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GENERAL MULTI-REGION PROBLEMS 
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Supervisor:  Ali E. Yılmaz 

 

Efficient electromagnetic solvers based on surface integral equations (SIEs) are 

developed for the analysis of scattering from large-scale and complex composite 

structures that consist of piecewise homogeneous magnetodielectric and perfect 

electrically/magnetically conducting (PEC/PMC) regions. First, a multiple-grid extension 

of the adaptive integral method (AIM) is presented for multi-region problems. The 

proposed method accelerates the iterative method-of-moments solution of the pertinent 

SIEs by employing multiple auxiliary Cartesian grids: If the structure of interest is 

composed of K  homogeneous regions, it introduces K  different auxiliary grids. It uses 

the thk  auxiliary grid first to determine near-zones for the basis functions and then to 

execute AIM projection/anterpolation, propagation, interpolation, and near-zone pre-

correction stages in the thk  region. Thus, the AIM stages are executed a total of K  

times using different grids and different groups of basis functions. The proposed 

multiple-grid AIM scheme requires a total of nz,near C C( log )
k kk

O N N N+ ∑  operations 

per iteration, where nz,nearN  denotes the total number of near-zone interactions in all 

regions and C
k
N  denotes the number of nodes of the thk  Cartesian grid. Numerical 

results validate the method’s accuracy and reduced complexity for large-scale canonical 

structures with large numbers of regions (up to 6~ 10  degrees of freedom and 3~ 10  
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regions). Then, a Green function modification approach and a scheme of Hankel- to 

Teoplitz-matrix conversions are efficiently incorporated to the multiple-grid AIM method 

to account for a PEC/PMC plane. Theoretical analysis and numerical examples show that, 

compared to a brute-force imaging scheme, the Green function modification approach 

reduces the simulation time and memory requirement by a factor of (almost) two or larger 

if the structure of interest is terminated on or resides above the plane, respectively. In 

addition, the SIEs are extended to cover structures composed of metamaterial regions, 

PEC regions, and PEC-material junctions. Moreover, recently introduced well-

conditioned SIEs are adopted to achieve faster iterative solver convergence. 

Comprehensive numerical tests are performed to evaluate the accuracy, computational 

complexity, and convergence of the novel formulation which is shown to significantly 

reduce the number of iterations and the overall computational work. Lastly, the efficiency 

and capabilities of the proposed solvers are demonstrated by solving complex scattering 

problems, specifically those pertinent to analysis of wave propagation in natural forested 

environments, the design of metamaterials, and the application of metamaterials to radar 

cross section reduction. 
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Chapter I Introduction 

Many wave propagation and antenna radiation applications require efficient 

analysis of scattering from electrically large composite structures consisting of piecewise 

homogeneous and perfect electrically/magnetically conducting (PEC/PMC) regions. 

Consider two examples: (i) To generate models for high fidelity high-frequency (HF) 

communication channels in forest environments, multiple scattering effects from 

hundreds to thousands of trees, whose trunks and branches can be modeled as 

homogeneous dielectric regions, need to be evaluated [1]. (ii) To engineer radar 

absorbing materials, scattering from complex PEC targets covered by a wide 

variety/shape of materials, including materials with magnetic losses [2] and 

metamaterials [3] with negative constitutive parameters, must be evaluated. While 

scattering from such complex structures can be analyzed using a variety of computational 

electromagnetics methods [4], those based on surface integral equation (SIE) 

formulations have appealing properties for large-scale analysis: Unlike volume integral- 

or differential-equation formulations, SIE formulations result in a smaller set of equations 

for fewer (surface-bound) unknowns and are essentially dispersion-free as they propagate 

fields using closed-form Green functions with correct phase velocities (as opposed to 

using a free-space Green function or a computational grid). 

The most popular SIE formulation for analyzing scattering from piecewise 

homogeneous structures is the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) 

formulation [5-7] that generates a series of equivalent problems by introducing electric 

and magnetic currents on the surfaces of homogeneous regions, constructs tangential 

electric- and magnetic-field integral equations (T-EFIEs and T-MFIEs) for each 

equivalent problem, and linearly combines T-EFIEs and T-MFIEs for different problems 
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to formulate a set of equations for the unknown surface currents. If the currents are 

discretized by N  basis functions and the SIEs are weighted by N  testing functions 

then the classical iterative method-of-moments (MOM) solution can require 2( )O N  

operations per iteration for special cases, e.g., for a PEC structure (a one-region problem) 

or for a homogeneous structure (a two-region problem). For general multi-region 

problems, however, the MOM solution involves sparse matrices with nzN  non-zero 

entries and requires nz( )O N  operations per iteration (the null entries correspond to 

basis-testing function pairs on surfaces that do not bound a common region)—in general 
nz 2N N<  and for some structures nz 2N N  (see Section 2.1.5 for examples). Despite 

the sparsity of the resulting matrices, the classical MOM solution of the PMCHWT 

equations is limited to the analysis of small and simple structures composed of a few 

regions; this is because (i) its computational complexity scales unfavorably with the 

electrical size, geometrical complexity, and number of regions of the structure of interest 

(see Section 2.1.3 for a detailed accounting of the MOM computational cost) and (ii) the 

system of equations suffers from poor conditioning, which results in slow convergence of 

iterative solvers.  

To reduce the computational complexity of the MOM solution, this dissertation 

presents a fast Fourier transform (FFT)-based method for multi-region problems that is a 

natural generalization of the adaptive integral method (AIM) for the one-region problem 

[8]. The one-region AIM scheme encloses a PEC structure of interest with an auxiliary 

three-dimensional Cartesian grid of CN  nodes, identifies the nz,nearN  testing-basis 

function pairs that are in the near-zone of each other, and executes grid-based projection, 

propagation, interpolation, and near-zone pre-correction stages. In the propagation stage, 

this method results in (three level) block-Toeplitz “propagation matrices” and uses (three 

dimensional) FFTs to efficiently multiply them with trial vectors at each iteration [8]. 
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Because the projection and interpolation stages involve only ( )O N  operations and 

because the propagation stage is accelerated by FFTs, AIM requires 
nz,near C C( log )O N N N+  operations per iteration. The auxiliary grid must be carefully 

selected for optimizing the AIM performance as there is a trade-off between nz,nearN  and  
CN  (the near-zone size is a function of the auxiliary-grid spacing [8]). It is well known 

that the AIM grid size can be chosen such that nz,nearN N∼  for single-scale (sub- or 

multi-wavelength) structures devoid of features at multiple length scales and that the 

smaller the ratio of the volume enclosed by the Cartesian grid to the surface area of the 

PEC structure, the smaller CN  is, e.g., C 1.5N N∼  if the structure is a sphere, 
CN N∼  if it is a plate. To successfully generalize AIM to multi-region problems, four 

complications must be addressed: (i) There are null interactions among basis and testing 

functions on surfaces that bound different regions. (ii) The SIEs employ different Green 

functions for regions with different constitutive parameters. (iii) The SIEs must be solved 

for both electric- and magnetic-current unknowns. (iv) Both EFIE and MFIE type kernels 

are present. Various multi-region AIM extensions that address complications (ii)-(iv) 

have been proposed recently [9-12]. These extensions, however, all rely on a single 

auxiliary Cartesian grid that encloses the entire structure of interest, which limits their 

appeal for multi-region problems as single-grid AIM schemes cannot overcome 

complication (i) in general: For a K -region problem, these schemes require 
nz,near C C( log )O N KN N+  operations per iteration; furthermore, for large K , it is 

seldom possible to ensure that CKN  is small and nz,near nzN N  with a single grid. 

This dissertation proposes a “multiple-grid AIM” that introduces multiple auxiliary 

Cartesian grids; thus, the proposed scheme employs K  grids with different size, 

location, and spacing for a K -region problem to execute standard grid-based projection, 

propagation, interpolation, and near-zone pre-correction stages, i.e., each grid is 
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associated with/optimized for a different homogeneous region. The multiple-grid AIM 

scheme requires nz,near C C( log )
k kk

O N N N+∑  operations per iteration, where C
k
N  

denotes the number of nodes of the thk  Cartesian grid. The grids can be chosen such that 
C
kk
N∑  is small and nz,near nzN N  for various multi-region problems (see Section 

2.1.4.2 and Section 2.1.5 for details and exceptions).To address the ill-conditioning 

problem of the classical PMCHWT formulation, henceforth referred to as the EH-

PMCHWT formulation, the recently introduced CC-PMCWHT formulation [13-18] is 

adopted in this dissertation. The CC-PMCWHT formulation uses the same linear 

combination as the EH-PMCHWT but for combined-field integral equations (CFIEs) and 

their rotated versions [19], i.e., for the so-called JCFIEs and MCFIEs [13], rather than for 

T-EFIEs and T-MFIEs. There are several advantages to adopting this formulation: (i) The 

iterative MOM solution of CC-PMCHWT equations requires significantly fewer 

iterations than that of EH-PMCHWT equations with little additional computational cost: 

Both require the same solution time per iteration and memory space while the former 

requires twice the matrix fill time because it also constructs rotated and scaled MFIEs and 

EFIEs (N-MFIEs and N-EFIEs) and adds them to T-EFIEs and T-MFIEs, respectively. 

(ii) The CC-PMCHWT formulation reduces to the standard CFIE formulation for PEC 

regions; thus, the treatment of material-PEC junctions [19-22] is straightforward when 

modeling composite structures. (iii) The CC-PMCHWT formulation is amenable to the 

proposed multiple-grid AIM acceleration. Indeed, because N-EFIEs and T-EFIEs (N-

MFIEs and T-MFIEs) have the same projection and propagation operators, only a small 

additional cost is paid when the CC-PMCHWT is used: Only the pre-correction and 

interpolation stages are modified while the projection and propagation stages are 

unchanged (no additional FFTs are needed); the pre-correction stage requires double the 

matrix fill time (but the same storage space and the same number of operations per 
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iteration); and the interpolation stage requires double the number of operations and 

memory. 

The rest of this dissertation is organized as follows. Chapter II formulates the EH-

PMCHWT equations, their classical MOM solution, and the multiple-grid AIM scheme. 

Chapter III presents the CC-PMCHWT equations and contrasts their classical and 

multiple-grid AIM accelerated solutions to those of the EH-PMCHWT ones. Chapter IV 

shows the application of the developed methods to various large-scale wave propagation 

and scattering problems. 
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Chapter II Multiple-Grid AIM for EH-PMCHWT Equations 

This chapter presents the multiple-grid AIM acceleration for the iterative MOM 

solution of EH-PMCHWT equations. First, Section 2.1 presents the method for piecewise 

homogeneous structures composed of conventional magnetodielectric regions with 

positive permeability and permittivity. Then, various extensions are presented: Section 

2.2 presents efficient incorporation of a PEC/PMC plane. Section 2.3 presents extensions 

for metamaterial regions with negative permittivity or permeability values. Section 2.4 

presents extensions for composite structures that include PEC/PMC regions. 

2.1. PIECEWISE HOMOGENEOUS STRUCTURES 

In this section, the EH-PMCHWT equations for analyzing scattering from 

piecewise homogeneous structures are formulated and their solution by the MOM, 

including junction-resolution issues, is reviewed. Next, the proposed multiple-grid AIM 

scheme is introduced and its computational complexity and memory requirements are 

analyzed. Numerical results investigating the accuracy and efficiency of the method for 

canonical structures conclude the section. 

2.1.1. Geometry Description and Notation 

Consider a K -region scattering problem (Fig. 2.1.1(a)) that involves a piecewise 

homogeneous structure comprising 1K −  volumetric regions (denoted as 
1 1
,...,

K
R R

−
) 

residing in free space (denoted as 
0
R ). These regions are bounded by M  disjoint 

surfaces; each disjoint surface is either a closed surface or an open surface that is the 

intersection of two closed surfaces 1. Let 
kl
S  denote the disjoint surface that separates  

  

                                                 
1Open surfaces terminate at junctions of open surfaces; to enclose a region with them, at least two must be 
stitched together. 
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(a) 

         

                                 
(b) 

Figure 2.1.1:  A sample scattering problem involving a piecewise homogeneous structure 
with 4K =  regions and 4M = disjoint surfaces ( 01

,S
02
,S

21
,S

13
S ) 

illuminated by impressed sources in regions 0 and 2. (a) Definition of 
regions, disjoint surfaces, and unit normals. (b) The equivalent problems 
for the fields in regions 0, 1, 2, 3 and the pertinent current densities from 
top right to bottom right, respectively. 

k
R  and 

l
R , i.e., 

kl k l
S S S= ∩ , where 

k
S  and 

l
S  denote the entire boundary surfaces 

of 
k
R  and 

l
R , respectively. (Here and throughout the section, unless otherwise stated, 

0 k K≤ < , 0 l K≤ < , and notably l k≠ .) Clearly, 
lk kl
S S= , k kl

l
S S= ∪ , and if 

imp
0
J 0

0 0
( , )

R

ε μ

3

3 3
( , )

R

ε μ
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2 2
( , )

R

ε μ
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1 1
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ε μ
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21 12
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; ˆ

; ˆ

; ˆ

; ˆ

S

S

S

S

= ∅ =

= ∅ =
= ∅ =
= ∅ =

n 0
n 0
n 0
n 0

0 01 02 1 10 12 13 2 20 21 3 31
;  ;  ;  S S S S S S S S S S S S= ∪ = ∪ ∪ = ∪ =

imp
0
M

imp
2
J imp

2
M
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k
R  and 

l
R  do not share a common surface then 

kl
S = ∅ . On each surface 

kl
S , ˆ

kl
n  

denotes the unit normal that points into 
k
R  and ˆ

kl
p  denotes the “preferred” unit normal 

that is set to either ˆ
kl
n  or ˆ

lk
n ; thus, ˆ ˆ

lk kl
n n= −  while ˆ ˆ

lk kl
p p= . The preferred 

normals will be used to select and identify the unknown currents. It should be noted that 

ˆ ˆ
kl kl
n p 0= =  if 

kl
S = ∅  and that ˆ

k
n  is interpreted as the inward-pointing normal on 

k
S , i.e., ˆ ˆ

k kl
l

n n=∑ .  

2.1.2. EH-PMCHWT Formulation 

The structure of interest is illuminated by a time-harmonic electromagnetic field 

due to impressed currents imp imp{ , }
k k
J M  in 

k
R  ( j te ω  time variation is assumed and 

suppressed). The pertinent integral equations are derived in four steps. First, K  

different equivalent problems are formulated: For each problem k , unknown surface 

currents ˆ ˆ{ , } { , }
k k k k k k
J M n H E n= × ×  are introduced on 

k
S , where { , }

k k
E H  are the 

total fields in 
k
R . This choice of currents yields the true fields inside and zero fields 

outside 
k
R ; thus, the equivalent problem k  reduces to finding { , }

k k
J M  that radiate 

in an unbounded homogeneous medium with constitutive parameters 
k
ε  and 

k
μ  and 

sources imp imp{ , }
k k
J M .  

Second, the continuity of tangential fields is enforced on the disjoint surfaces and 

a subset of the currents in the equivalent problems is identified as follows: Each 

{ , }
k k
J M  is expanded as a sum of the currents on the component surfaces 

kl
S  (Fig. 

2.1.1(b)) as 
 { , } { , }

k k kl kl
l

J M J M=∑ ,                        (2.1.1) 

where ˆ ˆ{ , } { , }
kl kl kl k k kl
J M n H E n= × × . The currents on the disjoint surfaces are related 

by the continuity of tangential electromagnetic fields:  

 { , } { , }
kl kl lk lk
J M J M= − −                        (2.1.2) 
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Thus, integral equations need to be formulated and solved only for a subset of the 

currents in (2.1.1); these currents will be called “preferred currents” and denoted by 

{ , }p pJ M : 

 
1 1

0 1

{ , } { , }
K K

p p p p
kl kl

k l k

J M J M
− −

= = +

=∑∑ ,                     (2.1.3) 

where ˆ ˆ{ , } { , }p p
kl kl kl k k kl
J M p H E p= × × . The remaining currents can be deduced directly 

from (2.1.2); the currents on disjoint surfaces are related to the preferred currents as 

 { , } { , }p p
kl kl kl kl kl
J M J Mα= ,                       (2.1.4) 

where ˆ ˆ
kl kl kl
p nα = i . 

Third, the fields are decomposed as 

 inc inc sca sca{ , } { , } { , }
k k k k k k
E H E H E H= + ,                  (2.1.5) 

where inc inc{ , }
k k
E H  are the incident fields in 

k
R  due to impressed sources in the same 

region and  sca sca{ , }
k k
E H  are the scattered fields [23]: 

 ( )

( )

( )

sca

sca

( ) ( , ) ( , )

( ) ( , ) ( , ) /

, ( ) ( ) ( ) ( )

, ( ) ( )

/ (4 )

k k

k

k

k k k k k k

k k k k k k

k k k k
kS S

k k
S

d

k

g d ds g d ds

g d ds

g d e d

E r J r M r

H r J r M r

v r v r v r

v r v r

γ

η

η

γ
γ

π−

= − −

= −
∇′ ′ ′ ′ ′= − ∇ ⋅

′ ′= ∇×

=

∫∫ ∫∫

∫∫

L K
K L

L

K

     (2.1.6) 

Here, v  represents either 
k
J  or 

k
M  in 

k
R , d r r ′= −  is the distance between the 

observer point r  and source point r′ , and 
k
ε , 

k
μ , k k k

jwγ ε μ= , and 

/
k k k
η μ ε=  are the permittivity, permeability, propagation constant, and intrinsic 

impedance of region k , respectively. 

Fourth, and finally, a tangential electric- and a magnetic-field integral equation 

(T-EFIE and T-MFIE) are formulated for each surface 
kl
S [5-7]: 
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ˆ ˆ ˆ     (T-EFIE )

ˆ ˆ ˆ     (T-MFIE )
kl kl k kl kl kl

kl kl k kl kl kl

n n E n M 0
n n H n J 0

− × × − × =
− × × + × =

              (2.1.7) 

which are linearly combined following the EH-PMCHWT recipe: 

 
T-EFIE    (E)PMCHWT

T-MFIE   (H)PMCHWT

kl kl
k l

kl kl
k l

β

β

∑∑

∑∑
                    (2.1.8) 

where ˆ ˆ
kl kl kl
p nβ = i . 

2.1.3. MOM 

Substituting (2.1.1), (2.1.5) and (2.1.6) in (2.1.8) and enforcing (2.1.4) 

results in a set of integral equations for the preferred currents. These equations are 

converted to a system of linear equations by the usual MOM steps: The surfaces are 

meshed, the currents are approximated using RWG [24] and half-RWG [19-22] 

functions, and the SIEs are weighted by testing functions.  

2.1.3.1. Mesh 

 

Figure 2.1.2:  An example showing regular edges (left and right), which are shared by 
two patches on the same disjoint surface, and junction edges (top and 
bottom), which are shared by at least three patches on different disjoint 
surfaces. 

The surfaces of the structure are meshed with triangular patches and each edge on 

the surface mesh is classified as either a regular edge or a junction edge; a regular edge is 

shared by two patches on the same disjoint surface whereas a junction edge is shared by 
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at least three patches on different disjoint surfaces (Fig. 2.1.2). Each edge is labeled by a 

global index as 
n
e ′ , which represents the thn′  edge on the entire mesh, and by several 

local indices as 
,kl n
e , which represents the thn  edge on the mesh of 

kl
S , i.e., regular 

edges are assigned two local indices (one for each side of the surface they reside on) and 

junction edges are assigned at least three local indices (one for each surface that intersects 

at the junction). It is assumed that there are r
kl
N , r

k
N , and rN  regular edges and j

kl
N , 

j
k
N , and jN  junction edges for a total of 

kl
N , 

k
N , and N  edges on the mesh of 

kl
S , 

k
S , and the entire structure, respectively. Obviously, 0

kl
N =  if 

kl
S = ∅ . Moreover, it 

follows from the definitions that r r
k kll
N N= ∑ , / 2r r

kk
N N= ∑  (regular edges are 

counted twice: Once for each side of disjoint surfaces); that / 2j j
k kll
N N= ∑  , 

/ 3j j
kk

N N≤ ∑  (the equality holds if all junction edges are on junctions of three 

surfaces); and that 
k kll
N N≤ ∑ , / 2

kk
N N≤ ∑  (the two equalities hold when there 

are no junctions). 

2.1.3.2. Discretization 

The discretization procedure is formulated using the local and a global numbering 

scheme for the edge indices. Using the global notation, the preferred currents are 

represented as  

 
1

{ ( ), ( )} { [ ], [ ]} ( )
N

p p
n

n

n nJ r M r I V S r′
′=

′ ′≅∑                  (2.1.9) 

where I  (V ) is an unknown vector of size N ; its thn′  entry [ ]nI ′  ( [ ]nV ′ ) represents 

the electric (magnetic) current coefficient associated with 
n
S ′ , the basis function 

assigned to 
n
e ′ . Using the local notation, the preferred currents on 

kl
S  are discretized as 

 
,

1

{ ( ), ( )} { [ ], [ ]} ( )
klN

p p
kl kl kl kl kl n

n

n nJ r M r I V S r
=

≅ ∑                 (2.1.10) 
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where 
kl
I  (

kl
V )  is an unknown vector of size 

kl
N ; its thn  entry [ ]

kl
nI  ( [ ]

kl
nV ) 

represents the electric (magnetic) current coefficient associated with 
,kl n
S , the basis 

function assigned to 
,kl n
e .  

 

Figure 2.1.3:  A consistent choice of directions of half-RWG functions at a junction. 
Solid and dashed arrows identify the preferred and non-preferred currents 
at the junction edge. 

The global notation in (2.1.9) is related to the local notation in (2.1.10) as 

follows. If 
,kl n n
e e ′=  is not a junction edge, then both 

,kl n
S  and 

n
S ′  represent the same 

RWG function [24] defined on the pair of patches that share the edge, i.e., 
,kl n n

S S ′= . If 

,kl n n
e e ′=  is a junction edge, then 

,kl n
S  represents the half-RWG function defined on the 

one patch on 
kl
S  that shares the edge, whereas 

n
S ′  represents the sum of all such half-

RWG functions (at least three) that share the junction edge. It should be emphasized that 

the continuity of currents normal to an edge, which is automatically enforced for non-

junction edges by RWG functions, is explicitly enforced for junction edges by assigning 

the appropriate signs/directions to the half-RWG functions [19-22] (Fig. 2.1.3). Based on 

the above relation between 
,kl n
S  and 

n
S ′ , the global and local notations for the unknown 

current coefficient are related by:  

 kl kl

kl kl

I C I
V C V

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                            (2.1.11) 
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where 
kl
C  is a sparse selection-matrix of size 

kl
N N×  that has 

kl
N  non-zero entries, 

i.e., each row n  of the matrix has one non-zero entry that is equal to 1; the non-zero 

entry is at the thn′  column if 
,kl n n
e e ′= . 

2.1.3.3. Testing Procedure and Matrix Assembly 

Using Galerkin testing, (2.1.7) and (2.1.8) are converted to a matrix equation. 

On each surface 
kl
S , ,

,T-EFIE
kl n kl
S  and  ,

,T-MFIE
kl n kl
S  are computed for each 

edge 
,kl n
e ; these equations are then assembled into a global system of equations 

according to the EH-PMCHWT recipe in (2.1.8), which results in 2N  equations for 

2N  unknowns: 

 
EH inc

EH
EH inc

I V
Z
V I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                           (2.1.12) 

The MOM matrix assembly can be formulated using the local notation as  

 

EH EH

EH inc EH inc

EH inc EH inc

T
kl

Tkl kl
k l kl

T
kl kl

Tkl
k l kl kl

C 0
Z Z

0 C

V C 0 V

I 0 C I

β

β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑∑

∑∑
               (2.1.13) 

Clearly,  

 
EH inc

EH
EH inc

kl
kl

kl

I V
Z
V I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                         (2.1.14) 

The vectors 
EH inc

kl
V  and  EH inc

kl
I , which are of size 1

kl
N × , store the incident fields 

tested on surface 
kl
S . The matrix EH

klZ , which is a sparse 2 2
kl
N N×  matrix with 

4
kl k
N N  non-zero entries, relates the scattered fields tested on surface 

kl
S  to the 

currents on the entire structure. It can be expanded as 
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EH

1
EH

0, /

K
k kll kll kl

kl kl
l l k klkll kll k

kllZ

L K C 0
Z

0 CK L

η
α

η

−
′ ′ ′

′
′ ′= ≠ ′′ ′

′

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∑              (2.1.15) 

Here, EH
kll
Z ′ , which is a 2 2

kl kl
N N ′×  dense matrix, relates the scattered fields tested on 

surface 
kl
S  to the currents only on 

kl
S ′ . The entries of EH

kll
Z ′ , 

EH inc
kl
V  and  EH inc

kl
I  

can be found in [23] as: 
EH inc inc

,

EH inc inc
,

[ ] ( ) ( )

[ ] ( ) ( )
kl

kl

kl kl n k
S

kl kl n k
S

n ds

n ds

V S r E r

I S r H r

=

=

∫∫

∫∫

i

i
               (2.1.16) 

, ,

, ,

, ,

, ,

, ,

[ , ] ( ) ( , )

( ) ( ) ( )

1
( ) ( ) ( )

[ , ] ( ) ( , )

( ) ( )

kl

kl kl

kl kl

kl

kll kl n k kl n
S

k kl n kl n k
S S

kl n kl n k
k S S

kll kl n k kl n
S

kl n kl n k

n n ds

g d ds ds

g d ds ds

n n ds

g

L S r S r

S r S r

S r S r

K S r S r

S r S r

γ

γ

′

′

′ ′ ′

′ ′

′ ′

′ ′ ′

′ ′

′ =

′ ′=

′ ′ ′+ ∇ ∇

′ =

′= ∇×

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫

i

i

i i

i

i

L

K

( )
kl klS S

d ds ds
′

′∫∫ ∫∫

         (2.1.17) 

2.1.3.4. Computational Complexity 

In marked contrast to the dense MOM matrices that result for one- or two-region 

problems, the MOM matrix EHZ  for multi-region problems is sparse in general, i.e., 
nz 24N N≤ , where nzN  is the number of non-zero entries in EHZ . Indeed, 
nz b4

kl klk l k
N N N

>
= ∑ ∑ , where b

kl k l kl
N N N N= + −  is the total number of edges on 

all surfaces bounding regions 
k
R  and 

l
R , i.e., fields radiated by the 

kl
N  basis 

functions on the mesh of 
kl
S  are observed by b

kl
N  testing functions (via the equivalent 

problem for either region 
k
R  or region 

l
R  ). 
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Three metrics quantify the computational cost of the MOM solution: The number 

of operations needed for assembling matrices (the setup cost), the number of operations 

needed for solving (2.1.12) (the solution cost), and the space needed for storing EHZ  

(the memory cost). If an iterative solver that needs EH IN  iterations to converge is used 

then the setup, solution, and memory costs scale as nz( )O N , EH I nz( )O N N , and 
nz( )O N , respectively. 

     

          

Figure 2.1.4:  The multiple auxiliary grids for the structure in Fig. 2.1.2 (z  dimension is 
not shown). The grids used for different equivalent problems have 
different locations, sizes and spacing. 

2.1.4. AIM   

Next, the computational cost of the MOM solution is reduced by generalizing the 

AIM [8] to multi-region problems. 
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2.1.4.1. Multiple-Grid AIM 

Just like the classical (single-grid) AIM, the proposed multiple-grid AIM 

separates the MOM matrix entries into near-zone and far-zone terms, accelerates far-zone 

calculations by exploiting the translational invariance of Green functions, and pre-

corrects the near-zone calculations by using the original MOM matrix entries. Unlike 

existing AIM schemes that rely on a single auxiliary grid [9-12], however, the proposed 

method achieves computational savings by employing multiple auxiliary grids, i.e., it 

employs K  different auxiliary grids 
0 1
,...,

K
C C

−
 for a K -region problem (Fig. 2.1.4). 

Each auxiliary grid 
k
C  is a Cartesian grid that encloses 

k
S  (but not necessarily any 

other surface) and consists of C
k
N  nodes separated by , ,

k k k
x y zΔ Δ Δ  in the three 

coordinate directions. Using grid 
k
C , the proposed scheme approximates the MOM 

matrices pertinent to the equivalent problem k  as EH EH near EH FFT
kll kll kll
Z Z Z′ ′ ′≈ + , where 

 

FFT FFT
EH FFT

FFT FFT

near near
EH near

near near

FFT

/

/

T
kl k k k kl

Tkll
klkl k k k

k kll kll
kll

kll kll k

kZ

0 L K 0
Z

00 K L

L K
Z

K L

η

η

η

η

′
′

′

′ ′
′

′ ′

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎢ ⎥⎣ ⎦

Λ Λ
ΛΛ

        (2.1.18) 

Here, the projection matrix 
kl ′

Λ , which is a sparse C
k kl
N N ′×  matrix with ( )

kl
O N ′  

non-zero entries, relates currents on the auxiliary grid 
k
C  to the currents on surface 

kl
S ′

; the propagation matrices FFT
k
L  and FFT

k
K , which are composed of dense but Toeplitz 

blocks of size C C
k k
N N× , relate fields at observation points on 

k
C  to sources on 

k
C , the 

interpolation matrix T
kl

Λ  , which is the transpose of the sparse projection matrix 
kl

Λ , 

interpolates fields at observation points on 
k
C  onto the testing functions on 

kl
S , and the 

pre-correction matrix EH near
kll
Z ′ , which is a sparse matrix with ideally ( )

kl
O N ′  non-zero 
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entries, corrects near-zone errors (see the discussion on computational complexity 

below). The projection and propagation matrices in (2.1.18)  are 

 

x A

y A
FFT FFT

z A,  ,

z y
kl k k k

z x
kl k k k

y xkl k k
kl k k k

kl k

G 0 0 0 0 G G 0

0 G 0 0 G 0 G 0
L K

0 0 G 0 G G 0 0
0 0 0 00 0 0 Gφ∇

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

Λ
Λ

Λ
Λ
Λ

  (2.1.19) 

Here, each column n  of the projection matrices x y z, , ,
kl kl kl kl

∇Λ Λ Λ Λ  contain 
x y z

, , , ,k n k n k n k n
M M M M=  non-zero entries at the rows that correspond to the 

,k n
M  points on 

the auxiliary grid 
k
C  associated with the basis function 

,kl n
S . These coefficients are 

filled by matching the multipole moments of the 
,k n

M  point sources on 
k
C  to those of 

the functions 
, , , ,

ˆ ˆ ˆ, , ,
kl n kl n kl n kl n

x S y S z S S⋅ ⋅ ⋅ ∇ ⋅ , respectively [8, 25]. The entries of the 
C C
k k
N N×  block-Toeplitz Green function matrices are 

 

x y z A{ [ , ], [ , ], [ , ], [ , ], [ , ]}

1
{ , , , , }

4

u u

k k k k k

x y z k
k u u

u u u u u u u u u u

e
r r

G G G G G

r r

φ

γ

γ
γ π

′− −

′

′ ′ ′ ′ ′

= ∂ ∂ ∂
−

            (2.1.20) 

for nodes u  and  u ′  on the auxiliary grid 
k
C . To avoid singularities, 

x,y,z,A, ( , ) 0
k

u uG φ = ; to minimize the number of FFTs, the spatial derivatives in FFT
k
K are 

approximated by finite differences [25, 26]. Thus, only 8 block-Toeplitz matrix-vector 

multiplications are calculated via FFTs to multiply FFT
k
Z  with a trial vector; these 

correspond to the multiplications of FFT
k k
Lη  with electric and FFT /

k k
L η  with magnetic 

current coefficients. 

For 1
kl

n N≤ ≤  and 1
kl

n N ′
′≤ ≤ , the entries of the near-zone correction 

matrices in (2.1.18)  are either 

 
near FFT

near FFT

[ , ] [ , ] [ , ]

[ , ] [ , ] [ , ]
kll kll kll

kll kll kll

n n n n n n

n n n n n n

L L L

K K K
′ ′ ′

′ ′ ′

⎡ ⎤ ⎡ ⎤′ ′ ′−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′ ′ ′−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
                 (2.1.21) 
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when the testing function 
,kl n
S  is in the near-zone of the basis function 

,kl n
S ′ ′  or zero 

otherwise. A testing function is in the near zone of a basis function if the minimum 

distance among the nodes assigned to them is less than x
k k
xγ Δ , y

k k
yγ Δ , and z

k k
zγ Δ  in 

the x , y , and z  directions, respectively. The number of nodes C
k
N , the grid spacings 

, ,
k k k
x y zΔ Δ Δ , the near-zone thresholds x y z, ,

k k k
γ γ γ , and the moment matching orders 

x y z
, , ,
, ,

k n k n k n
M M M  are key AIM parameters that establish a trade-off between the accuracy 

and efficiency of the method. For each grid 
k
C , these parameters are chosen according to 

the wavelength in the equivalent problem k  and the surface mesh of 
k
S . 

Assembling the EH
kll
Z ′  matrices as in (2.1.12)-(2.1.15), the method 

approximates the MOM matrix equation (2.1.12) as 

 
EH inc

EH FFT EH near
EH inc( )

I V
Z Z

V I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ ≈ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                  (2.1.22) 

where  

 
1

EH FFT FFT

0,

T T K
kl kl kl kl

T Tkl k kl
k l l l k kl klkl kl

C 0 C 0
Z Z

0 C0 C
β α

−
′ ′

′
′ ′= ≠ ′ ′

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∑∑ ∑
Λ Λ

ΛΛ
     (2.1.23) 

 
1

EH near EH near

0,

T K
kl kl

Tkl kll kl
k l l l k klkl

C 0 C 0
Z Z

0 C0 C
β α

−
′

′ ′
′ ′= ≠ ′

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∑∑ ∑                (2.1.24) 

The matrix EH FFTZ  is multiplied with a trial vector region by region: For each region k  

, first (as represented by the last summation term in (2.1.23)), the currents on all the 

surfaces 
kl
S ′  bounding the region k   are identified (represented by 

kl
C ′ ) with their 

correct sign (+1 if they are on the preferred side of the surfaces and -1 if they or on the 

non-preferred side, represented by 
kl

α ′ ) and projected onto the auxiliary grid 
k
C  

(represented by 
kl ′Λ ). Second, the propagation matrices in FFT

k
Z  are multiplied with the 

projected currents using the appropriate FFT size for that region. Third, (as represented 

by the second summation term in (2.1.16)), the testing functions on all the surfaces 
kl
S  
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bounding the region k  are identified (represented by T
kl
C ) and the fields on grid 

k
C  

are interpolated onto them (represented by T
kl

Λ ). Last, the first summation in (2.1.23) 

linearly combines the tested fields according to the EH-PMCHWT formulation, i.e., the 

fields on the preferred side of surfaces are multiplied with +1 and the other side with -1 

(represented by 
kl

β ). 

2.1.4.2. Computational Complexity 

The multiple-grid AIM, as is typical of AIM schemes, stores the correction matrix 
EH nearZ  but does not store the dense and non-Toeplitz matrix EH FFTZ . Rather, it stores 

the sparse matrices 
kl

Λ  and  
kl
C  and unique parts of the block-Toeplitz matrices FFT

k
Z

. Thus, the multiple-grid AIM requires nz,near( )O N  and C( [ ])
k klk l

O N N+∑ ∑  

operations/bytes in order to fill/store the near- and far-zone matrices, respectively.  

Here, nz,nearN  denotes the number of non-zero entries in EH nearZ ; if there are an average 

number of b,near
kl
N  edges that are in the near-zone of the basis functions on 

kl
S , then 

nz,near b,near4
kl klk l k

N N N
>

= ∑ ∑ . To multiply EH nearZ  with a trial vector, the multiple-

grid AIM requires nz,near( )O N  operations; to multiply EH FFTZ  with a trial vector, each 
FFT
k
Z  is multiplied with a vector and each such multiplication, which involves block 

Toeplitz matrices, is efficiently calculated by multi-dimensional FFTs in C C( )log
k k

O N N  

operations (a precise count of the number of FFTs is given in Section 2.1.4.1). Thus, the 

setup, solution, and memory costs of the multiple-grid AIM scale as 

nz,near C( )
kk

O N N+ ∑ , EH I nz,near C C( )[ log ]
k kk

O N N N N+∑ , and nz,near C( )
kk

O N N+ ∑ , 

respectively. 

It is not straightforward to express the number of auxiliary grid nodes C
k
N  and 

the number of near-zone interactions nz,nearN  in terms of the number of surface edges 

N  for a general piecewise homogeneous structure. This is because they are dependent 
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non-trivially on the shape and material constitution of the structure, as well as the desired 

accuracy level. Nevertheless, it should be clear that the performance and shortcomings of 

multiple-grid AIM reflect those of the classical one- or two-region AIM, as it is a 

repeated application of the algorithm for each homogeneous region 
k
R  using an 

appropriately chosen auxiliary grid, e.g., the larger the ratio of the volume enclosed by 

k
C  to the area of 

k
S  is, or the more inhomogeneous the mesh of 

k
S  is, the less 

efficient the scheme becomes for region 
k
R . As noted in the motivation section, the 

proposed multiple-grid AIM scheme outperforms existing single-grid AIM schemes [9-

12] for multi-region problems because it has the flexibility of optimizing a different 

auxiliary grid for each equivalent problem. The efficiency gains resulting from this 

flexibility are investigated next. 

2.1.5. Numerical Results 

This section validates the accuracy and computational complexity of the multiple-

grid AIM by analyzing scattering from canonical piecewise-homogeneous structures and 

comparing the performance and scalability of the method to those of the MOM. All the 

results in this section are obtained on a cluster of 2.66-GHz Xeon quad-core processors 

that have 2 GB of memory per core using an MPI-based parallel implementation similar 

to [25]. The total computation times (number of processors times the wall-clock time) 

and total memory requirements are reported; to minimize the effect of parallelization 

overheads and inefficiencies, performance data are reported only for the simulations that 

use the minimum number of processors dictated by the memory requirements. For all 

multiple-grid AIM simulations, the near-zone thresholds and the number of auxiliary 

points used for moment matching in all regions are set to x y z 3
k k k

γ γ γ= = =  and 

,
4 4 4

k n
M = × × . The accuracy of the method is measured by computing the relative 
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root-mean-square error in the HH- or VV-polarized bistatic radar cross section (RCS) 

θθσ  or 
φφσ : 

 

1/2
2

2
MG-AIM ref
{ , } { , }

0 0
{ , } 2

2
ref
{ , }

0 0

sin

sin

d d

err

d d

π π

θθ φφ θθ φφ

θθ φφ π π

θθ φφ

σ σ θ θ φ

σ θ θ φ

⎛ ⎞⎟⎜ ⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∫ ∫

∫ ∫
              (2.1.25) 

In all simulations, a diagonal preconditioner is used and the iterative solver is 

terminated when the relative residual error is less than the tolerance tol . 

2.1.5.1. Computational Complexity Validation 

Here, the practical efficiency and accuracy of the multiple-grid AIM scheme for 

piecewise homogeneous structures are systematically evaluated as the number of edges 

N  increases. The size of multi-region problems can be scaled in several ways; 

depending on the scaling method, the number of homogeneous regions K  may be 

constant, e.g., if the permittivity of the regions or the analysis frequency is scaled, or K  

may increase, e.g., as additional regions or layers are added to the structure, as N  

increases. In the following, the focus is on the latter case to clearly exhibit the advantages 

of the proposed scheme over single-grid AIM schemes. (In the former case, the 

computational demands of the multiple-grid AIM scheme are less than but scale 

identically to those of the single-grid AIM schemes; while the performance improvement 

can be dramatic if K  is large, it would not scale with N ). Depending on the 

application, the number of regions might scale in complicated ways that can be 

considered a linear combination of two extreme scenarios. On the one extreme, new 

regions can be added recursively; on the other extreme, they can be added in parallel. In 

the following, these two scaling methods are exemplified by a layered sphere and a 

dielectric-rod array as the number of layers and rods are increased, respectively. 



 22

2.1.5.2. Layered Sphere 

Consider a 1K −  layered sphere that is centered at the origin and illuminated by 

an x̂ -polarized plane wave propagating in the ẑ−  direction. The sphere’s outermost 

layer (denoted as layer/region 1) has an outer radius of 
1
r  and permittivity of 

1 0
2ε ε=  

and the inner layer k , 1 k K< < , has outer radius 1
/ 2

k k
r r −=  and  permittivity 

1
2

k k
ε ε −=  (Fig. 2.1.5(a)). In the following, the number of layers is increased from 1 to 8 

( K  from 2 to 9) and 
1
r  from 

0
λ  to 

0
4λ , where 

0
λ  denotes the free-space 

wavelength. The sphere surfaces are meshed such that the average edge length on the 

outer surface of each layer is ~1/10th of the wavelength in that region; therefore, the 

number of edges on each surface is the same (
0 1

...
K

N N −= = ) and 
0

( 1)N K N= − . 

The multiple-grid AIM parameters are chosen to minimize the computational 

requirements subject to the constraint that errθθ  is less than 2% with respect to the 

reference Mie series solution. The AIM parameters used in the simulations and the 

observed RCS errors are given in Table 2.1.1. Figs. 2.1.5(b)-(d) show the setup, solution, 

and memory costs of the multiple-grid AIM and MOM solutions. For this structure, the 

number of non-zero entries in the MOM matrix should scale as nz 2
0

(2 3)N K N−∼  and 

the total number of non-zero near-zone entries and Cartesian grid points for multiple-grid 

AIM should scale as nz,near
0

( 1)N K N−∼  and  C 1.5
0kk

N KN∑ ∼  according to the 

analysis in Section 2.1.4.2. The computational costs observed in Fig. 2.1.5(b)-(d) show 

very good agreement with these predicted trends, e.g., all multiple-grid AIM and MOM 

computational requirements scale linearly with the number of layers and the multiple-grid 

AIM outperforms MOM in all metrics for 
1 0
r λ≥  and 2K ≥

0
( ~ 2500)N .  
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Table 2.1.1: Parameters for layered spheres 

Sphere, MOM, and Multiple-Grid AIM Parameters
Number

of Layers
1K−

Reference  (%)errθθ  

1 0

( 1)/2 1
1 1

0

1 3 0

C C
1 1

3

2

/ 2 , 2

( 1)

2

10

k k
k k

K

K

r r

N K N

N N N

N N

tol

ε ε

ε ε− −

−

−

−

=

= =

= −

= = =

= =

=

…

…

1 0

2 0

C
0

C
1

2 766

24 24 24

24 24 24

K

r

N N

N

N

λ

−

=

= =

= × ×

= × ×

1 
Mie 0.72 

MOM 0.74 

2 
Mie 1.58 

MOM 1.57 

4 
Mie 1.40 

MOM 1.56 

8 
Mie 1.76 

MOM 0.89 

1 0

2 0

C
0

C
1

2

10 947

40 40 40

48 48 48

K

r

N N

N

N

λ

−

=

= =

= × ×

= × ×

1 
Mie 0.82 

MOM 0.98 

2 
Mie 1.03 

MOM 1.20 

4 
Mie 1.82 

MOM 1.84 

8 
Mie 1.34 

MOM - 

1 0

2 0

C
0

C
1

4

44 595

80 80 80

96 96 96

K

r

N N

N

N

λ

−

=

= =

= × ×

= × ×

1 
Mie 0.61 

MOM - 

2 
Mie 0.72 

MOM - 

4 
Mie 1.79 

MOM - 

8 
Mie 1.44 

MOM - 
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(a)                                   (b) 

  
(c)                                   (d) 

Figure 2.1.5:  Multiple-grid AIM vs. MOM for the layered dielectric sphere as the 
number of layers is increased. (a) Configuration of the layered sphere. (b) 
The setup cost. (c) The solution cost per iteration. (d) The memory cost. 
All dashed and straight lines are parallel to 2 3K −  except the straight 
lines in (c) that are parallel to 1K − . 

Notice that, even though C C C
0 1 1

...
K

N N N −≈ ≈ ≈  for the layered spheres, a 

single-grid AIM scheme would not be efficient here because the auxiliary grid spacing 

for the innermost region is much smaller than that of the outermost region for each 

sphere, e.g., ~11 times for 8K = : (i) If the single grid’s spacing was set to that of grid 

0, then the approach would result in significantly larger number of near-zone corrections 

than the multiple-grid AIM scheme for the inner regions, e.g., the innermost region 
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would have 2
0

~ N  instead of 
0

~ N  near-zone terms. (ii) If the single grid’s spacing 

was set to that of grid 1,K −  then the approach would result in significantly larger 

number of grid points than the multiple-grid AIM scheme for the outer regions, e.g., the 

outermost region would have 3 1.5
0

~ 11 N  instead of 1.5
0

~ N  grid points for 8K = . This 

comparison shows that the single-grid AIM approach would quickly become ineffective 

as the number of regions is scaled recursively, while the multiple-grid AIM scheme 

remains effective. 

2.1.5.3. Dielectric-Rod Array 

Consider a uniform two-dimensional array of 1K −  thin dielectric cylinders on 

the x y−  plane illuminated by a plane wave polarized along ( , ) (120 , 30 )o oθ φ =  and 

propagating in the direction ( , ) (30 , 30 )o oθ φ = . The array spacing is 
0

0.36λ  and each 

cylinder has a height of 
0

2 3λ , radius of 
0

0.01λ  and permittivity of 
0

44ε  (Fig. 

2.1.6(a)). In the following, the number of cylinders is scaled from 1  to 32 32×  (K  

from 2 to 1025). Each cylinder circumference is divided into 8 subsections to resolve the 

circular cross section and meshed such that the average vertical edge length is ~1/10th of 

the wavelength in the cylinder (Fig. 2.1.6(a)); thus, the number of edges on each cylinder 

is the same (
1 1 0

... / ( 1)
K

N N N K−= = = − ) and 
1

( 1)N K N= − . The multiple-grid 

AIM parameters are chosen to minimize the computational requirements subject to the 

constraint that errθθ  is less than 0.5% with respect to a reference MOM solution using 

the same mesh. The AIM parameters used in the simulations and the resulting RCS errors 

are given in Table 2.1.2. Figs. 2.1.6(b)-(d) show the setup, solution, and memory costs of 

the multiple-grid AIM and MOM solutions. For this structure, the MOM matrix is dense 

and its number of non-zero entries should scale as nz 2 2
1

( 1)N K N= −  and the total 

number of non-zero near-zone entries and Cartesian grid points for multiple-grid AIM 
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should scale as nz,near
1

( 1)N K N−∼  and  C
1kk

N KN∑ ∼ . The computational costs 

observed in Fig. 2.1.6(b)-(d) agree with these predicted trends, e.g., all MOM and 

multiple-grid AIM computational requirements scale quadratically and linearly with the 

number of cylinders, respectively, and the multiple-grid AIM outperforms MOM in all 

metrics for 
0

2 ( ~ 1000)K N≥ . Note that, the auxiliary grid spacing for all regions of 

the dielectric-rod array are the same; however, the multiple-grid AIM scheme requires 

significantly smaller number of grid points for the internal regions compared to the 

external region, e.g., ~1225 times for 1025K = . A single-grid AIM scheme would not 

be efficient here because it would have to use the largest grid in all regions; e.g., to 

compute the FFTs, it would require C C C C
0 0

log / log ~
k kk

KN N N N K∑  times more 

operations than the multiple-grid AIM scheme. This comparison shows that the single-

grid AIM approach would quickly become ineffective as the number of regions is scaled 

in parallel, while the multiple-grid AIM scheme remains effective. 
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Table 2.1.2: Parameters for dielectric-rod arrays 

Dielectric Rod Array, MOM, and 
Multiple-Grid AIM Parameters 

Number of Rods
1K− Reference  (%)errθθ

0

0 1

1 1

C C
1 1

4

44

( 1)

1224

6 6 32

10

k

K

K

N N K N

N N

N N

tol

ε ε

−

−

−

=

= = −

= = =

= = = × ×

=

…

…
 

C
0

6 6 32N = × × 1 1×  MOM 0.11 
C
0

14 14 32N = × ×  2 2×  MOM 0.28 
C
0

25 25 32N = × ×  4 4×  MOM 0.22 
C
0

54 54 32N = × ×  8 8×  MOM 0.19 
C
0

105 105 32N = × × 16 16×  - - 
C
0

210 210 32N = × × 32 32×  - - 

        
(a)                                    (b) 

 
              (c)                                   (d) 

Figure 2.1.6:  Multiple-grid AIM vs. MOM for the dielectric cylinder array as the 
number of cylinders is increased. (a) Configuration of the dielectric rod-
array and part of the mesh. (b) The setup cost. (c) The solution cost per 
iteration. (d) The memory cost. Dashed lines are parallel to 2K  and 
straight lines are parallel to K .     
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2.1.6. Summary 

This section presented the multiple-grid AIM scheme for accelerating the MOM 

analysis of scattering from piecewise homogeneous structures. The method employs 

multiple auxiliary grids that have different locations, grid spacings, and associated 

projection, propagation, and interpolation operators. Numerical results demonstrated that 

the availability of multiple grids enables the scheme to be effective for a variety of 

structures with large number of regions, e.g., an 8-layered sphere and a 1024-element 

dielectric-rod array, for which single-grid AIM schemes are not effective. 
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2.2. MODELING A PEC/PMC PLANE 

PEC/PMC planes are used in many scattering applications to reduce the analysis 

complexity and to simplify/emphasize part of the wave physics, e.g., the earth is often 

modeled as a PEC plane as a first approximation when characterizing communication 

channels in forests [1]. Surface integral equation based simulators can model a PEC/PMC 

plane using two approaches based on the method of images: The “brute-force imaging” 

approach removes the plane, introduces the image of the structure of interest (and the 

excitation), and finds unknown currents on the actual structure and its image. The 

“Green-function modification” approach adds appropriate reflection terms to the 

homogeneous-medium Green functions (and to the excitation) and finds unknown 

currents on the actual structure. Brute-force imaging is more straightforward because it 

does not require any changes to an existing simulator (only a pre-processing step to 

image the structure mesh is needed); yet, it is less efficient: It doubles the number of 

homogeneous regions not terminated on the plane and it doubles the volume and the 

bounding-surface area of regions terminated on the plane; thus, it produces (almost) twice 

as many unknowns as Green-function modification. (The ratio is strictly less than two 

when the plane terminates regions because of junction treatment, see Section 2.2.2). As a 

result, a classical iterative method of moments (MOM) solver using Green-function 

modification would require (almost) half of the memory space, half of the matrix-fill 

time, and half of the matrix-solve time per iteration for general multi-region problems. 

For important special cases, e.g., two-region problems, it can even require (almost) a 

quarter of the memory space and matrix-solve time per iteration compared to brute-force 

imaging (Section 2.2.1). Moreover, iterative MOM solvers using Green-function 

modification generally require smaller numbers of iterations for convergence. No attempt 

is made to quantify this gain here because the number of iterations depends non-trivially 
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on the structure, excitation, solver type, etc.; henceforth, the matrix-solve time refers to 

the time per iteration. While Green-function modification is easy to implement for 

classical MOM solvers, it requires more substantial changes for fast algorithms that rely 

on various properties of homogeneous-medium Green functions [27, 28].  

This section presents the efficient incorporation of a PEC/PMC plane to the 

multiple-grid AIM. Both imaging approaches pose problems for multiple-grid AIM. On 

the one hand, brute-force imaging can be extremely inefficient for “space filling” 

methods like multiple-grid AIM when the structure is high above the PEC/PMC plane: 

Because the auxiliary grid for a given region must enclose all the (finite) surfaces 

bounding that region, the grid for the outer-most region would cover any empty space 

between the actual structure and its image; the corresponding FFT sizes would increase; 

and the performance of the method would decrease with the distance of the structure from 

the PEC/PMC plane. On the other hand, Green-function modification cannot be used 

directly: The added reflection terms, which are in correlation form in the direction normal 

to the PEC/PMC plane, give rise to Hankel-(two level)block-Toeplitz “reflection 

matrices”. Fortunately, FFT-based methods for multiplying Hankel matrices (calculating 

correlations) [29, 30] can be seamlessly combined with those for multiplying Toeplitz 

matrices (calculating convolutions) to efficiently multiply Hankel-block-Toeplitz 

matrices. Separate FFT-based multiplication of Hankel and Toeplitz matrices, however, 

doubles the FFT cost and can slow the method to the same level as brute-force imaging 

for structures near the plane. To improve efficiency, the FFTs computed for multiplying 

propagation matrices are reused when multiplying reflection matrices. For general multi-

region problems, multiple-grid AIM with the proposed modifications requires (almost) 

half as much memory space, matrix-fill time, and matrix-solve time as multiple-grid AIM 

with brute-force imaging, even when the structure is on the PEC/PMC plane. 
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For the sake of brevity, the formulation in this section is specialized to a two-

region problem involving a PEC plane. The methods easily generalize to multi-region 

problems or a PMC plane; the implications of these generalizations are explicitly noted 

when they are not trivial. The rest of this section is organized as follows. Section 2.2.1 

formulates the two imaging approaches for MOM; Section 2.2.2 analyzes the MOM 

computational complexity; Section 2.2.3 formulates the two imaging approaches for 

multiple-grid AIM; Section 2.2.4 analyzes their computational complexity; and Section 

2.2.5 presents numerical results that validate the approaches and compare their efficiency. 

2.2.1. Green Function Modification for MOM 

     
       (a)                  (b)                (c)              (d) 

Figure 2.2.1:  (a) A homogeneous structure above a PEC plane at 0z =  and (b) 
external-, (c) actual internal-, and (d) image internal-equivalent problems.  

Consider a homogeneous structure with surface S  residing above a PEC plane at 

0z =  excited by an external time-harmonic electromagnetic field inc inc
0 0

{ , }E H  (Fig. 

2.2.1). The scattered fields can be found by brute-force imaging as follows: (i) Apply 

method of images: Remove the plane; introduce the image structure with surface S ; and 

excite the new structure with the sum of inc inc
0 0

{ , }E H  and its image inc inc
0 0

{ , }E H . (ii) 

Formulate integral equations: Construct equivalent problems (Fig. 2.2.1); formulate 

electric- and magnetic-field integral equations for each problem; and combine them using 

the EH-PMCHWT recipe. (iii) Apply the MOM procedure with RWG basis functions and 

Galerkin testing: Mesh S  with triangle patches with N  edges and S  with the images 



 32

of these patches; and expand the electric and magnetic current densities { , }J M  on S  

(“actual currents”) and { , }J M  on S  (“image currents”) as 

a

1

i

1

{ ( ), ( )} { [ ], [ ]} ( )

{ ( ), ( )} { [ ], [ ]} ( )

N

n
n
N

n
n

n n

n n

J r M r I V S r

J r M r I V S r

′
′=

′
′=

′ ′≅

′ ′≅

∑

∑
                (2.2.26) 

 

Figure 2.2.2:  An actual RWG and a half-RWG basis function and their images. 

Here, , , ,I V I and V are vectors of unknown coefficients, a
n
S ′  (an actual RWG) is an 

RWG function on the actual structure,  and i
n
S ′  (an image RWG) is the image of a

n
S ′  

with the same transverse and opposite vertical vector components  (Fig. 2.2.2): 
i aˆ ˆˆ ˆ{ , } ( ) { , } ( )
n n

t z S r t z S r′ ′= −i i                     (2.2.27) 

where r  is the position vector, ˆ ˆ2( )r r r z z= − i  is its image, and t̂  ( ẑ ) is a unit 

vector parallel (normal) to the PEC plane. Galerkin testing yields the brute-force imaging 

(BFI) equations 
EH a-inc

0
EH i-inc2

0
EH a-inc

0 0
EH i-inc

0

 (BFI)
/

k k k

k k k k

VI
L K I V

VK L I
V I

η

η=

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑              (2.2.28) 

Here and throughout this section, the subscript of a matrix or vector shows the equivalent 

problem (0 for external-, 1 for actual internal-, and 2 for image internal-equivalent) and 

the superscript above a vector shows the testing function (“a-inc” for actual and “i-inc” 
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for image RWG) used to fill it. The entries of the right-hand-side vectors are (for 

1 n N≤ ≤ ) 
EH a-inc EH i-inc a i inc inc

0 0 0 0

EH a-inc EH i-inc a i inc inc
0 0 0 0

{ [ ], [ ]} { , } ( )

{ [ ], [ ]} { , } ( )
n n

n n

n n ds

n n ds

V V S S E E

I I S S H H

= +

= +
∫∫
∫∫

i

i
        (2.2.29) 

{ , }
k k k
X L K∈ , then the entries of these 2 2N N×  matrices can be found by expressing 

them as 

 
aa ai

ia ii
k k

k
k k

X X
X

X X

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                         (2.2.30) 

It is important to note that some of these N N×  sub-matrices can be zero (e.g., 
ai,ia,ii aa,ai,ia
1 2
X X 0= =  when the structure does not intersect the PEC plane); otherwise, 

their entries are 
ts t s

t s

ts t s

| |

[ , ] ( ) ( ) ( , )

1
( ) ( ) ( , )

[ , ] ( ) ( ) ( , )

( , ) / (4 | |)k

k k n n k

n n k
k

k n n k

k

n n g ds ds

g ds ds

n n g ds ds

g e r r

L S r S r r r

S r S r r r

K S r S r r r

r r r rγ

γ

γ

π

′

′

′
′− −

′ ′ ′ ′=

′ ′ ′ ′+ ∇ ∇

′ ′ ′ ′= ∇×

′ ′= −

∫∫ ∫∫
∫∫ ∫∫

∫∫ ∫∫

i

i i

i
     (2.2.31) 

for 1 ,n n N′≤ ≤  and t, s {a, i}∈ . In the above equations, ( , )
k
g r r′  is the 

homogeneous-medium Green function and 
k
ε , 

k
μ , 

k
γ , and 

k
η  are the permittivity, 

permeability, propagation constant, and intrinsic impedance for free space ( 0k = ) or 

dielectric structure ( 1,2k = ), respectively. The MOM matrix equation (2.2.28) can be 

simplified by enforcing that the image and actual electric (magnetic) currents have 

opposite (identical) tangential components and identical (opposite) vertical components, 

i.e., 
ˆ ˆ{ ( ), ( )} { ( ), ( )}

ˆ ˆ{ ( ), ( )} { ( ), ( )}

t J r M r t J r M r
z J r M r z J r M r

= −

= −

i i
i i

                 (2.2.32) 

Substituting (2.2.26) in (2.2.32) and comparing to (2.2.27), it is clear that  

{ , } { , }I V I V= −                          (2.2.33) 



 34

Substituting (2.2.33) in (2.2.28), two sets of equations are obtained for I  and V : One 

using actual and the other using image testing functions. Either set or their linear 

combination can be solved uniquely for , ,I I V  and V ; here, the first set is chosen: 
aa ai aa ai EH a-inc1

0
aa ai aa ai EH a-inc

0 0

( )
 (GFM)

( )
k k k k k

k k k k k k

L L K K I V
VK K L L I

η

η=

⎡ ⎤ ⎡ ⎤⎡ ⎤− +⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥− + +⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
∑         (2.2.34) 

This is called the Green-function modification (GFM) approach because the entries of 
ai
k
X  (when ai

k
X 0≠ ) are the same as those of aa

k
X  with ( , )

k
g r r′  replaced by 

( , ).
k
g r r′  

2.2.2. MOM Computational Complexity and Extensions 

There are 12 unique matrices ( aa,ai,ia,ii aa
0 1

,X X , and ii
2
X ) in (2.2.28) and 6 unique 

matrices ( aa,ai
0
X  and aa

1
X ) in (2.2.34) that are dense. BFI and GFM approaches solve 

for 2N  and N  unknowns and require 2(12 )O N  and 2(6 )O N  bytes/operations to fill 

the unique matrices and 2(24 )O N  and 2(12 )O N  operations per iteration to calculate 

non-zero matrix-vector multiplications, respectively2. Thus, GFM finds half the number 

of unknowns and requires half the memory space, matrix-fill operations, and matrix-solve 

operations compared to BFI. 

When the PEC plane intersects the homogeneous structure, there are 2 equivalent 

problems, 16 unique matrices ( aa,ai,ia,ii
0,1
X ) in (2.2.28), and 8 unique matrices ( aa,ai

0,1
X ) in 

(2.2.34). Moreover, junction edges must be treated carefully: Let rN  and jN  denote 

the number of regular edges that reside on the mesh of S  but not on the PEC plane and 

junction edges that reside at the intersection of the PEC plane and S , respectively. In 

                                                 
2 These expressions assume that each unique matrix is stored separately; alternatively, the summations in 
(2.2.28) and (2.2.34) can be executed first and one 4 4N N×  and one 2 2N N×  dense matrix can be 
stored, respectively. This is appealing for two-region problems as it can halve the number of multiplications 
per iteration. The cost reduction is not as pronounced and the implementation is not as simple, however, for 
multi-region problems where kX  are sparse [20, 23]. 
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this case, BFI and GFM approaches use r j2N N+  RWG functions and r jN N N= +  

functions of which rN  are RWG and jN  are half-RWG functions (Fig. 2.2.2); 

because j rN N  in general, they require 2(16 )O N  and 2(8 )O N  bytes/ operations 

to  fill the unique matrices and 2(32 )O N  and 2(16 )O N  operations per iteration, 

respectively. Thus, GFM still solves for (almost) half the number of unknowns and 

requires (almost) half the resources compared to BFI. 

When the structure is piecewise homogeneous and some of its regions are 

terminated on the plane, the analysis can be generalized. Let K  denote the number of 

regions of the structure and its image; and let 
k
N  and 

k k
Nα  denote the number of 

equations/ unknowns used for region k  by BFI and GFM, respectively. If region k  is 

terminated on the plane, then 0.5
k

α ∼ ; if it resides above the plane, then 1
k

α = ; if it 

resides below the plane, then 0
k

α = . Thus, BFI and GFM require 2(2 )
k

O N  and 
2 2(4 )
k k

O Nα  bytes/operations to fill the unique matrices and 2(4 )
k

O N  and 2 2(8 )
k k

O Nα

operations per iteration for region k , respectively. Because each region k  where 

1
k

α =  has an image region k  where 0
k

α = , the above complexity estimates hold 

true in general and GFM (almost) halves all computational requirements. 

When the structure is on/above a PMC plane, inc inc
0 0

{ , }E H  in (2.2.29) and the 

signs of the aiX  terms in (2.2.34) must be modified according to duality (i.e., 

{ , } { , }I V I V= −  for a PMC plane).   
 

2.2.3. Green Function Modification for Multiple-Grid AIM 

When brute-force imaging is used, the multiple-grid AIM defines three auxiliary 

grids 
0,1,2
C  with C

0,1,2
N  grid points that enclose 

0
S S S= ∪ , 

1
S S= , and 

2
S S=  to 

speed up the calculations stemming from the external-, actual internal-, and image  
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(a) 

                   
        (b)                            (c) 

Figure 2.2.3:  The three multiple-grid AIM auxiliary grids used for brute-force imaging: 
(a) 0

,C  (b) 1
,C  and  (c) 2

C . 

internal-equivalent problem, respectively (Fig. 2.2.3). Using these auxiliary grids, the 

multiple-grid AIM approximates the MOM matrices in (2.2.28) as (for 0 2k≤ ≤ )  
near † FFT

k k k k k
X X X≈ + Λ Λ                      (2.2.35) 

where 
k

Λ  are projection matrices that map the currents on 
k
S  to point sources on 

k
C , 

FFT FFT FFT{ , }
k k k
X L K∈  are propagation matrices that relate fields at observation points on 

k
C  to point sources on 

k
C , near near near{ , }

k k k
X L K∈  are correction matrices that adjust 

near-zone entries, and †  denotes transpose. The projection matrices are expressed as 
a,x i,x

a,y i,y
a i

a,z i,z

a, i,

 

k k

k k
k k k

k k

k k
∇ ∇

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ Λ
Λ Λ

Λ Λ Λ
Λ Λ
Λ Λ

                    (2.2.36) 

where the C4
k
N N×  projection matrices a

k
Λ  and i

k
Λ  are sparse with ( )O N  non-

zero entries ( i a
1 2

0= =Λ Λ  when the PEC plane does not intersect the structure). The 
C C4 4
k k
N N×  propagation matrices are constructed as 
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FFT A A A

z y

z x
FFT

y x

diag( , , , )
k k k k k

k k

k k
k

k k

L G G G G

0 G G 0

G 0 G 0
K

G G 0 0
0 0 0 0

φ=
⎡ ⎤−⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                   (2.2.37) 

where the entries of the C C
k k
N N×  Green function matrices are 

x,y,z,A, [ , ] { , , , ,1 / } ( , )
k x y z k k k u u

u u gG r rφ γ γ ′
′ = ∂ ∂ ∂

 
          (2.2.38) 

for nodes u  and  u ′  on 
k
C  ( x,y,z,A, [ , ] 0

k
u uG φ = ). These are dense (three level) block 

Toeplitz matrices of size C C
k k
N N×  that can be multiplied with (projected) coefficient 

vectors in C C( log )
k k

O N N

 
operations using (three dimensional) FFTs3. In (2.2.35), the 

2 2N N×  correction matrices near
k
X  are sparse with nz,near

k
N entries and can be 

formulated as 

 
near,aa near,ai

near
near,ia near,ii
k k

k
k k

X X
X

X X

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                      (2.2.39) 

Some of these sub-matrices are zero similar to (2.2.30); the entries of the non-zero sub-

matrices are  

 
ts t † FFT s t s

near,ts ( )[ , ]  if  near 
[ , ]

0 otherwise    
k k k k n n

k

n n
n n

X X S S
X ′

⎧⎪ ′−⎪⎪′ = ⎨⎪⎪⎪⎩

Λ Λ
      (2.2.40) 

for 1 ,n n N′≤ ≤  and t,s {a,i}∈ . 

When Green-function modification is used, the multiple-grid AIM must 

approximate the aa
k
X  and (when they exist) ai

k
X  matrices in (2.2.34). A simple 

approach is to use the same auxiliary grids as in the brute-force imaging approach but 

map only the actual currents for aa
k
X  and image currents for ai

k
X  (for 0 1k≤ ≤ ): 

                                                 
3 Precisely, the FFT of a zero-padded coefficient vector, the FFT of a vector containing unique entries of 
the Toeplitz matrix, their multiplication, and the inverse FFT of the result are computed in 

C C(8 log 8 )
k k

O N N ,
 

C C(8 log 8 )
k k

O N N ,
 

C(8 )
k

O N , and C C(8 log 8 )
k k

O N N  operations, respectively. By 
pre-computing and storing the FFT for the matrix, each Green function matrix is multiplied in 

C C C(16 log 8 8 )
k k k

O N N N+
 

operations per iteration [8]. 



 38

aa near,aa a† FFT a

ai near,ai a† FFT i
k k k k k

k k k k k

X X X

X X X

≈ +

≈ +

Λ Λ
Λ Λ

                    (2.2.41) 

Compared to brute-force imaging, this approach halves the cost of near-zone corrections 

but it does not change the FFT costs for regions where the auxiliary grid encloses both an 

actual and an image structure, e.g., the free-space region in Fig. 2.2.1. It is more efficient 

to modify the Green functions and approximate the MOM matrices as: 
aa ai near,aa near,ai a† FFT FFT a

,T ,H
( )

k k k k k k k k
X X X X X X≈ +∓ ∓ ∓Λ Λ         (2.2.42) 

 

            
  

    (a)                               (b) 

Figure 2.2.4:  The two multiple-grid AIM auxiliary grids used for Green-function 
modification: (a) G

0
C  and (b) G

1
C . 

In this approach, the propagation and reflection matrices ( FFT
,Tk

X  and FFT
,Hk

X ) are 

constructed using identical auxiliary grids, which enclose only actual structures (Fig. 

2.2.4). Let G
k
C  denote this smaller auxiliary grid with G C

k k k
N Nδ=  grid points for 

region k ; if region k  is terminated on the plane, then 0.5
k
δ ≤ ; if it resides above the 

plane, then 1
k
δ = ; if it resides below the plane, then 0

k
δ =  (i.e., G

k
C  is not defined); 

e.g., 
0

0.5δ < ,  
1

1δ =  and  
2

0δ =  for the problem in Fig. 2.2.1. The propagation 

and reflection matrices are constructed as in (2.2.37) using the G G
k k
N N×  Green 

function matrices  
x,y,z,A,
,P ,P

[ , ] { , , , ,1 / } ( , )
k x y z k k k u u

u u gG r rφ γ γ ′
′ = ∂ ∂ ∂          (2.2.43) 

for P {T,H}∈  and nodes u  and  u ′  on G
k
C  ( x,y,z,A,

,P
[ , ] 0

k
u uG φ = ). Here, 

,T
( , ) ( , )

k k
g gr r r r′ ′=  is in convolution form in all directions and 

,H
( , ) ( , )

k k
g gr r r r′ ′=  is 
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in correlation form in the direction normal to the PEC plane; thus, 
,Tk

G  is a (three level) 

block-Toeplitz  matrix and 
,Hk

G  is a Hankel-(two level)block-Toeplitz matrix. FFTs 

can be used for fast multiplication of these matrices as detailed next [29, 30]. 

For example, consider 
,Hk

Gφ  when G
k
C  is just a one-dimensional grid along the 

z axis. Then, 

G

G

G G

,H 1 2 ,H 1

,H 2 1 ,H 2

,H

,H 1 ,H 2

0 ( , ) ( , )

( , ) ( , )

( , ) ( , ) 0

k

k

k k

k k N

k k N
k

k kN N

g g

g g

g g

r r r r

r r r r
G

r r r r

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

         (2.2.44) 

is a Hankel matrix (it has constant skew-diagonals). A Hankel matrix-vector 

multiplication can be converted to a Toeplitz one by using the anti-diagonal permutation 

matrix P  [30]; e.g., a, 1 a,
,H ,H

( )( )
k k k k
G I G Iφ φ∇ − ∇=Λ P P Λ , where 1 a,

k
I− ∇P Λ  simply re-

orders the vector a,
k
I∇Λ  upside down and 

,Hk
Gφ P  is a Toeplitz matrix that can be 

multiplied as usual. A similar approach is applicable when G
k
C  is three dimensional (by 

using a block-anti-diagonal permutation matrix) and the multiplication can be calculated 

in G G G(16 log 8 8 )
k k k

O N N N+  operations if the FFT for the matrix is pre-computed. 

Even fewer operations are needed if the FFTs used for calculating a † a
,Tk k k

G Iφ∇ ∇Λ Λ  are 

recycled: (i) Calculate the FFT of a zero-padded vector for a,
k
I∇Λ  and store it in a,

k
I ∇ . 

(ii) Multiply a,
k
I ∇  element-by-element with the pre-computed FFT for 

,Tk
Gφ . (iii) Find 

the FFT for the re-ordered vector 1 a,
k
I− ∇P Λ   by multiplying each element of a,

k
I ∇  with 

the pre-computed FFT for 
,Hk

Gφ P  that is multiplied by a phase shift term (to account for 

the re-ordering). (iv) Combine the vectors found in (ii) and (iii) according to (2.2.34) 

and calculate the inverse FFT of the resulting vector. These require G G(8 log 8 )
k k

O N N , 
G(8 )
k

O N , G(8 )
k

O N  and G G(8 log 8 )
k k

O N N  operations, respectively; thus, only G(8 )
k

O N  

extra operations produce a † a
,T ,H

( )
k k k k
G G Iφ φ∇ ∇∓Λ Λ . 
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2.2.4. Multiple-Grid AIM Computational Complexity 

When BFI is used, the multiple-grid AIM requires, for each region ,k  
nz,near C( 8 )
k k

O N N+  bytes/operations to fill the non-zero and unique entries of near
k
X  and 

FFT
k
X  and nz,near(

k
O N +  C C C C8[16 log 8 8 ] 12 )

k k k k
N N N N+ +  operations per iteration to 

multiply them4. When GFM is used, only near,aa
k
X  and FFT

,Tk
X  exist if {0,1}

k
δ ∈  and 

the multiple-grid AIM requires nz,near(
k k

O Nδ  G8 )
k
N+  bytes/operations to fill the unique 

entries of these matrices and nz,near G G G( 8[16 log 8 8 ]
k k k k k

O N N N Nδ + +  G12 )
k
N+  

operations per iteration to multiply them. Therefore, GFM exactly halves the 

computational costs for regions not terminated on the plane. For regions that are 

terminated on the plane ( 0.5
k
δ ≤ ), GFM reduces the cost by a factor of 1/

k
δ ; this can 

be a very large factor if the structure is high above the plane (when 0.5
k
δ ). When 

0.5
k
δ ≤ , however, near,ai

k
X  and FFT

,Hk
X  also exist and an additional G(8 )

k
O N  

bytes/operations are needed to fill them and G(64 )
k

O N  operations are needed to multiply 

them per iteration. While these additional costs reduce the 1/
k
δ  gain, this is offset by 

several factors: (i) The correction cost is generally not negligible, i.e., rarely is 
nz,near G
k k
N N . (ii) In the solution time, FFT cost dominates the multiplication cost by a 

logarithmic factor and the reduction in the FFT cost is greater than 1/
k
δ  (by a 

logarithmic factor). 

2.2.5. Numerical Results 

This section presents numerical examples that contrast the two imaging 

approaches. In all simulations, the average edge length on a surface is set to ~1/10th  of 

the smallest wavelength of (ordinary) waves in the regions bounded by that surface. All 

                                                 
4 Here, it is assumed that only 8 block-Toeplitz matrix-vector multiplications are calculated via FFTs per 
iteration. This can be achieved by approximating the spatial derivatives in FFT

kK  with finite differences, 
i.e., the multiplication of FFT

kK  with a vector is computed from the multiplication of FFT
kL  with that 

vector in C(6 )kO N  operations [23]. 
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the multiple-grid AIM simulation parameters, e.g., moment matching order, near-zone 

size, etc. are chosen as in Section 2.1.5. Each structure is excited by a plane wave 

polarized along ( , ) (45 , 0 )o oθ φ =  and propagating to ( , ) (135 , 0 )o oθ φ =  direction. 

2.2.5.1. Accuracy, Efficiency, and Impact of Height 

First, scattering of a 200 MHz plane wave from a 4  m
 
diameter dielectric 

sphere of permittivity 
1 0

2ε ε=  that is located H  meters above a PEC plane, 

illustrated in Fig. 2.2.5(a), is analyzed. The MOM and multiple-grid AIM using brute-

force imaging and Green-function modification (MOM-BFI, MOM-GFM, MG-AIM-BFI, 

MG-AIM-GFM) are contrasted when the sphere is close to ( 0.25H = )
 
and far from 

( 5H = ) the plane. The sphere surface is meshed using 10 947N =  
edges and 

G G C 3
0 1 0

40N N N= = =  in either scenario but C
1
N  increases from 340  to 240 160×  

in the latter case. Fig. 2.2.5(b)-(c) validate that the multiple-grid AIM acceleration 

produces visually identical RCS results with MOM; they also show that the two imaging 

approaches produce practically identical results. Table 2.2.1 summarizes their 

computational requirements  and shows that (i) MOM performance is insensitive to the 

height above the PEC plane and Green-function modification reduces all costs by a factor 

of 2; (ii) MG-AIM-BFI becomes less efficient with larger H  but remains more efficient 

than MOM in all performance measures; and (ii) MG-AIM-GFM is the most efficient 

method, is insensitive to H , and can reduce all costs by at least a factor of 2. 
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(a) 

 
(b)                                (c) 

Figure 2.2.5:  VV-polarized RCS in the x z−  plane for a dielectric sphere H  m 
above the PEC plane: (a) Configuration. (b) 0.25H = . (c) 5H = . 

Table 2.2.1: Performance of EH-PMCHWT solvers for a dielectric sphere above a PEC 
plane 

Method Fill Time (s) Solve Time per 
Iteration (s) 

Number of 
Iterations 

Memory 
(GB) 

MOM-BFI 23 784 35.12 320 24.2 
MOM-GFM 11 818 17.35 311 12.0 

MG-AIM-BFI 0 .25H =  1630 8.57 320 1.4 
5H =  1620 11.70 385 1.5 

MG-AIM-GFM 0 .25H =  814 4.20 311 0.72 
5H =  811 4.19 349 0.71 

2.2.5.2. Scalability with Number of Regions 

Next, the scalability of the multiple-grid AIM imaging schemes are evaluated for 

multi-region problems as the number of regions increases. As in Section 2.1, two extreme 
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scaling methods are used and new regions are added either recursively or in parallel 

exemplified by a layered hemisphere and a dielectric-rod array on a PEC plane as the 

number of layers and rods is increased, respectively. Notice that, these are best case 

scenarios for BFI because the space filling effect due to height is minimal and because 

GFM must introduce half basis functions. The geometrical (hemisphere radii and cylinder 

spacing), material (permittivity and conductivity), and mesh (edge length) parameters of 

the structures are chosen identical to those of the largest layered sphere and the dielectric-

rod array in the scalability study in Section 2.1.5, i.e., once the plane is removed and the 

image of the structure is introduced, each scattering problem is identical (except for the 

incident field) to that in Section 2.1.5. As a result, the MG-AIM-BFI solves for identical 

number of unknowns using identical grids, etc. as in Section 2.1.5. Both problems are 

scaled up to 610N >  edges. Fig. 2.2.6 shows that all multiple-grid AIM computational 

costs scale linearly with the number of regions for these structures as Section 2.1.5 and 

GFM (almost) halves all costs compared to BFI as expected. 

2.2.6. Summary 

This section presented and contrasted two imaging approaches for multiple-grid 

AIM accelerated MOM analysis of scattering from piecewise homogeneous structures 

residing on or above a PEC/PMC plane. Analysis and numerical results showed that 

modifying Green functions reduces the simulation time and memory requirement by a 

factor of (almost) 2 or larger compared to the brute force approach if the structure of 

interest is terminated on or resides above the plane, respectively. This is attained by 

solving for fewer unknowns, using smaller auxiliary grids, and recycling FFTs.  
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              (a)                             (b)   

Figure 2.2.6:  Green function modification (GFM) vs. brute-force imaging (BFI) for the 
multiple-grid AIM as the number of regions K  increases. (a) Layered 
hemispheres. All lines are parallel to 2 3K −  except those for the solve 
time, which are parallel to 1K − . (b) Dielectric-rod arrays. All lines are 
parallel to K . In both figures, solid lines are drawn by fitting to the 
measured data and the dashed lines are drawn by halving the slope of the 
corresponding solid lines. 
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2.3. MODELING METAMATERIAL REGIONS 

The above EH-PMCHWT formulation is applicable to metamaterial regions with 

negative permittivity or permeability, provided that the wave impedance and propagation 

constant are chosen carefully. Using the notation in Section 2.1, let region 
k
R  be an 

arbitrary penetrable material in the above formulation, i.e., it can be a conventional 

double-positive (DPS) material, a double-negative (DNG) material, an epsilon-negative 

(ENG) material, or a mu-negative (MNG) material. This leads to complications when 

calculating k k k
jγ ω ε μ=  and k k k

η μ ε=
 
as the correct roots must be selected in 

these expressions to satisfy physical principles [31, 32], i.e., Re{ } 0
k

γ >  to ensure 

conservation of energy and Re{ } 0
k
η >  to ensure the material is passive. Moreover, for 

lossless DNG (DPS) materials, the condition that Im{ } 0
k

γ <  ( Im{ } 0
k

γ > ) must be 

explicitly enforced since Re{ } 0
k

γ = ; similarly for lossless ENG (MNG) materials 

Im{ } 0
k
η >  ( Im{ } 0

k
η < ) should be explicitly enforced since Re{ } 0

k
η = . 

2.3.1. Validation 

 

  

Figure 2.3.1:  Scattering from a homogenous sphere of radius 1 mr = . The sphere is 
artificially modeled as composed of two different hemispherical regions 
(with the same constitutive parameters). Unnecessary regular and junction 
edges are introduced on the center plane and at the intersection of the 
hemispheres, respectively, in order to validate junction and multi-region 
implementations. 
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(a)                                 (b) 

          
(c)                                   (d) 

Figure 2.3.2:  Validation for metamaterial regions for the EH-PMCHWT equations. VV-
polarized RCS in the x z−  plane at 150 MHz for the homogeneous 
sphere in Fig. 2.3.1 for the (a) DPS-DPS, (b) DNG-DNG, (c) ENG-ENG, 
and (d) MNG-MNG configuration.  

To validate the extension to metamaterial regions, consider a 1-m radius 

homogeneous sphere that is modeled as a 3-region structure as shown in Fig. 2.3.1. To 

test the junction implementation, the top-bottom hemispheres are filled with identical 

DPS-DPS, DNG-DNG, ENG-ENG, or MNG-MNG materials and the fields scattered by 

this sphere are compared to those scattered from a homogeneous DPS, DNG, ENG, and 

MNG sphere with constitutive parameters 
0 0

{4 , }ε μ , 
0 0

{ 4 , },ε μ− −
0 0

{( 1 ) , },j ε μ− −  

and 
0 0

{ ,( 1 ) }jε μ− − , respectively. The sphere is illuminated by a 150 MHz x̂ -

polarized plane wave propagating in ẑ− -direction and is discretized using 15 606N =  
edges of which 126 are junction edges. The AIM grids are chosen such that C 3

0
24N =  

and C C 2
1 2

40 24N N= = × . Fig. 2.3.2 compares the RCS for the 3-region structures to 
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the analytical Mie series results. Excellent agreement is observed in all cases, which 

validates the extension of the method to metamaterial regions. 

In some cases, the scattering problem for piecewise homogeneous structures 

involving metamaterial regions might be ill-posed. This has been attributed to the so-

called surface-plasmon resonance condition [33, 34]; for a half-space problem with an 

interface at the 0z =  plane, this condition is observed when the constitutive parameters 

of the two materials satisfy 
1 2 2 1

0
z z
k kμ μ+ =  , where, 2 2

iz i
k k kρ= − , kρ  is the 

radial propagation component, and 2 2
i i i
k ω ε μ=  for 1, 2i =  [33]. To investigate this 

ill-posedness problem, scattering from a homogeneous DNG sphere is simulated. The 

sphere has a radius of 1 m and is excited by an x̂ -polarized plane wave propagating in 

ẑ -direction at 300 MHz and is discretized using 8  007N =  edges. Fig. 2.3.3 shows 

the RCS when the sphere parameters are 
0 0

{ 3 , }ε μ− −  or 
0 0

{ 1.5 , 1.5 }ε μ− − . In both 

scenarios, the results from the EH-PMCHWT solver agree with the analytical solution 

without adding any small losses. This is in stark contrast to the implementation in [33], 

which agrees well with the analytical solution in the first case but requires artificial small 

losses, i.e., changes the material parameters to ε μ− −− − − −4 4
0 0

{( 1.5 10 ) ,( 1.5 10 ) }j j , to 

avoid the ill-posedness problem in the second case. This example indicates that the EH-

PMCHWT solution does not suffer from surface-plasmon resonance. Note that, if the 

sphere is filled with 
0 0

{ , }ε μ− − , the EH-PMCHWT solver will encounter the ill-

posedness problem as all previous investigations [33, 35], but this is due to the fact that 

all diagonal entries from DPS and DNG regions are almost canceled during the 

combination step of EH-PMCHWT formulation, which deteriorates the conditioning of 

the matrix system. 
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(a)                             (b)   

Figure 2.3.3:  Well-posedness of EH-PMCHWT solution for the DPS-DNG interface. 
VV-polarized RCS in the x z−  plane at 300 MHz for a 1-m radius DNG 
sphere: (a) 

0 0
{ 3 , }ε μ− − . (b) 

0 0
{ 1.5 , 1.5 }ε μ− − . 
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2.4. MODELING PEC/PMC REGIONS AND MATERIAL-PEC/PMC JUNCTIONS 

    For structures that include PEC/PMC regions and material-PEC/PMC junctions, the 

EH-PMCHWT formulation in Section 2.1 is not directly applicable and must be 

augmented. When closed PEC/PMC regions are present, the following modifications are 

implemented: No (internal) equivalent problems are formulated for them; only 
k
J  or 

k
M  is defined on 

k
S ; and two additional integral equations, the rotated version of 

tangential electrical- and magnetic- integral equations (N-EFIE and N-MFIE), are 

formulated for 
k
S : 

ˆ     (N-EFIE )

ˆ     (N-MFIE )
kl k kl kl

kl k kl kl

n E M 0
n H J 0

− × − =
× − =

              (2.4.1)            

For a PEC (PMC) region, only J-CFIEs (M-CFIEs), which are the linear combination of 

T-EFIE
kl

 (T-MFIE
kl

) with N-MFIE
kl

 (N-EFIE
kl

), are enforced on 
k
S : 

J-CFIE 1 T-EFIE N-MFIE for PEC region

M-CFIE N-EFIE T-MFIE for PMC region
kl k kl kl

kl kl k kl

η
η

= +

= +     
 (2.4.2)     

The J-CFIEs (M-CFIEs) formulated for PEC (PMC) regions are concatenated with the 

EH-PMCHWT equations for the magnetodielectric regions [21, 36].  

 
J-CFIE  if  is a PEC region

M-CFIE if  is a PMC region

T-EFIE
else                       

T-MFIE

kl l

kl kl l
k l

kl

kl

R

Rβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∑               (2.4.3)          

where ˆ ˆ
kl kl kl
p nβ = i . 

The above combination of CFIEs for PEC/PMC regions and EH-PMCHWT 

equations for magnetodielectric ones is free of internal resonance problems [21]; 

however, it requires several modifications to the methods in Section 2.1-2.3: (i) 

Additional integral operators are needed because the presence of N-EFIE and N-MFIE, 

which requires additional integrations for MOM and modified interpolation and pre-
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correction stages for multiple-grid AIM that use new mapping/interpolation coefficients.  

(ii) Magnetic (Electrical) current unknowns should not be defined on the surfaces of PEC 

(PMC) regions because tangential electric (magnetic) fields are zero. (iii) J-CFIE (M-

CFIE) should be enforced and M-CFIE (J-CFIE) must be removed at material-PEC  

(material-PMC) junctions because there are fewer degrees of freedom. These 

modifications are presented in more detail in Sections 3.1 and 3.4. 

        
(a)                                 (b)   

Figure 2.4.1:  RCS of a composite structure: (a) Configuration. (b) Comparison between 
the EH-PMCHWT solver and the reference. 

2.4.1. Validation 

    To validate the extension of multiple-grid AIM for composite structures, scattering 

from a structure composed of dielectric and PEC regions and dielectric-PEC and 

dielectric-dielectric junctions is analyzed at 400 MHz. As Fig. 2.4.1(a) shows, the 

structure has three layers; 4 dielectric regions at the top and bottom and a PEC region at 

the center; the relative permittivities range from 3 to 9 [37]. The composite structure is 

excited by an x̂ -polarized plane wave propagating toward the ẑ  direction. The 

structure is meshed such that the average edge length is ~1/10th of the smallest 

wavelength in all regions which results in =128 788N  (1 620 junction edges) at 400 
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MHz. Fig. 2.4.1 shows the good agreement between EH-PMCHWT multiple-grid AIM 

and the reference results obtained by a finite-element boundary-integral equation solver 

at 400 MHz [37], validating the extension. 
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Chapter III Multiple-Grid AIM for CC-PMCHWT Equations 

This chapter presents the multiple-grid AIM approach for the CC-PMCHWT 

formulation, which improves the convergence of the iterative MOM solution. The 

presentation follows the same order as in Chapter 2: First, the method is formulated for 

piecewise homogeneous structures composed of conventional magnetodielectric 

materials in free space, then for such structures in the presence of a PEC/PMC plane, then 

for those containing metamaterial regions, and finally for arbitrary composite structures 

composed of PEC/PMC regions and material-PEC/PMC junctions. 

3.1. PIECEWISE HOMOGENEOUS STRUCTURES 

In this section, the CC-PMCHWT equations for analyzing scattering from 

piecewise homogeneous structures are formulated. Then, their MOM solution and the 

multiple-grid AIM acceleration are detailed. Numerical results investigating the 

effectiveness of the formulation conclude this section. The notation in this chapter 

follows and extends that in Chapter 2. 

3.1.1. CC-PMCHWT Formulation 

 Consider the K -region scattering problem in Fig. 2.1.1(a). The CC-PMCHWT 

equations are derived in four steps similar to the EH-PMCHWT equations. The first three 

steps, i.e., the formulation of equivalent problems, the definition of preferred currents, 

and the incident/scattered field decomposition, are identical to those when deriving the 

EH-PMCHWT equations as detailed in Section 2.1.2. In the fourth step, however, electric 

and magnetic current combined field integral equations (JCFIEs and MCFIEs) [13] are 

formulated and combined according to the PMCHWT recipe instead of the T-EFIEs and 

T-MFIEs. The JCFIE and MCFIE for each surface 
kl
S  is given as 
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1
JCFIE T-EFIE N-MFIE

MCFIE N-EFIE T-MFIE

kl kl kl
k

kl kl k kl

η
η

= +

= +
               (3.1.1) 

where 

 

ˆ ˆ ˆ     (T-EFIE )

ˆ ˆ ˆ    (T-MFIE )

ˆ     (N-EFIE )

ˆ    (N-MFIE )

kl kl k kl kl kl

kl kl k kl kl kl

kl k kl kl

kl k kl kl

n n E n M 0
n n H n J 0

n E M 0
n H J 0

− × × − × =

− × × + × =
− × − =

× − =

                (3.1.2) 

As a result, the linear combination of the JCFIEs and MCFIEs according to the 

PMCHWT recipe yields: 

JCFIE  (JC)PMCHWT

MCFIE  (MC)PMCHWT

kl kl
k l

kl kl
k l

β

β

∑∑

∑∑
                (3.1.3) 

where ˆ ˆ
kl kl kl
p nβ = i . This combination is commonly referred to as the JMCFIE 

formulation [13, 16-18]; however, it is called the CC-PMCHWT formulation in this 

dissertation to emphasize that the CFIE equations are combined similar to the EH-

PMCHWT recipe and to highlight that the formulation is different from the better known 

CFIE formulations for multi-region problems [19, 38] that enforce the JCFIEs for each 

equivalent problem separately (rather than combining them). While the CC-PMCHWT 

formulation can be traced to [19], it has been popularized by [13]. 

3.1.2. MOM 

Following the procedure in Section 2.1.3, a set of integral equations for the 

preferred currents is obtained and converted to a system of linear equations by the usual 

MOM steps: The surfaces are meshed, the currents are approximated using RWG and 

half-RWG functions, and the SIEs are weighted by testing functions. Similar to (2.1.12), 

this results in the following 2N  equations for 2N  unknowns 
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CC inc

CC
CC inc

I V
Z
V I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                          (3.1.4) 

As in Section 2.1.3, the MOM matrix assembly can be formulated using the local 

notation as  

 

CC CC

CC inc CC inc

CC inc CC inc

T
kl

Tkl kl
k l kl

T
kl kl

Tkl
k l kl kl

C 0
Z Z

0 C

V C 0 V

I 0 C I

β

β

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∑∑

∑∑
                 (3.1.5) 

Thus, the counterpart of (2.1.14) is  

 
CC inc

CC
CC inc

kl
kl

kl

I V
Z
V I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                          (3.1.6) 

The matrices and vectors in (3.1.5) and (3.1.6) have the same number of non-zero 

entries as the ones in (2.1.13) and (2.1.14). The vectors 
CC inc

kl
V  and  CC inc

kl
I  store the 

incident fields tested on surface 
kl
S . The matrix CC

kl
Z  relates the scattered fields tested 

on surface 
kl
S  to the currents on the entire structure. It can be expanded as 

CC

0,

CC

( 2 ) ( 2 )

( 2 ) ( 2 )

K
kll kll kll kll kll kll k kl

kl kl
l l k k kll kll kll kll kll kll kl

kllZ

L K T L K T C 0
Z

L K T L K T 0 C
η

α
η

−
′ ′ ′ ′ ′ ′ ′× × ×

′
′ ′= ≠ ′ ′ ′ ′ ′ ′ ′× × ×

′

⎡ ⎤ ⎡ ⎤− + + +⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥− + + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1

∑  

(3.1.7) 

Similar to EH
'kll

Z  in (2.1.15), CC
kll
Z ′ , which is a 2 2

kl kl
N N ′×  dense matrix, relates the 

scattered fields tested on surface 
kl
S  to the currents only on 

kl
S ′ . The entries of CC inc

kl
V , 

CC inc
kl
I , and CC

kll
Z ′  are given as 

CC inc inc inc
,

CC inc inc inc
,

ˆ[ ] ( ) ( ) ( )

ˆ[ ] ( ) ( ) ( )
kl

kl

kl kl n k k kl k
S

kl kl n k k kl k
S

n ds

n ds

η

η

⎡ ⎤= + ×⎢ ⎥⎣ ⎦

⎡ ⎤= − ×⎢ ⎥⎣ ⎦

∫∫

∫∫

V S r E r n H r

I S r H r n E r

i

i

        

 (3.1.8) 
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, ,

, ,

, ,

, ,

,

[ , ] ( ) ( , )

( ) ( ) ( )

ˆ[ , ] ( ) ( , )

ˆ( ) ( ) ( )

[ , ] (

kl

kl kl

kl

kl kl

kll kl n k kl n
S

kl n kl n k
S S

kll kl n kl k kl n
S

kl n kl kl n k
S S

kll kl n

n n ds

g d ds ds

n n ds

g d ds ds

n n

K S r S r

S r S r

K S r n S r

S r n S r

L S r

′

′

′ ′ ′

′ ′

′ ′ ′×

′ ′

′

′ =

′ ′= ∇×

′ = ×

′ ′= × ∇×

′ =

∫∫

∫∫ ∫∫

∫∫

∫∫ ∫∫

i

i

i

i

K

K

,

, ,

, ,

, ,

, ,

) ( , )

( ) ( ) ( )

1
( ) ( ) ( )

ˆ[ , ] ( ) ( , )

ˆ( ) ( ) ( )

kl

kl kl

kl kl

kl

k kl n
S

k kl n kl n k
S S

kl n kl n k
k S S

kll kl n kl k kl n
S

k kl n kl kl n k

ds

g d ds ds

g d ds ds

n n ds

g d ds ds

S r

S r S r

S r S r

L S r n S r

S r n S r

γ

γ

γ

′

′

′ ′

′ ′

′ ′

′ ′ ′×

′ ′

′ ′=

′ ′ ′+ ∇ ∇

′ = ×

′ ′= ×

∫∫

∫∫ ∫∫

∫∫ ∫∫

∫∫

i

i

i i

i

i

L

L

,

, , ,

' , ,

, ,

1 ˆ ( ) ( ) ( )

1
[ , ] ( ) ( )

2

1
ˆ[ , ] ( ) ( )

2

kl kl

kl n kl

kl

kl

S S

kl n kl n kl n k
k S S

kll kl n kl n
S

kll kl n kl kl n
S

g d ds dl

n n ds

n n ds

t S r S r

T S r S r

T S r n S r

γ

′

′

′ ′

∂

′ ′

′ ′ ′×

′ ′ ′− ∇

′ ′=

′ ′= ×

∫∫ ∫∫

∫ ∫∫

∫∫

∫∫

i i

i

i

      

 (3.1.9) 

for 1
kl

n N≤ ≤  and 1
kl

n N ′
′≤ ≤ . Here,

 ,kl n
S∂  is the contour bounding ,kl n

S  

traversed such that the right-hand-rule yields the normal direction ˆ
kl
n  (when the edge 

,kl n
e  is a regular edge, the integral should be separated to two and 

,kl n
e  must be 

traversed twice in opposite directions) and 
,k̂l n
t  is the tangential unit vector along the 

contour ,kl n
S∂ . 

The computational complexity of the above procedure should be contrasted to that 

of the MOM solution in Section 2.1.3.4: (i) Double the number of operations needed for 

assembling the CCZ  matrix in (3.1.4) compared to that for the EHZ matrix in (2.1.12) 
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because of the additional cost of filling the 
kll
K ′×

 and 
kll
L ′×

 matrices (the 
'kll

T  and 

'kll
T×  are near-diagonal matrices with non-zero entries only for overlapping basis/testing 

function pairs and require only ( )O N  operations to fill); (ii) The same number of 

operations are needed per iteration for solving (3.1.4) as (2.1.12); and (iii) the same 

amount of memory is needed for solving (3.1.4) and (2.1.12). If an iterative solver that 

needs CC IN  iterations to converge is used then the setup, solution, and memory costs 

scale as nz(2 )O N , CC I nz( )O N N , and nz( )O N , respectively. 

3.1.3. Multiple-Grid AIM   

Similar to the multiple-grid AIM in Section 2.1.4, computational savings are 

achieved by employing K  different auxiliary grids 
0 1
,...,

K
C C −  (identical to those 

defined in Section 2.1.4.1) for a K -region problem (Fig. 2.1.4). Using grid 
k
C , the 

proposed scheme approximates the MOM matrices pertinent to the equivalent problem 

k  as CC CC near CC FFT
kll kll kll
Z Z Z′ ′ ′≈ + , where 

 

FFT FFT FFT FFT
CC FFT

FFT FFT FFT FFT

FFT FFT

T T
kl k k k kl k k k

T Tkll
kl k k k kl k k k

k k

η η

η η′

×

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎟Γ −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟= +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟− Γ − − ⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎟⎜⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎟⎜⎜⎜⎝ ⎠Z Z

0 L K 0 K L
Z

0 K L 0 L K

Λ
Λ

near near near near
CC near

near near near near

2 ( 2 )

( 2 ) 2

kl

kl

kll kll kll kll kll kll k
kll

k kll kll kll kll kll kll

η

η

′

′

′ ′ ′ ′ ′ ′× × ×
′

′ ′ ′ ′ ′ ′× × ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎟⎟
⎡ ⎤− + + +⎢ ⎥= ⎢ ⎥− + + − +⎢ ⎥⎣ ⎦

0
0

L K T L K T
Z

L K T L K T

Λ
Λ

               

(3.1.10) 

Here, the projection matrix 
kl ′Λ , the interpolation matrix T

kl
Λ , and the propagation 

matrices FFT
k
L  and FFT

k
K  are identical to the ones given in (2.1.18) and (2.1.19). Just as 

in Section 2.1.4, 8 block-Toeplitz matrix-vector multiplications are calculated via FFTs to 

multiply FFT
k
Z  with a trial vector (once again, these correspond to the multiplications of 

FFT
k
L  with electric and magnetic current coefficients, respectively). The multiplication of 
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FFT
k×Z  with a trial vector is found from that of FFT

k
Z  with the same trial vector at no 

additional cost (the sub-matrices of the two matrices are identical and the scaling 

coefficients are absorbed into the interpolation stage). The extra interpolation matrix 
kl

Γ  

interpolates fields at observation points on 
k
C  onto the rotated version of the testing 

functions on 
kl
S ; it is given as 

 x y z L
T

kl kl kl kl kl
⎡ ⎤Γ = Γ Γ Γ Γ⎢ ⎥⎣ ⎦

                    (3.1.11) 

Here, each column n  of the projection matrices x,y,z,L
kl

Γ  are filled by matching the 

multipole moments of the 
,k n

M  point sources on 
k
C  to those of the functions 

, , , , ,
ˆˆ ˆ ˆ ˆ ˆ ˆ,  ,  ,  

kl n kl kl n kl kl n kl kl n kl n
⋅ × ⋅ × ⋅ × − ⋅x S n y S n z S n t S , respectively. 

For 1
kl

n N≤ ≤  and 1
kl

n N ′
′≤ ≤ , the entries of the near-zone correction 

matrices CC near
kll
Z ′  in (3.1.10) are  

 near FFT[ , ] [ , ] [ , ]
kll kll kll
n n n n n nX X X′ ′ ′

′ ′ ′= −                 (3.1.12) 

( { , , , }X L K L K× ×∈ ) when the testing function 
,kl n

S  (
,

ˆ
kl n kl
S n× ) is in the near-zone of 

the basis function 
,kl n

S ′ ′  or zero otherwise. 

Assembling the CC
kll
Z ′  matrices as in (2.1.12)-(2.1.15), the method 

approximates the MOM matrix equation (3.1.4) as 

 
CC inc

CC FFT CC near
CC inc( )

I V
Z Z

V I

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ ≈ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

                    (3.1.13) 

where  

 

CC FFT FFT FFT

1

0,

T T T T
kl kl kl kl

T T T Tkl k k
k l kl kl kl kl

K
kl kl

kl
l l k kl kl

β

α

×

−
′ ′

′
′ ′= ≠ ′ ′

⎛ ⎞⎡ ⎤ ⎡ ⎤Γ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎟⎜= + ⎟⎜⎢ ⎥ ⎢ ⎥ ⎟⎜ ⎟Γ ⎟⎜⎢ ⎥ ⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥× ⎢ ⎥
⎢ ⎥⎣ ⎦

∑∑

∑

C 0 C 0
Z Z Z

0 C 0 C

C 0
0 C

Λ
Λ

Λ
Λ

     (3.1.14) 

 
1

CC near CC near

0,

T K
kl kl

Tkl kll kl
k l l l k klkl

C 0 C 0
Z Z

0 C0 C
β α

−
′

′ ′
′ ′= ≠ ′

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∑∑ ∑                (3.1.15) 
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The multiple-grid AIM stores the correction matrix CC nearZ , the sparse matrices 

kl
Λ  , 

kl
C  and 

kl
Γ , and unique parts of the block-Toeplitz matrices FFT

k
Z  and FFT

k×Z in 

(3.1.10). Compared to the multiple-grid AIM in Chapter 2, only the pre-correction and 

interpolation stages are modified while the projection and propagation stages are 

unchanged (no additional FFTs are needed); the pre-correction stage requires double the 

matrix fill time (but the same storage space and the same number of operations per 

iteration); and the interpolation stage requires double the number of operations and 

memory. Thus, the setup, solution, and memory costs of the multiple-grid AIM scale as 
nz,near C(2 )

kk
O N N+∑ , CC I nz,near C C( )[ log ]

k kk
O N N N N+∑ , and nz,near C( )

kk
O N N+∑ , 

respectively. 

3.1.4. Numerical Results 

This section presents numerical results that validate the performance of the 

classical and multiple-grid AIM accelerated MOM solution of the CC-PMCHWT 

equations.  

3.1.4.1. Computational Complexity Validation 

Here, the practical efficiency and accuracy of the multiple-grid AIM scheme for 

piecewise homogeneous structures are systematically evaluated as the number of edges 

N  increases. The size of multi-region problems can be scaled in the same ways as 

Section 2.1.5: On the one extreme, new regions are added recursively for layered spheres 

as the number of layers are increased; on the other extreme, they are added in parallel for 

a dielectric-rod array as the number of rods are increased. All geometry, material, and 

AIM parameters are chosen the same in the following simulations as those in Section 

2.1.5.1; these parameters can be found in Tables 2.1.1 and 2.1.2. 
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3.1.4.2. Layered Sphere 

Consider the 1K −  layered spheres with 
0 0
r λ=  and 

0 0
4r λ=  in Section 

2.1.5.1 (shown in Fig. 2.1.5). For the 
0 0
r λ=  layered spheres, Figs. 3.1.1(a)-(d) 

compare the setup, solution, and memory costs for the CC-PMCHWT and the EH-

PMCHWT formulations. The computational costs in Fig. 3.1.1 agree well with 

theoretical analysis, e.g., CC-PMCHWT formulation doubles all setup costs; the time 

required per iteration by the classic MOM solution is identical for both formulations, 

whereas multiple-grid AIM solution requires some more operations (~10%) for the CC-

PMCHWT formulation due to the extra interpolation step; the memory cost of the 

classical MOM solution is identical for both two formulations, whereas multiple-grid 

AIM solution requires some more memory (~12%) for the CC-PMCHWT formulation 

due to the extra interpolation coefficients. For the 
0 0

4r λ=  layered spheres, Figs. 

3.1.2(a)-(d) show the setup, solution, and memory costs. Again, the computational costs 

agree with theoretical analysis: CC-PMCHWT formulation doubles the setup costs while 

slightly increasing the time required per iteration and the memory. Figs. 3.1.1(d) and 

3.1.2(d) show the number of iterations required for convergence by each method when 

using diagonal preconditioning. The figure shows that the iterative solver convergence 

deteriorates with the increasing number of layers for both formulations; however, the 

convergence for CC-PMCHWT formulation generally requires much fewer iterations. 
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  (a)                                   (b) 

  
  (c)                                    (d) 

Figure 3.1.1:  CC-PMCHWT solvers vs. EH-PMCHWT solvers for the 
0 0
r λ=  

layered dielectric sphere as the number of layers is increased from 1 to 8. 
(a) The setup cost. (b) The solution cost per iteration. (c) The memory 
cost. (d) The number of iterations. In (a)-(c), all dashed and straight lines 
are parallel to 2 3K−  except the straight lines in (c) that are parallel to 

1K − . In (a), the higher solid and dash lines are drawn by doubling the 
slope of the corresponding lines. 
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  (a)                                   (b) 

 
  (c)                                    (d) 

Figure 3.1.2:  CCPMCHWT solvers vs. EH-PMCHWT solvers for the 
0 0

4r λ=  
layered dielectric sphere as the number of layers is increased from 1 to 8 
layers. (a) The setup cost. (b) The solution cost per iteration. (c) The 
memory cost. (d) The number of iterations. In (a)-(b), all straight lines are 
parallel to 2 3K− ; in (c), all of them are parallel to 1K − . In (a), the 
higher dash lines are drawn by doubling the slope of the corresponding 
lines. 
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  (a)                                   (b) 

  
  (c)                                    (d) 

Figure 3.1.3:  CC-PMCHWT solvers vs. EH-PMCHWT solvers for the dielectric rod 
array as the number of rods is increased from 1 to 1024. (a) The setup cost. 
(b) The solution cost per iteration. (c) The memory cost. (d) The number 
of iterations. In (a)-(c), dashed lines are parallel to 2K  and straight lines 
are parallel to K . In (a), the higher solid and dash lines are drawn by 
doubling the slope of the corresponding lines. 

3.1.4.3. Dielectric-Rod Array 

Consider the uniform two-dimensional array of 1K −  dielectric rods in Section 

2.1.5.2 (shown in Fig. 2.1.6. Figs. 3.1.3(a)-(c) compare the setup, solution, and memory 

costs of the classical and fast solvers for the CC-PMCHWT and the EH-PMCHWT 

formulations. The computational costs in Figs. 3.1.3 agree with these theoretical analyses, 
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e.g., the CC-PMCHWT formulation doubles all setup costs; the time required per 

iteration by each solver is practically the same for both formulations; the memory cost of 

the classical MOM solution is identical for both formulations, whereas multiple-grid AIM 

solution requires slightly more memory for CC-PMCHWT due to the extra interpolation 

coefficients. Fig. 3.1.3(d) shows the number of iterations required for convergence by 

each method when using diagonal preconditioning. The figure shows that the iterative 

solver convergence deteriorates with the number of rods for the EH-PMCHWT 

formulation, while it is insensitive to the problem size for the CC-PMCHWT formulation. 

3.1.5. Summary 

This section formulated the CC-PMCHWT equations for piecewise homogeneous 

structures and highlighted the necessary changes to the classical as well as multiple-grid 

AIM accelerated MOM solution. The iterative solution of CC-PMCHWT equations 

generally converge better than EH-PMCHWT ones; however, the improvement is 

problem dependent (further examples are shown in Sections 3.2-3.4 and Chapter 4). Also, 

the accuracy of CC-PMCHWT-based solvers might be degraded by the high-order 

singularity present in the integrations of rotated integral equations, which can be 

improved by increasing the mesh density or by using curl-conforming testing functions. 

The CC-PMCHWT formulation and multiple-grid AIM acceleration are general enough 

that they can be easily extended to structures containing PEC and/or metamaterial regions 

with negative constitutive parameters as detailed in the next sections. 
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3.2. MODELING A PEC/PMC PLANE  

To model a PEC/PMC plane efficiently, the Green function modification (GFM) 

approach of Section 2.2 should be extended to CC-PMCHWT. These extensions are 

slightly more complicated than those for the EH-PMCHWT formulation because of the 

presence of additional rotated EFIE and MFIE kernels. 

Consider the same homogeneous structure with surface S  residing above a PEC 

plane at 0z =  excited by an external time-harmonic electromagnetic field inc inc
0 0

{ , }E H  

(Fig. 2.2.1). The brute-force imaging approach of the CC-PMCHWT is the same the EH-

PMCHWT formulation: (i) Apply method of images: Remove the plane; introduce the 

image structure with surface S ; and excite the new structure with the sum of 
inc inc
0 0

{ , }E H  and its image inc inc
0 0

{ , }E H . (ii) Formulate integral equations: Construct 

equivalent problems (Fig. 2.2.1); formulate JCFIEs and MCFIEs for each problem; and 

combine them using the PMCHWT recipe. (iii) Apply the MOM procedure with RWG 

basis functions and Galerkin testing: Mesh S  with triangle patches with N  edges and 

S  with the images of these patches; and expand the actual (image) electric and magnetic 

current densities { , }J M  ({ , }J M ) on S  (S ) by using actual (image) RWG functions. 

Then, Galerkin testing yields the brute-force imaging (BFI) equations 
CC a-inc

0
CC i-inc2

0
CC a-inc

0 0
CC i-inc

0

( 2 ) ( 2 )
 (BFI)

( 2 ) ( 2 )
k k k k k k k

k k k k k k k k

VI
L K T L K T I V
L K T L K T V I

V I

η
η

× × ×

= × × ×

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎡ ⎤− + + + ⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥− + + − + ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑   (3.2.1) 

Here and throughout this section, the subscript of a matrix or vector shows the equivalent 

problem (0 for external-, 1 for actual internal-, and 2 for image internal-equivalent) and 

the superscript above a vector shows the testing function (“a-inc” for actual and “i-inc” 

for image RWG) used to fill it. The entries of the right-hand-side vectors are (for 

1 n N≤ ≤ ) 
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CC a-inc a inc inc a inc inc
0 0 0 0 0 0 0

CC i-inc i inc inc i inc inc
0 0 0 0 0 0 0

CC a-inc a inc inc a inc inc
0 0 0 0 0 0 0

CC i-inc
0

ˆ[ ] ( ) ( )

ˆ[ ] ( ) ( )

ˆ[ ] ( ) ( )

[

n

n

n

n ds

n ds

n ds

n

V S E E n H H

V S E E n H H

I S H H n E E

I

η

η

η

⎡ ⎤= + + × +⎢ ⎥⎣ ⎦
⎡ ⎤= + + × +⎢ ⎥⎣ ⎦
⎡ ⎤= + − × +⎢ ⎥⎣ ⎦

∫∫
∫∫
∫∫

i

i

i
i inc inc i inc inc

0 0 0 0 0 0
ˆ] ( ) ( )

n
dsS H H n E Eη⎡ ⎤= + − × +⎢ ⎥⎣ ⎦∫∫ i

       (3.2.2) 

where a
0
n̂  ( i

0
n̂ ) represents the normal on the actual (image) structure for the external 

problem, similar definitions are used for the rest equivalent problems. { , }
k k k
X L K∈  

and { , }
k k k
X L K× × ×∈ , then the entries of these 2 2N N×  matrices can be found by 

expressing them as 

 
aa ai aa ai

ia ii ia ii,k k k k
k k

k k k k

X X X X
X X

X X X X
× ×

×
× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                 (3.2.3) 

It is important to note that some of these N N×  sub-matrices can be zero (e.g., 
ai,ia,ii aa,ai,ia
1 2
X X 0= =  and ai,ia,ii aa,ai,ia

1 2
X X 0× ×= =  when the structure does not intersect 

the PEC plane); otherwise, their entries are 
ts t s

t s

ts t t s

t t s

ts t s

[ , ] ( ) ( ) ( , )

1
( ) ( ) ( , )

ˆ[ , ] ( ) ( ) ( )

1 ˆ ( ) ( ) ( )

[ , ] ( ) (

k k n n k

n n k
k

k k n k n k

n n n k
k

k n n

n n g ds ds

g ds ds

n n g d ds ds

g d ds dl

n n

L S r S r r r

S r S r r r

L S r n S r

t S r S r

K S r S r

γ

γ
γ

γ

′

′

′×

′

′

′ ′ ′ ′=

′ ′ ′ ′+ ∇ ∇

′ ′ ′= ×

′ ′ ′− ∇

′ ′= ∇×

∫∫ ∫∫
∫∫ ∫∫

∫∫ ∫∫
∫ ∫∫

i

i i

i

i i

i
ts t t s

ts t s

ts t t s

) ( , )

ˆ[ , ] ( ) ( ) ( , )

1
[ , ] ( ) ( )

2
1

ˆ[ , ] ( ) ( )
2

k

k n k n k

k n n

k n k n

g ds ds

n n g ds ds

n n ds

n n ds

r r

K S r n S r r r

T S r S r

T S r n S r

′×

′

′×

′ ′

′ ′ ′ ′= × ∇×

′ ′=

′ ′= ×

∫∫ ∫∫
∫∫ ∫∫
∫∫

∫∫

i

i

i

      (3.2.4) 

for 1 ,n n N′≤ ≤  and t, s {a, i}∈ . Note that the self-term calculations
ai ia ai ia[ , ] [ , ] [ , ] [ , ] 0
k k k k
n n n n n n n nT T T T× ×

′ ′ ′ ′= = = = . In the above equations, ( , )
k
g r r′  is 

the homogeneous-medium Green function and 
k
ε , 

k
μ , 

k
γ , and 

k
η  are the permittivity, 
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permeability, propagation constant, and intrinsic impedance for free space ( 0k = ) or 

dielectric structure ( 1,2k = ), respectively. The MOM matrix equation (3.2.1) can be 

simplified by enforcing that the image and actual electric (magnetic) currents have 

opposite (identical) tangential components and identical (opposite) vertical components, 

i.e., 
ˆ ˆ{ ( ), ( )} { ( ), ( )}

ˆ ˆ{ ( ), ( )} { ( ), ( )}

t J r M r t J r M r
z J r M r z J r M r

= −

= −

i i
i i

                 (3.2.5) 

From Section 2.2, it is clear that  

{ , } { , }I V I V= −                          (3.2.6) 

Substituting (3.2.6) in (3.2.1), two sets of equations are obtained for I  and V : One 

using actual and the other using image testing functions. Either set or their linear 

combination can be solved uniquely for , ,I I V  and V ; here, the first set is chosen: 
CC a-inc1

0
CC a-inc

0 0

aa ai aa ai

aa ai aa ai

 (GFM)

( ) ( )

( ) ( )

k

k k

k k k k

k k k k

LxK KxL I V
KxL LxK V I

LxK L L K K

KxL L L K K

η
η=

× ×

× ×

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − − −

= + + +

∑
         (3.2.7) 

3.2.1. MOM Computational Complexity and Extensions 

There are 24 unique matrices ( aa,ai,ia,ii
0
X , aa

1
X , ii

2
X , aa,ai,ia,ii

0
X× , aa

1
X× , and ii

2
X× ) 

in (3.2.1) and 12 unique matrices ( aa,ai
0
X , aa

1
X , aa,ai

0
X× , and aa

1
X× ) in (3.2.7) that are 

dense ( aa
k
T , ai

k
T , aa

k
T× , and ai

k
T×  are sparse). BFI and GFM approaches solve for 2N  

and N  unknowns and require 2(24 )O N  and 2(12 )O N  bytes/operations to fill the 

unique matrices and 2(48 )O N  and 2(24 )O N  operations per iteration to calculate non-

zero matrix-vector multiplications, respectively. Thus, GFM finds half the number of 

unknowns and requires half the memory space, matrix-fill operations, and matrix-solve 

operations compared to BFI. 
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When the PEC plane intersects the homogeneous structure, there are 2 equivalent 

problems, 32 unique matrices ( aa,ai,ia,ii
0,1
X ) in (3.2.1), and 16 unique matrices ( aa,ai

0,1
X ) in 

(3.2.7) are dense ( aa
k
T , ai

k
T , aa

k
T× , and ai

k
T×  are sparse). Moreover, junction edges are 

treated the same way as the EH-PMCHWT formulation; because j rN N  in general, 

they require 2(32 )O N  and 2(16 )O N  bytes/ operations to fill the unique matrices and 
2(64 )O N  and 2(32 )O N  operations per iteration, respectively. Thus, GFM still solves 

for (almost) half the number of unknowns and requires (almost) half the resources 

compared to BFI. 

When the structure is on/above a PMC plane, inc inc
0 0

{ , }E H  in (3.2.2) and the 

signs of the aiX  terms in (3.2.7) must be modified according to duality (i.e., 

{ , } { , }I V I V= −  for a PMC plane).   
 

3.2.2. Green Function Modification for Multiple-Grid AIM 

As the EH-PMCHWT formulation, when brute-force imaging is used, the 

multiple-grid AIM defines the same three auxiliary grids 
0,1,2
C  with C

0,1,2
N  grid points 

that enclose 
0
S S S= ∪ , 

1
S S= , and 

2
S S=  to speed up the calculations stemming 

from the external-, actual internal-, and image internal-equivalent problem, respectively 

(Fig. 3.2.1). Using the same auxiliary grids, the multiple-grid AIM approximates the CC-

PMCHWT MOM matrices in (3.2.1) as (for 0 2k≤ ≤ )  
near † FFT

near † FFT
k k k k k

k k k k k

X X X

X X X× ×

≈ +

≈ + Γ

Λ Λ
Λ

                     (3.2.8) 

where 
k

Λ  are projection matrices that map the currents on 
k
S  to point sources on 

k
C , 

FFT FFT FFT{ , }
k k k
X L K∈  are propagation matrices that relate fields at observation points on 

k
C  to point sources on 

k
C , near near near near{ , , }

k k k k
X L K T∈  and 

near near near near{ , , }
k k k k
X L K T× × × ×∈  are correction matrices that adjust near-zone entries, and 

†  denotes transpose. The projection matrices are expressed as 
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a,x i,x

a,y i,y
a i

a,z i,z

a, i,

 

k k

k k
k k k

k k

k k
∇ ∇

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤= = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ Λ
Λ Λ

Λ Λ Λ
Λ Λ
Λ Λ

 

a,x i,x

a,y i,y
a i

a,z i,z

a, i,

 

k k

k k
k k k

k k

k k
∇ ∇

⎡ ⎤Γ Γ⎢ ⎥
⎢ ⎥Γ Γ⎢ ⎥⎡ ⎤Γ = Γ Γ = ⎢ ⎥⎢ ⎥⎣ ⎦ Γ Γ⎢ ⎥
⎢ ⎥
⎢ ⎥Γ Γ⎣ ⎦

         (3.2.9) 

 
(a) 

                   
        (b)                            (c) 

Figure 3.2.1:  The three multiple-grid AIM auxiliary grids used for brute-force imaging: 
(a) 0

,C  (b) 1
,C  and  (c) 2

C . 

where the C4
k
N N×  projection matrices a

k
Λ , i

k
Λ , a

k
Γ , and i

k
Γ  are sparse with ( )O N  

non-zero entries ( i a
1 2

0= =Λ Λ  and i a
1 2

0Γ = Γ =  when the PEC plane does not 

intersect the structure). The C C4 4
k k
N N×  propagation matrices are constructed the same 

as (2.2.37). In (3.2.8), the 2 2N N×  correction matrices near
k
X  and near

k
X×  are sparse 

with nz,near
k
N  entries and can be formulated as 

 
near,aa near,ai near,aa near,ai

near near
near,ia near,ii near,ia near,ii,k k k k

k k
k k k k

X X X X
X X

X X X X
× ×

×
× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

         (3.2.10) 

Some of these sub-matrices are zero similar to (3.2.3); the entries of the non-zero sub-

matrices are  
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ts t † FFT s t s
near,ts

ts t † FFT s t s
near,ts

( )[ , ] if  near 
[ , ]

0 otherwise    

( )[ , ]  if  near 
[ , ]

0 otherwise    

k k k k n n
k

k k k k n n
k

n n
n n

n n
n n

X X S S
X

X X S S
X

′

′×
×

⎧⎪ ′−⎪⎪′ = ⎨⎪⎪⎪⎩
⎧⎪ ′−Γ⎪⎪′ = ⎨⎪⎪⎪⎩

Λ Λ

Λ
       (3.2.11) 

for 1 ,n n N′≤ ≤  and t, s {a, i}∈ . 

When Green-function modification is used, the multiple-grid AIM must 

approximate the aa
k
X , aa

k
X× , ai

k
X , and ai

k
X×  matrices (when they exist) in (3.2.7). A 

simple approach is to use the same auxiliary grids as in the brute-force imaging approach 

but map only the actual currents for aa
k
X  ( aa

k
X× ) and image currents for ai

k
X  ( ai

k
X× ) 

(for 0 1k≤ ≤ ): 
aa near,aa a† FFT a

ai near,ai a† FFT i

aa near,aa a† FFT a

ai near,ai a† FFT i

k k k k k

k k k k k

k k k k k

k k k k k

X X X

X X X

X X X

X X X
× ×

× ×

≈ +

≈ +

≈ + Γ

≈ + Γ

Λ Λ
Λ Λ

Λ
Λ

                   (3.2.12) 

Compared to brute-force imaging, this approach halves the cost of near-zone corrections 

but it does not change the FFT costs for regions where the auxiliary grid encloses both an 

actual and an image structure, e.g., the free-space region in Fig. 2.2.1. It is more efficient 

to modify the Green functions and approximate the MOM matrices as: 
aa ai near,aa near,ai a† FFT FFT a

,T ,H
aa ai near,aa near,ai a† FFT FFT a

,T ,H

( )

( )
k k k k k k k k

k k k k k k k k

X X X X X X

X X X X X X× × × ×

≈ +

≈ + Γ

∓ ∓ ∓
∓ ∓ ∓

Λ Λ
Λ

        (3.2.13) 

            
  

    (a)                               (b) 

Figure 3.2.2:  The two multiple-grid AIM auxiliary grids used for Green-function 
modification: (a) G

0
C  and (b) G

1
C . 
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The propagation and reflection matrices ( FFT
,Tk

X  and FFT
,Hk

X ) are constructed using 

identical auxiliary grids, which enclose only actual structures (Fig. 3.2.2), which are the 

same as them for the EH-PMCHWT formulation. Let G
k
C  denote this smaller auxiliary 

grid with G C
k k k
N Nδ=  grid points for region k ; if region k  is terminated on the plane, 

then 0.5
k
δ ≤ ; if it resides above the plane, then 1

k
δ = ; if it resides below the plane, 

then 0
k
δ =  (i.e., G

k
C  is not defined); e.g., 

0
0.5δ < ,  

1
1δ =  and  

2
0δ =  for the 

problem in Fig. 2.2.1. The propagation and reflection matrices are constructed using the 
G G
k k
N N×  Green function matrices  

x,y,z,A,
,P ,P

[ , ] { , , , ,1 / } ( , )
k x y z k k k u u

u u gG r rφ γ γ ′
′ = ∂ ∂ ∂          (3.2.14) 

for P {T,H}∈  and nodes u  and  u ′  on G
k
C  ( x,y,z,A,

,P
[ , ] 0

k
u uG φ = ).  

The conversion scheme developed in Section 2.2 can be directly applied to the 

Hankel matrix-vector multiplication by using the anti-diagonal permutation matrix P  

[30]. Here are the detailed procedures: (i) Calculate the FFT of a zero-padded vector for 
a,
k
I∇Λ  and store it in a,

k
I ∇ . (ii) Multiply a,

k
I ∇  element-by-element with the pre-

computed FFT for 
,Tk

Gφ . (iii) Find the FFT for the re-ordered vector 1 a,
k
I− ∇P Λ   by 

multiplying each element of a,
k
I ∇  with the pre-computed FFT for 

,Hk
Gφ P  that is 

multiplied by a phase shift term (to account for the re-ordering). (iv) Combine the vectors 

found in (ii) and (iii) and calculate the inverse FFT of the resulting vector. These require 
G G(8 log 8 )
k k

O N N , G(8 )
k

O N , G(8 )
k

O N  and G G(8 log 8 )
k k

O N N  operations, respectively; 

thus, only G(8 )
k

O N  extra operations produce a † a
,T ,H

( )
k k k k
G G Iφ φ∇ ∇∓Λ Λ , and G(8 )

k
O N  

more operations produce a † a
,T ,H

( )
k k k k
G G Iφ φ∇ ∇Γ ∓ Λ .  

3.2.3. Multiple-Grid AIM Computational Complexity 

When BFI is used, the multiple-grid AIM requires, for each region ,k  
nz,near C(2 8 )
k k

O N N+  bytes/operations to fill the non-zero and unique entries of near
k
X  
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and FFT
k
X  and nz,near C C C C(2 8[16 log 8 8 ] 12 )

k k k k k
O N N N N N+ + +  operations per 

iteration to multiply them. When GFM is used, only near,aa
k
X  and FFT

,Tk
X  exist if 

{0,1}
k
δ ∈  and the multiple-grid AIM requires nz,near(2

k k
O Nδ  G8 )

k
N+  bytes/operations 

to fill the unique entries of these matrices and nz,near G G G(2 8[16 log 8 8 ]
k k k k k

O N N N Nδ + +  
G12 )
k
N+  operations per iteration to multiply them. Therefore, GFM exactly halves the 

computational costs for regions not terminated on the plane. For regions that are 

terminated on the plane ( 0.5
k
δ ≤ ), GFM reduces the cost by a factor of 1/

k
δ ; this can 

be a very large factor if the structure is high above the plane (when 0.5
k
δ ). When 

0.5
k
δ ≤ , however, near,ai

k
X  and FFT

,Hk
X  also exist and an additional G(8 )

k
O N  

bytes/operations are needed to fill them and G(64 )
k

O N  operations are needed to multiply 

them per iteration. While these additional costs reduce the 1/
k
δ  gain, this is offset by 

several factors: (i) The correction cost is generally not negligible, i.e., rarely is 
nz,near G
k k
N N . (ii) In the solution time, FFT cost dominates the multiplication cost by a 

logarithmic factor and the reduction in the FFT cost is greater than 1/
k
δ  (by a 

logarithmic factor). 

3.2.4. Validation 

This section presents numerical examples to validate the Green function 

modification (GFM) approach for the CC-PMCHWT equations. Consider the same 

scattering problem as Section 2.2.4 (all the input parameters are the same as in that 

Section): A 200 MHz plane wave polarized along ( , ) (45 , 0 )o oθ φ =  is propagating to 

( , ) (135 , 0 )o oθ φ =  direction and illuminates a 4 m
 
diameter dielectric sphere of 

permittivity 
1 0

2ε ε=  that is located H  meters above a PEC plane. The MOM and 

multiple-grid AIM using brute-force imaging and Green-function modification are 

contrasted when the sphere is located close to ( 0.25H = m)
 
and far from ( 5H = m) the 
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plane. The sphere surface is meshed using 10 947N =  
edges and 

G G C 3
0 1 0

40N N N= = =  in either scenario but C
1
N  increases from 340  to 240 160×  

in the latter case. Fig. 3.2.3 validates that the multiple-grid AIM acceleration produces 

visually identical RCS results with MOM; it also shows that Green-function modification 

approach produces practically identical results with brute-force imaging. Table 3.2.1 

summarizes their computational requirements. The table shows, just as in Section 2.2.5.1, 

that MG-AIM-GFM is the most efficient method, is insensitive to H , and can reduce all 

costs by at least a factor of 2. 

A comparison with the EH-PMCHWT solvers in Section 2.2 is in order (compare 

Tables 2.2.1 and 3.2.1). The MOM solution for CC-PMCHWT equations has double the 

matrix fill time and the same matrix solve time and memory for both imaging 

approaches. The multiple-grid AIM solver has double the matrix fill time, ~30% slower 

matrix solve time per iteration, and the same memory as the EH-PMCHWT one for both 

imaging approaches. The CC-PMCWHT solutions require one fifth number of iterations 

compared to the EH-PMCHWT ones. 

 
(a)                                 (b) 

Figure 3.2.3:  VV-polarized RCS in the x z−  plane for a dielectric sphere H  m 
above the PEC plane: (a) 0.25H = . (b) 5H = . The results are obtained 
using the CC-PMCHWT equations. 
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Table 3.2.1: Performance of CC-PMCHWT solvers for a dielectric sphere above a PEC 
plane 

Method Fill Time 
(s) 

Solve Time per 
Iteration (s) 

Number of 
Iterations Memory (GB) 

MOM-BFI 52 750 34.94 56 24.2 
MOM-GFM 25 876 17.39 51 12.0 

MG-AIM-BFI 0.25H =  3402 12.06 56 1.4 
5H =  3390 16.75 56 1.5 

MG-AIM-GFM 0.25H =  1720 6.51 61 0.72 
5H =  1697 6.51 51 0.72 

3.2.5. Summary 

This section presented and contrasted two imaging approaches for the CC-

PMCHWT based scattering analysis in the presence of a PEC/PMC plane. Numerical 

examples validated that modifying Green functions can achieve the same reduction as the 

EH-PMCHWT based solvers: It reduces the simulation time and memory requirement by 

a factor of (almost) 2 or larger compared to the brute force approach if the structure of 

interest is terminated on or resides above the plane, respectively.  
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3.3. MODELING METAMATERIAL REGIONS  

For homogeneous regions of metamaterials, just like the EH-PMCHWT 

formulation, the CC-PMCHWT formulation is also directly applicable provided that the 

wave impedance and propagation constant are chosen carefully. Conservation of energy 

and passivity are enforced explicitly as described in Section 3.2. For validation, the same 

1-m radius sphere composed of two hemispheres as in Section 2.3 is considered. Fig. 

3.3.1 compares the RCS for the 3-region structure to the analytical Mie series results. 

Excellent agreement is observed in all cases, validating the CC-PMCHWT extension for 

metamaterial regions. 

             
                   (a)                                      (b)   

        
                (c)                                 (d)   

Figure 3.3.1:  Validation for metamaterial regions for the CC-PMCHWT equations. VV-
polarized RCS in the x z−  plane at 150 MHz for a 1-m radius, three-
region sphere composed of two identical hemispheres with (a) DPS-DPS. 
(b) DNG-DNG. (c) ENG-ENG. (d) MNG-MNG configuration.  
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Next, the same scattering problems used to validate metamaterials in Section 2.3 

are solved using the CC-PMCHWT formulation. The formulation behaves similar to the 

EH-PMCHWT formulation, i.e., it does not suffer from a surface-plasmon resonance 

problem and will be ill posed for materials with constitutive parameters of 
0 0

{ , }ε μ− −  

because the diagonal entries from DPS and DNG regions will almost cancel during the 

combination step (Both CC- and EH-PMCHWT follow the same combination recipe). 

Note that the CC-PMCHWT solutions required 51 iterations for both the 
0 0

{ 3 , }ε μ− −  

and 
0 0

{ 1.5 , 1.5 }ε μ− −  spheres (Fig. 3.3.2(a) and 3.3.2(b)) while the EH-PMCHWT 

ones in Section 2.3 required 84 iterations for the former and 46 iterations for the latter. As 

mentioned in Section 3.1.5, the improvements in iterative solver convergence due to CC-

PMCHWT formulation are problem dependent. 

   
(a)                  (b)   

Figure 3.3.2:  Well-posedness of EH-PMCHWT solver for the DPS-DNG interface. VV-
polarized RCS in the x z−  plane at 300 MHz for a 1-m radius DNG 
sphere: (a) 

0 0
{ 3 , }ε μ− − . (b) 

0 0
{ 1.5 , 1.5 }ε μ− − . 
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3.4. MODELING PEC/PMC REGIONS AND MATERIAL-PEC/PMC JUNCTIONS  

    CC-PMCHWT-based solvers can very easily treat structures that include PEC/PMC 

regions and material-PEC/PMC junctions. When closed PEC/PMC regions are present, 

the following modifications are implemented: No (internal) equivalent problems are 

formulated for them; only 
k
J  or 

k
M  is defined on 

k
S . For a PEC (PMC) region, only 

J-CFIEs (M-CFIEs), which are the linear combination of T-EFIE
kl

 (T-MFIE
kl

) with 

N-MFIE
kl

 (N-EFIE
kl

), are enforced on 
k
S : 

J-CFIE 1 T-EFIE N-MFIE for PEC region

M-CFIE N-EFIE T-MFIE for PMC region
kl k kl kl

kl kl k kl

η
η

= +

= +     
 (2.4.14)     

The J-CFIEs (M-CFIEs) formulated for PEC (PMC) regions are concatenated with the 

CC-PMCHWT equations for the magnetodielectric regions [21, 36].  

 
J-CFIE  if  is a PEC region

M-CFIE if  is a PMC region

J-CFIE
else                       

M-CFIE

kl l

kl kl l
k l

kl

kl

R

Rβ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∑             (2.4.14)          

where ˆ ˆ
kl kl kl
p nβ = i . 

    The above combination of CFIEs for PEC/PMC regions and CC-PMCHWT 

equations for magnetodielectric ones is free of internal resonance problems [21]. 

Moreover, the concatenation requires no additional modifications because the presence of 

N-EFIE and N-MFIE has already been accounted for in the CC-PMCHWT formulation. 

Therefore, the CC-PMCHWT formulation is much more convenient for the treatment of 

composite structures that include PEC/PMC-material junctions. 

To validate the extension, the composite structure in Fig. 2.4.1(a), which is 

composed of dielectric regions, PEC regions, dielectric-PEC, and dielectric-dielectric 

junctions is analyzed from 400 MHz to 3.2 GHz. The composite structure is excited by an 
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x̂ -polarized plane wave propagating toward the ẑ  direction. The structure is meshed 

such that the average edge length is ~1/10th of the smallest wavelength in all regions 

which results in 128 788N =  (1 620  junction edges) and =8 287 904N  edges (

12 960  junction edges) at 400 MHz to 3.2 GHz, respectively. Fig. 3.4.1(a) shows that 

the CC-PMCHWT solver requires fewer iterations than the EH-PMCHWT one for all 

cases but the improvement is inferior compared to the results in Section 3.1.4.3. Fig. 

3.4.1(b) shows the agreement between the CC-PMCHWT and EH-PMCHWT results: the 

relative difference in the VV-polarized bistatic RCS using the error norm in (2.1.25) is 

less than 0.41% and 0.48% at 400 MHz and 3.2 GHz, respectively. Fig. 3.4.1(b) also 

shows that the RCS results agree with that obtained by a finite-element boundary-integral 

equation solver at 400 MHz [37]. Table 3.4.1 summarizes the computational 

requirements and shows that the proposed solver reduces the total simulation time by a 

factor of ~2.6 and increases the memory requirement less than 2% compared to the one in 

Section 2.4 at 3.2 GHz. 

   
(a) (b) 

Figure 3.4.1:  CC- vs. EH-PMCHWT solvers for the composite structure in [37] as the 
frequency is increased. (a) Number of iterations needed for convergence. 
(b) Bistatic RCS at the 0φ = ° plane at 400 MHz and 3.2 GHz. 
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Table 3.4.1: Computational requirements: CC- vs. EH-PMCHWT solvers for the 
composite structure as the frequency is increased. 

Solver EH-PMCHWT- 
MG-AIM 

CC-PMCHWT- 
MG-AIM 

Frequency 
(MHz) 400 3200 400 3200 

Fill Time 
(Hours) 4.2 184.1 6.2 219.1 

Solve Time per 
Iteration (Hours) 7.9 13785 1.5 5167 

Memory 
(GB) 6.5 395 6.6 395 
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Chapter IV Complex Scattering Applications 

This chapter presents extensive numerical results to demonstrate the capabilities 

of the methods developed in Chapters II and III. Both EH- and CC-PMCHWT equations 

are used and solved with the multiple-grid AIM accelerated MOM to solve scattering 

problems relevant to wave propagation in forests and metamaterial structures. 

4.1. WAVE PROPAGATION IN A MODEL FOREST 

In this section, wave propagation in a model forest is analyzed in the HF 

frequency band, specifically at 40 MHz. The following forest model is derived from 

measurements [1, 39] in the Bastrop State Park forest in Texas, US, where the dominant 

tree species is the loblolly pine (pinus taeda L.). Given the complexity of the forest 

propagation environment, which contains a variety of materials and geometrical features 

at multiple length scales (e.g., tree leaves, branches, and trunks), the fidelity of the 

computational model must be carefully evaluated. In the literature, trees are commonly 

modeled as homogeneous dielectric cylinders for propagation and scattering studies by 

homogenizing/simplifying the material/geometrical properties [40, 41]. More complex 

models might be needed, however, because (i) in many species of trees, dielectric 

properties of the trunk strongly depend on its water content and exhibit significant radial 

variation, e.g., the loblolly pine trunk consists of inner heartwood and outer sapwood 

layers whose average water contents (the ratio of the mass of the moisture of the wood 

over its dry weight) are 33% and 110%, respectively [42], and (ii) branches and foliage 

can have significant impact on the scattered fields, especially for horizontal polarization 

[43]. While more complex material and geometrical models for trees may yield more 

accurate results, the model fidelity must be balanced with the computational cost. In the 
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following, the multiple-grid AIM is used to quantify (i) the modeling errors and (ii) the 

computational requirements associated with different tree models. 

4.1.1. Effects of Material and Geometrical Models 

Three different dielectric models are evaluated for representing the Bastrop 

trunks, which were measured to be 20-m high and 0.3-m thick on average [1, 39]: A one-

layer heartwood, a one-layer sapwood, and a two-layer dielectric cylinder model (Fig. 

4.1.1). The thickness of the heartwood layer is a function of the tree age in general; for 

the Bastrop trees, the average heartwood thickness is 2/3 of the trunk diameter [44]. The 

heartwood and sapwood layers have ~33% and ~110% water content, respectively, and 

the wood density is 30.5 g/cm
 
in the oven-dry condition [42]. Based on these 

assumptions and using the tables in [45], the permittivity and conductivity at 40 MHz are 

set to 2
1 1 0

{ , } {50.59 ,3.005 10 S m}ε σ ε −= ×  for the sapwood and 
3

2 2 0
{ , } {13.84 ,6.397 10 S m}ε σ ε −= ×  for the heartwood layer; thus, the wavelengths 

in the two layers are 
1 0

0.14λ λ≈  and 
2 0

0.27λ λ≈ . All trunk geometries are meshed by 

dividing the circumference into 8 subsections and setting the average vertical edge length 

to ~1/10th of the wavelength in the sapwood region. Thus, 
0 1

4584N N N= = =  for 

the outer and inner region for the one-layer models and 
0

4584N = , 
1

9072N = , and 

2
4536N =  for the two layer model (of which 0 1

16j jN N= =  are junction edges at the 

top and bottom surfaces) for a total of 9088N =  edges. The AIM grid spacings are 

selected as 
0 0 0 0

{ , , } / {30, 30,52},x y z λΔ Δ Δ =  
1 1 1 0

{ , , } / {55,55,52},x y z λΔ Δ Δ =  

and 2 2 2 0
{ , , } / {37.5, 37.5,52}x y z λΔ Δ Δ = ; as a result, the one-layer models use 

C
0

6 6 144N = × ×  and C
1

9 9 144N = × × and the two-layer model uses 
C
0

6 6 144N = × × , C
1

9 9 144N = × × , and C
2

6 6 144N = × ×  auxiliary grid points.  
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                (a)                 (b)             (c)            (d) 

Figure 4.1.1:  One and two-layered trunk models and junctions. (a) The longitudinal 
cross section. (b) The transversal cross section. (c) Part of the mesh for the 
one-layer models. (d) Part of the mesh for the two-layer model. 

 
(a)                                    (b) 

Figure 4.1.2:  Bistatic RCS for the three trunk models in the x z−  plane at 40 MHz: 
(a) The VV polarization. (b) The HH polarization. 

Figure 4.1.2 compares the RCS patterns of the three models when they are excited 

by a normally incident plane wave. The VV patterns show significant differences (more 

than 10 dB difference in the backscattering direction) and the HH patterns appear to be 

less sensitive (less than 3 dB difference overall) to the trunk material. Indeed, using the 

two-layer model as the reference and measuring the RCS error over all angles as in (18), 

the VV- and HH-polarization errors { , }err errθθ φφ
 for the one-layer heartwood and 

sapwood models are {86.63%,17.99%}  and {53.47%,6.16%} , respectively.  
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Figure 4.1.3:  The two-layer trunk model with ten branches and part of its surface mesh. 

To study the impact of branches, five pairs of primary branches are attached to the 

two-layer trunk model. The ten branches are modeled as sapwood-filled dielectric 

cylinders based on the physical characteristics of loblolly pine [46]. As shown in Fig. 

4.1.3, these branches form five whorls, each of which has two symmetric branches. 

Neighbor whorls have 90°  circumferential offset. As a result, three pairs of branches are 

parallel to the x z−  plane and two pairs are parallel to the y z−  plane. Branch pairs 

1 5−  are at heights  16 , 16.5 , 17 , 17.5 , and 18.25  m (i.e., the bottoms of the 

branch-to-trunk connections are at these heights); have tilt angles θ  of 58° , 60° , 61° , 

62° , and 63° ; and have diameters of 5.0 , 5.5 , 4.6 , 3.8 , and 2.8  cm, respectively. 

Each branch’s length is set to 73.4  times its diameter based on the data in [46]. Thus, 

except for those in the first whorl, the higher the branch, the thinner, the shorter, and the 

more parallel to the ground it is. The structure is meshed by dividing the circumference of 

each trunk/branch cylinder into 8 subsections and setting the average edge length along 

the cylinders to ~1/10th of the wavelength in the sapwood region (smaller elements are 

used near the branch-trunk junctions) (Fig. 4.1.4). Thus, 
0

9900N = , 
1

14388N = , and 

2
4536N =  for a total of 14404N =  edges on the mesh. The AIM grid spacings are 

selected as before; as a result, C
0

36 36 144N = × ×  , C
1

56 54 144N = × × , and 
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C
2

6 6 144N = × × . Figure 4.1.4 plots the VV- and HH-polarized RCS patterns in the 

x y−  plane of the two-layer trunk model with and without the branches. It appears that 

the primary branches impact the HH pattern more significantly than the VV one: 

{ , } {0.52%, 44.88%}err errθθ φφ = . 

 

Figure 4.1.4:  Bistatic RCS (VV and HH) for the two branch models in the x y−  plane 
at 40 MHz. 

The above results show that the trunk materials and the branch geometries of the 

trees must be carefully modeled for analyzing propagation in a forest environment.  

4.1.2. Tree Array—Computational Requirements 

Next, the computational costs for different models are contrasted by analyzing 

radiation from a Hertzian dipole antenna inside an array of trees. Consider a uniform two-

dimensional array of 4 20×  trees on the x y−  plane with 7.8-m array spacing (Fig. 

4.1.5). Each tree is modeled as either a one-layer sapwood trunk, a two-layer trunk, or a 

two-layer trunk with ten branches and meshed as in the previous subsection, i.e., 

366720N = , 727040N = , and 1152320N = , respectively. Each model has 
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161K =  different regions and thus 161 different AIM grids are used. AIM grids 1 

through 160 are shifted versions of those in the previous subsection, whereas AIM grid 0 

(for the external-most region) has more grid points, i.e., C
0

108 640 144N = × × , 
C
0

108 640 144N = × × , and C
0

128 640 144N = × ×  for the three models. All arrays are 

excited by either a z - or an x -oriented 
0

0.1λ -long Hertzian dipole located at the center 

of the array at a height of 17.5z =  m and the magnitudes of the incident and scattered 

co-polarized electric fields are observed as a function of the distance along the y direction 

in the center of the array (Fig. 4.1.6).The propagation results are consistent with the 

scattering results from the previous subsection. On the one hand, the scattered fields are 

affected more significantly by the trunk material than the branch geometry for the vertical 

polarization: The scattered fields for the one-layer model are up to ~2 dB higher and 

adding the branches has no visible effect (Fig. 4.1.6(b)). On the other hand, the scattered 

fields are affected more significantly by the branch geometry than the trunk material for 

the horizontal polarization: While the scattered fields for the one-layer model have up to 

~5dB localized differences at the peak values with the two-layer model, adding branches 

causes ~10 dB change in the scattered fields (Fig. 4.1.6(c)). The computation costs of 

using each model is detailed in Table 4.1.1; the results show that from the lowest to 

highest fidelity tree model, the matrix fill time, matrix solve time per iteration, number of 

iterations, and memory requirement increase by factors of approximately 6, 6, 8, and 5, 

respectively. The results show that a one-layer trunk model with no branches should be 

an efficient and sufficiently accurate model for engineering analysis of vertically 

polarized wave propagation in loblolly pine forests, while a two-layer trunk model with 

branches might be necessary for analyzing horizontally polarized wave propagation.   
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Figure 4.1.5:  The 4 20×  tree array and the vertically or horizontally oriented impressed 
0
/ 10λ  long Hertzian-dipole source located in the middle of the array at a 

height of 17.5 m. 

Table 4.1.1: Computational requirements for the different tree models 

Tree model 
(4×20 array) Fill Time Solve Time  

per Iteration  
Number  

of Iterations Memory 

One-layer trunks 18544 s 1195 s 271 19.9 GB 
Two-layer trunks 55872 s 2063 s 642 44.5 GB 

Two-layer trunks+branches 117504 s 7232 s 2144 98.2 GB 
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(a) 

 
 (b)                                    

 
(c) 

Figure 4.1.6:  Magnitudes of co-polarized electric fields: (a) The incident electric field. 
(b) The z -directed electric field due to the z -directed antenna. (c) The 
x -directed electric field due to the x -directed antenna.  
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4.1.3. Tree Array—Comparison of Fast Solvers 

Finally, the computational costs of CC-PMCHWT and EH-PMCHWT based 

solvers are contrasted by analyzing radiation from a Hertzian dipole antenna inside an 

array of trees. Consider again the array of 4 20×  trees in Fig. 4.1.5. Each tree is 

modeled as a one-layer sapwood trunk with ten branches and meshed as in the previous 

subsection, i.e., 1 584 000N = . The AIM grids are identical to the ones in the previous 

subsection and the excitation is also the same. The magnitudes of the scattered electric 

fields found by both formulations are observed as a function of the distance along the y 

direction in the center of the array (Fig. 4.1.7). 

 

Figure 4.1.7:  Magnitudes of co-polarized electric fields: The z -directed electric field 
due to the z -directed antenna (VV) or the x -directed electric field due to 
the x -directed antenna (HH).  
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Table 4.1.2: Computational requirements: CC- vs. EH-PMCHWT solvers 

Solver Fill Time Solve Time 
per Iteration 

Number  
of Iterations Memory 

EH-MG-AIM  68232 s 2457 s 2151 62.3 GB 
CC-MG-AIM 146360 s 2922 s 461 67.9 GB 

The computational costs of each solver is detailed in Table 4.1.2; the results show 

that the CC-PMCHWT solver increases the matrix fill time, matrix solve time per 

iteration, and memory requirement by approximately 110%, 15%, and 9%, respectively, 

but reduces the number of iterations by a factor of 3.7, and eventually reduces the total 

simulation time (setup and solution costs) by a factor of 3.6. The results show that the 

CC-PMCHWT and EH-PMCHWT solvers yield practically the same field distribution 

along the central line for both VV- and HH-polarized propagation. 

4.1.4. Summary 

This section demonstrated the applicability of the multiple-grid AIM scheme to 

complex scattering problems by analyzing HF-band wave propagation in an 80-tree forest 

model. The forest simulations quantified the modeling errors and computational costs 

associated with low- and high-fidelity tree models and illustrated the trade-off between 

model fidelity and analysis cost for the method. Moreover, the computational costs and 

convergence performance of CC-PMCHWT and EH-PMCHWT solvers were contrasted 

and the better performance of the CC-PMCHWT solver was observed. The results show 

that the EH-PMCHWT formulation requires more iterations as the model fidelity 

increases and this can be ameliorated by adopting the CC-PMCHWT formulation with 

little extra computational costs. 
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4.2. TRANSMISSION LOSS IN DIELECTRIC-ROD ARRAY 

In this section, the multiple-grid AIM accelerated MOM solution of EH-

PMCHWT equations with the incorporation of a PEC plane is applied to investigate wave 

propagation in a finite array of dielectric rods on a PEC ground plane. The simulations 

are carried out in a broad frequency band, specifically from 0.3 GHz to 4.0 GHz, and 

compared to the experimental data. 

4.2.1. Experimental Setup 

 

Figure 4.2.1:  Experimental setup of the water straw array [39].  

The A scale model was built in [39] to experimentally investigate HF-band wave 

propagation in forests. The structure consists of a 6 36×  periodic array of plastic straws 

sealed at the bottom and filled with fresh water (Fig. 4.2.1). Each straw has a height of 

205 mm and a diameter of 7.6 mm; the period is 60 mm in both directions. A metal 

ground plane is used to model earth; transmitting and receiving monopoles are embedded 

into the array to collect the transmission-loss data along the central observation line. 

Three pairs of monopoles with heights 100 mm, 50 mm, and 20 mm are used to cover the 

frequency band (all have radii of 0.5 mm). At each frequency, the transmitter is fixed at 

the center observation line with a shift of 6 periods from the end of the array; the receiver 

is moved away from the transmitter along the center observation line by changing the 
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distance from 0.5 m to 1.5 m with a step of 0.025 m (41 observation positions). By 

varying the spacing between the transmitter and receiver and changing the operating 

frequency, the wideband transmission data 
21
S  are recorded using a vector network 

analyzer. The transmission loss is then quantified as a function of the distance between 

the transmitter and receiver and the operating frequency and normalized by 2
11

1 | |S−  

and 2
22

1 | |S−  to remove the mismatch effects of the transmitter and receiver, i.e., 

21

2 2
11 22

Transmission Loss 20 log
(1 | | )(1 | | )

S

S S
=

− −
            (4.2.1) 

4.2.2. Simulation Model and Comparison to Experiments 

In the following simulations, the metal ground plane is modeled as an infinite 

PEC plane using the Green function modification approach detailed in Section 3.2. The 

6 36×  periodic straws filled with fresh water are modeled as pure-water rods. Based on 

this assumption and using the tables in [45], the permittivity and conductivity of fresh 

water are linearly interpolated from 2
1 1 0

{ , } {77.5 ,2.069 10 S m}ε σ ε −= ×
 
at 0.3 GHz 

to 1 1 0
{ , } {73.6 ,4.083S m}ε σ ε=

 
at 4.0GHz in the frequency band of interest. For the 

entire band, 38 frequency samples are simulated and the results for the remaining 

frequencies are linearly interpolated from these data.  

For the low-frequency band (0.3-1.4 GHz), each rod cylinder circumference is 

divided into 8 subsections to resolve the circular cross section and the length is divided 

into 62 subsections meshed such that the average edge length is ~1/10th of the wavelength 

of 1.4 GHz in the rod; thus, the number of edges on each cylinder is the same (

1 1 0
... / ( 1) 1664

K
N N N K

−
= = = − = ) and 

1
( 1)N K N= − . The AIM grid spacings 

are optimized at 1.4 GHz and selected as 
0 0 0 0

{ , , } / {33, 38,50},x y z λΔ Δ Δ =  and 

1 1 1 0
{ , , } / {50,50,50}x y z λΔ Δ Δ = ; as a result, C

0
240 48 60N = × × for the external 

region and C C C
1 2 217

... 9 9 45N N N= = = = × ×  auxiliary grid points. 
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For the middle-frequency band (1.5-2.5 GHz), each rod cylinder circumference is 

divided into 8 subsections to resolve the circular cross section and the length is divided 

into 136 subsections meshed such that the average edge length is ~1/10th of the 

wavelength of 2.5 GHz in the rod; thus, the number of edges on each cylinder is the same 

(
1 1 0

... / ( 1) 3296
K

N N N K
−

= = = − = ) and 
1

( 1)N K N= − . The AIM grid 

spacings are optimized at 2.5 GHz and selected as 
0 0 0 0

{ , , } / {32,28, 40},x y z λΔ Δ Δ =  

and 
1 1 1 0

{ , , } / {50,50,40}x y z λΔ Δ Δ = ; as a result, C
0

480 64 90N = × ×  for the 

external region and C C C
1 2 217

... 9 9 63N N N= = = = × ×  auxiliary grid points. 

For the high-frequency band (2.6-4.0 GHz), each rod cylinder circumference is 

divided into 12 subsections to resolve the circular cross section and the length is divided 

into 270 subsections meshed such that the average edge length is ~1/10th of the 

wavelength of 4.0 GHz in the rod; thus, the number of edges on each cylinder is the same 

(
1 1 0

... / ( 1) 9840
K

N N N K
−

= = = − = ) and 
1

( 1)N K N= − . The AIM grid 

spacings are optimized at 4.0 GHz and selected as 
0 0 0 0

{ , , } / {16,14, 40},x y z λΔ Δ Δ =  

and 
1 1 1 0

{ , , } / {50,50,40}x y z λΔ Δ Δ = ; as a result, C
0

480 64 140N = × ×  for the 

external region and C C C
1 2 217

... 12 12 120N N N= = = = × ×  auxiliary grid points. 

The transmitter and receiver are PEC thin wire antennas on the ground plane; the 

transmitter is excited by a delta-gap source at the bottom; the receiver is loaded with a 

50 Ω
 
resistor at the bottom. For each frequency, the transmitter is fixed at the center 

observation line with a shift of 6 periods from the end of the array; the receiver is moving 

away from the transmitter along the center observation line by changing the distance 

from 0.5 m to 1.5 m with a step of 0.025 m (41 observation positions). Three pairs of 

antennas with heights of 100 mm, 50 mm, and 20 mm are used for the entire band, which 

are divided into segments to ensure the length of each segment is less than 1/10th of the 

wavelength in free space. The transmission loss of each observation position can be 
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evaluated as 2 2
22

10 log| | [| | (1 | | )]
r r t t
I R V I S− , where 

r
I , 

r
R , 

t
V , and 

t
I  represent 

the current on the receiver, the resistance load on the receiver, the voltage on the 

transmitter, and the current on the transmitter, respectively. 

 
(a) 

 
(b) 

Figure 4.2.2:  Transmission loss in the periodic dielectric-rods: (a) Measurement. (b) 
Simulation. 
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Figure 4.2.2 compares the transmission loss data found from measurements and 

simulations. The results shows good agreement, e.g., both results capture two stop-bands 

at 1.6-2.3 GHz and 3.0-3.7 GHz and a narrow pass-band at 2.0 GHz. 

4.2.3. Computational Requirements 

The computational costs of the EH-PMCHWT multiple-grid AIM scheme for 

different frequency bands are contrasted and detailed for three sample simulations in 

Table 4.2.1; the results show that from the low to high frequency, the matrix fill time, 

matrix solve time per iteration, and memory requirement linearly scale with the number 

of unknowns.   

Table 4.2.1: Computational requirements for the different frequency bands 

Frequency band Fill Time Solve Time  
per Iteration  

Number  
of Iterations Memory 

0.3-1.4 GHz 31 488 s  309.6 s 1251 24.9 GB 
1.5-2.5 GHz 50 304 s  757.4 s 1741 53.7 GB 
2.6-4.0 GHz 222 048 s 1719.4 s 3451 111 GB 

4.2.4. Summary 

This section demonstrated the applicability of the EH-PMCHWT multiple-grid 

AIM scheme to complex scattering problems by analyzing wave propagation in a 6 36×  

periodic water straw array and correlating the results with independent measurements. 

The simulations showed good agreement with measurements and accurately predicted the 

pass/stop-band behavior. Moroever, the computational costs associated with simulations 

at different frequency bands were quantified.  
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4.3. WAVE PROPAGATION IN NATURAL FOREST 

In this section, the multiple-grid AIM accelerated MOM solution of EH-

PMCHWT equations with the incorporation of a PEC plane is applied to investigate wave 

propagation in natural forested environment with randomly distributed trees at HF/VHF 

band, specifically from 20 MHz to 45 MHz, and compared to experimental data. 

 
(a) 

 
 

(b) 

Figure 4.3.1:  (a) Photo of the measurement site. (b) Tree distribution at the measurement 
site and the simulation setup. 

The measurement was conducted in a loblolly-pine dominated forest in Bastrop 

State Park. The trees were in full foliage. Fig. 4.3.1 shows a photo of the trees and the 
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positions of the trees that were recorded using a GPS receiver. The diameters of the trees 

were measured at the collection site and the heights of the trees were estimated using a 

clinometer. The average tree height, trunk diameter, and spacing were found to be 

approximately 20 m, 0.3 m, and 4.5 m, respectively. 

The forest transmission-loss measurement setup was similar to the laboratory 

measurements in [39]: Identical vertical monopoles connected to a vector network 

analyzer (VNA) were used to transmit and receive power. A power amplifier was 

cascaded between the VNA and the transmitting antenna to amplify the transmit power. 

Three different antenna sets were employed to cover the 20-100 MHz frequency band 

and 
21
S  (not time averaged) was recorded across the frequency band as the distance 

between the receiving and transmitting antennas was varied from 30 m to 60 m in steps of 

1.5 m. The frequency step was 0.11875 MHz. For comparison and calibration, a similar 

measurement using the same setup was conducted in an open field at the University of 

Texas Pickle Research Center. When compared with the measurements conducted in an 

open field, a clear resonant behavior was observed in the forest data from 33 MHz to 42 

MHz. In this band, the propagation constant of the dominant propagation mode could be 

smaller than that of free space and the attenuation was higher than in neighboring 

frequencies. 

4.3.1. Material and Geometrical Modeling   

The phenomena observed in the measurements were investigated by conducting 

full-wave simulations. In the simulations, the measurement setup was modeled as 

follows. Trees were modeled as identical homogenous dielectric cylinders above a 

perfectly conducting ground plane; the cylinder thickness and height were set to the 

average measured values for the trunks; and the cylinders represented by the red stars 
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were positioned at the measured tree locations shown by the blue circles in Fig. 4.3.1 (b). 

As shown in Section 4.1.2 and [23], vertically polarized fields propagating through a 

forest of loblolly pine trees can be calculated sufficiently accurately with such a simple 

model at the HF/VHF frequency band, e.g., branches have little effect on the vertically 

polarized fields. The model forest was excited by impressed 
0

0.1λ monopoles located at 

{ , } {-25.0, -10.7}x y =  m in Fig. 4.3.1(b), where 
0

λ  denotes the wavelength in free 

space at the frequency of interest; the operating frequency was varied from 20 to 45 MHz 

using 1-MHz frequency steps (i.e., 26 different antennas were used); and the vertical 

electric fields were recorded along the path indicated by the black dash line in Fig. 

4.3.1(b). Note that only 66 of the trees closest to the path were modeled because of the 

high computational demands of the full-wave simulation. The water content (the ratio of 

the mass of the moisture of the wood over its dry weight) and the wood density of 

loblolly pine is ~100% and 0.5g/cm3, respectively. Using this information, the dielectric 

parameters of trees were interpolated from the data in [45] in the frequency band of 

interest: The relative permittivity linearly decreased from 54.3 to 48.3 and the 

conductivity linearly increased from 0.0258 to 0.0541 S/m as frequency increased from 

20 to 45 MHz. 

To minimize the computational demands, the frequency band of interest was 

divided into three sub-bands (20-30, 31-40, and 41-45 MHz) and three different 

triangular meshes were used to cover them; each mesh divided the cylinder 

circumference into 8 subsections and set the average vertical edge length to ~1/10th of 

the wavelength inside the dielectric cylinder at the highest frequency in the sub-band. 

These meshes resulted in 953 568 , 1 226 016 , and 1 492 128  degrees of freedom for 

the model forest. The spacings of the auxiliary Cartesian grids used for accelerating the 
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calculations in each region [23] were also chosen as ~1/10th of the wavelength in that 

region at the highest frequency of interest in the sub-band. 

 
 

(a) 

 
 

(b) 

Figure 4.3.2:  The transmission loss of (a) free space and (b) a simplified model of the 
forest. 
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Figure 4.3.3:  The averaged transmission loss difference in the resonance frequency: 
measurement vs. simulation. 

Figs. 4.3.2(a) and (b) show the simulated transmission loss of the free space and 

the model forest, respectively. They confirm that the waves experience much higher loss 

in the forest. Next, the averaged transmission loss 21
SΔ  for each frequency is then 

quantified as ( ) ( )21 21
1

, /
N

i

S f S f i N
=

Δ = Δ∑ , where N  represents the number of 

observation points. 21
SΔ  is computed in the 20-45 MHz frequency band and the results 

are plotted in Fig. 4.3.3. It is shown that the simulation is consistent with measurement. 

The simulated 21
SΔ  is greater than 15 dB in the 28-43 MHz range. It should be pointed 

out that while the full-wave simulations capture the qualitative behavior in the 

measurement, detailed quantitative differences exist between the two because of the 

simplifications made in modeling the forest, e.g., the limited number of modeled trees, 

the use of identical trees, simplifications in geometry/material parameters, as well as the 

deterministic (single) simulation of the quasi-random propagation environment. 

When compared with the measurement, a clear resonant behavior was observed 

from 33 to 42 MHz. In this band, the propagation constant of the dominant propagation 
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mode could be smaller than that of free space and the attenuation was higher than in 

neighboring frequencies. Interestingly, the average tree spacing (4.5 m) was close to half-

wavelength around 33 MHz, which offers a possible explanation of the observed 

resonance. 

4.3.2. Summary 

This section demonstrated the applicability of the EH-PMCHWT multiple-grid 

AIM scheme to complex scattering problems by analyzing wave propagation in a natural 

forest. The simulation results captured the resonance behavior of the transmission loss, 

which could be directly correlated to the permittivity-less-than-one behavior observed in 

natural forest.   
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4.4. METAMATERIAL HOMOGENIZATION PROBLEM 

In this section, the multiple-grid AIM accelerated MOM solution of CC-

PMCHWT equations is applied to investigate metamaterial homogenization problem. 

Metamaterials represent artificial composite structures based on specific subwavelength 

unit cells with appropriate placements for realizing exotic material properties not found in 

nature. Recently, metamaterials have been applied to electromagnetic and optical devices, 

such as antenna [47] and lens [48], to achieve breakthrough performances that 

conventional materials cannot reach. These exotic properties are achieved though 

sophisticated interaction and coupling effects between the tailored unit cells and are also 

usually dependent on external excitations. To take advantage of exotic properties of 

metamaterials, their effective response and equivalent bulk parameters must be accurately 

evaluated. The homogenization theory, developed in [49] and [50], can be applied to 

estimate the bulk effective material parameters of aggregated magnetodielectric particle 

arrays and similar near- and far-field distributions can be expected from such aggregated 

and homogenized metamaterials.  

    
           (a)                                     (b) 

Figure 4.4.1:  The electric field distribution of (a) aggregated metamaterial, (b) 
homogenized metamaterial for a short disk in the double-positive material 
regime. 
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Consider a two-layer cylindrical aggregated metamaterial composed of 1696 

magnetodielectric spheres (each layer has 848 spheres; the radius has 12 unit cells with 

an array period 25 mmd = ), where each sphere has a radius of 11.25 mma = , 

permittivity of 
1 1696 0

... 13.8ε ε ε= = =  and permeability of 
1 1696 0

... 11.0μ μ μ= = = .  

The homogenized structure is a disk centered at the origin and is of radius 0.25 m and 

height 0.0475 m. Both structures are excited by a 1.0 GHz ẑ -polarized plane wave 

propagating toward x̂  direction. The equivalent bulk parameters of the homogenized 

metamaterial disk are 
1 0

2.752ε ε=  and 
1 0

2.752μ μ=  at this frequency [51]. Both the 

small spheres and equivalent disk are meshed by setting the average edge length to be ~

1 10  of the minimum wavelength, which require 1 404 288N =  and 10 800N =  
edges, respectively. For the aggregated metamaterial, there are 1697K =  different 

regions; AIM grid 0 (for the external-most region) has C
0

320 320 30N = × ×  gird 

points and the remaining AIM grids are of identical size (but at different locations) with 
C C
1 1697

... 18 18 18N N= = × × . For the homogenized metamaterial, the disk has 2K =  

different regions and identical AIM grids with C C
0 1

40 40 10N N= = × × .  

Figs. 4.4.1 (a)-(b) show the near-field distributions on the center transversal 

planes of the aggregated metamaterial and the homogenized metamaterial disk, 

respectively. The comparison demonstrates good agreement of field variations outside the 

metamaterial region; significant local differences exist inside the material region, but this 

is to be expected as the homogenization smooths out the small geometry features and 

field variations. The results validate the homogenization theory of [51] in the double-

positive material regime. 

Next, consider 3-D cubic aggregated metamaterials composed of the same 

magnetodielectric spheres as above (the same period, radius, and material parameters). 

The metamaterial arrays are of size 4 4 4× × , 6 6 6× × , and 10 10 10× ×  (shown in 
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Fig. 4.4.2). Both aggregated and homogenized models are excited by a 1.454 GHz x̂ -

polarized plane wave propagating toward ẑ− . The equivalent bulky parameters of the 

homogenized metamaterial cube are 
1 0

0.9936ε ε= −  and 
1 0

0.6063μ μ= −  at this 

frequency. Both the spheres and equivalent cube are meshed by setting the average edge 

length to be ~1 10  of the minimal wavelength. Thus, the 4 4 4× × , 6 6 6× × , and 

10 10 10× ×  aggregated spheres are meshed using 105 984N = , 357 696N = , and 

1 656 000N =  edges, respectively; the corresponding homogenized cubes require only 

2 592N = , 5 832N = , and 16 200N =  edges, respectively. For the three 

aggregated metamaterials, the spheres have 65K = , 217K = , and 1001K = , 

different regions and thus 65, 217, and 1001 different AIM grids are used. AIM grid 0 

(for the external-most region) has C
0

72 72 72N = × × , C
0

96 96 96N = × × , or 
C
0

160 160 160N = × ×  points for the 4 4 4× × , 6 6 6× × , and 10 10 10× ×  case, 

respectively, and C C
1

... 20 20 20
K

N N= = × ×  for all cases. For the homogenized 

metamaterial, the cube has 2 different regions and identical AIM grids, i.e., 

= = × ×C C
0 1

16 16 16N N , C C
0 1

20 20 20N N= = × × , and C C
0 1

32 32 32N N= = × ×  

for all regions.  

Figs. 4.4.3-4.4.5 demonstrates the near-field distributions on the center transversal 

planes on x y− , x z−  and y z−  planes and RCS patterns on x z−  and y z−  

planes. The comparison demonstrates that although better agreement is achieved when 

more spheres are aggregated, homogenization gives satisfactory results even for a small 

collection of spheres. The good agreement of field variations both inside and near the 

aggregated metamaterial as well as the far-field patterns validates the homogenization 

theory in the double-negative material regime. 
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                     (a)                                     (b) 

Figure 4.4.2:  Configuration of the aggregated and homogenized metamaterials. (a) The 
10 10 10× ×  aggregated spheres. (b) The homogenized metamaterial cube. 

 

      
                     (a)                              (b) 

Figure 4.4.3:  The field distributions for the 4 4 4× ×  aggregated metamaterial and the 
corresponding homogenized metamaterial cube in the double-negative 
material regime. Total electric field distribution of the (a) aggregated and 
(b) homogenized metamaterial in the x y−  plane. Total magnetic field 
distribution of the (c) aggregated and (d) homogenized metamaterial in the 
x z−  plane. Total electric field distribution of the (e) aggregated and (f) 
homogenized metamaterial in the y z−  plane. The VV- and VH- RCS 
patterns for the aggregated and homogenized metamaterials in the (g) 
x z−  and (h) y z−  planes. 
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                     (c)                              (d) 

 

      
                     (e)                              (f) 
 

                  
                     (g)                               (h) 

Figure 4.4.3:  Continued. 
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                     (a)                              (b) 

 

      
                     (c)                              (d) 

 

      
                     (e)                              (f) 

Figure 4.4.4:  The field distributions for the 6 6 6× ×  aggregated metamaterial and the 
corresponding homogenized metamaterial cube in the double-negative 
material regime. Total electric field distribution of the (a) aggregated and 
(b) homogenized metamaterial in the x y−  plane. Total magnetic field 
distribution of the (c) aggregated and (d) homogenized metamaterial in the 
x z−  plane. Total electric field distribution of the (e) aggregated and (f) 
homogenized metamaterial in the y z−  plane. The VV- and VH- RCS 
patterns for the aggregated and homogenized metamaterials in the (g) 
x z−  and (h) y z−  planes. 
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                     (g)                               (h)     

Figure 4.4.4:  Continued. 
 
 
 

      
                     (a)                              (b) 

Figure 4.4.5:  The field distributions for the 10 10 10× ×  aggregated metamaterial and 
the corresponding homogenized metamaterial cube in the double-negative 
material regime. Total electric field distribution of the (a) aggregated and 
(b) homogenized metamaterial in the x y−  plane. Total magnetic field 
distribution of the (c) aggregated and (d) homogenized metamaterial in the 
x z−  plane. Total electric field distribution of the (e) aggregated and (f) 
homogenized metamaterial in the y z−  plane. The VV- and VH- RCS 
patterns for the aggregated and homogenized metamaterials in the (g) 
x z−  and (h) y z−  planes. 
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                     (c)                              (d) 

      
                     (e)                              (f) 

                  
                     (g)                              (h) 

Figure 4.4.5:  Continued. 

4.4.1. Computational Requirements 

Next, the computational costs for simulating aggregated and homogenized 

metamaterials with various sizes are contrasted and detailed in Tables 4.4.1; the results 

show that obviously the homogenized metamaterials are much cheaper to analyze. Fig. 

4.4.6 plots the matrix fill, solve time per iteration, and the memory cost as a function with 

respect to the problem size for the 6 metamaterial homogenization simulations. Fig. 
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4.4.6(a) shows that the matrix fill time scales as ( )O N ; Fig. 4.4.6(b) shows that the solve 

time per iteration scales as ( log )O N N  and Fig. 4.4.6(c) shows that the memory cost 

scales as ( )O N . 

Table 4.4.1: Computational requirements for the disk metamaterials 

Configuration Fill Time Solve Time 
per Iteration 

Number  
of Iterations Memory 

Aggregated 409 920 s 12 250 s 251 74.4 GB 
Homogenized   3 260 s   5.56 s 1211 0.99 GB 

Table 4.4.2: Computational requirements for various cubic metamaterials  

Configuration Fill Time Solve Time 
per Iteration 

Number  
of Iterations Memory 

34  
Aggregated 14 880 s  268.2 s 606 4.61 GB 
Homogenize

d
   404 s   0.76 s 206 0.13 GB 

36  
Aggregated 73 728 s  779.2 s 586 15.2 GB 
Homogenize

d
   832 s  3.04 s 216 0.26 GB 

310
 

Aggregated 240 832 s     9491.2 s 866 67.7 GB 
Homogenize

d
  2 144 s 20.58 s 286 0.66 GB 
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(a)                                (b) 

 
(c) 

Figure 4.4.6:  Computational costs for metamaterial homogenization simulations. (a) 
Matrix fill time. (b) Solve time per iteration. (c) Memory. The straight line 
is parallel to ( log )O N N  in (b); while that is parallel to ( )O N  in (a) and 
(c). 

4.4.2. Summary 

This section demonstrated the applicability of the multiple-grid AIM scheme to 

complex scattering problems by analyzing wave scattering of large-scale aggregated 

spheres and the homogenized metamaterials. The results validated and quantified the 

accuracy of the homogenization theory for finite 3-D structures.  
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4.5. METAMATERIAL CLOAKING PROBLEM 

In this section, the multiple-grid AIM accelerated MOM solution of CC-

PMCTHWT equations is applied to a metamaterial cloaking problem. Recently, 

theoretical investigations [52-54] have highlighted that the scattering cancellation 

mechanism can be effectively used to design lossless plasmonic or metamaterial covers, 

which can reduce the RCS for spherical and cylindrical objects. One of the unique 

properties is that the reduction of RCS is insensitive to the possible losses or other 

imperfections in structures. This capability provides numerous potential applications, e.g, 

the design of low-observable targets. More recently, this approach was extended to cloak 

multiple objects placed in close proximity of each other, or even joined together [54], 

which provides a possible approach to make collections of objects transparent even when 

the total physical size of the system is larger than the wavelength. 

        

Figure 4.5.1:  Configuration of the aggregated 10 10 10× ×  PEC spheres. Each sphere 
is coated with a thin layer of a metamaterial cloak. 

Consider a three-dimensional array of PEC spheres, each of which is coated with 

a metamaterial cloak, as shown in Fig. 4.5.1. The PEC has a radius of 
0

0.2λ ; the coating 

region has a radius of 
0

0.218λ ; the period of spheres is 
0

0.5λ ; the metamaterial cloaks 

have permittivity of 
0

(0.1 0.015)j ε−  and permeability of 
0

5.1μ . The aggregation sizes 

increases from 4 4 4× × , 8 8 8× × , to 10 10 10× × . These coated spheres are excited 
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by a 120 MHz x̂ -polarized plane wave propagating toward ẑ− . Both the PEC spheres 

and metamaterial cloaking surfaces are meshed by setting the average edge length to be ~

1 10  of the minimal wavelength. Thus, the 4 4 4× × , 8 8 8× × , and 10 10 10× ×  

aggregated PEC spheres with metamaterial cloaking regions are meshed using 

69 888N = , 559 104N = , and 1 092 000N =  edges, respectively; the 

corresponding aggregated PEC spheres without metamaterial cloaking regions require 

only half of them, respectively. For the aggregated spheres with cloaking regions, the 

spheres have 129K = , 1025K = , and 2001K = , different regions and thus 65, 217, 

and 1001 different AIM grids are used. AIM grid 0 (for the external-most region) has 
C
0

60 60 60N = × × , C
0

120 120 120N = × × , or C
0

150 150 150N = × ×  points for the 

4 4 4× × , 8 8 8× × , and 10 10 10× ×  case, respectively, and the rest regions are 

executing standard MOM calculations for all cases. For the aggregated spheres without 

cloaking regions, the spheres have only 1K =  region and thus 1 AIM grid is used. 

AIM grid 0 (for the external-most region) has C
0

60 60 60N = × × , 
C
0

120 120 120N = × × , or C
0

150 150 150N = × ×  points for the 4 4 4× × , 8 8 8× × , 

and 10 10 10× ×  case, respectively. 

Fig. 4.5.2-4.5.4 demonstrates the near-field distributions on the center transversal 

planes and RCS patterns on x z−  and y z−  planes of the 4 4 4× × , 8 8 8× × , and 

10 10 10× ×  aggregated PEC spheres. The comparison demonstrates the metamaterial 

cloaking greatly weakens near-field interactions and highlights the significant reduction 

in RCS: The total RCS of 4 4 4× × , 8 8 8× × , and 10 10 10× ×  PEC spheres are 

11.09 dB, 18.63 dB, and 20.69 dB; whereas the total RCS for the corresponding coated 

PEC spheres are -0.89 dB, 7.70 dB, and 10.18 dB; the metamaterial cloaking achieves a 

reduction of total RCS by 93.7%, 91.92%, and 91.09%, respectively. These numerical 

results validate that the scattering cancellation mechanism can be effectively extended to 
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cloak multiple objects even when the total physical size of the system is larger than 

multiple wavelengths (the physical size of the 10 10 10× ×  array is more than 5 

wavelengths). 

 

      
                 (a)                                      (b) 
 

                    
                 (c)                                      (d)    

Figure 4.5.2:  The field distributions for the 4 4 4× ×  aggregated PEC spheres without 
and with metamaterial cloaking. Total electric field distribution of the (a) 
PEC spheres and (b) PEC spheres with metamaterial cloaking in the x z−  
plane. The VV- and VH- RCS patterns for the PEC spheres without and 
with metamaterial cloaking in the (c) x z−  and (d) y z−  planes. 
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                 (a)                                      (b) 
 

                    
                 (c)                                      (d)    

Figure 4.5.3:  The field distributions for the 8 8 8× ×  aggregated PEC spheres without 
and with metamaterial cloaking. Total electric field distribution of the (a) 
PEC spheres and (b) PEC spheres with metamaterial cloaking in the x z−  
plane. The VV- and VH- RCS patterns for the PEC spheres without and 
with metamaterial cloaking in the (c) x z−  and (d) y z−  planes. 
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                 (a)                                      (b) 
   

                    
                 (c)                                      (d)    

Figure 4.5.4:  The field distributions for the 10 10 10× ×  aggregated PEC spheres 
without and with metamaterial cloaking. Total electric field distribution of 
the (a) PEC spheres and (b) PEC spheres with metamaterial cloaking in the 
x z−  plane. The VV- and VH- RCS patterns for the PEC spheres without 
and with metamaterial cloaking in the (c) x z−  and (d) y z−  planes. 

4.5.1. Computational Requirements 

The computational costs for simulating PEC spheres with or without cloaking are 

contrasted and detailed in Table 4.5.1; the results show that the cloaking regions increase 

the problem sizes; therefore, increases all costs, i.e. the matrix fill time, matrix solve time 

per iteration, number of iterations, and memory requirement. Fig. 4.5.5 plots the matrix 

fill, solve time per iteration, and the memory cost as a function with respect to the 
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matrix fill time scales as ( )O N ; Fig. 4.5.5(b) shows that the solve time per iteration 

scales as ( log )O N N , and Fig. 4.5.5(c) shows that the memory cost scales as ( )O N  for 

all simulations, and adding the cloaking regions almost double the memory cost. 

Table 4.5.1: Computational requirements for the various PEC spheres 

Configuration Fill Time
Solve Time 

per 
Iteration 

Number  
of 

Iterations 
Memory 

34  
Without cloaking 1 368 s  6.4 s 21 0.92 GB 

With cloaking 9 136 s  22.8 s 81 3.19 GB 

38  
Without cloaking 13 080 s 710 s 106 5.76 GB 

With cloaking 72 740 s 2 260 s 141 24.9 GB 

310  
Without cloaking  21 384 s 1 242 s 151 12.9 GB 

With cloaking 142 740 s    4 417 s 181 51.5 GB 
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(a)                              (b) 

 
(c) 

Figure 4.5.5:  Computational costs for metamaterial cloaking simulations as the number 
of spheres is increased from 64 to 1000. (a) Matrix fill time. (b) Solve time 
per iteration. (c) Memory. The straight line is parallel to ( log )O N N  in 
(b); while that is parallel to ( )O N  in (a) and (c). 

4.5.2. Summary 

This section demonstrated the applicability of the multiple-grid AIM scheme to 

complex scattering problems by analyzing wave scattering from PEC spheres with 

metamaterial cloaks. The simulation results highlight the potential of metamaterial cloaks 

for reducing scattering from a collection of thousands of small objects whose total 

physical size are multiple wavelengths. 
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Chapter V Conclusions 

This dissertation presented a fast electromagnetic solver for the analysis of 

scattering from general large-scale composite structures. The solver’s efficiency is 

derived from the multiple-grid AIM scheme for accelerating the iterative MOM solution 

and the better-conditioned combined-field type surface integral equations. The proposed 

solver was first presented in detail for piecewise homogeneous structures composed of 

magnetodielectric regions. It was then extended to account for several other structures 

that are encountered in practical scenarios; extensions were presented for PEC/PMC 

regions, an infinite PEC/PMC plane, metamaterial regions, and material-PEC junctions. 

The multiple-grid AIM employs multiple auxiliary grids that have different locations, 

grid spacings, and associated projection, propagation, and interpolation operators that can 

be independently optimized for computations relevant to each piecewise homogeneous 

region. The better conditioned CC-PMCHWT equations generally double the matrix fill 

time, slightly increase the matrix solve time and memory requirement, but yield faster 

convergence than EH-PMCHWT ones. A variety of complex applications––including 

wave propagation in natural forested environments, design of metamaterials, and 

application of metamaterials to radar cross section reduction––were presented to validate 

the proposed solver’s accuracy and efficiency and to demonstrate its generality, 

practicality, and usefulness for complex electromagnetic engineering problems. 

The multiple-grid AIM scheme is most effective for piecewise homogeneous 

structures composed of regions with small changes in their constitutive parameters, i.e., 

low-contrast problems. The method is less effective, however, for high-contrast problems 

that have large variations in mesh density and edge lengths on the surfaces bounding the 

piecewise homogeneous regions. This is a limitation of the AIM directly stemming from 
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its reliance on a single uniform grid in each region. Two- and multi-scale extensions of 

the algorithm that are in development can potentially overcome this limitation by 

introducing multiple (multi-scale) grids in each region [55]. 

As demonstrated in this thesis, the improvement from CC-PMCHWT equations, 

while significant, is problem dependent. Moreover, the accuracy of CC-PMCHWT-based 

solvers might be degraded by the high-order singularity present in the Green functions of 

the rotated integral equations. This inaccuracy problem of the CC-PMCHWT equations 

can be significant for piecewise homogeneous structures with recursive regions, e.g., 

layered spheres, as the interactions between the disjoint surfaces of two neighboring 

layers are strong. One way to potentially overcome this limitation is to introduce curl-

conforming testing functions for the rotated integral equations so that the high-order 

singularity can be eliminated by moving the curl-operation onto the testing functions [56, 

57]. In the mean time, the practical implementation of methods for solving these 

equations should keep the option of reverting back to EH-PMCHWT equations for 

validation and comparison. Fortunately, this is rather easily accomplished as the CC-

PMCHWT equations can be easily reduced to the EH-PMCHWT ones. 
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