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Estimating S-wave velocities (/from Rayleigh-wave velocities @) is widely
used in field seismic testing for geotechnical engineeringgsas. In this research, two
widely used surface-wave methods, the Spectral-Analysis-of-&uviEves (SASW)
and Multichannel-Analysis-of-Surface-Waves (MASW) methods, araluated and
compared in field experiments. F-K and Beamforming transformslgo evaluated to
investigate the effectiveness of both techniques in determiningiergueal dispersion
curves from synthetic and field data.

An experimental parametric study was undertaken for the MASWhade
Conventional seismic sources in the SASW method are sledge harboi&tezers and
vibroseises. For MASW testing, sledge hammers and small shakeusuwally used as
the seismic sources. In this research, MASW testing waerpetl with traditional and
non-traditional sources at a site owned by the City of Austina3.eExperimental
dispersion curves ands\profiles from SASW tests are used as references for ¢k fi
parametric study with the MASW method. The source type, souifsetofeceiver

spacing and number of receivers were varied to evaluate the impa&ttofvariable on
Vi



the field experimental dispersion curve. Two type of receivers add 4.5-Hz natural-
frequency geophones, were also compared in these tests.

The second part of this research involved studying the use ofctdvariang
geotechnical materials based on Vhis work included two projects. The first project
involved basalt on the Big Island of Hawaii. To develop empirical groundomoti
prediction models for the purpose of earthquake hazard mitigation isnadcsdesign on
the Big Island, the subsurface site conditions beneath 22 strong-motiomsstaere
investigated by SASW tests Yrofiling was performed to depths of more than 100 ft.
V30 the average Mn the top 30 m, was also calculated to assign NEHRP sfisedldo
different testing locations. Different materials, mainly tjouto be stiff basalt, were
characterized and grouped based on thevdlues. These groups were then compared
with reference curves for sand and gravel (Menq, 2003) to differentiate the.groups

The second project dealing with charactering geotechnical ialatbased on ¥
involved of soil/rock profiles at a project site in British ColumyiiCanada. The goals in
terms of this research were to: (1) compare thephfiles from the different test
locations to investigate the stiffnesses of different geolowiterials, the variability in
the material stiffnesses, and the estimated depth to bedrock, attdo@npare the ¥
profiles to existing geological and geotechnical information sucheasby boreholes,
cone penetration tests and seismic cone penetration tests. Gootheawrd®tween
SASW V; profiles and boring records is expected when lateral variglithe site is
low. However, when lateral variability is significant, then the ed#hce between
localized measurements, like borings and CPT results, and glolaaurements, like
SASW V4 results, can further contribute to understanding the site condagaBown at

the site in British Columbia, Canada.
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Chapter 1 Introduction

1.1BACKGROUND

The recent 8.9-magnitude earthquake occurred near the eastfcigsan and its
devastating effect on the Fukushima nuclear power plants emphakzeued¢d for
continued research in the area of soil-structure interaction ddgngmic loading in
geotechnical earthquake engineering. Under cyclic or dynamicnipaxtinditions like
foundation vibrations or earthquake shaking, soil exhibits behaviors riatrangly
controlled by the strain level. The soil behavior is often represgeyestrain-level
dependant modulus and damping. Correct estimates of modulus (stiffnés$araping
(dissipative) characteristics of geotechnical materialsv@ljrasand, silt, etc) play a
critical role in structural design and site response analgagetas, 1982 and Kramer,
1996).

Dynamic properties of soil can be measured both in laboratory dddefsts. The
advantages of laboratory dynamic testing (for example, combessshant column and
torsional shear tests and cyclic simple shear tests) dnetationships between stiffness,
damping, strain and pressure can be defined for samples under undisturbded|ded
conditions. However, in order to obtain representative knowledge of thendysail
characteristics at a specific site, soil samples fromewdifft depths at a number of
locations need to be tested. To better characterize the s#k.ssrain seismic field tests
are combined with dynamic laboratory tests in evaluating tliflmests of soil in the
undisturbed state. Dynamic field tests, which evaluate stiffpegserties by measuring
seismic wave velocities are very important due to their adgastin making undisturbed
measurement over large area of the site at relativelyclosts. These advantages are

especially true for field seismic methods that involve surface wave neeasuots.



Typical field seismic testing techniques can be divided into twapg: intrusive
and nonintrusive. Intrusive seismic tests include crosshole, downhoseicsetone
penetration test (SCPT) and P-S suspension logging. Intrusiwegtestuires one or
more boreholes to perform and generally compression (P) and shea(Syaxocities
are measured. The one exception is the SCPT which often does not elididr W-wave
measurements. One of the features of intrusive testing isthlameasured wave
velocities are generally quite localized if only one or two boe=hale involved, thus the
sampling is more like that of traditional geotechnical field sneament, for example,
standard penetration tests (SPT), cone penetration tests (CBih)eorborehole tests.
However, when strong lateral variability or irregular underground ahesexist at
sites, the credibility of any localized field testing can be questioned.

Nonintrusive field seismic testing techniques are generally edyolk@n the
theory of seismic wave propagation in earth. The most common noshetriests are
refraction and reflection tests. These two techniques arelywiced in geophysical
exploration to detect layering, material boundaries, anomaliesr vedie and etc. The
exploration depth of these techniques can go to thousands of feet degpotéahnical
site investigation, the interested depth of material is generally withiiophg0 to 60 m.

Spectral-Analysis-of-Surface-Waves (SASW) and Multichanmeddysis-of-
Surface-Waves (MASW) are the two non-intrusive dynamic in@gstin site
characterization. Both methods are based on the fundamental theoryaok swave
propagation in a multi-layered medium. Surface waves are stia@sss that propagate
along the vertically-oriented surfaces. They propagate slowerbibdy waves, but they
attenuate slower, possess larger fraction of energy as weaves further away from
source,. Since the characteristics of propagation and attenuatiamfaxfeswaves are

related to the physical properties of the near-surface mediurfgce waves are well



suited to characterize geotechnical sites. An example of surface propagation is

illustrated in Figure 1.1.

gii::ns;gnless Y Direction of Propagation
Time=0

Time =1

Time=2

Time=3 %

i

Figure 1.1 Example of Surface Wave Propagation and Particle Motionl(@fteznce
Brail, http://www.geo.mtu.edu/UPSeis/waves.html)



Field surface wave tests generate shear wave velocityegrofhich can be used
in building design, site characterization and seismic site respmadgsis: (1) combined
with available or estimated information of material density, isheadulus, G, is
calculated fromG = p[V?; (2) measured shear wave velocity profiles can be compare
with empirical equations of shear wave velocity for variousens and existing
geological information to better characterize material ibigtion along depth; (3) Mo
shear wave velocity averaged over the top 30m of soil, is an imp@aaameter for
evaluating dynamic behavior of soil.. Both the NEHRP Provisions hadUniform
Building Code use Mo to classify sites according to type of soil for earthquakpaese

analysis.

1.20BJECTIVES OF RESEARCH

The objective of this research are to:(1) to carry out fi@ldametric studies on
surface wave methods(SASW and MASW) with different test setups (2) to interpret
test results(Y profiles) from SASW and MASW without comparable geological
information at testing sites, (3) to estimate material idigion whereas geological
profiles exist at the sites.

Shear wave velocity profiles are the product of field surfameewests. To better
interpret material type and distribution at testing sitespifiles can be divided and
regrouped based on empirical equation of shear wave velocity fosabftsand and
gravel. Idriss (1976) estimated behavior of soft clays under eakidgleading
conditions. Hardin (1978) discovered and related small-strain shear nmwdwid ratio
and effective stress of soils. Menq (2003) built a comprehensiveieahgquation for
sand and gravel with different geotechnical parametefs¥6, etc.,) using data from
laboratory dynamic tests at the University of Texas at Auslomparison studies for

characterizing material distribution withsYrofiles based on above empirical equations



are used in this context. Shear wave velocity profiles frompregects, one at Hawaii
Main Island and another in British Columbia, Canada, were chdescteand regrouped
based on material distribution. Identified material distribution ftbensecond site were
then compared with existing nearby geological information (CPT,, $fing and

SCPT) to demonstrate the effectiveness of this method.

1.30RGANIZATION OF DISSERTATION

The dissertation has been organized in three different parts.irShedrt is to
provide an insight into the characteristic of surface waves in ss@tem and its
application in site characterization. The second part presentsuthmmetric study of field
surface wave testing at Hornsby Bend, Austin, Texas. The ramgagairt presents some
applications of the methods in two projects and conclusions.

A briefly introduction of wave propagation in homogeneous isotropic media
shown in Chapter 2. This introduction is followed by a demonstration of heperdion
of surface waves forms in a layered system. Charadatsrst Rayleigh wave dispersion
is discussed accordingly. Several dominant methods, transfer madthod (Knopoff,
1964, Youhua, 2001) and dynamic stiffness matrix methods (Kausel and,R&@&B
are briefly presented and discussed. Several theoretical soil models @i jm@sent the
impact of model parameters (layer thickness, densityand \j) on the shape of
dispersion curves.

The history and development of surface wave tests in geotechnigiakering
are introduced in Chapter 3. The chapter starts with the introducticteady-state
Rayleigh wave test developed in early 60s by Jones (1958, 1962) iadUBiates.
Invention of SASW testing in geotechnical area by Nazarian &okb&1983) is then
presented. Introduction of MASW in geotechnical site investigatioRark (Park, 1999)



is discussed and compared with SASW method. Development of bothntdstsvard
modeling and inversion process are presented.

In Chapter 4, results are presented from the numerical simulatiealitlate the
effectiveness of SASW, beamforming and F-K techniques in detemgnihe dispersion
curves from the synthetic seismograms. The synthetic wavefiattls generated by
FitSASW, a software based on the 3-D solution of dynamic ss#fneatrix method. The
studies are made by comparing the theoretical solutions from kentefdr matrix
method, which presented as modal phase velocities, and dynammesstifhethod, which
presented as apparent phase velocities, with the calculated dispersesfoumv SASW,
beamforming and F-K techniques. Three models are used in generatisgnthetic
seismograms: a bedrock model, a normally dispersive model asdndwich” model
where a low velocity zone is set as an interbed between the top layer and theckalfs

A comprehensive parametric study on source type, receiveatygptest set-up of
surface wave testing at Hornsby Bend site is presented ipt€ha and 6. Chapter 5
summarizes test procedures for SASW and MASW methods as svall gest setups.
Different source signals (chirp, step-sine and Ricker Waveligh) different frequency
components are used both in SASW and MASW tests. Sledge hamniRex, and
Liquidator, two powerful vibroseis own by the University of Teaa#&ustin, are seismic
sources used in generating vibrations. Two types of geophones gvertiocity
transducers), one with a resonant frequency of 1Hz, another 4.5Hzedrasireceivers
with different spacings in both tests. For MASW test, souraedeiver spacing, number
of geophones and geophone spacing are parametrically studied. Resul&ASW and
MASW are compared and discussed in terms of both dispersion cindeshear wave

velocity profiles in Chapter 6. A few signal processing techniquespisred and applied



in both tests. CPT results, along with a boring log at Hornsby B#tedare then
compared with Vprofiles from SASW and MASW tests.

A discussion of how shear wave velocity profiles is further pmeged into
different material type and distribution is presented in Chaptard78a In Chapter 7,
spectral-analysis-of-surface-waves (SASW) surveys wertorpged in Hawaii Main
Island to obtain Vinformation beneath the 22 USGS strong motion sites. Criteria for
dividing and regrouping Vprofiles are proposed by using empirical sand and gravel V
curves as references. Each site is assigned with a NEHRRIlass based ongd
measured at the site. Chapter 8 provides finding and charatteripé site based on
shear wave velocities from SASW and SCPT tests, and other geologicadatitor from
CPT, SPT and boring logs. Comparison of material identification B&8W and other
tests are shown. The study demonstrates that in many situdtignsfiling with SASW
can contribute to improved subsurface information and better interpretéor
geotechnical site investigations.

Summary, conclusions, and recommendations are presented in Chapter 9.



Chapter 2 Surface Wave Propagation and Dispersion

2.1INTRODUCTION

Body and surface waves are generated by natural or humaatiexcion the
ground surface or at depth. The velocities of these waves aatlydirelated to the
physical properties of the propagation medium. In this chapterfutidamentals of
surface wave propagation and dispersion are reviewed.

Body waves, compression waves (P) and shear waves (S), propagatgtthe
interior of medium as well as on the surface. P waves areupeessves that can travel
through all types of materials. The direction of particle motismerallel to the direction
of propagation as shown in Figure 2.1a. S waves are slower than P-avalveéssplace
the medium perpendicular to the direction of propagation (See Figure Actbyding to
the polarization of particle motion, S waves with particle motioa vertical plane are
classified as SV-waves; whereas S waves with partidgom in horizontal plane are
identified as SH-waves. Shear waves do not propagate in air or fluids, sucleas wat

Surface waves occur at the interface between two differedtum. In a layered
halfspace, two types of surface waves are generally encounteresl:waves (L) and
Rayleigh waves (R) (Figure 2.1c and d, respectively). Loveesjamathematically
predicted by Love (Love, 1911), travel in a similar patternarigverse motion like SH-
waves. Rayleigh waves, theoretically discovered and proven by Lgtdigta(Rayleigh,
1885), exhibit both longitudinal and transverse motion in the vertical pMdrexe retro-
grade elliptic motion is observed at the surface.

The phenomenon that body waves and surface waves gradually logg aser

they propagate through a medium is defined as attenuation. Uniform matenab#ibn
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is due to two basic mechanisms: geometric attenuation and ahatéenuation (Aki and
Richards, 1980). In a uniform material, geometric attenuation occurguseecthe
amplitude of the wave decreases as the wavefront spreada targer volume when it
travels away from the source point. When body waves propagate h#frge surface of
a uniform halfspace as shown in Figure 2.2, geometric attenuation ofwes is
proportional to 1/, where r stands for the distance of wavefront from source pdist. T
geometric attenuation of body waves in an infinite body is proporttorik. In contrast,
Rayleigh waves, which propagate along material interfdeege a geometric attenuation
proportional to 1A° (Richart et al. 1970). An illustration of wave propagation and
attenuation for body and Rayleigh waves is shown in Figure 2.2rimstof vertical
displacement, since R waves attenuate more slowly than body ,wineeselative
amplitude between Rayleigh waves and body waves increaseavafront propagates

further from the source.
Circular Footing

r—E Geometrical . -2 ¢ -0.5 1
= Domping LOW » _« N S
AN T+ _—
- o Rayleigh Wave
+ Vert . Horiz -
i “Comp. . Comp

/
/

. Slhenr Wave

I r"’| "/;.I‘ ;

Geometrical
amping Law

Relotive
Amplitude

Shear ™

Window ™~/ ¢

\
b

Figure 2.2 Example of Body Waves and Surface Waves Generated by arCircul
Footing on a Homogeneous, Isotropic, Elastic Half-space (Richart, 1970)
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2.2PHYSICAL PROPERTIES

Waves are defined as disturbances that travel in medium witrge
Displacements at the ground surface or depth are captured byssensatculate wave
velocity, and mechanical properties of the medium. Relationship éetlwedy wave

velocities and elastic constants are:

vV, =\/ Ed-v) (2.1)
PA-2v)(1+V)

V, = F - | E 2.2)
P \2pl+v)

E = Young’s Modulus,

G = Shear Modulus,

v = Poisson’s Ratio,

p = density.

Elastic properties that are widely used in engineering are suzed in Table

2.1. The relationships between the elastic constants are listed in Table 2.2.

Table 2.1  Definition of Elastic Constants

Name Symbol Definition
Young' Modulus E longitudinal stress / longitudinal strain for uniaxial loading
Shear Modulus G shear stess / shear strain
Bulk Modulus K hydrostatic pressure / volumetric strain
Poisson’s Ratio Vv longitudinal strain / transversal strain for uniaxial loading

11



Table 2.2
(http://www.efunda.com

Output Relations

Relationships Among Mechanical Properties of Medium

Input
Constants E-= V= G= = A=
. E E Evu
Y 20+v)  31-2v) (L+v)(l-2v)
. E-2G _EG_ G(E-20)
: 2G 338G -E) 3G-E
- K-E  _3KE 3KEK-E)
’ 6K 9K -E 9K -E
. 2/ E-31+R E+31+R
' E+1+R 4 6
2G(L+V) 2Gv
2G([1+v YT
e d+v) 31-2v) 1-2v
» ) 3K (1-2v) 3Ky
2(1L+v) 1+v
- AQ+v)1-2v) ) Al-2v) A@+vV)
' v 2V 3v
LK 9KG 3K -2G 3K -2G
' 3K +G 6K +2G 3
. G(31+2G) A 31 +2G
’ A+G 2(A+G) 3
o 9K (K = A1) A §(K—)l)
3K-A1 3K-A1 2
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2.3FORMATION OF RAYLEIGH WAVES

Rayleigh waves can be described by a horizontal displacememttipbtunction,

@, representing P-waves and a vertical displacement-potentialdangti representing

S-waves:
)
2 -
Vv, 0%¢ = FrE (2.3)
%y
VSO = 2.4
S ‘/I d t2 ( )
V|, = Compression wave velocity,
Vs = Shear wave velocity,
Surface X Surface X
! n=0 !
! m= | Vsl\ Vp]_\ [0].
| |
@ n=1 i
: m = I VSZ‘ Vp2\ ,02
|
! n=2 i
VAN .
: =P m = : Vs3v Vpas &3
! n=3 :
: . m= : Vsas Vpas 4
i i
Z Z |
y y
(a) A Uniform Halfspace (b) A Layered System

Figure 2.3 lllustration of Two Isotropic Halfspace Models

Two models shown in Figure 2.3 are used in discussing the formatioryleidha

waves in solid: (1) an isotropic, homogeneous halfspace, and (2) an isotropic

homogeneous layered system.
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2.3.1 Rayleigh Waves in a Uniform Halfspace

In Figure 2.3(a), the x-axis is both the direction of Rayleigh wave propagation and
particle motion, and the z-axis is the direction of R-wave cartnotion. Two potential
functions proposed to satisfy the conditions in Equations (2.3) and (24(Yang,
1993):

#(x, z,t) = d(z) exdik(x -V, )] (2.5)
w(x zt) = ¥(2) exdik(x -V, )] (2.6)
where: i =+/-1,
t = time,
k = wavenumber
Vr = Rayleigh wave velocity
The relationship between wavenumber, k, Rayleighvelemgth, Ax and

frequency, f, is:

=2t _2n (2.7)
VR AR
Substituting Equations (2.5) and (2.6) into Equati¢2.3) and (2.4) yields:

2

?"(z)+ kz(viz —1}25(2) =0 (2.8)
Ve
V 2

P (z)+ kz(V—Rz—lJY’(z):O (2.9)
S

Several solutions can be derived from Equation)(argl (2.9) depending on the
relationship among ¥, Vs and b Since only the condition thatRk Vs is related to the
interest of this paper, solutions of Equation bamedk < Vs are:

o(z) = Ae™ + A (2.10)
¥ (z) = BE"* + B,e ™ (2.11)

2 2
where v, = 1/1—(\/% j , V, = 1/1—(\/%) , and A, Ay, By, B, are constants.
P s
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Physically as depth approaches infinite, the anniitof waves goes to zero.
Therefore, A = B; = 0. Substituting Aand B by A and B, Equations (2.5) and (2.6) can

be converted to:
¢ (x,z,0) = Ae™? [exdik(x—Vqt)] (2.12)

W (x,z,t) = Be ™ [exdik(x—Vyt)] (2.13)

Equations (2.12) and (2.13) stands for a Rayleighkieatraveling with a velocity of ¥in
the halfspace. The amplitude decreases in an erpahpattern along depths, indicating
energy of Rayleigh waves concentrates within aagedepth.

On the free surface, boundary conditions are ap@genormal and shear stresses

are zero:
Uz| 20 =0 (2.14)
T,l,20 =0 (2.15)

A linear elastic material has the following stregsin relations:

o, = A P 4 O | | 5594 (2.16)
ox 0z 0z
o = G(auz ﬁij 2.17)
ox 0z
where:A, G are lame constant and shear modulysy,are displacement in x and
z directions
u, = 99 _o¥ (2.18)
ox 0z
99,0 (2.19)
0z O0x

By substituting Equations (2.12),(2.13),(2.16),73,X2.18) and (2.19) into boundary
conditions, Equation (2.14) and (2.15), one obtains

(1+v2)A-i2v,B=0 (2.20)
i2v,A+(1+v2)B =0 (2.21)
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To obtain non-zero solutions from Equations (2260 (2.21) for parameters A and B, it
is derived that:
1+V7 -i2v,

i2v, (1+v22) =0 (2.22)

By substitutingv; andv; in to Equation (2.22), one obtains:
6 4 2 2 2
Vel _d Ve +|24-1 Vs| [Ye -161- Vs =0 (2.23)
VA VA Vo ) |\ Vs A

As observed from the above equation, wkgnO0, the left term of the equation is

2
V, . o
equal t0—16+(—sj < 0. WhenVg=Vsg, the left term is equal to 1. Thug exists in the

b
range of (0Vs). Moreover, Equation (2.23) is independent of @iexacy, indicating that
in a halfspace, Rayleigh wave velocity is not edato frequency; hence, no dispersion
exists.

Substituting Equations (2.12) and (2.13) into Eouest (2.18) and (2.19),

horizontal and vertical displacements caused bydRgtywaves are:

u, = (1Ake™* + Bkv,e™ Jexik(x - Vqt)] (2.24)
u, = (- Akv,e™* +iBke ™ )exik(x - Vit )] (2.25)
From Equations (2.20) and (2.21),
i2v.
B=- LA 2.26
1+V; (2.26)

By substituting Equation (2.26) into Equations &.2nd (2.25) for the real part, one

obtains:
—_ _kvlz — 2V1V2 _kVZZ 1 —
u, = Ak(e o e jsm[k(x Vet )] (2.27)
vz N s
u, = Ak(—vle ky +ﬁe e jcos[k(x—VRt)] (2.28)

By re-ording Equations (2.27) and (2.28), one aistai
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u, = (e_”RZ —%e_@zjsin[k(x—vrit)] (2.29)

&, K,
u, = D| 2Ce ™ L Jcos{k(x ~Vgt)] (2.30)
2T
I m)’ V V
where: k> =4 1—(—) } (m=-R, n=-F) (2.31)
i n Vs Vs
S ER /1 a2
m*> n?/m
£ =4 (1-m?) (2.33)
D = Ak (2.34)

For a halfspace with known elastic properties, igakt and horizontal
displacements of Rayleigh waves can be calculabedgiven wavelength. Figure 2.4
showns the relationship between amplitudes of bibtd vertical and horizontal
components of Rayleigh waves and depth with a mgrj@oisson’s ratio (Richard et al,
1970). As observed, energy in both the horizontadl aertical directions mainly
concentrates above the depth of around one waublémg halfspace.

By designating the first components in Equatior292.and (2.30) with simpler

expressions, one obtains:

D( . E e a7 J =D, (2.35)
7T
D ZCe—flz//lR _ﬁe_klz//‘R =D (236)
21T ’

An ellipse-shape equation is formed as:
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Figure 2.4 lllustrations of Rayleigh Wave Attenoatin a Halfspace (from Richard et

al, 1970)
uX i uZ ’ —_
(ij +(Dzj =1 (2.37)

Thus, particle motion for Rayleigh waves is protee in elliptical paths.

Using the relations between Poisson’s ratio andylwalve velocities as well as

(EJ - 1w (2.38)
Ve 2(1-v)

— VR i
r= (V—Sj (2.39)

The propagation equation of Rayleigh waves in a dgsneous, isotropic

the designation of,

halfspace simplifies as:
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2-V
1-v

r’-8r?+8

r—i:O (2.40)
1-v

Equation 2.40 yields only one solution for r assBon’s ratio ranges from 0 to
0.5, and for different Poisson’s ratiocan be calculated directly. Table 2.3 summarizes
the relationship between and Poisson’s ration. As observed, Rayleigh wasecity
ranges from 0.874 to 0.955 times shear wave vglasittoisson’s ratio ranges from 0 to

0.5.

2.3.2 Rayleigh Waves in a Layered System

Haskell (1953) presented the transfer matrix metioodbtain the phase velocity
dispersion equations for Rayleigh and Love waves multilayered solid media. In this
section, the derivation of matrix formulation forayeigh wave propagation in a
horizontally layered system is presented (Hask883 and Yang, 1993).

A horizontally layered halfspace represented by tgeneous, isotropic materials
is considered as a simplified approximation of atgehnical soil system, as shown in
Figure 2.3b. As seen in the figure, interfacesdmmoted as n (n=0,1,2,...,N-1) and layers
are denoted as m (m=0,1,2,...,N) for a system withyers. Displacements and stresses
in both the x and z axes should be continuous year lanterfaces. At the free surface,
normal and shear stresses equal zero. For a systdmN layers, there are 4*N-2
boundary conditions.

For the m layer, it is defined by the following paretersia, — densityd,,— layer
thickness A, - lame constantGy, - shear modulusy/pr, - cOmpression wave velocitysm
- shear wave velocity)yy, - displacement in x-axi$),m - displacement in z-axisf, -
normal stresst , - shear stress. L&tz - Rayleigh wave velocity ankl - wavenumber.

Also, we denote:
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Table 2.3  Relationships between Poisson’s Raticrz{}{% ) (Yang, 1993)
S

Y A A I 4

0.00 0.87402 0.24 0.917751 0.38 0.939372
0.02 0.877924 0.25 0.919402 0.39 0.940792
0.04 0.881780 0.26 0.921036 0.40 0.942195
0.06 0.885598 0.27 0.922654 0.41 0.943581
0.08 0.889374 0.28 0.924256 0.42 0.944951
0.10 0.893106 0.29 0.925842 0.43 0.946303
0.12 0.896789 0.30 0.927413 0.44 0.947640
0.14 0.900422 0.31 0.928965 0.45 0.948959
0.16 0.904003 0.32 0.930502 0.46 0.950262
0.18 0.907528 0.33 0.932022 0.47 0.951549
0.20 0.910995 0.34 0.933526 0.48 0.952820
0.21 0.912707 0.35 0.935018 0.49 0.954014
0.22 0.914404 0.36 0.936433 0.50 0.955313
0.23 0.916085 0.37 0.937936
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[(VR mej - 1}% Ve >V,.)

yam: %

—i{l—(VRVPm)T (V <V,.)

KV%SJ —1}% (Vo >Vs,)

_i[l_(VRVSmjzr (V. <V,.)

(2.41)

(2.42)

(2.43)

Similar to Rayleigh waves in a uniform halfspacespthcement potential

functions, @, and ¢, should satisfy:

1 0%,
o " TVZ o2

Pm

1 oYy,
ok " V2 a2

Sm

The solutions to Equations (2.44) and (2.45) are:
0. 2.0) = (A& + B, Jexelik(x V1]
W, (x zt)= (A’ne_"‘y m? 4 B ‘?mz)exr{ik(x ~Vet)]

The displacement vector of particle in m layerefined as:

S:Uer+UZmJ

(2.44)

(2.45)

(2.46)
(2.47)

(2.48)

The divergence and curl of the vector Are andW;, which stand for volumetric

change coefficient of the P-wave and the angukgsldcement of the S-wave.

o, JdU,.
—+

A, =divS= Team
I X Jz

21
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W, = rotézi(duxm - dUZ’“J (2.50)

m 2 2z X
We have:
200, 04, (2.51)
0Xx 0z
= 00n , O (2.52)

M9z 0X

By substituting Equations (2.46), (2.47), (2.514d4R2.52) into Equations (2.49) and

(2.50), one obtains:

2
w

A = — 2.53
m (mej [ (2.53)

1l w ’
W == — 2.54
In Z(Vs.ﬂj Y (2.54)

Turning Equations (2.53) and (2.54) into a simftatm as Equations (2.46) and
(2.47):

A, =(C,e™* + D, e Jexi(ct - k)] (2.55)
W, = (Cre ™ + D e Jexdiat — kx)] (2.56)

where C., G, D,,D, are constants and = 2nf .

Displacements and stresses in both the x and etidins are:

Ui = W _ W (2.57)
1704 0z
m :—d¢m +—0ﬂ'l'[/m (2.58)
0z O0X
o, = M+% +2G,, M (2.59)
o0 X 0z 0z
r, =G, MJr% (2.60)
0z J X
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By substituting Equations (2.51), (2.52), (2.53) 48.54) into Equations (2.57) through

(2.60), one obtains:

2 2
U, = _(mej oA, —Z(Vsmj W (2.61)
w ) Idx w) Jdz
2 2
u, = _(mej oA, +2(V3mj W (2.62)
w) Jdz w ) IdX
Vo, ) 9% Vs, ) W
0, = p. VA, + g || o m 4 2 —Sm m il (2.63
Vo, ) 920, (Vo V[ W, W
r =2p V2Ji-|-Pm m 4| —=m m— m 2.64
m pmsm{(wjdxo"z (a)j(dxz dzzj} (2.64)
At any interface, continuity of displacement, stresd particle motion velocity must be
satisfied. WithU = N, U, = N, , Yy andYz and substituting Equations (2.55)
ot ZABEAVA V,

and (2.56) into Equations (2.61) through (2.64F obtains:

. 2
L\J/:“ = —(\\//L:J ¢, +D,,)cosky,, z-i(C, - Dm)sinkyﬁmz] (2.65)
+ ymyﬁm[(D,'n —-C.,)cosky 5,z +i(D}, + C,’n)sinkyﬁnz]
. 2
o= pal(0 sk (0, €, Jeosyd 066
+ ym[i(D,'n —-Cy,)sinky ,z+(Dy, + C,’n)coskyﬂnz]
+ ,omyannyﬁm[(D,’n —C,,)cosky s,z +i(D, +Cp,)sin kyﬁmz] '
1. = -V V. Vuli(D,, +C,)sinky,.z+(D, - C, )cosky, | (2.68)

+ PNl v )i (DL ~ C,,)sinky 2+ (D, +C;y)cosky 7]

: : LU U :
where dimensionless quantltle\s}ﬂ and V—Z’“ are also continuous.
R R
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Placing the origion of z (m-T)interface, one obtaisink)z = 0, coskyz =1 using

z =0. We have displacements and stresses causRdygigh wave in m layer at (m-1)

interface.
. . T
Uxm,l U zm,1 _ _ i r T 1 \T
’—’Jml’rml - Em(Cm-l_Dm’Cm Dm’Cm+Dm’Cm Dm) (269)
VR VR ’ '
where,
i 5 _
VPm
— | M O O —
(VR j ymyﬁm
V 2
Em = 0 —(;ij yam ym 0 (270)
VR
PV (L= Vin) 0 0 =~ PuVaV Ve
.0 PNV uVan PV VoL Vin) 0

Similarly, at (m) interface where z ;,dEquations (2.65) through (2.68) give the

displacements and stresses:

. . T
U U
ﬂ' Zm’Z'O-mz’rmz :Fm(Cm+Dm'Cm_Dm’Cr'n+Dr’n'Cr’n_Dr'n)T (271)

Ve TV, M

Fn, is similar to matrix E,

2 2
[ Vem cosP, i Vem sinP,
VR VR

2 2
Fro=| i Yem Y..SinP, - Vom Y, COSP_
VR VR

p V2L y,)cosP,  ip V(Y. —1)sinP,
=PV oYV am SINPy PV ViV am COSP,,

Iymyﬁm Sian _ymyﬁm COS(?m
Y. COSQ,, ~iynsinQ,
IpmVRzyriyﬁm Sian - IomVRzyfiyﬂm COS(?m
IOvazym (1_ ym)COSQm IOmVRzym (ym _1)Sian (272)

where B, =ky,.d,, Q, =kysd,.

From Equation (2.69) we have:

24



U, U
] ] ' 1 \T _ —1 xm,1 zm1
(Cm + Dm’Cm - Dm’Cm + Dm’Cm - Dm) - Em VAREY, 1Om1r It (2.73)
R R
By substituting (2.73) into (2.71), one obtains:
. . T . . T
U U U U
xm,2 , zm,2 ,Umz, Tm2 - FmErﬁ xm,1 , zm,1 ,Uml, Tml (274)
VR VR ' ’ VR VR ’ '
where E;! is the inverse ofE,, and is given by:
_ ) -
- Z(V—S’"j 0 (ovi,)” 0
VPm
VR2 (ym _1) 2 -1
El= 0 m 0 (lomVPmyam) (2.75)
: 0 ) 1 0 A
-1 1
ym O _(pvazymy[;‘rn) O
ymyﬁm .
UsingA , =E! E;, Equation (2.74) is converted into:
. . T . . T
U U U U
[ e ’Z—m2 ! Um,Z’ Z-m,2] = Am[ e ’Z—mYl’Um,l’ Z-m,lj (276)
VR VR VR VR

Similarly, if origin of z is placed to (m-?)interface and repeating the above

steps, one obtains:

. . T . . T

U U U U

—xmi2 ’ 2 ’ Jm—l 27 Tm—l 2 =A m-1 —x ' CUCE ’am—l iy Tm—l 1 (277)
Ve Vr ' ’ Ve Ve ’ '

According to continuity of displacement and strasmterface (m-1), we have:

. . T . . T

u U U U

[ VRV rj = (V— v Ome rj (2.78)
R R R R

By substituting Equations (2.77) and (2.78) inta&iipn (2.76), one obtains:

. . T . : T
U U U U
[ xm2 ) _m2 g T ] =A mA m-l(Lm! i 1O ma1 Tm—l,l} (279)

VR VR '~ 'm21*mz2 VR VR

Thus, repeat the above step for all layers, onairdat
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) ) T . . T

U U U U

( \;m,z ’_\;m,z ’Um,2’rm,2J = AmA m-1"'A1[ VXl'l’ VZLI ’01,1’T1,1J (2'80)
R R R R

Similarly on interface (m), we have:

. X T . . T

U U U U

il y Gl ’ Jm+1 1! Z-m+1 1 = X2 ,Z_m,Z ’ Um 27 Z-m 2 (281)
Vo Vg B Voo Voo 7T

Comparing to Equation (2.78), one obtains:

. . T . . T
U I+ U zm+:; U Xm U zm
Ar_nl+1[ :}n -2 ' V = ’Jm+1,2’ Tm+1,2] :( V. = ’V—Z’Jm,z’rm,zJ (282)
R R R R
. . T . . T
U U U U
A;wl+1A r_n1+2 Anl1[ \x/n_l’z 1 \Z/n_l’z ’Un-l,Z’Tn—l,ZJ :[ \;m,Z ) \;m'Z 1Omos Tm,zJ (2-83)
R R R R

According to continuity on interface (n-1), one abs:
. . T . . T
U U U U
AL AL -~A'nl_1( vl ,Vi’lﬂn,l,fn,lj :( mz M2 g, T ] (2.84)

m+1 M m+2 1Ym21tm2
R R VR VR

Based on Equations (2.80) and (2.81), one obtains:

. . T . . T
U U U U
o ’i’l’an,l’ Tha| = AnaAns Ay = ’ﬁ’al,l’ I11 (2.85)
VR VR VR VR
Since we have:
1 r 1 r \T 1 Uan Uan !
(Cn+Dn’Cn_Dn’Cn+Dn'Cn_Dn) =En ’ ’—”Jnllrnl (286)
VR VR ’ ’
One obtains:
U,, U !
(Cn+Dn’Cn_Dn’Cr,1+Dr,1'Cr,1_Dr,1)T =E;11An—l'”A1 X1'1’;1‘1’0-11'7-11 (287)
VR VR ' '

At the ground surface (z=0), the stresses equal (zgn=11,,=0). At an infinite
depth (z- ), D,=D ,=0. By substituting these boundary conditions Btmation (2.87),

one obtains:

. . T
U,, U
(c..c.c.c) = J(ﬁ 2 ,0,0J (2.88)

R R
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where J=E A ,---A, is a 4x4 matrix.

Up expanding Equation (2.88), one obtains:

U U
Cn — Jll x1,1 + le z1,1
VR VR
Cn — JZlle,l +J22 U.21,1
VR VR
J J (2.89)
C:] — \]31 x1,1 +J32 z1,1
VA VA
U U
Crr] — \]41 x1,1 +J42 z1,1
VR VR

By eliminating G and C,from Equation (2.89), one obtains:
U'xl,l — Jo =i — Ji = s, (2.90)
Uzl,l Jiu=Jdn Ju—da

Matrix J; provides an implicit relationship between Raylewgave velocity,
and wavenumberk (k = 2rf/VR). Thus dispersion curves can be extracted frors thi
equation. An illustration of typical theoreticalsgersion curves with multiple modes

generated by transfer matrix method is shown inife@.5.
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Figure 2.5 lllustrations of Typical Theoretical pession Curves with Multiple Modes
for Rayleigh Waves Propagating in a Layered Halfeg&om Foti, 2000)

2.3.3 Forward Modeling Algorithm

The original transfer matrix method of extractihgaretical dispersion curves as
presented in section 2.3.2 suffers numerical inlthabat high frequencies. Many
scientists have proposed algorithms to improvectileulation of theoretical dispersion
curves and responses of layered system to dynaummils| Several methods that have been
used are: (1) the improved transfer matrix meth¢abpoff 1964, Dunkin 1965, Watson
1970 and Youhua 2001), (2) the reflectivity meth@dichs 1968, Fuchs and Muller
1971) and (3) the dynamic stiffness method (Kau$dl, Kausel and Roesset 1981,
Kausel and Peek 1982).

Thomson (1950) and Haskell (1953) first proposddaasfer matrix method to
determine the dispersion relationship for the pgapian of surface waves within the
Earth modeled by a number of uniform layers. “Ire tithomson-Haskell matrix
formulation, the displacement—traction vector a tbp surface of a layer is related to

that at the bottom surface by a transfer matrix] #s is carried across the interface
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continuously through the entire stack by the proadiddransfer matrices. The unknown
variables in the displacement-traction vector athetayer are then determined by
reformulating the matrix product to satisfy the bdary conditions” (Lee, 1996). Gilbert
and Backus (1966) described a general method,rdpagator technique, which includes
the Thomson-Haskell method and Knopoff's methodpeecial cases.

Similar to the transfer matrix method, the refleityi method was developed by
Fuchs (1968) and Fuchs & Miller (1971). The refl@etand transmission of plane waves
in layered media were treated first, followed bg gynthesis of wave fields created by
point sources. The theoretical seismograms for satbf wave types were calculated by
recursive methods. Based on the propagator techrind reflectivity method, Kennett &
Kerry (1979) proposed a reflection matrix methodhjcl can be used to construct the
entire response in terms of reflection and transimis matrices, in analyzing the
excitation induced by general sources in a stegtimedium. The reflectivity method was
extended later by Miller (1985).

The stiffness matrix method (Kausel 1981, Kausel Roesset 1981, Kausel and
Peek 1982, Wang and Rokhlin, 2001, Rokhlin and W&0§2) has been proposed to
resolve the inherent computational instability the large product of frequencies and
thicknesses in the transfer matrix method. Thengtsis matrix method formulation
utilizes the stiffness matrix of each sub-layerairrecursive algorithm to obtain the
stacked stiffness matrix for the multilayered sdllgan 2000). In Kausel and Roesset’s
paper, both 2-D (assuming a plane Rayleigh wavéfimmd 3-D (assuming a cylindrical
wavefront and considering all waves with source eswkiver locations) solutions are
proposed. Ths 3-D solution is considered to benthst representative way to explain the

dynamic response of a layered soil system undeicakexcitation by a point source.
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Many researchers have performed analyses with 4hes8lution of Kausel and
Roesset(1981) with numerically simulated models ci@ski and Woods, 1992,
Foinquinos 1991, Al-Hunaidi 1994, Lee 1996). Thentabution of different wave
components to the 3-D solution (cylindrical wavent) were systematically studied and
compared with the plane Rayleigh wave solution (8slution). The studies indicate that
in a complicated soil system (hard-over-soft laglesgstem), the 3-D solution is a true
representation of the soil system.

Rayleigh wave propagation in inhomogeneous, ampatror more complex
systems were theoretically explored by many reseasc Jones (1961) proved the
existence of Rayleigh waves in a porous, elasttt saturated medium based on Biot’s
theory. Kirkwood (1978) discussed the error causgdapplying the transfer matrix
method in anisotropic medium, and studied the dhtarstics of Rayleigh wave
propagation in anisotropic medium. Tajuddin (1984)formed research on Rayleigh
wave in a porous halfspace. However, the applinatiothese studies is limited by the
complexity of deriving an analytical solution ofsgersion curves in inhomogeneous,

anisotropic medium.

24SENSITIVITY STUDY

A homogeneous, isotropic, horizontally layered eystan be physically defined
by the layer thickness H, Vs and unit weighty. A system with n layers has (4n+3)
parameters to define the shape of the theoretisgletsion curves. Sensitivity studies
were performed in this study with a one-layer-olalfspace model to illustrate the
impact of those parameters on the shape of thedtieal dispersion curves. In this
section, the results of these studies show thecteffeeach parameter (i.e. shear wave

velocity, compression wave velocity, layer thicknesd unit weight). Dynamic stiffness
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matrix method is used to generate 2-D theoretisgdeatsion curves for Rayleigh waves.
Comparison of 2-D and 3-D theoretical dispersiorves will be addressed in Chapter 5.
The parameters of the base model are summarizetiaibde 2.4. All four

parameters of the first layer are varied with 1@%tudy their impacts.

Table 2.4 Parameters of the Base Model Used toii®thta 2-D Theoretical
Dispersion Curve for Rayleigh Waves

. P-Wave S-Wave . , . Total Unit
Layer No. | Thickness, ft Velocity, f's | Velocity, fi/s Poisson’s Ratio Weight, pcf
1 30 1000 500 0.33 100
2 Half-Space 2000 800 0.40 120

° Poisson’s ratio calculated from, snd V.

2.4.1 Influence of Shear Wave Velocity

The variation of shear wave velocity of the firayér is shown in Figure 2.6. ,
shear wave velocity of the first layer varies fratB0 ft/s to 550 ft/s. Theoretical
dispersion curves for each parameter are plott&igure 2.7.

Theoretical dispersion curves generated from tdrferent parameter sets (only
Vsichanged) are plotted in Figure 2.7. As observesl vdlue of shear wave velocity of
the first layer has a dominant effect on the shafbeoretical dispersion curve. Ag bf
the first layer increases, 2-D theoretical disparsturve at high frequencies starts to
move up to higher velocity. At low frequencies, dispersion curves approach to the
same value, verifying the input model whose praogerat halfspace remains unchanged
for all three parameter sets. It is observed th&b thanges in shear wave velocity affect

the 2-D theoretical dispersion curves since 3 Hzanelengths.
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Figure 2.6 Theoretical Models of a Layered Half-S&pwith Varying Values of in
the Top Layer
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Figure 2.7 Impact of Shear Wave Velocity on 2-Bedtetical Dispersion Curves
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2.4.2 Influence of Layer Thickness

Figure 2.8 shows the input model used to shownntipact of layer thickness of
the top layer. The thickness of the top layer waised by 10% from 27 ft to 33 ft. The
theoretical dispersion curves for the fundamentadlenof plane wave traveling along the
surface of the model are plotted in Figure 2.90Bserved, the thickness of the top layer
plays an important role in defining the shape @f tiheoretical dispersion curve. As the
thickness of the top layer increases, dispersiawecstarts to shift to the left on the
frequency-velocity plot. The thicker the first lageis, the larger the gap between
dispersion curves from different parameter setsbéh low and high frequency zone,
theoretical dispersion curves arrive at same valwbgh verifies the input model whose
shear wave velocities at both first layer and Ipalf® remain unchanged for all three
parameter sets.

Free Surface X

Top Layer Hi1Vp1Vay
H =27, 30, 33 ft

Half-Space  Vp2Vs2Y2

Figure 2.8 Theoretical Models of a Layered Half-Spwith Varying Values of H in
the Top Layer
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Figure 2.9 Impact of Layer Thickness on Theoretizigpbersion Curves

2.4.3 Influence of Compression Wave Velocity

The theoretical site profile of top layer used how the impact of compression
wave velocity of the first layer varying from 90tsf 1000 ft/s to 1100 ft/s is shown in
Figure 2.10. The theoretical dispersion curves gead from the casese where only V
changed are plotted in Figure 2.11. It can be $eancompression wave velocity of the
first layer has a relatively small impact on theysh of theoretical dispersion curve. As
V,, of the first layer increases, dispersion curvetsta shift up slightly on the frequency-
velocity plot. It can be concluded that compressi@ve velocity affects propagation of
Rayleigh wave in a layered system, but Rayleighevaslocity is less sensitive to,V

than \% of the materials.
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Figure 2.10 Theoretical Models of a Layered Hal&Spwith Varying Values of yin
the Top Layer
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Figure 2.11  Impact of Compression Wave Velocityltweoretical Dispersion Curves
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2.4.4 Influence of Density

As shown in Figure 2.12, unit weight of the topdais varied to study the impact
of unit weight on theoretical dispersion curvesnfr®0 pcf, 100 pcf to 110 pcf.
Theoretical dispersion curves generated from thiferent parameter sets (only density

of the top layer varied) are plotted in Figure 2.13

Free Surface X

Layer 1 HiVpi Vsaiyr
y1 =90, 100, 110 pcf

Half-Space  Vp2 Vs2Y2

Figure 2.12 Theoretical Models of a Layered Halaé&pwith Varying Values of in the
Top Layer
It can be seem that density of the top layer haeryasmall impact on the shape of
theoretical dispersion curve. As density of the lBer increases, dispersion curve starts
to shift down very slightly on the frequency-velycplot. It can be concluded that
density plays a minor role in defining theoretiadispersion curve and affecting

propagation of Rayleigh wave in a layered system.
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Figure 2.13 Impact of Unit Weight on Theoreticabpersion Curves

2.5SUMMARY

In this chapter, background knowledge regardinglétigly wave propagation in
both uniform and layered half-space systems isepitesl. To facilitate the understanding
of surface wave propagation in a geotechnical sysgeuniform elastic half-space and a
horizontally layered half-space were used to melkelgeotechnical sites. The impact of
the dynamic properties on the shape of dispersioves of Rayleigh waves is studied. In
this context, only elastic constants are presefitgsed on the assumption of wave
propagation in elastic media.

Rayleigh wave propagation in an elastic half-spacdirst discussed and the
partial differential equations that govern R-wavwepagation are derived. Once the
elastic parameters (E, G and Poisson’s ratio) @eifsed, Rayleigh wave velocity can be
determined ranging from 0.874 to 0.955 times shaae velocity in a uniform halfspace

for Poisson’s ratio ranging from 0 to 0.5. It issiaseen that Rayleigh-wave dispersion
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does not exist in a homogeneous, isotropic haltsp#tat is, W is constant for all
frequencies; In a layered elastic half-space, dsspe exists in Rayleigh-wave velocity
and is shown by different frequencies propagatint) different speeds. Low frequency
R-waves sample deep material and travel fasterhiginmfrequency Rayleigh waves. The
phenomenon of velocity dispersion forms the basigte development of surface wave
testing methods.

The derivation of transfer matrix algorithm deveddpby Haskell (1953) is
present in this chapter. Several algorithms (temsfatrix, reflection matrix and dynamic
stiffness matrix algorithms) have been used fofasgrwave propagation in a half-space.
Each algorithm is discussed in this chapter.

To illustrate the impact of four parameters (she&ave velocity, layer thickness,
compression wave velocity and unit weight) on thapg of dispersion curves of R-
waves, sensitivity studies are performed basecher2tD theoretical solution from the
dynamic stiffness method. A model composed of ayer over an elastic, uniform half-
space is used in creating theoretical solution. paemeters, (shear wave velocity,
compression wave velocity, layer thickness or dghsvere varied, one at a time. It is
shown that the shear wave velocity and layer thesknare the two major factors that

affect the Rayleigh wave velocity.
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Chapter 3 Rayleigh Wave Testing

3.1BACKGROUND

Rayleigh wave testing techniques are an advancemkrgeismological and
geophysical exploration methods in the area of regging site investigation.
Geophysical methods, e.g. reflection and refractests, focus on: (1) the interpretation
of travel paths of direct and indirect body wav@3,the identification of first arrivals or
group arrivals of body waves to detect materialrat@uies or anomalies and interpret
material stiffness. Since Rayleigh waves, alsoedaltground roll” in geophysics,
dominate seismic energy at the ground surface tilmrs created by surface sources. It is
typical for geophysicists to remove Rayleigh wawenponents in seismograms using
various filter techniques before data reduction.

Rayleigh wave testing can be generally divided itlicee steps: (1) source
generation and data collection in the field, (nsail processing and dispersion curve
construction and (3) inversion of experimental dispn curves to estimate, @rofiles.
There are two types of seismic sources, activepasdive, used in R-wave testing. The
first category use sledge hammers, explosivesgdazdirs or vibroseises to create vertical
surface vibrations which includes body and surfaeees. Active sources are widely
used in geotechnical site investigation due tortkentrolled frequency contents and
flexibility in the field. The other category is g sources. Low-frequency Rayleigh
waves generated by large earthquakes, sometimed &teound the earth several times
before dissipating. These R-waves are collectedumed in studying the earth mantle
system by seismologists. Turbulence caused by windiighway traffic also yields
Rayleigh waves, but uncontrolled source locatiomds complexity in reducing data

when ambient noises are used as sources.
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Field data are collected by sensors, usually eitfe@phones or accelerometers,
depending on exploration scale desired. Geophameged ground response into voltage,
which is proportional to the velocity of particléseismometers are also used as sensors
which can measure motions with frequencies froms tean 0.1 Hz to 100 Hz or more.
Geophones generally function at low to moderatgueacies (1 to 1000Hz), thus are
suitable to be used in moderate-depth material oeapbn. Accelerometers are
electromechanical devices that measure ground exetieins and generally function in
the range of 10 to 50,000 Hz or more. They are Myidsed in non-destructive testing in
rock, concrete or metal systems due to their usaiml high frequency ranges.

Signals (velocity or acceleration) are store on potars or digital analyzers
before they pass certain filters to remove unwamigdes and aliasing. In geotechnical
engineering, data collection systems include la#8e or 72-channel recorders which
collect numerous signals simultaneously, or poetaBichannels analyzers. Digital
analyzers with higher resolution capacity seem doalways desired to capture more
information about the seismic motions.

Inversion is a process that is used to estimatarskhave velocity profiles based
on experimental dispersion curves obtained froma Bairface wave testing. Wavelengths
of Rayleigh waves are related to the penetratigethidef the waves. A simple way to
convert dispersion curves ta; grofiles is to relate shear wave velocity to Regllevave
velocity with Poisson’s ratio, and approximate pgeateon depth with wavelengths times
certain coefficients (Richart et al.,, 1970). Thetmod provides a coarse estimation of
material distribution. More accurate informatioroabthe soil system requires a precise

matching between the field and theoretical disparsurves.
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3.2DEVELOPMENT OF SURFACEWAVE METHODS

3.2.1 Steady-State Rayleigh Wave Method

The steady-state Rayleigh wave test, also calledtiicuous surface wave (CSW)
test”, was the first technique invented to measstifness of the soil system by
measuring surface wave dispersion. The method weslaped in the 1950s and 1960s
(Jones, 1955; 1962). The initial try on pavemerdteays showed the possibility of
acquiring dispersion of surface waves when thénsiss decreases as a function of depth.
The method was further applied by using ultrasoaitsoncrete slabs to assess thickness
and stiffness information. The success of this nephe led to its application in
geotechnical site investigation, where lower fregiyesources and receivers are used.

In the steady-state method, an electro-magnetikeshaas used as an active
source and two geophones were used as receiveessddond geophone was moved
progressively away from the vibrator to measure el@wths on the surface with a
specified frequency. The length between two geopbawhich first showed the steady-
state waveform in phase corresponds to one wautléhg as illustrated in Figure 3.1.
This procedure is repeated for different frequen@nd gradually the phase velocity at
different frequencies is obtained to constructdbenplete dispersion curve.

The wavelength)) and frequency (f) are used to calculate the phakity for a
certain frequency based on Equation (3.1):

Vy=f A (3.1)

To improve the precision, the following procedurancbe applied: points
corresponding to different locations at which theaiver is in phase with the source are
represented in a diagram of source-receiver distarecsus number of cycles (Figure
3.2). The slope of the straight line connecting ploents represents the inverse of the

wavelength for the current frequency.
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Figure 3.1 lllustration of Steady-State Rayleighw& Field Testing (from Rix, 1996)
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Figure 3.2 Determination of Average WavelengthRayleigh Waves in Steady-State
R-Wave Testing (from Richart et al., 1970)
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Compared to advanced inversion process in SASWMASW methods, the
steady-state method is empirical and obtains thearshvave velocity profile in a
simplified way as:

Vg =110V, (3.2)
Z=05[4 (3.3)
where Z = sampling depth.

As mentioned in Chapter 2, Rayleigh waves propagdte energy concentrated
within a certain depth near the ground surfaceghinsteady-state method, the depth of
soil sampled by the Rayleigh wave is assumed tnleehalf of the wavelength (although
one-third of the wavelength also used sometimesjljwstrated in Figure 3.3. With this
assumption, the steady-state method may give anmabke approximation of thesV
profile in a simple system with moderate velocrigreases with depth, but it will fail to
recover soil stratigraphy in terms of shear wavéociy when strong contrasts in

material properties, or soft layers sandwiched betwstiff layers.

3.2.2 Spectral-Analysis-of-Surface-Waves Method

The steady-state Rayleigh wave method was replage8pectral-Analysis-of-
Surface-Waves (SASW) method in the early 1990s. SW&SW has a faster field
procedure and an accurate analysis method. The Si8ivod, originally developed by
Nazarian and Stokoe during the 1980s (Nazarianstokloe 1984), is widely known for
in-situ Vs measurements. The productivity and efficiency loé SASW method is
attributed to the development of computing deviaeich are capable of performing
filtering and Discrete Fourier Transform (DFT) sitameously on multiple channels in
the field. Similar to the steady-state method, %W method can be divided in three

steps: (1) field data recording; (2) dispersionvewxtracting and (3) inversion to obtain
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Figure 3.3 lllustration of Conversion from DispersCurve to \{ Profile by Steady-
State Rayleigh Wave Method (from Joh, 1996)

the \ profile.

As explained in articles (Stokoe et al,1994), ““BASW method utilizes the
dispersive nature of Rayleigh-type surface wavepggating through a layered material
to determine the shear wave velocity profile of thaterial. In this context, dispersion
arises when surface wave velocity varies with warvgth or frequency. Dispersion in
surface wave velocity arises from changing stiffngoperties of the soil and rock layers
with depth. The dispersion phenomenon is illusttah Figure 3.4 for a multi-layered
solid. A high-frequency surface wave, which praggag with a short wavelength, only
stresses material near the exposed surface andtiysamples the properties of the
shallow, near-surface material (Figure 3.4b). Adofrequency surface wave, which
has a longer wavelength, stresses material to ategrelepth and thus samples the

properties of the shallower and deeper materiatpi(€ 3.4c). Spectral analysis is used
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to separate the waves by frequency and wavelermttetermine the experimental
("field") dispersion curve for the site. An anab@l, forward - modeling procedure is
then used to theoretically match the field dismergiurve with a one-dimensional layered
system of varying layer stiffnesses and thickneg¢deh, 1996). The one-dimensional
shear wave velocity profile that generates a dspercurve that most closely matches
the field dispersion curve is presented as thershiaee velocity profile at the site.”

Further, Stokoe explained that (Stokoe et al., 1J99%8ASW testing involves
generating surface waves at one point on the exdposgerial surface and measuring the
motions perpendicular to the surface created bypHssage of surface waves at two or
more locations on the surface. All measuremenntpoare arranged on the exposed
surface along a single radial path from the sourc8uccessively longer spacings
between the receivers and between the source estdrdceiver are typically used to
measure progressively longer and longer wavelengthshis general testing
configuration for one source/receiver set-up isstitated in Figure 3.5. In this example,
a source and two receivers are used. The distagtoeeen the source and first receiver
(d) is kept equal to the distance between the ®oeivers (d) as shown in Figure 3.5.
Testing is performed with several (typically sixraore) sets of source-receiver spacings
for a total of 12 or more receive pairs, and theltty of the sets of source-receiver
spacings is called an SASW array.”

The variation in phase shift with frequency for fause waves propagating
between adjacent receivers is recorded for eadkivieacspacing. From each receiver

pair, the phase velocity of the surface wave cacdteulated at each frequency from:
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Figure 3.4 lllustration of Surface Waves with Bint Wavelengths Sampling
Different Materials in a Layered System (after Stolet al., 1994)
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Figure 3.5 Schematic Diagram of the Generalizedgent Arrangement Used in
Spectral-Analysis-of-Surface-Waves (SASW) Testmg@ne Receiver Pair
(after Stokoe et al., 1994)
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Vi = f(@)d (3.4)
Y

where \k is the phase velocity in ft / sec or m/s, f is thequency in Hertz (cycles per
sec), ¢ is the phase angle in degrees (at frequency @) dais the distance between the
receivers in the same length units as used toseptak.

The dynamic signal analyzer is used to measure-diomeain records (x(t) and
y(t)) from the two receivers in each receiver gairach receiver spacing. These time
records are then transformed into Laplace form ¥(&) Y(s). Then the output is related
to the input by the transfer function H(s) as:

X(s) = £ {z(t)} d:*f‘f_ {t)e" dt (3.5)

V()= L{ul} & [ ywea

(3.6)
%F%; (3.7)
6(0) = 1 = () 3.8)
$(w) = arg(Y) — arg(X) = arg(H (jw)) (3.9)

where G) is the amplitude spectrum, lfj is the frequency response, and)aé the

phase difference.

In a linear time-invariant system, the input cieauirequencygp, has not changed.
Only the amplitude and phase angle of the sinusagdbeen changed by the system. This
change for every circular frequenaey, is described by the frequency response,

H(jw). The phase shift between two receivers is giveg(&) .

“The phase shift calculated from the transfer fiomi (), is the key spectral
guantity in SASW testing. When a sledge hammeidbmér or vibroseis is used as the
source, the spectral functions are determined Imypeming the Fast Fourier Transform
(FFT) of geophone signals in a certain frequencygea The record time and resolution

control the length of the frequency span. The rnenmlof averages are adjusted in the
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field to obtain an appropriate low-noise-level sfm function (determined by visual
inspection in the field). Typically, ten average® aised in the determination of the
spectral functions when an impact source (sledgenter) is employed. Twenty or
more averages are typically used when the bulldezes employed. The number of
averages at each frequency is typically no more gtaor 30 when the vibroseis is used.
The phase shift calculated from the transfer fumgtsimply called the phase hereatfter,
represents the phase difference of surface motioeaah frequency between two
receivers. One set of spectral functions was nmredstor each receiver spacing and

testing direction.”

As an example, a wrapped phase spectrum evaluaisddne receiver spacing
(one receiver pair) is shown in Figure 3.6a. Fa@sthmeasurements, a Caterpillar D8k
bulldozer was used as the source and the datacoleeted with a 25-ft receiver spacing
at one site in Canada. A masking procedure is ff@formed to manually eliminate
portions of the data with poor signal quality amgiortions of the data that were deemed
to contain additional and unwanted near-field wakafcomponents. Figure 3.6b shows
the masking applied to the original wrapped phdse¢ ip Figure 3.6a. The masking
information is used to unwrap the phase plot, &ed tcalculate the individual dispersion
curve using the relationship presented in Equaiidn Individual dispersion curves from
each receiver pair are determined and then comlbmddrm the composite dispersion

curve discussed below.
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Figure 3.6 An Example of Wrapped Phase of the Tearfainction Measured with a
Bulldozer as the Seismic Source and a 25-ft*Sfeceiver Spacing
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From these calculations, a plot of phase velociysus frequency, called an
individual dispersion curve, is generated. Thevittlial dispersion curve from the 25-ft
spacing with the bulldozer as seismic source isvehio Figure 3.7. This procedure is
repeated for all source-receiver spacings usdukagite and typically involves significant
overlapping in the dispersion data between adjaceogeiver sets. The individual
dispersion curves from all receiver spacings armlioed into a single composite
dispersion curve called the “experimental” or ‘@ietlispersion curve as shown in Figure

3.8.

Once the composite field dispersion curve is gdadréor the site, an iterative
forward modeling procedure is used to create arétieal dispersion curve to match the
experimental curve (Joh, 1996), which is usuallymed “inversion”. Different
algorithms, for example, genetic algorithm andfiaréil neural network, were applied to
study and improve the robustness of the searchiogrgss (Orozco, 2005, Pezeshk and
Zarrabi, 2005, Shirazi et al., 2006). WinSASW, agsam written by Joh, is used in
generating theoretical dispersion curves. In th@y@mm, values for Poisson’s ratio and
unit weight which are required input to obtain aprofile are usually estimated from
local measurements or material types. An exampleoafparison between theoretical
dispersion curve and experimental dispersion cigwahown in Figure 3.9. The stiffness
profile that provides the best match to the expenital dispersion curve is presented as
the shear wave velocity, ¢V profile at the site, as shown in Figure 3.10. itgp
comparisons between s\profiles measured by SASW testing and by independe
crosshole and downhole seismic tests are presamtEgjures 3.11 and 3.12 for work

conducted in earlier studies (Joh, 1996; Fuhrinrah$tokoe, 1993).
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Figure 3.7 Individual Experimental Dispersion Cuteated from the Unwrapped

Phase Record in Figure 3.6b Measured with a 2pdtiBg between the
Receiver Pair
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51



Wavelength (m)

0 1
10 10 10
300
3hil-|#6hatlslzl3fltll T T T T T IIT] T T T T T IIT] T 900
0 6ftH#6.dat S=6ft 7

oftH#5.dat S=9ft —800

2500 © 18ftH#5.dat S=181ft i
& 25ftD#Ll.dat S=25ft

—_ x 50ftD#1.dat S=50 ft —700~
2 4 75ftD#2.dat S=75 ft _ 3
” 2000— O 100ftD#3.dat S =100 ft | 6002
= 150ftD#2.dat S = 150 ft c
Z 150ftD#4.dat S = 150 ft _ . =
> v 200ftD#3.dat S =200 ft M = 827 500>
S 1500 ¢ 300ftD#4.dat S =300 f o] 3
o ® Theoretical Dispersion Curve .. o
) — o
g . 400 S
2 R
< — <§§§ —
@ 1009 300 &
o - o

500 cooiueiaces tne wapl{es °2. —200
—{100
0 1111 I 1 1 1 L1 111 I 1 1 1 11111 I 1 1 1 111 I_
10 10" 10° 10

Wavelength ( ft)

Figure 3.9 An Example of Comparison of the Fitha# Theoretical Dispersion Curve
to the Composite Experimental Dispersion Curve

Shear Wave Velocity (ft/sec)
02001000 1500 2000 2500 3080

Water Table Depth : 12 ft

50
100+

150+
50

N
o
—

Depth (m)

/2= 300 ft

max

w
o

T O T
!
>

100
350+

Depth (ft)
N
a1
P

400+
<A /2= 4131t
- max.near-field

450+

150

50||||||||||||||||||||||
0 200 400 600 800

Shear Wave Velocity (m/sec)

Figure 3.10 An Example of MProfile from Forward Modeling

52



Shear Wave Velocity, ft/sec

0 500 1000 1500
0 I I I 1 1 1 ] l I I I ]
50 [~ -
d:' L -
<
= | _
S 100
(@) B _
150 [~ -
L Crosshole -
=== SASW: 3-D Analysis _
Inversion
200 1 1 1 1 1 | 1 1 1 1 1 1

Figure 3.11 Comparison of Shear Wave Velocity Resfirom SASW and Crosshole
Measurements Performed at a Site on Treasure IskandSan Francisco,
CA (Joh, 1996; Fuhriman and Stokoe, 1993)
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3.2.3 Multichannel-Analysis-of-Surface-Waves (MASW) Method

The MASW method, has evolved from the SASW methedoming widely used
in the measurement of shear wave velocity profitegeotechnical investigation. The
method involves placing multiple receivers in aeldn equally-spaced array on the
ground surface to record seismic motions simultaslo In this manner, one can analyze
the data directly from field refraction and refieat tests. This method was first
developed by researchers at Kansas Geological $umd999 (Park et al, 1999). Similar
to the SASW method, the MASW method use verticalpgenes to capture propagation
of Rayleigh waves for further interpretation. Da&duction of MASW method also

includes extraction of field dispersion curves anersion of \{ profiles.

I S | d | d |

Figure 3.13 Typical MASW Field Setup (after Fo(D)

3.2.3.1 Field Testing

An illustration of an MASW field setup is shown kigure 3.13. Similar to the
SASW testing, surface waves are often generategtbgr hand-held sources like sledge
hammers or small, swept-frequency sources. Vilmatimduced by the sources are
collected using a minimum of 12 to 60 sensors plawethe ground (Park et al., 1999).

The basic field configuration and acquisition puhaoe for MASW testing is
generally the same as that used in conventionalhrmrmmidpoint (CMP) body-wave

reflection surveys. Results from MASW tests caraffected by the field setup: source

55



type, source location, geophone spacing, geophgree humber of geophones and site
conditions.

As in all seismic methods, source type plays a waportant role in identifying
material distribution at testing sites with the MAISmethod. Typical sources include
sledge hammer and small shakers. Researchers €Park1999) suggested the use of a
swept-frequency source for MASW testing since it b& optimized both in amplitude
and frequency contents. However, he also conclutat both type of sources can
produce similar results given that the desired ldeptmeasurement is relatively shallow.
MASW testing can also be performed in passive mdéaebient noise and ground roll
are used as sources in MASW testing. Park (20G5)dnced a way to combine active
and passive dispersion images to better identéyftindamental mode, designated as MO
in Figure 3.14.

The near offset, the distance between source aamestegeophone, is defined in
the MASW method to avoid near-field effects in Ragh wave measurements. The
common assumption is that after a certain dist&ore the source point, Rayleigh waves
are fully developed (Richart et al., 1970). It isl@ly assumed that the Rayleigh wave is
formed only after near-offset is larger than abbalf of the maximum required
wavelength (Stokoe et al., 1994). This assumptsrof course, site-profile dependant.
Based on Park’s opinion, a near offset with 10 msetan be used to sample wavelengths
as large as 60 meters without interference of fielr-effects (Park et al., 2001). The far
offset is also defined in the MASW method to ddserthe phenomenon of high-
frequency component dissipation at larger distarficas source. This effect limits the
highest frequency at which phase velocity can baswed (Stokoe, 1994). Moreover,

geophone spacing should be carefully chosen talaspmtial aliasing, which occurs
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Figure 3.14 Utility of Combining Passive and ActiMeasurements in MASW Testing
to Enlarge the Frequency Range (Modified from P20K5)

when the measured wavelength is less than twicgeabphone spacing.

In MASW testing, 4.5-Hz vertical geophones are ¢gfly used. This geophone
type is sufficient for shallow (less than 50m) gmbinical site investigations, but a low-
frequency geophone (1- or 2-Hz geophones) is pexfarhen deep material needs to be
investigated. In terms of number of sensors, meresars are preferred to improve the
resolution in the frequency-wavenumber (F-K) domdinthe analyzer does not have
enough channels to collect data simultaneouslyalaaway method is used to measure a
test array several times with different source tioces. The walkaway method simply
means that multiple source points at increasing-offsets are used. The records from all

source points are then combined to form a compstenvaveform. The walkaway
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method can be performed with a portable analyzat, thkes

collection.

A summary compiled by Wood (2009) of the MASW

setups and analysis methods is presented in Tdhle 3

longer time in data

tewfith different test

Table 3.1  Summary of MASW Test Set-up (from Wod2D9D
Reference Description Tsens (HZ)' | Hoone Ax (m)? offset (m)* x (m)° At(s)® | Analysis method Source(s)
Hebeler (2001) Mid-America® low Accel” 15 Variable® 2.4 335 0.003 Beamformer APS Dynamics Shaker
Long and Donohue (2007) Fredrikstad, Morway N-5 10 24 1 0,24 23 MNA Surfseis Sledgehammer
Tran and Hiltunen [2008) Na 62 061 36,912,115 37 NA Beamformer Sledgenammer,vibrator
Edited by Asten and
Boore (2004) San Jose, California NA 15 24 MNA 335 MNA Beamformer Harmanic oscillator
Xia, Miller, Park, Hunter,
_______ Harris (2000) |  B.C.CanadaFDS2-11 | 45 | 60 f .. 06 . |____.18 __ ] _334_ .| o001 | __ Surfseis [ _ Accelerated weightdrop
" B.C. Canada FD97-4 45 ] 1.2 18 70.8 0.001 Surfseis Accelerated weight drop
Perth, Australia Ewing
. _FotiandFahey(2003) | __ _ _ Swest | S s S U - SN I, SR A LT NA L ___fk_______|. Sledgehammer/Drop weight
Parth, Australiz Vincent
street 2 MNA 1-3 NA NA MNA f-k Sledgehammer/Drop weight
Park,Miller,Xia (1997) KGS test site, Kansas 10 40 1 27 39 0.001 CCSAS IVl Minivib (Vibroseis)

R

The natural frequency of the geophones used durmg testing
The mumber of sensors used for testing

The zensor spacing used dwing testing

The source offset uzed for testing

The total awray length used durmg testing

The sampling rate used during testing
Low fraquency accelerometers

The spacing
11 different =%

d between 0.6] mto 4.6 m over the langth of the avay
5 ware tested across Mid-America nsing the same paramaters

3.2.3.2 Extraction of Experimental Dispersion Curves

MASW field dispersion curves are generated as s#gédrmodes of surface

waves. There are currently several methods to conthee time-domain into the

frequency-velocity domain. The most widely used hodtin geophysics for creating

dispersion curves is the intercept-slownes®)(transform (McMechan and Yedlin,

1981). The signals in the offset-time format asnsformed to intercept time-slowness

wavefield by slant stacking. Then, a 1-D Fouriemsform is applied to achieve the

slowness-frequency () domain. Thus, the data wave field is linearlyngf@rmed from

the time-distance domain into the slowness-frequetmmain, where dispersion curves
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are imaged. All data are present throughout thesteamations. Dispersion curves of
fundamental and higher modes are directly obseriwredthe frequency domain.

McMechan and Yedlin applied the method to both lsgtit and field data and achieved
good results. An illustration of an intercept-sl@sa €-p) transform is shown in Figure

3.15.
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Figure 3.15 Intercept-Slowness Transform on a Sticttwavefield (McMechan and
Yedlin, 1981, Modified by Dulaijian, 2008)
Similarly, Park (1998) developed a method to tramsftime-domain signals into
a space-angular frequency domain (u(x,t) to jy,using a Fourier Transform as:
U (X, @) = j u(xt)e'“dt (3.10)
U(x, o) can be considered as the multiplication of thasghspectrum and the amplitude
spectrum. The phase spectrum contains wave-veladitymation, and the amplitude

spectrum contains attenuation information(DulaijiaD08) as:
U (x,w) = A(x,w)e”* (3.11)
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7 . .
where ¢ =—, and c_is the phase velocity.
c

w

After the following integral transformation, onetaims:

— [ait U (X, w) — [ nil6-0)x A(X, )
S(w,6) = [ bu(x’w)ddx [e [—‘A(X,w)ddx (3.12)

The transformation is considered to be summing tiveroffset of the wavefields of a
frequency after applying the offset-dependent plsasi, 0, determined for an assumed
phase velocity. For a given circular frequencyp,3)) have a maximum ap =6 :Ci.

Phase velocity is estimated where the peak of 8recdhe peak at the lowest velocity
corresponds to the fundamental mode of the circtiequency. Peaks with higher
velocity are treated as higher modes. After chamdiequency and velocity, all peaks
over desired frequency ranges are determined arsddispersion curves are formed. It is
noted that this method yields dispersion curveshvietter resolution than thep
transform when a small number of traces are used @aVimited range of offsets (Park at
al., 1998).

The frequency-wavenumber (f-k) method is widelyduge geophysics and has
recently been used in MASW testing for shallow gebnical investigations. In the f-k
method, time-domain signals are converted to tleguency-wavenumber domain by
performing 1-D Fourier transform twice, one on time interval, and another on the
spatial intervals. The transform is generally ahltbe 2-D Fourier transform. It can be
used to enhance data quality through the discritminaf noise (Foti, 2000). However,
one concern about the frequency-wavenumber domamsformation is spatial aliasing,
which is similar to temporal aliasing in time domaevealed by the Nyquist criterion. In
the time domain, signals are collected by analymetis built-in anti-aliasing filters. In

the spatial domain, it is necessary to post-protiesscollected data to avoid spatial
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aliasing. Similar to other methods, frequency-wanvebher method can also resolve
higher modes of surface waves.

The most influential transform technique is theiratical beamforming method
proposed by Zywicki (1999). The method treats rachiannel records as a cylindrical
wavefield, thus yields the most accurate represientaf the wavefield when an active
source is used. The method provides the highesiutesn of dispersion curves compared
to other methods (Tran and Hiltunen, 2008). Aldoallows phase velocities to be
estimated for relatively long wavelengths compateedhe length of the receiver arrays
(Zywicki, 1999).

In the beamforming method, a spatiospectral cdioglamatrix is formed. The
matrix consists of the cross power spectrum betwalkkncollected signals of all
frequencies. The beamforming term is derived frdra &bility of an array or signal
processing algorithm to focus on a particular diogc or wavenumber (Johnson and
Dudgeon, 1993). The main lobe of the array smogtHfimction is defined as a beam.
The beamforming method determines the power of ddclpair by multiplying the
spatiospectral correlation matrix by the steeriegtor (e) and summing the total power
over all sensors. The steering vector provides xgmomential phase shift which is
controlled by a set of trail wavenumbers. The beaming method can use weighting
vectors to account for geometric spreading, butcthreventional beamforming analysis
uses uniform weighting for all sensors (Zywicki ®99Each power can be calculated
using Equation 3.13:

Prosr (T,K) = €™ (K)R()e(k) (3.13)
where H represents the Hermitian transpose, efikesents phase shift vector

associated with a trial k, R represents correlatatrix.
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Calculations made using Equation 3.13 give estimafehe power of f-k pairs.
The calculations lead to a ridge of maximums fornredrequency-wavenumber space
(Wood, 2009). The ridge is used to calculate thgldigh phase velocity for each test
frequency using the fundamental relationship betweavelength, frequency, and phase
velocity shown in Equation 3.1.

A comparison of the frequency-velocity spectrumiedd by different transform

methods is shown in Figure 3.16.
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Figure 3.16 Frequency-Velocity Spectrum Generatedpf-k method, b) f-p method,
c) Park’s method and d) cylindrical beamforming Imoek (from Tran and
Hiltunen, 2008)

3.2.3.3Inversion

Inversion of the experimental dispersion curve tbeen the focus of many studies
over decades, beginning with the basis of Haskediistribution in multilayer dispersion
computation (Haskell, 1953). Since it can be vafficdlt to match several theoretical

modes of the Rayleigh wave to the field dispersiorves, the MASW method generally
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uses only the fundamental mode in the inversiortgs®. At normally dispersive sites
(increasing stiffness with increasing depth withanty inverse velocity contrasts), the
fundamental mode of dispersion curves is applicablean inversion analysis. An
example comparison of MASW and SASW test resulsh@vn in Figure 3.17 (Tran and
Hiltunen, 2008).

Park (2003) developed SurfSeis, a software based le@aset-square method of
automatically solving the inversion problem. Thefpenance of automated inversion
algorithms still needs further improvement for siteith complicated geometries or

material distributions, particularly with velociiyversions.

3.3SUMMARY

In this chapter, a brief introduction to variousfaoe wave testing techniques is
presented. The first method that introduced surfaese testing is the steady-state,
Rayleigh-wave test. This method was quite practawad empirical but was helpful in
geotechnical site investigation. Due to its ine#ficy in the test procedure and its
empirical nature, it was replaced by the SASW a&SW methods. The SASW method
provides good convenience in data acquisition Bwing wrapped phase plots during
data collection. This ability for real-time moniiig in the field provides more flexibility
in field operation once poor data is encounterelde &lgorithm it uses provides an
accurate estimate of wave propagation and eneggyhiition. The only disadvantage of
the SASW method is that the phase unwrapping psotases time, and can require
knowledgeable and experienced personnel to redecéedta in difficult situations. The
MASW method operates on an automated inversionranogthus this process is rapid.
However, geophone type, spacing and source shaoelldabefully chosen to acquire

representative results. Also, the assumption o$icieming only the fundamental mode in
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the inversion process may lead to erroneous psofifece higher-mode energy dominates

in certain wavefields.
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Chapter 4 Numerical Simulation

4.1BACKGROUND

Numerical simulation was performed to validate #féectiveness of SASW,
beamforming and F-K techniques in determining tispetrsion curves from the synthetic
seismograms. The synthetic wavefields were gereeigtd-itSASW, a software based on
the 3-D solution of dynamic stiffness matrix meth@tle studies are made by comparing
the theoretical solutions from both transfer matrnethod, which presented as modal
phase velocities, and dynamic stiffness method,chvipresented as apparent phase
velocities, with the calculated dispersion curvesm SASW, beamforming and F-K
techniques.

Three models are used in generating the syntheiBom®grams: a bedrock model,
a normally dispersive model and a “sandwich” moaleére a low velocity zone is set as
an interbed between the top layer and the halfspdoe parameters of three models are
shown in Tables 4.1 through 4.3. The correspondymghetic seismograms are shown in

Figure 4.1 through Figure 4.3. The Mofiles for three models are shown in Figure 4.4.

4.2DATA PROCESSING

Synthetic waveforms are processed into dispersioves by (1) calculating phase
plots of different signal pairs to construct a casife dispersion curve, (2) calculating
spatial correlation matrix to form a frequency —vemumber (f-k) curve with the
maximum energy at each frequency and (3) performai2 Fourier transform on time
and spatial domains to form the dispersion relatigmin the f-k domain.

The parameters used to generated the syntheticfovenge are the same for all

three models. 60 channels are equally spaced w288 (1-m) spacings and a source
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offset of 3.28ft (1 m). The time interval is 0.0026c and the number of data point on

each signal is 2048.

Table 4.1  Parameters of the Bedrock Model to Geéa&wnthetic Seismograms
. Depth to Top P-Wave S-Wave . , . Total Unit
Layer No. | Thickness, ft of Layer, ft | Velocity, ft/s | Velocity, ft/s Poisson’s Ratio Weight, pcf
1 16.41 0 984 492 0.33 119
2 99999 16.41 2411 1476 0.20 150

* Layer as Halfspace

Table 4.2  Parameters of the Normally Dispersive 8dd Generate Synthetic
Seismograms
Layer No. | Thickness, ft Ig;aptra;oe::c;f VeIT(;\é\i/t?/\,/?t s Ve?(;\é\i@Y?t /s | Poisson’s Ratio V-\r/ce)fglh?r;(t:f
1 32.81 0 984 492 0.33 119
2 65.62 32.81 1968 984 0.33 119
3 99999 98.43 2411 1476 0.20 150

* Layer as Halfspace

Table 4.3  Parameters of the Inversion (Sandwichiiéfito Generate Synthetic
Seismograms
Layer No. | Thickness, ft Igfeptl?a;oe::(;![o VeIT(;\é\i/t?/\,/?t s Ve?(;\é\i@?/?t /s | Poisson’s Ratio V-{/ZESLE{J?;
1 16.41 0 1968 984 0.33 119
2 32.82 1641 984 492 0.33 119
3 99999 49.23 1968 984 0.33 119

* Layer as Halfspace
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Figure 4.1 Synthetic Seismogram for Model 1 — Ali®ek Site
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Figure 4.2 Synthetic Seismogram for Model 2 — AmNally Dispersive Site

Model 3 - Sandwich Site
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Figure 4.3 Synthetic Seismogram for Model 3 — ®elrsion (Sandwich) Site
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4.2.1 SASW Method

For each model, the phase difference of a signal ipacalculated while the
source offset is maintained as the same as thandistbetween the signal pair. An
example of a phase plot with a 6.56-ft (2-m) spgdiom the first model is shown in
Figure 4.5. A composite dispersion curve is comsédi by combining the dispersion

curves from various spacings.
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Figure 4.5 A Phase Plot Calculated with a 6.98€teiver Spacing from the Synthetic
Seismograms for the Bedrock Model

4.2.2 Beamforming Method

The result of beamforming transform of the 60-clemmynthetic seismograms is
shown in Figure 4.6. The ridge with the maximumrggds plotted as to calculate the

experimental dispersion curve.

4.2.3 F-K Method

A two-dimensional Fourier transform over both tiared space is termed an F-K

transform where F is the frequency (Fourier tramafover time) and K refers to

7C



50

40

30

Frequency (Hz)

20

10

d
&
s
&
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wavenumber (rad/ft)

Figure 4.6 A Wavenumber — Frequency Plot fromBeamforming Transform with
the Synthetic Seismograms of Model 1- A Bedrock Sit

150

100 -

Frequency (Hz)

50+

1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

O 1 1 1

Wavenumber, rad/ft

Figure 4.7 A Wavenumber — Frequency Plot from2beFourier Transform with the
Synthetic Seismograms of Model 1- A Bedrock Site

71



wavenumber. A Example of the F-K plot generatedab®D Fourier transform on the

synthetic seismograms for the first model is shawRigure 4.7.
4.3SIMULATION RESULTS

4.3.1 Model 1 — A Bedrock Site

Both modal velocity and apparent phase velocityttier model of a bedrock site
are calculated from transfer matrix method and dynastiffness method for the bedrock
model as shown in Figure 4.8a. It is observed that2-D solution of apparent phase
velocity agrees well with the fundamental mode dofdal phase velocity. The 3-D
solution is slightly higher than the 2-D solutiaxcept at the frequency range between 10
to 15 Hz, where the 3-D solution overlaps with fiilemode of modal phase velocity.
Thus, at the site with no velocity inversion, higheode may still play a dominant role in
defining the apparent phase velocity at certaigdemcy ranges.

The dispersion curves processed from the synthegismograms with
Beamforming and F-K transform are shown in Figurgb4 It is observed that both
techniques produced similar results. By comparingnt with the theoretical modal
dispersion curves, it is found that results fromthbdechniques agree with the
fundamental mode after 12 Hz. Before 12 Hz, bothnejues show two trends which are
slightly lower than fundamental mode andl hode (second lowest modal velocity)
correspondingly.

The dispersion curve from SASW analysis is compaw#tti dispersion curve
from F-K transform and modal dispersion curves igufe 4.8c. It is observed that

SASW and F-K methods generated similar results kvkiand for apparent phase
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velocities.

4.3.2 Model 2 — A Normally Dispersive Site

For the second model - a normally dispersive st#eslaown in Figure 4.4b,
theoretical solutions from transfer matrix methawd adynamic stiffness method are
calculated. Both modal velocity and apparent phesecity for the model are shown in
Figure 4.9a. It is again observed that the 2-Dtgmiuof apparent phase velocity agrees
well with the fundamental mode of modal phase \igjodhe 3-D solution is slightly
higher than the 2-D solution except at the frequyeange between 1 to 4 Hz, where the
3-D solution overlaps with the'Inode of modal phase velocity.

The results from the transform by both Beamformamgl F-K methods on the
synthetic waveforms are Figure 4.9b. It is obsemad both techniques produced similar
results above 3 Hz, where dispersion curves agréetiae fundamental mode of modal
dispersion curves. F-K method produced two treridseguency less than 3 Hz, while
Beamforming method yielded phase velocity even taivan the theoretical fundamental
mode.

The dispersion curve from SASW analysis is compaw#tti dispersion curve
from F-K transform and modal dispersion curves igufe 4.9c. It is observed that
SASW and F-K methods generated similar resultshiemormally dispersive model, and

both of them agree well on the fundamental mode.

4.3.3 Model 3 — An Inversion (Sandwich) Site

The results from the analyses of the synthetiovsaggams of an inversion site, as
shown in Figure 4.4c, are presented in Figure 4.T@e comparison between apparent
phase velocity and modal phase velocity is showRigure 4.10a. It is observed that
WInSASW 2-D, 3-D and fundamental mode agree wetatfrequency range from 0 to
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12 Hz. After that frequency, the theoretical appamhase velocity gradually moves to
higher modes as frequency increases.

The results from the transform by both Beamformamgl F-K methods on the
synthetic waveforms are Figure 4.10b. It is obs@értteat both techniques produced
similar results above 2 Hz, where dispersion cuagree with the fundamental mode of
modal dispersion curves up to 13 Hz. Both dispersiorves start to move to higher
modes after 13 Hz.

The dispersion curve from SASW analysis is compawgti dispersion curve
from F-K transform and modal dispersion curvesiguFe 4.10c. It is observed again that
SASW and F-K methods generated similar resultgHerinversion model, and both of

them are considered to be the apparent phase tyeloci

4.4CONCLUSIONS

In this chapter, analyses were performed on numgrisimulated waveforms for
three different models. The theoretical solutioresTf both transfer matrix method and
stiffness matrix method are compared to investighéeinfluence of higher modes on
apparent phase velocity. Dispersion curves from $#W, Beamforming and F-K
transform are also compared. It is found that theebniques produced similar apparent
phase velocity, when the data corresponding to maxi energy among all modes along

the frequency axis are used
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Chapter 5 Field Surface Wave Testing

5.1BACKGROUND

A series of SASW and MASW tests was performed parametric study on the
characteristics of surface wave testing at a sitéustin, Texas. The site tha was
selected is called Hornsby Bend. The site was t®elelbecause of. (1) the extensive
series of in situ tests that have been performdigeasite in the past, (2) a large open level
area and (3) the proximity (about 5 miles away)tled site to the UT campus. The
Hornsby Bend site, own the by City of Austin, issdsas a waster-water treatment site
which located in the southeast side of the city.

Since 1980s, various tests have been performetdeaHbrnsby Bend site. In
September of 1985, Southwestern Laboratories peddr a routine geotechnical
investigation of the site for a proposed wastertergy plant. A series of crosshole tests
were performed at the site since then by persdnow the University of Texas. During
1986 and 1987, Dr. Mok (Mok, 1987) also conductedemsive studies using the
crosshole and downhole seismic methods at the GR&. tests were also conducted in
2011 by Mr. Kim to assist the site investigation.

In this chapter, the field test equipment and pidoces used to perform the
SASW and MASW tests at the Hornsby Bend site anensarized. Results from various

tests used to support this study are presentediaodssed in the following sections.

5.2SITE LOCATION

The Hornsby Bend site is located at the north-wester of Highways 130 and
71 as shown in Figure 5.1. The site is own by thgy Gf Austin, and has been
extensively characterized by SASW, CPT tests amdeghnical boreholes. The site was

chosen for the current research due to its proyirtot many previous tests, the low
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ambient noise level, the open field and the reddyivflat ground surface. The exact
location of the center of the test site is given dpordinates: 30.230454467N and
97.64187911W. The altitude at the center of tastyas 133.782 meters above mean sea

level. The variance of elevation at the site is lgn 0.3 meter.
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Figure 5.1 Map of Hornsby Bend Site (Courtesy ob@e Map)

Two sets of field tests were performed to evalsaiar wave velocity profiles at
the site. The first set of tests was performed f@@atober 30 through 31, 2010. SASW
and MASW tests were performed using T-Rex, a vié®wn by the University of
Texas at Austin, and sledge hammers as seismicesoand 1-Hz geophones as seismic
receivers. The second set of tests was perfornmd ffanuary 24 through 25, 2011.

MASW and SASW tests were conducted along the sastatray used in the first set of
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tests. In this case, Liquidator and sledge hammers used as seismic sources, and 1-Hz
and 4.5Hz geophones were used as receivers. CPSGIAd tests were also conducted at
the center, and at both ends of the array as wse#ltather locations. Mr. Kim was in

charge of this work. A satellite image of the fesfation is shown in Figure 5.2
Traffic More.. M _| satetite [ _Eartn

Figure 5.2 Satellite Image of the Test Array &t Hornsby Bend Site (Courtesy of
Google Map)

5.3TEST SETUP

In this section, test equipment, procedures aneratiated issues associated with

the SASW and MASW tests are presented. All Sougreats used are list in Table 5.1.

5.3.1 Seismic Sources

Drop-weights, bulldozers and vibroseis are the e¢hmeost common seismic

sources in surface wave testing to depths equat tgpeater than 30m. Sledge hammers
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are good for shallow measurements (5 to 15m), vasdeege vibroseises provide enough
energy to seismically sample deep material (>20@@aontinental Oil Company (Now
ConocoPhillips) developed a series of Vibroseiseshe 1950s. They are still widely
used to create various source signals (sinusoidp cn Ricker wavelet) for different
purposes. The University of Texas at Austin owngr feibroseises, named Thumper,
Raptor, T-Rex and Liquidator, with which powerfdnt seismic investigations are
performed. In this context, T-Rex and Liquidatorgvesed in this study. Features of T-
Rex and Liquidator are summarized in Table 5.2tupes of Liquidator and T-Rex are
shown in Figures 5.3 and 5.4, respectively.

An Agilent 33220A function generator was used teate different drive source
signals that were used to control T-Rex and Liguaiddn this research, a step-sine, chirp
and Ricker wavelet were used as the source sipesldes hammer impacts for the short
receiver spacings. An example of the source sigmsdsl in both sets of tests is listed in

Table 5.1. lllustrations of the different sourcgrsils are shown in Figure 5.5.

Table 5.1  Source Signals used in SASW and MASWirigst

Signal # Signal Type
Chirp 3-8Hz
Chirp 8-20 Hz
Chirp 20-25Hz
Chirp 25-35Hz
Ricker Wavelet 20Hz
Step Sine 25-3Hz
Step Sine 110-20Hz
Hammer Impulsive

DN U R|WIN P
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Table 5.2 T-Rex Features (from Stokoe et al, 2004)
Vibrator T-Rex Liquidator’ Thumper
o . Buggy-mounted vibrator, Buggy-mounted vibrator, . -
Vehicle Type “rticulated bodv articulated body Built on Ford F650 Truck

Driving Speed

Hydraulic drive system
(<15 mph)

Hydraulic drive system
(<15 mph)

Highway Speeds

Total Weight 29,030 kg (64,000 1b) 29,030 kg (64.000 1b) 9980 kg (22,600 1b)
Length 98m (32 ft) 98 m(321ft) T1mi23 1)
Width 24m (8 ft) 24 m (8 ft) 24m (8 ft)
Height 32m(10.5 ft) 32m (105 1) 24m (8 ft)

Sviﬁh;;gfzme 207 bar (3.000 psi) 207 bar (3.000 psi) 476 bar (4000 psi)
¢ ]
v 1b1'&:£t{);‘fump 757 Vm (200 gpm) 530 I'm (140 gpm) 151 V/m (40 gpm)
Vibration ON err_lcal. o (1) Vertical, and (,1,) v em‘”'l- o
Orientations (2) Horizontal in-line, and (2) Horizontal cross line (2) Horizontal mn-line, and
‘ (3) Horizontal cross-line - ) (3) Horizontal cross-line
O?ig?ll:?tli%n Push-button transformation | Shop transformable 1 one Field transformable in
Trans foera tion of shaking orientation day about hour hours
ll™>
Maximum

Output Force:
1) Vertical, and
2) Shear

(1) 267 kN (60,000 Ib)
(2) 134 kN (30,000 Ib)

(1) 89 kKN (20,000 Ib)
(2) 89 kN (20.000 1b)

(1) 26.7 kN (6000 1b)
(2) 26.7 kN (6000 1b)

Base Plate Area

411 m? (442 £

434m? (467 Y

0.698 m” (7.50 %)

Moving Mass:
1) Vertical. and
2) Shear

(1) 3.670 kg (8,100 1b)
(2) 2,200 kg (4,850 1b)

(1) 13.475 1b (6.110 kg)
(2) 13.475 1b (6,110 kg)

(1) 311 1b (140 ke)
(2) 311 Ib (140 ke)

Stroke (Peak to
Peak):
1) Vertical, and
2) Shear

(1)89cm (3.51n.)
(2) 178 cm (7.010)

(1)40.6 cm (16.0 in.)
(2)406 cm (16.01n)

(1) 7.6 cm (3.01n.)
(2)76cm (3.01m)

Hydraulic O1l

Vegetable-based
hydraulic o1l

Vegetable-based
hydraulic o1l

Vegetable-based
hydraulic o1l

Special
Features

(1) Cone pushing capacity

(2) Hydraulic pressure take-
off

(3) Vanable vertical hold-
down force

(4) Must be transported by
tractor-trailer rig

(1) Optimized for low freq.
(down to 0.5 Hz)

(2) Cone pushing capacity

(3) Hydraulic pressure take-
off

(4) Must be transported by
tractor-trailer rig

(1) Bult for high-
frequency output
(above 200 Hz)

(2) Buult for use i urban
environments

(3) Can be driven on
highways
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Figure 5.3 Liquidator Used as a Seismic Sour¢eeaHornsby Bend Site (Courtesy of
NEES@UTexas)

Figure 5.4 T-Rex Used as a Seismic Source at tnaddy Bend Site (Courtesy of
NEES@UTexas)
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Figure 5.5 Source Signals Used at the Hornsby Egted(a. - Chirp, b. — Ricker, c. —
Step Sine at 4.75 Hz)

Transient signals are associated with impact-typeces like explosives, drop-
weights and sledge hammers. They are charactebyed pulse of relatively short
duration which contains energy over a range ofueagies. The ideal transient impact is
a delta function with equal amounts of energy atflquencies. In reality, this
frequency range is not possible to create in sud the truncated from depends on the
source energy. The advantages of a transiente@ueclow cost and rapid deployment.
However, transient sources generate less energyahabroseis and are not flexible in
controlling the frequency content.

Step-sine signals were implemented using the wdises with controlled

frequency and amplitude contents. For transienitimpth the vibroseises, a wide range
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in frequencies was excited simultaneously. In caimspa, the step-sine introduces one
frequency at a time and steps through the frequesrtge selected. This method is also
referred as swept-sine because the seismic sowesps through from one frequency to
another frequency with a preselected number ofesyal each frequency. As such, the
method provides a robust way to concentrate enatrgydividual frequencies, generally

resulting in a high signal-to-noise ratio. Comparned transient signals, the only

disadvantage of step-sine signals is that thisngggirocedure is more time-consuming.

The functional form of a step-sine signal can betem as a sinusoidal wave:

X(t) = Asin[27#t] (5.1)

A chirp signal is a shorter durational signal inieththe frequency increases (‘up-
chirp) or decreases (‘down-chirp’) with time. Ttypes of chirps are generally used in
geophysical exploration: linear chirp and exporanthirp. In a linear chirp, the
instantaneous frequency, f(t), varies linearly witlme. In an exponential chirp, the
frequency of the signal varies exponentially asracfion of time. In this research, linear
chirps were used as input signals. The correspgndime-domain function of a

sinusoidal linear chirp is:
X(t) = A(t)sin[27( f, +gt)t] (5.2)

where amplitude A is a function of time, k is tlaer of frequency change, and f
is the start frequency.

A Ricker wavelet signal is a wave-like oscillatiaith an amplitude starting out
at zero, increasing, and then decreasing againtbaodro. The Ricker wavelet is usually
used as source signal in forward modeling of seisand electromagnetic wavefields. It

is often written as:
X(t) ={L-2[7£,(t - d.)*fexp- [, t - d. )]} (5.3)
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where f is the peak frequency, angdislthe temporal delay.

Random input motions are sometimes used with areamis-type source such as
an electromechanical vibrator or a bulldozer (segurfé 5.6). When random input
motions are used, a weighting function such asHhaning window is necessary to
reduce leakage because the random signal is nodpem the time domain. Rix (1988)
compared the performance among transient, stepaiderandom input motions and

concluded the step-sine yields the best results.

Amplitude, millivolts

Time, sec

Figure 5.6 Typical Random Input Motion Time Rec@rdm Rix, 1988)

In this research, transient, step-sine, Ricker @ntp signals were used as drive

signals for T-Rex and Liquidator, the high-energigmiic sources.

5.3.2 Recording Systems

Two recording devices were used in the SASW and WABsts: a 4-channel
Quattro analyzer and a 72-channel VXI analyzer. Dia¢a Physics Quattro is a ultra
portable, USB 2.0 powered, 24-bit, 40-kHz bandwidtichannel analyzer. It has the
ability to record signals and convert them to wvasioforms including auto-power

spectrum, transfer functions, synchronous averag®; and cross-correlation, histogram
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analysis. The VXI analyzer is a 72-channel analyfmemally manufactured by Agilent)
that is primarily used for surface wave studies bopaefaction tests at the University of
Texas at Austin. The VXI analyzer has a samplirtg tg to 100k samples/s and allows
data to be streamed to a computer through a caldges a network. In this study, both
analyzers were connected to a laptop for datagora
Two types of geophones were used in the field: Lt41z low-frequency

geophones and GS-11D, 4.5-Hz geophones. Theseypge bf geophones are shown in
Figure 5.7. All geophones were calibrated befostirig to find the best combination
with controlled phase difference for SASW testidg example of a phase difference
(“relative” to some references) vesus frequency fuo 15, 1-Hz geophones is shown in
Figure 5.8. As seen in Figure 5.8, these geophaneswvell matched as shown by a

maximum phase difference (relative to GeophonefBlan the frequency range of 1 to

200 Hz.

Figure 5.7 1-Hz and 4.5 Hz Geophones used at tmeddy Bend Testing Site
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5.3.3 Test Procedure

One set of SASW tests were performed at locatiomsra the Hornsby Bend Site
during the first trip with T-Rex as the large seissource and the 1-Hz Geophones. The
center of the test array had an elevation of 134temevith coordinates of
30.230380479N, 93.641901611W. During the secopd tiniree sets of SASW tests were
performed, one at center and one at each end désharray with 1-Hz geophones and
Liguidator as the large seismic source.

The basic configuration of the source and receiusesl in field SASW testing at
the array location is illustrated in Figure 5.9.hr@e receivers were used at each
source/receiver set-up. This arrangement enalledSASW set-ups (two individual
dispersion curves as discussed below) to be olitaahehe same time, thereby cutting
testing time in half as compared to using only tweceivers. The middle receiver
(Receiver #2) was located at the center line ottélsearray at all times. When different
spacings were used and/or reverse directions wested, only Receivers #1 and #3 and
the source were moved. For the shorter spacirsyslly source-to-receiver spacings of
2, 4,5 and 10 ft, tests were performed in bothfoineard and reverse directions using a
sledge hammer for an impact source in the firgpt trin some cases, the sledge-hammer
source was also used at spacings of 20 and 40rfthE larger spacings, often beginning
at source-to-receiver spacings of 50 ft, testings warformed only in the forward
direction using T-Rex as the source. During thesédrip, short spacings of 2, 4, 8, 16,
32 ft were used. For longer spacings, 64, 200 &tdfdwere used. Reverse direction
testing was typically not performed with Liquidatar T-Rex due to the testing time and
space. Table 5.3 shows the geophone spacing, ingbasition, source type, record

information of the SASW tests from the second trip.
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Figure 5.9 Common-Middle-Receiver Geometry UseSASW Testing at Each Test
Set-up at the Hornsby Bend Test Site

Table 5.3  Typical Source-Receiver Spacings Us&ASW at the Hornsby Bend Site
During the Second Trip

Distance Impact Direction Frequency (Hz) No. of
Source
S-R1* | R1-R? | R2-R3 | Forward | Reverse Range Pts.
2 2 4 N Hammer 0 - 800 1600
2 2 4 N Hammer 0 — 800 1600
8 8 16 N Hammer 0 - 200 400
8 8 16 N Hammer 0 - 200 400
32 32 64 N Hammer 0-50 100
32 32 64 N Hammer 0-50 100
50 50 100 N Liquidator 3-40 80
200 200 400 N Liquidator 1-4 10

" S-R1: Distance from source to first receiver
# R1-R2: Distance from first receiver to second nezre
A R2-R3: Distance from second receiver to third inee
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Distances between receivers ranging from 2 to 300efe generally used (see
Table 5.3). Eight receiver spacings were used @h saries of tests. The largest receiver
spacing was typically based on space consideratiodshe energy level delivered by the
seismic source. This number and progression @ivecspacings resulted in significant
overlapping of the individual dispersion curvesdige develop a composite field curve,
thereby enhancing the test reliability and allowthg assumption of lateral uniformity
over the test array to be studied. Regardles@fspacing between receivers, at no
point in the data analysis were wavelengths consitiéhat were longer than twice the
distance between the source and first receivenenréceiver pair. This array geometry
results in minimizing near-field effects while sitaneously recording long wavelengths.

Vertical velocity transducers were used as recsiuethe SASW (and MASW)
tests. All tests on the first and second tripsenawnducted with Mark Products Model
L-4C transducers, which have a natural frequency ldz. The key points with regard to
these receivers are that: (1) they have significatput over the primary measurement
frequency range at the Hornsby Bend site(1 Hz @ 29), (2) they are matched so that
any differences in phase are negligible over thasueement frequency range, (3) they
are coupled well to the soil, (4) the couplingimikar for each receiver, and (5) ambient
temperatures were low enough (below’l0so as temperature did not impact the
geophone performance. These 1-Hz geophones hatmut®uin excess of 10
volts/(in./sec) and phase shifts between receigéiess than 5 degrees for frequencies
from 1 Hz to 200 Hz, the range used in testing whdse receivers.

MASW tests were performed with a 5-m geophone spacising the 1-Hz
geophones, sledge hammer and T-Rex source dueniiyshtrip. The layout of field test
equipment is shown in Figure 5.10. A summary ofrseuype and location is in Table

5.4. An example of wavefield from a 20-Hz Rickegral is shown in Figure 5.11.
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k| b3 Ax=5m N=41, L= 200m Pl

L

s
L

1 : Source B : Sensor

41

Amplitude

Figure 5.11 Example of 41-Channel Wavefields witP0-Hz Ricker Source Signal at
225 meter

The weedy surface that covered most of the siteptioated data acquisition.
Thus, the geophones were buried to a depth ofnth below the ground to avoid poor
coupling and interference from the weed roots arejular-sized gravel. Particularly,
when sledge hammers were used as the seismic spuweeds were removed to create a
flat surface for consistent impacts. A 12-Ib sledgemmer was used in the shallow
material measurement. In the MASW tests, 1-Hz Gaosgeophones spaced 5-m apart
along the test array were used. Miller and Xia @%dvised that the source-to-nearest
receiver offset should be two times the geophomeisg. In this study, one, five and ten
the times of geophone spacings were used as theestminearest-receiver offset.
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During the second trip of in which MASW tests weerformed, sledge hammers
and Liquidator were used with both 1-Hz and 4.5¢gdaphones. Receiver spacings of 3ft
and 10ft were used in these MASW tests. One, thre®,and ten times the geophone
spacing were used as source-to-nearest receivaat off is noted that in both trips, time
domain signals were recorded for further calcutaiof the power spectrum, transfer
function and other useful information. Cross-powpectrum were also recorded during
the step-sine excitation for the beamforming tramsfitions (Wood, 2009).

The cone penetration test (CPT) is an in-situ igsthethod used to determined
soil properties and soil stratigraphy. It wasially developed in the 1950s at the Dutch
Laboratory for Soil Mechanics in Delft to investigasoft soils. It is now recognized as
one of the most widely used in-situ geotechnicaitsteIn the United States, cone
penetration testing has gained rapid popularitythe past twenty years. The cone
penetration test consists of advancing a cylindined with a conical tip into the soil and
measuring the forces required to push this rod. fiibBon cone penetrometer measures
two forces during penetration. These forces areth@ total tip resistance djgwhich is
the solil resistance to advance the cone tip, ahdhé sleeve friction { which is the
sleeve friction developed between the soil andsteeve of the cone penetrometer. The
friction ratio (R) is defined as the ratio between the sleeve dncéind tip resistance and
is expressed in percent. A schematic of the etecitone penetrometer is depicted in
Figure 5.12. The resistance parameters are usethdsify soil strata and to estimate
strength and deformation characteristics of soils.

Eleven CPT tests were performed at the Hornsby Bsites to assist in
charactering the site. CPT tests were conductéoeasite with a depth interval of 0.5 ft.
Figure 5.13 shows the coordinates of the eleven €BfTpoints. CPT 11 is at the center

of test array.
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35.6mm-

1 Conical point (10 cm?)
2 Load cell

3 Strain gages

4 Friction sleave (150 cm?)
5 Adjustment ring

6 Waterproof bushing

7 Cable

8 Connection with rods

Electric Friction-Cone Penetrometer Tip

Figure 5.12 An example of the Cone Penetrometen ASTM D5778
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Figure 5.13 Location of Eleven CPT Tests at thendloy Bend Site
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Seismic Cone Penetration Testing (SCPT) was alstorpged at the site. A
schematic layout of SCPT equipments is shown intf€i¢.14. SCPT is a rapid and cost-
effective method which measures in situ shear walecity of soils. Coupled with CPT
data, SCPT method gives details on soil types,neging parameters with additional
information about shear wave velocity, thus modututhe same test location. Mr. Kim
performed the SCPT tests at the center of SASWateay. The results will be compared
to Vs profiles from both SASW and MASW methods in Chafte

SHEAR WAVE VELOCITY MEASUREMENT

Oscilloscope

- @

Trigger

Hammer

A AN LAY LA I Y LY A RN LANN

%
S
N
f

i
r’ Shear Wave

Shear Wave Source

v
Seismic
Cone Penetrometer

Figure 5.14 Schematic Layout of Seismic Cone Patieh Test (from Robertson et al.,
1986)
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5.4SUMMARY

Spectral-Analysis-of-Surface-Waves (SASW) and Mubkinnel-Analysis-of-
Surface-Waves (MASW) tests were performed at theanslnyy Bend site for a
comprehensive site investigation and for parametiiiclies. Two trips were made with
different large seismic sources (T-Rex for thetfirgp and Liquidator for the second
one). The receivers employed in this study werezlakid 4.5-Hz geophones. The source
signals were varied (impulsive, Ricker wavelet,pstene and chirp) and geophone
spacing was varied, specifically 3 ft, 10 ft and41lf (5 meter). Also, cone penetration
tests and SCPT were conducted at multiple locatioms assist the material
characterization. Test results, comparison andhéurtliscussion will be presented in the

next chapter.
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Chapter 6 Surface Wave Test Results

6.1INTRODUCTION

The SASW and MASW results from the data collected analyzed at the
Hornsby Bend site are presented in this chaptez.rébults are first presented in the form
of experimental dispersion curves and profiles from standard SASW analyses with
hammers, T-Rex and Liquidator as the seismic ssurthe MASW results are then
presented. Comparisons are made with the surface diapersion curves obtained from
various source offset distances, receiver spacmgsource types. Last,s\Profile from
the SASW test is compared with other geologicalnmiation at the site.

For MASW tests, the extraction of the fundamentdtfdispersion curve is based
on the observation of the experimental dispersiata.dWood (2009) extracted MASW
field dispersion curves by removing data pointg tirare obvious outliers or inconsistent
with the primary dispersive trend. In this studpjrs in f-k plots with the following
characteristics were removed: (1) any point witeuaface wave velocity over 10,000
ft/sec, (2) any point with a wavelength greatent@00 ft for the 3-ft receiver spacings,
(3) any point with a wavelength greater than 3@d0rfthe 10-ft receiver spacings, or (4)
any data points that showed higher mode behavi@revia lower mode was clearly
present. Also, the frequency ranges of data are &sgording to the frequency spans of
the source, if the frequency contents of the sosigeals are available. It is noted that all
recorded waveforms with source signals rather stapsine were processed with both
Beamforming and F-K transform, while the data fransource signal of stepsine were
processed with Beamforming methods.

The 2-D and 3-D theoretical dispersion curves detezd from the SASW ¥V

profiles are used as references for the MASW erpartal dispersion curves. The
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theoretical dispersion curves were created usiadayer thicknesses, S-wave velocities,
Poisson’s ratio above the water table or P-wavecitsés below the water table. The
water table at Hornsby Bend site was set at 4@det on existing information. Plotting
the theoretical dispersion curves on top of the MA®xperimental data provided
reference dispersion curves that represent theagedrshear wave velocity profile along
the test array at the site. The results from eaph(first for a total array length of 200
meters with 16.4-ft (5-m) geophone spacing, andorsgctrip with 3-ft and 10-ft
geophones spacing) are compared separately.

During the first trip, different source-to-firstaeiver locations were used. The
distances ranged from three, five and ten timeplyaes spacing for T-Rex, and ranged
from one and three times geophone spacing for slddgnmers. The impact of the
source location is studied by comparing the expentiad dispersion curves from MASW
and SASW methods with 2-D and 3-D theoretical csirviene experimental dispersion
curves generated by various source signals (hanuhiep, Ricker wavelet and stepsine)
are presented with the receiver spacing and saype held constant. The frequency
contents of the source signals are known, thus #figicts on the MASW field dispersion
curves can be traced. Then, the receiver spaciogngpared by reducing the number of
collected signals in analysis while maintaining tb&al measurement array. After this,
the effect of number of receivers on the test tesalstudied by reducing the number of
analyzed signals while keeping the same geophoaeirgpas 16.4 ft (5 meter). It is
expected that larger spacing causes severer sakising.

During the second trip, Liquidator was used asitipait seismic source along
with sledge hammers. Liquidator was used in pldCB-Bex so that lower frequencies in
the range of 1 to 3 Hz could be studied. Differemiirce signals at different offsets are

compared. Also, both 1-Hz and 4.5-Hz geophonesuaesl. Different modes of the
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experimental dispersion curves from the MASW test @gain compared with the 2-D
and 3-D solutions from WIinSASW. \profiles from the SASW measurements are also
compared with CPT and SCPT results.

Finally several signal processing techniques aesented. The resolution in the
phase plots can possibly be improved by the extansi the time domain signal which is
equal to interpolation in the frequency domain. ®bwer, a spatial interpolation
technique is applied to the MASW data to explore possibility of retrieving lost or
heavily contaminated signals based on geophoned®eath high signal-to-noise ratios.
The experimental dispersion curves are derived frotarpolated wavefields (thus a
smaller sampling space with the same total arragthy to study the previously aliased
spectrum uncovered by an artificial increase in bemof traces. It is shown that the
technique may recover some portion of experimeditgbersion curves, but mainly for

high modes.
6.2SASWTEST RESULTS

6.2.1 Test Results from the Second Trip

The test results from the second trip are presefitstdin this section because
standard SASW and MASW test setups were used. R8WStests, Liquidator and a
sledge hammer were used as seismic sources. ldphgees were used. Data reduction
of SASW tests consisted of the following steps. €&ach receiver spacing, the phase plot
was plotted in a wrapped fashion. Four phase pitit veceiver spacing of 2, 8, 32 and
200 are shown in Figures 6.1 through 6.4. A magkirocedure was then performed to
manually eliminate portions of the data with pomnal quality or portions of the data
contaminated by near-field waveform componentsthia section, data in phase plots

falls within one half to two cycles were kept. &igs 6.5 through 6.8 show the masking
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Figure 6.1 Wrapped Phase Calculated from Trafafaction for R1-R2 = 2 ft with a
Sledge Hammer as the Seismic Source
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Figure 6.2 Wrapped Phase Calculated from Trafafaction for R1-R2 = 8 ft with a
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Figure 6.3 Wrapped Phase Calculated from Traafaction for R1-R2 = 32 ft with a
Sledge Hammer as the Seismic Source
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Figure 6.4 Wrapped Phase Calculated from Tramsfaction for R1-R2 = 200 ft with
Liquidator as the Seismic Source
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applied to the phase plots with the 2-, 8-, 32afl 200-ft spacings at the test array. The
masking information was used to unwrap the phasi @hd then calculate the individual
dispersion curve for each geophone pair. For imsgtaRoints #1 and #2 in Figure 6.1
represent one half and one wavelengths, respegtivetween the receiver pair. Hence,
the unwrapped phase angles are°l&@td 360. The frequencies associated with Points
#1 and #2 are about 74 and 123 Hz, respectivelichadesults in phase velocities of 296
and 246 fps, respectively. The complete individidiapersion curve calculated from the
unmasked portion of the wrapped phase record inr€i®.5 is shown in Figure 6.9.
Again, similar process was applied on the phasé @i@-, 32- and 200-ft spacing as
shown in Figures 6.6 through 6.8. The resultingelision curve is also shown in Figure
6.9. This process was repeated for all receiverciags resulting in a composite
experimental dispersion curve that covers a widgeaof wavelengths. Figure 6.10
shows the composite experimental dispersion cureated at the Hornsby Bend site
during the second trip when a minimum of 2-ft spgcwas used. The maximum
wavelength,Anax, measured was about 747 ft. The maximum depth Hizhwthe
profile was determined %nax/2 or about 374 ft.

The fit to the composite experimental dispersiorvedor the Hornsby Bend site
during the second trip is shown in Figure 6.11. Thmparison between the 2-D and 3-D
theoretical dispersion curves is shown in Figufe6lt is observed that the 3-D solution
is generally higher than the 2-D solution from avelangth of 100 ft. The final shear
wave velocity profile for the site is shown in Figu6.13. It is clearly observed that
several distinct velocity contrasts exist at thte.sThe first contrast occurs at a depth of
50 ft. The shear wave velocity increase from 900L150 fps, indicating a different
material is encountered. The second contrast o@ut5 ft where Yprofile increases

from 1150 to 1530 fps. Thesrofile increase from 1500 fps to 2900 fps at pt@f
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Table 6.1  Profile Parameters Used to Develop Tétexad Dispersion Curve at the
Hornsby Bend Site during the Second Trip
Assumed Total
Layer No. | Thickness, ft Igfe ptl_ha;oe::?‘tp VeFI)o\é\i{t?/\,/?t/s Ve?o\é\i{[?/\,/?t/s Poéisl;g??(jatio Unit \é\(/:?ght’

1 0.5 0 377 190 0.33 100

2 3.5 0.5 794 460 0.33 100
3 3.5 4 615 250 0.33 100
4 10.5 7.5 1013 510 0.33 100
5 10 18 1429 720 0.33 100

6 10 28 1628 780 0.33 100

7 8 38 1807 910 0.33 120
8 59 46 5000 1150 0.47 120

9 70 105 5000 1530 0.47 120
10 Half Space 175 5000 2900 0.25 120

° P-wave velocity calculated froms¥nd assumed value of Poisson’s ratio.
*Water table assumed at a depth of 46 ft
" Not assumed but back-calculated from=/5000 fps and ¥

175 ft, indicating a possible “bedrock” material encountered. Table 5.1 lists the

parameters used to generate the theoretical digspessrve in Figure 6.13. Unit weight

for each layer is assumed. Water table is set tét.48ll layers beneath this depth are

assumed to be fully saturated thus compression wehleeity travel at a speed of 5000

fps. It is important to note that small changeshie assumed values of unit weight (say

10% or less) have an insignificant change on tha s profile as verified in Chapter 2.

6.2.2 Test Results from the First Trip

Test results of SASW test with T-Rex and a sledgerher as seismic sources

from the first trip is shown in this section. Agamfew field data are listed: Two phase

plot, one for 16.4 ft (5 m) and another for 16459 m) receiver spacings are shown in

Figures 6.14 and 6.15. Figures 6.16 and 6.17 shewniasking applied to the phase plots

with the 16.4-ft and 164-ft spacing at the testwrPoints #1 and #2 in Figure 6.14

represent one and two wavelengths, respectivetwdas the receiver pair.
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unwrapped phase angles are 36Ad 720. The frequencies associated with Points #1
and #2 are about 22 and 43 Hz, respectively, whashlts in phase velocities of 361 and
353 fps, respectively. The complete individualpdision curve calculated from the
unmasked portion of the wrapped phase record inr€ig.14 is shown in Figure 6.18.
Figure 6.19 shows the composite experimental dispercurve created at the Hornsby
Bend site during the first trip when a minimum @& 4-ft (5-m) spacing was used. The
maximum wavelengtmnax, measured was about 337 ft. The maximum depthhichw
the \; profile was determined ¥%nax/2 or about 169 ft.

The fit to the composite experimental dispersiorvedor the Hornsby Bend site
during the first trip is shown in Figure 6.20. Teemparison between the 2-D and 3-D
theoretical dispersion curves is shown in Figur2l6.The final shear wave velocity
profile for the site is shown in Figure 6.22. Itciearly observed from both experimental
dispersion curves and finals\profiles that, both trips produced a similar rgsuihich
prove the stability of the SASW testing techniquaghwdifferent, but still qualified
equipments and setups (T-Rex vs Liquidator). Italso observed that measured
experimental dispersion from the second trip caverdroader range of the wavelength
span from 1 to 747 ft, verifying that proper re@eigpacings are required for SASW test
to sample both shallow and deep materials.

From Figure 6.22 it is noted that; rofile from the first trip has a maximum
exploration depth of 169 ft, which is not deep egtoto capture the “bedrock” boundary
discovered by the dprofile from the second trip. To investigate tressbility of using
near-field data in extending the SASW experimemntigpersion curves further, thus
sampling material at deeper depths, phase plots 1G4-ft spacings are used from 90

degree (corresponding to a wavelength of four tispeing). The resulting dispersion
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Figure 6.18 Individual Experimental Dispersion GuCreated from the Unwrapped
Phase Record with 16.4-ft and 164-ft Spacing betviiee Receiver Pair
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Figure 6.19 Composite Experimental Dispersion C@xeated from Phase
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Hammer and T-Rex as the Seismic Sources

111



Wavelength (m)

0 1 2
10 0 10
300
T ]!6.4Ift ISI:I1 at T T LI R N | T T T T 17171 T 900
© 16.4ft_ 2 S=16.41t 7
16.4ft_3 S=16.41t —800
2500 © 328ft S=328ft i
® 32.8ft_2 S=3281t °
—~ X 164ft S=1641t e 1700~
8 A 164ft_ 2 S=164ft ° T 8
” 2000— O 164ft_ 3 S=164ft ° —{600 &
d\:' ® 3-D Theoretical Dispersion Curve ° .. =
- )\max = 337It T —
> L e —500 >
= 5 =
S 1500 & i 38
o o —400g
© o 7] @
« 1000— °° —300 g
o - o
—200
500— g
O.ooﬁooooom' - —100
0 1 1 A | 1 1 | 1 1 [ A
10° 10" 10° 1(%

Wavelength ( ft)

Figure 6.20 Comparison of the Fit of the 3-D Th&oed Dispersion Curve to the
SASW Composite Experimental Dispersion Curve dutivegFirst Trip
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Figure 6.21 Comparison between the 3-D and 2-D feteal Dispersion Curves of the
SASW Test during the First Trip
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Figure 6.22 Shear Wave Velocity Profile Measurg@BSW Testing during the First
Trip at the Hornsby Bend Site

Table 6.2  Profile Parameters Used to Develop Tétexad Dispersion Curve at the
Hornsby Bend Site during the First Trip
Assumed Total
Layer No. | Thickness, ft Igfe ptl_ha;oe::?‘tp VeFI)o\é\i{t?/\,/?t/s Ve?o\é\i{[?/\,/?t/s Poéisl;g??(jatio Unit \é\(/;ught,

1 2 0 794 400 0.33 100
2 5.5 2 615 310 0.33 100
3 10.5 7.5 1013 510 0.33 100
4 10 18 1429 720 0.33 100
5 10 28 1628 780 0.33 100
6 8 38 1807 910 0.33 120
7 59 46 5000 1150 0.47 120

8 70 105 5000 1530 0.47 120

9 Half Space 175 5000 2900 0'25 120

°p-wave velocity calculated froms¥nd assumed value of Poisson’s ratio.
®Water table assumed at a depth of 46 ft
" Not assumed but back-calculated from=/5000 fps and Y
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curves are shown and compared with the 2-D and tBdoretical dispersion curve
generated by standard data in Figure 6.23. As vbdethe 3-D theoretical dispersion
curve matches well with the near-field experimendata, extending the maximum

wavelength from 337 ft to 632 ft.
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Figure 6.23 Comparison between the 3-D and 2-Dofgteal Dispersion Curves with
Experimental Dispersion Curves from Near-Field Dhteing the First Trip
The experimental dispersion curves composed withoving centers” is
illustrated in Figure 6.24. In this case, the distabetween source and first receiver is
always maintained as the same of the distance batiiest receiver and second receiver
(S-R1 = R1-R2), and distance between source amuhde®ceiver equals the distance
between second receiver and third receiver (S-R2-R3). An illustration of test arrays
with moving centers is shown in Figure 6.25. By pamning the experimental dispersion
curves of the array with“moving centers” to the 2abd 3-D theoretical dispersion

curves from standard SASW analysis, it is seenl#tatal variability occurs at a
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Figure 6.24 Experimental Dispersion Curves fromtTarays with Moving Centers

during the First Trip
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Figure 6.25 lllustration of Test Arrays with MogiCenters during the First Trip
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wavelength range from about 30 to 70 ft. At wavgtae larger than 100 ft, the
experimental dispersion curves agree well with3H2 solution. The result indicates the

uniformity of the material distribution at deep tiep
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Figure 6.26 Comparison of the 2-D and 3-D Theoatéfispersion Curves to the
Composite Experimental Dispersion Curve from Mov@enters

6.3MASW TEST RESULTS

In this section, the results from a traditional MASest setup are first presented.
Based on Park’s suggestion (Park et al., 2002)ystes composing of a 24-channel
signal analyzer, 24 geophone with resonant frequegial or smaller than 4.5 Hz, a
sledge hammer heavier than 10 Ib, a source offsat 12 to 60 ft, a geophone spacing
from 2 tol2 ft is capable of measuring material ddaw a 100-ft deep. In this section, a
test result from the traditional MASW setup is @@ed to show the effectiveness of the

setup in material characterization. 24 1-Hz geopbowith a 3-ft spacing and a 12-Ib
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sledge hammer were used when the sledge hammerl#2fisaway from the first

geophone (S-R1=12ft). Field parametric studiestlaea presented based on the MASW
data from both first and second trips. The SASWeeixpental and theoretical 2-D and 3-
D dispersion curves, obtained from aprofile with an acceptable fit to the experimental

data from the second trip, are used as referencesd MASW parametric studies.

6.3.1 Results from a Traditional MASW Setup

The experimental dispersion curves of MASW testih \ai 12-Ib sledge hammer
as the seismic source are shown in Figure 6.27. flinelamental mode of the
experimental dispersion curves clearly exists frmout 33 ft to 100 ft in wavelength.
The trend of the fundamental mode at larger wagtke(>100 ft) is not clear as observed

by a large amount of scattered data points. Highedes are shown from 6 to 90 ft in

wavelength.
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Figure 6.27 Experimental Dispersion Curves of aid@gMASW Test Setup from the
Second Trip
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Figure 6.28 Comparison of Experimental Dispersiomv€s from a Typical MASW
Setup to the SASW Experimental Dispersion Curvesifthe Second Trip

The experimental dispersion curves from MASW test@mpared to the SASW
experimental dispersion curves from the second aigpshown in Figure 6.28. It is seen
that the MASW fundamental dispersion curve overlajik the SASW curves from 30 to
100 ft in wavelength. After 100 ft, the sledge hamnrwas unable to provide energy
strong enough to reveal a clear, robust trend spatsion curves. Second modes, which
are higher than the fundamental mode in the wagéher velocity plot, are observed
from 10 to 90 ft in terms of wavelength.

The comparison of fundamental dispersion curve ftbentypical MASW setup
and SASW 2-D and 3-D theoretical solutions is shawRigure 6.29. Good agreement is
observed from 30 to 100 ft between the 3-D and dumehtal MASW curve. As limited
by the source energy, the experimental curve doefiave data showing its trend after

100 ft.
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Figure 6.29 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 12-ld§eeHammer with
S-R1 =12 ft, 24 1-Hz geophones, and a 3-ft recespacing
To conclude, the data from the traditional MASW testup generated a reliable
estimate of experimental dispersion curve from &b ft to 100 ft in terms of
wavelength. Bigger sources are necessary to pretrdager energy, thus sampling into

deeper material for investigation. The MASW testrfgrmed with Liquidator are

discussed in the following section.



6.3.2 Parametric Studies from the Second Trip

Both experimental and theoretical dispersion cufi@®m SASW tests during the
second trip are used as references for MASW resktis the MASW tests, 47 1-Hz
geophones were placed with two different interv@sft and 10 ft. Also, 17 4.5H-z
geophones were placed with a 10-ft spacing. Twiemint sources were used: a sledge
hammer and Liquidator. A function generator wasdusecreate different source signals
as summarized in Table 5.2 with an addition of alB@ Stepsine signal. Geophones
were equally placed. Seismic sources were platkeatlistances of one, three and five
times of geophone spacings when a sledge hammeusges The near offsets were
usually set to ten and thirty times of geophoness when Liquidator was used. The
receiver spacing, source type, source offset amsbeu of geophones in use were varied
to study their impacts on test results. 3-ft spgamfirst used for the field parametric
studies, followed by the studies with a 10-ft gemmpd spacing. Experimental and

theoretical dispersion curves from SASW tests aszlas references.

6.3.2.1 Comparison: Source Location

In this section, field experimental dispersion @svfrom MASW test are
presented with 3-ft receiver spacing first and tl@€eiver spacing.
3-ft Receiver Spacing

Parametric studies are made with the hammer imgmd¢he source. The sledge
hammer was placed at 1, 3, 5 and 10 times recapacing away from the first
geophone. MASW experimental dispersion curves arst ftompared with their
equivalents from SASW. Then, 2-D and 3-D theorétdiapersion curves are used as

reference for MASW curves.
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Figure 6.30 shows MASW experimental dispersion esirmneasured with a 3-ft
receiver spacing, a sledge hammer and various eooffsets. It is observed that
fundamental MASW dispersion curves from four diéier source locations agree well
with each other from 50 to 90 ft. The further tloeirge was, the less data points on the
fundamental mode. Higher modes are generally obdefaor all source offsets. By
comparing to SASW results, all curves show goodeament on the portion of
wavelength from 50 to 120 ft. None of the four testups with sledge hammer provides
material information after 120 ft, as illustrate¢ the scattered data points on the

wavelength — velocity plot.
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Figure 6.30 Comparison of Experimental Disper&lomves between SASW Tests and
MASW Tests Measured with a Sledge Hammer at Var@musce
Locations, a 3-ft Receiver Spacing and 47 Geophones

121



In Figure 6.31, fundamental modes of MASW experitakdispersion curves

from four different source locations (with a sledgenmer) are compared with 2-D and

3-D theoretical dispersion curves from SASW tesipdtimental dispersion curves from

all source locations show a good agreement withtBdaretical solution from 40 to 120

ft. It is clear that as the sledge hammer movesydnan the test array, the less the

energy that possessed by the fundamental modRisledse, a source offset of one times

geophone spacing provides most amount of reliabla dompared to results from other

source offsets.
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Figure 6.31 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a Sledgeiar at Various
Source Locations, a 3-ft Receiver Spacing and 4p8enes
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10-ft Receiver Spacing

The sledge hammer was placed at 1, 3 and 5 tinces/ez spacing away from the
first geophone when receivers were placed 10 firtapéthe MASW experimental
dispersion curves from three different setups arepared to the SASW curves in Figure
6.32. It is again observed that fundamental dispersurves overlap with the SASW
curves from 70 to about 200 ft. Data at longer Me&vgths are so scattered that no clear
trend is found for deeper material. All setups shad@ar second modes. As noted, the
shortest source offset (S-R1=1*dx) yields the nmasbunt of data that follow SASW

dispersion curves.
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Figure 6.32 Comparison of Experimental Disper&iomves between SASW Tests and

MASW Tests Measured with a Sledge Hammer at Vargmsce
Locations, a 10-ft Receiver Spacing and 47 Geophone
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The comparison of fundamental modes from threecgoaffsets and theoretical
solutions from SASW tests is shown in Figure 6188 seen that all fundamental mode
curves overlap with the SASW 3-D theoretical disper curve from 90 to 180 ft.
Comparing to results from 3-ft spacing, the MASWupewith 10-ft spacings provided
slightly larger measurement wavelength. Howeves gkploration depth is still restricted

by the relatively small energy of hammer impacts.
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Figure 6.33 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a Sledgeiar at Various
Source Locations, a 10-ft Receiver Spacing and dadpBones
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6.3.2.2 Comparison: Source Type

In this section, field experimental dispersion @svirom MASW tests with
different source signals (hammer impact, chirppstee, ricker wavelet) are presented
with the 3-ft receiver spacing first and 10-ft reee spacing.
3-ft Receiver Spacing

The sources were placed at ten times the recepaarirsg, which is 30 ft away
from the first geophone. The experimental dispersiarves for four chirp signals are
shown in Figure 6.34 with the SASW curves as refegs. As observed, the 3-8Hz chirp
signal provided the longest estimation of dispersiorves up 1000 ft in wavelength. As
the frequency span of the source signal shiftsigher frequency, the available data on
the fundamental mode decrease. All four signalswshize significant second mode
energy. By comparing to SASW experimental disperstorves, the MASW curves
generally overlap with SASW curves from about 6@®@0 ft. From 300 ft to 800 ft, the
MASW experimental dispersion curve is slightly lovilean the SASW reference curve.

The comparison of dispersion curves from two stepgsone ricker wavelet and
one hammer impact is shown in Figure 6.35. The hammpact with the 3-ft spacing
only reveal a fundamental dispersion curve fromt60100 ft comparing to SASW
reference curve. The Ricker wavelet and the 25-8.St¢psine yield similar results of a
reliable dispersion curve up to 200 ft. The 110-20¢tepsine does not provide any
information on the fundamental mode curve. To Ietiederstand the source effect,
fundamental modes of the 3-8Hz chirp, 25-3.5Hz Ste 20Hz ricker wavelet and the

hammer impact are plotted against the 2-D and Beoretical solutions in Figure 6.36.

12¢



Wavelength (m)

0 1
300 T T T T T 1T ?-IO T T T T T1T I1|0 T T T T T 71T iL|02DD T 900
© SASW 1
o Chirp 3-8Hz 2 —1800
250071 Chirp 8-20Hz T
N 4 Chirp 20-25Hz 5o —700:
q N -1 (9]
§ 2000l 2 Chirp 25-35Hz DZQD @3 6002
< v . 4 E
z Joo Tl ez
S 1500 . «” 13
o ® st —{4009
4 a0 8
© 1000 —300 8
o — o
—200
500 .
—100
I 1 1 1 L1 111 I 1 1 1 L1 11 II 1 1 1 L1 11 I_
O L1 11
10° 10" 107 1(%

Wavelength ( ft)

Figure 6.34 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with Four Chirp Signals att3@wfay from the First
Geophone, a 3-ft Receiver Spacing and 47 Geophones
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Figure 6.35 Comparison of Experimental Disper&iomves between SASW Tests and

MASW Tests Measured with Various Source SignaB0dt away from the
First Geophone, a 3-ft Receiver Spacing and 47 Gaugs
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Figure 6.36 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with

MASW Fundamental Dispersion Curves with Various@elsignals at 30

ft away from the First Geophone, a 3-ft Receiveaicdpg and 47 Geophones

As shown in Figure 6.36, the frequency contenttefsource signals control the

usable range of experiment dispersion curves in WAgsting. The 12-lb sledge
hammer has the least energy comparing to signatten by Liquidator thus yields the
least usable range of dispersion curves (belowf)0The 20Hz Ricker wavelet and 25-
3.5Hz stepsine produce similar result of curvegyiram from 80 to 300 ft. The 3-8Hz
chirp signal which overlap with the 3-D theoreticallution. It is noted that 25-3.5Hz
stepsine and 3-8Hz chirp both capture the trer2iDfsolution up to 650 ft but only the
3-8Hz chirp, which produces the longest wavelengthio 1000 ft, overlap with the 3-D
solution at long wavelength (870 to 1000 ft). Thieenomenon is a good indication that

larger seismic source with lower frequency exaitais needed to correctly capture the
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deep material properties.
10-ft Receiver Spacing

The sources were placed at five times the receapacing, which is 50 ft away
from the first geophone. In this case, a 80-1Hpstee was used to explore the material
at deeper depths. The fundamental experimentaédigm curves for all source signals
are shown in Figure 6.37 with the SASW theoretmaives as references. In general,
dispersion curves from all four source signals aemwith the SASW 3-D solution.
Again, the hammer produces the shortest usablelaraytd from about 100 to 200 ft.
The 20Hz ricker wavelet covers a wavelength range fL00 to 270 ft. The 3-8Hz chirp
signal produces a fundamental dispersion curve ftatto 900 ft, which overlap with
the 3-D solution along the whole range. The 80-HM#zpsine provides the furthest
wavelength to 1335 ft, which still overlaps witretB-D solution. It is seen that a stable,

low-frequency source signal is always desired feasurement at deep depths.

6.3.2.3 Comparison: Number of Receiver

In this section, field experimental dispersion @sfrom MASW tests with a 3-
8Hz chirp source signal with varied numbers of nesrs (N = 47, 36, 24, 12) used in the
analysis.
3-ft Receiver Spacing

The sources were placed at ten times the recepairgy (3 ft), which is 30 ft
away from the first geophone. The fundamental erpartal dispersion curves for four
sets of receiver number are shown in Figure 6.38 thie SASW theoretical dispersion
curves as references. It is seen that as numbezcefver decreases, the fundamental
dispersion curve shifts to lower velocity. All MAS\WUrves are lower than the 3-D

SASW theoretical solution from about 300 to 70 fterms of wavelength, which can
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Figure 6.37 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with Various@elsignals at 50
ft away from the First Geophone, a 10-ft Receivesicthg and 47

Geophones
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Figure 6.38 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 3-8Hzrght 30 ft away
from the First Geophone, a 3-ft Receiver Spacirgy@ifferent Numbers of
Receivers
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possibly be attributed to the near-field effect b@used by the usage of a short test array
in measuring deep materials (Yoon and Rix, 2009). évaluating the maximum
measured wavelength with Yoon’s criteria/(l, > 05, where x is the mean distance
of all receiver relative to the source), the maximuseable wavelength is about 100 ft
for the test setup with a total of 12 receiver30&t source offset and a 3-ft spacing.
10-ft Receiver Spacing

The sources were placed at five times the recepacing, which is 50 ft away
from the first geophone. In this case, the 3-8Hmpclsignal was again used. The
fundamental experimental dispersion curves forsalirce signals are shown in Figure
6.39 with the SASW theoretical curves as referenicegeneral, dispersion curves from
all setups agree well with the 3-D theoretical dispon curve from the SASW analysis.
No near-field effect is found even the maximum wength from the setup of N = 12 is
close to 1000 ft, which is about five times the mdistance,x. Also, it is observed that

none of these setups provides information smdiken ©0 ft in wavelength.
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Figure 6.39 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 3-8Hzrght 50 ft away
from the First Geophone, a 10-ft Receiver Spacimj@ifferent Numbers
of Receivers
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6.3.2.4 Comparison: Receiver Spacing

In this section, field experimental dispersion @sfrom MASW tests with a 3-
8Hz chirp source signal with varied receiver spgsinsed in the analysis.
3-ft Receiver Spacing

The sources were placed at ten times the recepaairgy (3 ft), which is 30 ft
away from the first geophone. The receiver spacsngaried with the same total test
array (3, 6, 12 ft, when number of receiver, N,ada 45, 23 and 12, respectively. The
total length was maintained as 132 ft). The fundaaledispersion curves are compared
to the 2-D and 3-D theoretical dispersion curve&igure 6.40. The results from three
different test sets are similar to each other.d#dpersion curves overlap with the SASW
3-D solution from 70 to 300 ft and from 850 to 1d0h wavelength. The 3-D solution
from SASW analysis is slight higher than all MASWhflamental dispersion curves from
300 to 850 ft, which indicates a small lateral &hility of the site.
10-ft Receiver Spacing

The sources were placed at five times the recapacing (10 ft), which is 50 ft
away from the first geophone. 10-, 20-, and 40Qsticings were used. The numbers of
receivers used in the MASW analysis are 45, 2312p@orresponding to a total length of
440 ft. The fundamental dispersion curves frométsetups are compared to the SASW
2-D and 3-D theoretical dispersion curves in Fig@rél. It is seen that all MASW
fundamental curves agree with the 3-D solution gltre whole measured wavelength
range. The minimum wavelength for all setups isuald@0 ft.

It is observed that three setups with 10-ft spagjaegerally agree better with the
3-D solution than the 3-ft spacing setups do. Thisecause 10-ft spacing setups cover a

wider test array like SASW test while 3-ft setupdyacover a total of 132 ft.
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Figure 6.40 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 3-8Hzrght 30 ft away
from the First Geophone, a 3-ft Receiver Spacird)@ifferent Receiver
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Figure 6.41 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 3-8Hzrght 50 ft away
from the First Geophone, a 10-ft Receiver Spacimy@ifferent Receiver
Spacings
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6.3.2.5 Comparison: Receiver Type

In this section, field experimental dispersion @gfrom MASW tests with a
sledge hammer and a 3-8Hz chirp source signal withgeophones of two different
resonant frequencies (1-Hz and 4.5-Hz) and a I8deiver spacing are studied. The
SASW experimental dispersion curves are used asfarence.

The comparison of MASW experimental dispersion earfrom 1-Hz and 4.5-Hz
geophones with a hammer impact is shown in Figut2.at is observed that two curves
overlap with each other from 40 to 100 ft on thedamental mode, and from 25 to 80 ft

on the second mode. None of them provides infoonatbove 200 ft in wavelength.
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Figure 6.42 Comparison of Experimental Disper&iomves between SASW Tests and

MASW Tests Measured with a Sledge Hammer at 2@/étydrom the First
Geophone, a 10-ft Receiver Spacing and 17 Geophards and 4.5-Hz)
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The comparison of MASW experimental dispersion earfrom 1-Hz and 4.5-Hz
geophones with a 3-8Hz chirp signal is shown inuF@g6.43. Generally, two setups
produce similar dispersion curves on both fundaaleartdd second modes. It is seen that
at the wavelength between 100 and 200 ft, the trésarh 1-Hz geophone has a better
distinction between fundamental and second modesarger wavelength about 800 to
1000 ft, it is observed that 1-Hz geophone perfartoetter in defining a clear trend like
SASW curves, whereas the fundamental dispersioreanir4.5-Hz geophones started to
become scattered. The performance of the 4.5-Hzplgew is restricted by its

mechanical design at low frequency (<3 Hz).
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Figure 6.42 Comparison of Experimental Disper&iomves between SASW Tests and

MASW Tests Measured with a 3-8Hz chirp at 20 ft wévam the First
Geophone, a 10-ft Receiver Spacing and 17 Geophards and 4.5-Hz)
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6.3.3 Parametric Studies from the First Trip

In this section, a comprehensive field parametiuclys of MASW field setup is
presented for the first trip. The MASW data coliectemployed a 16.4 ft (5m) receiver
spacing with 41, 1-Hz geophones. Two different sesiwere used: a sledge hammer and
T-Rex. A digital function generator was used tovelrT-Rex and create different source
signals as summarized in Table 5.2. Geophones placed from 0 to 656 ft (200m)
while T-Rex were placed at -164, -49.2, 738.2 a@0.8 ft (-50, -15, 225 and 250
meters). The receiver spacing, source type andeaifset were varied in an effort to
establish which combination provides the best dspe curve for the MASW analysis,
and what wavelength can be reasonably measure@fimus combinations of source and

receiver setups. The MASW test results are disclissiow.

6.3.3.1 Source Location Comparison

In this section, field experimental dispersion @svfrom MASW test are
presented while sources were placed at -164, -4®88,2 and 820.2 ft (10* and 3*
receiver spacing from one end, and 5* and 10*sgafriom the other end). Two source
signals, a 3-8Hz Chirp and a 20-3Hz Stepsine, aexl was illustration. The MASW
experimental dispersion curves are first comparétl weir equivalents from SASW.
Then, 2-D and 3-D theoretical dispersion curvesusedd as a reference for the MASW
fundamental dispersion curves.

Figure 6.43 shows MASW experimental dispersion esmeasured with a 16-4
ft (5 m) receiver spacing, a 3-8Hz Chirp sourcengig@and various source locations. It is
observed that experimental dispersion curves froun fifferent source locations agree
well with each other. Comparing to SASW resultscatves show good agreement with

SASW curves when wavelength is equal or larger 8@0it. Between 200 and 300 ft,
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Figure 6.43 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with a 3-8Hz Chirp Signal atidas Source
Locations, a 16.4-ft (5 m) Receiver Spacing an&ébphones

they stand on the upper portion of SASW experimenuaves. However, none of these
MASW curves reveals the dispersion curve below aelngth of 100 ft, indicating a
smaller receiver spacing is required for shalloywtbdeneasurement. One thing needs to
be mentioned is that all MASW curves show a sigarft higher mode from about 40 to
200 ft in wavelength.

In Figure 6.44, fundamental modes of MASW experitakdispersion curves
from four different source locations (Chirp 3-8Haje compared with 2-D and 3-D
theoretical dispersion curves from SASW test. Expental dispersion curves from all
source locations show a good agreement with 3-Dorétieal solution at large

wavelength from SASW method. At a wavelength ofragimately 600 ft, the 2-D
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Figure 6.44 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 3-8Hzrsignal at
Various Source Locations, a 16.4-ft (5-m) Recelyeacing and 41
Geophones
SASW theoretical solution starts to roll off, whideth MASW experimental curves and
3-D theoretical dispersion curves continue to cliibe agreement between 3-D SASW
theoretical curve and MASW field curves is obseraediarge wavelength (>500 ft). At
wavelength between 200 and 300 ft, MASW curvesgareerally higher than the SASW
3-D theoretical curve. No MASW experimental curgeacquired below a wavelength of
100 ft.
Figure 6.45 shows MASW experimental dispersion esmeasured with a 16.4-
ft (5 meter) receiver spacing, a 20-3Hz Stepsinecgsignal and four different source
locations. It is again observed that MASW curveertap with SASW curves when

wavelength is larger than 400 ft. Similarly, noriehee MASW curves from various
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Figure 6.45 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with a 20-3Hz StepSin Sign&aatous Source
Locations, a 16.4-ft (5-m) Receiver Spacing and>¢bphones

source locations provide information at wavelengtialler than 100 ft. Second mode of
experimental dispersion exists in all four MASW\@s.

The comparison between SASW 2-D and 3-D theoreticsglersion curves and
MASW fundamental mode dispersion curves is showirigure 6.46 when a 20-3Hz
Stepsine is used as the source signal. As obseallethur MASW curves agree with
SASW 3-D solution at wavelengths > 300 ft. Betw&fl0 and 300 ft, the MASW
dispersion curves are slightly higher than 3-D solu Only the experimental dispersion
curve with source at -49.2 ft (-15 m) has data tsoipelow 200 ft in wavelength.
Generally, the 3-8 Hz chirp and 20-3Hz stepsinéysemilar results.

Overall, MASW experimental dispersion curves frayarfdifferent locations with

a receiver spacing of 16.4-ft (5 m) are very simillais concluded at Hornsby Bend site,
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Figure 6.46 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 20-3HzpSine Signal at
Various Source Locations, a 16.4ft (5 m) Receiyacig and 41
Geophones

source location (up to ten times of receiver sggcplays a negligible role in defining
shape of dispersion curves for MASW tests. Thiatigbuted to the fact that T-Rex can
provide sufficient energy for waves with desiredginency contents to propagate along
the whole test array. Also, stepsine and chirp @signals yields similar test results. It
is possible that chirp signals can be used as plauent to stepsine signals in field
surface wave testing.

Mode jumps from fundamental to second modes in MASWperimental
dispersion curves are observed. With such geopbpaeing and source signals, it is not
sufficient enough for MASW method to explore shallonaterial up to 100 ft in

wavelength. This phenomenon emphasizes the impatairecognizing different modes
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in MASW experimental dispersion curves. Given asecmode is mistakenly treated as
the fundamental mode, the calculated material ptppell be much stiffer than its true

property, caused by overestimation of shear walacitg profiles.

6.3.3.2 Source Type Comparison

To study the contribution of different sources the tshape of MASW
experimental dispersion curves, four different @hsignals (3-8Hz, 8-20Hz, 20-25Hz,
25-35Hz), one 20Hz Ricker wavelet, sledge hammdrtam StepSine signals (20-3Hz)
were applied at a location of -49.2 ft (-15 m).Higure 6.47 experimental dispersion
curves from four Chirp signals are compared withrS8Afield curves. The comparison
between 3-8Hz Chirp, 8-20Hz Chirp, sledge hamm@3Rz Stepsine and SASW field
curves is shown in Figure 6.48.

It is clear illustrated that frequency content pput source signal has a major
effect on the formation of MASW experimental disgpen curves as illustrated in Figure
6.47. Only the 3-8Hz Chirp achieved a similar, canaple result to SASW field curves
at larger wavelength from 200 to 700 ft. The usalblege of experimental dispersion
curves from a 8-20Hz Chirp source signal is abounf120 to 400 ft in wavelength. The
20-25 Hz and 25-35 Hz Chirp signals failed to réveay dispersion curve on
fundamental mode. All four source signals show eRistence of a significant second
mode from about 45 to 220 ft in wavelength. Sshallow depth information is not
discovered by all Chirp signals in the MASW tedtipe

From Figure 6.48, performance of different typesofirces is compared to SASW
experimental dispersion curves. Again, 20-3Hz Stepand 3-8Hz Chirp yield similar

results, both successfully overlapping with therefice SASW dispersion curves after
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Figure 6.47 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with Four Different Chirp Silgnat -49.2 ft (-15
m), a 16.4-ft (5 m) Receiver Spacing and 41 Geopfon
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200 ft in wavelength. The 20Hz Ricker provided arect representation of fundamental
mode from 50 to 230 ft but failed to reveal infotroa any further. The dispersion curves
created by sledge hammer do not overlap with angen®ne reason to explain is that
energy generated by sledge hammer is not stronggbnio propagate through the whole
200 meter array length, thus MASW method is unabldifferentiate collected signals
into fundamental and higher modes. The credibditgledge hammer applied as seismic
source in a long array (656.2 ft, 200 m) with nelkly large spacing (16.4 ft, 5 m) is
somewhat questionable as shown in Figure 6.48.

The comparison between 2-D and 3-D SASW theoretisglersion curves and
MASW curves from various sources is shown in Figud9. The 20-25 Hz and 25-35Hz
Chirp, hammer impulsive and 100-10Hz Stepsine $sgm@ excluded due to their failure
in providing fundamental dispersion curves for MAS\Walysis. It is observed that all
four source signals (3-8Hz Chirp, 8-20Hz Chirp, 20Ricker and 20-3Hz Stepsine)
generate convenient fundamental dispersion cuhagsnmatch with SASW 3-D solution.
3-8Hz Chirp and 20-3Hz Stepsine gave the furthésgtedsion curves up to 800 ft in
wavelength while 20Hz Ricker performed better atrshvavelength range from 50 to
250 ft in wavelength due to its wide-spread enesggctrum. The 8-20Hz Chirp can
provide a reliable field dispersion curve rangingni about 120 to 350 ft in wavelength.
Experimental dispersion curves generated by all $ource signals show the existence of
second mode.

Overall, it is shown that frequency span of inputirge plays a dominant role in
affecting the shape of experimental dispersion eaw results of MASW method. Sledge
hammer alone can not provide enough energy tcatéstg array with large spacing and
consequently yield misleading result. A 20Hz Rickeelet as the input source generate

dispersion curve at an intermediate wavelengthea@irp and Stepsine with low
14z
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Figure 6.49 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with Various@elsignals at -
49.2 ft (-15 m), a 16.4-ft (5-m) Receiver Spacing 41 Geophones

frequency span can measure deep material, depeaditayvest frequency component it

generates. To conclude, T-Rex is a power sourcecdma generate energy in various

frequency contents. However, input signal shouldHhiesen wisely to achieve a pleasant

result at proposed measurement range.

6.3.3.3 Receiver Number Comparison

In this section, field experimental dispersion @g¥rom MASW test during the
first trip are presented while sources are placed@?2 ft (-15 m) with a receiver spacing
of 16.4 ft (5 m). Three sets of geophone number wmed: 41, 21 and 11, which
correspond to a total length of 656.2, 328.1 andl f1§200, 100 and 50 meters). Two

source signals, a 3-8Hz Chirp and a 20Hz Rickeruaed as illustration. Again, MASW
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experimental dispersion curves are first comparétl weir equivalents from SASW.
Then, 2-D and 3-D theoretical dispersion curvesuges as references for MASW curves
to compare.

Figure 6.50 shows MASW experimental dispersion esirmeasured with a 5
meter receiver spacing, a 3-8Hz Chirp source sigmal three different geophone

numbers: 41, 21 and 11.
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Figure 6.50 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with a 3-8Hz Chirp as sourgeaiat -49.2 ft (-15
m), a 16.4-ft (5-m) Receiver Spacing and 41, 21 Eh&Geophones
The difference of experimental dispersion curvesiegated by three set of
receivers is clearly shown in Figure 6.50. A taib¥41 geophones with a 16.4-ft (5-m)
spacing cover a total length of 656.2 ft (200 nt)e maximum exploring wavelength for
this setup at fundamental mode is about 800 ft. Alxgeophone setup also provides the

longest measurement at second mode in terms of levegte. The setup with 21
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geophones vyields the second longest measuremeinindamental mode, ranging from
80 to 700 ft in wavelength. The setup with a taialll geophones used in MASW
analysis provides similar results as 21 geophohfes.shortest wavelength that all of the
three setups can reveal is about 40 ft. It is ndbed difference among three setups
attributes to lateral variability. The comparisatveeen MASW experimental dispersion

curves and SASW 2-D and 3-D curves are shown iargig.51.

3500 -

o 3000

?

= 2500 - 4

2 2000 e Nz=41

(@]

= 1500 - = N=21

> A N=11

© 1000

9 , ——SASW 2D

g 500 == SASW 3D
0 ‘ ‘ ‘

10 100 1000 10000

Wavelength (ft)

Figure 6.51 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 3-8Hzrhs source
signal at -49.2 ft (-15 m), a 16.4-ft (5 m) Recei$pacing and 41, 21 and
11 Geophones

Generally, the fundamental dispersion curves froned setups agree well with
SASW 3-D solution on most part of its wavelengtimga The first setup, N = 41,

successfully capture the trend of 3-D theoreticgbersion curve at large wavelength (>
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750 ft). The second and third setup (N = 21 andptd@fiuce dispersion curves which are
slight slower than the 3-D solution.
Figure 6.52 shows the comparison between SASW aA&\WM experimental

dispersion curves measured with a 16.4-ft (5-m@iker spacing, a 20Hz Ricker source
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Figure 6.52 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with a 20Hz Ricker as sourgeasiat -49.2 ft (-15
m), a 16.4-ft (5-m) Receiver Spacing and 41, 21 Eh&Geophones

signal and three different geophone numbers: 4n2i111.

It is observed that all three setups yield simikesults. The usable wavelength
range for them is from 50 to 200 ft at fundamentabde. When wavelength exceeds 200
ft, the experimental dispersion curves acquireanfral three setups become scattered
and hard to recognize a clear trend like SASW tes@omparison between SASW
theoretical solutions and MASW fundamental modedHoee setups is shown in Figure

6.53. All fundamental dispersion curves from MASVW¢thod overlap with SASW 3-D
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solution. However, none of them reveal both shaléod deep material information due
to the limited frequency band of the input sourggnal (20 Hz Ricker). It is again
demonstrated that source energy and frequency ronée a dominant contribution in

formation of experimental dispersion curve for auef wave test.
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Figure 6.53 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Fundamental Dispersion Curves with a 20Hz Ricks source
signal at -49.2 ft (-15 m), a 16.4-ft (5-m) Recei$pacing and 41, 21 and
11 Geophones

6.3.3.4 Receiver Spacing Comparison

In this section, the effect of receiver spacing shrape of field experimental
dispersion curves from MASW test is discussed baseiield parametric study. A 3-8Hz
chirp source signal was used. Seismic source waeg@lat -49.2 ft (-15 m) while the
total test array is 656.2 ft (200 m) with variede®er spacings. Three setups of spacing

are used: 16.4, 32.8 and 65.6 ft (5, 10 and 20whjch correspond to a total receiver
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number of 41, 21 and 11. As mentioned earlier, MA8Xerimental dispersion curves
are first compared with their equivalents from SASWhe SASW 2-D and 3-D
theoretical dispersion curves are then used arerefes for MASW curves to compare.

Figure 6.54 shows the comparison between SASW aA&W experimental
dispersion curves. It is generally known that langeeiver spacing induce severer spatial
aliasing. As observed, all three setups producéasifiundamental mode curves at larger
wavelength (up to 800 ft). The shortest usable datfundamental mode is about 130 ft
for all of them. The geophone spacing only affébtsdata on the second mode at short
side of the wavelength range. As observed, thegseiiln N = 41 produces a clear second
mode curve down to 40 ft as illustrated in Figurd46 A N = 21 setup yields a lower
boundary of second mode to about 60 ft. The N =sdtlp gives second mode curves
only from 150 ft. All three setups produce secondden curves up to 280 ft in
wavelength.

Figure 6.55 shows the comparison between SASW ¢healt and MASW
fundamental dispersion curves from three setups vatying geophone number. A good
overlap between SASW 3-D and MASW fundamental csinige generally observed
except at the range between 170 to 330 ft in wagthewhere all MASW curves are
slight higher than the 3-D solution, which attriésito the lateral variability of the site. It
is noted that all setups capture the trend of 3aBotetical dispersion curve. This
phenomenon is well explained because all test sataper the total 656.2 ft (200 m) test
array. All MASW fundamental curves start at aboli® Xt in wavelength, indicating a
finer receiver spacing is required to measure ratar shallower depth.

To conclude, for the MASW tests with different reeg spacing, generally they

produce similar results on the fundamental modexperimental dispersion curves. A
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Figure 6.54 Comparison of Experimental Disper&iomves between SASW Tests and
MASW Tests Measured with a 3-8Hz Chirp as sourgeaiat -49.2 ft (-15
m), 16.4, 32.8 and 65.6 ft (5, 10 and 20 m) as Rec&pacing and a 656.2
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Figure 6.55 Comparison of SASW 2-D and 3-D ThecaéDispersion Curves with
MASW Results Measured with a 3-8Hz Chirp as sosigeal at -49.2 ft (-
15 m), 16.4, 32.8 and 65.6 ft (5, 10 and 20 m) @seRer Spacing and a
656.2 ft (200 m) Test Array
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finer receiver spacing, in this test setup, willyomprove the data range on the second

mode.

6.4FORWARD MODELLING

It is important to note that existing inversion @ithm may not be compatible
with the dispersion curve obtained from beamformieghnique since beamforming
estimates a modal phase velocity rather than aarapp phase velocity (Zywicki and
Rix, 2005). However, based on the results from migaksimulation and field test,
beamforming produced similar results as SASW t&ated on Wood’s finding (Wood,
2009), the 3-D model of WinSASW was able to prethet higher mode behaviour of
some of the multi-channel dispersive data. The os&VinSASW 3-D solution is
probably an better approximation of the matchingpgpess for the fundamental
dispersion curve. In this context, both the WinSASWD and 2-D solution are used to
match the fundamental dispersion curve from MAS¥¥ig for comparison.

Like SASW testing procedure, the dispersion cureésMASW tests from
different sources and receiver spacings can be icaubto construct a composite
experimental dispersion curve, as illustrated iguFé 6.56. The curves are from three
different test setups, a sledge hammer with ar8efeiver spacing for short wavelengths,
a 3-8 Hz chirp signal and a 10-ft receiver spadorgntermediate wavelengths, and a 1-
8Hz chirp signal and a 10-ft receiver spacing &vgé wavelengths. The 3-D solution is
used to fit the MASW composite experimental disjgergurve as shown in Figure 6.57.
A maximum wavelength of 1335 ft is reached by th8HEk stepsine signal. ThesV
profile from the matched 3-D solution to the comoslispersion curves is shown in
Figure 6.58. The parameters used to generatedpeofile is shown in Table 6.3.

The MASW composite dispersion curve is comparetiédSASW experimental
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Figure 6.56 The MASW Composite Dispersion Curvesif Three Setups
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Figure 6.58 Shear Wave Velocity Profile from Manghthe 3-D Solution to the MASW
Composite Dispersion Curve

Table 6.3  Profile Parameters Used to Develop tBeTheoretical Dispersion Curve
for the MASW Composite Dispersion Curves
Assumed Total

Layer No. | Thickness, ft Ig? ptlf]a;oe::?‘tp Ver-l)o\é\i{t?/\,/?t/s Ve?o\é\i{[?/\,/%/s Poig\:zﬁg]??datio Unit \é\(/;ught,

1 15 0 834 420 0.33 100

2 4 15 117% 590 0.33 100

3 10 19 1628 820 0.33 100

4 8 29 1707 860 0.33 100

5 9 37 1886 950 0.33 100

6 60 46 5000 1200 0.47 120

7 90 106 5000 1530 0.45 120

8 Half Space 196 5369 3100 0.25 120

° P-wave velocity calculated froms¥nd assumed value of Poisson’s ratio.
*Water table assumed at a depth of 46 ft
" Not assumed but back-calculated from=/5000 fps and ¥
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Figure 6.59 Comparison between the SASW Experiah@ispersion Curves with
Near-Field Data and the Composite Experimental &&pn Curves from
Three MASW Testing Setups
dispersion curves with near-field data from the osec trip in Figure 6.59. The
corresponding Yprofile to this composite dispersion curve is canga to the Vprofile
from SASW testing with near-field data during tleeand trip, as shown in Figure 6.60.
At larger wavelength (about 1000 ft) in Figure 6.59e near-field data from SASW
analysis predicts a higher phase velocity than MW analysis does.It is seen in
Figure 6.60 that two testing techniques yield samivalue down to about 100 ft. The
shear wave velocity profile from the SASW testshwnear-field data predicts a slightly
shallow depth to the “bedrock- like” material abd@0 ft with a \{ value of 3500 fps.
The composite MASW data predicts the depth to thedfock-like” material as 200 ft

with a value of 3100 fps. It is also noted that tbp 15-ft material of the MASW ¥
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profile is assumed to have a constant value sinaesolution of experimental dispersion
curve existed from the MASW analysis.

The 2-D WINSASW theoretical solution is also used match the MASW
composite dispersion curve as shown in Figure &l6&.resulting V¥ profile based on the
matching with 2-D theoretical dispersion curvehgwn in Figure 6.62. The parameters
used to generate the Yrofile is shown in Table 6.4. It is seen thathbibte depth and &/
value of the “bedrock-like” material from the 2-Mitihg are different from the 3-D

fitting. The main difference occurs at the deepthep

Shear Wave Velocity (ft/ sec)

L 1000 2000 3000 4000 5080
[ L B T T B
100F ]
: 50
200~ ]
300F i
2 10072
S 400 =
5 5
® 5ot J150°
600F Aol 2= 588t
Ekxmaxlz = 668 ft (MASW) —200
700 —— SASW V_ Profile (near-field) .
i — MASW V _Profile (3-D Matching) | 1
80 [0 v v 000y [ [ 17
0 500 1000 1500

Shear Wave Velocity (m / sec)

Figure 6.60 Comparison between Shear Wave Vel@titjiles from SASW Testing
with Near-Field Data and MASW Testing with Compeditata
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Table 6.4  Profile Parameters Used to Develop tBeTheoretical Dispersion Curve
for the MASW Composite Dispersion Curves

Assumed Total

Layer No. | Thickness, ft Ig]? ptl_hatyoe::?‘tp Vel:l)o\c/\i/t?/\,/?t/s Ve?o\é\i{s\,/?t/s Poi':\:zﬁg(le:?atio Unit \F/)\(/:?ght,

1 15 0 834 420 0.33 100

2 4 15 1172 590 0.33 100

3 10 19 1628 820 0.33 100

4 8 29 1886 950 0.33 100

5 9 37 2587 1300 0.33 100

6 60 46 5000 1700 0.43 120

7 220 106 5000 2000 0.20 120

8 Half Space 326 7448 4300 0.25 130

° p-wave velocity calculated froms¥nd assumed value of Poisson’s ratio.
®Water table assumed at a depth of 46 ft
" Not assumed but back-calculated from=/5000 fps and ¥

6.5DATA INTERPOLATION

6.5.1 Frequency Domain Interpolation

Performing interpolation on a sequence of raw dggisasometimes used in post-
processing of field data. From SASW testing, tteohgtion of a phase plot in frequency
domain is controlled by the time interval and numbkrecorded data points, which is
well explained by the Nyquist sampling theorenthd time domain signal is ill-sampled
by insufficient number of points or time intervétere are less usable data point on the
wavelength—velocity plot. One way to improve thealation in frequency domain
(interpolation) is "zero padding". The extensiondzfta in one domain results in an
increased resolution in the other domain. The mostmon form of zero padding is to
append a string of zero-valued samples to the dnd aero-offseted time-domain
sequence. An example of the zero-padded phase@igtaring to the original phase plot

is shown in Figure 6.63 (Rosenblad, 2000).
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6.5.2 Spatial Domain Interpolation

Spatial domain is the procedure of estimating #ilees of properties at unsampled
sites within the area covered by existing measunésnen almost all cases that the
interpolated locations must be interval or rati@aled of the measured locations. The
reasoning behind the spatial interpolation is Toblerst law of geography: “Everything
is related to everything else, but near thing aceenmelated than distant things”(Tobler,
1970).

In terms of geophysics, seismic traces are somstimerpolated at locations
without receivers. One of many influential intergtodn technique, First-Order-
Frequency-Space-Domain interpolation, was propbgesipitz (1991) to address the data
set with spatial aliasing problems. The methoddseld on the assumption that linear
events present in a sequence of signals recordedqhbglly spaced receivers. The
predictability of linear events in the f-x domailfoavs the missing traces to be expressed
as the output of a linear system.

As shown in section 6.3.3.4, the larger the recesgacing is, the severe the
spatial aliasing the test results are (mainly far $econd mode). In this section, the 47-
channel time domain record for a sledge hammerhasseismic source with a 3-ft
spacing is used to study the possibility of recosetra dispersion curve data from the
spatial-aliased zone. The original record with 4amnels is shown in Figure 6.64. A
receiver spacing of 12 ft is assigned when onlynae&l, 5, 9 through 45 (12 channels in
total) are used in the MASW analysis, as illustolateFigure 6.65a. Then, the wavefield
is interpolated into 23 channels. The interpol&8dhannels, along with the original 23

channels (Channel 1, 3, 5 through 45), as shovagare 6.65b and c, are analyzed to

15¢



Sledge Hammer, S = -75 ft, 1-Hz Geophone

N
40E V
—— i
20F & ‘
)
.
e o
N
e N
|
401 \M\\
1!
601 ‘\‘{“

Time (s)

Figure 6.64 Wavefield Collected with a Sledge Haanm7 1-Hz Geophones Placed
with a 3-ft Spacing

study the effectiveness of interpolation on discige data hidden by spatial-aliased
zone. The corresponding experimental dispersiomesuare shown in Figure 6.66. It is
seen that the original 23-channel wavefield witl6-& receiver spacing produced a
wavelength down to about 12 ft, whereas from theefrald with 12-channel and a 12-ft
spacing, the shallowest wavelength on the expetaheiispersion curve is about 24 ft.
The interpolated 23-channel wavefield with a 6dteaiver spacing produced similar
results to the original 23-channel wavefield witle same spacing, mainly recovered the
information of second mode from 12 to 24 ft in wlawngth. It is observed that at this site,
the spatial interpolation technique can recover esanformation on higher mode of
experimental dispersion curve hidden by test setitip larger receiver spacing, namely

spatial aliasing effect.
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6.6EXISTING INFORMATION

In this section, the Mprofile from SASW tests during the second trigasnpared

to other relevant geotechnical and geological mfaron at the Hornsby Bend site.

6.6.1 Cone Penetration Tests

The CPT test results at the center of the tesyaimaluding sleeve friction (tsf), friction
ratio and cone resistance (tsf), are plotted inufeig5.67. Based on the CPT results, it is
see that five different types of material at diffier depth range are revealed by the CPT
method: (1) a soft shallow layer from ground sufao 6 ft deep, (2) a sand-like layer
from 6 to 15 ft, (3) a clay-like layer from 15 t6 &, (4) a sand-like layer from 25 to 45 ft
and (5) a stiffer material, which stopped the cioen penetrating, is encountered at 45

ft.
161



Sleeve Friction (tsf)  Friction Ratio  Cone Resistance(tsf)
O0 1 2 3 4 5 000 0.05 0.10 0 20 40 60 80 106)

|||||||||l|||||| 1 T 1 171 @
I ] 1 LS ]
— N _5 — N N N _5
20 : . 7 — {5 7
410 4 | % 10
. - . _’_'_’j : -
5 i a i 2 -
s L o4 L 4 L . H15
) : : i Lo Lo S ] : : S
)] - : i - i = _
60 : i - i — ]
ro ﬁ =20 [ o 0 720
80 425 [ 4 [ 25
100 [RERINRERRRRRIRRRRA RN 30 AN T I N A B Huimwlwmim\iuT 30

0 1 2 3 4 5 0.00 0.05 0.10 0 20 40 60 80 100
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Figure 6.68 Comparison of Cone Penetration TestReand the SASW JProfile at
the Center of the Test Array

The comparison between SASW, yrofile from the second trip and the CPT
results is shown in Figure 6.68. It is seen thatlike CPT results, the Mrofile presents
a graduate increase in shear wave velocity alopthd=xcept a small inversion at about 4
to 7.5 ft. One possible explanation of the diffeerbetween two tests is that the
overburden stress for soft material at depth raridé to 25 ft worked as a compensation

in shear wave velocity thus no inversion iggvofile at that depth range is observed.
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6.6.2 Borehole Records

Southwestern Laboratories performed a series adhobdes to investigate the site
condition at Hornsby Bend for a waste-to-energynplm 1985 (Rix, 1988). These
borings were drilled with a hollow-stem auger andtthuous sampling system. A log of
a borehole is shown in Figure 6.69. There are fayer which was distinguished by
Rix(1988) from the boring: (1) a hard silty clayéa from the surface to 13.5 ft, (2) a
hard silty clay layer interbedded with silty finergl seams from 13.5 to 33.5 ft, (3) a
loose to medium dense silty fine sand layer fron538 45 ft and (4) a hard gray clay
layer extending from 45 ft to maximum depth of Boging, 50 ft. The clay layers are part
of the Taylor Marl formation. It is seen that thering records generally agree with the

CPT test results.

6.6.3 Borehole Records

Seismic CPT tests were also performed at the cafténe test array by Mr.
Changyoung Kim. The analyzed; Yrofile from SCPT tests is plotted again the shear
wave velocity profile from SASW tests in Figure ®.7t is seen that, in general, the
SCPT \ value is larger than shear wave velocity measwgdSASW tests. The
difference between two test results can mainlytbéated to the fact that SASW results
are globalized measurements of the whole test aviaye SCPT results only represent

localized measurements near the tested hole.

6.7SUMMARY

In this chapter, the test resulted from both SASW MASW tests during the
first and second trips are discussed. The expetahdispersion curves ands¥rofiles

from SASW tests are used as reference for MASWrésstlts to compare.

164



LOG OF BORiNG B1-03

raper: Waste to Enaray Fover Projece Sul Projece No. G-B5-AlS-18%
W28
saré: 9/5/B5 Frib huger with sample systestegatsss: E4030
SHEAN STAEMGTH
-
B — i '
LTURT WA
it & n
g W shecomIa Soa,
5 | p———— e ——t
.n S L 6 i 2O A0 4D i 0 a0 6 ) D
\ Bard dark brown silty clay
with roocs e B
-color changes to reddish
brown & 3.5°
Hard reddish Brown siley clay, - "il--:-
interbedded with siley fine
sand REARS
2
=ailey Eine sand layers 3
[ i L
T
I Fedium denae reddish brown 9
siley fioe sand with clay
seans
L]
2
gray clay
Boring termipueed @ 50°. T:E
1 1
(S S S - -

BRuTHEER TEEE ARG ERATORITR

Figure 6.69 Log of a Borehole at the Hornsby BemnelaAfrom Rix, 1988)

16¢



Velocity (ft/sec)
0 500 1000 1500

0 | L ‘ ‘

10

15

N
o

Depth (ft)
N
(31

30

35

40

45

50

|— SASW_Center— SCPT_Center

Figure 6.70 Comparison ofsWrofile from SASW and SCPT tests at the Centénef
Test Array (Courtesy of Kim)

A standard MASW test setup, composed of a 12-itbgedhammer, 24 geophones
with a receiver spacing of 3 ft, was used to sttity performance of this setup in
charactering material properties at the HornsbydB&te. It is found that the setup was
able to provide a robust estimate of experimentsgatsion curve from about 30 to 100 ft
in wavelength by comparing it to the experimentapdrsion curve from SASW tests.
Thus, the materials at the depths between 15 tib &n be characterized based on the
assumption that depth equals to one half of wagterAt this site, it is difficult for the
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traditional MASW test setup to explore material [kiveer or deeper than the range
mentioned above.

The source offset was altered to study the impasbarce-receiver distance on
the experimental dispersion curves of MASW testss lobserved that as the source
moved away from the first geophone, the numbersable data point on the fundamental
dispersion curves decreased. Also, there is I[édsamation presented at short wavelength
when larger source offset was used. This phenominoibserved in both the test setups
with 3-ft and 10-ft receiver spacings and a sleldgemer, and the test setup with a 16.4
—ft (5-m) receiver spacing and T-Rex as the seisuigce. It is concluded that source
offset does impact the shape of resulting dispersiarve by: reducing the number of
usable data on the fundamental mode of experimeligpkersion curve when the offset
increases, and vice versa.

The source type were also studied by switchingeckfiit input source signal with
various frequency contents while maintaining thet parameters of the MASW testing
setup (source offset, geophone spacing, geoph@eeayd number of receiver). Beside
the hammer impact, signals generated by eitheridiagar (for 3-ft and 10-ft spacings) or
T-Rex (for 16.4-ft spacing) were studied. They wiengr different chirp signals (3-8 Hz,
8-20 Hz, 20-25 Hz and 25-35 Hz), one 20-Hz Rickewvelet and two stepsine signals
(100-10Hz and 20-3Hz). In addition, a 80-1 Hz sitepsvas used with a 10-ft spacing to
investigate deeper materials. It is observed tbatrce type plays a dominant role in
defining the shape of experimental dispersion cufve 12-Ib sledge hammer produced
the limited data of the fundamental-mode curvehattswavelength (30 — 100 ft); the 20-
Hz Ricker and 8-20 Hz chirp generated reliable elisipn curves at intermediate range in

terms of wavelength (40 — 200 ft); the 3-8 Hz chanpd 20-3 Hz stepsine produced
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similar results at larger wavelength (100 to 70p #nd the maximum reliable
wavelength, about 1400 ft, was acquired by a sosigreal of 80-1 Hz stepsine.

The number of receiver was changed with the sam@vwer spacing to study its
impact on MASW test results. For the second tipy fsets of receivers (12, 24, 36 and
47 geophones) were compared with both 3-ft and $fdcings. It is seen that with the 3-
ft spacing, the dispersion curves are differentnfeach other when different numbers of
receivers were used, and none of them agree watlsS&SW results from about 200 to
800 ft in wavelength, which attributes to the laterariability of the site. The different
test setups with a 10-ft spacing produced simegsults and agree well with the SASW
measurements. For the first trip, three sets ddivecs (11, 21 and 41) were used with a
16.4-ft spacing. In these test setups, the reguttinpersion curves agree well with the
SASW measurements. Also, it is observed that thepssith larger number of receiver
measured deeper material, while the setup smallerber of receiver produced more
information about the shallow materials. To coneluthe MASW test setups with
different number of receiver produced similar resuhs SASW tests, when large
geophone spacings were used (10-ft and 16.4-ft¢. fElason that different test setups
with a 3-ft receiver spacing does not agree welhVASW measurements may attribute
to lateral variability of the site, or the incapékiof the test setup to characterize deep
material with a short test array.

The influences of receiver spacing on the disparsiorves can be studied by
comparing the results with the same total testydsta varying receiver spacing. For the
second trip, two experiments were studied basetth@measurement with 47 geophones
as well as 3-ft and 10-ft spacings. A test arrayhwa total length of 132 ft was
constructed with the following three setups: 4%ereers and a 3-ft spacing, 23 receivers

and a 6-ft spacing, 12 receivers and a 12-ft sgadihe second test array with a total
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length of 440 ft was constructed by: 45 receiverd a 10-ft spacing, 23 receivers and a
20-ft spacing, 12 receivers and a 40-ft spacing.tke first trip, a test array with a total
of 656.2-ft (200-m) was used with three setupsreteivers and a 16.4-ft spacing, 21
receivers and a 32.8-ft spacing, 11 receivers affl.éft spacing. All tests show that
larger receiver spacing results in severer spatiaking in the f-k plots. However, the
fundamental mode of dispersion curves were ledsieanted by the spatial aliasing
induced by an increased receiver spacing thanigteehmode of dispersion curves.

Two types of receiver, 1-Hz geophone and 4.5-Hzbene, were used to study
the influence of geophone type on test resultshBitthe receivers produced similar
results given the fact that same receiver spaamignamber of receiver were used. The
only exception is at the larger wavelength (aboQ@QL ft) where 1-Hz geophones
continue producing a clear trend of dispersion eumn contrast, 4.5-Hz geophones
yielded a scattered trend, thus less reliable dia¢ato the restriction from its mechanical
design at low frequencies.

It is generally observed that fundamental dispersiorves from MASW testing
agree with the experimental dispersion curve froR®@W testing. In this context, both
WInSASW 2-D and 3-D theoretical solutions are ugethatch the fundamental mode of
the MASW results. This approximation could lead kiased result for the MASW
analysis. Thus, a new forward modeling algorithnad @amversion program should be
developed to match not only the fundamental modeé,abso the higher modes of the
MASW experimental dispersion curves on a theorkyicarrect basis.

Reference geological information at the Hornsbydsite is presented with CPT
results and a boring log. Even it is found basethengeological information that a clay-
like interbed existed at depths from 15 to 30 dithbsurface wave methods did not find a

corresponding inversion zone in the form of sheavewelocity. This may be attributed
16¢



to the fact that clayey material possesses higmegirsvave velocity than sandy material
given it exists at deeper depth, thus has moreboveen stresses. Both methods
predicted a velocity contrast of stiff material abd6 ft, which generally agree with CPT
and borehole results. SCPT test results were alsgpared to the SASW \profile. The

difference between two \profile is mainly due to the lateral variability the site.
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Chapter 7 SASW Testing on the Big Island, Hawaii

7.1INTRODUCTION

To develop the empirical ground motion predictiond®ls for the purposes of
earthquake hazard mitigation and seismic desidtawvaii, knowledge of the subsurface
site conditions beneath strong-motion stations @sy important and always desired.
USGS strong-motion sites on the Big Island werdaitesd to record each damaging
earthquake on the ground or in man-made structdrdes. strong-motion stations that
recorded PGA from the 2006 M 6.7 Kiholo Bay mairghare shown in Figure 7.1.

To understand better the ground motions that weoerded during the 2006
Kiholo Bay earthquake, Spectral-Analysis-of-Surfd¢aves (SASW) testing was
performed near 22 free-field, USGS strong-motidessio obtain shear-wave velocity
(V) data. \ profiling was performed to reach depths of moentB0 m (100 ft) at each
station. Of the 22 strong-motion stations, 19 steiare situated on sites underlain by
basalt, based on surficial geologic maps. Howetlerse sites have varying degrees of
weathering and soil development. The remainingetisteong-motion stations are located
on alluvium or volcanic ash. Thes¥rofiles from SASW testing were used to calculate
the Vs3p (average Vin the top 30 m) value at each station. Basedesd \{3pvalues, the
basalt ranged from 906 to 1,908 ft/s (NEHRP sitssts C and D), because most sites
were covered with soil of variable thickness (Watgal., 2011). These lowsWalues
turned to be rather surprising and the materiafilpeo are further characterized and
discussed in this chapter.

To study the “basalt” profiles at the 19 strong-ilmotstations, materials in the
profiles were characterized and grouped based ein Yh values in comparison with

reference profiles for sand and gravel. The refe¥gnofiles were based on Menq, 2003.
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Figure 7.1 USGS strong motion stations and recoR{gA's from the 2006/ 6.7
Kiholo Bay Mainshock (from Wong et al, 2011)
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Based on these comparisons, a National Earthquakearbls Reduction Program
(NEHRP) site class map was developed for the Bants(Wong et al, 2011). The new
Vs data were significant input into an update of &GS statewide hazard maps and to

the operation of ShakeMap on the Island of Hawaii.

7.2SASWVsRESULTSs

Before the present study, only a few shallow CP®néc penetrometer test)
measurements to infersVh soft soils have been performed on the Big dlarhe SASW
surveys took place from 7 to 17 January 2008 ane werformed by Mr. lvan Wong,
Professor Brady Cox, Professor Kenneth Stokoe andQdcil Hoffpauir. The 22 free-
field strong-motion sites surveyed are shown orufeigr.1. Most of the sites are fire
stations, police stations, hospitals, or post efficSurveys were generally performed
within 100 ft of the location of the USGS strong4ina instrument. For a few sites, this
was not possible due to lack of space to perfomnstirveys and so the distance was as
much as 200 ft.

Active seismic sources are required for the SASWests. A sledge hammer was
used for the shorter wavelengths]ess than about 50 ft. The larger source usedeiate
wavelengths up to about 600 ft long in this studyswhe National Science Foundation's
Network for Earthquake Engineering Simulation (NEE®obile vibrator called
—Thumper (Figure 7.2). Thumper, housed and opeflayedT, is a moderate- to high-
frequency vibrator. Some important characteristt3humper are: mounted on a Ford
F650 truck, total weight of about 10,000 kg, and twibrational orientations (field
transformable in a few hours), vertical or horizinThe maximum force output is about
27 kN over the frequency range of 17 to 225 Hz lith output decreasing outside this

frequency band.
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Figure 7.2 Thumper Operating in the parking ldtlatvaiian Volcano Observatory

In the Hawaii surveys, the full output of Thumpeasased in the SASW surveys.
A stepped sine excitation was used to collect tiéase wave data at all sites. During
this excitation, frequencies from about 200 to 2 wire stepped through over a time
span of several minutes. The dwell time at low diestcies was greater than at high
frequencies in an attempt to increase the signabtse ratio at low frequencies.

An example composite field dispersion curve co#dcon the Big Island is
presented on Figure 7.3a. These data were colletttide Pahoa Fire Station using a
sledge-hammer source with receiver-to-receiver isgacof 6, 12, 15, and 30 ft and
Thumper as the source with receiver-to-receivecispga of 25, 50, 75, 100, 150, and 200
ft. The theoretical dispersion curve and its fitth@ compacted curve developed in the

forward modeling process are shown on Figure 7I3te composite field dispersion
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curve is composed of 3,196 data points that covercauency range from about 10 to 200
Hz. This frequency range corresponds to a wavebenghge of 2.4 to 240 ft. The
goodness-of-fit between the theoretical and congahadispersion curves is represented
by the root mean square (RMS) error on Figure & by the meanyj and standard
deviation 6) of AVRgr/VR in Figure 7.3c, where §/is from the compacted dispersion
curve and ¥ is the phase velocity difference between the catepiadispersion curve
and theoretical dispersion curve at the same fregyuen this case, the RMS error is 59.4
ft/s, and the mean and standard deviation are -(aB#05.6%, respectively. Dr. Lin
(2011) evaluated these data and found that, agmess in Wong et al (2011), typical
values found for the 22 sites have RMS errors\figrranging from about 30 to 180 ft/s,
ranging from -0.4 to 0.5 %, and ranging from 3.5 %.
In terms of the resolution in thes\profiles, the resolution decreases with depthafor
nonintrusive, surface-wave-based methods. For SA&ihg on the Big Island, consider
the Vs profile of the Pahoa Fire Station. This profilenssts of 9 layers, with the
thickness increasing with depth from 1 ft for tlop tlayer to 50 ft for the 8th layer
(Figure 7.4). The 9th layer includes the half-sphoe only 20 ft of the half-space is
presented because the, Wrofile is shown only to a depth equal to 0.5 snthe
maximum wavelength in the composite field disperstorve. This criterion is used so
that the resolution of Mn the lower portion of the profile is within +1086 +15%.

To demonstrate this resolution, consider Figurda @nd 6.4b, where the value of
Vs in layer 5 has been varied by £10% from the oabipest-fit profile (Wong et al.,
2011). As seen in Figure 7.4b, these +10% changesyer 5 result in theoretical
dispersion curves that no longer fit the compadield dispersion curve. As such, the

“true” Vs for layer 5 is well within 10% in the forward mduohg) process and the
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resolution is expected to be even better for tidlewer layers. Similarly, in Figures
7.4c and 7.4d, the Mof layer 8 has been varied by £10% from the ogbibest-fit
profile. In this case, the fit of the original thietical dispersion curve is still better than
the varied profile, indicating that the original, Wrofile can be considered, in general
terms, to be within 10% of the “true” sWalue in that depth range over that lateral
distance tested. These results are typical of 2h&t2s tested on the Big Island.

The V; profiles for the 22 surveys at the strong motibessare shown on Figures

7.5 through 7.10. These profiles are taken from gvenal., 2011. The profiling depths
ranged from 100 to 318 ft (Table 7.1). For abo@t df/ the sites, the profiling depth was
124 ft or less. In these cases, the shallower Iprgfdepths resulted from one or more of
the following: (1) the available space at the su&s insufficient for the longer arrays
(source to furthest receiver of 400 to 600 ft) ieepito profile deeper, (2) there was a
significant velocity jump (increase of 40% or mome}he top 100 ft, and (3) there was a
substantial thickness (40 ft or more) of soft @i < 500 ft/s) in the upper portion of the

site.
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. , Maxi q
Station Station Location Longitude | Latitude ;E;m Vaw® '\ISI.IEEP Ceotechnical Lavering
No. Zrees __ : Bas s
No (dezrees) | (degrees) Depth (f) (ft's) Clazs Profilez Bazed on Vs
2810 Kai]_'.;a-K.ocua Fire -155.9923 15.6477 100 1413 C 13 & :oi'.-'-l_E f weathered
Station bazaltbasalt
-155472 1.5 2 a
3817 |Ka'wHospital Phala | o H o0 | 191999 286 1389 C ];;,:]tt“’ﬂ 84 fweatherad
3816 Pahoa Fire Station -154 9466 154934 120 1497 C 10 & :o'.".-'-I-{_] f weathered
bazalt'basalt
Jnrversity of Hawail, -155.0805 703 - 1.5 Shw
3517 T_,_l_l rersity of Hawa, 1550803 15,7034 144 1615 c fi SD_Il -1.2 weathered
Hila bazaltbasalt
1818 T{SDA Laboratoay, -155.0974 19.7277 116 437 E ?'EI"— £t very soft soilld6+ &
Hilo soft soll
2872 K:a:pBas-a}'alti: -155.6150 19.0700 124 1355 C 1.5 f 5eal/'120 £t weathered
Watohmm bazalt
3524 E-I.au.ua_..,ca .V.'Eaﬂ:uer -155.5770 19,5363 318 1120 D 140 £ 3\311 .13'3 £ weathered
Observatory bazaltbasalt
2875 Waimea Fire Station -1535.6614 20.0230 100 1375 C id :o'.'_'.-‘l? f weathered
bazaltbasalt
3826 _\'or.rb Eokala Falice -155. 8010 20,2300 168 1006 D s0s :oi'.-'IS'FI £ weathered
Station bazaltbasalt
155 5 b 1 5 . 3 . : ]
2835 | Mauma Kea State Pask | ooo0 | 157920 192 1150 p |00 s0il 30 & weatherad
bazaltbasalt
2830 Mauna Kea Summit -155.4730 19.8260 156 1148 D 80 & sollbasalt
=155 4 s ¥ TT5 L E emnl) B
2831 | Honokas Police Station | 140 | 0077 154 1203 ¢ |38 =0dli6h Sweatharzd
baszaltbasalt
Laupzhoehoe Post -155.2326 19,9835 ~n - 50 & 5021122 £t weatherad
833 | gae 1m 1005 D | basa
r F 155
2834 | Mae Farms, 1338680 | 131650 189 1086 D |120# soilbasal
Honomaline
T T _15%5 B
2836 5?“ atizn Voleano 195.2880 | 19.4200 156 390 D 130 ft soft seil/ 26+ & =il
bsarvatory
155115 = 15 & el @0 & e
2839 | Hilo Medical Center | ~12°-1130 | 197220 202 1430 c @ £ sol /B0 £ weathered
bazaltbasalt
2845 Henawmam Post Office -155.8803 19.4174 100 1558 C 100 ft weathered basalt
1846 Mountam View Post -155. 1083 19.5504 173 1159 D 15 8 5ol /'88+ £t weathered
Offics bazalt
2847 ‘F_{ajkal{‘:-a Marmott -155. 8370 159120 150 1550 C 16 2 soil basalt
Hotel, Anashoomaln
Eona Commmmity -155.9181 19.5215 - - 8 ft 50il'78 £t weatheved
2849 Hosputal, Kea Lakekua 200 1476 c bazaltbasalt
- South Keohala Fire -155.8343 159454 5 3.5 f5ol/30.5 & weathered
2852 Station, Kamuela 266 1502 ¢ bazaltbasalt
2853 NWS Da_:.? Fegional -155.0460 19.7154 203 1176 D 303 f =01l
Centar, Hila
* o Wiy is compured from the Vi profile. The vanber of significant T NEHRP Site Class Vi
dizits does not raflect the vmoertzingy in these values. A #5000 fts
: Soil refars to suff seil caregory shown in Figurs 14 B 1.500 to 5,000 fv's
Weathered basalt refers to marerial category shown in Figure 13, C 1,200 t0 2,500 fi's
Baszal: refers o marerial catezory shown in Figure 12, o G000 1,200 ft's

Minnmnm duckpess. = 600 fi's

Table 7.1  Site Characteristics and NEHRP Sits<&ls of the Strong Motion Stations
on the Island of Hawaii (from Wong et al., 2011)
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In the forward modeling of each field dispersiorrvey the depth to the water
table (10 to 140 ft) was estimated based on theognding topography and elevation
relative to the ocean. Sensitivity analyses indichat \{ profiles are not sensitive to the
water table depth once reasonable estimates dtel@ttin the modeling process (Wong
et al., 2011). Changing the depth to the wateretdlyl a factor of two at all 22 stations
results in 0.0% difference in at 19 stations and at most 4.4% at HVO (from Lin,

2011).

7.3GEOTECHNICAL SITE CHARACTERIZATION

As part of this dissertation research, estimateshef general categories of
geotechnical materials within each profile wereragited. To perform this work, the-V
depth profiles were subdivided and grouped accgrdmrelative trends expected for
various geotechnical materials. A template qfdépth trends was developed that was
then used to categorize the materials. This tempgashown on Figure 7.11. The trend
for basalt, referred to as unweathered basalt meiedefined by any material withs¥
2,200 ft/s at depths 75 ft and \{ > 2,500 ft/s at depths > 75 ft (essentially a NEHRP
material). The trends compared with other mateaaéssbased on Mlepth relationships
of medium dense sand (SP) and dense gravel (G\Wi taem the work of Menq, 2003.

The sand and gravel were each assumed to havieealansities of about
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75% and 95%, respectively, and the water tablehdeps assumed at 35 ft. Equations for
the V-depth relationships for the sand and gravel arergin the note on Figure 7.11. In
terms of site classes, thesy values of the sand and gravel are 848 and 1,183 ft
respectively, which both correspond to NEHRP sligssD (\{ = 600 to 1200 ft/sec) so
that the medium dense sand is near the mid-ranggeo€lass D and the dense gravel is
slightly below the site class D and E boundary.

The stiffest material measured at the sites isidensd to represent unweathered
basalt. This material was encountered within tlpe200 ft at 14 sites (Figure 7.12). The
V profiles of the unweathered basalt over the detbiaisthey were measured along with
the median, and 16 and 84th percentile profilesshoevn in Figure 7.12. ThesWalues
range from 2,200 to 3,200 ft/s. The coefficientvafiation (c.o.v. = standard deviation
/mean) and number of profiles is also shown in Fegii12. The c.o.v. is quite low (<
0.15) over the depth range of about 50 to 200 ftene at least three or more profiles
were determined.

The second ¥profile group is shown in Figure 7.13. This gromgs measured at
16 sites and is defined by: (1) a significant iase in \{ with depth in the top 50 ft, and
(2) median V\ values somewhat higher than dense gravel belowtaboft but
considerably less than unweathered basalt in {hel4® ft. This group is considered to
represent partially weathered basalt that contsonse voids, fractures, etc. This material
can be seen in some shallow cuts in near-surfasaltbsuch as is present near the
Waikoloa Marriott Hotel. The c.o.v. of this matértkecreases with depth in the top 35 ft,
below which the c.o.v. is 0.12.

The third and last grouping is shown in Figure 7THis group was evaluated at
16 sites and is defined by mediag Yalues equal to or slightly above dense gravel at

depths greater than 25 ft. It is interesting toeobs how closely the Mlepth trend
18¢
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follows the dense gravel profile. Below about 3@t COV of this material is also 0.12.
This material is considered to represent stiff.soil

One or more of the three general categories ofmaevere encountered at 21 of
the 22 sites. The thicknesses of these layerscin pafile is given in Table 7.1. As noted
above, the “soil” identified in the layering pra&d in Table 7.1 is actually the “stiff soil”
group presented in Figure 7.14. At two sites, th®. Department of Agriculture (USDA)
Laboratory and Hawaiian Volcano Observatory (HVSdfter soil was also encountered
in these \ profiles which are shown in Figures 7.7 and 7l@sBofter material was not
characterized any further as it was felt that thdlues by themselves were insufficient

for this purpose.

7.4ESTIMATED GEOTECHNICAL PROFILES

As discussed above and as presented in Tableagdred geotechnical profiles
for the 22 strong-motion station sites were esttiaAs examples of these profiles, four
geotechnical profiles are presented in Figure 71t1Should be noted that each one of
these geotechnical profiles was considered to bbasalt and, before thesrofiling,
was assigned a NEHRP site class of B; hengdetiveen 2500 and 5000 fps. As seen in
Figure 7.15, two of the sites are site class C @vml are site class D. Clearly, the
additional benefit of the ¥profiles in helping to identify the subsurface lggy is

shown in this effort.

7.5CONCLUSION

SASW surveys were performed at the 22 free-fielchng-motion sites of the
USGS Hawaii Strong Motion Network on the Big Islang profiles reaching depths
ranging from 100 to 318 ft were obtained. Most ld surveyed sites were located on
basalt or weathered soil atop basalt and corresfppNEHRP site class C or D. Based on
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this information, Wong (Wong et al, 2011) develogedew NEHRP site class map that
provides a more realistic foundation for groundkst@ hazard assessments than the
previous map (URS, 2006) because it is based onWsA&sed estimates of s34
However, the limited number of SASW tests, the alaitity in Vs30 values for geologic
map unit groups, and the absence of SASW dataelegral of the geologic map unit
groups, additional SASW surveys and further analysetlined in this chapter would
reduce the uncertainty in the NEHRP site class raag ground shaking hazard

assessments.
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Chapter 8 Vs Profiling at a Site in Canada

8.1INTRODUCTION

In this chapter, the findings from Spectral-Anadysi-Surface-Waves (SASW)
tests that were performed at 14 locations as péra ogeotechnical engineering
investigation of a project site in British Columpi@anada are presented. Field testing
was performed using a large D8K Caterpillar buletoas the high-energy source
following the generalized SASW test procedure (8&okt al., 1994). Eleven of the 14
SASW test sites were spread around an area withddaensions of about 1200 by 2400
ft. Two other sites were located somewhat to thetweéthis area while a third site was
located about 1000 ft northwest and situated omdaéd SASW testing in the field was
conducted by Professor Kenneth Stokoe and Mr. Glmamgy Kim from the University
of Texas at Austin (UT). Analysis of the SASW datadevelop shear wave velocity
profiles was performed by Mr. Jiabei Yuan.

The goal of the seismic investigation was to chieraze the shear wave velocity
(Vo) of the soil/rock profiles at the project siteetbby helping to characterize the site for
use in evaluating potential problems during possibiture earthquakes. The goals in
terms of this dissertation were to: (1) compare Weprofiles from the different test
locations to investigate the stiffnesses of diffiérgeologic materials, the variability in
the material stiffnesses, and the estimated depthetrock, and (2) to compare the V
profiles to existing geological and geotechnicdbimation such as nearby boreholes,
cone penetration test results and so forth. To Hdaptify the stiffness of the bedrock,
one of the fourteen sites was located away fromntlé1 project site to an area where

bedrock is close to the surface.
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After the shear wave velocity profiles for all siteere evaluated, grouping of the
profiles based on shear wave velocity values weeated to interpret geotechnical
material types and the distribution in the matetyples. A reference dprofile for soft
soil from Imperial Valley (Lin and Stokoe, 2008)datwo empirical \{ profiles for dense
sand and dense gravel (based on Menq, 2003) werd tes assist in material
characterization. Comparison betweegn groups and existing geological information
were made to better understand the relationshipdset shear wave velocity profiles and

other engineering parameters measured from CPT a8BBther geotechnical tests.

8.2SASWFIELD TESTING

The basic configuration of the source and receiusesl in SASW field testing at
each array location is illustrated in Figure 8.hrée receivers were used at each
source/receiver set-up. This arrangement enabledsets of SASW test results (two
individual dispersion curves) to be obtained at shene time. Typical source-receiver

spacings are presented in Table 8.1.

8.3SASWRESULTS

An example of matching the experimental dispersiarve with a theoretical
dispersion curve is shown in Figure 8.2. The figéda were gathered at site No. 6. The
theoretical dispersion curve which is consideredntich (best fit) this composite field
dispersion curve is shown in Figure 8.2. The sheare velocity profile for the site is
presented in Figure 8.3. The parameters usedergee the theoretical dispersion curve
in Figure 8.3 are listed in Table 8.2. For the maxn receiver spacing of 300 ft, the
normal procedure of SASW analysis generally useagimmum wavelength of 600 ft. In
this case, near-field data were used to investitfeedeeper material as illustrated by a
maximum wavelength
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Figure 8.1 Photograph of Three, 1-Hz Geophones@tReceiver Set-up; SASW Site
No. 3 at the Project Site.
Table 8.1  Typical Source-Receiver Spacings Us&A8W at the Proje@ite in
Canada
Distance Impact Direction Frequency (Hz No. of .
S-R1* | R1-RZ | R2-R3' | Forward | Reverse Source qRang){a( ) pts, | \Window
3 3 6 \ \ Hammer 0 — 400 400 Rect
9 9 18 3 5 Hammer 0—200 400 Rect
25 25 50 N n/a Bulldozer 0-100 400 Hanning
75 75 150 N n/a Bulldozer 0-40 400 Hanning
100 100 200 N n/a Bulldozer 0-20 200 Hanning
150 150 300 N n/a Bulldozer 0-16 200 Hanning

" S-R1: Distance from source to first receiver

# R1-R2: Distance from first receiver to second reae
A R2-R3: Distance from second receiver to third ineze



of 827 ft from the 300 ft spacing. As shown in Fg®.3, the maximum profile depth is
Amax/2 which is 413 ft,

To generate the theoretical dispersion curves tsedatch the field dispersion
curves, some assumptions have to be made. Thesdafpie water table for the fourteen
sites were assumed to be 12 ft based on informatipplied by geotechnical engineers
using existing borings and wells. First, the ungtight and Poisson’s ratio of the material
must be assumed. Above the water table, Poissatis was based on thes Values
determined in the forward modeling process. IfWhealue was between 300 and 2000
fps, Poisson’s ratio was taken to be 0.33. Howeavéhe soil layer was below the water
table, the value of Poisson’s ratio was determibgdissuming Y to be 5000 fps and
calculating Poisson’s ratio based on the assumgand \; (5000 fps) values. This
calculation of Poisson’s ratio was performed in 8ASW once the layer was designated
as being below the water table.

The unit weights assumed in this study were alssedbaon the Y values.
Generally, if \{ was between 300 and 2000 fps, the unit weightagasmed to be 114
pct. If Vs was greater than 2000 fps and below water taldeunit weight was assumed
to be 130 pcf.

All shear wave velocity profiles are shown in Fig&:4, with a statistical analysis
of the 4 data. A large variation in Mhence in material distribution) exists from 50 to
over 250 in depth. Upon looking at Figure 7.4 sitobvious that very soft soils exist at
depth at some sites. For example, at a depth offtl@hear wave velocities vary from
700 to 2500 fps (very soft soil to bedrock-like eratl). The high value of the coefficient
of variation (c.0.v.) over the depth range, fror@ @ 0.6, indicate that different materials
are mixed in the statistical analysis. It is expddthat a “uniform” material has a small

c.o.v. of less than 0.15 (Lin et al., 2008). A®sult, the \{ profiles are subdivided into
19¢
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Wavelength (m)

Wavelength ( ft)

0 (!
10 10 10°
300 T T T T T TT T T T T LI L T T T T LI L T
3fhe.dat S=3ft | l l 900
> GftH#6.dat S=6ft . T
oftH#5.dat S=9ft Site No.6  _|ggo
2500— - 18ftH#5.dat S=181t i
» 25ftD#l.dat S=251
x  50ftD#1l.dat S=501t —700 ~
A 75fiD#2.dat S=751 e o
2000~ © 100ftD#3.dat S =100 ft —600 n
150ftD#2.dat S = 150 ft E
150ftD#4.dat S = 150 ft - =
v 200ftD#3.dat S = 200 ft A nax = 827 /e >
1500 ¢ 300ftD#4.dat S= 300t of g
® Theoretical Dispersion Curve o
—400 g
<7 o)
1000 #  Jsoog
. o
500 oooooo; A gort __200
—{100
O 1111 | 1 1 1 1 L1 11 | 1 1 1 1 L1 11 | 1 1 1 1 L1 11
10° 10" 10° 1(%

Figure 8.2 Comparison of the Fit of the Theoret@elpersion Curve to the Composite

Experimental Dispersion Curve at one SASW Site@No.

Table 8.2 Parameters Used to Obtain tgéXbfile at SASW Site No. 6 in British
Columbia, Canada
Layer No. | Thickness, ft Igfe pTa;OeI(? VeIT(;\é\i/t?/\,/?t/s Ve?(;\é\i{;?/?t/s Poi':(s)lri’r:eRdatio L'Jo;lsltS uwi?ghzogii

1 1 0 127% 640 0.33 114
2 4 1 1197 600 0.33 114
3 7 5 11772 590 0.33 114
4 13 12 5000 680 0.49 114
5 75 25 5000 720 0.49 114
6 110 100 5000 730 0.49 114
7 99999 210 5000 2000 0.40 130

0

P-wave velocity calculated froms¥nd assumed value of Poisson’s ratio.

* Layer extends below maximum depth of thgRrofile.

*Water table assumed at a depth of 12 ft
" Not assumed but back-calculated from=/5000 fps and ¥
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Figure 8.3 Final Shear Wave Velocity Profile Detared at SASW Site No. 6
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different material groups based on referengeufves as discussed in the next section.

8.4VsPROFILE GROUPINGS

8.4.1 Summary of \{ Profiles

The Vs profiling depths ranged from a minimum of 100 ftSite No. 11 (the
“bedrock” site) to a maximum of 413 ft at Site N&. as shown in Figure 8.3. The
profiling depths were primarily controlled by: (ihe overall site stiffness, (2) the
thickness and stiffness of the soil over the bedr¢®) the velocity contrast between the
soil and bedrock and (4) the extent of availablacspat the site over which to locate a

linear SASW source-receiver array.

8.4.2 Comparison of Measured and ReferencesVProfiles

To obtain a sense of how soft or stiff the mateatadach site is, each, Wrofile is
compared with references\rofiles estimated for soft soil, dense sand agnkd gravel
(similar to the approach used in Chapter 7). Thed$erence profiles, as well as the
lower-boundary bedrock Jprofile, are shown in Figure 8.5. The referenggnofile for
soft soil comes from the mediang Vrofile evaluated from 23 profiles measured in
Imperial Valley, CA. These soils are layers of losands, silts and clays (Lin and
Stokoe, 2008). The reference; Yrofiles for the dense sand and dense gravel are
estimated from a laboratory study of the dynamitnstss of sands and gravels by Menq,
2003. The reference rock profile is estimated based the existing geological
information at the project site.

As noted earlier, one site, SASW Site No. 11, vested because bedrock was
close to the surface. This “bedrocks profile is shown in Figure 8.6. By comparing the
“bedrock” profile with the reference sand and gtawefiles, the interpreted material

profile is: (1) 0-15 ft is soil, (2) 15-50 ft is dee granular material with gravel and
20z



cobbles, and (3) 50-100 ft is bedrock. The addivbrarger gravel and cobbles is the
reason for the Yvalues slightly above the dense gravel curve en1 to 50 ft depth
range. The “bedrock” site, combined withy ¥alues at depth at two other sites (Sites 10
and 12), show that Malues greater than about 1800 fps at depthsthessor equal to
150 ft and \ values greater than about 2200 fps at depthsdatétyO ft (the deepest

profiling depth at a site where bedrock was thoughbe encountered) likely represent

bedrock as discussed in the next section.

Shear Wave Velocity (ft/sec)
0 500 1000 1500 2000 2503

II\—I...|\I\III|IIII|III|IIII
\\\ T (12 ) — — Soft Soil (Lin and Stokoe, 2008)

0

\ \ \ v, :S—Iiﬁ)‘yfaf‘l ‘Pﬂ)nzs
\ \ B Yootatson = 125pcf
- \ \ | — — Dense Sand(SP) (Mengq, 2003)
\ \ \\ v, :SSTﬁ)S(U,‘] ‘Pa)nza
i | .

e=048,D, =93%
\ \\ \ - 15 Dy =0.5mm,C, =2.5
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Figure 8.5 ReferencesYProfiles for Soft Soil, Dense Sand and Dense Grave
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Figure 8.6 Comparison of the; Profile at the “Bedrock” Site (SASW Site No. 11)
with the Reference MProfiles for Dense Sand and Dense Gravel
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8.4.3 Sub-Dividing 4 Profiles by “Interpreted” Material Type

To investigate the Mprofiles further, each profile was sub-dividedins ranges.
Of the 14 SASW sites, 12 sites have geotechnice tam one or more boreholes,
Standard Penetration Test (SPT), Cone Penetratiest TCPT) or Seismic Cone
Penetration Test (SCPT) investigations. The fouartsges and associated near-by
geotechnical field tests are listed in Table 8.pokJ reviewing the 12 profiles, sixsV
ranges were selected. With the sixrenges, each portion of all fourteen profiles fiedit
into a given range was then combined and statisticalyses were performed. These
groups and associated; ¥anges are defined below and are presented indsdii7 to

8.12.

Table 8.3 Reference Field Tests Used to Compatretivt \s Profiless from the
SASW Tests at the Project Site, BC, Canada

Site Name Elevation (ft) SASW | Borehole SPT CPT SCPT

Site 1 11.89 v

Site 2 9.93 v \ \ \ \
Site 3 10.57 v N N N v
Site 4 10.00 v N v
Site 5 9.95 v \ v
Site 6 10.91 v \ \

Site 7 11.19 v \ \ v
Site 8 13.43 v N N

Site 9 13.11 v N N N v
Site 10 16.39 v \ \

Site 11 22.89 v

Site 12 18.87 v N N

Site 13 9.03 v N N

Site 14 8.63 v \ \

1. Group 1: bedrock,

* Presented in Figure 8.7.
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e V> 1800 fps at depth 150 ft and > 2200 fps at 150 ft < depth
280 ft

* Numbers of sites involved: 10, 11 and 12.
. Group 2: dense granular material with gravel artubtas,
* Presented in Figure 8.8.

* V; closely follows, but is slightly above, the graweirve due to the

addition of larger gravel particles and cobbles.
* Numbers of sites involved: 2, 3, 4, 6, 8, 9, 10,112, 13 and 14.
. Group 3: dense sand grading to a less dense sémthaieasing depth,
* Presented in Figure 8.9.
* Numbers of sites involved: 2 and 9.
. Group 4: soft cohesive soil (mixtures of silt, ciEyd minor amount of sand),
* Presented in Figure 8.10.
* Numbers of sites involved: 3, 4, 5, 8, 9, 13 and 14
. Group 5: stiff clay with decreasing stiffness wittlisreasing depth,
* Presented in Figure 8.11.
* Numbers of sites involved: 2 and 3.
. Group 6: special case of soil with very low sheavgvelocity,
* Presented in Figure 8.12.

 Numbers of sites involved: 8.

The V; groups with three or more profiles have been gteslly analyzed to

estimate the material distribution with depth a #ite. The top 10 ft of material in alLV
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profiles was eliminated in the statistical analysesause of the additional variability due

to weather and site construction activities.

The median Vprofiles for Groups 2 and 4 are presented in leg@&.8 and 7.10.
(Note — Groups 1, 3, 5 and 6 had only two profdesess so no median curve could be
calculated.) The Yprofiles in Figures 8.8 and 8.10 also include ¥ and 84
percentiles, the coefficient of variation (c.0.vo # mean) and the number of profiles. As
seen in these two figures, the c.o0.v. ranges frdb @ 0.12. As noted earlier, values of
c.0.v. less than about 0.15 are found in similals gbin and Stokoe, 2008). This c.o.v.
value (0.15) is used to justify separating thessaito Groups 2 through 6. In other
words, the bedrock and soils in Groups 1, 3, 5@&mdthibit \; profiles that can not be
combined with or without Group 2 and 4 to give ¢.¢.0.15.

8.5COMPARISON OF SASWV;PROFILES AND OTHER TEST RESULTS

As noted earlier, borings, CPT, SPT and Seismic @R were also performed
at the project sites. Table 8.3 summarizes thaewée boreholes close to each SASW
array. Comparison between grouped SAS\Wpvbfiles and boring records, SPT and
SCPT results are presented below as a case stumbywoivell the different measurements

predict similar site conditions.

8.5.1 Comparison between Group-1 yProfiles and Existing Boring Records
“Bedrock” material as defined in Group 1 was foadbites 10, 11 and 12 in the
SASW V4 profiles. No boring was drilled at Site 11. At&O0, the center of the SASW
array had two nearby boreholes. A comparison betwlee \; profile, material type and
SPT results is shown in Figure 8.13. It is obseved at depths of 75 and 100 ft, dense
material was met in boreholes and the borings wtengped. In terms of thes\rofile, an

increase of shear wave velocity from 1400 fps t001fs occurred in this depth range.
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Shear Wave Velocity(ft/sec)

0 500 1000 1500 2000 2500
O 7'} ‘—H I T T Y
: Sand & Gravel Sand &§ Gravel
N N =5to 62 N=14to 4
50 SPT #2 Silty Sand
Sty Sand~_ N = 10 t0 3™~
N=9to 4 SPT #1 /End of Borehole #
" Dense sand, N =45to 66 Dense Material
100 S .
 End of Borehole # Dense Material
£ I
= 150 -
o - /
o - SASW Site 10
200
250
I N-Value
300 | | | |
0 50 100 150 200

Figure 8.13 Comparison of the Profile at SASW Site 10 with Material and SPT
Profiles from Boreholes #1 and #2
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Although this \{ value is not much above that predicted for demaedy, this agreement
was taken to signify a shear wave velocity of fueetl bedrock. The “bedrock” depths of
75 and 100 ft in the two boreholes was taken tacatd the lateral variability in the top

of fractured and/or weathered bedrock.

For SASW Site 12, the comparison between the shasge velocity profile and
borehole results is presented in Figure 8.14. Butfeholes #3 and #4 were drilled to a
depth of about 50 ft and show sand and gravel pafsible cobbles. It was reported that
some cobbles were observed on the surface. Theiatai@e generally medium dense to
dense. When hard, rock-like material is encountettezl borehole generally ends at that
depth. Thus, no CPT, SCPT or SPT data exists tqpaowith \{ profiles for bedrock.
With this information, the borings likely stoppeean the top of weathered rock. A
corresponding velocity change in the pfofile at a depth of 50 ft from 1250 fps to 1760
fps supports this assumption. The Mofile between 50 to 100 ft is slightly less than
1800 fps (1760 fps), thus this part was originalbt considered as bedrock However,
based on records from Boreholes #3 and #4, thendapge from 50 to 100 ft in thesV
profile is likely to be in weathered bedrock makrirherefore, these data were included

in the statistical analysis of “Bedrock” material.

To conclude, based on the comparison gpifiles and limited borehole records,
the SASW method generally seemed to provide a nade estimate of depth to the top
of weathered bedrock. The variation of depths trdek from borehole records shows
lateral variability at the site. However, the SASKVethod provides an averaged

measurement of bedrock depth over some laterahextith the lateral extent increasing
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Shear Wave Velocity(ft/sec)

0 500 1000 1500 2000 2500 3000
Oiéw\\al-_l—hl-\ T T T LR W e e
r PT # Sanfl & Gravel
i s'\?r; - ravel SPT#3 N+4t064
50 L -
| Borehole # Borehole #
100 - SPT #4
I SASW Site 12
& i
%_ 150 r
Q i
[a) L
200
250 -
i N-Value
300 1 } } |
0 50 100 150 200

Figure 8.14 Comparison of the Profile at SASW Site 12 with Material and SPT
Profiles from Boreholes #3 and #4
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as depth increases.

8.5.2 Comparison between Group-2 yProfiles and Existing Boring Records

Group 2 materials havesWalues slightly above the dense gravel curve as/sh
in Figure 8.8. It can be seen from boring recotdd,tthis group corresponds to dense
granular materials which mainly exist at shallovwptths £ 50ft). For example, at SASW
Site 2, the top 54 ft of materials is a mixturedeinse and very dense sand and gravel
from O to 35 ft underlain by loose gravelly sanahir35 to 54 ft as shown in Figure 8.15.
The N-value profile shows a similar trend agpyvbfile in the dense granular material but
not in the loose granular material. The boundaryhe SPT profile between dense

sand/gravel and loose gravelly sand is not showhen profile.

Another example of comparing the; Wrofile and near-by borings in gravel is
shown in Figure 8.13. Two SPT profiles are shownhim figure. In the first 65 ft, the
general trend in the SPT values is increasing, With exception of SPT #1 around a
depth of 45 ft. This apparently loose material a$ identified in the SASW profile. The
likely reason is that the layer is not continuoateidally as seen by comparing the two
nearby SPT profiles. Also, the silty sand layerdapths from 65 to 85 ft has a low
blowcount. In shear wave velocity profile the valoeVs does not drop accordingly.
Again, the likely reason is the lateral variabilityence the lack of continuous material
stiffness and thickness, that is seen by compaorgngs #1 and #2 and SPT profiles #1

and #2.



8.5.3 Comparison between Group-3 yProfiles and Existing Boring Records

Group 3 materials are categorized as sand wittnasi§ generally decreasing with
increasing depth. These materials have shear waleeities in the range of dense sand
materials from about 30 to 80 ft. From 80 to 15Qke sand is becoming less dense or
the material is changing because the fine congms to b increasing. These materials
are found only at SASW Sites 2 and 9. As illusttatie Figure 8.16, the Group 3
materials in the depth range from 54 to 147 ft weentified by CPT #1 as a sand
mixture with clay, with this material having a cterst V; value of 900 fps over the 54 to
147 ft depth range at Site 2. At Site 9 in Figurg78the Group 3 materials fall into a

zone of compact sand and gravel from 20 to 72ttt Wawer blowcount.
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Shear Wave Veloctty (ft/sec)

0 500 1000 1500 2000
O T T T T T T T u T y y T
L '_|: Dense to Very Dense
L SASW Site Sand & Gravel
L N =19to 6
- SPT #5 \ Loose Gravelly Sand
50 ¢ N=5to0 16
I l Borehole #5
N Sand Mixture Soil
i Profile
100 Based
| on
i . CPT #1
- - Sand Mixture & Clay(Robertson
= i , 1990)
=
S 150 T
) L
(@] L
200 ~ Clays
250 &
i Sensitive, Fine
: Grained Soil
- CPT#1
300 | | 1 |
0 50 100 150 200
N-Value

Figure 8.15 Comparison of the Profile at SASW Site 2 with Material and SPT
Profiles from Borehole #5



Shear Wave Veloctty (ft/sec)

0 500 1000 1500 2000
O T T T T T T T u T T y T
B '_|: Dense to Very Dense
. . Sand & Gravel
I SASW Site : N =19 to 6
- \ Loose Gravelly Sand
50 N=5to 16
I l Borehole #5
i Sand Mixture Soil
| Profile
100 - — Based
L on
I Sand-Mixture-& Clay CPT #1
= B (Robertsof
-
£ 150 F , 1990)
) L
@] L
200 ~ Clays
L V\
i CPT#1
250 e
i Sensitive, Fine
| Grained Soil
- CPT #:
300 1 1 1 |
0 250 500 750 1000

CPT-q (bar)

Figure 8.16 Comparison of the Profile at SASW Site 2 with Material and CPT
Profiles from Borehole #5 and CPT #1
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Shear Wave Velocity(ft/sec)

0 500 1000 1500 2000
O T — T [ T T T T T T
Driled Out )
Very Dense Gravel and Sand;-N m
I N Drilled Out
. Compact Sand SPT #6
50 | & Gravel
L N.=4to 25 v
:Soft Silts & Clays 1Soil
100 -~ N=9w15 Profile
| End of Borehole #6 S:sed
- r CPT #1
~ r (Robertson .
S B Soft Silts & Clays
8 150 I SASW , 1990)
& : Site 9
200 -
i —Sanas
250 j Refusal
: N-Value CPT#6
300 1 1 1 |
0 50 100 150 200

Figure 8.17 Comparison of the Profile at SASW Site 9 with Borehole and SPT
Profiles from Borehole #6 and CPT #6
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8.5.4 Comparison between Group-4 yProfiles and Existing Boring Records

Group 4 materials are termed soft cohesive soitiwhave a shear wave velocity
profile close to soft soil in Imperial Valley, CAFor example, the Mprofile at SASW
Site 14 with borehole information and SPT resulesslnown in Figure 8.18. The material
depth from about 35 to 95 ft is categorized as siliftand sand with organic material
from Borehole #7. This soft soil is also shown bg tow V; values in this depth range
and the velocities compare well with the soft saildmperial Valley. These materials
below 35 ft also exhibit relatively low blowcounalues as expected. Borehole #7 ended
at about 95 ft so no geological information beldwattdepth is available. Interestingly,
the Vs results identify the material boundary at abouft3setween the upper gravel and
the soft soil. Similarly, at SASW Site 13 in Figu8€l9, the \ profile in the depth range
of 30 to 187 ft is grouped as soft soil, and nedbyehole, #8, reveals the existence of
soft silt from 32 to 192 ft with blowcount varyirigom 0 to 33. The SPT results confirm
the soft material in this depth range. It is notieat a soft zone (a silt layer) below the
dense sand layer at a depth of about 220 ft wasdfau Borehole #8. This soft zone is
not shown in the SASW JMprofile. The reasons for this “miss” are likelyettake of
resolution at deeper depths in detecting thinngeriawith velocity inversions and the
possible lake in lateral continuity of this sofyda. It is concluded that at both sites, the
Group 4 materials, soft cohesive soil, were defimeterms of both general depth range

and low velocity values by the SASW method.
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Shear Wave Velocity (ft/sec)

0 500 1000 1500 2000
07 — T Drigd out
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Figure 8.18 Comparison of the Profile at SASW Site 14 with Borehole and SPT
Profiles from Borehole #7
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Shear Wave Velocity(ft/sec)

0 500 1000 1500 2000
O T T T T T T T
3 Sand & Gravel, N =610«
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Figure 8.19 Comparison of the Profile at SASW Site 13 with Borehole and SPT
Profiles from Borehole #8
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8.5.5 Comparison between Group-5 yProfiles and Existing Boring Records

Group 5 materials are considered to be stiff cldhese materials are included in
parts of profiles from SASW Site 2 and 3, Figure$68and 8.20, respectively. These
materials exhibit shear wave velocities around 1fp0at relatively deep depths (from
100 to 250 ft). By comparing to reference curvhs, material is stiffer than soft soil but
softer than the reference curve of dense sand. Aamng logs were used to investigate
the material in group 5. An example of this stifiycis shown in Figure 8.20 from 110 to

220 ft at Site 3. Based on CPT #9, the correspgnatiaterials are clay and silt mixtures.

8.5.6 Comparison between Group-6 ¥Profiles and Existing Boring Records

Group 6 materials are termed “special case of saifi low shear wave velocity.
This soil was present in the SASW profile at Site 8 in the relatively deep depthgan
of 85 to 135 ft (see Figure 8.21). SASW Site 8his only site where this material was
found. Nearby Boreholes #11 and #12 show that theemal is likely soft silt or clay
with very low blowcount values. However, the vetgaiontrast shown in theg\profile
in the 85 to 135 ft depth range is not clearly shamthe borehole or SPT results as seen
by reviewing Figure 8.21. However, the SASW disperscurve clearly shows this

inversion.
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Figure 8.20 Comparison of the Profile at SASW Site 3 with Borehole and SPT
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Shear Wave Velocity (ft/sec)
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Figure 8.21 Comparison of the Profile at SASW Site 8 with Borehole and SPT
Profiles from Boreholes #11 and 12



8.6LATERAL VARIABILITY STUDY
Lateral variability at the project site was studigging the existing boring logs.
Three SASW sites, each with two logs as referengese used to show lateral variability

in the material.

The first comparison is presented in Figure 8.2&Mich the shear wave velocity
profile at SASW Site 10 is compared to two nearbyirig logs. It is seen that both logs
demonstrate a sand/gravel layer from the grounfhceito a depth of about 65 ft. The
Borehole #1 shows a 20-ft silty sand layer whicmisontrast to Borehole #2 in which a
thinner, 7-ft thick layer of silty sand was fourgbth records ended at depth where stiff,
‘bedrock-like’ material was encountered. It is atvee that the depth to the stiff material
varied in the two boring logs (100 ft in #1 vs T5nf#2). Since Borehole #1 is closer to
the center of test array, the depth to stiff mateagrees well with the Group-1 material

from the SASW ¥ profile at Site 10.

The geological settings from two nearby borehoteSASW Site 3 are shown in
Figure 8.23. Both boreholes have a similar dribed-depth of 10 ft due to the existence
of granular material with cobbles at ground surfates again observed that lateral
variability exists according to SPT blowcounts émel depth to the soft silt and clay layer
from the boring and CPT records. The ptofile produced a good estimate of the
thickness of sand/gravel materials at shallow dépshft or less). However, in the depth
range of 25 to about 50 ft, the dense sand andegmavBorehole #9 was not detected.
Rather, the soft silt and clay in Borehole #10 wetected. This difference is attributed to

lateral variability at the site. Thes¥rofile did not predict the depth to stiff matéiad a
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Figure 8.22 Comparison of the Profile at SASW Site 10 with Borehole and SPT
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Figure 8.23 Comparison of the Profile at SASW Site 3 with Borehole and SPT
Profiles from Boreholes #9 and #10 and CPT #9
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depth of about 200 ft, mainly due to the limitatioh energy produced by the

bulldozer at the largest receiver spacing requioeshmple below a depth of 200 ft.

In Figure 8.24, the Vprofile is compared to the geological informatioom two
boring logs near SASW Site 8. The top sand/graaxgtns from both logs are similar in
terms of layer thickness, which also agrees wighSASW \{ profile. The two logs show
different estimates of the silt layer, one from t4593 ft in Borehole #11 and another
from 27 to 105 ft in Borehole #12. Both logs sholayer of silty clay down to about 250
ft where stiff materials are encountered. Disagmem®iis observed from thesYrofile at a
depth of 137 ft, where SASW tests shown a velacityease from 400 to 1200 fps. No
evidence of material change at this depth is shoypoth borehole records. It is possible
that stiff materials at this depth were sampledallgcby surface waves since the
measurement at the larger receiver spacing (200a$)only performed at one end of the

SASW test array which was near to the mountainaavaly from the water.

To conclude, lateral variability in material diswiion clearly exists at the project
site. The clossness of the matching between glotglsurements from SASW testing
and localized measurements from borings and CHiigisly dependent on the lateral

variability of the site.

8.7COMPARISON OF RESULTS FROM SASWAND SCPTTESTS

8.7.1 Comparisons of VProfiles

The comparison between SCPT pofiles and SASW Yprofiles are shown in
Figures 8.25 through 8.28. As seen in these figuhese are differences between the two
types of \{ profiles. The main differences between the twhnégues are attributed to
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Figure 8.24 Comparison of the Profile at SASW Site 8 with Borehole and SPT
Profiles from Boreholes #11 and #12

232



Shear Wave Velocity (ft/sec)

0 500 1000 1500 2000
0 —Siedou l—lE | —___ Driled Out__
. Dense Gravel, N=19to 39 2“56 2and N 2001075
d of Borehole
“Loose Sand, N=4to 12] 49 Dense Sand & Gravel
] N=19to 68
50 Soft Silt Y
and Clay =
N=2t06 / l \ Sand
N=7to 12
I Bottom of :
Soill
100 j Borehole #10 P?olfile
Based
on Clay and
E CPT #9 Mixtures
= 150 - (Robertson
8 CPT #9 / 1990)
a e
SCPT #2
200 [
/ Refusa
SASW Site 3
250
CPT-q (bar)
300 | | | |
0 250 500 750 1000

Figure 8.25 Comparison of the Profile at SASW Site 3 with the\Profile from SCPT
#2 and Borehole and CPT Profiles from Boreholear®#10
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Figure 8.26 Comparison of the Profile at SASW Site 4 with the \Profile from SCPT
#3 and the CPT Profile from CPT #3
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Figure 8.27 Comparison of the Profile at SASW Site 5 with the\Profile from SCPT
#4 and the CPT Profile from CPT #4
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Figure 8.28 Comparison of the Profile at SASW Site 9 with the\Profile from SCPT
#6 and the CPT Profile from CPT #6
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the facts that: (1) the JMprofile from the SASW test is a global measuremeghich
represent averaged properties over the length eoftekt array, whereas the profile
from the SCPT test is a localized measurementefhthterial close the hole area over a
depth interval of 1 m at each measurement depthth@ SASW test evaluatessV
generally in the frequency range of 5 to 50 Hzdepths greater than about 25 ft while
the SCPT evaluates in the frequency range of 18@;sand (3) the resolution of SASW
Vs profile depends on the geophone spacings anddiegotime interval, with the ¥
profile at deep depths averaging over larger deganThe resolution of the SCPT results
does not vary with depth so that it can detectlibed anomalies at depth. Often the
SCPT method produces 5 to 10% higher shear waweitseprofile than SASW test does
at the same location, likely due to excitation freqgcies. Based on boring logs, a cross-
section of the geological conditions crossing SASE 9 is shown in Figure 8.29

(Lewis, 2011). Clearly lateral variability is shown

ELEVATION, m (GD)

. —=—SASW Site 9
| R 1 R T A i
i ]  SAND & po W il
oo B i~ GRAVEL = S
SILT & CLAY L
i 4 o0
BEDROCK e

Figure 8.29 A Cross-section of the Geological Coadiat the Project Site and in the
Area of SASW Site 9 (from Lewis, 2011)
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8.7.2 Comparisons of SASW and Equivalent SCPT Dispersion Curves

To investigate differences in the Wrofiles determined by the SASW and SCPT
measurements, JV/profiles from the SCPT were converted to “equiadleSASW
dispersion curves. However, upon reviewing thepkbfiles from the SASW and SCPT
tests, it can be seen that the SCRPpMfiles only include data for a portion of theptte
at each site generally due to the fact that no StéBffcould be performed in the shallow
gravel/cobble materials. Therefore, for shallow tbepwithout SCPT data, sWalues
from the SASW profiles were used to construct tk#¥E Vs profiles from the ground
surface to the top of the actual SCPT measuremé&heoretical dispersion curves were
then generated for the composite SCRpMfiles at SASW Sites 3, 4, 5 and 9 as shown
in Figures 8.30 through 8.33. The ptrofiles and theoretical dispersion curves foiséhe
four sites are shown in Figures 8.34 through 8Bdsed on the comparison of the
equivalent SCPT and the SASW dispersion curves.fahewing conclusions can be

drawn.

1. Clearly, significant lateral variability at the peot site contributes to the
difference between the localized SCPT values aedjtbbal SASW values. This
lateral variability is well shown by the two diffart geologic profiles (boring

records) near SASW Site 8.

2. At Site 5, the SCPT and SASW theoretical dispersiorves agree quite well,

with only small differences as seen in Figure 8.36.

3. At Site 4, the SCPT yMrofile at wavelengths 70 ft does not agree with the field

dispersion curves, most likely indicating lateratiability in the materials.
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Figure 8.30 Composite SCPT MProfiles at SASW Site 3 Used to Generate an
Equivalent SCPT Dispersion Curve
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4. At Site 9, the SCPT did not sample the stiffer matet depths of 160 to 200 ft
as shown by the lack of fit to the SASW theoretichdpersion curve at
wavelength greater than 100 ft. Again, this diffexe is most likely attributed to

lateral variability.

These comparisons are made not to imply any emargeasurements but to show
typical differences that should be expected assigh high lateral variability between

global and localized (at depth), ¥heasurements.

8.8CONCLUSIONS

The Spectral-Analysis-of-Surface-Waves (SASW) meéth® an in-situ, non-
destructive method for determining shear-wave \usland thus, stiffness of subsurface
materials. As part of a geotechnical engineeringestigation, SASW tests were
performed at fourteen locations at an industriaé sn British Columbia, Canada.
Comparisons of velocity and stratigraphy betweenS®8A standard penetration test
(SPT) boreholes, and seismic piezocone penetré&gtnsoundings (SCPT) were made.
The results showed that: (1) the borings revealgdfecant lateral variability in material
at a few test sites; (2) SASW testing with a ldng#dozer as the seismic source, within
the active industrial complex, allowed profiling to depths of around 200 to 400 ft; and
(3) good agreement was generally observed betwa&WSand SCPT results, once the
difference between global and localized sampling e@nsidered.

In this chapter, it is demonstrated thatpvofiles can be sub-divided based on the
empirical relationships between depths and sheae walocities for different materials.
Good agreement between SASW profiles and boring record is expected when latera
variability in material at a site is low. Laterahnability contributed to much of the

difference between Morofiles from SASW and SCPT tests. It is interggtio see how
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V¢ profiling with a global sampling method (SASW) imed and a localized sampling
method (SCPT) can contribute to improved subsurfag®rmation and better

interpretation of the geotechnical setting at ihe s
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Chapter 9 Summary, Conclusions and Recommendations
9.1SUMMARY

Shear wave velocity of geotechnical materials caruged in dynamic structural
design and site amplification analysis. A widelyedssin-site method to assess the
properties of geotechnical materials at small stlavels is surface wave testing. In this
dissertation, three surface wave testing methogectal-Analysis-of-Surface-Waves
(SASW), Multichannel-Analysis-of-Surface-Waves (MWS based on F-K transform)
and Multichannel Surface wave method (based on Bwamng (BF)) were studied. The
dissertation can be divided into the following #rparts: (1) introduction of wave
propagation theory and general procedures of sarfeve testing, (2) numerical and
field parametric studies with Spectral-AnalysisSfrface-Waves, Beamforming and
Multi-Channel-Analysis-of-Surface-Waves testing huets and (3) characterization of
material by shear wave velocity profiles from SA$#ts at two project sites.

The fundamentals of wave propagation in a unifomf-space and a uniform,
horizontally-layered half-space are discussed herEe dispersive nature of Rayleigh
waves propagating in a vertically heterogeneousiuneforms the basis of surface wave
testing. The transfer matrix method, a techniquezlus calculate the theoretical solutions
of dispersion curves, is presented in Chapter 2.itroduction is followed by a series of
discussions on the performance and characterisifcexisting forward modeling
algorithms. It is concluded that the dynamic sefa matrix method, proposed by Kausel
and Rosset (1981), is able to generate dispersiores for both plane Rayleigh wave, as
presented by a 2-D solution, and combination ofytexad cylindrically Rayleigh waves,
as presented by a 3-D solution.  Sensitivity issigvere performed based on a layered

model (as representing a generalized geotechnidasystem) to investigate the impact
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of model parameters (layer thickness, densityakd \f) on the shape of dispersion
curves.

The general procedures for surface wave testingGVBABF and MASW are
discussed. The original steady-state, Rayleighewagthod is the method that began R-
wave testing to characterize material propertiesvias cumbersome and empirically
based. The SASW method significantly reduced fiegling time and developed a sound,
theoretical solution to analyze the field data. M&SW method uses multi-channel of
receivers to collect data simultaneously and cdsvire wavefields into a frequency-
wavenumber domain by F-K transform to find the eslgvith maximum energy, which
are then transformed into experimental dispersimves. Beamforming technique also
analyzes multichannel data and generates dispassioes like the MASW method.

The results and discussions based on the analfysigthetic seismograms from
three models are presented in Chapter 4. The thredels are used to represent
geotechnical sites under three circumstances: kEdeaock site, (2) a normally dispersive
site and (3) an inversion site. All data are preedswith the SASW 3-D method, F-K
and beamforming techniques to produce experimeiggiersion curves, which are then
compared to theoretical solutions in both modal @mglarent phase velocities. It is found
that SASW method produced results in apparent piaseities, which agree well with
the results from F-K and beamforming transform wHepersion data corresponding to
the maximum energy among all modes along the freqyuaxis are used. However, the
typical MASW method generally only uses the thaoae¢fundamental mode solution to
fit the field data.

A comprehensive parametric study on source typeiver type and test setup of
surface wave testing at Hornsby Bend site is ptegem Chapters 5 and 6. Two trips

were made with different seismic sources (T-Rex lagdidator) and receiver spacings.
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The results from the SASW test performed at theereof the test array, were used as
references to compare with the results from MASWting. Different source signals
(chirp, stepsine and Ricker wavelet, along withithpact from a 12-Ib sledge hammer)
with different frequency components were used lrotihhe SASW, BF and MASW tests.
Two types of geophones (vertical velocity transdsicene with a resonant frequency of
1-Hz, another of 4.5-Hz, were used as receivens diiterent spacings in both tests. For
the MASW test, source-to-receiver spacings, nurobgeophones and geophone spacing
were varied to study their impacts on the shapes)gferimental dispersion curves.
Results from the SASW, BF and MASW tests are coeppand discussed in terms of
both dispersion curves and shear wave velocity ilpeof Two signal processing
techniques, one in the frequency domain aimedtespolate ill-sampled phase plots, and
another in the spatial domain for possible improgemof spatial resolution, were
presented. CPT and SCPT results, along with a @pdag at the Hornsby Bend area,
were compared with Mrofiles from the SASW tests.

It is shown in Chapters 7 and 8 that the shear walaity profiles from SASW
testing can be further interpreted and grouped ditferent material types based on
comparison with empirical reference profiles for various materials. Spectral-Analysis-
of-Surface-Waves surveys were performed on the I8Bignd of Hawaii to obtain ¥
information beneath the 22 USGS strong-motion atati The shear wave velocity
profiles were divided into portions that containeuveathered basalt, weathered basalt
and stiff soil. The new Yydata were used to develop a NEHRP site class arapé Big
Island. The SASW test results from a project sit®iitish Columbia, Canada is shown
in Chapter 8. The empirical relations between shesve velocity and depth for soft
soil, dense sand and dense gravel were used &ratiffate portions of thes\profile into

different material types. Six groups of materialrevereated based on the reference
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profiles. The groups of interpreted material basedhear wave velocity from the SASW
test are compared to the existing geological infdrom, such as SCPT, CPT and SPT

test results as well as boring logs.

9.2CONCLUSIONS

By comparing the performance of SASW and MASW testis concluded that:
(1) In the SASW method, data are processed basedpparent phase velocity and
analyzed with a theoretical 3-D solution to incluthe influence of various types of
waves (body, fundamental and higher modes of Rglylevaves). Thus, this method
produces a correct representation qf profiles within the assumption made in the
analysis (lateral uniformity, horizontal layerirgtc) and (2) In the MASW method, data
are processed based on modal phase velocity biyzadawith only the fundamental
mode solution. It is observed that when higher rsatt@minate, the resultings\profile
from the matching process with only the fundamentatle may lead to a biased result
(overestimating material stiffness at the Hornslepd site). A better inversion program
is needed to fit the MASW and BF field dispersiamves.

Based on the results from the parametric studidseatiornsby Bend Sites, a few

conclusions are made regarding the MASW testingriegcie:

1) Source energy plays a critical role in defining #agerimental dispersion
curve for the MASW testing (This point is also trioe other surface wave
methods). Stronger sources are always preferred dieeper material
investigations. For example, a 12-lb sledge hanoaarproduce a maximum

usable wavelength up to about 100 ft, whereas aHg-&hirp produced by
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2)

3)

4)

5)

Liquidator can reach a maximum wavelength of alda\@0 ft at the Hornsby
Bend site.

Source offsets affects the shape of the experirhdigpersion curve. As the
source moves away from the receiver array, lessnmtion is obtained on
the shallower material. Also, higher modes gragudminate the apparent
phase velocity as the source moves away from tteavers.

It is observed that by keeping the same lengthhef test array, receiver
spacing has a noticeable influence on the usalolgeraf the experimental
dispersion curves from MASW testing. The larger theeiver spacing is, the
more severe the spatial aliasing is in the testltteAt this site, by comparing
the performance of 3-ft, 10-ft and 16.4- ft (5-n&ceiver spacings, it is
observed that the problem of spatial aliasing nyaodcurs at higher modes.
By implementing a spatial interpolation techniqtie dispersion curve in the
aliased zone could be recovered for the data ditinesby Bend site.

By changing the number of receivers while maintagniequal receiver
spacing, the total length of test array is alteaed dispersion results are
changed. These changes can be attributed to:téllageral variability and (2)
higher modes at larger receiver distances. At tbensby Bend site, it was
found that higher modes play a more important roledefining the
experimental dispersion curve. It was also discede¢hat an adequate length
of the test array should be used to correctly gaptoaterial properties at
deeper depths. This length is about 200 ft forHbensby Bend site.

Two types of receivers, 1-Hz geophones and 4.5-é¢tplgones, were used in
collecting vertical ground motions induced by secsources. They generally

produced similar results given the same receiverciag and number of
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receivers used. However, 1-Hz geophones out-peddrt5-Hz geophones
since they have a better mechanical design atdeguéncies.

Material characterization based on shear wave iglpcofiles can be done by
comparing measured s\profiles to reference profiles for different maas once a
general idea of material types is known. By compathe interpreted Mmaterial groups
to the existing geological information, good agreemwas observed when lateral
variability was low at the site. However, poor agreent can occur when lateral
variability is high, since surface wave testing\pdes global measurements while CPT,

boring and other traditional testing techniquesegate localized measurements.

9.3RECOMMENDATIONS

The research presented in this dissertation wadumb@d only at the Hornsby
Bend site. Additional experimental studies showdcchrried out at other sites, e.g. strong
velocity contrast at shallow depths, existencenaktinversion zones or dipping material
boundaries, to study the characteristics of theasarwave methods.

A more robust forward modeling algorithm and invensprogram should be
developed for the experimental dispersion curvemfthe multi-channel surface wave
testing. The approximation of using the 3-D or 2AINSASW solutions to match the
“fundamental mode” of the MASW dispersion curveutesin differences of Yprofiles
estimated from different surface wave methods, winiay leads to a biased estimate of
Vs value for the MASW method.

Spectral-Analysis-of-Love-Waves(SALW) or MultichaAnalysis-of-Love-
Waves(MALW) should be carried out if multiple haointal geophones are available to

be used in the field testing. The potential of depiag this technique is that it can be
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combined with SASW (or MASW) to develop a more rstb\s profile. Again, a robust
forward modeling algorithm should be developed ameyate multi-mode theoretical

dispersion curves for Love waves.
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