalies in the SACZ region 

are, in turn, associated with negative rainfall anomalies in the Amazon on both 

intraseasonal and interannual scales (e.g., Nogues-Paegle and Mo 1997; Liebmann et al. 

2004). In addition, Fu et al. (2001) reported that a wave train anomaly in the south Pacific 

and South American sector could produce upper level cyclonic conditions that potentially 

suppress precipitation over the eastern Amazon. 

 

 Although rainfall variability over the Amazon basin has been investigated in the 

past, changes in cloudiness over these forests have not been studied in detail. This work 

investigates whether cloudiness and surface solar radiation have changed over this region 

from 1984 to 2007, and if so, how these changes are linked to tropical decadal climate 

variability. To answer this question, the trends in cloudiness and solar incoming radiation 

over the Amazon basin and their links to decadal variability over the adjacent oceans are 

shown. In addition, the underlying mechanisms that have contributed to these observed 

links are discussed. This chapter is organized as follows. Data and methodology are 
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described in section 2.2. Results are presented in section 2.3. The implications of these 

results to the growth of the Amazon rainforests are discussed in section 2.4. Finally, 

conclusions are presented in section 2.5. 

 

 

2.2. Data and methodology 

 

The International Satellite Cloud Climatology Project (ISCCP) cloudiness and 

solar incoming radiation, and the National Oceanic and Atmospheric Administration 

(NOAA) interpolated Outgoing Longwave Radiation (OLR) datasets were analyzed in 

order to determine the changes of cloudiness and the resultant change of downward 

surface solar radiation over the Amazon during the period 1984-2007. Other variables 

such as surface temperature, relative and specific humidity, vertically integrated moisture 

transport (VIMT), sea surface temperature anomalies (SSTA), as well as other well-

established indices of sea surface temperature (SST) variability were also studied to 

uncover the physical processes associated with regional changes of cloudiness over the 

Amazon basin. The trends of these variables were estimated using the non-parametric 

Mann-Kendall test (Sen 1968). Correlation and composite analyses were used to link 

cloud cover variability in South America with tropical climate variability. Due to 

differences in rainfall seasonality between the northern and southern Amazon regions 

(Wang and Fu 2002; Marengo 2005), the Amazon basin was divided in two parts: the 
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northern (70W-50W, 5N-5S) and the southern Amazon (70W-50W, 5S-15S) 

(Fig. 1).  

 

 Monthly data from the ISCCP database for shortwave (SW) down-welling 

radiation (FD datasets) and clouds (D2 datasets) with a 2.5-degree resolution during the 

period 1984-2007 (Rossow et al. 1996; Rossow and Schiffer 1999; Zhang et al. 2004), 

available at ISCCP website (http://isccp.giss.nasa.gov/index.html) was used.  ISCCP-FD 

is a product of the Goddard Institute for Space Study (GISS) radiative transfer model 

calculation using inputs from the ISCCP cloud product (D1), the Television Infrared 

Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and the Total 

Ozone Mapping Spectrometer data, along with other ancillary data for specifying the 

radiative properties of the atmospheric and surface (Zhang et al. 1995; Zhang et al. 2004). 

Thus, the changes of surface downward solar radiation are mainly a result of the 

cloudiness change in the ISCCP data. 

 

 Recent studies have highlighted the sensitivity of the ISCCP cloudiness to 

changes in satellite viewing angle caused by satellite reposition (Campbell 2004; Norris 

2005; Evan et al. 2007). Norris (2005) found that an increase of the number of 

geostationary satellites over time has produced a tendency towards lower viewing angles 

at many locations, generating an apparent decline in the ISCCP planetary albedo and 

cloud cover. However, not all the types of clouds are equally affected by changes in 

satellite viewing angle. The low-level clouds top temperature is closer to the background 
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clear sky temperature and thus is more sensitive to small temperature changes due to the 

shift of satellite viewing angle than that of the middle and high-level clouds.  

  

 OLR data was obtained from polar-orbiting satellites. Its biases due to orbital drift 

or changes in satellite are uncorrelated to the geostationary satellite repositions. Thus, 

monthly NOAA interpolated OLR on a 2.5˚ resolution (Liebmann and Smith 1996) was 

used to verify the changes detected by the ISCCP data.  

 

 Surface temperature, relative humidity, and specific humidity records 

corresponding to in situ data interpolated in a 5 x 4-degree grid for the period 1976-2005 

were used. These records were provided and described by Dai (2006). 

 

 Monthly streamfunction at 0.22 sigma level (200 hPa) and the VIMT calculated 

using the NCEP-NCAR Reanalysis (Kalnay et al. 1996) were also used.  For calculations 

of the VIMT, daily 2.5-degree grid data for zonal and meridional wind and specific 

humidity at different pressure levels from the National Center for Environmental Project-

National Center for Atmospheric Research (NCEP-NCAR) Reanalysis (Kalnay et al. 

1996) were used. Since atmospheric moisture is an order of magnitude lower above the 

mid troposphere compared to that in the lower troposphere, the vertical integration was 

done between 1000 hPa and 600 hPa levels over the northern Amazon and southern 

Amazon, respectively. VIMT was calculated by integrating the moisture flux over the 

box defined by the limits of the domain in consideration, as follows (Li and Fu 2004) 
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where g is acceleration of gravity (m/s2), u is zonal wind (m/s), v  is meridional wind 

(m/s), q is specific humidity (kg/kg), p1 is pressure in the surface layer (1000 hPa), p2 is 

pressure in the upper layer (600 hPa), Lon1 is longitude for the left side of the box, Lon2 

is longitude for the right side, Lat1 is latitude for the southern side, Lat2 is latitude for the 

northern side,  is density of water (1000 kg/m3), and A is the area of the box (m2). 

Integrations were averaged on a monthly basis. Units for VIMT are given in mm/day and 

positive values represent convergence.   

  

 SST data was obtained from the extended reconstructed monthly mean SST from 

the NOAA Climate Diagnostic Center (CDC) (Reynolds 1988). The spatial resolution of 

the data is 2˚x2˚. For the period of analysis considered here, the SST was derived from 

blended satellite and in situ measurements.   

 

 To identify how the cloudiness changes are linked to tropical climate variability, 

indices for the PDO, the expansion of the western Pacific warm pool (WPWP), the IOD, 
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the AMO, and the tropical Atlantic SST gradient (SSTG) were considered. The AMO 

index is available from http://www.cdc.noaa.gov/data/timeseries/AMO/ (Enfield et al. 

2001).  The PDO index was obtained from http://jisao.washington.edu/pdo/PDO.latest 

(Mantua 1997). The intensity of the IOD is represented by the Dipole Mode Index (DMI) 

and is available at http://www.jamstec.go.jp/frsgc/research/d1/iod/dmi_nature.index. The 

WPWP index was defined as the area over the equatorial Pacific between 20S-20N and 

140E-150W, where SSTs are higher than 28C. This index is considered to be an 

overarching index of western Pacific variability. The tropical Atlantic SSTG was defined 

as the area mean SST difference between the north (5N-25N, 60W-30W) and south 

(5S-25S, 30W-0E) Atlantic (Giannini et al. 2004). Finally, the indices to characterize 

ENSO variability (Niño3, Niño4, and Niño3.4) were obtained from 

http://www.cdc.noaa.gov/data/climateindices/List/. 

 

Correlation coefficients were computed to identify the links between the cloud 

changes over the Amazon and the circulation changes over the adjacent oceans. Trends 

were removed before computing correlations since the existence of a trend can induce 

spurious correlations that are not related to the interannual variability but only to the 

decreasing/increasing trends of the time series. The statistical significance of the 

correlations was determined by the Monte Carlo Test for spatial pattern (Livezey and 

Chen 1983). A total of 1000 iterations were performed and a threshold for statistical 

significance equal to 95% (p=0.05) was used.   
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Composites for positive (> 1 standard deviation, ) and negative phases (< -1)  

of (i) the PDO index, (ii) the AMO index, (iii) the WPWP index, (iv) the tropical Atlantic 

SSTG, and (v) the Indian Ocean DMI were computed. Given the limited occurrence of 

these events relative to the total temporal samples, composite analysis would more 

clearly highlight the cloud changes over the Amazon associated with the aforementioned 

indices than that provided by the correlation analysis. These composites were obtained 

with and without the ENSO influence on each index. The statistical significance of the 

difference between the composites for the positive and the negative phases was tested 

using a bootstrap test (Efron 1979). A total of 1000 iterations with a threshold for 

statistical significance equal to 95% (p=0.05) were performed using the bias corrected 

and accelerated percentile method for the confidence interval estimation.   

 

Correlation analysis was used to identify the SSTAs patterns, thus the decadal 

SST variability modes that are linked to the cloud changes over the Amazon. The 

composite cloud changes associated with strong anomalies of such decadal modes were 

thus analyzed.  
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2.3. Results 

 

2.3.1 Changes in surface incoming radiation and convective cloudiness over the 

Amazon 

 

Figs 1a)-1d) show the seasonal trends of the ISCCP SW down-welling radiation 

(contours) during 1984-2007 over the tropical Americas. Boxes show the geographical 

location for the northern and southern Amazon regions. The linear trends shown in these 

figures are statistically significant at the 5% level according to the Mann-Kendall test 

(Sen 1968). The strongest trends occur in September-October-November (SON) over the 

entire Amazon. A general increase of solar SW radiation over the southern Amazon 

domain also occurs during the December-January-February (DJF) and MAM seasons. 

Decreasing total cloud cover over the Amazon is observed (not shown), in agreement 

with Warren et al. (2007), who also found a declining trend in cloudiness from their 

analysis of an in-situ product during the period 1971-1996 (see their Fig.5). 

 

The ISCCP data show a significant decrease of high clouds during DJF and MAM 

over the southern Amazon and during SON over the entire Amazon in Fig. 1e)-h). Areas 

of decreasing high cloudiness over the Amazon generally coincide with increasing SW 

down-welling radiation, except over the northwestern Amazon during MAM, when the 

reduction of high clouds occurred mainly over the southern domain (Fig. 1). By contrast, 

low and middle clouds do not show any significant change (not shown). Fig. 2 shows the 
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domain average time series for total and high clouds over the northern Amazon during 

SON and the southern Amazon during DJF, and the distribution of the ISCCP satellite 

reposition dates during the period considered here (1984-2007). The high cloud changes 

mostly occur well within the field of view of the geostationary satellites, where the 

change of satellite viewing angle has less impact on cloud detection than that near the 

edge of the satellite field of view. Thus, the satellite changes do not appear to cause a 

systematic decrease of total and high clouds over the region. By contrast, low-level 

clouds over the oceans do have a significant decrease (not shown) along the edge of the 

satellite field of view that matches the geostationary ‘‘footprints’’ due to satellite viewing 

angle change (Evan et al. 2007). 

To verify if these changes in ISCCP high clouds are consistent with changes in 

OLR, monthly NOAA interpolated OLR was used. Since OLR includes changes from all 

type of clouds, water vapor, and surface temperatures, only values lower than 240 W/m2 

were considered in order to be consistent with the ISCCP high clouds. An OLR value of 

240 W/m2 is an appropriate threshold for detecting deep convection (Murakami 1980; 

Lau and Chan 1983). Fig. 2 shows the domain averaged OLR over both the northern and 

the southern Amazon for the seasons with the largest changes in high clouds. In general, 

the reduction of high clouds is consistent with a statistically significant increase of OLR 

for both DJF and SON on decadal timescale. The spatial pattern of the OLR changes (not 

shown) agrees with that for the high clouds (Fig. 1). The general consistency between 

these two fields measured by different satellite-born instruments suggests that the change 

in ISCCP high clouds is unlikely an artifact of satellite measurement biases.  
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Fig. 1 Seasonal trend in a)-d) SW down-welling radiation and e)-h) high cloudiness 
from ISCCP during 1984-2007 over the Tropical Americas. Trends shown are 
statistically significant at the 5% level according to the Mann-Kendall test with Sen’s 
statistics (Sen 1968). Boxes represent northern and southern Amazon domains, 
respectively. 
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The interannual variations of the SON OLR over the northern Amazon agree with 

those of the high clouds, except during 1997. The DJF OLR averaged over the southern 

Amazon is out of phase with the high clouds during some years. This discrepancy is 

presumably caused by insufficient diurnal sample of the OLR.  During the wet season in 

the southern Amazon (DJF), convection is contributed by two different types of clouds 

associated with different large-scale atmospheric circulation (Rickenbach et al. 2002). 

These two convective cloud types have different diurnal cycles (Rickenbach 2004). 

Interannual variations of the large-scale circulation can alter the diurnal cycle of 

convection over the southern Amazon. The OLR daily value is derived from two 

measurements at a twelve-hour interval whereas the ISCCP daily value is computed from 

eight measurements at three-hour intervals. Thus, the monthly average of the daily OLR 

would be different from that corresponding to the daily ISCCP high cloud amount, even 

for a moderate change in diurnal cycle. Another possible cause for this discrepancy relies 

on the fact that the NOAA OLR measurements (broad band channel) are sensitive to 

atmospheric temperatures, water vapor, and the presence of clouds, while the ISCCP 

infrared channel is within the atmospheric window spectra, mainly sensitive to clouds. 

Thus, changes in atmospheric temperatures and water vapor could induce differences 

between OLR and high clouds measurements. 
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Fig. 2 Domain average time series for total and high clouds (black curves) and OLR 
(blue curves) during SON (DJF) over the northern (southern) Amazon. Domain average 
OLR is obtained for values lower than 240 W/m2. Red dotted lines indicate the dates of 
satellite reposition according to ISCCP D2 data set documentation (available at 
http://isccp.giss.nasa.gov/index.html). Solid lines represent statistically significant trend 
at the 5% level according to the Mann-Kendall test with Sen’s statistics (Sen 1968). 
 

 Several previous studies suggested that the DJF rainfall (either measured by 

station reported value or OLR estimated) has probably increased over the Amazon basin 

during the recent decades (Chu et al. 1994; Chen et al. 2001). These seemingly different 

results from the ones discussed here may be due to the use of different geographic 

domains and periods of analysis. For example, Chu et al. (1994) show a general decrease 

of DJF OLR during the period 1974-1990 over the region 0˚–5°N and 78°W–70°W, 

which is outside the domains considered in this study. The ISCCP high clouds and the 

NOAA OLR averaged over this region during DJF (not shown) indicate decreasing OLR 



24 
 

and increasing high clouds, consistent with the increasing rainfall reported by Chu et al. 

(1994). 

On the other hand, Chen et al. (2001) reported an increase of precipitation over 

the Amazon from 1958-1977 to 1978-1998 for a geographic domain that is significantly 

larger than the one used in this study (15°S–15°N, 70°W–50°W). Since the high cloud 

changes during DJF are negative over the southern domain and insignificant with slightly 

positive trend over the northern domain (Fig. 1e), the cloud change averaged over the 

region considered by Chen et al. (2001) becomes insignificant for the period 1984-2007. 

The OLR and high clouds variations were compared with Chen et al.’s (2001) results for 

the period of 1984-1996, when the ISCCP data overlaps with their second analysis 

period. Results show negative OLR changes over the southern Amazon before the mid-

90’s, consistent with the increasing rainfall reported by Chen et al. (2001).  These 

increasing OLR and decreasing high clouds mainly occurred after the mid-90s over the 

Amazon, especially over the southern domain.  

 

Furthermore, taking in consideration the relatively short analysis period in this 

study, the sensitivity of the trends of the high clouds and OLR to different time periods 

within 1984-2007 was tested (not shown). Results indicate that the spatial pattern 

reported in Fig. 1 remains generally the same.  
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2.3.2 Changes in surface temperature and humidity 

 

Table 1 shows the seasonal trends during 1984-2005 for temperature, specific 

humidity, and relative humidity from the surface station data described by Dai (2006). 

Relative humidity decreases for June-July-August (JJA) and SON over both the northern 

and the southern Amazon. This decrease is more highly correlated with warmer surface 

temperatures than with declining specific humidity (see Table 1). A significant increase 

of surface temperature is also observed by Malhi and Wright (2004). The warmer surface 

temperatures over the Amazon are not purely due to the increases in solar SW radiation. 

Previous observations have shown that the change of daytime temperature is primarily 

controlled by changes of surface solar radiation and wetness in the Amazon whereas the 

change of nighttime temperature is primarily influenced by water vapor and other 

greenhouse gases. 

 

The decreasing relative humidity over the Amazon basin is consistent with the 

observed decreasing cloudiness over the region. The radiosonde data from the University 

of Wyoming show reductions of the atmospheric buoyancy over the southern Amazon 

(not shown), consistent with atmospheric instability reductions over the region. 
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Table 1 Seasonal trends for surface data from Dai (2006) and VIMT from NCEP-NCAR 
Reanalysis averaged over northern and southern Amazon (see geographical location in 
Fig. 1). Values represent the total change in each variable during 1984-2005 (1984-2007 
for VIMT). Values in bold are statistically significant at the 5% level according to the 
Mann-Kendall test with Sen’s statistics (Sen 1968). 
 

  DJF MAM JJA SON 

  Northern Amazon 
q (g/kg) 0.24 0.00 -0.15 -0.11 
RH (%) -1.19 1.22 -4.05 -4.92 
T (C) 0.68 0.00 0.52 1.01 

VIMT (mm/day) 0.85 1.89 -1.60 -1.83 

  Southern Amazon 
q (g/kg) 0.82 0.52 -0.39 -0.09 
RH (%) 1.70 2.55 -0.14 -2.06 
T (C) 0.53 0.46 0.66 0.45 

VIMT (mm/day) 1.24 -0.42 -0.97 -0.42 
 

2.3.3 Possible causes of the changes in cloudiness over the Amazon 

 

 2.3.3.1 Changes in vegetation and land use 

 

Whether changes in vegetation and land use affect cloudiness over the Amazon 

forests is explored by comparing the pattern of decreasing cloudiness (Fig. 1) and that of 

deforestation available in literature. Results from World Wildlife Fund (WWF) published 

by BBC News (http://news.bbc.co.uk/2/hi/americas/7360258.stm) indicate that the 

deforested regions are localized over the southern edge of the Amazon during 1970-1997, 

but a northward migration is observed during 1998-2006. These findings suggest that the 

southern and southeastern Amazon domains are more affected by recent deforestation 

while the northern Amazon remains less affected by such land use. Studies by Drigo and 
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Marcoux (1999) also show that the southern Amazon experienced more deforestation 

than the northern region during the period 1980-1990 (http://www.fao.org 

/sd/wpdirect/WPan0030.htm). The reductions of cloudiness shown in Fig. 1 occurred 

over the entire Amazon, at a much larger spatial scale compared to that of the 

deforestation. Thus, changes in vegetation and land use cannot be the primary 

contributors to the observed large-scale changes in cloudiness over the Amazon forests.  

 

2.3.3.2 Links to decadal changes over the tropical Pacific and Atlantic Oceans  

 

Most of the high clouds detected by the ISCCP satellites are optically thick cirrus 

clouds produced by deep tropospheric convection (Rossow et al. 1996). Thus, this 

investigation focuses on understanding the causes of the decreasing convection and 

rainfall over the Amazon basin. Many previous studies have shown a clear correlation 

between the convection and moisture transport changes and the interannual SSTAs in the 

Pacific or the Atlantic oceans. Changes in the mid-lower troposphere VIMT, which are 

determined independently from cloud observations, were examined to verify the cloud 

changes.  

 

 Table 1 shows a statistically significant decrease of VIMT over the northern 

Amazon during JJA and SON and over the southern Amazon during JJA, which is 

consistent with the decrease of high cloudiness independently detected by the ISCCP 

during the dry and transition seasons (Fig. 1). To determine whether these changes are 
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linked to external SST forcing, composite changes of high clouds during the positive and 

the negative phases (> 1 and < -1, respectively; see section 2.2) of different ocean-

atmosphere variability modes were calculated. The number of events in each phase 

corresponding to the different variability indices considered here is shown in Table 2. 

The statistical significance of the difference between composites was tested using the 

bootstrap test (Efron 1979). 

 

Table 2 Number of years with statistically significant at 5% level positive (PP) and 
negative (NP) phases for the SST variability indices considered here. ENSO contributions 
are removed. Positive (negative) phases are selected as those years with an index value 
above (below) 1 of its climatological value. Statistical significance is tested using a 
boostrap test (Efron 1979). 
 

  DJF MAM SON 

  NP PP NP PP NP PP 

AMO 5 6 5 3 5 5 

PDO 3 4 5 5 5 5 

WPWP 4 4 4 4 3 4 

DMI 5 2 4 5 3 4 

Atlantic SSTG 4 1 3 4 4 5 

Atlantic SSTG (No AMO) 3 3 2 2 3 2 
 

Since ENSO-related changes could be dominant at decadal scales during the 

period considered here, these contributions were removed from all the SST variability 

indices. This was done by subtracting the temporal variations that are correlated with the 

ENSO index as determined by the linear regression from the original time series for any 

specific SST index (e.g., AMO, PDO, etc). The composites were obtained based on the 

residual time series of these indices. Results suggest that after the ENSO influence is 
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removed, changes in cloudiness due to the PDO and the DMI become insignificant for all 

the seasons, indicating that the effects of both the PDO and the IOD on the Amazon 

cloudiness cannot be separated from that of ENSO. 

 

Although the AMO signal is correlated with the tropical Atlantic SSTG, previous 

studies suggest that it may be physically independent from the SST changes in the 

southern tropical Atlantic (Chang et al. 2006). To clarify the physical processes, 

especially that of the AMO, behind the influence of the tropical Atlantic SSTG, its 

correlation with the Amazon cloudiness with and without the AMO influence was 

analyzed.  

 

The development of convection over the southern Amazon and its further 

migration to the northern Amazon are part of a characteristic cycle over the Amazon 

rainforest that produces seasonal differences between both regions: (i) DJF corresponds 

to the peak in rainfall over the southern Amazon, although there are still heavy 

precipitation events over this region during MAM, (ii) rainfall over the northern Amazon 

has its peak during MAM, and (iii) SON corresponds to the transition between dry and 

wet conditions over the southern Amazon. The analysis presented here is organized based 

on these seasonal patterns and the discussion will focus on the DJF, MAM, and SON 

seasons, when significant decrease of cloudiness has been detected.  
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 a) DJF 

Fig. 3 shows the linear trends of the DJF tropical SSTAs and the correlation 

between detrended SSTAs and detrended domain average high cloud for a) the northern 

and b) the southern Amazon. There is a general warming over the equatorial oceans, 

except over the south tropical Atlantic, where cooling is observed. Correlation between 

SSTAs and high clouds for both domains shows a strong link to the central and eastern 

Pacific SSTs, suggesting that the change of high cloudiness in the Amazon is especially 

sensitive to SST changes in these oceanic regions during austral summer. This link is 

consistent with the well documented relationship between rainfall changes over the 

northern Amazon and the Pacific SSTAs (Marengo 1992). In addition, Fig. 3a also 

suggests that warmer temperatures over the Indian Ocean are linked to decreasing high 

clouds over the northern Amazon. The correlation between the changes in high clouds 

over the southern Amazon and the equatorial central and eastern Pacific SSTAs is 

stronger than that estimated based on rain gauge data shown in previous studies (e.g., 

Marengo 1992). 

 

Both the WPWP and the IOD can be affected by ENSO. To determine to what 

extent they are correlated with the cloudiness change over the Amazon independently of 

ENSO, ENSO-related SSTA changes were removed from both the WPWP and the IOD 

indices. The result shows that only the WPWP area is still significantly correlated to the 

cloud changes over the northern Amazon (-0.51), i.e., the western Pacific warm pool 

expansion is correlated with a decrease of high cloudiness over that region. 
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Fig. 3 DJF correlations (color shades) between detrended SST anomalies from 
NOAA-CDC and detrended domain average high level clouds over a) northern Amazon 
and b) southern Amazon. Correlations shown are statistically significant at the 5% level 
based on Monte Carlo test and the spatial patterns shown are also statistically significant 
at 5% level (Livezey and Chen 1983). Contours represent trends in SST anomalies during 
1984-2007. Trends shown are statistically significant at the 5% level according to the 
Mann-Kendall test with Sen’s statistics (Sen 1968). Contours are plotted with interval of 
0.1C per decade. Solid (dashed) contours represent warm (cold) SST anomalies. 

 

Composite analyses for this season indicate that high clouds over the Amazon 

decrease during the western Pacific warm pool expansion events (not shown). To 

determine whether these changes are an artifact of the ENSO contribution to the 

increasing WPWP area, the changes of the WPWP index that are correlated with the 

ENSO index were removed. Since the warm pool expansion mainly occur over the 

central Pacific, the ENSO influence on the WPWP index was removed based on its 
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regression with the Niño4 index (i.e., SSTs averaged over the western Pacific domain 

bounded by 160°E-150°W and 5°S- 5°N). Significant changes in high clouds between the 

positive and the negative phases of the WPWP are still retained even after the removal of 

the ENSO influence (Fig. 4).  

 

 
Fig. 4 Composite high cloud difference for positive and negative phases of the 
WPWP (No ENSO) for DJF. Statistical significance for difference is tested using a 
bootstrap test (Efron 1979) at 5% level. Contours indicate trends in high cloud anomalies 
statistically significant at the 5% level according to the Mann-Kendall test with Sen’s 
statistics (Sen 1968). Solid (dashed) lines represent increasing (decreasing) clouds. 
Contours are plotted each 1% per decade. 

 

 b) MAM 

Fig. 5 shows a positive SST gradient (warming on the north side and cooling on 

the south side of the equator) in the tropical Atlantic and a strong warming in the eastern 

Pacific during MAM. The decrease of high clouds over the southern Amazon is 
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correlated with these SST increases. The high cloud changes over the northern Amazon 

are weak (Fig. 1f), thus no significant correlations with SSTAs are detected (not shown). 

 

 

Fig. 5  Same as Fig. 3b but for MAM. 
 

 The Atlantic SSTG is dominated by the Atlantic meridional dipole mode (Nobre 

and Shukla 1996). This mode has the strongest variability during MAM and is controlled 

by the AMO and the southern Atlantic Ocean SSTAs. The composite changes of high 

clouds using the AMO index (Fig. 6) suggest a significant decrease of high cloudiness in 

the Amazon during the positive AMO phases. The dipole pattern of the high cloud 

change over the tropical Atlantic resembles the northward shift of the Atlantic ITCZ 

associated with the positive phase of the Atlantic meridional dipole mode (e.g., Nobre 

and Shukla 1996; Chiang et al. 2000). The spatial pattern of this cloudiness change also 

resembles that for the trend of high cloud change. The composites shown in Fig. 6 are 

statistically significant according to the bootstrap test (Efron 1979).  
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Fig. 6 Composite high cloud difference for positive and negative phases of the AMO 
(No ENSO) for MAM. Statistical significance for difference is tested using a bootstrap 
test (Efron 1979) at 5% level. Contours indicate trends in high cloud anomalies 
statistically significant at the 5% level according to the Mann-Kendall test with Sen’s 
statistics (Sen 1968). Solid (dashed) lines represent increasing (decreasing) trends. 
Contours are plotted with interval of 1% per decade. 
 

 The composites using the Atlantic SSTG (not shown) also indicate reductions of 

high cloudiness over the southern Amazon when this gradient increases. However, after 

the removal of the AMO influence, the correlation between the high cloud changes over 

the Amazon and the Atlantic SSTG becomes insignificant. Thus, the decrease of high 

clouds in the southern Amazon during MAM is only consistent with the circulation 

changes associated with the positive phase of the AMO. Significant correlations between 
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high cloud change in the southern Amazon and the AMO (not shown) also support this 

result. 

 
 As shown in Fig. 5, high clouds over southern Amazon are negatively correlated 

with SSTAs over the eastern Pacific during MAM. This pattern is observed even after the 

eastern Pacific ENSO influence, as represented by the Niño3 index, is removed (not 

shown). Thus, the link between the eastern Pacific warming and the reduced high 

cloudiness over the southern Amazon appears to be statistically independent of ENSO. 

 

 c) SON 

 During this season, the decrease of high clouds in the northern Amazon is 

correlated with warmer SSTs in the central Pacific and cooler SSTs in the southern 

tropical Atlantic (Fig. 7).  The decrease of high clouds in the southern Amazon, which is 

weaker than that in the northern Amazon, is correlated with cooler SSTs in the southern 

tropical Atlantic (Fig. 7b). 

 

The composite difference of high clouds between the positive and the negative 

Atlantic SSTG phases is statistically significant, even when the AMO contributions are 

removed (Fig. 8a). Because the AMO is primarily associated with SSTAs in the northern 

tropical Atlantic, the above result confirms the correlation between high clouds and 

SSTAs over the southern tropical Atlantic shown in Fig. 7. Fig. 8a shows that high clouds 

decrease basin wide, especially in the western, central northern, and southern Amazon, 

when a strong positive Atlantic SSTG occurs in association with cooler SSTs in the 
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southern tropical Atlantic. The areas and pattern of decreasing clouds match the trend of 

decreasing high clouds in the western and central Amazon, suggesting that a change 

toward cooler SSTs in the southern tropical Atlantic probably contributes to the decrease 

of high clouds in this region. 

 

 

Fig. 7  Same as Fig. 3 but for SON. 
 

Reductions of high clouds over the northeastern Amazon and the Nordeste region 

are also observed when the western Pacific warm pool expands during SON (see Fig. 8b). 

This is consistent with the correlation between the high cloud changes in the northern 

Amazon and the SSTAs in the tropical central Pacific shown in Fig. 7a. Fig. 8b suggests 

that the expansion of the western Pacific warm pool probably contributes to the 
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decreasing high clouds over western tropical South America. Results obtained from the 

correlation analysis are consistent with those of the composite analysis shown in Fig. 8 

(the correlation coefficients over the region vary from -0.5 to -0.6 for the Atlantic SSTG 

and from -0.3 to -0.4 for the WPWP; not shown). 

 

 
Fig. 8 Composite high cloud difference for positive and negative phases of a) the 
Atlantic SSTG (No AMO, No ENSO) and b) the WPWP (No ENSO) for SON. Statistical 
significance for difference is tested using a bootstrap test (Efron 1979) at 5% level. 
Contours indicate trends in high cloud anomalies statistically significant at the 5% level 
according to the Mann-Kendall test with Sen’s statistics (Sen 1968). Solid (dashed) lines 
represent increasing (decreasing) trends. Contours are plotted with interval of 2% per 
decade. 
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2.3.3.3 The underlying dynamic processes  

 

What processes are responsible for the observed relationship between the changes 

of cloudiness and the aforementioned ocean-atmosphere variability modes? Previous 

studies suggest two possible mechanisms: (i) an anomalous change of the direct thermal 

circulation either zonally or meridionally (e.g., Moura and Shukla 1981; Chiang and 

Sobel 2002; Neelin et al. 2003) and (ii) a change of the planetary wave trains from the 

tropical central Pacific to South America (e.g., Kalnay et al. 1986; Fu et al. 2001; 

Liebmann et al. 2004). The former would show clearly in seasonal mean correlations 

between changes in moisture transport and high clouds, whereas the latter would be 

dominated by transient disturbances instead of by seasonal mean anomalies.  

 

The analysis discussed here and the correlations between VIMT and SSTAs (not 

shown) suggest that the changes of moisture transport over the northern Amazon are well 

correlated to SSTs changes; however, this relationship is very weak for the southern 

domain. This suggests that a decrease of moisture transport has likely contributed directly 

to the decrease of cloudiness in the northern Amazon (as previously suggested by Wang 

2002 and Yoon and Zeng 2010), but not necessarily in the southern Amazon. Other 

dynamic mechanisms need to be explored. 

 

Planetary wave trains link anomalies of convection in the SPCZ to that of the 

SACZ (Kalnay et al. 1986; Grimm and Silva Dias 1995; Nogues-Paegle and Mo 1997; 
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Lenters and Cook 1995; Fu et al. 2001). The latter is anti-correlated with rainfall 

variability in the Amazon (Liebmann et al. 2004). These anomalous wave trains could 

alter the equatorward incursion of the extratropical synoptic disturbances reaching South 

America, thus they would influence cloudiness. To test this hypothesis, composites for 

differential streamfunction at 0.22 sigma level (~200 hPa) between years with southern 

Amazon average high clouds above and below 1 its climatology were estimated. The 

difference was tested using a bootstrap test (Efron 1979). The number of years with 

southern Amazon average high clouds above/below 1 is six/four during DJF and 

three/five during SON from 1984 to 2007.  

 

 Figs. 9a and 9b show the trends in the 0.22 sigma level streamfunction during the 

period 1984-2007 for DJF and SON, respectively. Results indicate a stronger cyclone-

anticyclone-cyclone tripole structure over the South Pacific-South America region, 

especially during SON, typically observed in the PSA wave trains (Fu et al. 2001). The 

relationship between upper tropospheric streamfunction and decreasing high clouds over 

the southern Amazon are shown in Figs. 9c and 9d. Blue (red) colors indicate statistically 

significant strengthening of the cyclonic (anticyclonic) circulation when high clouds are 

reduced over the southern Amazon. Composites for DJF and SON (Figs. 9c and 9d) show 

that the structure associated with the PSA wave trains is enhanced during those years 

when high cloudiness over the southern Amazon is reduced. 
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Fig. 9 Trends in streamfunction during a) DJF and b) SON. Differences between -1 
decrease and 1 increase of high clouds events in the southern Amazon for 
streamfunction at 0.22 sigma level (200 hPa) during c) DJF and d) SON. Statistical 
significance for difference is tested using a bootstrap test (Efron 1979) at 5% level. 
Trends are statistically significant at the 5% level according to the Mann-Kendall test 
with Sen’s statistics (Sen 1968). 
 

 The association between these wave trains and the Pacific Ocean variability has 

been previously established on seasonal and interannual timescales (Kalnay et al. 1986; 

Fu et al. 2001; Liebmann et al. 2009). In particular, when the SSTs in the central–eastern 
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equatorial Pacific Ocean are warm, the anomalous wave train from the tropical central 

Pacific to the extrotropical southeastern Pacific to South America tends to enhance the 

SACZ. The latter tends to suppress convection over the southwestern Amazon (Nogues-

Paegle and Mo 1997). This result suggests that the reduction of high clouds over the 

southern Amazon rainforest on multi-decadal decadal scale is likely linked to stronger 

wave trains in the south Pacific and South American sector, which in turn are associated 

with SST changes over the Pacific.  

 

 

2.4. Implications to the observed growth rate increase over the Amazon forests 

 

A statistically significant increase of biomass and net primary productivity (NPP) 

over the Amazon forest has been previously documented (Phillips et al. 1998; Nemani et 

al. 2003; Lewis et al. 2004a; Laurance et al. 2004). Phillips et al. (1998) found a 

widespread increase of the neotropical forests biomass over the recent decades. They 

suggested possible mechanisms that may explain this change, including (i) a response to 

continental-scale cyclical climate change (e.g., ENSO), (ii) a response to widespread 

disturbance, either natural (e.g., volcano aerosols) or anthropogenic (e.g., increasing 

atmospheric CO2), (iii) an enhanced forest productivity due to a secular change in climate 

or an increased nutrient availability (due to increased N and P deposition from Saharan 

dust and biomass burning), and (iv) the CO2 fertilization.  
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 The increasing atmospheric CO2 concentration has received the most attention 

among the aforementioned potential causes (Lewis et al. 2004a,b; Laurance et al. 2004). 

However, Nemani et al. (2003) reported that the increasing NPP, at least during 1982 -

1999, is too large to be explained by CO2 fertilization alone. They further suggested that 

an increase in solar radiation over these radiation-limited forests is the most likely 

explanation for the increasing tropical NPP. The results presented here show a multi-

decadal scale decrease of cloudiness and an increase of downward solar SW surface 

radiation over the Amazon. Thus, these results imply that an increase of surface solar 

radiation and a reduced cloudiness, forced by decadal scale variation of the SSTs changes 

in the tropical Pacific and Atlantic oceans, would contribute to the increasing Amazon 

forest growth rate, as proposed by Nemani et al. (2003).  Since the AMO has begun to 

change toward a negative phase in recent years, whether or not the forest growth rate in 

the coming decade would change will provide an opportunity to clarify the relative roles 

between the CO2 fertilization and the surface solar radiation change. 

 

 

2.5. Conclusions 

 

The analysis of the ISCCP cloud and SW radiation data performed in this study 

suggests increasing SW down-welling radiation and decreasing total clouds cover over 

the Amazon forests during 1984-2007. The total cloudiness change, which is mainly the 

result from decreasing high clouds, is not caused by changes in satellite viewing angle of 
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the ISCCP geostationary satellites or by deforestation and land use. By contrast, this 

change is consistent with large-scale circulation changes determined independently from 

the cloud observations. The cloud changes are consistent with rising temperatures over 

this forest, as shown by the surface meteorological station data, decreasing vertically 

integrated moisture transport between the 1000 hPa and 600 hPa levels, as shown by the 

NCEP-NCAR reanalysis, and the drying of the middle-lower troposphere over the 

Amazon, based on the upper-air meteorological data. 

 

Although the high clouds decrease during all the seasons except the dry season 

(JJA), their spatial patterns and their links to the decadal ocean-atmosphere variability 

vary seasonally. During DJF and MAM, high clouds decrease in the southern Amazon. 

Such a change is primarily linked to the expansion of the tropical Pacific warm pool 

during DJF and to the AMO and the eastern Pacific SSTAs during MAM. During SON, 

the decrease of cloudiness occurs in both the northern and the southern Amazon. The 

cloud change over the western Amazon is linked to cooler SSTs in the southern tropical 

Atlantic whereas the change of clouds in the northeastern Amazon and the Nordeste 

region are mainly linked to the expansion of the western Pacific warm pool. 

 

What could cause the decrease of high clouds over the Amazon basin? The high 

cloud reductions over the northern Amazon are consistent with an enhanced subsidence, 

which compensates enhanced rising motion in the northern equatorial Atlantic and the 

Nordeste region (e.g., Moura and Shukla 1981; Chiang and Sobel 2002; Neelin et al. 
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2003). This suggests that changes in the direct thermal circulation, which could reduce 

moisture transport and stabilize the upper troposphere, are probably responsible for the 

decreasing high clouds in that region. By contrast, the changes in moisture transport and 

low-level anomalous wind in the southern Amazon are not well correlated to the SSTAs. 

Further analyses suggest that anomalous Pacific-South American planetary wave trains 

may reduce high clouds over the southern Amazon. It has been shown by previous 

studies that these wave trains are linked to SST variability over the Pacific Ocean. 

Whether the observed changes are part of natural climate variability or due to 

anthropogenic influences needs to be investigated. 

 

 The decrease of cloudiness over the Amazon and the resultant increase of solar 

SW radiation since 1984 support the hypothesis that increasing surface solar radiation 

contribute to the increasing forest growth rate over the Amazon, as proposed by Nemani 

et al. (2003).  

 

 The analysis period considered in this study is too short to fully assess the impact 

of multi-decadal SST variability on cloudiness change over the Amazon. Thus, whether 

the cloud changes and their underlying causes found in this study adequately represent 

the multi-decadal variations or trends has to be tested when data with longer record 

periods becomes available in future. 
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Chapter 3 

 Changes in the monsoon regime over northwestern Mexico during 

1948-2009 

 

3.1. Introduction 

 

 Summer monsoon precipitation over the southwestern (SW) US and Mexico, also 

known as the North American Monsoon System (NAMS) or the Mexican Monsoon 

(Douglas et al. 1993; Stensrud et al. 1995), has important impacts on water resource 

consumption and availability in that region, which is among the most rapidly growing 

zones of the US and Mexico.  

 

 The monsoon rain starts in early to mid June over southwestern Mexico 

(SWMEX) and advances to northwestern Mexico (NWMEX) and the SW US by early 

July (Barlow et al. 1998; Higgins et al. 1997). During its sudden onset, weather in the 

monsoon region changes from a relatively hot and dry regime to a cool and rainy regime 

(Higgins et al. 1999). This onset of the summer rainfall over western Mexico and the SW 

US coincides climatologically with decreased rainfall over the Great Plains and increased 

precipitation over the eastern coast of the US (Douglas et al. 1993; Douglas and 

Englehart 1996; Higgins et al. 1997; Mo et al. 1997; Barlow et al. 1998). The underlying 

processes that cause such a correlation are still not clear. Higgins et al. (1997) and Adams 

and Comrie (1997) indicate that two main sources of moisture feed the monsoon: the 
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northern Gulf of California provides most of the moisture below 850 hPa while the Gulf 

of Mexico provides moisture at and above 850 hPa. Thus, changes in these moisture 

sources can influence both the length and the strength of the monsoon.  

 

 Adjacent oceans, especially the Pacific, play an important role in the NAMS 

interannual variability. In general, strong (weak) monsoon onsets are linked to a positive 

(negative) thermal gradient from the Pacific to the SW US (Higgins and Shi 2001; Zhu et 

al. 2007; Turrent and Cavazos 2009). Interannual variability of the summer monsoon 

over this region is modulated by decadal fluctuations in the north Pacific sea surface 

temperature (SST) associated with the Pacific Decadal Oscillation (PDO) (Higgins and 

Shi 2000; Castro et al. 2001). Time-evolving tele-connections associated with Pacific 

SSTs either delay or accelerate monsoon evolution (Castro et al. 2007). The El Niño-

Southern Oscillation (ENSO) also affects the monsoon strength: wet (dry) monsoons in 

SWMEX tend to occur during La Niña (El Niño) due to the impact of eastern Pacific SST 

anomalies (SSTA) on the land–sea thermal contrast (Higgins et al. 1999) whereas above-

average July precipitation in northeast Mexico (west-central Arizona) occurs with El 

Niño (La Niña) (Harrington et al. 1992).  

 Hu and Feng (2008) documented the influence of Atlantic SSTs on the NAMS 

variability: distinctive circulation anomalies in central and western North America occur 

during both phases of the Atlantic Multidecadal Oscillation (AMO). The AMO warm 

phase boosts strong moisture transport from the regions near the Gulf of Mexico into the 

central US, causing more rainfall over that region and decreasing monsoon precipitation 
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to the west. Consequently, the AMO warm phase produces drier monsoons than the cold 

phase. In a later study, Hu and Feng (2010) investigated the modulation of the North 

American summer climate by the Arctic Oscillation (AO). Their findings suggest that the 

AO positive phase induces a northward displacement of the subtropical jet stream, which 

in turn leads to anomalous downward motion and moisture divergence over the central 

US, reducing precipitation in that region.  

 

 After the monsoon onset, rainfall may be strongly modulated by land surface 

conditions, such as evaporation and recycling (Anderson et al. 2004; Zhu et al. 2007), and 

by synoptic-scale transient systems (Douglas and Englehart 2007; Vera et al. 2006). The 

NAMS onset and its variability have been widely documented; however, the variability 

of its retreat has not received as much attention. This study aims to identify whether there 

was a change in the timing and strength of the NAMS during the period 1948-2009, and 

if so, what could have caused such a change. Precipitation and reanalysis data were used 

to identify changes in the monsoon strength and in the onset/retreat dates. The influences 

of lower and upper troposphere circulation and SSTs were analyzed using reanalysis data 

and extended reconstructed mean SSTs. This chapter is organized in five sections. 

Section 3.2 describes the data and the methodology. Section 3.3 identifies changes in 

monsoon regime and their possible causes. Section 3.4 presents a short discussion about 

the link between the observed changes and global warming. Finally, section 3.5 

concludes with the main findings from this study. 
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3.2. Data and methodology 

  

 Changes in the timing and the strength of the NAMS during the period 1948-2009 

were analyzed using both daily observational and reanalysis data over the northwestern 

Mexico region selected on the basis of the studies by Barlow et al. (1998) and Higgins et 

al. (1999) (see Fig. 10a). The daily rain rate was averaged over each region and converted 

to mean pentad values (i.e., 5-day averages) before obtaining the onset/retreat dates.  

 Different definitions have been previously suggested to determine the North 

American monsoon onset/retreat. For example, Douglas et al. (1993) and Stensrud et al. 

(1995) have characterized the onset of the Mexican monsoon by analyzing heavy rainfall 

over southern Mexico. Douglas et al. (1993) and Barlow et al. (1998) studied the 

precipitation change during the Mexican monsoon onset using the June-to-July change. 

These approaches allow the main features of the onset phase to be characterized but do 

not identify the specific onset date. Higgins et al. (1997) used a precipitation index (i.e., 

the area average daily precipitation over Arizona and western Mexico) to define the 

monsoon onset using a threshold-crossing procedure (with thresholds of 10.5 mm/day for 

rainfall and 3 days for duration). Although Higgins et al. (1997) carefully selected the 

grid points to be included in the area average precipitation, their procedure considers a 

duration criterion of only three days; thus the persistence of rainfall changes necessary 

for the monsoon onset may not be captured by this methodology. Zeng and Lu (2004) 

proposed a unified method to estimate the monsoon onset and retreat dates based on 

precipitable water data. Even though their results appear to be reasonable over the NAMS 
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region, precipitable water data is available mainly from reanalysis instead of rain gauge 

measurements. Thus, the aforementioned definitions of the monsoon onset/retreat dates 

may have issues related to the objectivity of the rain threshold considered, the persistence 

in time of the rainfall changes, and/or the reliability of the required data. 

 Li and Fu (2004) proposed a procedure that considers both an objectively defined 

rain rate threshold and the persistence in time to define the wet season onset. Their results 

over South America showed consistency with previous studies. Therefore, the definition 

of the NAMS onset and retreat dates applied in this study follows Li and Fu’s 

methodology. The onset (retreat) date was defined as the pentad before which the rain 

rate was less (more) than the climatological annual mean rain rate during 6 out of 8 

preceding pentads and after which the rain rate was greater (lower) than the 

climatological annual mean rain rate during 6 out of 8 subsequent pentads. When these 

thresholds did not allow identifying the monsoon onset (or retreat) date for a specific 

year, the duration threshold was relaxed from 6 to 5 consecutive pentads. One advantage 

of this methodology is that long-term rain gauge data can be used instead of reanalysis 

products.  

 

 The 1-degree grid daily precipitation over the US and Mexico during 1948-2009 

from the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction 

Center (CPC) was used. This dataset is described by Higgins et al. (1999, 2000a) and is 

available at ftp://ftp.cpc.ncep.noaa.gov/precip/wd52ws/us-mex/. This gridded data is 
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collected from about 2500 gauges with hourly records over the US and about 161 stations 

with daily records over Mexico (Higgins et al. 1999).  

 

 To identify the causes of the observed changes in the monsoon strength and 

timing, daily 2.5-degree grid data for surface temperature, SLP, geopotential height, and 

zonal and meridional wind at different pressure levels were used. These datasets were 

obtained from the National Center for Environmental Project-National Center for 

Atmospheric Research (NCEP-NCAR) Reanalysis (Kalnay et al. 1996) from 1948 to the 

present.  

 

 The extended reconstructed monthly mean SST from the NOAA Climate 

Diagnostic Center (CDC) (Reynolds 1988) described in section 2.2 was used.  

 

 To determine whether the changes of the monsoon regime are linked to tropical 

climate variability, the indices for PDO, ENSO, AO, and AMO were used. The PDO 

index (Mantua 1997) was obtained from http://jisao.washington.edu/pdo/PDO.latest. 

ENSO was represented by Niño3, Niño4, and Niño3.4 indices, available at 

http://www.cdc.noaa.gov/data/climateindices/list/. The AO index (Thompson and 

Wallace 1998) is available at the NOAA CPC site (http://www.cdc.noaa.gov/data/ 

climateindices/list/). The AMO index (Enfield et al. 2001) is available at 

http://www.cdc.noaa.gov/data/timeseries/AMO/. The effects of the expansion of the 

western Pacific warm pool on the NAMS regime were also investigated using the WPWP 
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index defined in section 2.2. Positive (negative) phases of the afore-mentioned indices 

correspond to the dates with an index value greater (less) than 1 standard deviation () 

plus (minus) its climatological mean. 

 

 Correlation coefficients between different variables were computed. The 

statistical significance of the correlations was determined by the Monte Carlo Test for 

spatial pattern (Livezey and Chen 1983) described in section 2.2. 

 

 To identify changes in atmospheric fields during early and late retreats, the 

composites for both cases were obtained and their difference was computed. Early (late) 

retreat monsoons were identified as those when the retreat date occurred during the 

period August 25-September 20 (September 30-November 4). The statistical significance 

of the difference was tested using the bootstrap test (Efron 1979) described in section 2.2. 

 

 Changes in the monsoon regime were also examined by considering weak and 

strong monsoons. Weak (strong) monsoons were identified as those when the monsoon 

total rainfall was below (above) 0.5 from its climatological mean. 
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3.3. Results 

 

3.3.1 Identification of two types of monsoon regime during 1948-2009 

 

 Precipitation during the summer NAMS has a characteristic pattern: a 

precipitation maximum occurs over SWMEX although a significant area of intense 

precipitation is centered over NWMEX; the lowest values are observed over the SW US 

(Douglas et al. 1993; Barlow et al. 1998). The monsoon onset occurs first over SWMEX 

and rapidly progresses northward until reaches the SW US (Douglas et al. 1993; Higgins 

et al. 1999), where rainfall is more directly influenced by mid-latitude weather systems 

(Higgins et al. 1999). Due to these differences, Higgins et al. (1999) considered three 

different regions over western Mexico and the SW US for their study of the NAMS 

interannual variability (see their Fig.2). In contrast, Barlow et al. (1998) only considered 

the region over western Mexico where precipitation is more intense (see their Fig.1a).  

 

 A recent study by Grantz et al. (2007) revealed a significant delay in the 

beginning, peak, and closing stages of the monsoon over the SW US during the period 

1948-2004. This shift in the monsoon over the SW US is found to be linked to warmer 

tropical Pacific SSTs and cooler northern Pacific SSTs in the antecedent winter–spring 

season, which leads to wetter-than-normal conditions over the SW US and, consequently, 

delays the seasonal heating of the North American continent necessary to establish the 

monsoonal land–sea thermal contrast. Since Grantz et al. already identified and explained 
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changes in the SW US monsoon season after 1948, this study focuses on the monsoon 

changes in the Mexican domain of the NAMS. Furthermore, an exploratory analysis (not 

shown) suggests that changes in the monsoon are stronger over NWMEX than over 

SWMEX; hence, this work will focus on the northwestern Mexican domain of the 

NAMS. This region was selected based on Higgins et al. (1999) and Barlow et al. (1998), 

as shown in Fig. 10a. 

 

 

Fig. 10 a) Monsoon region (NWMEX) considered for onset and retreat computations 
based on Barlow et al. (1998) and Higgins et al. (1999). b) Monsoon onset (black) and 
retreat (gray) dates over NWMEX during 1948-2009 obtained from CPC-USMex rain 
rate.  
 

 The monsoon onset and retreat dates were defined using a criterion that considers 

both an objectively defined rain rate threshold and the persistence throughout time, 

following Li and Fu (2004) (see section 3.2). CPC daily precipitation data for the US and 

Mexico (hereafter, CPC-USMex) was used. To match the period available for 

NCEP/NCAR reanalysis data, CPC-USMex rainfall data from 1948 to 2009 was used. 

The daily rain rate was averaged over the selected region and converted to mean pentad 
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values (i.e., 5-days average) before the monsoon onset and retreat dates were identified. 

Onset/retreat dates were obtained for each year.  

 

 Fig. 10b shows the time series for the onset and retreat dates over NWMEX. The 

onset and retreat dates show multi-decadal variations: more late-onset and early-retreat 

monsoons occurred during the periods 1948-1959 and 1990-2009 whereas more early-

onset and late-retreat monsoons occurred during 1960-1989. On interannual scale, early-

onset events are associated with late-retreat events while late-onset events are associated 

with early-retreat events. The monsoon retreat dates over NMMEX during 1948-2009 are 

shown in Table 3. Following Gutzler (2004), early (late) retreat events were identified as 

those when the retreat date occurred before September 20 (after September 30). Early 

(late) retreat events are shown in bold (asterisks) in Table 3. A higher frequency in early-

retreat monsoons over NWMEX is observed during the periods 1948-1959 and 1990-

2009. Late-retreat monsoons are mainly observed during 1960-1989, when retreat dates 

have higher variability. Although there are two periods of frequent early-retreat 

monsoons, the latter period (1990-2009) shows more persistence toward early retreats.  

 

3.3.2. Associated changes in precipitation during the monsoon season 

 

 To identify the changes in the monsoon precipitation associated with variations in 

the monsoon timing, a comparison between the monsoon total rainfall over NWMEX and 

the monsoon onset and retreat dates is shown in Figs. 11a and 11b, respectively. Annual 
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monsoon total rainfall was obtained as the total rainfall accumulated between the onset 

and retreat dates in a year. Results indicate periods of dry monsoon seasons over 

NWMEX during 1948-1959 and 1990-2009, consistently with the observed late-onset 

and early-retreat monsoons. Wetter monsoon seasons occur during 1960-1989 in 

association with early-onset and late-retreat monsoons. Correlations between monsoon 

total rainfall and onset (retreat) dates support this association. 

 

 

Fig. 11 Relationship between total monsoon rainfall and a) onset date and b) retreat 
date over NWMEX. Correlation coefficient and its significance level for 1948-2009 are 
indicated in each plot. Dashed lines represent mean rainfall during 1948-1960, 1960-
1990, and 1990-2009, respectively.  
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Table 3 Retreat dates over NWMEX during 1948-2009 from CPC-USMex rain 
rate data. The retreat date is identified using a criterion that considers both an objectively 
defined rain rate threshold and persistence throughout time following Li and Fu (2004) 
(see section 3.2). Dates in bold (asterisks) correspond to early (late) retreat events. 
 
 

1948-1959 1960-1989 1990-2009 

Year Retreat date Year Retreat date Year Retreat date 

1948 26-Aug 1960 31-Aug 1990* 30-Sep* 
1949 20-Sep 1961* 15-Oct* 1991 15-Sep 
1950 25-Sep 1962* 30-Sep* 1992 10-Sep 
1951 20-Sep 1963 25-Sep 1993 20-Sep 
1952 20-Sep 1964 25-Sep 1994 5-Sep 
1953 15-Sep 1965 15-Sep 1995 15-Sep 
1954 31-Aug 1966 25-Sep 1996 10-Sep 
1955* 15-Oct* 1967 15-Sep 1997 15-Sep 
1956 20-Sep 1968 15-Sep 1998 31-Aug 
1957 20-Sep 1969 5-Sep 1999 10-Sep 
1958* 5-Oct* 1970 25-Sep 2000 20-Sep 

1959 26-Aug 1971* 4-Nov* 2001 15-Sep 

  1972* 5-Oct* 2002 20-Sep 
  1973 5-Sep 2003 25-Sep 
  1974* 10-Oct* 2004 15-Sep 
  1975 15-Sep 2005 5-Sep 
  1976* 5-Oct* 2006 25-Sep 
  1977 20-Sep 2007 25-Sep 
  1978* 30-Sep* 2008 25-Sep 

  1979 26-Aug 2009* 15-Oct* 

  1980* 5-Oct*   
  1981* 30-Sep*   
  1982 10-Sep   
  1983* 10-Oct*   
  1984 15-Sep   
  1985* 30-Sep*   
  1986* 5-Oct*   
  1987 15-Sep   
  1988* 5-Oct*   

  1989 15-Sep   
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 To understand the effects of changes in the monsoon strength over NWMEX on 

the onset and retreat dates over the entire monsoon region, the difference in onset/retreat 

dates between weak and strong monsoons was computed. This difference was obtained 

from 21 weak and 25 strong-monsoon events. Weak (strong) monsoons were identified as 

those when the monsoon total rainfall over NWMEX was below (above) 0.5 from its 

climatological values. Results suggest that a weakening of the summer monsoon over 

NWMEX is associated with a later monsoon onset (Fig. 12a) and an earlier retreat (Fig. 

12b). In addition, changes in the monsoon retreat associated with variations in the 

monsoon strength occur over the entire NAMS domain whereas changes in the monsoon 

onset are more constrained to NWMEX. 

 To examine the association between changes in the spatial pattern of the 

anomalous monsoon precipitation and the variations in the monsoon strength, monsoon 

total precipitation anomalies and daily mean monsoon rain rate were composited for 

weak and strong monsoons and their difference was tested using the bootstrap test (Efron 

1979). Anomalies were computed based on the 1948-2009 climatology. Figs. 12c and 

12d show the change in monsoonal total precipitation anomalies and daily average 

monsoon rain rate, respectively, between weak and strong monsoons. Weaker monsoons 

are associated with reduced precipitation over the monsoon region and increased rainfall 

over the central US, not only during the entire monsoon season but also in their average 

daily rain rate. This out-of-phase relationship between rainfall over the central US and the 

monsoon region has been extensively documented (e.g. Douglas et al. 1993; Douglas and 

Englehart 1996; Mo et al. 1997; Higgins et al. 1997; Barlow et al. 1998). Furthermore, 
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this analysis indicates that the weaker monsoons have a later onset and an early retreat 

than the stronger ones. Weaker monsoons also show a lower daily rainfall rate (Fig. 12c).   

 

Fig. 12 Changes in a) onset and b) retreat dates over the SW US and Mexico between 
weak and strong monsoons. Composite difference between weak and strong monsoons 
for c) total monsoon precipitation anomalies and d) daily average monsoon rain rate. 
Contours indicate the differences that are statistically significant according to a bootstrap 
test (Efron 1979). 
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 Fig. 13 shows the difference in July-August (JA) total precipitation between weak 

and strong monsoons, and early and late-retreat monsoons. The composite difference 

between early and late retreats was obtained from 36 (17) early (late) retreat events, as 

indicated in Table 3. JA total rainfall amounts are considered since this season 

corresponds to the peak of the NAMS (e.g. Barlow et al. 1998). Changes in the monsoon-

peak total rainfall associated with a weaker monsoon (Fig. 13a) resemble those observed 

when the NAMS retreats earlier (Fig. 13b), suggesting that changes in the monsoon 

strength are associated with changes in the monsoon timing.  

 

Fig. 13 Composite difference in JA mean rain rate between a) weak and strong 
monsoons and b) early and late-retreat monsoons. Contours indicate the differences that 
are statistically significant according to a bootstrap test (Efron 1979). 
 

 These results indicate an increased frequency of weak monsoons over North 

America associated with late onsets and early retreats during 1948-1959 and 1990-2009, 
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and more frequent strong monsoons associated with early onsets and late retreats during 

1960-1989. Such a shift in the NAMS regime has been previously identified by Hu and 

Feng (2008), who showed that this multi-decadal variability in the monsoon strength is 

associated with the AMO. However, their study focused on the multi-decadal variability 

of the monsoon strength but not on the associated changes in the monsoon onset or 

retreat.  This study focuses on the difference between the two dry NAMS periods, the 

link between the changes in the monsoon retreat and strength, and the underlying causes 

of these changes. 

 

3.3.3 Associated circulation changes and their links to decadal climate variability 

modes  

 

3.3.3.1 Variations in lower troposphere circulation 

  

 To identify variations in the lower troposphere circulation associated with 

changes in the monsoon strength and timing, 850 hPa streamlines were composited 

during each pentad of the monsoon season considering both the monsoon strength and the 

retreat date. Since weak monsoons are more persistent during the more recent dry regime 

period (1990-2009) than during the earlier dry period (1948-1959), the changes in surface 

circulation during these two weak-monsoon periods and those during the period 1960-

1989, when the most of the strong monsoons occurred (20 out of a total of 25 events), 

were compared. 
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 Fig. 14a shows the mean surface circulation occurred three pentads before the 

retreat of the strong monsoons. Figs. 14b and 14c show the changes in surface circulation 

between weak monsoons and strong monsoons, for weak monsoons during 1948-1959 

and 1990-2009, respectively. Strong monsoons are characterized by a clearly defined 

cyclonic center over the west coast of Mexico, a characteristic feature of the NAMS. The 

western edge of the anticyclonic center associated with the North Atlantic Subtropical 

High (NASH) is located over the southeastern (SE) US. This circulation configuration 

leads to a southeasterly moisture transport from the Gulf of Mexico to the NWMEX 

monsoon region (Fig. 14a). By contrast, during the weak monsoons, the western edge of 

the NASH is shifted southward (Figs. 14b and 14c). A strong anomalous cyclonic center 

over the SE US leads to anomalous northerly lower level winds over the NAMS region, 

weakening the moisture transport from the Gulf of Mexico. This anomalous cyclonic 

center over the SE US becomes stronger and more extensive in the period 1990-2009 

(Fig. 14c) than in the period 1948-1959 (Fig. 14b). In addition, an anomalous 

anticyclonic center appears over the Gulf of Mexico during the period of 1990-2009. In 

addition, the center of the NASH is displaced northeastward and becomes stronger during 

weak monsoons, especially in the more recent dry period (Fig. 14c), than during strong 

monsoons. The mechanism behind the direct effect of this expansion on the NAMS is 

further explored and discussed in sections 3.3.3.3 and 3.4.  

 

 Variations in lower tropospheric circulation associated with changes in the 

monsoon retreat are shown in Fig. 15. Using a similar approach, late-retreat monsoons 
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were considered for the period 1960-1989 while early-retreat monsoons were considered 

separately for 1948-1959 and 1990-2009. The circulation change associated with late-

retreat monsoons show a similar pattern as that of the strong monsoons (Figs. 15a and 

14a, respectively).  The difference in patterns between early and late NAMS retreats 

(Figs. 15b and 15c) resembles that between weak and strong NAMS events (Figs.  14b 

and 14c), but shows more clearly defined anomalous anticyclonic centers over the Gulf of 

Mexico, especially during 1990-2009. The comparison between Figs. 14 and 15 suggests 

that both the weak monsoons and early retreats are linked to an eastward shift of the 

cyclonic circulation over the US. In addition, the early NAMS retreats are also linked to 

an enhanced anticyclonic circulation over the Gulf of Mexico.  

 

 Figs. 16 and 17 show the corresponding difference in SLP between (i) weak and 

strong monsoons and (ii) early and late retreats of the monsoon, respectively. Weak and 

early-retreat monsoons during both dry periods are accompanied by an intensification of 

the NASH center during the decay phase. However, a westward expansion of the NASH 

is only observed during the more recent dry period (Figs. 16b, 16d, 17b, and 17b), 

consistent with the shift in the position of the low-level anticyclone over the Atlantic 

Ocean (Figs. 14c and 15c).  
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Fig. 14 850 hPa streamlines composite for a) strong monsoons three pentads before the 
monsoon retreat. Difference in 850 hPa streamlines between weak and strong retreat 
events during b) 1948-1959 and c) 1990-2009. Color scale indicates wind speed in m/s.  
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Fig. 15 Same as Fig. 14 but for early and late-retreat monsoons. 
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Fig. 16 a) SLP composite difference between weak and strong monsoons five pentads 
before the monsoon retreat during a) 1948-1959 and b) 1990-2009. c) and d) Same but 
three pentads before the monsoon retreat. Contours indicate differences that are 
statistically significant according to a bootstrap test (contours) (Efron 1979). 
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Fig. 17 Same as Fig. 16 but for early and late-retreat monsoons. 
 

A recent study by Li et al. (2011) suggests a westward expansion of the western 

edge of the NASH and an intensification of its center associated with increased summer 

rainfall anomalies over the SE US after 1978 (c.f., Katz et al. 2003). To identify whether 

changes in the western edge of the NASH would influence the strength and retreat phase 

of the monsoon over NWMEX, Li et al.’s approach was followed using the mean position 

of 1560m of geopotential height (gpm) line to characterize the western ridge of the 

NASH during weak and strong monsoons and during early and late NAMS retreats. Fig. 
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18 shows the position of the western boundary of the NASH three pentads before the 

monsoon retreat for the weak, the strong, the early-retreat, and the late-retreat monsoons. 

To determine if changes in the location of the NASH vary with time, the position of its 

western boundary was obtained during the three observed monsoon regimes (1948-1959, 

1960-1989, and 1990-2009). During the two more recent periods (Figs. 18a and 18b), the 

mean western edge of the NASH shifts from 75W during strong and late-retreat NAMS 

events to approximately 95W during weak and early-retreat events. This westward shift 

of the western edge of the NASH is observed during the entire monsoon season (not 

shown). During the earlier dry monsoon regime (Fig. 18c), the western boundary of the 

NASH is also located further west during weak and early-retreat monsoons than during 

late retreats; however, it does not reach the SE US, staying over the Atlantic Ocean 

during the entire monsoon season. Apparently, a westward shift of the NASH over North 

America is observed only during the more recent decades. 

 

Fig. 19a shows the relationship between the monsoon retreat and the location of 

the NASH western ridge during the decay stage of the monsoon. Early (late) retreats 

correspond to a westward (eastward) shift of the NASH, especially after 1960. The 

western edge of the NASH mostly oscillates between 75˚–90˚W during the period 1948-

1989, but becomes more stationary, fixed within 85˚–90˚W after 1990. The early retreats 

of the NAMS are well correlated with the westward expansion of the NASH on both 

interannual and decadal scales. Thus, the trend toward early NAMS retreat after 1990 is 

closely related to the westward expansion of the NASH. On the other hand, the most 
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delayed monsoon onsets do not correspond to the most westward location of the NASH 

(not shown) suggesting that the influence of this westward expansion is stronger during 

the retreat phase of the monsoon. 

 
Fig. 18 Position of 1560 meter of geopotential height (gpm) contour line at 850 hPa for 
weak (gray dotted line), strong (black dotted line), early (gray line) and late- retreat 
(black line) NAMS events three pentads before the monsoon retreat during a) 1990-2009, 
b) 1960-1989, and c) 1948-1959.  

 

Fig. 19b suggests that the NASH western boundary location averaged over the 

monsoon season is as variable during 1948-1959 as that during 1960-1989. However, the 

monsoon total rainfall is lower and less variable during 1948-1959, indicating that the 

NASH western boundary location has a stronger influence on monsoon after 1960. 
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Furthermore, the connection between the monsoon rainfall and the NASH westward shift 

during the entire monsoon season is not as clear as that for the retreat stage. Evidently, 

the location of the western boundary of the NASH in recent decades has a stronger 

influence during the decay phase of the NAMS than during the development and mature 

phases. 

 

Fig. 19 a) Location of the NASH western boundary averaged during the last five 
pentads of the monsoon season (black) and the monsoon retreat over NWMEX (gray). b) 
Location of the NASH western boundary averaged during the entire monsoon season 
(black) and monsoon total rainfall over NWMEX (gray). Asterisks (diamonds) in a) 
represent monsoon events with early (late) retreat. 

 

How can the westward expansion of the NASH cause an earlier NAMS retreat? 

Fig. 20 shows the correlation between changes of the near surface monsoon low-pressure 

center, the NASH, and the low-level moisture transport to the NAMS region during the 

period of analysis. Fig. 20a shows that an easterly wind anomaly at 850 hPa in the 

NWMEX domain, which transports moisture from the Gulf of Mexico to the NAMS 

region, is correlated with negative geopotential height anomalies at 850 hPa over 

NWMEX during the NAMS retreat phase. This correlation pattern confirms that the 
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easterly moisture transport from the Gulf of Mexico is connected to the monsoon 

circulation, as suggested by previous studies (e.g., Higgins et al. 1997; Adams and 

Comrie, 1997). In contrast, a southerly wind anomaly over the southern Great Plains is 

correlated with a positive geopotential height anomaly at 850 hPa over the SE US and the 

eastern portion of the Gulf of Mexico and the Caribbean Sea (Fig. 20b), associated with 

the observed westward expansion of the NASH (Fig. 18).  

 

 
Fig. 20 a) Correlations between zonal wind anomalies averaged over the monsoon 
region and geopotential height anomalies at 850 hPa, five pentads before the monsoon 
retreat. b) Same as a) but for meridional wind at 850 hPa averaged over the central US. 
Correlations are statistically significant at the 5% level based on Monte Carlo test 
(Livezey and Chen 1993). Linear trends were removed before computing correlations. 
Boxes indicate the regions corresponding to wind anomalies average. 
 

 Figs. 16-20 suggest that, when the western edge of the NASH is located eastward, 

low-level winds over the western Gulf of Mexico and the Caribbean Sea are influenced 
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by the NAMS. The resultant southeasterly moisture transport is an important source of 

moisture for sustaining the monsoon circulation over the NAMS region, especially over 

NWMEX.  In contrast, when the NASH expands westward, it dominates the low-level 

winds over the Gulf of Mexico, leading to strong southerly moisture transport to the 

Great Plains. Such a change cut off the moisture transport from the Gulf of Mexico to the 

monsoon region, consequently weakens the NAMS, and contributes to the increased 

frequency of early-retreat monsoons observed during the past two decades. 

 

3.3.3.2 Variations in upper troposphere circulation 

 

Fig. 21 shows the mean upper troposphere (200 hPa) circulation for strong and 

weak NAMS events. Weak monsoons were divided into those occurred during each of 

the two dry regimes (1948-1959 and 1990-2009, respectively). Strong monsoons 

correspond to those occurred during the wet regime (1960-1989). Three pentads before 

the strong monsoon retreats (Fig. 21a), the monsoon anticyclonic circulation is centered 

over NWMEX (~25˚N) and the subtropical jets over North America are located between 

30N and 45N. During the two dry periods (Figs. 21b and 21c), the subtropical jets are 

wavier with a trough located over the eastern US and a ridge over the central and western 

US. The jets shift northward to between 40N and 50N over North America during the 

more recent dry period (Fig. 21c) relative to the earlier dry period (Fig. 21b).  
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Fig. 21 200 hPa streamlines composite for strong monsoons a) and weak monsoons 
during b) 1948-1959 and c) 1990-2009, three pentads before the monsoon retreat. Color 
scale indicates wind speed in m/s. 

 

The early-retreat monsoons occurred during the more recent dry period also show 

a northward shift of the subtropical jet stream over the US (Fig. 22c). This is not 

observed during the late-retreat events (Fig. 22a) or the early-retreat events occurred 

during the earlier dry period (Fig. 22b). 
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Fig. 22 Same as Fig. 21 but for early and late-retreat monsoons. 

 

A northward displacement of the subtropical jet stream over the western US 

during the more recent decades would reduce the number and strength of mid-latitude 

synoptic disturbances that propagate to the NAMS region, which in turn would reduce 

monsoon convection and, consequently, weaken the monsoon and force its earlier retreat. 

 

3.3.3.3 Connection to changes of sea surface temperatures 

 

 Previous studies have shown the influence of Pacific and Atlantic SSTs on the 

NAMS onset and strength. For example, Higgins et al. (1998, 1999) and Harrington et al. 
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(1992) show that ENSO modulates monsoon rainfall over Mexico and the SW US, 

affecting the monsoon strength. Changes in the thermal gradient from the Pacific Ocean 

to the SW US can also affect the monsoon onset (Higgins and Shi 2001; Zhu et al. 2007; 

Turrent and Cavazos 2009). A positive (negative) PDO phase and El Niño (La Niña) 

conditions favor weaker (stronger) monsoons, a southward (northward) displaced 

monsoon ridge, and a late (early) monsoon onset over the SW US (Castro et al. 2001). 

Changes in the AMO and AO phases also modulate the NAMS interannual variability 

(Hu and Feng 2008, 2010). A recent study by Cravatte et al. (2009) showed that the 

western Pacific warm pool has significantly freshened and warmed since 1955 and that 

the warm and fresh surface waters have extended horizontally. Since this region of the 

Pacific is closely related to ENSO dynamics, which in turn influences the NAMS 

variability, a warmer and expanded western Pacific warm pool could also affect the 

NAMS. Whether these changes of SSTs would influence the monsoon strength and 

retreat phase over Mexico is investigated.  

 

 To determine if SST changes are linked to the main known ocean-atmosphere 

variability modes, correlations between these modes and the NWMEX monsoon retreat 

dates were computed. Summer indices for (i) AO, (ii) AMO, (iii) PDO, (vi) ENSO, and 

(vii) WPWP expansion were considered. Niño 3, Niño 4, and Niño 3.4 indices were used 

to represent ENSO. Since AO and AMO are correlated, a linear regression was used to 

remove the AO influence from the AMO index before computing correlations. To 
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identify the effects of the WPWP expansion independently of ENSO, ENSO influence 

was removed following the same approach and using Niño3 and Niño4 indices. 

  

 Changes in the monsoon retreat are not significantly correlated with PDO, ENSO, 

or AO indices. Although previous studies identified the PDO as an important modulator 

of the monsoon rainfall over the SW US (Carleton et al. 1990; Higgins and Shi 2000; 

Castro et al. 2001), this analysis indicates that the PDO multi-decadal variations do not 

match those observed in the monsoon strength and retreat over NWMEX (not shown) 

during 1948-2009. The contributing factors to monsoon decadal variability may vary 

within the monsoon domain. The interannual influence of ENSO on the NAMS rainfall 

has been also previously documented (e.g. Harrington et al. 1992; Higgins et al. 1998, 

1999); however, this work indicates that the observed decadal changes in the NAMS 

cannot be explained by an ENSO influence. Recent model experiments by Schubert et al. 

(2009) and Mo et al. (2009) lead to the conclusion that the AMO modulates the impact of 

ENSO on seasonal drought over the US. However, how the interaction between ENSO 

and AMO can contribute to changes of the summer NAMS, especially its retreat phase, is 

still not clear. 

 On the other hand, both the WPWP and AMO show decadal variability similar to 

that of the monsoon retreat and total monsoon rainfall over NWMEX (not shown). Dry 

regimes, characterized by weak monsoons and early retreats, coincide with an expanded 

WPWP and the AMO positive phase, especially after 1990. Furthermore, correlations 

between these SST variability indices and the NASH western boundary location are not 
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statistically significant, in agreement with Li et al. (2011). The underlying physical 

processes for the influence of the AMO and the WPWP expansion on the NAMS retreat 

over NWMEX are explored in the following sub-sections.  

 

a) Influence on moisture transport to the NAMS 

 How would the AMO and the western Pacific warm pool influence the NAMS 

retreat?  

 To identify the possible mechanisms that influence the monsoon strength and 

retreat during the two dry periods, the changes that occurred during 1948-1959 and 1990-

2009 were analyzed separately and compared with those during the wet period (1960-

1989). Figs. 23 and 24 show changes in mean rain rate and winds at 850 hPa a few 

pentads before the monsoon retreat for the earlier and the more recent dry periods, 

respectively, relative to the wet period. Changes between a) the expansion and 

contraction of the WPWP and b) the positive and negative phase of the AMO were 

obtained. For comparison, the changes between the westward expansion and eastward 

withdrawal of the summer NASH (Figs. 23c and 24c) and those between early and late 

NAMS retreat (Figs. 23d and 24d) are also shown.  

 A westward expansion was identified when the NASH western edge was located 

westward of 90W (mean location during weak and early-retreat NAMS events; Fig. 

19a). An eastward withdrawal was selected when the NASH western boundary was 

located eastward of 75W (mean location during strong and late-retreat NAMS events; 

Fig. 19a). A total of 123 (239) pentads with a westward location of the NASH western 



77 
 

ridge, out of a total of 216 (360) pentads within the monsoon season during 1948-1959 

(1990-2009) were chosen. For the period 1960-1989, a total of 57 out of 540 pentads with 

an eastward retreat of the NASH were selected. 

 

 

Fig. 23 Changes in SLP (shades) and wind at 850 hPa (arrows) between the positive 
and the negative phase of a) WPWP and b) AMO, two pentads before the NAMS retreat 
during 1948-1959. c) Same but for difference between westward and eastward location of 
the summer NASH western boundary and d) but for difference between early and late 
NAMS retreat events. Vector scale is shown in the right-bottom corner of each panel. 
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Fig. 24 Same as Fig. 23 but for 1990-2009. 
 

 Comparison of the anomalous surface circulation and rain rate patterns between 

early and late-retreat monsoons with those obtained during the positive phases of the 

AMO and the expansion of the WPWP and the NASH for the earlier dry period (1948-

1960; Fig. 23) shows that the pattern associated with the positive phase of the AMO (Fig. 

23b) resembles the observed changes during early-retreat monsoons (Fig. 23d). However, 

during the more recent dry period (Fig. 24), changes in surface circulation during early-
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retreat monsoons are a combination of the pattern observed for the positive phase of the 

AMO and for the westward expansion of the NASH: enhanced Caribbean and Great 

Plains low-level jets are observed during both early retreats (Fig. 24d) and the NASH 

expansion (Fig. 24c) while an enhanced cyclonic center over the SE US is observed 

during early retreats and the positive phase of the AMO (Fig. 24b). This cyclone is also 

observed when the WPWP expands (Fig. 24a). These results suggest that the recent 

expansion of the NASH and the western Pacific warm pool also contribute to the 

weakening of the NAMS observed during 1990-2009, in addition to the positive phase of 

the AMO. 

 

b) Influence on the subtropical jet in the upper troposphere 

 The effects of the decadal variability modes on the upper troposphere jet stream 

are investigated by Fig. 25. Since Fig. 21 suggests that the northward shift of the 

subtropical jets and the monsoon anticyclone is mainly observed during the weak 

monsoons of the more recent dry period, only composites for mean upper-troposphere 

circulation during 1990-2009 are shown. The change associated with the NASH 

expansion (Fig. 25c) mostly resembles the composite difference between early and late 

retreats of the NWMEX monsoon (Fig. 25d). The changes over North America associated 

with the WPWP expansion (Fig. 25a) also show some resemblance to those observed 

during the early NAMS retreats.  
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Fig. 25 Same as Fig. 24 but for zonal wind at 200 hPa (shades) and geopotential height 
at 200 hPa (contours) during 1990-2009.  
 

 These findings suggest that the weakening and the northward shift of the upper 

troposphere subtropical jets over the US and the enhanced Great Plains low-level jet 

associated with the westward expansion of the NASH resemble the changes observed 

during the early monsoon retreats after 1990 more closely than those observed during the 

expansion of the WPWP.  
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3.4. Discussion 

 

3.4.1. Causes of the early NAMS retreat 

 

The empirical evidence shown here suggests the occurrence of two regime types 

of the NAMS: two dry periods (weak monsoons, early retreats, and late onsets) during 

1948-1959 and 1990-2009, and a wet period (strong monsoons, late retreats, and early 

onsets) during 1960-1989.  Although the two weak monsoon periods are correlated with 

the AMO positive phase, the dominant cause for both dry periods is different. The earlier 

dry period is induced mainly by the positive phase of the AMO, in agreement with Hu 

and Feng (2008). On the other hand, the increased occurrence of weak and early-retreat 

events of the summer monsoon over NWMEX observed after 1990 is also associated 

with the westward expansion of the NASH, which weakens the low-level moisture 

transport from the Gulf of Mexico to the monsoon region and leads to a northward shift 

of the subtropical upper troposphere jet stream. The latter may be also influenced by the 

expansion of the WPWP. 

 

Kushnir et al. (2010) have suggested that heating anomalies resembling those 

during the positive phase of the AMO would induce an anomalous subsidence in the 

middle troposphere over the western US and Mexico through a Gill-like response to the 

diabatic heating induced by warmer SSTs over the tropical Atlantic. This circulation 

change in turn reduces warm season rainfall over the US and northern Mexico. The 
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composite circulation change between the positive and negative phases of the AMO in 

Figs. 23b and 24b shows a low-level anticyclonic circulation anomaly over the NAMS 

region and a weakening of the NASH, which are consistent with those shown in Kushnir 

et al. (2010).   

 

 In addition to the enhanced subsidence over the western US and Mexico induced 

by the positive phase of AMO, the weakened NAMS rainfall and the early retreats are 

best correlated with the westward expansion of the NASH during the recent decades. 

Although the processes that link the NASH to the NAMS have not been thoroughly 

studied in literature, the negative correlation between rainfall anomalies over the NAMS 

region and that over the Great Plains have been extensively documented (Douglas et al. 

1993; Douglas and Englehart 1996; Higgins et al. 1997; Mo et al. 1997; Barlow et al. 

1998). The strengthening of the low-level jets over the Caribbean and the Great Plains 

(the latter in turn contributes to an increased rainfall over the central US) may be 

dominated by the westward shift of the NASH. The weakening of the NASH induced by 

the AMO (e.g., Hu and Feng 2008; Kushnir et al. 2010; Weaver et al. 2010) is mainly 

confined over the SE US (Fig. 24b). Thus, the westward expansion of the NASH allows 

the NASH to replace the NAMS as the main controller of the low-level flow over the 

western Gulf of Mexico. This change enhances northward moisture transport to the Great 

Plains and weakens the westward and northwestward moisture transport to the NAMS 

region. During 1948-1989, the western edge of the NASH oscillates interannually 

between 75˚W and 90˚W leading to late and early NAMS retreats, respectively. After 
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1990, the western edge of the NASH becomes stationary in 85˚-90˚W, leading to 

persistent weak and early NAMS retreats. Although the period 1948-1959 also shows an 

increased frequency of weak and early-retreat NAMS events compared to 1960-1989, the 

location of the NASH western boundary varies between east (65˚W) and west (88˚W). By 

contrast, the western boundary of the NASH is persistently located to the west of 80˚W 

after 1990 (Fig. 19a). A more westward expanded NASH during the weak early-retreat 

monsoons in the more recent dry period is evidenced by the increases in SLP (Figs. 16a 

and 17a) and the anticyclonic circulation observed over the Gulf of Mexico (Fig. 24d), 

which leads to a stronger moisture transport to the central US and a reduced transport to 

the monsoon region. This suggests that the expansion of the western ridge of the NASH 

is the main mechanism for the increased frequency of weak and early-retreat NAMS 

events observed after 1990. 

 

The links between the northward shift of subtropical jets and the expansion of the 

WPWP can be explained by a planetary wave train resembling that of the Pacific-North-

American (PNA) pattern (Wallace and Gutzler 1981; Lau and Peng 1992). The PNA-like 

wave train response to a tropical Pacific heating anomaly in summer would increase 

upper-level geopotential height in subtropical North America and decrease geopotential 

height in mid-latitude North America (Yu et al. 2007; Seager et al. 2010), which would 

shift the subtropical jets poleward, along with the synoptic activity over the US (Grimm 

and Silva Dias 1995; Seager et al. 2005).  

 



84 
 

3.4.2. Relative influence of the decadal variability versus global climate change 

 

Previous studies have mainly attributed the decadal changes of the NAMS rainfall 

in the past several decades to ocean-atmosphere decadal variability modes such as the 

PDO, AMO, and AO (e.g., Higgins and Shi 2000, Seager et al. 2005; Castro et al. 2007; 

Mo 2010; Enfield et al. 2001; Schubert et al. 2004; McCabe et al. 2004; Hu and Feng 

2008; Kushnir et al. 2010; Hu and Feng 2010). This analysis suggests that the change of 

the NAMS retreat and strength is likely caused by both decadal variability and 

anthropogenic forced change. In particular, while the earlier dry regime (1948-1959) is 

mainly caused by a positive phase of the AMO, the more recent dry regime (1990-2009) 

is mainly caused by the westward expansion of the NASH. This westward expansion is 

not correlated with any decadal variability modes known to us. Li et al. (2011) have 

shown the westward expansion of the NASH western edge and an intensification of the 

NASH’s center in recent decades. They found that natural decadal modes do not appear 

to explain this observed change of the summer NASH and they attributed it to the 

increase of GHGs, based on the global climate model simulations participated in the 

IPCC Fourth Assessment (CMIP3). 

 

 While the observed increase in the occurrence of weak and early-retreat events of 

the NAMS is likely in part contributed by a human forced global climate change, it is not 

clear whether CMIP3 global climate models can adequately reproduce a weakening and 

an early retreat of the NAMS given the difficulty of simulating the NAMS by these 
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models, as shown in previous studies (e.g., Yang et al. 2001; Collier and Zhang 2007; 

Lee et al. 2007; Lin et al. 2008). The future release of IPCC AR5 model runs would be an 

excellent opportunity to test the impact of human forced global climate change on the 

weakening and early retreat of the NAMS during the past few decades. 

 

 

3.5. Conclusions 

  

 The causes of the dry and wet regimes of the NAMS observed from 1948 to 2009 

were analyzed: two dry periods, associated with weak monsoons and early retreats/late 

onsets, are observed during 1948-1959 and 1990-2009 whereas a wet regime, associated 

with strong monsoons and late retreats/early onsets, is observed during 1960-1989. 

Although the change of the NAMS regime correlates with the AMO, as found by 

previous studies (Hu and Feng 2008), the behavior of the monsoon retreat and the 

dominant cause of the dry NAMS regime for the earlier (1948-1959) and the more recent 

(1990-2009) periods are different.  

 

The earlier dry regime (1948-1959) shows a strong interannual variation between 

weak and strong NAMS events. This dry regime is caused by circulation changes 

associated with the positive phase of the AMO and it ends when the AMO changes to its 

negative phase during 1960-1989.  In contrast, the NAMS is persistently weak and its 

retreat is persistently early during the more recent dry regime.  The main cause of these 
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changes is the westward expansion of the North Atlantic Surface High (NASH). As a 

result of this shift, the low-level winds over the western Gulf of Mexico are dominated by 

the anticyclonic flow of the NASH, instead of the cyclonic flow of the NAMS that occurs 

during strong and late-retreat NAMS events. This change leads to an enhanced Caribbean 

low-level jet, which in turn induces a southerly anticyclonic flow along the western edge 

of the NASH, transporting moisture from the Gulf of Mexico to the Great Plains, instead 

of the NAMS region. In addition, the warm phase of the AMO weakens the summer 

monsoon circulation associated with the NAMS, presumably by enhancing the mid-

troposphere subsidence over the western US and northern Mexico (Kushnir et al. 2010). 

In the upper troposphere, the subtropical jets shift northward over the western US during 

the recent decades. Such a change in the jet stream location prevents synoptic 

disturbances from reaching the monsoon region, reducing favorable conditions for 

convection and, therefore, weakening the monsoon. 

 

The expansion of the NASH and the WPWP are linked to the northward shift of 

the subtropical jet stream over North America during the more recent dry monsoon 

regime, which also contributes to the observed weakening and more frequent early 

retreats of the NAMS after 1990. This link is consistent with a PNA wave train induced 

by the expansion of the WPWP to the central Pacific (Yu et al. 2007; Seager et al. 2010). 

However, the causality between the westward expansion of the NASH and the northward 

shift of the subtropical jets over North America is not clear and needs further study. 
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The dry regime observed during 1948-1959 is mainly associated with a warm 

AMO. During 1948-1989, the western edge of the NASH oscillates interannually 

between 75˚W and 90˚W, leading to both late and early NAMS retreats, respectively. 

During 1990-2009, the western edge of the NASH becomes stationary in 85˚-90˚W, the 

WPWP expands (Cravatte et al. 2009), and the AMO enters to its warm phase. 

Anomalies linked to these phenomena reduce the moisture transport to the NAMS region 

and shift the subtropical jets northward over the western US and northern Mexico. These 

changes together are responsible for the trend toward weaker and more frequent early-

retreat NAMS events observed after 1990. 
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Chapter 4 

A connection between the North American monsoon and the southern 

Amazon wet season after 1978 

 

4.1. Introduction 

 

 The results presented in Chapter 3 suggest an increased frequency of weak and 

early-retreat NAMS events after 1990 due to the combination of three main factors: (i) 

the positive phase of the AMO [as also discussed by Hu and Feng (2008)], (ii) the 

northward shift of the subtropical jets over North America, and (iii) the westward 

expansion of the North Atlantic surface high (NASH) observed after 1978 (Li et al. 

2011). On the other hand, Fu et al. (2011) show evidence of a lengthening of the dry 

season over the Southern Amazon since 1978 due to a delayed onset of the wet season. 

Such a delayed wet season onset over the southern Amazon would also delay the onset of 

the SAMS since the intense heating released during the Amazon wet season is crucial to 

establish and maintain the SAMS circulation. Although the discussions presented in 

Chapter 3 and Fu et al. (2011) identified the main causes for these changes in the 

American monsoons, whether there is a common factor that induces such changes or they 

are the consequence of independent and unrelated causes is still not clear. Besides 

increased evapotranspiration and enhanced cold air incursions to the monsoon region at 

the end of the transition season from dry to wet conditions, increased moisture transport 

is the third requirement for increasing rainfall in the Amazon and diabatic heating needed 
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for the SAMS onset (Li and Fu 2004). Therefore, this chapter particularly focuses on the 

role of the NASH westward expansion on influencing the moisture transport to the 

southern Amazon and SAMS domain and, hence, on their wet season onset. This chapter 

is organized in five sections. Section 4.2 describes the data and the methodology 

implemented. Section 4.3 presents how the NASH westward expansion modifies the 

moisture transport to South America (and for instance, the SAMS onset) via changes in 

easterly waves (EWs) activity. Section 4.4 presents a short discussion about the possible 

influence of the increasing atmospheric CO2 concentration on the changes in the 

American monsoons timing observed after 1978. Finally, section 4.5 presents the main 

conclusions. 

 

 

4.2. Data and methodology 

 

 To understand the influence of the NASH westward expansion on the surface 

moisture transport to the southern Amazon and the SAMS domain, the evolution of 

surface circulation and outgoing longwave radiation (OLR) during the transition season 

between both monsoons and their link to the observed variations in the location of the 

NASH western ridge were analyzed. In addition, the possible influence of the NASH 

western boundary on the EWs activity over the Intra-American Sea (IAS) region and 

northern South America was investigated. The transition season between both monsoons 
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was defined as the period between the NAMS retreat date and the southern Amazon wet 

season onset date for each year during the period 1978-2007. 

 

 The onset/retreat dates were obtained over the spatial domains of the NAMS and 

the southern Amazon defined in Chapter 3 and by Fu et al. (2011), respectively. The 

NAMS domain corresponds to northwestern Mexico (Fig. 10a) whereas the southern 

Amazon domain corresponds to the region delimited by 50W-70W, 15S-5S. The 

onset/retreat dates were indentified using the methodology proposed by Li and Fu (2004) 

and described in section 3.2. 

 The linear trends of the resulting NAMS retreat and southern Amazon wet season 

onset dates and transition season length were estimated using the non-parametric Mann-

Kendall test with Sen’s statistics (Sen 1968). In addition, following the approach 

presented in Chapter 3, the NAMS retreat events were divided into early and late-retreat 

monsoons.  

 

 To obtain the southern Amazon wet season onset dates, two different rainfall 

datasets over South America were used: (i) the 1-degree grid rain gauge daily 

precipitation from the National Oceanic and Atmospheric Administration (NOAA) 

Climate Prediction Center (CPC) available during 1978-2007 (Silva et al. 2007; hereafter 

referred to as Silva data) and (ii) the NOAA Climate Diagnostics Center (CDC) daily 

precipitation gridded data version SA21 available from 1940 to 2009 at 

ftp://ftp.cdc.noaa.gov/Public/dallured/tran/ sa21.0907/ (Liebmann and Allured 2005; 
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hereafter referred to as SA21 data). Records during 1978-2007 were used to match the 

common period between both datasets.  

 The NAMS retreat dates were obtained from the NOAA CPC 1-degree grid daily 

precipitation over the US and Mexico described in section 3.2. To match the record 

period of the rainfall datasets over South America, only data during 1978-2007 was used. 

 

 Daily 2.5-degree grid data for air temperature, geopotential height, and horizontal 

wind at different pressure levels was obtained from the National Center for 

Environmental Project-National Center for Atmospheric Research (NCEP-NCAR) 

Reanalysis (Kalnay et al. 1996) from 1948 to present. In addition, the daily NOAA 

interpolated OLR described in section 2.2 (Liebmann and Smith 1996) was used as a 

proxy for convection.  

 Following Wang and Fu (2002), the area mean 925 hPa meridional wind averaged 

over the region 65W-75W, 5S-5N (hereafter referred to as the South American V-

Index) was used to represent the variability of the cross-equatorial flow over South 

America, which is an important moisture source to feed the Amazon wet season and the 

SAMS (Wang and Fu 2002). In addition, the mean position of the 1560m of geopotential 

height (gpm) line was used to characterize the western ridge of the NASH during the 

transition season from the NAMS to the SAMS, as suggested by Li et al. (2011). 

 

 Composite and regression analyses were performed in order to understand the 

effects of the changes of the NASH western ridge location on moisture transport to South 
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America throughout the transition season between the American monsoon systems. 

Regression patterns were obtained considering both positive and negative fluctuations of 

the NASH western boundary location. 

 

 The effect of the NASH western ridge location on EWs activity over the IAS 

region and northern South America was analyzed using 700 hPa relative vorticity 

anomalies and Ertel’s potential vorticity (PV). The latter was obtained by linearly 

interpolating daily air temperature and wind fields to isentropic surfaces each 5K and 

computing PV directly on each surface (Molinari et al. 1995, 1997). Ertel’s PV was 

computed using 

 

 

 fgV  
 1P                  (2) 

 

where g is the acceleration due to gravity,  is the potential temperature,   /p , 

  represents the vertical component of the relative vorticity computed on an isentropic 

surface, and f corresponds to the coriolis parameter. Since EWs propagation and 

intensification are favored by sign reversals in the background PV field (e.g. Burpee 

1972; Molinari et al. 1997, 2000), the PV fields were filtered using a low-pass Fourier 

filter with 20-days cutoff (Molinari et al. 1997) before composites were computed.
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4.3. Results 

 

4.3.1 A longer transition season between the American monsoon systems 

 

 The NAMS retreat and the southern Amazon wet season onset dates were 

identified following Li and Fu’s (2004) approach using one rainfall dataset over North 

America (CPC US-Mex data) and two datasets over South America (Silva and SA21 

data) during 1978-2007. Fig. 26 shows the corresponding time series of the NAMS 

retreat (gray dashed line) and the southern Amazon wet season onset (black solid line). 

As discussed in Chapter 3, the NAMS presented two types of regimes during 1948-2009: 

(i) a dry regime, associated with early retreats and late onsets, observed during 1948-

1959 and 1990-2009, and (ii) a wet regime, associated with late retreats and early onsets, 

observed during 1960-1989. Thus, the shift from a wet monsoon regime to a dry 

monsoon regime occurred in 1990 explains the trend toward earlier NAMS retreats 

observed in Fig. 26. On the other hand, the southern Amazon wet season onset shows a 

trend toward late onsets using both datasets, as previously documented by Fu et al. 

(2011), although its statistical significance is higher when Silva data is used (Fig. 26a). 

Changes in the NAMS onset and the southern Amazon wet season ending dates are not 

statistically significant (not shown), which suggests a shortening of the American 

monsoon systems over the last two decades. 
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 An earlier NAMS retreat and a delayed southern Amazon wet season onset would 

imply a longer transition season between both monsoon systems. Fig. 27 shows the 

length of the transition season between the American monsoon systems, defined as the 

period between the NAMS retreat pentad and the southern Amazon wet season onset 

pentad, corresponding to both rainfall datasets over South America. Results indicate that 

the transition between both monsoons shows a trend toward longer periods (about 7 

pentads longer between 1978 and 2007; Fig. 27a). Furthermore, the longest transition 

seasons occur when the NAMS retreats earlier (asterisks in Fig. 27). These findings 

suggest a shortening of the American monsoon systems and a lengthening of the 

transition season from the NAMS to the SAMS since 1978 due to an earlier retreat of the 

NAMS and a delayed onset of the southern Amazon wet season onset. This result raises 

the question: what causes the apparent correlation between the changes in the NAMS 

retreat and the southern Amazon wet season onset? 

 

 The results presented in Chapter 3 and the analysis from Fu et al. (2011) attribute 

the shortening of the American monsoons to several causes. Chapter 3 discussed that the 

increased frequency of early NAMS retreats observed in the recent decades is caused by 

an interaction between (i) the positive phase of the AMO, (ii) the recent westward 

expansion of the NASH, and (iii) the northward shift of the subtropical jets over North 

America. On the other hand, Fu et al. (2011) explained the trend toward a delayed wet 

season onset over the southern Amazon and the SAMS domain by (i) an increased 
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atmospheric stability, (ii) a reduced moisture transport, and (iii) a southward shift of the 

Southern Hemisphere subtropical jets.  

 

Fig. 26 NAMS retreat date obtained using CPC US-Mex data and southern Amazon 
wet season onset date obtained using a) Silva data and b) SA21 data. Linear trends are 
tested using a Mann-Kendall test with Sen’s statistics (Sen 1968) and their confidence 
level is indicated in each panel. 
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Fig. 27 Length of the transition season from the NAMS to the SAMS obtained using a) 
Silva data and b) SA21 data. Linear trends are tested using a Mann-Kendall test with 
Sen’s statistics (Sen 1968) and their confidence level is indicated in each panel. Asterisks 
(diamonds) correspond to NAMS events with an early (late) retreat. 
 

 Furthermore, Fu et al. (2011) indicated that the delay of the wet season over the 

southern Amazon is not correlated with the AMO; thus, the shift toward a positive phase 

of the AMO cannot explain the changes observed in both monsoon systems. On the other 

hand, the poleward shift of the subtropical jet stream over one hemisphere may be 

independent of that of the other hemisphere. Therefore, the only factor that could 

contribute to the observed changes in both monsoon systems is the westward expansion 

of the NASH. Whether this expansion also influences the southern Amazon wet season 

onset is explored in the following subsections. 
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4.3.2 The role of the North Atlantic surface high expansion on delaying the wet 

season onset over the southern Amazon 

 

4.3.2.1 Impact on surface circulation 

 

 The westward expansion of the NASH boundary ridge plays a relevant role in the 

NAMS retreat phase by inducing changes in surface moisture transport to the monsoon 

region, as discussed in Chapter 3. Since the summer NASH has an important control on 

the surface circulation over the IAS region, it could also modify the surface circulation 

over northern South America, which in turn could affect the moisture transport to the 

SAMS domain during the transition season toward the SAMS onset. To explore this 

possibility, 850 hPa horizontal winds, 850 hPa geopotential height, and OLR composites 

were obtained throughout the transition season between the American monsoons (Fig. 

28). The composited 1560-gpm line is shown as an estimation of the NASH location. The 

boxes correspond to the South American V-Index domain, which is an important 

moisture source to feed the SAMS (Wang and Fu 2002). During the NAMS retreat (Fig. 

28a), the NASH is expanded to the west and its corresponding anticyclone is strong, 

producing a dominant easterly flow over the IAS region. Surface circulation over the 

South American V-Index region is also dominated by easterlies; hence, the cross-

equatorial flow over South America is weak, consistent with high (low) convection over 

northern South America (the SAMS domain). Eight pentads before the southern Amazon 

wet season onset (Fig. 28b), the NASH retreats eastward staying over the western 
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subtropical Atlantic, the NASH anticyclone weakens, and a southeasterly flow develops 

over the IAS region. The cross-equatorial flow over South America starts showing a 

stronger northerly component and convection increases over subtropical South America. 

By the time of the southern Amazon wet season onset (Fig. 28c), the NASH retreats to 

the central Atlantic and becomes much weaker. The cross-equatorial flow over South 

America reverses, showing a clear northerly component. Convection is fully developed 

over South America, consistent with an enhanced moisture transport due to a stronger V-

Index. 

 

 The evolution depicted by Fig. 28 suggests that an anomalous westward 

expansion of the NASH would inhibit the reversal of the cross-equatorial flow necessary 

to trigger the onsets of the southern Amazon wet season and the SAMS. Such an 

anomalous expansion has been occurring since 1978, as reported by Li et al. (2011). 

Furthermore, such westward expansion of the NASH contributes to the trend toward 

earlier retreats of the NAMS during the past two decades. Therefore, to determine if the 

South American V-Index changes when the NAMS retreats early relative to when the 

NAMS retreats late, Fig. 29 shows an evolution of this index throughout the transition 

season toward the SAMS for the early and the late-retreat events of the NAMS. A total of 

19 (8) early-retreat (late-retreat) events of the NAMS were observed during the period of 

analysis considered here (1978-2007).  
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Fig. 28 OLR (shades), 850 hPa horizontal winds (arrows), and 1560-gpm line (contour) 
composited throughout the transition season from the NAMS to the SAMS. Composites 
correspond to a) 16 pentads before the southern Amazon wet season onset (~NAMS 
retreat pentad), b) 8 pentads before the southern Amazon wet season onset, and c) the 
southern Amazon wet season onset pentad. Southern Amazon wet season onset dates 
were obtained using Silva data. Boxes indicate the South American V-Index domain. 
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Fig. 29 South American V-Index evolution from the NAMS to the SAMS season for 
early NAMS retreat events (black solid line) and late NAMS retreat events (gray dashed 
line).  
  

 Fig. 29 indicates that the northerly flow over South America is weaker during the 

entire transition season corresponding to the early-retreat events of the NAMS. Since 

such early retreats of the NAMS have been shown to be caused by an anomalous 

westward expansion of the NASH, this expansion may be also associated with a weaker 

northerly cross-equatorial flow over South America. This is supported by correlations 

between the V-Index and the longitude of the NASH western ridge (not shown). A 

weaker northerly flow after these events would be associated with a weaker moisture 

transport to the southern Amazon and SAMS domains and, in turn, would delay the onset 

of the wet season over these regions. 

 

 To quantify the changes in surface circulation and convection associated with the 

westward expansion or the eastward retreat of the NASH, composites based on the linear 

regression between 850 hPa horizontal winds (OLR) and the location of the NASH 

western boundary were computed. These composites were obtained considering 
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fluctuations of -30 and +30 degrees of longitude in the location of the NASH, in order to 

represent when the NASH expands westward to the North American continent and when 

it retreats eastward to the central Atlantic, respectively. Fig. 30a shows the regression 

pattern associated with a westward expansion of the NASH. The stronger Caribbean and 

Great Plains low-level jets are consistent with the stronger and westward expanded 

NASH anticyclone. Convection is observed over Central America and northern South 

America whereas the cross-equatorial flow over South America is mainly easterly. When 

the NASH retreats eastward to the central Atlantic (Fig. 30b), the regression patterns 

show weaker low-level jets over Central and North America and convection shifts 

southward over tropical and subtropical South America. In order to identify better the 

differences between these regression patterns, Fig. 30c shows the difference pattern 

between those associated with the NASH westward expansion and its eastward retreat 

(i.e., Fig. 30a minus Fig. 30b) zoomed over northern South America. Increases in OLR 

are observed over the SAMS domain (>8 W/m2) consistent with a suppressed northerly 

flow over the region.  

  

 In summary, the westward expansion of the NASH is associated with a weaker 

northerly cross-equatorial flow over South America, which in turn would reduce the 

moisture transport necessary to support the development of the wet season monsoon 

circulation (Wang and Fu 2002). This is consistent with the reductions in moisture 

reported by Fu et al. (2011) who suggest that such reductions contribute to the onset 

delay observed over the southern Amazon. 
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Fig. 30 Regression patterns of 850 hPa horizontal winds (arrows) and OLR (shades) 
associated with a) -30 longitude degrees (westward expansion) and b) +30 longitude 
degrees (eastward retreat) fluctuations of the NASH western ridge during SON. c) Pattern 
difference a)-b) zoomed over northern South America. Boxes indicate the South 
American V-Index domain. 
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4.3.2.2 Impact on easterly waves activity 

 

 How could the westward expansion of the NASH affect the moisture transport to 

South America? 

 A stronger and westward expanded NASH would generate a stronger easterly 

flow over the southern Caribbean Sea and northern South America and enhance the EWs 

activity in those regions. Such an anomalous easterly flow over the South American V-

Index region would inhibit the reversal of the cross-equatorial flow that brings moisture 

to the southern Amazon and SAMS domains, which would contribute to the wet season 

onset delay observed over the region. To test this hypothesis and since EWs show more 

clearly in the relative vorticity anomalies field (Agudelo et al. 2010), composites based 

on the linear regression between the 700 hPa relative vorticity anomalies and the location 

of the NASH western boundary were obtained. Figs. 6a and 6b show the regression 

pattern associated with -30 and +30 longitude degrees fluctuations in location of the 

NASH western ridge, respectively. Results suggest that an anomalous westward 

expansion of the NASH is linked to cyclonic relative vorticity anomalies over the 

southern Caribbean Sea and northern South America (Fig. 31a) whereas an eastward 

retreat is linked to anticyclonic relative vorticity anomalies over the region (Fig. 31b). 

Such a positive change in relative vorticity anomalies during the westward expansion of 

the NASH is shown more clearly in Fig. 31c, which presents the difference between both 

regression patterns, zoomed over northern South America. The increases of positive 

relative vorticity anomalies over the Caribbean Sea and northern South America suggest 
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that the EWs activity over the region is enhanced when the NASH expands westward 

over the North American continent. 

 

Fig. 31 Same as Fig. 30 but for 700 hPa relative vorticity anomalies.  
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 Several studies (e.g. Burpee 1972; Molinari et al. 1997, 2000) have shown that the 

EWs propagation and intensification are favored by meridional sign reversals in the 

background PV field. Furthermore, the additional Fjortoff condition for instability 

(Fjortoff 1950; Eliassen 1983) requires the mean zonal flow to be positively correlated 

with the PV meridional gradient. Hence, a stronger meridional sign reversal in the PV 

field (positively correlated with the mean zonal flow) over the southern Caribbean Sea 

and northern South America would favor a stronger EWs activity. Since PV changes are 

generally small, the linear regression approach applied in this study would filter the PV 

variations necessary for a sign reversal. Thus, the wind and low-filtered PV fields at 

different isentropic levels (see section 4.2) were composited considering the events with a 

westward expansion (or an eastward retreat) of the NASH during the transition season 

from the NAMS to the SAMS. Following the approach presented in Chapter 3, a 

westward expansion was identified when the NASH western edge was located westward 

of 90W (southeastern United States) whereas an eastward retreat was selected when the 

NASH western boundary was located eastward of 70W (central Atlantic). A total of 356 

(139) pentads with a westward expansion (eastward retreat) out of a total of 696 pentads 

during SON were chosen. Fig. 32a (Fig. 32b) shows the composites at 310K associated 

with the westward expansion (eastward retreat) of the NASH. Results indicate a stronger 

meridional sign reversal in the background PV field over the southern Caribbean Sea 

during the westward expansion events, as suggested by the folding in the 0.2-PVU line 

over the domain 80W-85W, 10N-17.5N (Fig. 32a). This sign reversal is also 

observed at 315K (not shown). Such a negative meridional PV gradient is associated with 
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easterly isentropic winds, meeting the additional Fjortoff condition necessary for 

instability. The isentropic flow at 310K indicates a weak northerly cross-equatorial flow 

over South America during the NASH westward expansion events (Fig. 32a) whereas a 

flow reversal is clear when the NASH retreats eastward (Fig. 32b). 

 

 

Fig. 32 Isentropic winds (arrows) and low-pass filtered potential vorticity (shades) at 
310K composited for events with a) a NASH westward expansion and b) a NASH 
eastward retreat during SON. Contours for 0 and 0.2 PVU correspond to the red and 
black lines, respectively. Boxes indicate the South American V-Index domain. 
 

 These results suggest a reversal in the background PV meridional gradient in 

association with an anomalous westward expansion of the NASH, which favors an 

enhancement of the EWs activity over the southern Caribbean Sea and northern South 

America. Such an increased EWs activity produces a dominant easterly flow over the 

region, which prevents the reversal of the cross-equatorial flow in the South American V-
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Index region. Since this northerly cross-equatorial flow transports important amounts of 

moisture to the southern Amazon and the SAMS domain, its weakening observed during 

the NASH westward expansion would contribute to the delayed wet season onset 

observed over this region. Therefore, the westward expansion of the NASH observed 

since 1978 has weaken the moisture transport not only to the NAMS region, but also to 

the SAMS domain. Such a weaker moisture transport has contributed to the increased 

frequency of early retreats of the NAMS and the delayed onset of the southern Amazon 

wet season (and hence of the SAMS) observed during the recent two decades. 

 

 

4.4 Discussion 

 

 The analysis presented here suggests a longer transition season between the 

NAMS and the SAMS during the period 1978-2007. This lengthening is the result of the 

trend toward earlier retreats of the NAMS and delayed onsets of the southern Amazon 

wet season onset observed after 1978. Although the causes of such changes in the 

American monsoons have been previously identified, whether there is a common factor 

influencing the timing of the American monsoons or the observed changes are the 

consequence of independent and unrelated causes was not clear until now. Furthermore, 

the analysis discussed here indicates that the observed changes in the NAMS retreat and 

the southern Amazon wet season onset are partially a consequence of the same large-

scale change: the westward expansion of the NASH since 1978. 
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 A recent study by Li et al. (2011) shows that the westward expansion of the 

NASH is not caused by natural variability but by the increasing concentration of 

atmospheric greenhouse gases (GHGs). However, the mechanism behind the causality 

between this westward expansion and the increasing GHGs needs further study. In 

addition, the poleward shift of the subtropical jets over both hemispheres is associated 

with the broadening of the Hadley cell, which could be also forced by the increasing CO2 

concentrations in the atmosphere (e.g., Lu et al. 2007). Moreover, Fu et al. (2011) 

reported that the IPCC AR4 models that better reproduce the wet season onset over the 

southern Amazon are able to project the observed delayed onset only when increasing 

GHGs and biomass burning aerosols are prescribed. This suggests that the shortening of 

the American monsoons and the lengthening of the transition season between them may 

be associated with anthropogenic forcing. The near-future release of the IPCC AR5 

model runs would give an excellent opportunity to test the impact of the anthropogenic 

activity on the length and the strength of the American monsoon systems. 

 

 

4.5 Conclusions 

 

 The results discussed here suggest a longer transition season between the 

American monsoon systems during the period 1978-2007 due to a trend toward earlier 

retreats of the NAMS and delayed onsets of the southern Amazon wet season. In 
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particular, the longest transition seasons are observed after the earlier retreats of the 

NAMS. In addition, the northerly flow over northern South America, an important 

moisture source to initiate the SAMS, is weakened when the NAMS has an earlier retreat. 

 

 Although the causes of such changes were identified in Chapter 3 and in a 

previous study by Fu et al. (2011), whether these changes in the American monsoons are 

the consequence of independent and unrelated causes or there exists a common factor 

behind such changes was not clear until now. The analyses presented here indicate that 

the observed changes in the NAMS retreat and the southern Amazon wet season onset are 

partially a consequence of the westward expansion of the NASH observed since 1978, 

which is associated with a weakening of the moisture transport not only to the NAMS 

region (as discussed in Chapter 3) but also to the SAMS domain.  

 

 To understand the mechanism behind the weakening of the surface moisture 

transport to South America during this anomalous westward expansion of the NASH, 

composite and regression analyses were performed using surface horizontal winds, OLR, 

relative vorticity, and potential vorticity. These results suggest that an anomalous 

westward expansion of the NASH produces a dominant easterly flow over northern South 

America, due to an enhanced EWs activity, preventing the reversal of the cross-equatorial 

flow necessary to transport moisture to the SAMS domain. This weakening of the 

northerly flow over South America is consistent with the increases in OLR and the 

delayed wet season onset observed over the southern Amazon and the SAMS domain. 
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 The discussion presented in this chapter suggests that the changes observed in 

both American monsoon systems are partially caused by the same large-scale change: the 

westward expansion of the NASH since 1978, which may be a consequence of the 

increasing GHGs concentration in the atmosphere.  
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Chapter 5 

General conclusions and future work 

 

This dissertation focused on the climate variability observed over the American 

monsoon regions during the last decades. In particular, the main objective of this work 

was to determine whether these monsoon systems have changed during the recent 

decades and whether there exists an interaction between those changes. To address this, 

several observational and reanalysis datasets were used. The results obtained from this 

study were derived from satellite records from ISCCP, products from the NCEP/NCAR 

reanalysis, surface data for temperature and humidity, NOAA interpolated OLR, 

reconstructed SST, and rain-gauge rainfall data over both continents. 

 

This manuscript was divided in three main chapters. Chapter 2 focused on the 

study of the recent changes of cloudiness over the Amazon forests (which are deeply 

related to those in rainfall), identified their possible causes, and discussed their impact on 

forest activity. The analyses presented in Chapter 2 showed evidence of a change toward 

decreasing cloudiness over the Amazon forests during 1984-2007 based on the ISCCP 

cloud and radiation data. The change in total cloudiness is mainly the consequence of the 

decreased high clouds and is not caused by changes in the satellite viewing angle of the 

ISCCP geostationary satellites or by deforestation and land use. Furthermore, such a 

change is consistent with changes in the large-scale circulation determined independently 

from the cloud observations.  
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Although high clouds decrease during all seasons except the dry season, the 

spatial patterns of these changes and their links to the decadal oceanic variability modes 

vary seasonally. The analysis suggests that these changes are linked to the expansion of 

the western Pacific warm pool during DJF, to the Atlantic Multidecadal Oscillation and 

the eastern Pacific SST anomalies during MAM, and to the tropical Atlantic SST gradient 

and the western Pacific warm pool expansion during SON. 

 The results discussed in Chapter 2 indicate that changes in the direct thermal 

circulation, which could reduce moisture transport and stabilize the upper troposphere, 

are probably responsible for the decreasing high clouds in the northern Amazon. By 

contrast, the changes in moisture transport and low-level anomalous winds in the 

southern Amazon are not well correlated to the tropical SSTAs. Further analyses suggest 

that anomalous Pacific-South American planetary wave trains may reduce high clouds 

over the southern Amazon. Such a decreased cloudiness over the Amazon and the 

resultant increase of solar surface radiation since 1984 support the hypothesis that 

increasing surface solar radiation have contributed to the increasing forest growth rate 

observed during the recent decades over the Amazon forests. 

 

 Chapter 3 investigated the main changes observed in the NAMS regime during 

the last decades with emphasis on its retreat phase. Particularly, this chapter reported the 

existence of two monsoon regimes over the North American monsoon domain during 

1948-2009 associated with both natural and anthropogenic variability. The analyses 

performed in this chapter suggest the occurrence of two NAMS regimes during 1948-
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2009: two dry periods, associated with weak monsoons and early retreats/late onsets, are 

observed during 1948-1959 and 1990-2009 whereas a wet regime, associated with strong 

monsoons and late retreats/early onsets, is observed during 1960-1989. Although the 

change of the NAMS regime correlates with the AMO, as found by previous studies, the 

behavior of the monsoon retreat and the dominant cause of the dry NAMS regime for the 

earlier (1948-1959) and the more recent (1990-2009) periods are different. The earlier 

dry regime shows a strong interannual variation between weak and strong NAMS events. 

This dry period is caused by circulation changes associated with the positive phase of the 

AMO and it ends when the AMO changes to its negative phase during 1960-1989. In 

contrast, the NAMS is persistently weak and its retreat is persistently early during the 

more recent dry regime. The main cause of these changes is the westward expansion of 

the North Atlantic Surface High. Such a shift leads to an enhanced Caribbean low-level 

jet, which in turn induces a southerly anticyclonic flow along the western edge of the 

NASH, transporting moisture from the Gulf of Mexico to the Great Plains, instead of the 

NAMS region. In addition to the circulation anomalies induced by the positive phase of 

the AMO, the northward shift of the subtropical jets over the western US also contributes 

to the dry NAMS regime observed after 1990. Such a change in the jet stream location 

prevents synoptic disturbances from reaching the monsoon region, reducing favorable 

conditions for convection and, therefore, weakening the monsoon. 

 

 Finally, Chapter 4 combined the findings obtained in Chapter 3 with those 

reported by Fu et al. (2011). The latter reported a delayed onset of the wet season over 
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the southern Amazon due to reductions in moisture transport and atmospheric instability, 

and to the poleward shift of the southern hemispheric jet stream. The discussion 

presented in this chapter suggest a longer transition season between the American 

monsoon systems during the period 1978-2007 due to a trend toward earlier retreats of 

the NAMS and delayed onsets of the southern Amazon wet season (as suggested by Fu et 

al. 2011), and hence of the SAMS. In particular, the longest transition seasons are 

observed after the earlier retreats of the NAMS. In addition, the northerly flow over 

northern South America, an important moisture source to initiate the SAMS, is weakened 

when the NAMS has an earlier retreat. 

 Although the causes of such changes were identified in Chapter 3 and Fu et al. 

(2011), whether these changes in the American monsoons are the consequence of 

independent and unrelated causes or there exists a common factor behind such changes 

was not clear until now. The analyses presented here indicate that the observed changes 

in the NAMS retreat and the SAMS onset are partially a consequence of the westward 

expansion of the NASH observed since 1978, which is associated with a weakening of 

the moisture transport not only to the NAMS region (as discussed in Chapter 3) but also 

to the SAMS domain.  

 The results from the composite and regression analyses show that an anomalous 

westward expansion of the NASH is associated with a dominant easterly flow over 

northern South America, due to an enhanced EWs activity, and prevents the reversal of 

the cross-equatorial flow necessary to transport moisture to the SAMS domain. Such a 
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weakening of the northerly flow over South America is consistent with the increases in 

OLR and the delayed wet season onset observed over the SAMS domain. 

 

 Thus, the findings obtained from this investigation indicate that the changes 

observed in both American monsoon systems are partially caused by the same large-scale 

forcing: the westward expansion of the NASH since 1978. Such an expansion is found to 

be explained by the increasing concentration of greenhouse gases in the atmosphere 

instead of by natural variability. This suggests that the shortening and weakening of the 

American monsoons and the lengthening of the transition season between them may be 

associated with anthropogenic forcing.  

 

 There are still many aspects of the American monsoons and their interaction that 

need to be understood. In particular, the mechanism for the retreat of the North American 

monsoon is still an open question. Although Chapter 3 focused on the changes of the 

NAMS regime, especially its retreat phase, during the last decades, it did not discuss the 

climatological features of the retreat and the main factors involved. As a near-future goal, 

I will lead a fourth paper addressing this question.  

 The development of the WCRP/CLIVAR/VAMOS program and the availability 

of better quality data, especially over South America, will be crucial to advance toward a 

better understanding of the American monsoons. Also, the eventual improvement of the 

different models involved in the IPCC AR5 to adequately reproduce the monsoon 

circulation over the Americas would give us different tools to address this issue. 
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Furthermore, the near-future release of the IPCC AR5 model runs would be an excellent 

opportunity to test the impact of the anthropogenic activity on the American monsoon 

systems. The collaborative research between the pan-American countries will also 

increase the opportunities to acquire a better knowledge and understanding of the 

region’s climate. My current position as an assistant professor in the Universidad de 

Antioquia in Colombia, my deep interest to keep working on the South American 

climate, and the contacts I made during my PhD experience would hopefully allow me to 

contribute to such goal. 
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