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As the cost of designing and building new highway pavements increases  and the 

number of new construction and major rehabilitation projects decreases, the importance 

of ensuring that a given pavement design performs as expected in the field becomes vital. 

To address this issue in other fields of civil engineering, reliability analysis has been used 

extensively. However, in the case of pavement structural design, the reliability 

component is usually neglected or overly simplified. To address this need, the current 

dissertation proposes a framework for estimating the reliability of a given pavement 

structure regardless of the pavement design or analysis procedure that is being used.  

As part of the dissertation, the framework is applied with the Mechanistic-

Empirical Pavement Design Guide (MEPDG) and failure is considered as a function of 

rutting of the hot-mix asphalt (HMA) layer. The proposed methodology consists of fitting 

a response surface, in place of the time-demanding implicit limit state functions used 

within the MEPDG, in combination with an analytical approach to estimating reliability 

using second moment techniques: First-Order and Second-Order Reliability Methods 
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(FORM and SORM) and simulation techniques: Monte Carlo and Latin Hypercube 

Simulation.  

In order to demonstrate the methodology, a three-layered pavement structure is 

selected consisting of a hot-mix asphalt (HMA) surface, a base layer, and subgrade. 

Several pavement design variables are treated as random; these include HMA and base 

layer thicknesses, base and subgrade modulus, and HMA layer binder and air void 

content. Information on the variability and correlation between these variables are 

obtained from the Long-Term Pavement Performance (LTPP) program, and likely 

distributions, coefficients of variation, and correlation between the variables are 

estimated. Additionally, several scenarios are defined to account for climatic differences 

(cool, warm, and hot climatic regions), truck traffic distributions (mostly consisting of 

single unit trucks versus mostly consisting of single trailer trucks), and the thickness of 

the HMA layer (thick versus thin). 

First and second order polynomial HMA rutting failure response surfaces with 

interaction terms are fit by running the MEPDG under a full factorial experimental design 

consisting of 3 levels of the aforementioned design variables. These response surfaces are 

then used to analyze the reliability of the given pavement structures under the different 

scenarios. Additionally, in order to check for the accuracy of the proposed framework, 

direct simulation using the MEPDG was performed for the different scenarios. Very 

small differences were found between the estimates based on response surfaces and direct 

simulation using the MEPDG, confirming the accurateness of the proposed procedure.  

Finally, sensitivity analysis on the number of MEPDG runs required to fit the 

response surfaces was performed and it was identified that reducing the experimental 

design by one level still results in response surfaces that properly fit the MEPDG, 

ensuring the applicability of the method for practical applications. 
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Chapter 1:  Motivation 

The design of civil structures is a complex process and many factors have to be 

considered in any given design. This is especially true in the case of pavement design: for 

both structural and individual layer material design. In pavement structural design, it is 

common to consider the input variables as fixed or deterministic, with the exception of 

some variables, such as modulus of the supporting layers, which might be corrected due 

to seasonal variations. However, regardless of these seasonal modifications of a few 

design variables, they are still considered to be deterministic or fixed. This is the case of 

the AASHTO Guide for Design of Pavement Structures which is based on fixed 

structural and material inputs (AASHTO, 1993). The only material property that is 

considered to change during the design period is the modulus of the subgrade soil. This is 

done by allowing the designer to specify fixed monthly (or seasonal) deterministic values 

for the subgrade modulus. 

More recently, design methods of higher sophistication that partially account for 

the mechanistic behavior of the pavement structure have been introduced. Such is the 

case of the Mechanistic-Empirical Pavement Design Guide, or MEPDG (AASHTO, 

2008). However, regardless of the considerable advances introduced in the MEPDG 

analysis procedures, the design variables are still fundamentally deterministic or fixed 

(AASHTO, 2008). In the case of the MEPDG, not only the subgrade modulus, but the 

modulus of the different unbound material layers is corrected to account for moisture 

variations on a bi-weekly basis to estimate the performance of the pavement structure 

through the design life of the pavement structure. Similarly, the effect of temperature 

changes in some material properties of the bound layers (hot-mix asphalt layers or 

Portland cement concrete layers) is modeled by the MEPDG. However, as with the 
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AASHTO Guide for Design of Pavement Structures, the modified values are still 

fundamentally fixed or deterministic since they are based on a fixed input value specified 

by the designer. 

Unfortunately, in reality, none of the design input variables are actually 

deterministic. Because of the considerable amount of heterogeneity in the materials, 

environment, and structural properties most, if not all, of the design variables are random 

and associated with a range of values characterized by a given population distribution. 

One might wonder if this is really important since using a representative fixed value for 

each design variable, such as the mean, will produce an average indication of the 

pavement deterioration. However, the field variation of some of the most important 

variables in the pavement design process, such as the thickness of the different layers, is 

considerable and even small deviations from the mean can result in significant changes to 

the expected performance of the pavement structure (Selezneva et al., 2002; Jiang, 2003; 

Aguiar et al., 2009). Similar observations have also been expressed by Prozzi et al. 

(2006) with regards to the volumetric properties of the hot-mix asphalt (HMA) layers. 

Therefore, to account for the deterministic assumption, the previously mentioned 

design methodologies associate probabilities of failure and assign reliability levels to the 

pavement designs by introducing variability empirically to the pavement deterioration 

estimates. However, the variability that is associated with the deterioration models in 

current design methodologies is normally obtained from experience or from the 

deterioration models and are, as a result, very limited in their applicability. Additionally, 

the reliability estimates based on this variability assumptions have been proven to be 

significantly different to the reliability estimates obtained when the true variability of the 

different design factors are considered (Prozzi et al., 2005). 
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Consequently, proper consideration to the variability of the different design 

variables has to be introduced to current pavement analysis methodologies. Additionally, 

proper methods to account for this variability and to correctly estimate the probability of 

failure of the pavement structure and its reliability have to be introduced. This is 

especially important nowadays because not only the cost of materials, but the costs 

associated with the overall construction, rehabilitation, and maintenance of pavement 

structures has risen considerably. Therefore, it is the responsibility of the designer to 

provide the most accurate predictions so that the pavement structures that are designed 

perform as they are expected to through their design lives, and the occurrence of 

premature failures is minimized. 

1.1. RESEARCH OBJECTIVES 

This dissertation research aims at developing and evaluating an alternative 

approach to assess reliability, and to capture important aspects that are often ignored in 

traditional reliability analysis of pavement structures. Towards this purpose, the 

reliability approaches used with current pavement design and analysis methodologies are 

critically reviewed. This review allows identifying the benefits and shortcomings of the 

currently used methodologies. 

Additionally, more robust methodologies to address the reliability of structures 

such as second moment techniques (First and Second Order Reliability Method, FORM 

and SORM, respectively) and Monte Carlo and Latin Hypercube simulation are 

introduced and applied towards the development of a framework to estimate the 

reliability of pavement structures. 

Because of the importance of the variability of pavement design variables in the 

actual reliability of a pavement structure, a set of input variables that were proven to have 
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a significant effect on the deterioration and performance of pavement structures are 

evaluated using field data collected as part of the Long Term Pavement Performance 

(LTPP) Program since 1987. 

Then, an experiment was designed to evaluate the reliability of pavement 

structures as characterized by means of the MEPDG (based on rutting of the HMA layer 

as failure criterion). The experimental design looks at the effect of the input parameters 

that is characterized by means of LTPP, as well as several environmental, structural, and 

traffic loading scenarios. The experimental plan also allows for the application and 

evaluation of the reliability framework (FORM, SORM, and simulation) under several 

conditions. This permitted the comparison of the reliability estimates from the proposed 

framework, to those obtained directly from the MEPDG. 

1.2. DISSERTATION LAYOUT 

The remainder of this dissertation is structured as follows: Chapter 2 presents a 

literature review that introduces the different approaches to pavement design, and how 

the different factors involved in the design of pavement structures have an effect on 

expected field performance. Additionally, a general overview of reliability in pavement 

design and analysis is presented. 

Following this review, Chapter 3 focuses on reliability theory. Initially, the 

chapter introduces how reliability is specifically addressed in the AASHTO Guide for 

Design of Pavement Structures and in the MEPDG. The chapter also focuses on the 

uncertainty and variability associated with all the different factors involved in the 

empirical and mechanistic-empirical models used in pavement analysis and design. Then 

the chapter introduces robust simulation and numerical approximation approaches 

(second moment techniques such as FORM and SORM) to estimate reliability based on 
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pavement design and analysis methodologies so that the variability of different factors 

affecting the performance of pavement structures can be considered. 

In Chapter 4 a sensitivity analysis of the different design inputs in the MEPDG is 

performed, and based on it a reduced set of variables is selected. The selected subset of 

design variables are treated as random for the remainder of the dissertation. 

Consequently, their distributions and variability need to be properly characterized. 

Towards this purpose the Long Term Pavement Performance database is used. 

In Chapter 5, several design scenarios are developed to account for differences in 

climatic / geographical location, HMA layer thickness, and truck traffic distribution. 

Then, for all of the previous scenarios, first order response surfaces are developed based 

on 3 levels for each of the random design variables. Based on the previous response 

surfaces, the reliability is estimated exactly for the different scenarios. Additionally, 

simulation using a Crude Monte Carlo and a Latin Hypercube approach are used to 

estimate reliability. 

In Chapter 6, the response surfaces for all of the scenarios are corrected to 

account for nonlinearities in the limit state function (second order polynomial functions). 

The corrected responses surfaces are then used to estimate reliability by means of FORM 

and SORM. Additionally, an elasticity analysis is performed on the different random 

design variables to quantify the effect of these on reliability. Simulation is also used to 

corroborate the SORM results. 

Up to this section all the analysis is based on the assumption that the response 

surface approach to estimating reliability is adequate. Then, to corroborate this 

assumption, direct simulation based on Latin Hypercube sampling using the MEPDG is 

performed in Chapter 7. The differences between the reliability estimates using response 

surfaces and direct simulation using the MEPDG are evaluated. The direct simulation 
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approach also allows evaluating the effect of time on reliability under the different 

scenarios.   

In Chapter 8, a sensitivity analysis to the required number of MEPDG runs to fit a 

given response surface is performed. The possibility of reducing this number is evaluated. 

This is an important component since the time required to run a single instance of the 

MEPDG is a constraint when hundreds or thousands of runs are required. 

Finally, Chapter 9 presents a summary of the results obtained through the 

dissertation. Conclusions are also made based on the previous observations. Additionally, 

ideas for future related work are introduced. 
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Chapter 2:  Literature Review 

Any good civil engineering design has to take into consideration two fundamental 

aspects: 1) well established scientific principles that describe how the structure in 

question will behave, and 2) the probability that the structure might fail after a given 

period of time. This is particularly true for pavement structures which are designed to 

reach failure conditions only after a given period of time. This dissertation proposes an 

approach that applies reliability concepts to address the two aspects simultaneously. The 

two initial chapters of this dissertation introduce 1) an overview of currently used 

pavement design methodologies, 2) what factors have an effect on pavement 

performance, 3) estimation of failure probabilities, and 4) how failure probabilities are 

currently incorporated into the design methodologies. 

2.1. STRUCTURAL PAVEMENT DESIGN 

Current structural pavement design methodologies can be classified into two main 

categories depending on the principles that are used for quantifying pavement 

deterioration throughout the service life of the pavement structure: empirical and 

mechanistic-empirical.  

Purely empirical designs are based on deterministic or probabilistic models that 

predict pavement performance or pavement deterioration as a function of variables that 

have been identified as having an important effect on the performance or on the 

deterioration indicator that is being used to quantify the efficiency of a given design. 

Development of empirical models require accumulated experience (Read and Whiteoak, 

2003), as well as the construction and long term monitoring of pavement sections similar 

to the ones that are intended to be designed, under diverse loading and environmental 

conditions, so that the models that are developed by means of regression analysis or 
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different econometric approaches are sound and dependable. An example of a purely 

empirical pavement design method is the American Association of State Highway and 

Transportation Officials (AASHTO) Guide for Design of Pavement Structures 

(AASHTO, 1993). 

Mechanistic-empirical design methods basically consist of a two-step process. 

The first step involves the mechanistic determination of the pavement response by means 

of simplified mathematical formulations of the pavement structure such as multi-layer 

linear elastic analysis, or more complex methodologies such as finite difference or finite 

element analysis. The second step involves estimating pavement performance as a 

function of the previously estimated pavement responses by means of empirical models 

that, as in the case of purely empirical models, have been calibrated by means of field and 

laboratory data. All the most recent design methodologies can be classified as 

Mechanistic-Empirical (ME). A good example is the Mechanistic-Empirical Pavement 

Design Guide (MEPDG) developed under the National Cooperative Highway Research 

Program (NCHRP) Project I-37A (AASHTO, 2008). 

Ideally, we would like to design a pavement structure as any other civil 

engineering structure, i.e. in a purely mechanistic way. However, this is impossible due to 

the heterogeneities associated with the materials and processes involved in the design and 

construction of pavements, as well as the shape of the pavement structures: many miles 

long, few feet wide, and only inches high. A purely mechanistic approach to pavement 

design is currently infeasible since it would also require the characterization and 

quantification of pavement performance purely by means of physical or mechanistic 

models. Clearly this approach is still currently conceptual (Hass et al., 1994). 
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A brief description of the most commonly used design methodologies in the 

United States (AASHTO Guide for Design of Pavement Structures and MEPDG) 

follows. 

2.1.1. AASHTO Guide for Design of Pavement Structures 

The AASHTO Guide for Design of Pavement Structures was originally published 

in 1972 as an Interim Guide, and updates were later published in 1986 and 1993 

(AASHTO, 1993).  The AASHTO Guide is based on the results from the American 

Association of State Highway Officials (AASHO) Road Test conducted near Ottawa, 

Illinois, from 1958 through 1960 (NCHRP, 1972). A maximum of 1,114,000 axle loads 

were applied to the test sections that survived the full trafficking period in what can be 

described as one of the most comprehensive pavement experiments ever conducted. 

The concept of user perception of the ride quality along the road was introduced 

as part of the design methodology. Performance was defined as a function of the riding 

quality, or serviceability, of the pavement structure for a given amount of traffic loading 

or time. The concept of the 18-kip equivalent single axle load (ESAL) was also 

developed as a statistic to capture cumulative traffic loading. 

The 1993 AASHTO Design Guide consists mainly of a purely empirical design 

methodology, in which the traffic distribution that is expected for a new pavement facility 

(demand) is converted into ESALs that are then used to calculate the required thickness 

of the pavement structure (supply) so that the expected traffic does not exceed the 

capacity of the pavement structure (AASHTO, 1993). An additive error term is 

incorporated into the equation to account for all types of variability, including the 

uncertainty in the demand and the supply sides. 
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As an example, the AASHTO design equation for flexible pavements is as 

follows: �������� 	 
��
 � ���� ������ � �� � ��� � �������������� � �������� � ���� ��� � ����� ! �"
� ���� ����#�� � $��%�����������������������������������������������������������������������������������&���' 

where, ��� : equivalent single axle loads (ESALs) 
�  : standard normal deviate �
  : standard error ��  : structural number (function of pavement layer thickness and drainage  

    conditions) ���� : change in serviceability from the initial construction to the end of the  

   service life of the pavement structure. #�  : effective subgrade resilient modulus 

Unfortunately, because the experiment was confined to only one location, the 

AASHTO Design methodology has severe limitations for predicting the performance of 

1) different pavement types, 2) higher levels of loading and types of loads, 3) long-term 

performance of pavement structures, and 4) different environments and material types.  

2.1.2. Mechanistic-Empirical Pavement Design Guide (MEPDG) 

The MEPDG is “Mechanistic-Empirical” because it uses both mechanistic and 

empirical principles to predict pavement performance. First, it employs a mechanistic 

approach by making use of a multi-layer elastic or finite element analysis to calculate 

stresses and strains on the pavement structure due to traffic loading and weather patterns 

forecasted for the pavement structure that is to be designed. In a second stage, pavement 

responses (stresses or strains) are used to predict (by means of empirical models) how the 
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performance of a pavement structure will evolve through the design period. Figure 2.1 

conceptually shows the processes involved in the MEPDG analysis procedure. 

The MEPDG includes empirical models to predict rutting, top-down cracking, 

bottom-up cracking, thermal cracking, and smoothness on flexible pavement structures 

and transverse cracking, faulting, punchouts, crack width, load transfer efficiency, crack 

spacing, and smoothness on rigid pavement structures (NCHRP, 2004; AASHTO, 2008). 

 

Figure 2.1: Schematic of processes involved in the MEPDG (from NCHRP, 2004). 

In order to perform a pavement analysis using the MEPDG, detailed information 

on climate, material properties, traffic, and the pavement structure is required. These data 

are then used to determine pavement response (the mechanistic component of the design 

process) on a bi-weekly basis. The pavement response is finally used to estimate 

cumulative damage for different distress types by means of models that have been 

calibrated using pavement sections that are located throughout North America (the 

empirical component). These models are often referred to as performance models or 

transfer functions. 
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The MEPDG can also be viewed as an iterative analysis tool since the outputs that 

are obtained are different pavement distress types and roughness over time, and not layer 

thicknesses. Based on AASHTO (2008), the MEPDG design process should be as 

follows: 

1. Selection of design strategy (which can be based on other design methodologies). 

2. Selection of the acceptable performance loss (failure criteria). 

3. Obtaining all the input information required to run the MEPDG at the desired 

level. 

4. Running the MEPDG and checking the reasonableness of the inputs and outputs. 

5. Revise the design strategy from “Step 1.” as needed. 

Depending on the quality of the information available to the designer, the design 

can be classified as Level 1, 2, or 3. A Level 1 design is very data intensive and requires 

detailed project-specific traffic, material, and environmental information, while a Level 3 

design can be performed when the knowledge of the involved variables is more general 

(e.g. state or regional default values).  

2.2. FACTORS AFFECTING PAVEMENT DESIGN 

The performance of the pavement structure is a function of several factors that 

have to be considered regardless of the design procedure that is used. The most important 

parameters that any design methodology should capture are traffic, environmental 

conditions, and structure and materials. Additionally, there are other factors that have an 

effect on how the pavement structure will perform in the field after it has been designed 

that cannot be directly accounted for in design process, such as construction quality and 

preventive and routine maintenance activities. 
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2.2.1. Traffic 

Pavement structures are designed to support a given amount of traffic throughout 

their services lives. Traffic loading is a very difficult variable to characterize and forecast 

for the designer and the traffic demand modeler. Furthermore, traffic loading estimates 

can digress considerably from the actual values that will be observed in the field, 

resulting in performance noticeably different to that which was originally predicted in the 

design (Hass et al., 1994).  

Traffic loads are applied to the pavement structure by a wide variety of vehicles, 

ranging from light passenger vehicles with single axles which cause virtually no 

structural damage to the pavement structure, to considerably heavier trucks that carry the 

load on single, tandem, tridem, or quadruple axles and can cause failure of the pavement 

structure due to the high stresses and strains induced on the structure. In order to properly 

consider traffic in the pavement design process several traffic related variables such as  

axle load distribution, axle geometry, wheel load, tire pressure, traffic speed and traffic 

wandering, directional and lane traffic distributions, traffic growth trends, and load 

duration and distribution have to be considered. 

Because of the difficulty involved in characterizing the traffic demand, different 

approaches to how traffic is accounted for in the design process have been used. In the 

case of the AASHTO 1993 design methodology all axles are converted to 18-kip 

equivalent single axle loads (ESALs) as a method of capturing cumulative loading. The 

conversion to ESALs is done by means of Axle Load Equivalency Factors (ALEFs) 

(AASHTO, 1993). Based on Prozzi and Hong (2007), ESAL can be statistically 

described as the fourth moment of the axle load spectra.  

In the case of the MEPDG, depending on the level of the design, the required 

information can range from Average Annual Daily Traffic (AADT) and percentage of 
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trucks for a Level 3 design to axle load spectra for a Level 1 design. In order to obtain 

axle load spectra for the different vehicle classes, Weight-in-Motion (WIM) stations are 

required. Unfortunately, WIM stations are only located in specific locations through the 

United Stated, such as major Interstates Highways or Freeways. However, this issue has 

been identified (Hong and Prozzi, 2006) and recommendations for placing temporary 

WIM stations in under-represented climatic regions and facility types have been made. 

Additionally, more general State-Level axle load spectra have also been developed for 

some states such as Texas (Hong and Prozzi, 2006). 

2.2.2. Environmental Conditions 

Environmental conditions have an important effect on the performance of flexible 

and rigid pavements, as well as on material properties. The environmental factors that 

have a major influence in pavement performance are moisture and temperature. Some of 

the effects of moisture and temperature are the following (NCHRP, 2004): 

• Change in modulus of layers containing asphalt binder due to the visco-elastic 

nature of the material. 

• Increase in modulus of the unbound and granular materials under freezing 

temperatures, due to the formation of ice. However, under thawing conditions, 

water is trapped below the surface causing significant hydrostatic pressure under 

loading, as well as a considerable decrease in the strength of the unbound and 

granular materials. 

• Temperature and moisture gradients can have a direct effect on the stresses and 

strains of the upper layers. 

• An increase in moisture content decreases the modulus of unbound materials, 

increases the stresses in the pavement structure due to hydrostatic pressure or 
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suction, and can affect the bonding or cementing properties of the bound 

materials. 

Additionally, solar radiation has a hardening effect (photo-oxidation) on asphalt 

pavement surfaces causing the volatilization of the lighter components of the asphalt 

binder (Read and Whiteoak, 2003). This can be associated with an increase in pavement 

stiffness and loss of flexibility. 

2.2.3. Structure and Materials 

Regardless of the type of pavement to be designed, ultimately it is the materials 

used in the different layers that determine the performance of the pavement structure. 

Therefore it is extremely important to identify material properties that accurately 

characterize the materials in question (NCHRP, 2004).  

Design material inputs can range from extremely detailed material properties that 

require sophisticated laboratory testing and equipment to very simple and empirical 

material properties. Some of the material requirements of current ME design guides are 

summarized in the following paragraphs. 

In the case of hot-mix asphalt (HMA), it is important to have fundamental 

material properties such as dynamic modulus (E*) master curves (to cover all temperature 

and loading frequency combinations of interest) and Poisson’s ratio. Additionally, other 

indicators of strength such as indirect tensile strength (ITS) can be used. Furthermore, 

viscosity of the asphalt binder and volumetric properties of the asphalt mix have an effect 

on performance. 

For Portland cement concrete (PCC) materials, variables such as elastic modulus 

(E), Poisson’s ratio, unit weight, and thermal expansion coefficients are of interest. 

Additionally, as with most PCC structures, tensile strength, compressive strength, 
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modulus of rupture, water-to-cement ratio, cement type and content, among other 

variables are of interest and have a significant effect on the construction and performance 

of the PCC layers. 

In the case of unbound base and subbase layers and subgrade materials, designers 

are typically interested in resilient modulus (MR) adjusted for seasonal variations, 

Poisson’s ratio, unit weight, and coefficient of lateral pressure. Additional parameters that 

should be included in the design process are plasticity index (PI), material gradation, 

specific gravity, and optimum moisture content. For chemically stabilized materials, 

elastic modulus (E) is also required. 

Finally, if the pavement structure is close to the bedrock, its elastic modulus (E), 

Poisson’s ratio, and unit weight need to be accounted for, as well as the depth to the 

location of the bedrock. 

2.2.4. Interaction between design variables 

It is important to highlight that the effects of the previous design variables are, in 

general, not independent from one another and an adequate design model should try to 

capture these interactions as well as possible. Critical conditions can occur when some of 

the previous variables combine in specific settings, i.e., an increase in traffic loading 

under very warm temperatures on a flexible pavement structure can lead to considerable 

rutting and shoving (Huang, 2003), or a decrease in the lighter or more volatile 

components in the asphalt binder due to several factors (aging) can facilitate the cracking 

of the pavement surface due to the increase in stiffness. 

2.3. RELIABILITY IN CURRENT PAVEMENT DESIGN METHODOLOGIES 

Before introducing the different reliability concepts from previous and current 

design methodologies, it is important to understand what levels of reliability pavement 



 
 
 
 

 17 

structures are typically designed for. As with any design, higher reliability levels are 

required for high importance structures, and lower levels can be selected when designing 

less critical structures. In the case of pavements, higher levels of reliability are typically 

selected for higher volume or functionality roads. The opposite is the case of local or low 

volume roads. Table 2.1 shows what are the minimum reliability levels recommended by 

the AASHTO (1993). Note that the levels of reliability that are used in the design of 

pavement structures are very different than those used in civil structures which tend to 

have expected probabilities of failure in the order of 10-4 or lower. 

Table 2.1: Minimum reliability levels recommended for pavement structures (from 
AASHTO, 1993). 

Functional                 
Classification 

Minimum Recommended                               
Level of Reliability (%) 

Urban Rural 
Interstate and Other Freeways 85 80 
Principal Arterials 80 75 
Collectors 80 75 
Local 50 50 

In the case of the 1993 AASHTO Guide, the empirical design equations, e.g. &���', include a term that accounts for uncertainty in the design process, also known as a 

“safety factor”: ZR S�. This is a simple approach to accounting for reliability since it 

consists of using the inherent variability associated with the model to provide confidence 

intervals that are then used to define tolerances for pre-selected reliability levels. There 

are several limitations to this approach, among which are the assumption that the data are 

distributed normally but, more importantly; it is not possible to directly account for 

variability in material properties, climatic and geographical differences, traffic, etc., 

separately. Furthermore, the empirical model was developed without accounting for 

possible correlation between the design variables (assumption of independence), such as 
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correlation between different layer thicknesses which have been demonstrated to be 

related as a result of the construction process (Aguiar-Moya et al., 2009). 

This type of approach to reliability might not always be appropriate since it 

depends on the standard deviation of the model (which is in turn also dependent on the 

statistical modeling techniques that were used in developing it).  The standard deviation 

is mostly intended as an indicator of the accuracy of the predictions of the model. In the 

recently released Mechanistic-Empirical Pavement Design Guide (MEPDG) a similar 

approach to the one above has been used (ARA, 2004). The probability of failure is 

calculated using a normal distribution-based probability (with mean predicted by the 

distress model and standard deviation derived as a function of the distress itself) of 

exceeding the pre-specified distress threshold for failure (AASHTO, 2008). However, as 

with the 1993 AASHTO Guide, one can ask if such a simplification for the consideration 

of reliability is robust. What happens when the variability of the different factors 

considered in the design or analysis of a pavement structure are directly considered? 

What is the true reliability of a given pavement structure? 

Note that even though the empirical models for pavement performance in the 

MEPDG are shown in closed form, they require inputs from the structural response 

model (mechanistic analysis) that are estimated for bi-weekly intervals over the design 

life of the pavement structure. This is a great limitation in directly attempting to perform 

reliability analysis using simulation methods because the MEPDG analysis has no closed 

form solution and each run of the model is time-consuming. Furthermore, running the 

MEPDG several hundreds or thousands of times requires significant computational effort 

and resources. 

More specific details on how reliability is accounted for in the AASHTO Guide 

and the MEPDG are presented in the following chapter.  
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Chapter 3:  Reliability 

Reliability can be defined as “the probability that a component or system will 

perform a required function for a given period of time when used under stated operation 

conditions (Ebeling, 2005)”. Simply stated, it is the probability of non-failure for a given 

period of time. For the case of pavement structures, the definition of failure needs to be 

clearly described and can be a structural or a functional type of failure. 

A structural failure type corresponds to modes of failure where the pavement 

structure has lost its load bearing capacity (e.g. excessive cracking, moisture damage, or 

rutting). Functional failure type can be associated to cases where the pavement structure 

is still structurally sound but has damage that affects its normal use (e.g. excessive 

roughness). 

Once the proper failure modes have been identified, the threshold for each one of 

them has to be clearly defined (this defines the limit states). Otherwise, the subjective 

issue of what might be acceptable to some might not be to others arises. 

Mathematically, the definition of probability of failure (�.) might be stated as, 

�. 	 �/�0�1� 2 �� 	 34 3 51�6�768�1�9
 ��������������������������������������������������������������������������&���' 
Where ���������is the limit state function (function that separates the failure and non-

failure domains). The probability of failure corresponds to a violation of the limit state.   ��������� is a function that defines the relationship between the limit state or failure and the 

variables that have been determined to have an effect on it (XXXX). 51�6� is the density 

function of the variables that are used in the limit state function, 0�1�.�
Then reliability can be expressed as ; 	 � � �.�������������������������������������������������������������������������������������������������������������������������������������&���' 
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Therefore, estimation of reliability involves solving a multidimensional integral 

that can rarely be solved analytically. Two different approaches to solving [3.1] have 

been used in the literature (Melchers, 1999), 

• Numerical approximations to solve the multidimensional integration, such as 

simulation (Monte Carlo Methods). 

• Transforming the probability density function 51�6� in [���] into a multivariate 

normal probability density function, and using some of the properties of the 

multivariate normal probability density to approximate �. and R. 

The two previous approaches are covered in Sections 3.4 and 3.5 of this Chapter. 

3.1. RELIABILITY IN THE AASHTO GUIDE 

In the AASHTO Guide for Design of Pavement Structures (1993) reliability is 

defined as: “… the probability that any particular type of distress (or combination of 

distress manifestations) will remain below or within the permissible level during the 

design life”. 

The AASHTO methodology is based on an empirical model to predict the number 

of equivalent single axle loads, or ESALs (Wt) before the pavement section reaches a 

specified terminal level of serviceability. The model is based on design variables such as: 

layer thickness, roadbed modulus (MR), drainage and climate conditions, and pavement 

functional factors (terminal PSI), as per &���' for the case of flexible pavements. Wt 
represents the number of ESALs the designed pavement structure can withstand before 

reaching failure (the specified terminal PSI or pt).  
Simultaneously, based on traffic data from traffic counts, WIM stations, or other 

methods, wt (predicted number of ESALs the pavement section will be subjected to) is 
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determined. Ultimately, Wt represents the supplied capacity, while wt represents the 

demand or load that will be applied to the pavement structure. 

Based on the AASHTO methodology, the reliability design factor, based on wt 
and Wt, is defined as B� 	 �CDC ����������������������������������������������������������������������������������������������������������������������������������������� &���' 

Additionally, under the assumption that the factors affecting the variability of Wt, 
and consequently wt, follow a log-normal distribution, the logarithm of Wt is used in 

order to induce normality in the probability distributions. Then it follows that, EF0�B�� 	 EF0��C� � EF0�DC�������������������������������������������������������������������������������������������������&���' 
Eq. [3.3] also represents the reliability design factor, but is solely based on the 

predicted capacity and traffic demand that the pavement section will be subjected to. 

However, in order to introduce the variability of the actual performance the pavement 

section will experiment, as opposed to the predicted one; an overall variation of δ0 is 

introduced and defined as, H
 	 I&EF0��C� � EF0�JC�'������������������������������������������������������������������������������������������������������&���' 
Where Nt is the actual capacity the pavement structure will provide and nt 

represents the actual demand the pavement structure will have to support. The previous 

definition of overall variation is used to define reliability as, ; 	 � � �/�JC M �C������������������������������������������������������������������������������������������������������������������&���' ; 	 � � �/�H
 M ���������������������������������������������������������������������������������������������������������������������&���' 
Standardizing δ0, and defining S� as the as the overall variation (accounts for 

chance variation and traffic prediction variation), the standard normal deviate is defined 

as, 
 	 H
 � HN
�
 	 H
 � EF0�B���
 ���������������������������������������������������������������������������������������������������&��%' 
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And under the assumption that on average, δ0 for the population is 0, 
� 	 �EF0�B���
 O EF0�B�� 	 �
��
������������������������������������������������������������������������������������&��$' 
Where ZR is used to select the different levels of reliability to be considered in the 

design of the pavement structure. The reliability levels are assigned based on the relative 

importance of the pavement structure. 

The approach has the limitation that the overall variation values that are used have 

also been developed for very specific conditions that might not generally apply to current 

pavement technologies. This has been demonstrated by Prozzi et al. (2005) by analyzing 

the reliability of AASHTO method designs by means of simulation. The researchers 

considered the thickness of the different pavement layers and the weekly traffic as 

random variables. They found that the AASHTO reliability level usually differs 

significantly from the actual reliability of the pavement structure, in some cases by as 

much as 40%. 

Rogness (1988) also raised the issue of reliability versus functional class in the 

1993 AASHTO Guide. The researcher suggests that there should be distinction in the 

consequences of failure of different functional classes of pavement structures. Another 

limitation that is highlighted by Rogness (1988) is that the AASHTO Guide does not 

allow for considering reliability of a staged construction process. This means that the 

reliability is set to a fixed level for the entire pavement structure, but it is impossible to 

assign different variability to each pavement layer individually. 

To address some of the previous limitations, Kim et al. (2002) proposed using a 

different procedure for estimating the reliability of pavement structures designed using 

the 1993 AASHTO Guide. The researchers suggested a 2-step Load and Resistance 

Factor Design (LRFD) approach, similar to ones applied in the design of bridges and 
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other concrete or metal structures. In the first step, the performance of the pavement 

structure is determined and in the second step, reliability is estimated by means of 

analytical approximations. 

Alternatively, Kulkarni (1994) suggested replacing the 
��
 term in the 

AASHTO design equations by a safety margin that is a function of previously assumed 

distributions of the Wt�and�wt� 
3.2. RELIABILITY IN THE MEPDG 

Reliability in the MEPDG is defined as that probability that a given distress type 

(distressi) does not exceed the critical limit for that type of distress over the service life 

of the pavement structure (NCHRP, 2004). Mathematically it can be expressed as, ; 	 Pr�7VWX/YWWZ��[�desi�n�pr�\e]t ^ ]riti]a��7VWX/YWWZ��_er�desi�n��i[e������������������&���' 
In order to calculate [3.9] it is assumed that distressi follows a normal 

distribution. The normality assumption can be to used estimate the critical distressi for 

any reliability level R as 7VWX/YWWZ� 	 7`WX/YWWaaaaaaaaaaaZ � �bcZdCefddg
��������������������������������������������������������������������������������&����' 
where ZR is the standard normal deviate for a given level of R, 7`WX/YWWaaaaaaaaaaaZ is the average 

predicted distressi from the MEPDG analysis (MEPDG output for distressi at any given 

time t), and �bcZdCefddg �is the standard error associated with distressi. �bcZdCefddg �is expected to capture the variability in the prediction due to material 

variability, traffic and environmental variability, and modeling errors. The functional 

shape of �bcZdCefddg is different for the different distress types, but in general it is defined 

as a function of the predicted distress by means of the MEPDG analysis, or,  �bcZdCefddg 	 5�7VWX/YWWZ�������������������������������������������������������������������������������������������������������&����' 
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The �bcZdCefddghW were estimated based on the same data that were used to fit the 

MEPDG models as follows. The first step in the estimation of the standard error 

consisted of estimating distressi for all the different pavement sections that were used in 

estimating the MEPDG empirical performance models. Then, the predicted distressi 
were categorized based on the severity of the distress. For example, in the case of rutting 

in the HMA layer the predictions where categorized in the following ranges: 0.0 – 0.1 in, 

0.1 – 0.2 in, …, 0.5 in and above. 

The second step in estimating the model standard error involved computing the 

following statistics for each of the categories defined in the previous step: expected 

(predicted) distressi, existing distressi (average), and the standard error for the estimate 

of distressi. The predicted and observed averages for each category were then compared 

(to “verify” the quality of the predictions). In the third step, an empirical relationship 

between the expected (predicted) distressi and the standard error for the estimate of distressi was developed by means of regression. 

Continuing with the previous example of rutting in the HMA layer, the statistics 

estimated as part of the second step in the estimation of the standard error are 

summarized in Table 3.1. 

Table 3.1: Computed statistical parameters for each category of HMA layer rutting 
(NCHRP, 2004). 

Category 
(in) 

Expected 
(Predicted) 
Rutting (in) 

Average 
Measured 

Rutting (in) 

Standard Error 
for Expected 
Rutting (in) 

Sample 
Size 

0.0 – 0.1 0.05 0.06 0.03 219 
0.1 – 0.2 0.14 0.15 0.06 153 
0.2 – 0.3  0.24 0.12 0.09 61 
0.3 – 0.4  0.35 0.30 0.13 20 
0.4 – 0.5  0.43 0.32 0.15 11 

0.5 or more 0.74 0.67 0.09 6 
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Finally, based on the previous statistics, the following model was fit as part of the 

final step in estimating the standard error for the HMA rutting performance model in the 

MEPDG,  �b�iCCZj8klm 	 ����$%;nXXVJ0opq
�r�s ��������������������������������������������������������������������������&����' 
As with &����', standard error models with slightly different functional forms 

were fit for all the distress models included in the MEPDG. Finally, based on the 

standard error estimated by means of models such as &����', the critical distressi for any 

reliability level R can be estimated, as per &����'. 
Unfortunately, the previously described method of estimating the standard error 

for a given prediction is biased because:  

1) the model predictions are being grouped into small ranges, therefore decreasing 

the “true” variability of the distressi model,  

2) the standard error model is being estimated in several stages, thereby reducing 

the efficiency of the model and introducing additional error since the prediction is based 

on previous estimates of distressi as opposed to actual observed performance, and  

3) most of the data points used in the estimation are not properly distributed along 

the entire range of possible observed distress types, but correspond to specific levels of 

the given distress for which the standard error model is being estimated (e.g. in the case 

of rutting on the HMA layers, most of the observations used in predicting both the 

performance model and the corresponding standard error model are in the range of 0.0 – 

0.2 in, but almost no observations have rutting greater than 0.5 in; Table 3.1). This 

introduces upward or downward bias in the standard error estimates. 

The author believes that a more efficient method to estimate the reliability of a 

pavement design using the MEPDG would be to directly use the regression standard error 

(�iu) that is obtained when the parameters for 7`WX/YWWaaaaaaaaaaaZ are estimated, while also 



 
 
 
 

 26 

accounting for heterogeneity. �iu is a more efficient estimator of the standard deviation of 

the distribution of the unobserved factors affecting distressi,� ui� �W���drid�e,� �����. 
Additionally, using �iu reduces the need of introducing additional error to the standard 

error estimate by calculating it in a separate step.  

Nonetheless, regardless of whether �iu or �bcZdCefddg is used in the reliability 

analysis of a given pavement design, the considerable drawback of both approaches is 

that they do not allow for the possibility of accounting for the true variability of distressi 
due to non-homogeneity of material properties, loading and environmental conditions, as 

well as structural variability due to the construction process.  

The previous is not an issue in the estimation of 7`WX/YWWaaaaaaaaaaaZ since it is basically an 

average measure of distressi given deterministic values of the different factors that have 

been identified to have an effect of in. However, the variables that are used in estimating distressi are stochastic in the sense that their values are not fixed but actually follow 

specific distributions, and changes in each of this variables have an effect on the 

performance of the pavement structure and, therefore, on the reliability of the pavement 

structure.  

Given the previous limitations in the estimation of reliability of the MEPDG (an 

equivalently the 1993 AASHTO Design Guide), the focus of the current research is to 

propose a robust methodology that can be used to properly estimate the reliability of a 

pavement structure, based on the ME performance predictions of the MEPDG. 

3.3. UNCERTAINTIES IN THE ESTIMATION OF RELIABILITY 

As with the estimation of pavement performance, which in this case is directly 

linked to the reliability of the pavement structure, there are many factors that introduce 

variability to the estimation of reliability (De Bièvre, 1996). 
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Due to the uncertainty associated with the reliability estimation process, the 

results that are obtained are something that concerns most civil engineers. Several types 

of uncertainty directly affect the models and estimates that are developed to predict 

performance and reliability of structures. This is especially true in the case of pavement 

engineering where we often evaluate the properties of rather heterogeneous mixes of 

materials under very variable sets of conditions and where, in many cases, the testing 

procedures and equipment vary greatly from one region to the next. 

Among the factors that introduce uncertainty into the estimation of reliability are: 

uncertainty in measurement, uncertainty in material properties, uncertainty in structural, 

and environmental conditions, uncertainty in the modeling process, uncertainty in 

performance and parameter estimation (statistical, econometric uncertainty), and human 

error (Melchers, 1999). 

Some of these types of uncertainty can be minimized by following standardized 

testing procedures with properly calibrated and maintained testing equipment (measuring 

uncertainty) or by properly training and certifying equipment operators and surveyors 

(human error). Other types of variability can not necessarily be controlled (environmental 

uncertainty) but need to be properly accounted for. Similarly, material and structural 

uncertainty can be reduced to some degree by following a proper quality control and 

quality assurance (QC/QA) process. 

Regardless of the type of uncertainty, a proper reliability analysis needs to capture 

the variability of the system so that a proper estimate of the true probability of failure of a 

given pavement structure can be obtained. 

The importance of accounting for uncertainty has been highlighted by Ayres and 

Witczak (1998) with the AYMA system. AYMA is a pavement performance program 

that incorporates some of the most widely accepted fatigue cracking, permanent 
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deformation, and low temperature cracking models with the distinction that the user can 

not only input mean values for the input parameters, but also a measure of variation. 

Although the program is limited to the assumption that all variables are normally 

distributed, the authors have shown that the performance models are highly sensitive to 

the variation in the input parameters. 

Brown (1994) also highlights the value of estimating and correctly accounting for 

the variability in all the inputs associated with a particular design methodology. 

Knowledge on the uncertainties associated with the different variables gives the 

pavement designer the opportunity to examine what is the overall contribution of the each 

one of them to the overall system variability. This, in turns, permits more effort to be 

assigned to the factors that have a higher or more detrimental effect on the performance 

of the pavement structure. 

As a final comment, the risks of using the results of a deterministic pavement 

analysis or design procedure (one based only on the mean values of the input parameters) 

have to be noted. When performing a deterministic design, the outputs of the models 

correspond only to the mean predicted values. However, in reality none of the inputs that 

are required by a given deterioration model are fixed but have been estimated from field 

or laboratory observations and have a distribution associated with them. In some cases, 

the variability might be considerable. Furthermore, it is possible that the variations on the 

input parameters can greatly decrease the expected performance of the pavement 

structure being designed.  

3.4. RELIABILITY BY MEANS OF SIMULATION TECHNIQUES 

Simulation techniques consist of randomly sampling the variables that affect the 

performance of the pavement structure a large number of times and analyzing the 
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outcomes or results (Melchers, 1999). Based on these results, probabilistic response 

properties can be estimated. The most widely applicable simulation technique is crude 

Monte Carlo Simulation. 

An important concern with crude Monte Carlo simulation is that solving a large 

number of deterministic instances of the performance or limit failure state function is 

required. Additionally, it has been shown that generally, in order to obtain reliable results 

the number of iterations needs to be in the order of thousands (Osnes, 1997). Therefore, 

in order to ensure the accuracy of crude Monde Carlo Simulation, several variance 

reduction simulation techniques can be used. Some of the variance reduction techniques 

that are more commonly used are: Importance Sampling, Antithetic Variates, Latin 

Hypercube, and Systematic Sampling. The variance reduction simulation techniques are 

expected to converge faster to the “true” probability of failure as compared to the crude 

Monte Carlo simulation procedure.  

For completeness, a brief description of the previously mentioned simulation 

techniques follows (Manuel, 2008; Osnes, 1997),  

• Crude Monte Carlo: consists of generating N random data points for each random 

variable based on the distribution of the random variables included in the analysis, 

estimating the value of the failure function for each vector of random variables, 

and counting the number of failures that are observed within the N samples. The 

probability of failure is given by,  �.lw 	 b&��0�1� 2 ��' x y ��0�1� 2 ��Z � ��������������������������������������������������������&����' 
Where ��0�1� 2 �� is an indicator function that is equal to 1 if 0�1� 2 � or 0 

otherwise. Finally, the simulation is repeated several times to determine the 

variability of the estimate. 



 
 
 
 

 30 

• Importance Sampling: the sampling of random variables is done based on an 

importance sampling function z1�6� as opposed to the initially assumed 

distribution of the random variables 51�6�. This is accounted for by factoring the 

observed failures by the ratio of density functions, or, �.{| 	 b }��0�1� 2 ��51�6�z1�6� ~����������������������������������������������������������������������������������&����' 
The importance sampling function should be selected by shifting the means of the 

distributions slightly towards the limit state to ensure that failures are observed.  

• Antithetic Variates: this method is based on combining two unbiased estimates of 

the probability of failure and hence reducing the variance of the estimation by 

four. This is achieved by generating N independent uniform &�,�' random 

variables, �h, and defining ��� 	 � � �h. Then, the desired correlated random 

variables are estimated as 6� 	 B1����h� and 6�� 	 B1����hh�. The failure function 

is then evaluated at 6� and 6��, and the respective probabilities of failure are �.� 	 b&��0�1′� 2 ��' and �.�� 	 b&��0�1′′� 2 ��'. Finally, the antithetic 

estimate of the probability of failure is, �.{| 	 �� ��.� � �.���������������������������������������������������������������������������������������������������������&����' 
• Latin Hypercube: instead of randomly drawing from the distribution of each 

random variable, the probability space is divided into N strata, and a sample is 

randomly drawn from each strata for each random variable. Once the random 

variables have been sampled, the probability of failure is estimated as, �.�k 	 b&��0�1� 2 ��'���������������������������������������������������������������������������������������������&����'  
• Systematic Sampling: very similar to the Latin Hypercube method of variance 

reduction, but in place of drawing a random sample from each strata for the 



 
 
 
 

 31 

random variables, the mean value of each strata is selected as sample data point. 

The probability of failure is calculated as in [����].  

Additionally, combinations of the previous variance reduction techniques can also 

be applied (Osnes, 1997). 

Alsherri and George (1988) used crude Monte Carlo simulation to solve the 

AASHTO design equations under the assumption that all the input variables are 

probabilistic, independent and normally distributed. Crude Monte Carlo simulation has 

also been used by Prozzi et al. (2005) to evaluate the reliability of pavement designs 

using the AASHTO Design Guide under various traffic levels. It was found that the 

AASHTO design tend to be overly conservative. The simulation analysis was also useful 

for identifying that the surface asphalt mix layer thickness and the performance model 

error have the highest relative influence on the reliability of the pavement structure. The 

researchers then proceed to highlight the importance of including the model error as part 

of the variability on the overall performance of the structure. 

A simple reliability analysis based on Monte Carlo simulation with variance 

reduction was also initially suggested by Timm et al. (2000) and implemented by 

Chadbourn (2002) for the mechanistic-empirical (ME)  pavement design procedure 

MnPave (MnDOT Flexible Pavement Design: Mechanistic-Empirical Method). The 

reliability analysis was used on the fatigue cracking and rutting transfer functions where 

the required inputs for the program are thickness (μ, CV)1, elastic modulus (E), and 

Poisson’s ration (ν). Because of the computing and time constraints involved in using 

simulation with the ME procedure, the researcher proposed estimating the reliability of a 

comprehensive set of conditions and then fitting a “reliability regression function” based 

                                                 
1 Where μ is the mean value, σ is the standard deviation, and CV is the coefficient of variation (σ��μ). 
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only on predicted damage from the MnPave transfer functions (reliability as a function of 

damage) to allow for a quick estimation of reliability in the design process. 

3.5. RELIABILITY BY MEANS OF SECOND MOMENT TECHNIQUES 

The second moment techniques consist of using the first two moments (mean and 

standard deviation) of each variable (and correlation coefficients when necessary) 

involved in the probability failure estimation to represent them and to simplify the 

estimation of the integral in &���'. 
3.5.1. First Order Reliability Method (FORM) 

In the First Order Reliability Method (FORM), the limit state function 0�1� is 

linearized by means of a Taylor series expansion and the distance to the failure surface 

from the origin in the space of the random variables is minimized (β). The reliability 

index β represents the minimum distance from the origin of the design random variable 

space to the failure surface. β is also sometimes known as the reliability index or the 

safety index, and indicates the boundary of the failure region (Melchers, 1999). 

Therefore, β can be used as a measure of the safety or reliability of a structure: greater β 

represents a lower probability of failure �. . 

FORM is based on the assumption that a probability preserving transformation 6 	 ���� exists such that u is a vector of independent standard normal variables 

(Rackwitz, 2001). Then, under the previous assumption, 

�. 	 34 3 51�6�768�1�9
 	 34 3 �����7�8������9
 ������������������������������������������������������� &���%' 
The transformation can be performed exactly in the case where XXXX consist of non-

correlated random variables by means of Cholesky decomposition. In the case of 

correlated random variables, with the exception on a normal log-normal transformation 



 
 
 
 

 33 

which can be performed exactly, approximate transformations by means of the 

Rosenblatt-transformation or the Nataf-transformation are required. 

Under the assumption that the limit state function is differentiable and because of 

the rotational symmetry of the standard normal density, it results that the reliability index β can be directly used to compute the probability of failure as �. 	 ����� in the case 

that the design random variables are normally distributed and the failure state function is 

linear (Lee et al., 2002). For a nonlinear limit state functions, the solution is approximate, 

i.e., �. � �����. ���� corresponds to the standard normal integral or standard normal 

cumulative density function. 

The design point 6� 	 ����� corresponds to the point along the failure surface 0�1� where the distance to the origin of the design parameters is minimum. Then under 

FORM, � 	 ���� and �� can be estimated by, �� 	 �VJ�������n� 0�n� 2 ������������������������������������������������������������������������������������������������&���$'  
Geometrically, the concept of the reliability index (minimum distance from origin 

to design point in a standard normal space) is described in Figure 3.1. Note that UUUU 

corresponds to variables in a standard normal space resulting from a 

transformation/mapping from the original space of the physical random variables XXXX. 
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Figure 3.1: Conceptualization of Reliability Index. 

Based on the FORM assumptions, the probability of failure of the pavement 

structure can be determined by means of the Rackwitz-Fiessler algorithm (Rackwitz et 

al., 1978) by 1) transforming an initial “trial set” of design values (XXXX) into uncorrelated 

normal variables (UUUU), 2) calculating the failure function, 0���, and its gradients in the 

transformed space, 3) selecting a new set of uncorrelated normal variables (�′) based on 

(2) by iterating until �′�′� is minimized, and 4) calculating the reliability index as � 	 �′�′�. Then, the probability of failure is calculated as,  �. 	 �������������������������������������������������������������������������������������������������������������������������������������&����'       
FORM is considered to be one of the most appropriate computational methods for 

estimating [3.1]. However, because the limit state function is approximated by a linear 

function at the design point 6�, there are some limitations in cases where the limit state 

function is highly non-linear. More specifically, Zhao and Ono (1999c) have shown that 

the accuracy of the FORM estimates is generally dependent on the curvature radius at the 

design point, the number of random variables, and the first-order reliability index ���. 
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3.5.2. Second Order Reliability Method (SORM) 

The Second-Order Reliability Method (SORM) is intended for improving the 

probability of failure estimate from a FORM analysis by accounting for the curvature of 

the limit state function. This is done by including additional information of the curvature 

of the limit state function by means of second-order derivatives of the limit state function 

with respect to each random variable. The correction can be approximated as follows 

(Breitung, 1984), 

�.� � �������� � ��Z����j��
Z � �����������������������������������������������������������������������������������������������&����'�

where �Z corresponds to the principal curvatures of the limit state function at the 

minimum distance point identified by a FORM analysis. This is achieved by rotating the 

uncorrelated random normal vector � from the FORM analysis such that one of the ¡Z 
variables aligns with the direction cosine vector ¢ 	 �£0�����¤£0����¤ that points 

from the design point, ��, to the origin in UUUU space. The direction cosines of the remaining ¡¥ ��J � �� variables in the rotated space can be obtained by Gram-Schmidt 

orthogonalization resulting in an ¦ matrix. Finally, the SORM procedure requires the 

estimation of an § matrix which corresponds to the rotation of the matrix of second 

derivatives of the limit state function ¨ (Hessian) as, § 	 � ¦�¨�¦�¤©0���¤�����������������������������������������������������������������������������������������������������������������������������&����'�
The curvature �¥ corresponds to the \-th eigenvalue of the �i–���x��i–�� submatrix 

of §.  

It has been demonstrated that asymptotically SORM cannot be improved 

(Breitung, 1994). In the non-asymptotic case higher-order corrections can be used, 

however, very few results have been developed (Yao and Ono, 1999a; Yao and Ono, 

1999b; Yao et al., 2002). 
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Cizelj et al. (1994) have also shown that the performance of numerical techniques 

such as FORM and SORM is very good (even more so for the case of SORM) when 

comparing the relative errors of FORM and SORM to different types of Monte Carlo 

simulations (based on different variance reduction techniques: IS – importance sampling, 

AS – adaptive sampling, and ES – efficient sampling). Figure 3.2 shows the comparison 

of the different reliability approaches used by Cizelj et al. (1994) when evaluating 

cracking on steam generator tubing (PL or plugging limit represents the length of crack 

when tubes are taken out of service). 

 

Figure 3.2: Comparison of relative error from reliability estimates based on FORM and 
SORM to different Monte Carlo simulation estimates for cracking on steam 
generator tubing (from Cizelj et al., 1994). 

Equivalent results were obtained by Zao and Ono (1998) when comparing the 

reliability of ductile frame structures by means of FORM and SORM. 

As for pavement structures, the second moment reliability index (which can be 

estimated by FORM) has been used to evaluate the reliability of pavement structures 
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designed using the 1993 AASHTO Guide by Zhang and Damnjanović (2006). The 

authors found errors less than 1% when comparing the second moment reliability 

estimates to those obtained by crude Monte Carlo (Figure 3.3). 

 

Figure 3.3: Pavement failure probabilities by Second Moment (and higher order 
moments) and crude Monte Carlo simulation (from Zhang and 
Damnjanović, 2006). 

3.6. RESPONSE SURFACE APPROACH TO RELIABILITY 

Without prior knowledge of the true reliability (as would be estimated by using 

the MEPDG) of a pavement structure, it is difficult to determine the number of 

simulations that would be required to estimate the reliability of the pavement structure 

with any specified level of confidence. Therefore, in order to ensure that an accurate 

estimate of the true reliability of the pavement section has been found, simulation with a 

large number of repetitions is initially required. This is a limitation because of the time 

that is required to run a single instance of the MEPDG. Additionally, because there is no 

closed-form solution to the analysis performed by the MEPDG, no exact probability of 
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failure can be computed. Furthermore, because access to the source code of the MEPDG 

is restricted, it is difficult to integrate the MEPDG analysis into a simulation or second 

moment reliability approach. It also has to be noted that the mechanistic component of 

the MEPDG consists of a finite element (FE) or a multilayer linear elastic analysis and 

can require considerable amounts of computing power when many instances of the 

MEPDG have to be run. 

For these reasons, a response surface approach to defining the limit state function 

is proposed in this study. A response surface is an approximation to the true limit state 

function or failure function that can be found by fitting a model, usually of polynomial 

form, to serve as a representation of the true limit state function. Response surfaces are 

generally fit within a small range of variation of the design variables to ensure that the 

predictions estimated by the response surface closely match those that would be obtained 

by running the MEPDG under a given set of conditions. 

Although the use of response surfaces for estimating reliability is not common in 

pavement or transportation engineering, they have been widely used in other areas of 

civil engineering, mainly in structural and geotechnical applications. Some of the 

applications are summarized in the following paragraphs. 

Su et al. (2009) have used a response surface approach in combination with crude 

Monte Carlo simulation to evaluate the reliability (due to aerostatic response and 

aerostatic stability) of long-span bridges, while considering the geometric parameters, the 

material parameters, and the aerostatic coefficients as random variables. The response 

surface approach was used because of the finite element analysis that is used in long-span 

bridge analysis would require considerable computing power that was not readily 

available. 
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Mollon et al. (2009) used response surfaces to evaluate the reliability of circular 

tunnels in homogeneous soils. Response surfaces were used because the analysis of 

tunnels involves numerical simulations that have no closed form solutions. Therefore, the 

authors used response surfaces to estimate the reliability index and design point by 

approximating the performance function by a quadratic explicit function of random 

variables. Gui et al. (2008) applied a similar approach to estimate the reliability of high 

rock slopes in hydropower projects while considering several slip surfaces.   

Similarly, Xu and Low (2006) have used response surfaces to fit the stability 

curve of slopes and embankments because of the increase in use of the finite element 

method to perform deterministic stability analysis. The authors use the response surface 

along with FORM to estimate the reliability index of slopes and embankments. An 

important finding from this study is that, in cases when the response surface is close to 

being planar, the reliability index can be predicted quite accurately.  

In a similar approach, Chan and Low (2009) used the response surface method to 

evaluate the reliability of laterally loaded piles under nonlinear soil and pile behavior. 

The researchers evaluated the reliability index from FORM based on two different failure 

modes, while considering non-normal, correlated variables. The researchers also 

compared the probability of failure from FORM to the one obtained from crude Monte 

Carlo simulation to find errors of the magnitude of less than 10%.  

Lee and Haldar (2003) and Yao and Wen (1996) have also observed the 

efficiency of the probability of failure estimates (as compared to direct simulation results) 

when analyzing the reliability of frame and shear wall structural systems and stationary 

single-degree-of-freedom (SDOF) systems subjected to white noise excitation. 
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Figure 3.4: Comparison of direct simulation to simulation based on response surfaces 
for SDOF systems (from Yao and Wen, 1996). 

Similarly, Wong (1985) showed that the statistics obtained from analyzing 

reliability of soil slopes using a response surface approach varied between 1% to 9%, as 

compared to the statistics obtained from direct finite element simulation. 

 

Figure 3.5: Comparison of direct simulation (FE) to simulation based on response 
surfaces (RS) for soil slopes (from Wong, 1985). 
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Babu and Srivastava (2010a; 2010b) also used response surfaces along with 

FORM analysis to evaluate the reliability index of buried flexible pipelines and dams. 

The authors used the response surface approach to establish a relationship between 

random input variables and the response of the aforementioned structures. It can be noted 

that the authors also included an uncertainty term (ε) in the response surfaces to capture 

uncertainty that is unaccounted for. The uncertainty term, ε, is treated as regression error 

with its associated mean and standard error �¯° , ±°��. 
Rajashekhar and Ellingwood (1995) also used response surfaces to approximate 

the reliability of reinforced-concrete cylindrical shells. The authors recommended 

selecting the points to be used for fitting the response surface based on an interpolation 

scheme as follows, 6Z²� 	 6³�� � �6Z � 6³��� 0�6³���&0�6³��� � 0�6Z�'�������������������������������������������������������������������&����' 

Where �6Z, 6Z��� corresponds to the previously identified design points for the 

random variables involved in the reliability determination based on [����], and 6
 is the 

mean value �´� of the random variables used in the analysis. The process is iterated 

while measuring the distance between �6Z²�, 6Z�, zZ²� 	 �6Z²� � 6Z� and repeated until z 

is close to zero or is zero. 

 Huh and Haldar (2001) analyzed the stochastic seismic risk of nonlinear 

structures using response surfaces. The researchers highlight that the degree of the 

polynomial to be used depends on the nonlinearity expected on the structural response. 

Based on the current literature review, most of the previous researches have used one or 

two-degree polynomials that might include cross terms as follows, 

0�6� 	 µ �¶·Z¸Z¹
Z � �¶ºZ¸Z�¹

Z � �¶¶7Z¥¸Z ¥̧
¹
¥»Z

¹��
Z � ����������������������������������������������������������&����' 
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Chapter 4:  Variability in Pavement Design 

As has been pointed out in previous chapters, in order to assess the reliability of a 

pavement structure, it is essential to have prior knowledge on the variability of the factors 

affecting the performance and, therefore, the failure of the pavement structure in 

question. 

Up to this point, several design methods have been introduced and how reliability 

is currently accounted for in each one of them has been presented. However, the objective 

of this research is to present a methodology to properly estimate reliability of a pavement 

structure, by means of the MEPDG (Level 3), using several simulation and second 

moment techniques. Furthermore, as the case study for demonstrating the application of 

the various  methodologies, the current analysis focuses on the reliability of a pavement 

structure as measured by rutting of the HMA layers. 

The selection of Level 3 is due to the assumption that the variability in the input 

requirements for a Level 3 design should be higher, than that of the Level 1 input 

variables. Furthermore, the analysis is based on Level 3 input variables under the 

assumption that the designer will have easier access to them, as opposed to Level 1 input 

which require sophisticated material laboratory testing and traffic field observations. 

The Level 3 input variables that are required for the analysis of pavement 

structure using the MEPDG are the following: 

1. General Information: 

1.1. Design life (years) 

1.2. Base and subbase construction date  

1.3. Pavement construction date 

1.4. Date open to traffic. 
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2. Traffic: 

2.1. Two way average annual daily truck traffic (AADTT) 

2.2. Number of lanes in design direction 

2.3. Percent of trucks in design direction, percent of trucks in design lane 

2.4. Operating speed 

2.5. Monthly traffic adjustment factors 

2.6. Vehicle class distribution 

2.7. Hourly truck distribution 

2.8. Traffic growth 

2.9. Axle load distribution 

2.10. Traffic wander 

2.11. Axle configurations, truck wheelbase, number of axles per truck 

3. Climate: 

3.1. Ground water table location 

3.2. Climatic forecasts based on weather stations 

4. Structure: 

4.1. HMA Layers: 

4.1.1. Gradation (retained 3/4, 3/8, No. 4, passing No. 200 ) 

4.1.2. Asphalt binder grade 

4.1.3. Volumetric properties (binder content, air voids, density) 

4.1.4. Poisson’s ratio 

4.1.5. Thickness 

4.2. Granular/Soil Layers: 

4.2.1. Poisson’s ratio 

4.2.2. Coefficient of lateral pressure 
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4.2.3. Modulus 

4.2.4. Gradation (all available sieves) 

4.2.5. Plasticity Index (PI), Liquid Limit (LL) 

4.2.6. Thickness 

Treating all the variables included in a MEPDG (Level 3) analysis as random 

would be unfeasible because of computational and time constraints. For this reason, a 

reduced set of variables that have been demonstrated consistently in the literature 

(Aguiar-Moya and Prozzi, 2011) to have the greatest impact on pavement performance, 

and in this case on rutting of the HMA layers, has been defined. 

The variables that were used in characterizing the reliability of a given pavement 

structure are the following: climatic region, Truck Traffic Classification (TTC), Average 

Annual Daily Truck Traffic (AADTT), thickness of the HMA layer, asphalt binder 

content, air void content,  thickness of the base,  modulus of the base, and modulus of the 

subgrade. 

The previous variables were chosen because of the effect that they have on 

performance predictions by the MEPDG. In order to demonstrate this, a sensitivity 

analysis to rutting was conducted on each one of these variables individually, while 

holding the remaining variables fixed. The effect on roughness was also observed since 

roughness is related to rutting. Additionally, it was important to assess the sensitivity of 

the previous variables on other distress types. The results are shown on Figures 4.1 thru 

4.6. 

It can be observed from the figures that rutting on the HMA layer is highly 

sensitive to HMA layer thickness, asphalt binder content, and air void content. 

Furthermore, rutting on the HMA layer is also sensitive to changes in the base thickness 

and base modulus (although to a lesser degree). Base and subgrade modulus also have an 
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important effect on total rutting of the pavement structure. Finally, note that the 

sensitivity of the evaluated variables is based assuming independence between the 

different variables. However, in the following sections of this chapter it will be clearly 

established that this is not the case. 

For the case of roughness, individual changes in all the variables have an effect on 

it. However, it can be noted that the variables that produce the biggest effect on 

roughness are the volumetric properties of the HMA mix: asphalt binder content and air 

void content. 

 

 

Figure 4.1: Effect of HMA layer thickness on rutting and roughness according to the 
MEPDG. 
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Figure 4.2: Effect of base thickness on rutting and roughness according to the MEPDG. 

 

Figure 4.3: Effect of binder content on rutting and roughness according to the MEPDG. 
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Figure 4.4: Effect of air voids on rutting and roughness according to the MEPDG. 

 

Figure 4.5: Effect of base modulus on rutting and roughness according to the MEPDG. 
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Figure 4.6: Effect of subgrade modulus on rutting and roughness according to the 
MEPDG. 
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outdated (Darter, 1973). Therefore, the variability of the selected variables will be 

determined by means of the Long Term Pavement Performance (LTPP) Database.  

4.1. THE LONG TERM PAVEMENT PERFORMANCE (LTPP) DATABASE 

The Long Term Pavement Performance (LTPP) Program was started as part of the 

Strategic Highway Research Program (SHRP) in 1987. The program management was 

transferred to the Federal Highway Administration (FHWA) in 1992. As of data release 

24.0 (2010), the LTPP database houses over 2,500 pavement test section on in-service 

highways in over 900 locations through the United States and Canada (Figure 4.7).  

 

 

Figure 4.7: Location of LTPP GPS and SPS pavement sections (from http://www.ltpp-
products.com). 
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The data included in the LTPP database include inventory information, material 

testing, pavement performance monitoring, climatic, traffic, maintenance, rehabilitation, 

and specific seasonal testing results (Elkins et al., 2006). 

A total of 791 LTPP test sections are in the General Pavement Studies (GPS) 

category. The GPS sections correspond to pavement sections that were already in service 

when the LTPP project began. Each test section is at a different location. Of these 

sections, 703 are active and 88 have been taken out of study. When a GPS test section is 

taken out of study, data are no longer collected for that section. 

1,714 other test sections are in the Specific Pavement Studies (SPS) category. The 

SPS sections were constructed after LTPP began, and were constructed in order to 

monitor the effect of specific variables or factors in the performance of pavement 

structures. At each SPS location, there is more than one pavement test section, depending 

on the factorial design defined as part of each SPS experiment. These test sections are 

grouped by projects at 229 different locations. Of the 1,714 sections, 1,508 are active and 

206 have been taken out of study. 

Because of the size of the LTPP database, it was selected as an appropriate source 

for estimating the in-field variability of the pavement design variables that were analyzed 

as part of this study. The specific sections that were chosen to characterize the variability 

of each variable were selected based on the availability of the data for given GPS or SPS 

sections. 

4.2. GOODNESS-OF-FIT TESTS FOR VARIABLE DISTRIBUTIONS 

Many goodness-of-fit tests have been developed and are commonly used when 

characterizing the distribution of a given variable. Some are general in the sense that they 

can test how well the data fit any distribution given that the expected probabilities of the 
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distribution can be computed. Such is the case of the ¼� (chi-squared) goodness-of-fit test 

where the expected frequencies (Ei) of pre-defined data point ranges (k classes) are 

compared to the number of observations (Oi) in that range (i class), 

¼� 	 ¶�¿Z � bZ��bZ
¹
Z � ��������������������������������������������������������������������������������������������������������������������&���' 

Other commonly used general goodness-of-fit tests include the Kolmogorov-

Smirnov test, which is more robust than the ¼� goodness-of-fit test in that it does not 

require the data to be grouped. However, the Kolmogorov-Smirnov test has the limitation 

that it is only sensitive near the center of the distribution. For this reason, the Anderson-

Darling test is generally preferred for small samples (25 observations or less) because it 

assigns higher weight to the tails of the distribution. For larger samples (more than 25 

observations), the minimal deviation from the expected distribution rejects the hypothesis 

that the data come from a specified distribution (Anderson and Darling, 1952). 

The previous tests are applicable for testing goodness-of-fit to any specific 

distribution. However, based on previous literature on variability of factors affecting 

pavement performance it is expected that most of the properties follow normal 

distributions (Darter, 1973). Therefore, in the following sections, the hypothesis of 

whether a given variable follows a specific distribution is made based on the Skewness-

Kurtosis test or the Shapiro-Francia test. The previous tests are designed for testing 

whether the data come from a normal distribution and as such are more powerful than the 

previously mentioned goodness-of-fit tests. 

The Skewness-Kurtosis pools the skewness and kurtosis of the distribution (third 

and fourth moments) into a ¼� statistic (SK), and compares it to that of a normal 

distribution where the values are 0 and 3 respectively (D’Agostino et al., 1990).  
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The Shapiro-Francia test, which was developed based on the Shapiro-Wilk test 

(Shapiro and Wilk, 1965), is a function only of the expected order statistics but has been 

proven to be as powerful as the Shapiro-Wilk test (Royston, 1983). The advantage of the 

Shapiro-Francia test is that it allows for evaluating normality based on small samples �J M �� which is impossible based on the Skewness-Kurtosis test. For a more detailed 

description on Skewness-Kurtosis and Shapiro-Francia tests please refer to Appendix 1. 

4.3. VARIABILITY IN PAVEMENT LAYER THICKNESS 

The performance of a given design of a pavement section can vary significantly 

due to the variability of the pavement layers thicknesses, which is mainly due to the 

normal construction process. In other words, pavement layer thickness is not constant 

through the constructed pavement section (although the design thickness is unique). This 

being the case, the pavement layer thickness should then follow some type of distribution 

that is expected to have a higher density around the mean target thickness (which should 

closely match the design pavement thickness). 

There has been limited research pertaining to the variability of pavement layer 

thicknesses and other input variables such as layer strength outside of quality control 

studies for specific pavement sections. One common observation seems to be that the 

variability in the layer thickness decreases from the subbase to the base layer to the 

surface layer. Darter et al. (1973) quantified for the first time this variability, as measured 

by its standard deviation: for HMA layers (0.41 in), cement-treated bases (0.68 in), 

aggregate bases (0.79 in), and aggregate subbases (1.25 in). The average coefficient of 

variation (CV) was identified as 10%. 

More recently, Selezneva et al. (2002) and Jiang (2003) studied layer thickness 

variability by analyzing thickness data taken from the Long Term Pavement Performance 
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(LTPP) database. The study used pavement elevation data and core samples on 1,034 

pavement layers corresponding to Specific Pavement Studies (SPS) sections. The authors 

concluded that 86% of the analyzed pavement layers follow a normal distribution, with a 

mean CV for asphalt layers around 10%. The study also indicated that only 60% of the 

pavement layers have a mean thickness within 0.25 in of the required design thickness. 

Although the previous results are comprehensive, determining the distribution that 

pavement layer thickness follows would be more conclusive if a larger dataset were 

observed. However, due to high costs it is unfortunate that, on average, the SPS sections 

for the LTPP experiment contain approximately five core sample results and around 50 

elevation measurements. This sample size, especially in the case of thickness 

measurements obtained from cores, is small. The sample size becomes even more critical 

in the case where outliers are present.  

However, it should be noted that the LTPP database is also populated with an 

additional set of thickness data for selected SPS sections: Ground Penetrating Radar 

(GPR) data. The GPR dataset provides an almost continuous set of thickness 

measurements for selected SPS pavement sections throughout their length. This dataset, 

in turn, allows for a powerful analysis of the type of distribution that the pavement layer 

thickness follows. 

Based on the availability of GPR data for the SPS-1 sections in the State of Texas, 

Aguiar et al. (2009) characterized the type of distribution that describes the HMA surface 

layer thickness, the HMA binder course layer thickness, and the granular base layer 

thickness. On average, the LTPP database contains roughly 1,180 layer thickness 

measurements (GPR collected about one thickness measurement per foot), where 

approximately half were measured along the lane centerline and the remaining half were 

measured along the right wheel-path. This allowed not only for observation of the 
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longitudinal pavement layer thickness distribution, but also allows for determining 

whether there are significant cross-sectional pavement layer thickness differences. 

Given that previous research has indicated that pavement layer thickness follows 

a normal distribution, the following test of hypothesis was performed: H0: the observed 

pavement layer thicknesses follows a normal distribution against the alternative, H1: the 

observed pavement layer thicknesses do not follow a normal distribution. The test was 

performed on the observations for each of the layers after eliminating outliers from the 

dataset. In order to classify a given data point as an outlier, the quartile classification was 

used. Consequently, an outlier was defined as any data point that falls out of the 

following interval: &Q�� –� ���� �Q�� –� Q��,� Q�� �� ���� �Q�� –� Q��', where Q�, Q� and Q� 
represent the first, second and third quartile, respectively. 

Figure 4.8 shows a typical HMA surface layer thickness distribution from the 

dataset that was used. Given that the mean thickness of the HMA layer is in the order of 

4.3 in, it is not likely that the layer thickness could drop to 1.2 in within the 500 ft section 

length. In this particular case, outliers are associated to measurement and data processing 

error, or to the possibility of pavement maintenance activities such as surface treatments. 
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Figure 4.8: HMA surface layer thickness distribution for LTPP section 48-0113 (under 
right wheel-path). 

As previously mentioned, data collection for each of the sections was performed 

along the centerline of the study lane, as well as along the right (outside) wheel-path. 

Since the outliers were filtered out, it was also important to determine whether the 

thickness for each of the sections along the section centerline and under the right wheel-

path were statistically equal. In order to do so, a hypothesis test on the mean difference 

was conducted to determine if the thickness is significantly different when measured 

along the lane centerline and when measured along the right wheel-path. Analysis results 

show that for 91.7% of the HMA surface layers, 100.0% of the HMA binder courses, and 

80.0% of the granular base layers, the difference in thickness between the lane centerline 
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and along the right wheel-path is statistically different at 95.0% level of confidence. 

Because most of the GPR measurements for the LTPP sections were performed around 

2003, the analyzed sections had been in service for several years prior to the GPR data 

collection. The differences might be explained by post-compaction densification and 

rutting of the pavement layers from the time the sections were constructed to the time the 

GPR data was collected. Nonetheless, the difference between HMA surface layer 

thicknesses measured along the lane centerline and along the right wheel-path ranges 

from below 0.04 in to 1.77 in, and is, on average, 0.55 in. The differences between HMA 

binder course layer thicknesses average 0.12 in. Finally, the differences in granular layer 

thicknesses as measured along the lane centerline and the right wheel-path range from 

0.04 in to 3.9 in, averaging 1.02 in. 

As for determining whether the pavement layer thickness follows a normal 

distribution by means of goodness-of-fit tests, visual observation of the data to evaluate 

the feasibility of the data actually being normally distributed was performed. As an 

example, Figure 4.9 shows the HMA binder course layer thickness histogram for LTPP 

section 48-0116 at the centerline of the study lane. Additionally, the figure displays the 

cumulative normal distribution with mean and standard deviation equal to that exhibited 

by the layer thickness data. Based on the information shown on the figure, it is apparent 

that the data follow a normal distribution. 
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Figure 4.9: Binder course layer thickness distribution for LTPP section 48-0116 (under 
lane centerline). 

A more conclusive visual test to determine the normality of the data shown in 

Figure 4.9 would consist of generating a normal probability plot. A normal probability 

plot shows how well the data matches a normal probability distribution. Figure 4.10 

shows a normal probability plot for the data that was also displayed in Figure 4.9. It can 

be observed that the layer thickness data align very well, indicating that it is feasible for 

the data to follow a normal distribution. 
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Figure 4.10: Normal probability plot for HMA Binder course layer thickness for LTPP 
section 48-0116 (under lane centerline). 
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et al., 2009).  
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HMA surface layer shows less variation than the HMA binder course. Also, on average, 

the HMA layers exhibit less variation than the granular base layer. The results are 

consistent with the reported values of CV by Attoh-Okine and Kim (1994) which ranged 

from 0.078 to 0.256 for five pavement sites in Kansas� 
Table 4.1: Coefficient of variation of pavement layer thickness. 

Layer Average CVCVCVCV Range 
HMA Surface Layer 0.072 0.032 – 0.184 
HMA Binder Course Layer 0.138 0.117 – 0.160 
Granular Base Layer 0.103 0.060 – 0.172 

Another observation from the data was that there is negative correlation between 

the total thickness of the HMA layers and the total thickness of the base layers in the 

magnitude of -0.21. The negative correlation can be attributed to the construction 

process, where the thickness of the upper layers is corrected to account for deviations in 

thickness of the underlying layers. For example, if the thickness of the base is slightly 

larger than specified in plans, then the thickness of the HMA layer might be slightly 

reduced during construction so that the overall pavement thickness is maintained. 

4.4. VARIABILITY IN ASPHALT BINDER CONTENT 

The asphalt binder content of the asphalt mixture has an important effect on how 

the asphalt mix and, therefore, the pavement structure performs. Increases in binder 

content are associated with increased resistance to cracking but reduced resistance to 

permanent deformation in the asphalt layers. The opposite effect is obtained with 

reduction of the asphalt binder content (Prozzi et al., 2006).   

Because of the plant or field mixing process, it is expected that the asphalt binder 

content for any given construction is not uniformly distributed but follows some other 

distribution. Prozzi et al. (2005) assumed that the asphalt binder content follows a normal 
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distribution. The normality assumption was evaluated as part of the QC/QA program in 

Arkansas by Hall and Williams (2002) who showed by means of visual assessment that 

not only the asphalt binder content, but also the air void content, VMA, and field density 

follow normal distributions. 

Detailed asphalt binder content information was collected for the LTPP SPS-9 

sections. The SPS-9 experiment was designed to evaluate the performance of Superpave 

asphalt mixtures. Information from 81 SPS-9 sections located through the United States 

was queried from the LTPP database for asphalt binder content information. For each of 

the SPS-9 the number of asphalt binder observations ranged from 24 to 50. Figure 4.11 

shows a typical cumulative distribution for asphalt binder content for an asphalt layer 

from the SPS-9 sections. The figure also displays a normal distribution with mean and 

standard deviation equal to that observed for the same pavement section. It can be 

expected that the asphalt binder data for the pavement section is likely to come from a 

normal distribution. 
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Figure 4.11: Asphalt binder content distribution for LTPP section 29-0962. 

The number of asphalt binder observations for each location is still  large enough 

to test the hypothesis that the data follow a normal distribution using the SK statistic (H0 : 

the observed asphalt binder contents follows a normal distribution against H1: the 

observed asphalt binder contents do not follow a normal distribution). A significance 

level of 0.01 was selected to perform the SK goodness-of-fit tests and evaluate the 

previous hypothesis. It was found that 85.2% of the HMA layers have asphalt content 

distributions that follow a normal distribution.  

The spread of the asphalt binder content distribution was also evaluated for the 

pavement sections that were used. The coefficients of variation (CV) for the analyzed 

asphalt layers were found to be 0.063 on average. The CV�ranged from 0.009 to 0.392.  
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4.5. VARIABILITY IN AIR VOID CONTENT 

As with the asphalt binder content, the air void content is a volumetric property of 

the asphalt mixture that has significant effect on how the asphalt mix performs. The 

asphalt binder content is closely related to the compaction effort applied during 

construction and, therefore, is also related to the density of the asphalt mix. It has been 

demonstrated that very low air voids (< 4%) can be associated with flushing of the 

asphalt binder and permanent deformation on the asphalt layers because of reduced 

capacity to absorb high shear stresses due to traffic loading. On the other hand, for high 

air void contents, proper permeability and drainage needs to be ensured. Otherwise, water 

might become trapped in the air voids causing stripping of the asphalt binder from the 

aggregate particles and increase in the stress state due to hydrostatic pressure. 

Due to heterogeneity in the compaction process, it is expected that the air void 

content for any given construction is not uniformly distributed but follows a different 

distribution. Previous researchers have also assumed normality of the air void content; 

this is the case of Chakroborty et al. (2010) who showed that, based on the Marshall 

Method, air void content, VMA, stability and flow follow normal distributions. 

The LTPP study collected air void content information for all the flexible SPS 

sections and for many of the GPS sections. Information from 194 pavement sections 

located through the United States was queried from the LTPP database for air void 

content information (the pavement sections with less than 5 observations were dropped 

from the analysis). These censoring of the information will not introduce any biases. For 

each of the pavement sections the number of air void content observations ranged from 6 

to 17.   
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Figure 4.12: Air void content distribution for LTPP section 26-0114. 

Figure 4.12 shows a typical distribution for air void content for an asphalt layer 

from the SPS-1 sections. The figure also displays a normal distribution with mean and 

standard deviation equal to that observed for the same pavement section. Although the 

number of observations is lower than the ones used for determining the normality of layer 

thickness and asphalt content, it is still feasible to visually assess that data are likely to 

come from a normal distribution. 

Because of the number of air void content observations for each location, the 

hypothesis that the data follow a normal distribution was evaluated using the SF 

goodness-of-fit tests (H0: normal against H1: not normal). A significance level of 0.01 

was selected to perform the SF goodness-of-fit tests and evaluate the previous hypothesis. 
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It was found that 98.8% of the HMA layers have air void content distributions that follow 

a normal distribution.  

The spread of the air void content distribution was also evaluated for the 

pavement sections that were used. The CVs for the analyzed asphalt layers were found to 

be 0.051 on average. The CV ranged from 0.009 to 0.390. It can be noted that the CV 

range is almost identical to that of asphalt binder content. Another important observation 

from the data was that there is a negative correlation between the asphalt binder content 

and the air void content in the order of -0.18. The negative correlation is expected since 

typically higher asphalt contents allow for easier compaction, and therefore, lower air 

void contents. Furthermore, for a fixed volume, the higher the asphalt binder content, the 

more air void space that will be filled asphalt binder. 

4.6. VARIABILITY IN MODULUS OF UNBOUND MATERIAL LAYERS 

The modulus of the supporting layers has historically been considered as one of 

the most important factors in pavement design and for determining the performance of a 

pavement structure. In fact, most of the empirical pavement design methodologies, such 

as the 1993 AASHTO Design Guide, rely mostly on the modulus of the different layers, 

and mainly the subgrade, to characterize the strength of the pavement structure. 

However, because of non-uniformity of the materials, construction process, 

drainage conditions, among others, it is unrealistic to assume that the modulus of the 

unbound material layers (base, subbase, and subgrade) for any pavement structure is 

constant. Actually, we would expect that the modulus of the unbound layers follows a 

non-uniform distribution. It is the assumption in the current analysis that the unbound 

material layers follow a normal distribution also. The normality assumption is consistent 
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with the findings by Rada and Witzcak (1981). The validity of this assumption is now 

evaluated. 

As part of the LTPP project, resilient modulus information for the unbound layers 

was collected. This information was collected for all SPS sections and many GPS 

sections. Unfortunately, the number of samples that were collected to evaluate the 

resilient modulus for each unbound material layer is small, ranging from 1 to 5 samples. 

Consequently, only the unbound material layers containing 5 test repetitions were 

selected. Based on the previous selection, information from 1,087 untreated subgrade 

layers and 16 untreated base layers located through the United States were queried from 

the LTPP database for resilient modulus information. The modulus of each of the selected 

sections was evaluated at least at three different confining pressures.   

Although the Shapiro-Francia goodness-of-fit test can be used to evaluate the 

normality of a sample with few observations (n ≥ 4), the authors believe that a larger data 

set is preferred. Therefore, sections with resilient modulus with equivalent standard 

deviation (± 15 psi) were standardized and grouped together. The grouped data was then 

used to evaluate the normality of the resilient modulus data of the unbound layers.  

Figure 4.13 shows the distribution for resilient modulus of a subgrade layer with a 

mean modulus of 13,200 psi that is representative of a SPS-1 section. Slight deviations 

between the observed cumulative density function and the theoretical normal density 

function can be observed in the figure, mainly towards the tails of the distribution. 

However, the maximum differences at the tails are in the order of 100 psi (in the case of 

Figure 4.13), which can be considered negligible 
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Figure 4.13: Resilient modulus distribution for a subgrade layer with mean 13,200 psi. 

Because of the number of resilient modulus observations for each location, the 

hypothesis that the data follow a normal distribution was evaluated using the SF 

goodness-of-fit tests (H0: normal against H1: not normal distribution). A significance 

level of 0.01 was again selected to perform the SF goodness-of-fit tests and evaluate the 

previous hypothesis. It was found that for 99.5% of the untreated subgrade layers and for 

100.0% of the untreated base layers the resilient modulus is likely to follow a normal 

distribution.  

The spread of the resilient modulus distributions was also evaluated for the 

pavement sections that were used. The CVs for the analyzed subgrade layers were found 

to be on average 0.093 and 0.101 for the analyzed subgrade and base layers respectively. 

A detailed summary of the CV for the analyzed pavement layers is shown in Table 4.2. 
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Another observation from the data was that there is considerable positive correlation 

between the modulus of the base and the subgrade in the order of 0.32. The reason for the 

high degree of correlation between the modulus of the base and subgrade layers might be 

explained by similarity in materials, and more importantly, by similarities in moisture 

content and confinement. 

Table 4.2: Coefficient of variation of unbound layer resilient modulus. 

Layer Average CVCVCVCV Range 
Unbound Base Layer 0.101 0.008 – 0.370 
Unbound Subgrade Layer 0.093 0.000 – 0.896 

4.7. VARIABILITY IN MODULUS OF HMA LAYERS 

Although not directly addressed in the present study, the variability in the 

modulus of the HMA layers was also evaluated for completeness. A higher level of 

uniformity in the modulus of the HMA layer because of higher QC/QA both during 

production and construction can be expected. As in the case of the modulus of the 

unbound layers, it was initially assumed that the resilient modulus of the HMA layers 

follows a normal distribution. The validity of this assumption is evaluated next. 

As part of the LTPP project, resilient modulus information for the HMA layers 

was also collected. This information was collected for all flexible SPS sections and many 

GPS sections. In total, the resilient modulus of 1,137 HMA layers was collected from the 

LTPP sections. However, as in the case of the resilient modulus of unbound materials, the 

number of samples that were collected to evaluate the resilient modulus for each HMA 

layer is small (three repetitions at a given test temperature temperatures). The modulus of 

each of the selected sections was evaluated at a minimum of three different test 

temperatures.  
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Because of the small sample size, the use of a goodness-of-fit test to evaluate the 

normality of the data is not feasible. Consequently, a similar approach to that used to 

evaluate the normality of the resilient modulus of unbound layers was also used. Sections 

with resilient modulus with equivalent standard deviation (± 10 ksi) were standardized 

and grouped together. The grouped data was then used to evaluate the normality of the 

resilient modulus data of the unbound layers.  

Figure 4.8 shows the distribution for resilient modulus of an HMA layer with a 

mean modulus of 750 ksi that is representative of a SPS-9 section. It is clear from the 

figure that the data do not follow a normal distribution. Based on visual inspection, most 

of the sections tend to follow a uniform distribution that should not be surprising because 

of the tighter quality control applied when producing the HMA mix. The theoretical 

uniform distribution is shown in Figure 4.14. It can be seen that the deviations from the 

theoretical distribution are at a maximum under 2 ksi, which is negligible when compared 

to the magnitude of the resilient modulus of an HMA layer. Consequently, a uniform 

distribution seems to be an appropriate assumption for the HMA resilient modulus data. 
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Figure 4.14: Resilient modulus distribution for a HMA layer with mean 750 ksi. 

The spread of the resilient modulus distributions was also evaluated for the 

pavement sections that were used. The CVs for the analyzed HMA layers were found to 

be on average 0.028. However, the CV ranged from 0.002 to 1.645, indicating a great 

degree of variation from the mean in some cases. 

4.8. VARIABILITY SUMMARY 

One of the objectives of this chapter is to highlight the impact of field variability 

of some important design variables on the performance of the pavement structure as 

predicted by the MEPDG. Most design and analysis tools for pavement structures assume 

that the input or design parameters are deterministic or fixed, usually at the mean or 
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rather unrealistic because typical variability of the design variables will result in 

considerable performance variations. 

When analyzing the variability and distributions of several  design variables in the 

field (thickness of the HMA layer, asphalt binder content, air void content, thickness of 

the base and subbase layers, resilient modulus of the HMA layer, modulus of the base, 

and modulus of the subgrade), it was identified that some of these variables have 

considerable variation. This was especially true in the case of the thickness and the 

resilient modulus of the different layers. Even though for several of these variables the 

average coefficients of variation were not large (under 10%), it was found that the spread 

of their distributions was considerable, mainly in the case of the modulus of the HMA 

layer, a variable that has a deep impact on the performance of the given layer. 

Therefore, because of the variability associated with the design variables, it is 

strongly advised that the analysis or design of the pavement structure be not only 

performed based on the mean design values (which would only indicate what is the 

average performance of the given pavement structure), but at several other critical values 

of the variables that are expected to have a higher impact on the performance of the 

pavement structure. This can be achieved by means of a simple sensitivity analysis of one 

or more of the design parameters in question, or ideally by means of simulation in order 

to capture the correlation between several of these factors.  

Finally, the information contained in the current chapter is based on information 

based on a large sample of pavements sections from FHWA’s LTPP database. It is 

believed that this information represents typical field variability and is representative of 

design and construction practice in the United States.  
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Chapter 5:  Reliability Analysis using the MEPDG 

The following chapter describes a framework and application of the techniques 

described in Chapter 3 to estimate the reliability of a pavement structure. The reliability 

analysis is based on the rutting of the HMA layers, as estimated by the MEPDG.  

As has been previously highlighted, the definition of failure is very important, and 

in most cases, small variations can be translated into considerable changes of the 

probability of failure and reliability of the pavement structure being analyzed. Therefore, 

to be consistent with NCHRP (2008), and with the default values recommended by the 

MEPDG, for the following analysis a pavement structure is going to be considered as 

failed once the HMA layer exceeds 0.25 in of rutting after 17 years of service life. 

5.1. SELECTION OF RANDOM VARIABLES 

The initial step in the reliability analysis consists of determining which variables 

are to be considered random (although, strictly speaking, most of them are), and to 

determine if the various random variables are uncorrelated or if there is correlation to be 

considered between different random variables. After this step, a reliability analysis of a 

given pavement structure, based on the analysis and deterioration models from the 

MEPDG for a given set of conditions can be performed. 

As was indicated in Chapter 4, treating all the variables required for a complete 

MEPDG analysis (Level 1, 2, or 3 input requirements) as random would be unfeasible 

and perhaps unnecessary for a reasonable reliability analysis. For this reason, a sensitivity 

analysis was performed in the previous chapter to determine which variables are 

important in evaluating the performance of a pavement structure as per the MEPDG. The 

random variables that were selected in the previous chapter, along with their coefficients 

of variation based on LTPP data are presented in Table 5.1.  
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Table 5.1: Pavement design variables to be treated as random parameters. 

Parameter CV 
HMA Thickness (in) 0.072 
Asphalt Binder Content (%) 0.063 
Air Voids (%)  0.051 
Base Thickness (in) 0.103 
Base Modulus (psi) 0.101 
Subgrade Modulus (psi) 0.093 

In addition to the determination of the variation of the previous variables, the 

LTPP database also allowed the estimation of i) the correlation coefficient between the 

thickness of the HMA layer and the thickness of the base layer (-0.21); ii) the correlation 

coefficient between the modulus of the base and the subgrade (0.32); and iii) the 

correlation coefficient between the asphalt binder content and the air void content (-0.18). 

Furthermore, based on the goodness-of-fit tests that where performed in Chapter 4, the 

previous set of variables has been assumed to be normally distributed.     �  

5.2. DEFINITION OF PAVEMENT SECTIONS TO BE ANALYZED 

As previously discussed, the current analysis focuses on the reliability of a 

pavement structure as measured by rutting of the HMA layers. Because of the significant 

influence of temperature and weather on rutting, three of the original Strategic Highway 

Research Program (SHRP) climatic zones used in the development of the Superpave 

Ndesign table have been selected (Cominsky et al., 1994; Prowell and Brown, 2007): a cold 

climatic region (Salem, OR), a warm climate region (Destin, FL) and a hot climatic 

region (Imperial, CA). The locations of the three climatic regions that have been selected 

are shown in Figure 5.1. The climatic data was obtained from the MEPDG v1.0 

Enhanced Integrated Climatic Model (EICM)2. The depth to water table was assumed 

                                                 
2 The EICM is a climatic database containing hourly data for 800 weather stations from across the United 
States, and includes measures of sunshine, rainfall, wind speed, air temperature, and relative humidity. The 
climatic data has been obtained from the National Climate Data Center (NCDC). 



 
 
 
 

 73 

constant for the three climatic conditions, and equal to 8 ft. This depth to water table 

corresponds to the median value for the continental United States based on the LTPP 

dataset. 

 

Figure 5.1: Locations of climatic regions to be analyzed as part of the reliability 
analysis. 

Note that in the United States, there are locations where much colder climates can 

be observed. However, the current study focuses on the effect of rutting of the HMA 

layer, and consequently the interest lies mostly in the maximum temperatures observed at 

a given location rather than the minimum temperature. Furthermore, at colder 

temperatures it is expected that the failure mechanism is fatigue and thermal cracking and 

not rutting. 

For the previous climatic regions, the pavement structure to be analyzed has the 

following 3-layer structure: HMA layer, untreated granular base, and subgrade. Statistical 

properties of the random variables are summarized in Table 5.2. The mean values of the 

input variables have been selected based on standard pavement design practices and 

Salem, OR 

Imperial, CA 
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observed averages for the given variables through the United States, based on the LTPP 

database. 

Table 5.2: Mean and standard deviation for random design variables. 

Parameter Mean Std. Dev. 
HMA Thickness (in) 4.5 / 10.0 0.33 / 0.72 
Asphalt Binder Content (%) 5.0 0.32 
Air Voids (%)  7.0 0.36 
Base Thickness (in) 14.0 1.44 
Base Modulus (psi) 22,000 2222 
Subgrade Modulus (psi) 10,000 930 

As can be observed from Table 5.2, two different thicknesses for the HMA layer 

were selected. This has been done because the performance and the deterioration patterns 

of HMA layers vary significantly for thin and thick asphalt layers. This is due to the 

considerable difference in stress distribution which is determined by the relationship 

between the tire size and the layer thickness. Thin pavements are considered those whose 

thickness is in the order (or thinner) that the radius of the tire-pavement contact area. 

When the contact radius is considerably smaller than the thickness of the layer, the layer 

is considered thick.  

The distinction is important since in the case of thin HMA layers, the wheel tire 

provides confining producing a shear effect on the HMA layer, while in the case of thick 

HMA layers, the layer is allowed to fully develop tension at the bottom. Therefore, the 

effect of differences in performance and reliability of the pavement structure in thin and 

thick HMA layers as determined by the MEPDG can be analyzed. 

5.2.1. Traffic Loading 

Two types of truck traffic distributions have been included in the reliability 

analysis. The traffic classifications are based on the truck classification system that is 
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used in the MEPDG (Figure 5.2). The selected traffic distributions are intended to capture 

the effect of single-unit trucks (typical of urban traffic) and single-trailer trucks (typical 

of rural traffic). 

      

Figure 5.2: Truck Traffic Classes included in the MEPDG (from NCHRP, 2004). 

Based on the previous classification, the traffic was assumed to follow either a 

Type 2 Truck Traffic Classification (TTC 2) which consists “predominantly of single-

trailer trucks with a low percentage of single-unit trucks” or a Type 12 Truck Traffic 

Classification (TTC 12) which corresponds to “mixed truck traffic with a higher 

percentage of single-unit trucks” (NCHRP, 2004). The TTC2 type traffic corresponds to 

typical rural truck traffic conditions, while TTC12 traffic can be mostly associated with 

typical urban truck traffic. 

Both the TTC 2 and TTC 12 distributions included more than 2% buses and less 

than 2% multi-trailer trucks. The two selected TTC are shown in Figures 5.3 and 5.4. 
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Figure 5.3: Type 2 Truck Traffic Classification. 
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Figure 5.4: Type 12 Truck Traffic Classification. 

As for daily truck traffic, the average annual daily truck traffic (AADTT) was 

selected in such a way that the limiting acceptable values of rutting were reached (while 

holding all other design inputs variables constant) after a 20 year analysis period (note 

that this is different to the design period of 17 years). From Figures 5.5 thru 5.8, the 

critical AADTT values (for 0.25 in. rutting) can be determined for the cold, warm, and 

hot climatic regions, for both thin (4.5 in) and thick (10.0 in) HMA layers. The figures 

clearly show that warmer climates are more prone to rutting than cooler climates. This is 

expected because of the visco-elastic behavior of the asphalt binder (softer at high 

temperatures and stiffer at lower temperatures). It can also be observed from the figures 

that TTC 2 generates more rutting on the HMA layers, as compared to TTC 12, for equal 
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amounts of truck traffic. Table 5.3 summarizes the critical AADTT values that have been 

selected as design traffic for the following analysis.  

 

 

Figure 5.5: Effect of traffic on rutting of the HMA layer (4.5 in HMA layer, TTC 2). 
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Figure 5.6: Effect of traffic on rutting of the HMA layer (4.5 in HMA layer, TTC 12). 
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Figure 5.7: Effect of traffic on rutting of the HMA layer (10.0 in HMA layer, TTC 2). 
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Figure 5.8: Effect of traffic on rutting of the HMA layer (10.0 in HMA layer, TTC 12). 

Table 5.3: Critical AADTT values to ensure 0.25 in of rutting on the HMA layer. 

Climatic 
Region 

AADTT 
4.5 in HMA Layer 10.0 in HMA Layer 

TTC 2 TTC 12 TTC 2 TTC 12 
Cold 3,294 4,742 9,506 13,944 

Warm 687 1,000 1,846 2,738 
Hot 325 500 736 1,090 

5.3. DEVELOPMENT OF 1-DEGREE RESPONSE SURFACES FOR RUTTING PERFORMANCE 

Response surfaces are used in the following analysis of the reliability of pavement 

structures. The response surfaces will be used to represent the rutting, in inches, of the 

HMA layer as predicted by the MEPDG. 
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In order to fit the rutting models, the MEPDG was run a total of 729 times based 

on all the combinations of the following values of the selected random variables (full 

factorial, 36): 

• HMA Thicknesses (HMA): mean, –���SD, –���SD� 
• Asphalt Binder Content (BC): mean, ����SD, ����SD� 
• Air Voids (AV): mean, –���SD, ����SD� 
• Base Thickness (Base): mean, –���SD, –���SD� 
• Base Modulus (MRb): mean, –���SD, –���SD� 
• Subgrade Modulus (MRs): mean, –���SD, –���SD� 
where SD denotes standard deviation. The previous selection of ±���SD and ± ��SD was 

made on the assumption that moving in the indicated direction of the random variable, 

the probability of failure of the pavement structure will increase. 

All the previous combinations of random variables were evaluated using the 

MEPDG (aiming for a 90% reliability target, which on average corresponded to a 17 year 

design period) at the three selected climatic regions (cool, warm, and hot), two truck 

traffic distributions (TTC 2 and TTC 12), and two significantly different thickness of the 

HMA layer (4.5 in and 10.0 in). Based on all of the 8,748 combinations of the factorial 

experiment (729 · 12), the HMA rutting model response surfaces can be developed.   

It is likely that a linear regression model based on the preceding random variables 

should properly capture the rutting of the HMA layer. This is expected since the 

modeling of the response surface has been done on a small area around the design point 

(mean values of random design inputs). The linearity of rutting of the HMA layer as a 

function of some of the random parameters (air void content and asphalt content) can be 

observed in Figure 5.9 and 5.10. From the figures, it can be visually assessed that an 

initial linear estimation might be appropriate.  
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Figure 5.9: Effect of air void content on rutting of a 10.0 in HMA layer in a Warm 
Climatic Region (TTC 2). 
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Figure 5.10: Effect of asphalt binder content on rutting of a 4.5 in HMA layer in a Hot 
Climatic Region (TTC 2). 

However, apart from the highly linear behavior of some of the design variables 

within the analysis range, some slight curvature has also been observed in the prediction 

of rutting in the HMA layer by other of the input design variables, such as modulus of the 

base layer (Figure 5.11). Note that the curvature is small given the wide range of modulus 

of the base layer that was captured. To address this nonlinearity of the HMA rutting 

predictions due to some of the input design variables, second-order polynomials will also 

be used at a later stage to improve the fit of the response surfaces and account for the 

curvature in the reliability estimates. 
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Figure 5.11: Effect of base modulus on rutting of a 4.5 in HMA layer in a Hot Climatic 
Region (TTC 12). 

The initial response surfaces �;nX��cf8eff�Z� consists of a linear approximation to 

the rutting as determined by the MEPDG, and can be represented in mathematically as 
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Where  ;nX��cf8eff�Z represents the rutting on the HMA layer after 17 years of 

service life in inches and Ï corresponds to a disturbance term or random variable that 

accounts for unobserved factors that affect the rutting process of the HMA layer. The 

subindex V indicates each possible combination of truck traffic loading, environment, and 

thickness type of the HMA layer. 
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The detailed parameter estimates and standard errors are presented in the 

following tables. 

Table 5.4: Parameter estimates for rutting of HMA layer in Cool Climatic Region. 

 
  

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.481 

(0.007)
65.2

0.473 
(0.007)

65.0
-0.017 
(0.002)

-7.9
-0.016 
(0.002)

-7.4

HMA
-0.088 

(0.60x10-3)
-145.6

-0.086 
(0.59x10-3)

-144.9
-0.007 

(0.08x10-3)
-87.3

-0.007 
(0.08x10-3)

-85.1

Base
1.39x10-4 

(1.46x10-4)
1.0

1.58x10-4 
(1.44x10-4)

1.1
12.03x10-4 
(0.43x10-4)

27.9
12.04x10-4 
(0.43x10-4)

27.8

MRb
-2.40x10-6 
(3.91x10-8)

-61.4
-2.33x10-6 
(3.85x10-8)

-60.6
1.22x10-6 

(1.15x10-8)
105.8

1.22x10-6 
(1.15x10-8)

106.0

MRs
-1.25x10-6 
(1.24x10-7)

-10.1
-1.33x10-6 
(1.22x10-7)

-10.8
2.50x10-6 

(3.68x10-7)
67.8

2.32x10-6 
(3.69x10-7)

63.1

BC
0.018 

(0.78x10-3)
23.6

0.018 
(0.77x10-3)

23.4
0.023 

(0.23x10-3)
101.2

0.023 
(0.23x10-3)

99.9

AV
0.015 

(0.73x10-3)
20.4

0.015 
(0.72x10-3)

20.2
0.019 

(0.22x10-3)
87.7

0.019 
(0.22x10-3)

86.6

R 2

σ

0.982 0.982 0.989 0.988

0.004 0.004 0.001 0.001

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12
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Table 5.5: Parameter estimates for rutting of HMA layer in Warm Climatic Region. 

 

Table 5.6: Parameter estimates for rutting of HMA layer in Hot Climatic Region. 

 

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.396 

(0.007)
56.3

0.392 
(0.007)

56.7
0.039 

(0.002)
18.4

0.039 
(0.002)

18.5

HMA
-0.070 

(0.58x10-3)
-120.5

-0.069 
(0.57x10-3)

-121.9
-0.011 

(0.08x10-3)
-137.2

-0.011 
(0.08x10-3)

-135.2

Base
6.99x10-4 

(1.40x10-4)
5.0

6.65x10-4 
(1.37x10-4)

4.9
10.28x10-4 
(0.41x10-4)

24.8
10.38x10-4 
(0.42x10-4)

25.0

MRb
-2.18x10-6 
(3.76x10-8)

-58.2
-2.13x10-6 
(3.74x10-8)

-56.9
1.10x10-6 

(1.10x10-8)
99.9

1.11x10-6 
(1.11x10-8)

100.3

MRs
-1.37x10-6 
(1.19x10-7)

-11.5
-1.42x10-6 
(1.16x10-7)

-12.2
1.74x10-6 

(3.53x10-7)
49.4

1.62x10-6 
(3.54x10-7)

45.7

BC
0.018 

(0.75x10-3)
23.4

0.017 
(0.74x10-3)

23.6
0.023 

(0.22x10-3)
101.4

0.022 
(0.22x10-3)

100.3

AV
0.014 

(0.69x10-3)
20.6

0.014 
(0.69x10-3)

20.4
0.018 

(0.21x10-3)
87.9

0.018 
(0.21x10-3)

87.0

R 2

σ

0.975 0.976 0.991 0.990

0.004 0.004 0.001 0.001

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.280 

(0.007)
42.0

0.285 
(0.007)

42.7
0.048 

(0.002)
24.5

0.048 
(0.002)

24.5

HMA
-0.051 

(0.54x10-3)
-93.7

-0.052 
(0.55x10-3)

-94.9
-0.012 

(0.07x10-3)
-163.2

-0.012 
(0.07x10-3)

-161.2

Base
11.77x10-4 
(1.32x10-4)

8.9
11.68x10-4 
(1.32x10-4)

8.8
10.65x10-4 
(0.38x10-4)

27.7
10.79x10-4 
(0.39x10-4)

27.9

MRb
-1.75x10-6 
(3.53x10-8)

-49.6
-1.74x10-6 
(3.61x10-8)

-48.3
1.20x10-6 

(1.03x10-8)
116.8

1.21x10-6 
(1.03x10-8)

117.2

MRs
-3.64x10-6 
(1.12x10-7)

-3.2
-4.27x10-6 
(1.12x10-7)

-3.8
1.56x10-6 

(3.28x10-7)
47.7

1.46x10-6 
(3.29x10-7)

44.4

BC
0.018 

(0.71x10-3)
26.1

0.019 
(0.71x10-3)

26.3
0.023 

(0.21x10-3)
112.9

0.023 
(0.21x10-3)

111.8

AV
0.015 

(0.66x10-3)
22.6

0.015 
(0.66x10-3)

22.8
0.019 

(0.19x10-3)
97.6

0.019 
(0.19x10-3)

96.6

R 2

σ

0.963 0.964 0.993 0.993

0.003 0.004 0.001 0.001

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12
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It can be observed from Tables 5.4 thru 5.6 that most of the parameters are 

significant at a five percent level. The exception is the thickness of the base layer for 

predicting the rutting of a thin HMA layer (4.5 in) on a Cold Climatic Region. However, 

the variable has not been dropped from the analysis since it has been found to be jointly 

significant (with the other input variables) in the prediction of HMA rutting. 

It can also be observed from the previous tables that the fit of the response 

surfaces, as measured by R�, is very good and for all scenarios greater than 96%. It was 

also noted that the efficiency of the models increases when the thickness of the HMA 

layer is increased from 4.5 in to 10.0 in. This can be corroborated by the reduction in 

model standard error associated with the change in HMA layer thickness (approximately 

from 3 to 4 times reduction). 

Finally, based on the previously estimated response surfaces (&���'�and Tables 5.4 

thru 5.6), the limit state function for rutting of the HMA layer (in inches) can be defined 

as follows, 0��cf8eff�Z�È#É, ËµWY,#;·,#;W, ËÍ, ÉÎ, Ï� 	 ���� � ;nX��cf8eff�Z�����������������������&���' 
As previously mentioned, the 0.25 in threshold for HMA layer rutting 

corresponds to the default failure criterion in the MEPDG. Additionally, note that in 

order to account for unobserved factors that affect rutting, a disturbance term �Ï� has also 

been introduced in 0��cf8eff�Z��� as a normal random variable with mean zero and 

standard deviation equal the standard error associated to each respective model. 

5.4. FORM ANALYSIS BASED ON 1-DEGREE RESPONSE SURFACE 

FORM was performed assigning the variability presented in Table 5.1 to the 

different input parameters. Additionally, the parameters are not assumed independent but 

correlated as per Section 5.1. Furthermore, based on the analysis performed on Chapter 4, 
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the input variables have been assumed normally distributed with mean values as per 

Table 5.2.  

The results from FORM, using the limit state function &���' are shown in Tables 

5.7 thru 5.9.  

Table 5.7: Reliability Analysis based on FORM for HMA layers in Cool Climatic 
Region (1-degree response surface). 

 
  

TTC 2 TTC 12 TTC 2 TTC 12

0.16 0.12 0.03 0.02

0.84 0.88 0.97 0.98

0.62 0.64 0.61 0.62

HMA 0.89 0.89 0.23 0.23

Base 0.00 0.00 0.02 0.02

MRb 0.03 0.03 0.09 0.09

MRs 0.00 0.00 0.04 0.03

BC 0.03 0.03 0.29 0.29

AV 0.03 0.03 0.33 0.33
ε 0.02 0.02 0.01 0.01

4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R FORM

R MEPDG

α 2

Parameter



 
 
 
 

 90 

Table 5.8: Reliability Analysis based on FORM for HMA layers in Warm Climatic 
Region (1-degree response surface). 

 

Table 5.9: Reliability Analysis based on FORM for HMA layers in Hot Climatic 
Region (1-degree response surface). 

 

The tables show the probability of failure and reliability of the different pavement 

structures that have been analyzed estimated directly from the MEPDG, and using FORM 

based on &���'. Based on FORM it can be observed that for all of the analyzed scenarios, 

TTC 2 TTC 12 TTC 2 TTC 12
0.09 0.07 0.02 0.02
0.91 0.93 0.98 0.98
0.63 0.64 0.62 0.63

HMA 0.86 0.86 0.42 0.42
Base 0.00 0.00 0.01 0.01
MRb 0.04 0.04 0.06 0.06
MRs 0.00 0.00 0.01 0.01
BC 0.04 0.04 0.23 0.23
AV 0.04 0.04 0.26 0.26
ε 0.02 0.02 0.01 0.01

R MEPDG

α 2

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R FORM

TTC 2 TTC 12 TTC 2 TTC 12
0.07 0.09 0.09 0.07
0.93 0.91 0.91 0.93
0.61 0.60 0.59 0.60

HMA 0.78 0.78 0.45 0.45
Base 0.01 0.01 0.01 0.01
MRb 0.04 0.04 0.05 0.05
MRs 0.00 0.00 0.01 0.01
BC 0.07 0.06 0.22 0.22
AV 0.07 0.07 0.24 0.25
ε 0.03 0.03 0.01 0.01

R MEPDG

α 2

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R FORM
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the reliability as estimated directly by the MEPDG is very conservative, an 

approximately 20% to 30% lower than the FORM estimates.  

The probabilities of failure, as estimated by FORM are in the order of 2% to 16% 

(as opposed to the MEPDG estimates of approximately 40%). However, it is important to 

note that because this is a linear deterioration function with normal random variables, the 

probability of failure using FORM would only be exact if &���' were the true model for 

predicting failure. 

FORM analysis also has the advantage that it provides some additional 

information on the influence of each random variable on the probability of failure of the 

pavement structure (based on rutting of the HMA layer as the failure criterion). The 

squared directional cosines �Ð�� of the reliability index in the standard normal space 

(refer to Figure 3.1) provide an indication of the relative importance of the random 

variables on the reliability index and, therefore, on the probability of failure. In the 

analysis of failure using the ;nX��cf8eff�Z  response surface, the squared directional 

cosines �ÐZ�� indicate that for the case of thin HMA layers (4.5 in scenario) the most 

significant variable that influences the reliability of the pavement structure is the 

thickness of the HMA structure. Also note that the relative importance of thickness of the 

HMA layer decreases as the temperature increases (over 10% decrease for the evaluated 

climatic range). Additionally, the modulus of the base layer and the volumetric properties 

of the HMA mix (air void content and asphalt binder content) also have an important 

effect on the probability of failure.  

In the case of pavements with thick HMA layers (10.0 in scenario), the thickness 

of the HMA layer continues to be one of the most important factors in determining the 

failure of the pavement structure. It can also be noted that as opposed the thin HMA layer 

scenario (4.5 in scenario), the effect of the thickness of the HMA layer increases as the 
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temperature decreases (over 20% increase for the evaluated climatic range). Also, in the 

case of thick HMA layers, the volumetric properties of the asphalt mixture �ËÍ, ÉÎ� 
have a similar or higher impact to the thickness of the HMA layer on the deterioration of 

the pavement structure. The effect of the remaining variables also increases, as compared 

to the thin HMA layer case. 

5.5. SIMULATION ANALYSIS BASED ON 1-DEGREE RESPONSE SURFACE 

As an alternate means of estimating reliability based on the 1-degree limit state 

function defined in &���'�Ñ0��cf8eff�Z���Ò simulation was performed. The simulation 

results can also be used as a means of verifying the results obtained from FORM. 

Simulation was performed using the Crude Monte Carlo and Latin Hypercube 

based on a sample size of 10,000 runs and 10 repetitions. It is expected that the Latin 

Hypercube estimates are more efficient and converge faster. Additionally, in order to 

further validate the results, Crude Monte Carlo simulation was also performed increasing 

the sample size to 1,000,000 and performing 50 repetitions. 

The data assumptions used in the simulations are the same that were used for the 

FORM analysis. The simulation results are shown in Tables 5.10 thru 5.12. The tables 

also show the FORM results for comparison. 

Table 5.10: Reliability Analysis based on simulation for HMA layers in Cool Climatic 
Region (1-degree response surface). 

 

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.

Monte Carlo        
(N=10,000 - R=10)

84.01% 0.35% 87.48% 0.27% 96.62% 0.17% 97.80% 0.11%

Latin Hypercube 
(N=10,000 - R=10)

84.25% 0.21% 87.48% 0.14% 96.66% 0.19% 97.75% 0.11%

Monte Carlo 
(N=1,000,000 - R=50)

84.25% 0.03% 87.58% 0.03% 96.62% 0.01% 97.75% 0.02%

FORM 84.25% - 87.58% - 96.62% - 97.76% -

Method

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12
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Table 5.11: Reliability Analysis based on simulation for HMA layers in Warm Climatic 
Region (1-degree response surface). 

 

Table 5.12: Reliability Analysis based on simulation for HMA layers in Hot Climatic 
Region (1-degree response surface). 

 

The tables show the reliability estimates based on simulation using the 0��cf8eff�Z��� limit state function are consistent with the FORM estimates. It can also be 

noted that all the reliability estimates based on simulation are also consistent among 

themselves. However, it is clear that for a fixed sampling number (10,000) and number of 

repetitions (10) the Crude Monte Carlo method is associated with higher variation in the 

estimates (on average the standard error based on Latin Hypercube is 80% of that 

obtained using Crude Monte Carlo). Because of the previous reason, the rate of 

conversion using Crude Monte Carlo is lower. 

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.

Monte Carlo        
(N=10,000 - R=10)

90.66% 0.29% 92.72% 0.19% 97.63% 0.11% 97.99% 0.14%

Latin Hypercube 
(N=10,000 - R=10)

90.69% 0.10% 92.68% 0.13% 97.66% 0.14% 97.99% 0.10%

Monte Carlo 
(N=1,000,000 - R=50)

90.71% 0.02% 92.73% 0.02% 97.57% 0.01% 97.98% 0.01%

FORM 90.72% - 92.72% - 97.57% - 97.98% -

Method

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.

Monte Carlo        
(N=10,000 - R=10)

93.03% 0.24% 90.43% 0.27% 91.28% 0.35% 92.72% 0.17%

Latin Hypercube 
(N=10,000 - R=10)

93.12% 0.19% 90.52% 0.19% 91.21% 0.28% 92.60% 0.17%

Monte Carlo 
(N=1,000,000 - R=50)

93.04% 0.02% 90.50% 0.02% 91.26% 0.03% 92.61% 0.03%

FORM 93.04% - 90.50% - 91.26% - 92.61% -

Method

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12
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Regardless of the type of simulation performed, the standard errors obtained from 

all the simulations are negligible compared to the typical magnitudes for the probability 

of failures associates with pavement structures. 
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Chapter 6:  Correction in Reliability Estimates Due to Curvature 

The reliability analysis in the previous chapter was based on the assumption that 

the limit state function corresponds to a 1-degree polynomial function: 0��cf8eff�Z���. 
The 1-degree polynomial approximation to the limit state function was assumed as 

appropriate because of the relative linearity of some of the design input variables that are 

addressed as part of the current study (refer to Section 5.3).  However, it was also 

observed that the effect of some of the variables is not necessarily linear. Furthermore, 

strong correlations have been identified between several of the analysis variables (e.g. 

resilient modulus of base and subbase). For this reason, a response surface that 

incorporates a certain degree of nonlinearity is evaluated in the present chapter. 

6.1. DEVELOPMENT OF 2-DEGREE RESPONSE SURFACES WITH INTERACTION TERMS 
FOR RUTTING PERFORMANCE 

The response surface to be fit in the following section was initially based on a 2-

degree polynomial function with interaction terms between all the variables for which 

correlation was identified. Mathematically, the response surfaces �;nX��cf8eff�Z� which 

consists of an approximation to the rutting of the HMA layer as determined by the 

MEPDG, and can be represented in mathematically as follows, ;nX��cf8eff�Z 	 �� � ��È#É� �ÊËµWY � �r#;· � ��#;W � �ÌËÍ � �sÉÎ� ��È#É� � � ËµWY� � ��
#;·� � ���#;W� � ���ËÍ� � ��ÊÉÎ�
� ��rÈ#É � ËµWY � ���#;· � #;W � ��ÌËÍ � ÉÎ � Ï�������������������������&���' 

where  ;nX��cf8eff�Z represents the rutting on the HMA layer after 17 years of service 

life in inches and Ï corresponds to a disturbance term or random variable that accounts 

for unobserved factors that affect the rutting process of the HMA layer. The subindex V 
indicates each possible combination of truck traffic loading, environment, and thickness 

type of the HMA layer. 
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After several iterations, it was identified that the effect of several of the quadratic 

terms and interaction terms were not significant (at a level of confidence of 90%) in 

explaining the rutting of the HMA layer. Consequently, the non-significant parameters 

were dropped from the model, and the final ;nX��cf8eff�Z response surface can be 

expressed as follows, ;nX��cf8eff�Z 	 �� � ��È#É � �ÊËµWY � �r#;· � ��#;W � �ÌËÍ � �sÉÎ� ��È#É� � � #;· � #;W� Ï�������������������������������������������������������������������&���' 
The detailed parameter estimates and standard errors associated with &���' are 

presented in the following tables. 

Table 6.1: Parameter estimates for rutting of HMA layer in Cool Climatic Region. 

 
  

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.984 

(0.048)
20.7

0.967 
(0.047)

20.6
0.192 

(0.014)
14.1

0.195 
(0.014)

14.3

HMA
-0.327 

(22.82x10-3)
-14.4

-0.321 
(22.50x10-3)

-14.3
-0.053 

(2.92x10-3)
-18.2

-0.053 
(2.91x10-3)

-18.3

Base
1.39x10-4 

(1.31x10-4)
1.1

1.58x10-4 
(1.29x10-4)

1.2
12.03x10-4 
(0.35x10-4)

34.3
12.04x10-4 
(0.35x10-4)

34.4

MRb
-2.92x10-6 
(2.13x10-8)

-13.7
-2.88x10-6 
(2.10x10-8)

-13.8
1.30x10-6 

(5.70x10-8)
22.9

1.31x10-6 
(5.69x10-8)

23.1

MRs
-2.35x10-6 
(4.59x10-7)

-5.1
-2.50x10-6 
(4.52x10-7)

-5.5
2.67x10-6 

(1.22x10-7)
21.8

2.51x10-6 
(1.22x10-7)

20.5

BC
0.018 

(0.70x10-3)
26.2

0.018 
(0.69x10-3)

26.1
0.023 

(0.19x10-3)
124.4

0.023 
(0.19x10-3)

123.3

AV
0.015 

(0.66x10-3)
22.7

0.015 
(0.65x10-3)

22.5
0.019 

(0.18x10-3)
107.9

0.019 
(0.18x10-3)

106.9

HMA 2 0.029 
(2.75x10-3)

10.5
0.028 

(2.72x10-3)
10.5

0.002 
(0.16x10-3)

15.7
0.002 

(0.16x10-3)
15.8

MRb . MRs
6.264x10-6 

(2.532x10-7)
2.5

6.679x10-6 
(2.496x10-7)

2.7
-9.906x10-6 
(6.783x10-7)

-1.5
-1.039x10-6 
(6.767x10-7)

-1.5

R 2

σ

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

0.986 0.985 0.993 0.992

0.003 0.003 0.001 0.001
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Table 6.2: Parameter estimates for rutting of HMA layer in Warm Climatic Region. 

 
  

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.854 

(0.046)
18.6

0.847 
(0.045)

19.0
0.282 

(0.011)
24.9

0.284 
(0.011)

25.0

HMA
-0.285 

(22.00x10-3)
-12.9

-0.282 
(21.37x10-3)

-13.2
-0.064 

(2.44x10-3)
-26.3

-0.064 
(2.44x10-3)

-26.4

Base
6.99x10-4 

(1.26x10-4)
5.5

6.64x10-4 
(1.23x10-4)

5.4
10.28x10-4 
(0.29x10-4)

35.1
10.38x10-4 
(0.29x10-4)

35.4

MRb
-3.05x10-6 
(2.05x10-8)

-14.9
-3.01x10-6 
(2.03x10-8)

-14.8
1.18x10-6 

(4.76x10-8)
24.9

1.19x10-6 
(4.76x10-8)

25.1

MRs
-3.20x10-6 
(4.42x10-7)

-7.3
-3.30x10-6 
(4.35x10-7)

-7.6
1.90x10-6 

(1.02x10-7)
18.6

1.79x10-6 
(1.02x10-7)

17.4

BC
0.018 

(0.68x10-3)
26.0

0.017 
(0.66x10-3)

26.3
0.023 

(0.16x10-3)
143.2

0.022 
(0.16x10-3)

142.1

AV
0.014 

(0.62x10-3)
22.8

0.014 
(0.61x10-3)

22.7
0.018 

(0.15x10-3)
124.2

0.018 
(0.15x10-3)

123.3

HMA 2 0.026 
(2.66x10-3)

9.8
0.026 

(2.58x10-3)
10.0

0.003 
(0.13x10-3)

21.8
0.003 

(0.13x10-3)
22.0

MRb . MRs
1.042x10-6 

(2.441x10-7)
4.3

1.073x10-6 
(2.420x10-7)

4.4
-9.207x10-6 
(5.657x10-7)

-1.6
-9.618x10-6 
(5.664x10-7)

-1.7

R 2

σ

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

0.980 0.981 0.995 0.995

0.003 0.003 0.001 0.001
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Table 6.3: Parameter estimates for rutting of HMA layer in Hot Climatic Region. 

 

Similar to the 1-degree response surfaces, it can be observed from Tables 6.1 thru 

6.3 that most of the parameters are significant at the five percent level. The only factor 

that is less significant in some of the scenarios is the interaction factor between modulus 

of the base and subgrade (in the 10.0 in thick HMA layer scenarios). However, the 

interaction term was not removed from the analysis since it has been found to be jointly 

significant (with the other input variables) in the prediction of HMA rutting. 

Additionally, as compared to the 1-degree response surface, the fit of the models 

also improved and for all scenarios it is now greater than 97% (as measured by R�). The 

efficiency of the models also improved as compared to the 1-degree response surface. 

The trends with regard to model standard error also remain: improved efficiency in 

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.688 

(0.043)
15.9

0.847 
(0.045)

19.0
0.282 

(0.011)
24.9

0.284 
(0.011)

25.0

HMA
-0.241 

(20.78x10-3)
-11.6

-0.282 
(21.37x10-3)

-13.2
-0.064 

(2.44x10-3)
-26.3

-0.064 
(2.44x10-3)

-26.4

Base
11.77x10-4 
(1.19x10-4)

9.9
6.64x10-4 

(1.23x10-4)
5.4

10.28x10-4 
(0.29x10-4)

35.1
10.38x10-4 
(0.29x10-4)

35.4

MRb
-2.66x10-6 
(1.94x10-8)

-13.7
-3.01x10-6 
(2.03x10-8)

-14.8
1.18x10-6 

(4.76x10-8)
24.9

1.19x10-6 
(4.76x10-8)

25.1

MRs
-2.29x10-6 
(4.18x10-7)

-5.5
-3.30x10-6 
(4.35x10-7)

-7.6
1.90x10-6 

(1.02x10-7)
18.6

1.79x10-6 
(1.02x10-7)

17.4

BC
0.018 

(0.64x10-3)
28.8

0.017 
(0.66x10-3)

26.3
0.023 

(0.16x10-3)
143.2

0.022 
(0.16x10-3)

142.1

AV
0.015 

(0.60x10-3)
25.0

0.014 
(0.61x10-3)

22.7
0.018 

(0.15x10-3)
124.2

0.018 
(0.15x10-3)

123.3

HMA 2 0.023 
(2.51x10-3)

9.2
0.026 

(2.58x10-3)
10.0

0.003 
(0.13x10-3)

21.8
0.003 

(0.13x10-3)
22.0

MRb . MRs
1.100x10-6 

(2.306x10-7)
4.8

1.073x10-6 
(2.420x10-7)

4.4
-9.207x10-6 
(5.657x10-7)

-1.6
-9.618x10-6 
(5.664x10-7)

-1.7

R 2

σ

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

0.970 0.971 0.995 0.995

0.003 0.003 0.001 0.001
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models consisting of a thick HMA layer (10.0 in scenarios) as measured by reduction in 

standard error of approximately 4. 

Then, based on the previously estimated response surfaces (&���'�and Tables 6.1 

thru 6.3), the limit state function for rutting of the HMA layer (in inches) can now be 

defined as follows, 0��cf8eff�Z�È#É, ËµWY,#;·,#;W, ËÍ, ÉÎ, Ï� 	 ���� � ;nX��cf8eff�Z�����������������������&���' 
Again, note that in order to account for unobserved factors that affect rutting, a 

disturbance term �Ï� has also been introduced in 0��cf8eff�Z��� as a normal random 

variable with mean zero and standard deviation equal the standard error associated to 

each respective model. 

 6.2. FORM AND SORM ANALYSIS BASED ON 2-DEGREE RESPONSE SURFACE WITH 
INTERACTION TERMS 

Based on the same data assumptions for the input factors, FORM and SORM 

analysis was performed based on the 2-degree limit state function with interaction terms Ñ0��cf8eff�Z���Ò. The results from FORM and SORM, using the limit state function &���' 
are shown in Tables 6.4 thru 6.6.  
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Table 6.4: Reliability Analysis based on FORM and SORM for HMA layers in Cool 
Climatic Region (2-degree response surface with interaction terms). 

 

Table 6.5: Reliability Analysis based on FORM and SORM for HMA layers in Warm 
Climatic Region (2-degree response surface with interaction terms). 

 

TTC 2 TTC 12 TTC 2 TTC 12

0.14 0.11 0.03 0.02

0.86 0.89 0.97 0.98

0.14 0.11 0.03 0.02

0.86 0.89 0.97 0.98

0.62 0.64 0.61 0.62

HMA 0.90 0.90 0.20 0.22

Base 0.00 0.00 0.02 0.02

MRb 0.03 0.03 0.09 0.09

MRs 0.00 0.00 0.04 0.03

BC 0.03 0.03 0.30 0.30

AV 0.03 0.03 0.34 0.34
ε 0.01 0.01 0.01 0.01

R MEPDG

R FORM

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

P f-SORM

α 2

R SORM

TTC 2 TTC 12 TTC 2 TTC 12
0.08 0.07 0.02 0.02
0.92 0.93 0.98 0.98
0.09 0.07 0.02 0.02
0.91 0.93 0.98 0.98
0.63 0.64 0.62 0.63

HMA 0.88 0.89 0.49 0.50
Base 0.00 0.00 0.01 0.01
MRb 0.03 0.03 0.05 0.05
MRs 0.00 0.00 0.01 0.01
BC 0.03 0.03 0.20 0.20
AV 0.04 0.04 0.23 0.23
ε 0.02 0.01 0.00 0.00

R FORM

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R SORM

R MEPDG

α 2

P f-SORM
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Table 6.6: Reliability Analysis based on FORM and SORM for HMA layers in Hot 
Climatic Region (2-degree response surface with interaction terms). 

 

As was initially assumed, the probability of failure, and hence the reliability 

estimates by means of SORM are very similar to those obtained from the FORM 

analysis. Typically it can be observed that the SORM estimates are approximately 1% 

lower than the FORM estimates. 

Similar to the case of the 1-degree limit state function, the probabilities of failure, 

as estimated by SORM based on the 2-degree limit state function with interaction terms 

are in the order of 2% to 14% (as opposed to the MEPDG estimates of approximately 

40%).  

Based on the squared directional cosines �Ð�� from the FORM analysis similar 

conclusions to those based on the 1-degree limit state function can also be made: for the 

case of thin HMA layers the most significant variable that influences the reliability of the 

pavement structure is the thickness of the HMA structure. However, the effect of 

thickness of the HMA layer decreases as the temperature increases (up to 10% decrease 

TTC 2 TTC 12 TTC 2 TTC 12
0.06 0.08 0.08 0.06
0.94 0.92 0.92 0.94
0.06 0.09 0.08 0.07
0.94 0.91 0.92 0.93
0.61 0.60 0.59 0.60

HMA 0.82 0.81 0.45 0.46
Base 0.01 0.01 0.01 0.01
MRb 0.03 0.03 0.05 0.05
MRs 0.00 0.00 0.01 0.01
BC 0.06 0.06 0.22 0.22
AV 0.07 0.07 0.25 0.25
ε 0.02 0.02 0.00 0.00

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

R FORM

R SORM

P f-FORM

P f-SORM

R MEPDG

α 2
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in the analysis range: cool climate to hot climate). Additionally, the modulus of the base 

layer and the volumetric properties of the HMA mix (air void content and asphalt binder 

content) also have an effect on the probability of failure. Finally, note that the model 

error is also important. This indicates that there are further factors that are currently not 

being considered in the limit state function that influence rutting of the HMA layer. 

In the case of pavements with thick HMA layers, the thickness of the HMA layer 

is still one of the most important factors in determining the failure of the pavement 

structure (and is higher in warm climatic regions). It can also be observed that the effect 

of the thickness of the HMA layer increases as the temperature decreases (over 30% 

increase for the evaluated climatic range). The volumetric properties of the asphalt 

mixture �ËÍ, ÉÎ� also have a very important impact on failure of the pavement structure 

due to rutting of the HMA layer. The effect of the remaining variables also increases, as 

compared to the thin HMA layer case. 

6.3. ELASTICITY ANALYSIS 

In the previous section, the effect of the different variables on the probability of 

failure or reliability of a pavement section by means of the directional cosines �Ð� was 

evaluated. However, as was mentioned before, the conclusions extracted from the 

directional cosines are based on the assumption that all of the variables are independent. 

This is clearly not the case because of the strong correlations between some of the 

evaluated parameters. 

For the previous reason, it is important to understand what the effect on reliability 

is when one of the input variables is changed. This type of sensitivity analysis can be 

performed based on the elasticity of the different variables. In this case, the coefficient of 

elasticity can be defined as the percentage change on the reliability index (β) due to a 1% 
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change of input variable i��Xi). In mathematical notation, the coefficient of elasticity can 

be expressed as, bÓ,Ôg 	 ÕEJ�ÕEJÖZ 	 Õ�ÕÖZ � ÖZ� ����������������������������������������������������������������������������������������������������������� &���' 
Then, in order to estimate bÓ,Ôg, ×Ó×Ôg� needs to be determined. This can be 

estimated based on the definition of β as follows, 

Õ�ÕÖZ 	 Õ�′�′�ÕÖZ 	 ÕÕÖZØ¶¡Z�
j

¥ � 	 Ù¶¡Z�
j

¥ � Ú���¶¡¥j
¥ � � Õ¡¥ÕÖZ

	 ��¶¡¥j
Z � � Õ¡¥ÕÖZ �����������������&���' 

Note that at the design point, 0��, ÖZ� 	 � must hold (limit state function is equal 

to zero). Therefore a small change in Xi will have to satisfy y ×8�1�×ÛÜ
×ÛÜ×Ôgj¥ � � ×8�1�×Ôg 	 �. 

Then, based on the previous and the fact that �� 	 �� £8����¤£8����¤ (Melchers, 1999), Õ�ÕÖZ 	 ��¶ ��¤£0���¤j
¥ � � Õ0�1�Õ¡¥ � Õ¡¥ÕÖZ 	 �¤£0���¤ � Õ0�1�ÕÖZ ����������������������������������������������������&���' 

 Finally we have that, bÓ,Ôg 	 �¤£0���¤ � Õ0�1�ÕÖZ � ÖZ� ����������������������������������������������������������������������������������������������������&��%' 
 Based on the previous definition &��%', the coefficients of elasticity for the 

different input variables can be estimated and are shown in Tables 6.7 thru 6.9. The 

following coefficients of elasticity are based on the mean design input values. 
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Table 6.7: Coefficients of Elasticity for Input Parameters based on HMA layers in Cool 
Climatic Region (2-degree response surface with interaction terms). 

 

Table 6.8: Coefficients of Elasticity for Input Parameters based on HMA layers in 
Warm Climatic Region (2-degree response surface with interaction terms). 

 

Table 6.9: Coefficients of Elasticity for Input Parameters based on HMA layers in Hot 
Climatic Region (2-degree response surface with interaction terms). 

 

TTC 2 TTC 12 TTC 2 TTC 12
HMA 9.41 8.03 1.73 1.49
Base -0.06 -0.06 -0.80 -0.73
MRb 1.58 1.32 -1.27 -1.16
MRs 0.30 0.28 -1.17 -0.99
BC -2.88 -2.46 -5.60 -5.05
AV -3.25 -2.76 -6.32 -5.71

4.5 in HMA Layer 10.0 in HMA Layer
Elasticity

Parameter

TTC 2 TTC 12 TTC 2 TTC 12
HMA 6.45 5.77 2.50 2.35
Base -0.27 -0.24 -0.54 -0.52
MRb 1.24 1.09 -0.89 -0.86
MRs 0.26 0.24 -0.63 -0.56
BC -2.46 -2.20 -4.19 -4.00
AV -2.77 -2.48 -4.74 -4.52

Parameter
Elasticity

4.5 in HMA Layer 10.0 in HMA Layer

TTC 2 TTC 12 TTC 2 TTC 12
HMA 4.97 5.72 4.75 4.39
Base -0.53 -0.60 -0.80 -0.76
MRb 1.10 1.25 -1.40 -1.32
MRs -0.04 -0.03 -0.81 -0.71
BC -2.95 -3.41 -6.30 -5.87
AV -3.33 -3.85 -7.10 -6.61

Parameter
Elasticity

4.5 in HMA Layer 10.0 in HMA Layer
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It can be observed from the tables that in the case of cool climatic regions and thin 

HMA layers, the most important variable is the thickness of the HMA layer. The 

coefficient of elasticity indicates that a 1% increase in HMA layer thickness can result in 

an 8.0% to 9.5% increase in the reliability index (depending on the type of truck traffic). 

However, the effect of thickness of the HMA layer decreases as the climate increases. 

Also significant in the case of thin HMA layers is the effect of the volumetric properties 

(binder content and air void content), which opposed to thickness of the HMA, increase 

as weather increases. For example, in the case of a thin pavement section on a Hot 

Climatic Region, a 1% increase in air void content can be associated with a 3.3% to 3.9% 

decrease in the reliability index, and a 1% increase in binder content can be associated 

with a 3.0% to 3.4% decrease in the reliability index. Note that the effect on probability 

of failure is non-linear since �. 	 ����� as per &����', so the actual effect on reliability 

depends on what the reliability index is for a given design. 

In the case of thick pavement structures, the volumetric properties of the mix are 

consistently the most important factors on the reliability of the pavement structure. 

Depending on the different climatic and traffic conditions, a 1% increase in air void 

content can be associated with a 4.5% to 7.1% decrease in the reliability index, and a 1% 

increase in binder content can be associated with a 4.0% to 6.3% decrease in the 

reliability index. However, the effect of thickness of the HMA layer is still significant 

and for some conditions comparable to the effect of the modulus of the base layer 

(although different in direction). 

Additionally, it is important to note that the effect of the modulus of the base and 

subgrade changes direction when comparing thin versus thick HMA layers. This indicates 

that the pavement response is very different under these two conditions: in the case of 

thin HMA layers, an increase in base or subgrade modulus can be associated with a 
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reliability improvement. However, in the case of thick HMA layers, the same increase in 

modulus of the base or subgrade results in a detrimental effect on the reliability of the 

pavement structure. 

6.4. SIMULATION ANALYSIS BASED ON 2-DEGREE RESPONSE SURFACE WITH 
INTERACTION TERMS 

As in the previous chapter, simulation was performed as an alternate means of 

estimating reliability based on the 2-degree limit state function defined in &���'�Ñ0��cf8eff�Z���Ò.  

As before, simulation was performed using the Crude Monte Carlo and Latin 

Hypercube based on a sample size of 10,000 runs and 10 repetitions. Additionally, in 

order to further validate the results, Crude Monte Carlo simulation was also performed 

increasing the sample size to 1,000,000 and performing 50 repetitions. 

The data assumptions used in the simulations are the same that were used for the 

SORM analysis. The simulation results are shown in Tables 6.10 thru 6.12. The tables 

also show the SORM results for comparison. 

Table 6.10: Reliability Analysis based on simulation for HMA layers in Cool Climatic 
Region (2-degree response surface with interaction terms). 

 
  

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.

Monte Carlo        
(N=10,000 - R=10)

85.45% 0.38% 88.49% 0.27% 96.33% 0.22% 97.60% 0.23%

Latin Hypercube 
(N=10,000 - R=10)

85.46% 0.24% 88.70% 0.15% 96.53% 0.14% 97.65% 0.10%

Monte Carlo 
(N=1,000,000 - R=50)

85.51% 0.03% 88.64% 0.03% 96.46% 0.02% 97.66% 0.01%

SORM 85.60% - 88.71% - 96.61% - 97.76% -

Method

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12
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Table 6.11: Reliability Analysis based on simulation for HMA layers in Warm Climatic 
Region (2-degree response surface with interaction terms). 

 

Table 6.12: Reliability Analysis based on simulation for HMA layers in Hot Climatic 
Region (2-degree response surface with interaction terms). 

 

The tables show the reliability estimates based on simulation using the 0��cf8eff�Z��� limit state function are consistent with the SORM estimates and amongst 

the different simulation techniques that were used.  

As was the case with the 1-degree limit state function, for a fixed sampling 

number (10,000) and number of repetitions (10) the Crude Monte Carlo method exhibits 

higher variation in the estimates (on average the standard error based on Latin Hypercube 

is approximately 65% of that obtained using Crude Monte Carlo). Therefore, the Latin 

Hypercube simulations converge at a faster rate. 

Finally, if the results from the previous tables are compared to those from Section 

5.5, it can be observed that the differences in the reliability estimates using a 1-degree 

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.

Monte Carlo        
(N=10,000 - R=10)

91.40% 0.25% 93.13% 0.16% 97.55% 0.20% 97.99% 0.20%

Latin Hypercube 
(N=10,000 - R=10)

91.46% 0.13% 93.21% 0.14% 97.65% 0.16% 98.02% 0.15%

Monte Carlo 
(N=1,000,000 - R=50)

91.40% 0.03% 93.19% 0.03% 97.64% 0.01% 98.03% 0.01%

SORM 91.47% - 93.24% - 97.72% - 98.10% -

Method

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.

Monte Carlo        
(N=10,000 - R=10)

93.52% 0.24% 91.13% 0.25% 91.65% 0.38% 92.84% 0.28%

Latin Hypercube 
(N=10,000 - R=10)

93.37% 0.20% 91.06% 0.15% 91.61% 0.23% 92.94% 0.13%

Monte Carlo 
(N=1,000,000 - R=50)

93.42% 0.03% 91.05% 0.03% 91.61% 0.03% 92.93% 0.02%

SORM 93.51% - 91.18% - 91.81% - 93.11% -

Method

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12
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limit state function and a 2-degree limit state function with interaction terms are typically 

less than 1% (although the reliability estimates from the 2-degree limit state function are 

consistently lower). 
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Chapter 7:  Direct MEPDG Simulation 

As per Section 3.4, the probability of failure based on simulation can be expressed 

as, �. 	 �.� ������������������������������������������������������������������������������������������������������������������������������������������&%��' 
where N[ corresponds to the observed number of failures in the simulation process and N 

corresponds to the total number of simulation runs. Note that �. Ý �C, where Pt is the true 

probability of failure for a given population.  

Because of its nature, N[ is Binomially distributed since each simulation run 

corresponds to a Bernoulli trial. Then, based on the definition of the Binomial 

distribution the expected value and variance of N[ can be expressed as (Casella and 

Berger, 2002), b��.� 	 � � �C�����������������������������������������������������������������������������������������������������������������������������&%��' Îµ/��.� 	 � � �C � �� � �C�������������������������������������������������������������������������������������������������������&%��' 
So, from &%��', &%��', and &%��', the expected value and standard deviation of P[ 

can be estimated as follows, b��.� 	 �C������������������������������������������������������������������������������������������������������������������������������������&%��' Îµ/��.� 	 �C � �� � �C�� ������������������������������������������������������������������������������������������������������������ &%��' 
Based on the previous information, it is possible to establish confidence bounds in 

the estimate of P[. Assume P[ is Normally distributed with mean and standard deviation 

as per &%��' and &%��' (the assumption is correct when the number of simulation repetition 

increases because of the Central Limit Theorem, CLT). Then, the 2-sided confidence 

bound on P[ is given by, � }�
��Þ�� 2 �. � b��.��ß��.� 2 
��Þ��~ 	 � � Ð���������������������������������������������������������������������&%��' 

�àb��.� � 
��Þ�� � �ß��.� 2 �. 2 b��.� � 
��Þ�� � �ß��.�á 	 � � Ð����������������������&%�%' 
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where Z corresponds to the 2-tailed z-value and �� – α corresponds to the level of 

confidence.  

7.1. ERROR ASSOCIATED WITH THE SIMULATION 

The confidence interval in [7.6] can be easily modified to become the confidence 

interval in the error associated with P[ , Yã. 	 Ñãä�ãåãå Ò, as follows, 

�à�
��Þ�� � �ß��.� 2 �. � b��.� 2 
��Þ�� � �ß��.�á 	 � � Ð�����������������������������������&%�$' 

� æ�
��Þ�� � ç�C � �� � �C�� 2 �. � �C 2 
��Þ�� � ç�C � �� � �C�� è
	 � � Ð�����������������&%��' 

� æ�
��Þ�� � ç�� � �C��C � � 2 �. � �C�C 2 
��Þ�� � ç�� � �C��C � � è
	 � � Ð�����������������������������&%���' 

� æ�
��Þ�� � ç�� � �C��C � � 2 Yã. 2 
��Þ�� � ç�� � �C��C � � è
	 � � Ð������������������������������������&%���' 

Then for a 95% level of confidence we have that, 

� æ����� � ç�� � �C��C � � 2 Yã. 2 ���� � ç�� � �C��C � � è 	 ��������������������������������������������������&%���' 
Note that, on average, for all analyzed scenarios in Chapters 5 and 6, the 

probability of failure of the pavement structure was determined to be between 2% and 

16%, depending on the climatic conditions surrounding the pavement structure, the 

thickness of the HMA layer, and the assumed traffic loading distributions.  

Assuming an acceptable error in the reliability estimate of approximately ± 3% 

(for a level of reliability in the order of 90%), then, based on &%���' the number of 

simulations required based on the probability of failure would be less than 385. This 
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allows for the possibility of using the MEPDG itself to estimate the probability of failure 

of the pavement structure by means of “true” simulation (using the implicit limit state 

function of the MEPDG and not relying on approximations provided by response 

surfaces.). 

7.2. DIRECT SIMULATION USING THE MEPDG 

In order to verify the reliability results based on second moment and simulation 

techniques using 1-degree and 2-degree response surfaces with interaction terms, direct 

simulation using the MEPDG was performed. Using all the same data assumptions (mean 

values and standard deviations of input variables, distribution assumptions, and 

correlations between the different variables), simulations for all the 12 different scenarios 

were performed using a sample of N� 	� ���. The selected simulation sample size (N) 

corresponds to an approximate error in the reliability estimate of less than 3.0%. 

Although to reduce variability in the estimates a higher sample size and number 

of repetitions might be desirable, it would be prohibitive because of the considerable time 

involved in programming each scenario in the MEPDG and the time running the 

MEPDG. Additionally, as was previously shown, the selected level of maximum 

acceptable error in the probability of failure estimates can be translated to less than a 3% 

error in the reliability estimates which is negligible when compared to the levels of 

reliability that are typically used in the design of pavement structures (Table 2.1). 

The reliability results for the different scenarios analyzed are shown in Tables 7.1 

thru 7.3. The tables show the differences between the direct simulation results using the 

MEPDG, and the reliability results obtained using FORM and SORM in Chapters 5 and 6 

(1-degree and 2-degree response surfaces with interaction terms). 
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Table 7.1: Reliability Results based on Direct Simulation using MEPDG for HMA 
layers in Cool Climatic Region. 

 

Table 7.2: Reliability Results based on Direct Simulation using MEPDG for HMA 
layers in Warm Climatic Region. 

 

Table 7.3: Reliability Results based on Direct Simulation using MEPDG for HMA 
layers in Hot Climatic Region. 

 

TTC 2 TTC 12 TTC 2 TTC 12
0.13 0.09 0.01 0.003
0.87 0.91 0.99 0.998

3.44% 3.76% 2.16% 2.00%

1.89% 2.51% 2.17% 1.99%

Difference with            
1-degree response 

surface results
Difference with            

2-degree response 
surface results

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f

R

TTC 2 TTC 12 TTC 2 TTC 12
0.06 0.03 0.02 0.03
0.94 0.97 0.99 0.98

3.75% 4.16% 0.94% 0.49%

2.95% 3.62% 0.79% 0.62%

10.0 in HMA Layer

P f

R
Difference with            

1-degree response 
surface results
Difference with            

2-degree response 
surface results

Parameter
4.5 in HMA Layer

TTC 2 TTC 12 TTC 2 TTC 12
0.04 0.05 0.07 0.06
0.96 0.95 0.93 0.94

3.08% 4.48% 1.60% 1.74%

2.59% 3.76% 1.01% 1.21%

Difference with            
1-degree response 

surface results
Difference with            

2-degree response 
surface results

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f

R
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Based on the direct simulation results, it can be observed that the estimates 

obtained using the 1-degree and 2-degree response surfaces with interaction terms are 

accurate since the differences are on average 2.64% based on the estimates from the 1-

degree response surface and 2.09% based on the estimates from the 2-degree response 

surface. It can be noted that the higher differences occur in the case of thin HMA 

pavement layers (4.5 in) under TTC12 truck traffic (higher percentage of single unit 

trucks), followed by the TTC2 truck traffic (single trailer trucks) under the same 

thickness condition. 

The difference in the estimates with the pavement structures with thick HMA 

layers (10.0 in) are considerably lower for most of the cases, as compared the thin HMA 

layer scenarios. Finally, it is important to note that the differences between the reliability 

estimates using the MEPDG directly and the estimates from SORM are consistently 

smaller than those from FORM. This indicates that using the 2-degree response surface 

with interaction terms and using SORM to correct for curvature improves the reliability 

estimates, especially in the cases when there is higher variability associated with the 

results (thin HMA layer). 

7.3. CHANGE IN RELIABILITY WITH TIME 

Rutting in the different layers of the pavement structure is a time dependent 

process. It is also highly dependent on the seasonal climatic factors. Consequently, it is 

interesting to evaluate how the reliability of a pavement structure changes with time. 

Evaluating the change in reliability with time allows for better management of the 

pavement infrastructure since time to failure or to reach a given level of deterioration can 

be determined more accurately.  
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The data from the simulations was used to assess how reliability, or the 

probability of failure, changes with time. Figure 7.1 shows how the probability of failure 

changes with time for the different analysis scenarios. 

 

Figure 7.1: Change in reliability with time. 

From the figure it can be observed that, in general, the relative order or ranking of 

the probabilities of failure for the different analysis scenarios remains. Nonetheless, this 

is not always the rule. Based on the different scenarios, it appears that failures are 

observed at an earlier age in thin pavement structures under cool climatic conditions. 

However, as time progresses, the deterioration rate (number of failures observed) grows 

at a faster rate for pavements under warm and hot climatic conditions. This is expected 

because HMA layers are more sensitive to rutting under higher temperatures. 
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An interesting observation is that probabilities of failure are higher for pavement 

structures with thin HMA layers under cool or warm climatic conditions.  However, the 

trend is the opposite for the case of pavement structures under hot climatic conditions. 

Additional observation to Figure 7.1 seems to show that the probabilities of 

failure grow approximately at an exponential rate. What this means is that given a fixed 

probability of failure at year 15, the probability of failure will have increased by a 

magnitude of 4 in a 2 years period, and will be over 20 times as large in a 5 year period. 

This is very valuable information to the pavement manager since the costs of performing 

maintenance activities on a given road at year 15 will also grow exponentially in the 

following years since simple maintenance might no longer be an option but rehabilitation 

might be required. 
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Chapter 8:  Sensitivity to Response Surface 

Based on the results from Chapters 5 through 7, it is reasonable to conclude that 

the curvature of the failure function is low. This can be observed in the relatively small 

differences between the FORM and SORM results, as well as the small differences in the 

reliability results obtained by means of a linear response surface and by means of direct 

simulation (as per Chapter 7).  

Because of the degree of curvature of the failure function, it is realistic to assume 

that a reduction in the experimental design initially proposed to fit the response surfaces 

is valid. A valuable outcome of this analysis would be obtained if it can be shown that 

similar results can be achieved by reducing the number of MEPDG runs required to fit a 

response surface. 

In order to assess the previous statement, the following reduced factorial was used 

in order to fit the MEPDG rutting response surfaces. For each analysis scenario (different 

truck traffic, HMA layer thickness, and climatic combinations) the MEPDG was run a 

total of 64 times for all the combinations of the following values of the selected random 

variables (full factorial): 

• HMA Thicknesses (HMA): mean, –���SD� 
• Asphalt Binder Content (BC): mean, ����SD� 
• Air Voids (AV): mean, ����SD� 
• Base Thickness (Base): mean, –���SD� 
• Base Modulus (MRb): mean, –���SD� 
• Subgrade Modulus (MRs): mean, –���SD� 
where SD denotes standard deviation. The previous selection of ±���SD and + ��SD was 

based on the assumption that moving in the given direction of the random variable more 
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failures would be observed, and on the results from the elasticity analysis presented in 

Section 6.3. 

As was the case in Chapters 5 through 7, all the previous combinations of random 

variables were evaluated using the MEPDG (for a 17 year design period) at the three 

selected climatic regions (cool, warm, and hot), two truck traffic distributions (TTC 2 and 

TTC 12), and two significantly different thickness of the HMA layer (4.5 in and 10.0 in). 

Based on the 64 combinations of the reduced factorial experiment, the HMA rutting 

model response surfaces were developed. 

8.1. DEVELOPMENT OF REDUCED 1-DEGREE RESPONSE SURFACES FOR RUTTING 
PERFORMANCE 

The reduced response surfaces �;nX��cf8eff,efciéfc�dêëìíf�Z� consists of a linear 

approximation to the rutting as determined by the MEPDG, and can be represented in 

mathematically as &���'. The detailed parameter estimates and standard errors are 

presented in the following tables. 
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Table 8.1: Parameter estimates for rutting of HMA layer in Cool Climatic Region. 

 

Table 8.2: Parameter estimates for rutting of HMA layer in Warm Climatic Region. 

 
  

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.405 

(0.015)
26.5

0.398 
(0.015)

26.7
-0.031 
(0.005)

-6.7
-0.030 
(0.005)

-6.5

HMA
-0.074 

(1.41x10-3)
-52.6

-0.073 
(1.38x10-3)

-52.9
-0.006 

(0.17x10-3)
-34.3

-0.006 
(0.17x10-3)

-33.3

Base
1.67x10-4 

(3.03x10-4)
0.6

1.83x10-4 
(2.95x10-4)

0.6
10.20x10-4 
(0.95x10-4)

10.8
10.13x10-4 
(0.94x10-4)

10.7

MRb
-1.85x10-6 
(4.79x10-8)

-38.7
-1.79x10-6 
(4.67x10-8)

-38.3
1.19x10-6 

(1.49x10-8)
79.8

1.19x10-6 
(1.49x10-8)

80.1

MRs
-7.63x10-6 
(2.49x10-7)

-3.1
-8.38x10-6 
(2.43x10-7)

-3.5
2.05x10-6 

(7.79x10-7)
26.3

1.90x10-6 
(7.78x10-7)

24.4

BC
0.019 

(1.57x10-3)
11.9

0.018 
(1.53x10-3)

11.9
0.024 

(0.49x10-3)
48.8

0.024 
(0.49x10-3)

48.2

AV
0.015 

(1.46x10-3)
10.3

0.015 
(1.42x10-3)

10.4
0.019 

(0.46x10-3)
42.3

0.019 
(0.46x10-3)

41.9

R 2

σ

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

0.988 0.988 0.996 0.995

0.002 0.002 0.001 0.001

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.321 

(0.014)
22.3

0.327 
(0.014)

23.1
0.029 

(0.004)
6.9

0.029 
(0.004)

6.9

HMA
-0.058 

(1.33x10-3)
-43.5

-0.057 
(1.31x10-3)

-44.0
-0.009 

(0.15x10-3)
-62.9

-0.009 
(0.15x10-3)

-61.6

Base
8.88x10-4 

(2.85x10-4)
3.1

8.06x10-4 
(2.80x10-4)

2.9
6.50x10-4 

(0.85x10-4)
7.7

6.54x10-4 
(0.85x10-4)

7.7

MRb
-1.60x10-6 
(4.51x10-8)

-35.5
-1.59x10-6 
(4.43x10-8)

-35.9
1.08x10-6 

(1.34x10-8)
81.0

1.09x10-6 
(1.35x10-8)

81.1

MRs
-1.01x10-6 
(2.34x10-7)

-4.3
-1.13x10-6 
(2.30x10-7)

-4.9
1.46x10-6 

(6.97x10-7)
21.0

1.35x10-6 
(7.02x10-7)

19.3

BC
0.018 

(1.48x10-3)
12.2

0.017 
(1.45x10-3)

12.0
0.023 

(0.44x10-3)
51.5

0.022 
(0.44x10-3)

50.8

AV
0.015 

(1.38x10-3)
10.7

0.014 
(1.35x10-3)

10.4
0.018 

(0.41x10-3)
45.0

0.018 
(0.41x10-3)

44.3

R 2

σ

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

0.984 0.984 0.996 0.996

0.002 0.002 0.001 0.001
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Table 8.3: Parameter estimates for rutting of HMA layer in Hot Climatic Region. 

 

It can be observed from Tables 8.1 thru 8.3 that most of the parameters are 

significant at 5 percent significance level, as was the case with the full experimental 

design used in Chapter 5. The exceptions are the thickness of the base layer for predicting 

the rutting of a thin HMA layer (4.5 in) on a Cold Climatic Region, and the modulus of 

the subgrade for the thin pavement on a Hot Climatic Region. However, the variables 

were not dropped from the analyses because in all of the models they were found to be 

jointly significant (with the other input variables) in the prediction of HMA rutting. 

As was the case with the full factorial experimental design response surfaces, the 

fit of the response surfaces, as measured by R�, is very good and for all scenarios higher 

than 97%. Like all previously fit response surfaces, it was also noted that the efficiency 

of the models increased when the thickness of the HMA layer is increased from 4.5 in to 

10.0 in (as measured by the reduction in model standard error associated with the change 

in HMA layer pavement). 

Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat
Parameter 
(Std. Dev.)

t-stat

Intercept
0.218 

(0.013)
16.6

0.221 
(0.013)

16.6
0.041 

(0.004)
9.5

0.042 
(0.004)

9.6

HMA
-0.041 

(1.21x10-3)
-33.8

-0.041 
(1.23x10-3)

-33.7
-0.011 

(0.15x10-3)
-69.7

-0.011 
(0.16x10-3)

-68.9

Base
12.52x10-4 
(2.60x10-4)

4.8
12.88x10-4 
(2.63x10-4)

4.9
7.19x10-4 

(0.88x10-4)
8.1

7.37x10-4 
(0.89x10-4)

8.3

MRb
-1.18x10-6 
(4.11x10-8)

-28.9
-1.20x10-6 
(4.17x10-8)

-28.8
1.16x10-6 

(1.40x10-8)
83.2

1.17x10-6 
(1.40x10-8)

83.5

MRs
-1.74x10-6 
(2.13x10-7)

-0.8
-2.18x10-6 
(2.17x10-7)

-1.0
1.30x10-6 

(7.28x10-7)
18.0

1.23x10-6 
(7.31x10-7)

16.9

BC
0.019 

(1.35x10-3)
14.1

0.019 
(1.37x10-3)

14.0
0.023 

(0.46x10-3)
50.9

0.023 
(0.46x10-3)

50.3

AV
0.015 

(1.25x10-3)
12.2

0.016 
(1.27x10-3)

12.2
0.019 

(0.43x10-3)
44.3

0.019 
(0.43x10-3)

43.7

R 2

σ

Variable

4.5 in HMA Layer 10.0 in HMA Layer
TTC 2 TTC 12 TTC 2 TTC 12

0.976 0.976 0.997 0.997

0.002 0.002 0.001 0.001
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Finally, based on the previously estimated response surfaces (Tables 8.1 thru 8.3), 

the limit state function for rutting of the HMA layer (in inches), using the reduced 

experimental design, can be defined as follows, 0��cf8eff,efciéfc�dêëìíf�Z�È#É, ËµWY,#;·,#;W, ËÍ, ÉÎ, Ï�	 ���� � ;nX��cf8eff,efciéfc�dêëìíf�Z���������������������������������������������������������&$��' 
where the limit state function depends on the 0.25 in threshold for HMA layer rutting 

(default failure criterion in the MEPDG), and includes a disturbance term �Ï�î��&�, ±ï'� 
to account for unobserved factors affecting the rutting of the HMA layer. 

8.2. FORM ANALYSIS BASED ON REDUCED 1-DEGREE RESPONSE SURFACE 

As in previous chapters, FORM analysis was performed assigning the variability 

presented in Table 5.1, assuming Normal distributions with means and standard 

deviations as per Table 5.2, and the correlation coefficients determined in Chapter 4 to 

the different input parameters. Additionally, the parameters are not presumed 

independent but correlated as per Section 5.1.  

The results from FORM, using the limit state function &$��' are shown in Tables 

8.4 thru 8.6. The tables show how do the results differ from the equivalent estimates 

using the full factorial design (Chapter 5 results). 
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Table 8.4: Reliability Analysis based on FORM and Simulation for HMA layers in 
Cool Climatic Region (1-degree reduced response surface). 

 

Table 8.5: Reliability Analysis based on FORM and Simulation for HMA layers in 
Warm Climatic Region (1-degree reduced response surface). 

 

TTC 2 TTC 12 TTC 2 TTC 12

0.16 0.12 0.02 0.02

0.84 0.88 0.98 0.98

0.14% 0.71% 0.98% 0.73%

HMA 0.89 0.89 0.16 0.15

Base 0.00 0.00 0.02 0.02

MRb 0.03 0.03 0.09 0.09

MRs 0.00 0.00 0.03 0.02

BC 0.04 0.04 0.34 0.34

AV 0.04 0.04 0.38 0.38
ε 0.00 0.00 0.00 0.00

4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R FORM

Difference with Full 
Factorial FORM

α 2

Parameter

TTC 2 TTC 12 TTC 2 TTC 12
0.09 0.06 0.02 0.01
0.91 0.94 0.98 0.99

0.69% 0.93% 0.90% 0.79%

HMA 0.84 0.85 0.35 0.34
Base 0.00 0.00 0.01 0.01
MRb 0.03 0.03 0.06 0.06
MRs 0.00 0.00 0.01 0.01
BC 0.05 0.05 0.27 0.27
AV 0.06 0.06 0.31 0.31
ε 0.01 0.01 0.00 0.00

α 2

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R FORM

Difference with Full 
Factorial FORM
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Table 8.6: Reliability Analysis based on FORM and Simulation for HMA layers in Hot 
Climatic Region (1-degree reduced response surface). 

 

The results are comparable to those obtained from the response surfaces obtained 

from the full factorial experiment (Chapter 5). This is the case with both the reliability 

estimates, as well as with the effects measured by the squared directional cosines �Ð��.  
It is important to highlight the small differences that were measured between the 

FORM estimates using the reduced experimental design and the full factorial design. It 

can be observed that the difference is on average approximately 0.9%, and is smallest in 

the case of thin HMA layers in cool climatic regions (4.5 in HMA layer ) and largest in 

the case of thick HMA layers in hot climatic regions (10.0 in HMA layer).  

8.3. SIMULATION ANALYSIS BASED ON REDUCED 1-DEGREE RESPONSE SURFACE 

As in previous chapters, simulation based on the reduced 1-degree limit state 

function defined in &$��'�Ñ0��cf8eff,efciéfc�dêëìíf�Z���Ò was also performed to compare 

to the FORM results. As with previous chapters, simulation was performed using the 

Crude Monte Carlo and Latin Hypercube based on a sample size of 10,000 runs and 10 

TTC 2 TTC 12 TTC 2 TTC 12
0.06 0.09 0.07 0.06
0.94 0.91 0.93 0.94

0.83% 0.51% 2.08% 1.87%

HMA 0.74 0.74 0.40 0.40
Base 0.01 0.01 0.01 0.01
MRb 0.03 0.03 0.06 0.06
MRs 0.00 0.00 0.01 0.01
BC 0.10 0.10 0.25 0.25
AV 0.11 0.11 0.28 0.28
ε 0.01 0.01 0.00 0.00

Difference with Full 
Factorial FORM

α 2

Parameter
4.5 in HMA Layer 10.0 in HMA Layer

P f-FORM

R FORM
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repetitions, and Crude Monte Carlo increasing the sample size to 1,000,000 and 

performing 50 repetitions. 

The assumptions used in the simulations are the same that were used for the 

previous FORM analysis. The simulation results based on the reduced response surface 

and how these results compare to the simulation results based on the full factorial 

experiment (Chapter 5) are shown in Tables 8.7 thru 8.9.  

Table 8.7: Reliability Analysis based on simulation for HMA layers in Cool Climatic 
Region (reduced 1-degree response surface). 

 

Table 8.8: Reliability Analysis based on simulation for HMA layers in Warm Climatic 
Region (reduced 1-degree response surface). 

 

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.
Monte Carlo        

(N=10,000 - R=10)
84.35% 0.52% 88.23% 0.26% 97.68% 0.21% 98.47% 0.14%

Difference to Full 
Factorial Simulation

Latin Hypercube 
(N=10,000 - R=10)

84.45% 0.20% 88.15% 0.17% 97.55% 0.17% 98.48% 0.15%

Difference to Full 
Factorial Simulation

Monte Carlo 
(N=1,000,000 - R=50)

84.37% 0.04% 88.20% 0.03% 97.57% 0.01% 98.47% 0.01%

Difference to Full 
Factorial Simulation

0.14% 0.71% 0.99% 0.73%

0.40% 0.86% 1.09% 0.68%

0.25% 0.77% 0.92% 0.75%

Method
4.5 in HMA Layer 10.0 in HMA Layer

TTC 2 TTC 12 TTC 2 TTC 12

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.
Monte Carlo        

(N=10,000 - R=10)
91.30% 0.26% 93.67% 0.29% 98.42% 0.17% 98.74% 0.05%

Difference to Full 
Factorial Simulation

Latin Hypercube 
(N=10,000 - R=10)

91.31% 0.20% 93.63% 0.18% 98.45% 0.07% 98.72% 0.10%

Difference to Full 
Factorial Simulation

Monte Carlo 
(N=1,000,000 - R=50)

91.34% 0.02% 93.59% 0.03% 98.45% 0.01% 98.76% 0.01%

Difference to Full 
Factorial Simulation

0.69% 1.03% 0.81% 0.75%

0.69% 0.93% 0.91% 0.79%

0.70% 1.02% 0.81% 0.76%

Method
4.5 in HMA Layer 10.0 in HMA Layer

TTC 2 TTC 12 TTC 2 TTC 12
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Table 8.9: Reliability Analysis based on simulation for HMA layers in Hot Climatic 
Region (reduced 1-degree response surface). 

 

As was the case with the FORM estimates, the tables show the reliability 

estimates based on simulation using the 0��cf8eff,efciéfc�dêëìíf�Z��� reduced limit state 

function are consistent with the simulation estimates based on the full factorial 

experiment.  

As in the previous section, very small differences were measured between the 

simulation estimates using the reduced experimental design and the full factorial design. 

It can be observed that the differences are on average approximately 0.95%, and were 

smallest in the case of thin HMA layers in cool climatic regions and largest in the case of 

thick HMA layers in hot climatic regions. 

 
  

Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev. Reliability Std. Dev.
Monte Carlo        

(N=10,000 - R=10)
93.72% 0.19% 90.98% 0.38% 93.27% 0.26% 94.36% 0.19%

Difference to Full 
Factorial Simulation

Latin Hypercube 
(N=10,000 - R=10)

93.89% 0.15% 91.09% 0.10% 93.13% 0.22% 94.36% 0.17%

Difference to Full 
Factorial Simulation

Monte Carlo 
(N=1,000,000 - R=50)

93.81% 0.02% 90.97% 0.02% 93.16% 0.03% 94.34% 0.02%

Difference to Full 
Factorial Simulation

0.83% 0.51% 2.09% 1.87%

0.75% 0.60% 2.17% 1.77%

0.83% 0.62% 2.11% 1.89%

Method
4.5 in HMA Layer 10.0 in HMA Layer

TTC 2 TTC 12 TTC 2 TTC 12
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Chapter 9:  Conclusions 

9.1. SUMMARY AND CONCLUDING REMARKS 

Proper knowledge on the variability of the different input variables used during 

the pavement design process is fundamental and required information that should be 

available to any pavement designer in order to produce pavement design estimates that 

are rational. However, as was noted in the literature review, the variability of the many 

components affecting the performance of the pavement structure during the design 

process are lumped together into an overall variability term or function that was shown to 

produce reliability estimates different to those that would be expected when accounting 

for the individual variability of the different design variables. 

Towards this goal, it is essential to have pavement performance monitoring 

databases that contain detailed descriptions of the materials, structure, traffic, and 

environment that include not only one, but several observations or measurements of 

material properties and laboratory test results and how these change with the 

environment. This is why the author would like to highlight the importance of supporting 

and continuing with efforts such as the Long Term Pavement Performance (LTPP) 

Database which has been shown to be an invaluable source of material, structural and 

performance data that was used to quantify typical variances of the different input 

variables that are used during pavement design. The author believes that this information 

represents typical field variability and is representative of design and construction 

practice in the United States, so that it can be used by pavement designers who require 

variability information for their analysis or designs.  

The data also allowed the author to determine what type of distributions can be 

used to model the variability of the different variables in a manner that can be used with 

any pavement design or analysis procedure, and is not limited to a particular dataset. 
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Furthermore, because of the integration of all the data into a single database, or several 

relational databases, it was also possible to identify typical correlations between the 

different design variables. This is valuable information because it allows for modeling of 

input data as correlated variables with given distributions, as opposed to the usual 

assumption of independence between the different variables. Moreover, assuming 

independence of the design variables will lead to inaccurate material and structural 

behavior characterization since correlation factors of over 30 percent were identified as 

part of this dissertation. 

Then, based on accurate characterization of the variables involved in pavement 

design, proper reliability analysis of pavement structures can be performed. As part of 

this dissertation, a framework to estimate reliability that can be extended to any pavement 

analysis or design procedure was developed, and it was used to evaluate the reliability of 

pavement designs based on the Mechanistic-Empirical Pavement Design Guide 

(MEPDG). The procedure requires the use of a closed-form failure function to define 

failure. However, because of the mechanistic component of the MEPDG, no closed form 

solution exists. Consequently, the underlying failure function in the MEPDG has to be 

approximated by means of a failure response surface that can accurately reproduce the 

results from the MEPDG under specific design conditions. 

The failure response surfaces were initially fit based on a full factorial 

experimental design where each one of the analyzed design variables (thickness of the 

HMA layer, air void content and asphalt binder content of the HMA mix, thickness of the 

base layer, modulus of the base layer, and modulus of the subgrade layer) was evaluated 

at three levels (mean value, ±1, and ±2 standard deviations from the mean, where the + or 

– was selected in such a way that more failures would be observed: critical direction of 

the failure function). Additionally, the effect of different climatic regions (cool, warm, 
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and hot), different truck traffic distributions (high percentage of single trailer trucks vs. 

high percentage of single unit trailers), and HMA layer thickness (thin vs. thick) was 

evaluated. This resulted in 12 design scenarios for which the MEPDG was run 

approximately 800 times for each. Each run consisted of analyzing the rutting of the 

HMA layer in the pavement structure over a 17 year design life. 

Based on the failure response surfaces for the different scenarios, reliability 

analysis based on second moment techniques and simulation was performed. Both the 

First Order Reliability Method (FORM) and the Second Order Reliability Method 

(SORM) were performed. In general, based on the squared directional cosines �Ð�� of the 

reliability index in the standard normal space, it was identified that the thickness of the 

HMA layer and the volumetric properties of the asphalt mix (asphalt binder content and 

air void content) have the highest effect on rutting of the HMA layer. The former is 

critical in the case of pavement structures with thin HMA layers, and the latter is very 

important in the case of thick HMA layers. However, the conclusions based on the 

directional cosines are approximate because they are based on the assumption of 

independence between the analysis variables.  

To further check the effect of each one of the design variables on reliability, an 

elasticity analysis was performed to determine the percentage change on reliability 

associated with a 1% change in each of the design variables. Similar results to the ones 

suggested by the directional cosines were obtained. In the case of pavement structures 

with thin HMA layers, a 1% increase in HMA layer thickness can result in up to a 9.5% 

increase in the reliability index. In the case of pavement structures with thick HMA 

layers, a 1% increase in air void content can be associated with up to a 7.1% decrease in 

the reliability index, and a 1% increase in binder content can be associated with up to a 

6.3% decrease in the reliability index.  
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The reliability results from SORM (which corrects for curvature of the failure 

function) are very close to the FORM estimates. The difference for the different scenarios 

is on average 0.35% which is negligible. This is a good indication that the failure 

function has a large radius of curvature around the design point and consequently the 

FORM estimates are adequate. An additional indication that the radius of curvature is 

large is given by the high R� values that were obtained by fitting the 1-degree (linear) 

response surfaces to the MEPDG data (over 97.5 percent for all of the cases). 

It is important to note that considerable differences were observed between the 

reliability estimates using FORM and SORM, and the reliability values calculated by the 

MEPDG software (confidence interval based on built-in standard deviation models used 

by the MEPDG). It was found that for all the analyzed scenarios, the MEPDG reliability 

estimates are approximately 20% to 30% lower than the FORM estimates. This indicates 

that the standard error function used by the MEPDG, &����', is biased and very 

conservative. 

Additional to the FORM and SORM reliability estimates, the 1- and 2-degree 

failure response surfaces were also used with simulation techniques (Monte Carlo and 

Latin Hypercube methods) to estimate the probability of failure and reliability of the 

pavement structures under the 12 analysis scenarios. As expected, it was observed that 

for a fixed number of simulation repetitions, the variance associated with the Latin 

Hypercube estimates is lower than that for the Monte Carlo estimates. More importantly, 

it was found that the simulation estimates are consistent with the FORM and SORM 

estimates. 

All of the previous reliability estimates are based on 1- and 2-degree response 

surfaces because there is no closed form solution to the MEPDG. It has been verified by 

means of the fit of the response surfaces, and the differences between FORM and SORM 
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results, that it is highly likely that the reliability estimates are adequate. However, the 

only direct method to check if the results are correct is to simulate without relying on the 

failure response surfaces, but to directly use the MEPDG in a simulation analysis. 

However, because of the time required to run a single instance of the MEPDG, it would 

be unfeasible to run millions of instances of the MEPDG to validate the results for each 

of the analysis scenarios. But because of the overall magnitude in the probabilities of 

failure associated with pavement structures, it was considered that 3 percent error in the 

reliability estimates is still an acceptable error in the simulation of reliability. Then, 

assuming the previous acceptable error, the number of simulations required for each 

scenario was under 385.  

Based on the previous discussion, simulations with a sample size of 400 were 

used to estimate the reliability under the 12 analysis scenarios using the MEPDG directly. 

Based on the direct simulation results, it was observed that the estimates obtained using 

the 1-degree and 2-degree response surfaces are accurate since the differences are on 

average 2.64% based on the estimates from the 1-degree response surface and 2.09% 

based on the estimates from the 2-degree response surface. The small differences 

demonstrate that using estimated probabilities of failure based on second moment or 

simulation techniques using responses surfaces is appropriate to calculate the reliability 

of an MEPDG analysis or design. 

Finally, it was the intention of the author for the framework described in the 

dissertation to be practical for use in routine pavement analysis performed by pavement 

designers. However, it is clear that the number of instances that were required to fit a 

single response surface (and the time associated with it) would be prohibitive. 

Consequently, a sensitivity analysis to the number of levels required to fit a response 

surface was performed. Considering that the true rutting of the HMA layer failure 
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function associated with the MEPDG must have a large radius of curvature (adequate 

assumption based on all previous results), it would be safe to assume that reducing the 

number of MEPDG instances required to fit a failure response surface should be valid. To 

this purpose, the response surfaces for each of the analysis scenarios were fit using only 2 

levels for each of the design variables (mean value and 1 or 2 standard deviations in the 

direction of failure). The reduction of one level in the experimental design resulted in 

reducing the number of runs required for each scenario from approximately 800 to 64. 

However the reliability estimates only changed in the order of 0.9 percent. Not only is the 

reduction in number of runs significant, but it will be feasible for practitioners to set the 

MEPDG to run 64 instances routinely using batch mode. Furthermore, it is expected that 

the next version of the MEPDG, which is expected to become available soon (AASHTO 

DARWin-ME), will half the run time of each instance of the MEPDG analysis, making it 

even easier for a design engineer to apply the methods shown in the dissertation. 

9.2. FUTURE WORK 

The current dissertation looked at introducing a framework that can be readily 

applied to estimate reliability in pavement design using the MEPDG. However, 

additional applications of the framework and corrections to the MEPDG built-in 

reliability estimates are required. Examples of the previous and additional research topics 

include the following: 

1. As has been noted in the literature review, the MEPDG is more of a pavement 

analysis tool than an actual pavement design tool. With this in mind, it is possible to 

use the MEPDG to design a pavement structure using an inverse FORM approach. An 

inverse FORM approach consists of initially defining the desired level of reliability 

for a given pavement design, and based on the desired reliability, back-calculating 
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what is the optimal combination of design variables to ensure that the reliability 

requirement is met. 

2. The analyses in the current dissertation are based on a Level 3 design. However, it 

will eventually be adequate to model response surfaces based on Level 2 or Level 1 

design variables. The Level 1 and Level 2 data requirements are more intensive, and 

typically require more sophisticated and detailed information that is not always 

readily available, and the variability of which has not yet been quantified. However, 

as pavement material testing and performance databases continue to grow and build 

up data on these types of tests, it will be feasible to do so in the near future. An 

example of variables that is very important in the MEPDG is the Dynamic Modulus 

(E*) of the asphalt mix. Most of the HMA deterioration models are based on this 

variable and consequently, improved failure response surfaces can be developed. 

3. To simplify the fitting of the response surfaces, or to directly employ the MEPDG in 

simulation as was done in Chapter 7, development of a program that can directly 

generate the required files to run the MEPDG, and then run the MEPDG in batch 

mode would be highly beneficial. This would be very useful because it would greatly 

reduce the time required in preparing each MEPDG input file which can take a 

considerable amount of time, especially for those who are not very familiar with the 

MEPDG.  

4. The current dissertation uses a definition of pavement failure based on the rutting of 

the HMA layer. However, the framework can be extended to account for multiple 

failure modes such as bottom-up cracking, top-down cracking, rutting of the entire 

pavement structure, or roughness. Accounting for additional failure modes will help 

in identifying which variables have the highest overall effect on reliability and will 

allow for a more comprehensive reliability analysis. 
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5. As highlighted in Section 7.3, the effect of time on reliability is of great interest. 

Consequently, the development of time-dependent reliability models will be a strong 

asset in the management of a pavement network, mainly from a maintenance and 

rehabilitation perspective since the probabilities of failure can be estimated for the 

pavement structures at different times through their service lives, allowing for 

accurate allocation of maintenance and rehabilitation funds.  

6. As was shown in the present dissertation, the standard error functions used by the 

MEPDG are not necessarily correct and might be overly conservative. However, 

these functions are useful in obtaining an initial estimate on the reliability of a given 

pavement structure. Unfortunately, the use of these standard error models can result 

in erroneous ideas of what the actual reliability of a given design is. Consequently, 

development of consistent and unbiased models for the standard error functions will 

greatly help pavement designers in obtaining a first estimate of the reliability of a 

given pavement design before a more sophisticated and time consuming reliability 

analysis is performed. 
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Appendix 1:  Normality Goodness-of-Fit Tests 

The current Appendix shows the estimation procedure for the goodness-of-fit tests 

that were used for assessing the hypothesis that a given variable follows a normal 

distribution. 

A1.1. SKEWNESS-KURTOSIS TEST 

The Skewness – Kurtosis consists of estimating individual tests for the skewness �ð·�� and kurtosis �·�� statistics and then combining them into a single normality test. 

A1.1.1. Skewness 

For a normal distribution ð�� 	 �. Then the skewness statistics can be used for 

testing normality of the sample data under the following test of hypothesis: H0 – ð·� 	 � 

vs., H1 – ð·� Ý �. The skewness test statistic can be computed for a sample of size J as 

follows (D’Agostino et al., 1990), 

1. Estimate ð·� from the sample data, 

ð·� 	 �Jy �¸Z � Ņ�ÊjZ �
ñ�Jy �¸Z � Ņ��jZ � òÊ� ����������������������������������������������������������������������������������������������� &É���' 

2. Calculate,  ó 	 ð·� ô�J � ���J � ����J � �� õ��� ��������������������������������������������������������������������������������������� &É���' 
���ð·�� 	 ��J� � �%J � %���J � ���J � ���J � ���J � ���J � %��J � �� ���������������������������������������������������������� &É���' 
�� 	 �� � ö�����ð·�� � ��÷������������������������������������������������������������������������������������&É���' H 	 �ø�n����������������������������������������������������������������������������������������������������������������������������&É���' 
Ð 	 ù ���� � ��ú��� �����������������������������������������������������������������������������������������������������������&É���' 
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3. Calculate, 


�ð·�� 	 H �nÙóÐ � ôûóÐü� � �õ��Ú�����������������������������������������������������������������������������&É��%' 
Where 
�ð·���î�Normal under the null hypothesis. 

A1.1.2. Kurtosis 

For a normal distribution �� 	 �. Then the kurtosis statistic can be used for 

testing normality of the sample data under the following test of hypothesis: H0 – ·� 	 � 

vs., H1 – ·� Ý �. The kurtosis test statistic can be computed as follows (D’Agostino et 

al., 1990), 

1. Estimate ·� from the sample data, 

·� 	 �Jy �¸Z � Ņ�rjZ �ñ�Jy �¸Z � Ņ��jZ � ò� � ��������������������������������������������������������������������������������������������&É��$' 
2. Calculate the mean and variance of ·�,  b�·�� 	 ��J � ��J � � �������������������������������������������������������������������������������������������������������������&É���' 

Îµ/�·�� 	 ��J�J � ���J � ���J � ����J � ���J � ����������������������������������������������������������������������������&É����' 
3. Calculate the standardized version of ·�,  ¸ 	 �·� � b�·���ðÎµ/�·�� ������������������������������������������������������������������������������������������������������������ &É����' 
4. Calculate the third standard moment of ·�,  

ð���·�� 	 ��J� � �J � ���J � %��J � �� ç��J � ���J � ��J�J � ���J � ��������������������������������������������������������&É����' 
5. Calculate,  

É 	 � � $ð���·�� æ �ð���·�� � çû� � ����·��üè������������������������������������������������������&É����' 
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6. Calculate,  


�·�� 	 ýþ
�Ñ� � ��ÉÒ � ��

�� � � �É� � ¸� �É � ����
���Ê

	

�

� ���É� ������������������������������������������������������������&É����' 
where 
�·���î�Normal under the null hypothesis. 

A1.1.3. Skewness and Kurtosis Combined Statistic 

As suggested by D’Agostino and Pearson (1973) a test of normality that combines 

both ð·� and ·� is the following, �� 	 
��ð·�� � 
��·��������������������������������������������������������������������������������������������������������&É����' 
where the �� statistic has approximately a ¼� (chi-squared) distribution with 2 degrees of 

freedom, when the population is normally distributed. 

A1.2. SHAPIRO-FRANCIA TEST 

Let �¸�, ¸�, 4 , ¸j� be the ordered sample from the random population to be tested 

for normality �¸��� ^ ¸��� ^ " ^ ¸�j��, and let 
 denote the vector of expected values 

of standard normal order statistics. Then, based on (Shapiro and Francia, 1972) an 

analysis of variance test for normality is given by, 

�h 	 ày �Z¸�Z�jZ � á�ñy �Z�jZ � � y �¸�Z� � Ņ��jZ � ò�������������������������������������������������������������������������������������&É����' 
The distribution of �� is not normal, but Royston (1983) showed that the 

transformed variable � 	 à�� ����� � �á��� (where � is a function of sample size, n) is 

approximately normal. Based on simulation, Royston (1983) showed that, 

�� 	 �����$��% � �����%���Ö � ���������Ö����������������������������������������������������������&É���%' 
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where Ö 	 ���f�J� � �. Then the mean and standard deviation of � were obtained based 

on smoothed � and are equal to, 

�̄� 	 �exp��������% � �������%Ö � ����$���$Ö� � ������%��$�ÖÊ �"� ������%�%���Ör��������������������������������������������������������������������������������� &É���$' ±�� 	 �exp������%�� � ���������Ö � �����%���Ö� � �����������ÖÊ �"� ����$%��%���Ör��������������������������������������������������������������������������������� &É����' 
Then, the Shapira-Francia test can be defined as follows, �B 	 �� � �̄��±�� ������������������������������������������������������������������������������������������������������������������������ &É����' 

where the �B statistic follows a ���,�� distribution, when the population is normally 

distributed. 

Note that estimating the vector of expected values of standard normal order 

statistics �V� in a sample is size J requires solving the following integral (Royston, 1982), 

�Z�J� 	 J��V � ��� �J � V�� 3 ¸�� � ��¸��Z�����¸��j�Z��¸�7¸�

�� ����������������������������&É����' 
where ��¸� 	 �ø�� exp Ñ� �� ¸�Ò and ��¸� 	 � ������� 7�. Otherwise, an approximation 

to �Z suggested by Blom (1958) is the following, 

�� Z 	 ���ÙV � �$J � ��Ú���������������������������������������������������������������������������������������������������������������&É����' 
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