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Meditation training has been shown to improve attention and emotion regulation. However,

the mechanisms responsible for these effects are largely unknown. In order to make further

progress, a rigorous interdisciplinary approach that combines both empirical and theoretical

experiments is required.

This dissertation uses such an approach to analyze electroencephalogram (EEG)

data collected during two three-month long intensive meditation retreats in four steps. First,

novel tools were developed for preprocessing the EEG data. These tools helped remove

ocular artifacts, muscular artifacts, and interference from power lines in a semi-automatic

fashion.

Second, in order to identify the cortical correlates of meditation, longitudinal changes

in the cortical activity were measured using spectral analysis. Three main longitudinal

changes were observed in the retreat participants: (1) reduced individual alpha frequency

after training, similar reduction has been consistently found in experienced meditators; (2)

reduced alpha-band power in the midline frontal region, which correlated with improved

vigilance performance; and (3) reduced beta-band power in the parietal-occipital regions,

vii



which correlated with daily time spent in meditation and enhanced self-reported psycho-

logical well-being.

Third, a formal computational model was developed to provide a concrete and

testable theory about the underlying mechanisms. Four theoretical experiments were run,

which showed, (1) reduced intrathalamic gain after training, suggesting enhanced alertness;

(2) increased cortico-thalamic delay, which strongly correlated with the reduction in indi-

vidual alpha frequency (found during spectral analysis); (3) reduction in intrathalamic gain

provided increased stability to the brain; and (4) anterior-posterior division in the modeled

reticular nucleus of the thalamus (TRN) layer and increased connectivity in the posterior

region of TRN after training.

Fourth, correlation analysis was performed to ground the changes in cortical activity

and model parameters into changes in behavior and self-reported psychological functions.

Through these four steps, a concrete theory of the mechanisms underlying focused-

attention meditation was constructed. This theory provides both mechanistic and teleolog-

ical reasoning behind the changes observed during meditation training. The theory further

leads to several predictions, including the possibility that customized meditation techniques

can be used to treat patients suffering from neurodevelopmental disorders and epilepsy.

Lastly, the dissertation attempts to link the theory to the long-held views that meditation

improves awareness, attention, stability, and psychological well-being.
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Chapter 1

Introduction

Imagine being asked to “think of nothing” for two minutes, or yet more difficult, imag-

ine being asked “not to think of a pink elephant” for two minutes. Both of these tasks

might appear simple at first, but they are actually dauntingly difficult. Cognitive control of

thought, attention, and emotion is a challenging problem. It is, however, an important one.

Understanding the neural dynamics of such control can provide insight into the cognitive

system as a whole. Further, studies on several neurodevelopmental disorders (e.g., ADHD

(Vaidya et al., 2005), autism (Dichter and Belger, 2007), and schizophrenia (Lesh et al.,

2010)) suggest that alterations to the networks underlying cognitive control contribute to

the behavioral symptoms.

Broadly speaking, cognitive (or executive) control refers to the ability to process

task-related information despite distractions (O’Reilly et al., 2010). For example, when

reading a lengthy technical article, one has to exercise cognitive control to keep processing

the information in the article while keeping the distractions, such as time pressure, anxiety,

environmental noise, boredom, etc., at bay. More demanding examples include situations

where an operator of a nuclear power plant (or a pilot of an airplane) must attend and

respond to continuous regular stimuli while concurrently looking for warnings or threats,

and take appropriate action when such threats arise. Thus, in order to perform both day-to-
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day activities and complex tasks, cognitive control is essential.

Starting from the color-naming task (Stroop, 1935), remarkable progress has been

made in understanding cognitive control by breaking it into components and analyzing

them separately (Posner, 2004; Verbruggen and Logan, 2008; Posner and Cohen, 1984;

Posner and Petersen, 1990; Posner and Fan, 2005; Robertson et al., 1997). Typically such

components include response inhibition, attentional bias, performance/conflict monitoring,

response priming, task shifting/setting, working memory maintenance and update, and su-

pervising through attention (Cooper, 2010). However, the following issues need to be ad-

dressed to push this research forward: (1) How do these individual components emerge or

recess during a task, and more importantly, how do they interact and influence each other?;

(2) How can such control abilities be improved in healthy populations, and more crucially,

how can they be recovered in patient populations?; and (3) How can cognitive control the-

ories formulated in limited lab settings be applied to real-world situations?

One potentially powerful way to approach these issues is to study meditation. Med-

itation involves regulation of thought, attention, and emotion (Cahn and Polich, 2006;

Slagter et al., 2011). Typically, such regulation is made possible by focusing one’s at-

tention on an object or a phenomenon. Repeated practice of focusing attention on a chosen

object has been shown to improve cognitive control components, for example, to improve

inhibition of undesired responses (Sahdra et al., 2011), enrich perceptual discrimination

(MacLean et al., 2010), enhance sustained attention (MacLean et al., 2010), increase at-

tentional stability (Lutz et al., 2009; MacLean et al., 2010), improve handling of brain

resources (Slagter et al., 2007), and so on. Further, sustained attention during meditation

involves interaction among several control components (such as response inhibition, per-

formance monitoring, task setting, and a supervising attentional system; Lutz et al. (2006)).

Thus, understanding the mechanisms underlying meditation can dramatically further our

knowledge of cognitive control, since it (1) involves interaction among several control

functions, (2) alters high-level cognitive processes for enhanced cognitive control, and (3)
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provides not just state but also trait changes in behavior (Cahn and Polich, 2006).

How does meditation affect the brain? In the last 55 years or so, this question has

been asked several hundred times (Cahn and Polich, 2006). Various neuroimaging modal-

ities have been used to answer it, ranging from EEG (e.g., Cahn and Polich, 2006; Anand

et al., 1961; Wallace, 1970; Banquet, 1973; Lutz et al., 2004; Aftanas and Golosheikin,

2003; Cahn et al., 2010), fMRI (e.g., Lazar et al., 2000; Khushu et al., 2000; Short et al.,

2010; Raffone et al., 2007; Brefczynski-Lewis et al., 2007; Ritskes et al., 2004), PET (e.g.,

Herzog et al., 1990; Lou et al., 1999; Kjaer et al., 2002), SPECT (e.g., Newberg et al.,

2001; Khalsa and Newberg, 2007), and others. Several different tasks have also been used

in these studies, e.g., attentional blink (Slagter et al., 2007), sustained attention (MacLean

et al., 2010), and response inhibition (Sahdra et al., 2011). Numerous different meditation

techniques have been evaluated, such as, Kriya Yoga (Das and Gastaut, 1955), Raj Yoga

(Anand et al., 1961), Zen (e.g., Kasamatsu and Hirai, 1966; Ritskes et al., 2004; Austin,

1999), Transcendental Meditation (e.g., Travis and Wallace, 1999; Travis, 1991; Pagano

et al., 1983), Tibetan Buddhist (e.g., Lutz et al., 2004; Lehmann et al., 2001; Raffone et al.,

2007; Benson et al., 1990; Kabat-Zinn, 1993) and many others (see Cahn and Polich, 2006,

for details). Yet, we still know very little about how practicing meditation enhances at-

tention and emotion regulation. This lack of understanding can be attributed to the huge

variability in results.

Three main factors can be held responsible for such variance: (1) multiplicity of

meditation techniques that have been assessed; (2) lack of matched control groups to com-

pare the data with; and (3) use of relatively less sophisticated methods for measuring brain

activation. Presently, there is some evidence of heightened activation in attention-related

cortical areas (Cahn and Polich, 2006). Recent studies have advanced the field using high

density EEG (e.g., Lutz et al., 2004) and fMRI (e.g., Brefczynski-Lewis et al., 2007; Farb

et al., 2007) with well-characterized practices, expert practitioners, and modern methods.

These studies, however, did not examine changes longitudinally nor used control partici-
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pants matched to those who had undergone training. Further, in neuroimaging studies, the

regions found to be active during meditation were also active during many other psycho-

logical tasks. Thus, by just knowing which areas are active it is not possible to understand

how the involved networks manifest, evolve, and interact during meditation. None of the

previous work focused on formalizing a theory of meditation either. Instead, theories were

limited to verbal formulations that form a weak base for future research and applications.

Further, a formal theory could also help in generalizing the results (from previous work)

and in turn reducing the variability in findings.

Thus, this dissertation aims to understand the mechanisms underlying meditation

using rigorous empirical and theoretical experiments. The meditation technique analyzed

was focused-attention meditation (or śamatha), where participants attend, primarily, to

breath sensations. The EEG data was collected as part of a larger project (the Shamatha

project; Shamatha-Project, 2007), during two three-month retreats in a randomized wait-

list design using matched control and training groups that examined both trait and state

variables during intensive practice of focused-attention meditation (MacLean et al., 2010;

Sahdra et al., 2011; Jacobs et al., 2010; Shamatha-Project, 2007). Chapter 2 provides back-

ground knowledge about the Shamatha project along with other key concepts.

The research consists of four steps. First, blind source separation methods were

used to pre-process the EEG data. A novel semi-automatic tool was constructed for identi-

fying and removing noisy sources. Further, other advanced signal processing steps, such as

scalp current density estimation, were implemented to assure high quality and high signal-

to-noise ratio in the EEG data. Chapter 3 presents this approach in detail.

Second, to identify the cortical correlates of intensive meditation training, longi-

tudinal changes in cortical activity were analyzed using spectral analysis. This empirical

approach provides a unique opportunity to understand how the networks underlying med-

itation change with training. Such an understanding has applications in a wide range of

research areas, from building better brain-computer interaction systems to treating neu-
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rodevelopmental disorders. Chapter 4 presents the methods of that analysis, along with

results. Briefly, three main longitudinal changes were observed in the retreat participants;

no such change was observed in the control group: (1) reduced individual alpha frequency

after training, similar reduction is consistently found in experienced meditators (Cahn and

Polich, 2006); (2) reduced alpha-band power in the midline frontal region, which correlated

with improved vigilance performance; and (3) reduced beta-band power in the parietal-

occipital regions, which correlated with daily time spent in meditation and enhanced self-

reported psychological well-being.

Third, to understand the changes observed in cortical activity and to develop a the-

oretical account for them, computational modeling was employed. Modeling is a powerful

tool in cognitive science for three reasons: It makes it possible (1) to compare and eval-

uate existing verbal theories; (2) to make novel predictions; and (3) to generate highly

detailed simulations of human performance. Further, these simulations occur over time,

and hence, provide the opportunity to understand the dynamics of the hypothesized under-

lying processes, which is currently impossible to do otherwise. Previously, modeling has

been successfully applied to many other cognitive processes ranging from single-neuron

modeling and sensory processing (e.g., Hodgkin and Huxley, 1952; Neilson and Neilson,

1987), to memory and learning (e.g., Chklovskii et al., 2004; Saggar et al., 2007, 2010;

Moll and Miikkulainen, 1997; O’Reilly et al., 1999), language (e.g., Miikkulainen, 1993;

Koskenniemi, 1984), and even to visual attention and consciousness (e.g., Itti and Koch,

2001; Tsotsos, 1995; Crick and Koch, 2003). Chapter 5 presents the model architecture and

the results from four computational experiments. Briefly, these experiments showed, (1) re-

duced intrathalamic gain after training, suggesting enhanced alertness (Steriade, 2000); (2)

increased corticothalamic delay, which strongly correlated with the reduction in individual

alpha frequency (found during spectral analysis); (3) reduction in intrathalamic gain pro-

vided increased stability to the brain; and (4) anterior-posterior division in the TRN layer

and increased connectivity in the posterior region of TRN after training.
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Fourth, in order to test the efficacy of time-series analysis and modeling, the re-

sults from these approaches were correlated with the data recorded from other behavioral

measures and self-reported psychological functions. These correlations provide twofold

benefits: (1) They help ground the findings into trait changes in behavior, and (2) They help

understand the cortical changes observed during training. The relations that were found,

during this analysis, are presented in chapters 4 and 5.

The discussion, Chapter 6, connects the dots and provides a theoretical account for

the mechanisms underlying focused-attention meditation. It also links these empirical and

theoretical results with the long-held views that meditation improves awareness, attention,

stability, and psychological well-being. In the end, the chapter discusses broader implica-

tions of this work, for example, in medicine, by creating customized meditations for treating

patients with neurodevelopmental disorders and epilepsy.

Thus, using a tight interaction between empirical and theoretical approaches, the

dissertation formalizes the verbal descriptions of meditation effects and makes testable pre-

dictions, forming a foundation for future research and applications in the area of meditation

research.
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Chapter 2

Background

In this chapter, a brief introduction to the key concepts and techniques is provided, including

meditation, neuroimaging, data acquisition, time-series analysis, and computational mod-

eling. Each section also provides advantages and limitations of each technique.

2.1 Meditation

The term meditation refers to a broad variety of practices, ranging from health exercises to

exercises that are performed for achieving a heightened sense of wellbeing (Davidson and

Lutz, 2008). In Buddhist traditions, two fundamental kinds of meditation practices exist:

focused-attention and insight meditation (Lutz et al., 2006).

The focused-attention meditation is more widely-practiced and is aimed at improv-

ing concentration, such that ultimately the meditator can focus on an object or a phe-

nomenon for an unlimited amount of time (a.k.a. the state of śamatha) (Lutz et al., 2006;

Wallace, 2006). From the Buddhist point of view, in focused-attention meditation, the prac-

titioner uses two faculties of mind - smriti (to keep focused on the intended object) and

samprajanya (to check whether the focus is maintained or not). Thus, the second fac-

ulty provides the role of meta-awareness (Lutz et al., 2006; Wallace, 1999, 2006). Figure
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Figure 2.1: The two faculties involved in meditation. (a) Smriti, literally means ‘mem-
ory’ in Sanskrit, is the faculty of mind that allows a continuous focus on an object or a
phenomenon (a.k.a. the state of śamatha). To continue focusing on the object, one needs
stability (i.e. avoiding anxiety that leads to excitement) and clarity (i.e. avoiding boredom
that leads to dullness) (Wallace, 2006). (b) Samprajanya is the faculty of meta-awareness
(Wallace, 2006; Lutz et al., 2006). It checks to make sure that the focus is on the object (of
meditation), and if not, it regulates the focus to bring it back upon the object. It is important
to note that there is also a layer of compassion, shown here as engulfing the samprajanya,
which makes sure that one is compassionate towards himself or herself when a distraction
(dullness or excitement) is detected. This layer of compassion is crucial, since it makes sure
that the meta-awareness itself does not become source of distraction (as one berates himself
or herself due to mind wandering, especially in beginners; Kabat-Zinn, 1994).

2.1 visualizes the relationship of these two faculties and Figure 2.2 shows the interaction

between the faculties during focused-attention meditation. Additionally, in Buddhist tra-

ditions, cultivation of compassion towards all living beings (including oneself) is given

equal importance as in all other styles of meditation. Compassion meditation provides the

emotional balance, which in turn helps bypass several other obstacles in achieving focused

attention (Wallace, 2006).

The second fundamental type of Buddhist practice is insight meditation (or more

commonly, vipaśyana). In this practice, the practitioner works on the meta-awareness

(or samprajanya) and the goal is to reach a state of reflexive awareness, i.e. beyond

objectivity and subjectivity (Lutz et al., 2006). It is believed that the practitioners need a
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Figure 2.2: Interaction between faculties during focused-attention meditation.
Samprajanya, or meta-awareness, constantly monitors whether the smriti is fo-
cussed on the object of meditation or not. If any distraction is detected, the attention can be
regulated to bring it back on the object of meditation. For example, as described in Wallace
(2006), if dullness is detected then one should try to focus on even subtler objects. This
increase in task difficulty, could lead one back to śamatha. Similarly, if excitement is
detected then one can try relaxing for a while and begin again. Both clarity (less dullness)
and stability (less excitement) are required for progress in meditation (Wallace, 2006).

unison between vipaśyana and śamatha in order to progress further (Lutz et al., 2006).

Apart from these two fundamental types of practices, ethical discipline is also

deemed essential in Buddhist traditions. Over the course of meditation training, the idea

is to develop strong ethical foundations to be able to distinguish between wholesome and

unwholesome momentary mental states (and processes), so that unwholesome states can be

avoided (Wallace, 2006; Olendzki, 2011).

Although meditation is often described in mystic terms, its effects are real and
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can be studied scientifically (Slagter et al., 2011; Jacobs et al., 2010; Sahdra et al., 2011;

MacLean et al., 2010). Various kinds of meditation techniques help the practitioner to

regulate attention, impulses, and emotions (Chambers et al., 2009). Further, practicing

meditation has been shown to enhance one or more cognitive control components. Thus,

meditation provides a fascinating window into cognitive functioning as a whole, and into

cognitive control in particular. Keeping these applications of meditation in mind, this disser-

tation applies a quantitative approach to focused-attention meditation in order to understand

how the brain and its processes change during intensive meditation training.

2.2 Methods of neuroimaging

Neuroimaging consists of various direct or indirect methods that are used to measure struc-

tural, functional, or pharmacological aspects of the brain. The field can be divided into two

broad categories: structural and functional imaging. Structural neuroimaging provides an

anatomical view of the brain with ways to measure volume of different brain regions. It

is used to diagnose gross intracranial diseases, like tumors and injury, as well as to char-

acterize development, individual variability in brain structures, and to provide anatomical

anchors for other functional brain measures. Functional imaging, on the other hand, pro-

vides a way to visualize how information is processed in different brain areas during a

particular task (or in the absence of a task, e.g. “default state”). Such processing causes the

involved areas to increase metabolism and “light up” (i.e., activate) in the image.

There are several modalities of neuroimaging, among which a choice can be made

based on the experimental question at hand (Figure 2.3). A brief introduction to the most

relevant methods is given below.

2.2.1 Electroencephalography (EEG)

EEG is the recording of electrical activity at the scalp produced by synchronized firing of

cortical neurons (Pizzagalli, 2007). It measures the difference between the potential at the
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Figure 2.3: Comparison between different types of neuroimaging techniques. There is no
single best method. Thus, one should choose a technique that can most accurately answer
the experimental question at hand. For this dissertation high temporal resolution was im-
portant and hence EEG was chosen.

location of interest (sensor) and at a reference point. By measuring the electrical activity of

neural assemblies with sub-millisecond temporal resolution, EEG offers the possibility of

studying brain functions in real time (Pizzagalli, 2007). On the other hand, the spatial reso-

lution provided by EEG is limited; due to volume conduction, low signal-to-noise ratio, and

limited spatial sampling (number of electrodes). These factors, however, can be mitigated

(to some extent) by sound physiological and anatomical assumptions and by utilizing laws

of electrodynamics (Baillet et al., 2001; Michel et al., 2004).
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2.2.2 Magnetoencephalography (MEG)

MEG measures the magnetic field produced by the electrical activity in the brain via ex-

tremely sensitive sensors such as superconducting quantum inference devices (SQUIDs).

Thus, MEG provides a direct measurement of electrical activity of neural assemblies with

high signal-to-noise ratio and temporal resolution. The spatial resolution of MEG was said

to be better than EEG, however recent work has shown otherwise (Malmivuo and Suihko,

2004), and this aspect remains controversial.

2.2.3 Positron emission tomography (PET)

PET scans require an injection of a radioactive material in to the participant. Although no

surgery is involved, PET is still considered an invasive procedure. The injected substance

(a.k.a. tracers; e.g., FDG, O-15, etc.) collects in the neurons that are more active, and thus

highlights areas of the brain that are used for a particular function under study. The great-

est benefit of PET is that different compounds can show blood flow, oxygen, and glucose

metabolism in the tissues of the working brain. In addition to its high cost and exposure

to radiation, a third drawback with PET is that the resultanting scans do not include any

anatomical information. Hence, PET needs to be combined with CAT or MRI scans to lo-

calize the activity (Davis, 2003). Another crucial drawback is that the radioactivity decays

rapidly (in case of moderately expensive tracers), and as a result, the technique is limited to

monitoring short tasks (Nilsson and Markowitsch, 1999).

2.2.4 Functional magnetic resonance imaging (fMRI)

The paramagnetic properties of oxy- and de-oxygenated hemoglobin is harnessed in fMRI

to create images of change in blood flow. Such changes are then associated with the neural

activity in the brain regions (Logothetis, 2008). This technique allows images to be gen-

erated that reflect the brain structures activated during performance of different functional

tasks. The spatial resolution of fMRI is two-three millimeters, however its temporal reso-
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lution is limited to the hemodynamic response (approximately two-five seconds). Further,

a baseline state is required in the experimental design, so that the neural activity during a

task can be measured (by subtracting the baseline activity from it).

2.2.5 Single photon emission computed tomography (SPECT)

SPECT is similar to PET and uses gamma emitting radioisotopes and a gamma camera to

record the data. Like PET, an injection of radioactive tracer is given to the participant before

scanning. The uptake of this agent is nearly 100% within 30-60 seconds. SPECT provides

a snapshot of cerebral blood flow, but its resolution is not as good as that of fMRI (about

one centimeter). One advantage of SPECT over PET is that it can make use of tracers with

much longer half-lives (hence allowing longer experiments) and as a result it is more widely

used than PET.

2.2.6 Near infrared spectroscopy (NIRS)

NIRS can measure changes in concentration of oxygenated and deoxygenated hemoglobin

in the blood. The signal measured by NIRS is highly correlated with the BOLD signal

measured in fMRI (Cui et al., 2010). The spatial resolution of NIRS, however, is limited

and it can only measure changes related to the cerebral blood. However, the temporal

resolution of NIRS is better than fMRI and is approximately at the rate of 10Hz.

The goal of this dissertation is to analyze and understand the dynamics behind med-

itation. A high temporal resolution is required to analyze the oscillatory dynamics and

therefore, high-density EEG was chosen for this work.

2.3 The Shamatha project research setting

Over the past 55 years many studies have attempted to characterize the brain activity pat-

terns that occur during meditation (Cahn and Polich, 2006). Such patterns may reflect the
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effects of contemplative training that are ultimately expressed as characteristic changes in

behavior. However, a large variability exists in the findings of these studies. There could

be several reasons for this variability, including assessment of a large number of meditation

techniques, lack of adequate controls matched to the experimental group of participants, and

relative lack of sophisticated methods that results in an inability to generalize results across

studies. The most reliable conclusion is best characterized as some evidence of activation

in attention-related cortical areas (Cahn and Polich, 2006).

More recent studies have advanced the field using high density EEG (Lutz et al.,

2004) and fMRI (Brefczynski-Lewis et al., 2007) with well characterized practices, expert

practitioners, and modern methods. These studies, however, did not examine the changes

longitudinally (with time) nor used the control participants matched to those who had un-

dergone training.

In contrast, this dissertation aims to understand the longitudinal aspects of focused-

attention meditation using sophisticated empirical and theoretical experiments, while con-

trolling for group differences. Thus, the dissertation is based on a high-quality corpus of

EEG data, collected during two three-month retreats using matched control and training

groups. It was collected by a team of neuroscientists lead by Dr. Clifford Saron from UC

Davis, over a period of nine months from 60 participants. This very large longitudinal

study of meditation is also known as the Shamatha Project (Shamatha-Project, 2007). Dr.

Alan Wallace initiated this project and was the meditation teacher for both the retreats. The

Shamatha project was lead by a team of 16 members and 24 consulting scientists, and the

data acquisition was completed in 2007. This longitudinal study will provide a unique op-

portunity to understand the temporal evolution of mechanisms underlying focused-attention

meditation. Such an insight should prove useful for applying meditation to neurodevelop-

mental disorders in the future (as will be discussed in section 6.4).

Following subsections briefly discuss the design of the Shamatha project.
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2.3.1 Participants

The participants in the Shamatha project were recruited by advertising in various Buddhist

magazines (Figure 2.4). Sixty participants were selected (out of 142 applications) based on

age, availability, medical and neuropsychiatric evaluation, and previous retreat experience.

The participants were then matched and assigned to either an initial training group (n=30;

RG1) or a waitlist control group (n=30; CG). The groups were matched on age (M = 48

years, range = 22-69), sex (28 men, 32 women), and years of meditation experience (M

= 13). Additionally the groups did not differ in mean education level, marital status, or

household income (see Shamatha-Project, 2007; MacLean et al., 2010; Sahdra et al., 2011;

Jacobs et al., 2010 for more details). Retreat participants stayed at a remote mountain

resort (Shambhala Mountain Center, CO) during the three months of training. Control

group participants were flown to the retreat center, only for testing, during Retreat1, and

later comprised as participants for Retreat2 (RG2). Thus, data from the control group in

Retreat1 served as a control for retreat group in Retreat1, and as a control for themselves

in Retreat2. This design provides an interesting set of comparisons, as shown in Figure

2.4. EEG from twenty-two participants in RG1, CG, and RG2 (same set of participants as

in CG) was found usable and hence included in the dissertation. See Table 2.1 for details

about the participants.

2.3.2 Training

The participants in this project practiced meditation under the guidance of Dr. Alan Wal-

lace. The goal was to build strong ethical foundations in addition to improving the faculty

of attention. Each participant practiced focused-attention meditation for 6 hours each day

(on average) and compassion meditation for 1 hour each day (on average). The training

was based on Buddhist teachings and constituted the following seven practices (Wallace,

2006): (1) focus on breath sensations, (2) observing mental events, (3) observing the nature

of consciousness, (4) loving-kindness, (5) compassion, (6) empathetic joy, and (7) equa-

15



Figure 2.4: Recruitment of participants for the Shamatha project. The project had two
three-month retreats. Thus, as shown above, there can be two major comparisons. First, a
between-group comparison between control and retreat participants of Retreat1. Second,
a within-subjects comparison for control group of Retreat1 and the same group when they
were the retreat group in Retreat2. This design makes the second comparison strongly
controlled, as the same group of people acts as controls for themselves.

nimity. Participants were encouraged to spend most of their time in practicing one or two

of the first three techniques. These techniques were specifically designed to improve sus-

tained attention and attention regulation. They were also asked to spend some time in the

day on the remaining practices. These practices (4-7) were designed to generate positive

and balanced aspirations for their own and others’ well-being. In addition to practicing

alone, participants spent two half-hour sessions with Dr. Wallace, as a group, for guided

meditation. Table 2.1 provides details about number of hours spent in meditation daily.

2.3.3 Task

The participants were assessed on a number of self-report, cognitive and affective tasks,

at three time points (beginning, middle, and end of the retreat). Additionally, the partici-

pants were assessed on two kinds of meditation techniques: focused-attention (śamatha )

and compassion meditation, on two different days. Focused-attention meditation involved
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Lifetime meditation Daily time spent in meditation
(in hrs.) during retreat (in mins.)

Mean age (S.D.) Gender Min Max Shamatha Compassion

RG1 49.45 (13.49) 10 M, 12 F 250.00 9500.00 339.79 (87.35) 52.94 (24.15)
CG 44.18 (15.76) 11 M, 11 F 200.00 10000.00 - -

RG2 44.18 (15.76) 11 M, 11 F 200.00 10000.00 319.82 (87.80) 61.20 (27.86)

Table 2.1: Description of participants in the Shamatha Project. The groups in Retreat1 (RG1
(n=22) and CG (n=22)) and Retreat2 (when CG becomes RG2) had similar age, division
of gender, and lifetime hours of meditation. Further, on average, both retreat groups spent
most of their daily time in Shamatha meditation (focusing primarily on breath sensations).
The time spent in compassion meditation is the sum of compassion meditation itself and
meditation on four immeasurables (4-7; see Wallace (2006) for more details about these
meditation techniques).

attentional focus, primarily, on breath sensations (Wallace, 2006). During compassion med-

itation, participants imagined their loved ones, people who they had difficulties with, and all

the others to be free from suffering and the causes of suffering (Wallace and Houshmand,

2004). This dissertation, however, focuses on the task where the participants practiced eyes-

closed focused-attention meditation. In this task participants were asked to rest for one min

both before and after the 12 minutes of focused-attention meditation. The audio instruction

for resting state was, “For the next sixty seconds, please sit quietly with your eyes closed”.

For meditation, the audio instructions were

During the next 12 minutes, engage in the practice of mindfulness of breathing,

focusing your attention on the tactile sensations at the apertures of your nos-

trils or just above your upper lip. With each inhalation arouse your attention

and focus clearly on these tactile sensations. With each out-breath continue to

maintain your attention upon the tactical sensations, while relaxing your body

and mind, releasing any involuntary thoughts that may arise. So in this way

maintain an ongoing flow of mindfulness arousing with each in-breath, relax-

ing with each out-breath.
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Figure 2.5: EEG montage and 3D locations of electrodes. (a) Eighty-eight channel montage
of the EEG cap. (b) A subject during data collection, with the cap and polygraph channels
hooked on. (c) The 3D digitized locations for scalp channels. This digitization was done
separately before each recording. Such high-density electrode cap and 3D digitization will
provide better source localization.

EEG was recorded during the entire session. Pre-meditation resting time will allow

for the measurement of baseline brain activity.

2.3.4 Data

A high-density EEG cap was used in this project, with 88 equidistant scalp electrodes. The

3D locations of the electrodes on each participant was determined with a magnetic digitizer

(Figure 2.5). The data was collected using the Biosemi Active2 system (BIOSEMI, 2006),

at a sampling rate of 2,048 Hz. The sub-millisecond temporal resolution and the high-

density electrode array provides a unique window to understand meditation.

2.4 Time-series analysis of oscillatory activity in the brain

A time series consists of a sequence of data points. Time-series analysis methods are em-

ployed to either understand the underlying generators or to make predictions about the
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sequence. Such methods have been used widely in many domains, ranging from financial

markets to brain data. This subsection will briefly review some of the commonly used ap-

proaches in brain imaging. Chapter 4 will describe those actually used in this dissertation

in more detail.

2.4.1 Spectral analysis

The oscillatory activity in any time series can be represented using a linear sum of differ-

ent sinusoidal waves with distinct frequencies and coefficients (Pizzagalli, 2007). Thus,

the goal of spectral analysis is to estimate the contribution of various frequencies on the

measured EEG data. The most common approach is to compute estimates of power (the

square of amplitude) for a set of functionally mappable frequencies (e.g., alpha band 8-12

Hz). There are many issues that should be considered in this seemingly simple analysis.

First, EEG is not a stationary signal for durations longer than 3.5 secs (Gasser and Moli-

nari, 1996), thus the segments analyzed should be smaller than this limit. Second, due to

low signal-to-noise ratio, averaging over such segments is essential. About 60 secs of total

data should be used for reliable spectral analysis (Nuwer et al., 1999b). Third, convolution

with the Hanning (or similar) taper should be used to avoid leakage at the beginning and at

the end of each segment (Dumermuth and Molinari, 1987). Some of the advanced issues

include taking into account individual differences in defining frequency bands (Klimesch,

1999), scalp current density estimation, and transforming data to approximate Gaussian

distribution to get statistical power (Davidson et al., 2000). These are explained in more

detail in later chapters (Chapters 3 and 4). The dissertation used spectral analysis to under-

stand the longitudinal changes in cortical activity associated with meditation training (see

Chapter 4).
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2.4.2 Asymmetry metrics

Asymmetry metrics provide a possible method for analyzing hemispheric differences. Among

many such approaches, the alpha-power asymmetry index has been the most commonly

used (Pivik et al., 1993). This index is derived by subtracting natural logarithm of the left

hemisphere alpha power from that of right hemisphere (lnαR − lnαL). Because alpha-

power is inversely correlated with activity (Pizzagalli, 2007), positive number on this index

means low activity in the right hemisphere, and vice-versa. Several studies have previously

examined the role of this metric to study emotion, motivation, and psychopathology (Coan

and Allen, 2004). An important aspect of it is that laterality effect is legitimate only if

Group (or Condition) x Hemisphere interaction is also significant (Davidson et al., 2000).

The dissertation did not use this method, but in future it could be used to relate the findings

from this work and data from EEG studies of emotion regulation in meditators.

2.4.3 Time-frequency analysis

Spectral and asymmetry analyses are important for many reasons, but they do not provide

information on temporal changes in frequency. EEG is a dynamic phenomenon and it is

therefore necessary to investigate its transient nature over time. Thus, various methods of

time-frequency analysis have been developed. Two commonly used ones are (1) short-time

Fourier transform (STFT) for computation of FFT-based time-dependent spectrum (or spec-

trogram); and (2) wavelet analysis, which allows more flexible temporal resolution based on

the frequency under consideration. For example, for faster frequencies a smaller segment

can be used as compared to slower frequencies (Samar et al., 1999). Time-frequency anal-

ysis is commonly used to understand the temporal evolution of frequencies before, during,

and after a cognitive task. This information is useful in mapping changes in frequency of

activation to cognitive processes. The dissertation did not use this method, since it requires

a task with large number of trials for each condition.
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2.4.4 Topographical analysis

EEG mapping, or topographical analysis, considers the value at each electrode and through

interpolation, displays the field distribution of brain electric activity over the whole scalp

(or its 2D projections). It considers all electrodes at once and provides a global picture

of activation at the scalp. However, it does not provide any additional mathematical or

experimental information about the generating sources underlying the scalp (Pizzagalli,

2007; Pivik et al., 1993). Nonetheless it is a very useful method to visualize the results

and the dissertation used this method in association with a nonparametric cluster-based

statistical approach to find longitudinal changes in cortical activity.

Altogether, time-series analysis provides a toolbox that can be used to understand

various cortical dynamics measured on the scalp. However, one should choose approaches

based on the particular hypothesis at hand. In this dissertation spectral and topographical

mapping were used to identify cortical correlates of meditation training (see Chapter 4).

These analyses provide critical information for building an accurate computational model,

as will be discussed next.

2.5 Computational modeling of EEG data

Computational modeling based on physiological and anatomical assumptions can provide

an important method for understanding the complexity of human brain and behavior (O’Reilly

and Munakata, 2000). It is possible to explore the underlying mechanisms of complex

phenomena by implementing, testing, and manipulating them on a computer, in order to

ultimately understand them. This subsection will introduce some of the computational ap-

proaches used previously to model EEG data.

Since 1875, when Caton first discovered macroscopic brain potentials, much progress

has been made in EEG recording and analysis (Pizzagalli, 2007). Currently, it is one of the

most widely used technique in cognitive science to study the physiological correlates of sen-
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sory processing, perception, and information processing in the brain (Handy, 2005; Luck,

2005). However, even after many years of progress, issues such as understanding the ori-

gins of EEG and how to optimally retrieve useful quantities from EEG are still unresolved.

Recent advances in signal processing and computational modeling can provide solutions to

these issues (Handy, 2009; Robinson et al., 2003). As a way of providing context for the

current work, a brief overview of previous modeling approaches to EEG data is useful.

The modeling work of EEG data can be classified into three main categories: (1)

phenomenological models; (2) neuron and network models; and (3) analytical models (Ren-

nie, 2006). Phenomenological modeling describes the dynamics purely formally or math-

ematically, that is, the dynamics can be motivated biologically but are not explicitly stated

in terms of physiological and anatomical details (Biswas and Guha, 2010; Isaksson et al.,

1981). These models provide a straightforward approach of measuring the noticeable fea-

tures in the data and correlating the findings with behavior. Examples from these models

include estimation of latency in an event related potential (ERP) and its relation to other

measures or behavior. However, the measured quantities are not based on physiology and

anatomy and hence it is hard to construct a clear and formal account of the underlying

mechanisms (Rennie, 2006).

Another approach is to model the activity of a single neuron or a network of neu-

rons as a stepping stone to ultimately model data from EEGs. Notable attempts to model

mesoscale neural networks include those of Traub et al. (1997); Wilson and Bower (1992);

Lagerlund and Sharbrough (1989) and Lumer et al. (1997). The value of these models lies

in expressing a reasonable amount of neuroanatomical and physiological detail. However,

such detail comes at an expense of having to provide correct values for a myriad of param-

eters and could result in a combinatorial explosion while fitting.

The third approach to modeling EEG data is to use analytical models. The idea is

to simulate a large-scale phenomena, without violating physiological and anatomical con-

straints of structure involved (Rennie, 2006). The basic approach is to develop a continuum
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(or mean field) equation that describes the average properties of the system at hand. This

approach is justified in that the diameter of each electrode in the EEG cap is several orders

of magnitude larger than the single neuron and that the area of an electrode covers thou-

sands of neurons (Baillet et al., 2001). In previous studies continuum models were used to

show steady state and limit cycle behavior in visual cortex (Wilson and Cowan, 1972, 1973),

to explain alpha rhythms (Lopes da Silva et al., 1974), to model olfactory tract (Freeman,

1972, 1987), and even to model ‘global theory’ of EEG (Nunez, 1974a,b).

Among the three approaches mentioned above, the analytical approach suits mod-

eling meditation and resting state EEG the best. The starting point for the dissertation was

therefore based on an analytical model, more specifically the one developed by Robinson

et al. (2003). This model was further extended as presented in Chapter 5.

2.6 Conclusion

Altogether, a brief overview is provided about the concept of meditation, the Shamatha

project, and the methods used for EEG analysis. But, before using EEG data for any analy-

sis, preprocessing is essential. The next chapter describes the preprocessing process devel-

oped in this dissertation.
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Chapter 3

Preprocessing

Data that captures the transient nature of brain activity is required to understand the dynam-

ics of brain networks during focused-attention meditation. The 88-channel high-resolution

EEG measurements, collected during the Shamatha project, provide such data. This chapter

describes how this data was pre-processed for all the later analyses.

3.1 Motivation

Preprocessing is usually the first crucial step in analyzing any dataset. It includes several

stages for preparing the data so that other analyses can be run on it. For any analysis to be

successful, the data should be clean, i.e. it should originate purely from the neural sources.

However, EEG signals are almost always contaminated by various sources of artifacts (sig-

nals that are not of neural or cerebral origin) and noise (Figure 3.1). Most common types

of artifacts derive from subjects’ muscular movements (EMG), eye blinks, heartbeat, and

sweating. Further, channels can also get affected by non-biological sources of artifacts, like

interference from power lines (50/60Hz), poor grounding, and poor electrode contact with

the scalp. These biological and non-biological sources of non-neural activity need to be

removed before any analysis can be run, so that precise inferences can be made about the

24



Figure 3.1: Artifacts in EEG data. Showing time on x-axis and different channels (as
rows) on y-axis. (a) Ocular artifact due to eye blink resulted in huge dip in the activity (of
frontal channels). (b) Muscular (EMG) artifact due to movements in face or other parts of
body resulted in large amount of noise across a long period of time. (c) Heartbeat or ECG
artifact oscillating at about 1Hz. The hardest artifact to identify and remove is EMG, mainly
because the frequencies in EMG overlap significantly with cognitive range of frequencies
in EEG. Thus, EMG can drastically confound the findings (Pizzagalli, 2007; Nunez and
Srinivasan, 2010; McMenamin et al., 2010). Hence, the preprocessing phase is crucial and
should be done rigorously before any analyses can be performed. In current work blind
source separation is used to remove these artifacts.

data.

Traditionally, filtering and manual artifact correction and rejection is performed on

the data in order to get rid of artifacts. However, there are three main disadvantages of this

approach: (1) significant amount of data may get lost; (2) this process is very time consum-

ing; and (3) the quality of preprocessing depends on the expertise of the operator. The first

limitation can be overcome by using blind source separation (BSS) for separating sources
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of activity. If the sources of artifact are removed, the neural data for those time points can be

used (Makeig et al., 1996; Thakor and Tong, 2004; Joyce et al., 2004). However, the second

and third limitations are still major issues for large data sets, since it can be quite laborious

to identify artifact components correctly. Further, there is always a risk of misclassifying

neural sources as artifacts and vice versa.

To counter such issues, a novel Semi-autoMated Artifact Removal Tool (SMART)

was developed. This tool takes the already separated components from BSS and extracts

features from each of these components to classify them as an artifact or a neural source. It

then creates an interactive web page to show the results of the classification and lets the user

overrule any classification. This novel integration of BSS and SMART provides the user an

accurate and quick way to identify artifact sources. The methods section, next, explains this

preprocessing pipeline in detail, starting from data acquisition all the way to scalp current

density. It is followed by the results section, where the effects of preprocessing pipeline are

shown on the raw data.

3.2 Methods

Starting from the raw EEG, a series of steps were developed to clean and prepare the data

for later analyses (Figure 3.2). Following subsections provide details about each step.

3.2.1 Data Acquisition and filtering

The 88-channel EEG was acquired using BioSemi ActiveTwo system (BIOSEMI, 2006),

during meditation and resting states, at a sampling rate of 2,048 Hz. The data was first

filtered (zero-phase; roll-off: 12db for low-pass and 24db for high-pass), to allow only the

0.1 - 200 Hz frequencies. The filtering was followed by referencing to the average of all

channels, to provide full common-mode rejection ratio (CMRR) and to avoid spatial bias.

The next step was to use blind source separation for segregating artifactual and neuronal

sources.
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Figure 3.2: The preprocessing pipeline. The pipeline lists the steps, starting from 88-
channel raw EEG all the way to 81-channel reference-free EEG, required for obtaining
clean and rich dataset for this dissertation.

3.2.2 Blind source separation (SOBI)

Separating unobserved sources without any a priori information about the mixture is com-

monly known as blind source (or signal) separation (BSS) (Hyvärinen et al., 2001). In order

to successfully separate sources, the underlying assumptions for the BSS algorithm should

be in line with the physical properties of the problem at hand. This is essential since the

direct validation of separation is not possible in case of EEG (Joyce et al., 2004).

One commonly used BSS approach is independent component analysis (ICA; Hyvärinen

et al., 2001; Makeig et al., 1996; Thakor and Tong, 2004). ICA algorithms assume that the

components (or underlying sources) are statistically independent at each time point. As
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a result, ICA uses higher order statistical moments of the data. However, given the ex-

tensive feedforward and feedback connections in the brain, the statistical assumption of

independence is unlikely to hold in neuroimaging data. Further, ICA does not utilize tem-

poral information in the data, which can be very useful for source separation (Belouchrani

et al., 1993; Belouchrani and Amin, 1998; Muller et al., 2004; Ziehe and Muller, 1998).

Third, the use of higher-order instantaneous statistics makes ICA vulnerable to outliers. A

fourth problem is that it cannot separate more than one Gaussian or near-Gaussian source

(Hyvärinen et al., 2001).

Second-order blind source separation (SOBI), on the other hand, assumes that the

underlying sources are uncorrelated (as opposed to independent). SOBI was recently in-

troduced for preprocessing of EEG data (Belouchrani et al., 1993; Joyce et al., 2004; Tang

et al., 2005). Unlike ICA, SOBI separates signals by minimizing cross-correlations across

multiple time delays. SOBI uses average statistics across time, which makes it less vulner-

able to noise and outliers. Further, second order statistics can be reliably estimated using

fewer data points (Joyce et al., 2004). This property is helpful in the case of EEG, where the

signals are not guaranteed to be stationary over periods of time longer than 3.5 sec (Pizza-

galli, 2007). Furthermore, SOBI can even separate Gaussian sources, thus no assumptions

about the underlying distribution are required.

Considering all the points above, SOBI was chosen to be the BSS algorithm for

this dissertation. The algorithm was originally developed by Belouchrani et al. (1997) and

it was implemented as it is (Algorithm 1), with minor modifications to handle the huge

dataset. The results of applying it to the 88-channel EEG data separation are shown in

Figure 3.3. The next subsection describes how the separated sources were classified as

neural or artifact.
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Algorithm 1 Second-order blind source separation (SOBI). Adapted from Belouchrani
et al. (1997).
Given multi-dimensional time series data X(t), which is a {m,T} matrix with m sensors
and T time points,

1. Calculate the instantaneous {m,m} correlation matrix RXX (0).

2. Using RXY (0), calculate presphering matrix B such that

B = [(λ1 − σ2)−( 1
2)h1, . . . , (λn − σ2)−( 1

2)hn]H ,

where λ1, . . . λn denote the n largest eigenvalues and h1, . . .hn the corresponding
eigenvectors of RXX (0). Under the white noise assumption, σ2 denotes the estimate
of the noise variance.

3. Form sample estimates RXX (τ) by computing the sample covariance matrices of
X(t) for a fixed set of time lags, τ ∈ {τj | j = 1, . . . ,K}.

4. Whiten the RXX (τ) matrices to get R̂XX (τ), using presphering matrix B.

5. Joint diagonalize (JD) the set of matrices R̂XX (τ) using the JD criterion

C (M,V) .=
∑

k=1,...,K

off
(
VHMkV

)
,

where the “off” of an {n, n} matrix M with entries Mij is

off (M) .=
∑

1≤i 6=j≤n
|Mij |2,

to get the joint diagonalizer unitary matrix Û, where Û .= V if off
(
VHMV

)
= 0.

6. Estimate the source signals as
Ŝ = ÛHBX,

and the mixing matrix A as
Â = B′Û.
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3.2.3 Semi-automatic artifact removal tool (SMART)

Once the components are retrieved from SOBI, the next step is to identify those that are

artifactual. This might seem like an easy task at first, however the amount of data makes it

impossible to do it manually. Since SOBI was run separately on each minute of data (for

a total of 14 minutes per subject per test-point) for about 90 subject files, three test-points

(beginning, middle, and end of retreat), and 88 components (due to 88-channels), the total

number of components comes out to be 332,640.

One solution could be to completely automate the process of artifact identification,

based on some quantitative features. However, it would be difficult to guarantee that the

results are correct, and wrong classifications could lead to unwanted conclusions in later

analyses. Thus, a novel semi-automated artifact removal tool (SMART) was constructed to

make sure that only the artifactual components are rejected and the neural components are

retained.

After running SOBI on each one minute window of data, SMART extracts spatio-

temporal features from each component: topography, auto-correlation, power spectrum,

time-series, and effective power spectrum (after removing that particular component and

keeping everything else). These features provide SMART the ability to classify the compo-

nents in an automated fashion (Figure 3.3). However, human intervention is still required

in the end, for quality assurance. To make it efficient, SMART generates a web page for

the user to confirm its classification (of artifacts and neural components). This web page is

interactive, and provides the user with an option to change the classification for any source

that he/she may think as more appropriate. SMART provides all features at a glance, so that

the user can see why SMART did what it did (Figure 3.4). Using an automatically gener-

ated web page, with all the information required in one place, the user can thus quickly and

efficiently decide whether there are any discrepancies in the classification.
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Figure 3.3: Components (rows) retrieved through blind source separation and their features
(columns) extracted using SMART (Color figure). (a) An ocular source, located at front.
The topographical maps and time-series (shows 60 seconds of data, where each wave is 10
seconds long) were used by SMART to identify this source as an ocular one. (b) An EMG
component. The flat power spectrum and immediate drop in autocorrelation (within 10-
20 samples) indicate noisy EMG source. (c) A peak component, due to interference from
power lines (60Hz). The huge peak at 60 Hz and effect of taking out this source (which only
affects the power spectrum at 60 Hz) suggests that this was indeed a power line source. (d)
Example neural source, with occipital activity and a peak at 10 Hz. These neural sources
were retained in the data. Overall, several features were used by SMART to identify the
sources as neural or artifactual. Thus, the source identification can be done efficiently and
reliably.
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Figure 3.4: A screenshot of the web page created by SMART (Color figure). It displays
all sources (in rows) and their features (in columns). The radio buttons above each source
(on left), indicate the classification for that source. The user can change the classification
by clicking on some other radio button. In the end, the user clicks on “Vote” button at
the bottom and SMART records the user’s input and then uses it to reconstruct the EEG
data. The web interface provides an efficient way to double check and change SMART’s
classification of sources.
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3.2.4 Reconstruction, quality check, and converting to standard space

After identifying the artifactual components, they were removed and the original configu-

ration (88-channel EEG) was reconstructed:

X̂ = [A]88×(88−Na) [S](88−Na)×L , (3.1)

where Na corresponds to the number of artifact components rejected using SMART. It is

important to note that as long as sources were separated cleanly, removing purely artifactual

components does not affect the reconstruction of neural components.

The reconstructed 88-channel EEG was then inspected for leftover noise in the data,

especially in segments of data where there was no neural information to begin with. For

example, there were cases where a participant had a sudden movement and all channels

for that short time-period had a lot of noise. In such cases application of even SOBI and

SMART cannot restore neural data: it was either not there to begin with, or the signal-to-

noise ratio was so low that it could not be restored. Thus, a final quality check was done on

each reconstructed data file to make sure only clean segments go forward for later analyses.

This check involved extracting both amplitude and gradient thresholds for each subject (and

at each test-point). The thresholds were then used to identify whether the data segment in

question were to be rejected or kept.

Finally, the 88-channel EEG data was transformed into the standard 81-channel

montage of the international 10-10 system (Chatrian, 1985; using spherical spline inter-

polation (Perrin et al., 1989) as implemented in Brain Electrical Source Analysis (BESA)

software package; Version 5.3, http://www.besa.de), so that all participants have a simi-

lar number of channels and the channel locations are normalized. Figure 3.5 shows the

88-channel configuration and the 81-channel configuration overlaid on top. Due to lack

of coverage, eight frontal channels were removed from the new 81-channel transform, and

thus finally 73-channel EEG was used for later analyses.
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Figure 3.5: Converting to 81-channel standard space. The 81-channel montage is overlaid
on the 88-channel montage used for data collection. Eight channels (Nz, AF9, Fp1, FPz,
Fp2, AF10, CB1, and CB2) were not used from the 81-channel montage, since these lo-
cations were not covered by the original 88-channel montage in most participants. This
transformation would provide equal treatment to all participants.
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3.2.5 Estimating scalp current density

EEG measures the potential at each sensor location with respect to some reference. This

reference should ideally be electrically inactive, thereby allowing measurement of true EEG

waveforms (Pizzagalli, 2007). However, in practice such an inactive reference is not avail-

able. Thus, the choice of reference is important and does affect the results of EEG analysis

(with few exceptions, like source localization; Lehmann, 1987; Dien, 1998). Further, if the

reference sensor itself has noise in it, measuring all the other sensors with respect to the

reference sensor will induce noise in all the sensors. Thus, one has to be very careful when

selecting the reference.

In this work, the problem of selecting the correct reference electrode(s) was com-

pletely avoided by using a reference-free estimation of EEG waveforms. Scalp surface

Laplacian (or scalp current density), estimated as a second derivative of the voltage surface,

was used to transform EEG waveforms such that reference-free estimates were calculated.

The CSDToolbox (Kayser, 2009; Kayser and Tenke, 2006) was used for this transformation.

3.3 Results

Blind source separation and a novel semi-automated tool (SMART) were employed for

reconstructing clean EEG after removing artifactual components. This section presents the

overall results of preprocessing and also provides supportive evidence that the excluded

components were indeed artifacts.

3.3.1 Overall results

Preprocessing was done on the EEG collected from all three groups (RG1, CG, and RG2),

three test-points (beginning, middle, and end of retreat), and three states (pre-meditation

rest, meditation, and post-meditation rest). Table 3.1 presents the number of artifactual

components rejected in each case. This number was similar across conditions and groups,
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T1 T2 T3
R1 M R2 R1 M R2 R1 M R2

RG1 31.27 31.55 34.64 29.41 30.09 32.68 35.55 31.95 33.27
CG 29.91 29.63 31.45 27.00 25.31 27.95 27.77 27.61 30.45

RG2 30.27 29.30 30.55 30.41 28.77 31.41 30.14 29.17 31.23

Table 3.1: Mean number of artifactual components in each group (RG1, CG, and RG2),
test-point (beginning (T1), middle (T2), and end (T3) of retreat), and state (pre-meditation
(R1), meditation (M), and post-meditation rest (R2)). Overall, similar number of artifacts
were rejected across conditions and groups.

suggesting that preprocessing was unbiased towards conditions and groups.

Log of temporal power spectral density (of neuronal EEG) has been shown to de-

crease in a near-linear fashion with increasing log of frequency (Freeman et al., 2003).

However, in case of EMG, the power spectral density concave upwards with increase in

frequency, especially in higher frequency ranges (e.g. gamma; Freeman et al., 2003). Thus,

a clear departure from near-linear drop in power with frequency indicates EMG in the data.

On the other hand, this observation also provides a straightforward way to judge the ac-

curacy of preprocessing (especially for EMG), i.e., if the near-linear drop in power (with

frequency) is restored for higher frequencies, without affecting power in lower frequencies,

then the preprocessing step can be termed successful. For other artifacts, like interference

from power lines, the reduced peaks at 60Hz (without affecting other frequencies) in the

power spectral density can provide a good estimation of the success of preprocessing.

Figure 3.6, 3.7, and 3.8 provides the temporal power spectral densities before and

after preprocessing. The raw data had EMG in it, visible as nonlinearities for higher fre-

quency range (>20Hz). But after preprocessing, the neural signature of near-linear drop in

power was restored and without affecting power in lower frequencies (same spectral power

structure in frequency <20Hz). Furthermore, the interference from power line sources was

greatly reduced (although not completely diminished) by preprocessing.

Next, features of artifactual sources was extracted and averaged across group, to
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provide evidence that only the noise was removed and neural behavior of EEG was un-

touched.

3.3.2 Artifacts

In any kind of preprocessing methodology, the ideal result is to just remove the artifacts and

nothing else. However, it is difficult to do, since the artifacts and neural signals sometime

overlap. To confirm the success of preprocessing pipeline the average and standard error

(over the participants in each group) of extracted features, which were used by SMART to

decide whether to remove a component as an artifact, are presented in Figures 3.9, 3.10,

and 3.11.

Starting with the EMG artifactual components, Figure 3.9 shows the average au-

tocorrelation function and power spectrum of these removed sources for each group. As

evident, the autocorrelation drops immediately to very low values, indicating the character-

istic behavior of noise. Further, the power spectrum is concave upwards with no structure

for low frequencies, strongly representing the EMG activity (Freeman et al., 2003). Alto-

gether, these features show essential traits of EMG noise and lack of any neural structure

(for low frequencies), thereby suggesting that SMART removed EMG activity without af-

fecting neural content.

Although the EEG data presented in this dissertation was collected when partici-

pants had their eyes closed, ocular artifacts are still present due to horizontal saccadic activ-

ity. These ocular artifacts are known to affect low frequency bands, especially the delta and

theta band (Pizzagalli, 2007). Topography, auto-correlation, and time-series of components

were used by SMART to decide whether they are ocular artifacts (Figure 3.10). Topograph-

ically, the ocular artifacts lie in anterior frontal regions and are very easy to catch. Further,

their temporal activity is very slow and hence, the auto-correlation is quite constant and

close to one. Third, time-series itself can also be used to decide whether they are ocular

artifacts or not, especially in case of high amplitude eye blinks and saccades (see Figure
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Figure 3.6: The effect of preprocessing on power spectrum in RG1. The left column shows
mean log-log power spectrum (with error-bars showing standard error of the mean, across
participants) for each state (rows) before preprocessing. The right column shows log-log
power spectrum (computed from SCD transform, hence different scale) for each state (rows)
after preprocessing. Dashed line was overlaid to show restored linear drop in power, espe-
cially for higher frequencies. Only the first test-point is shown, due to space, but all the
test-points have similar results. The shape of the spectrum for lower frequencies (<20 Hz)
is preserved as is, but the flat power spectrum (due to EMG) is removed. Also the noise
in the spectrum due to interference from power lines is greatly diminished. Altogether,
preprocessing pipeline removed artifacts, without touching lower frequencies.
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Figure 3.7: The effect of preprocessing on power spectrum in CG.

3.1). Altogether, only noise was removed by SMART.

Third, artifacts due to interference from nearby electrical sources, like power line

(60 Hz) and skin-conductance equipment (16 Hz) were easy to identify based on topography

and power spectrum. Having sudden spikes in the power spectrum (at 60 Hz or 16 Hz) and

spatial locations limited to isolated channels clearly indicated non-neuronal activity. Figure

3.11 shows averaged power-spectrum and autocorrelation function for such components, as

evident only interference from electrical equipment was removed and no neural content was

touched.

In sum, artifactual components were successfully separated, identified, and removed
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Figure 3.8: The effect of preprocessing on power spectrum in RG2.

using SOBI and SMART. Such a rejection of artifactual components, in turn, did not induce

secondary artifacts in the data.

3.4 Discussion

Scalp-recorded EEG can easily get contaminated with a number of encephalic (muscular,

ocular) and non-encephalic (power lines) sources of activity. Thus, a rigorous sequence of

preprocessing steps is essential to eliminate the noise, while keeping the neural information

intact. This chapter presented such a process, combining blind source separation and a novel
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Figure 3.9: Group average of extracted features for EMG artifacts. Both autocorrelation
function (sudden drop and stays low) and power spectrum (concave upwards) indicate that
the sources are nothing but noise (Freeman et al., 2003). Mean values are drawn as a line
and the error bars indicate standard error of the mean across participants. Only the first
test-point and meditation state is shown here; to avoid redundancy and to save space.

semi-automatic noise source identification tool (SMART). The combination successfully

eliminated noisy sources of activity without corrupting the neural data.

Application of SOBI and SMART on other datasets The successful integration of

SOBI and SMART led to its application in other datasets at Saron Lab in UC Davis. In

its new avatar it successfully preprocesses event related potentials (ERPs) recorded from

healthy and autistic children (Saron et al., 2008). This application is crucial, because EEG

collected from children in general is filled with muscular and ocular artifacts. Thus, SOBI

and SMART can save a lot of data from getting rejected and at the same time it can even

help reduce the duration of experiments. In the future, blind source separation and SMART
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Figure 3.10: Group average of extracted features for ocular artifacts. Both autocorrelation
function (constant and close to one) and power spectrum (no features) indicate that these
sources have slow temporal properties. Topographic plots were used in addition to these
two features, by SMART to identify them.

will be tested on other neuroimaging modalities, like near-infrared spectroscopy (NIRS;

Villringer et al., 1993).

Dependent artifactual sources Although muscular and ocular sources of activity are

considered as artifacts in the EEG data, it is important to ask whether these sources of activ-

ity are really independent of the task structure itself. Consider a case where the participant’s

response (clicking or punching a key) is followed by an eye-blink or a head movement. In

this case, the associated ocular or muscular activity is not independent to the participant’s

neural activity (related to the response). Thus, source separation techniques that assume in-

dependence among sources of activity, for proper separation, could fail. Due to this reason,

a second-order blind source separation (SOBI) was used in this dissertation; such a tech-
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Figure 3.11: Group average of extracted features for interference from power line (60 Hz)
and skin conductance equipment (16 Hz). Both autocorrelation function (vibrating at 60
Hz) and power spectrum (nothing but huge peaks at 16 and its harmonics and at 60 Hz)
indicate that the sources are nothing but noise.

nique only assumes lack of correlation (on average over several temporal lags) and hence

has a lesser chance of failure in removing dependent artifacts.

Number of components Usually, the number of sources separated by BSS algorithms

is equal to the number of channels (or sensors) in the dataset on which the algorithm was

run. However, more sophisticated algorithms (e.g. information theory) can be utilized to

figure out how many sources should be separated, in order to avoid unnecessary leakage of

artifactual sources on each other (Li et al., 2007; Sawada et al., 2004). However, reducing

the number of sources can cause the problem of under-fitting (Li et al., 2007). In the current

work, the number of sources was same as the number of EEG sensors. In future work,

however, a comparison can be done to evaluate the optimal number of sources for separating
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EEG data.

Manual vs. fully automated approach A lot of work has been done in dealing with

artifactual sources of activity in EEG, ranging from basic visual inspection to completely

automatic methods (Pizzagalli, 2007; McMenamin et al., 2010). In small experiments,

with lesser data, manual inspection of each EEG segment is still possible. However, with

huge datasets, like the current one, this approach cannot work. On the other hand, at least

currently, complete automation of the process of detecting and rejecting artifacts is also not

conceivable or advisable. Thus, in the current work, a semi-automated approach was taken,

which also allows for quick and efficient quality check on top of automated first pass.

3.5 Conclusion

Altogether, a comprehensive preprocessing pipeline for continuous EEG data was devel-

oped for removing artifacts, estimating reference-free EEG, and projecting data into stan-

dard space. Such an approach is necessary to enhance signal-to-noise ratio in EEG studies.

The next chapter takes this clean EEG data and analyzes longitudinal change in cortical

activity associated with meditation training.
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Chapter 4

Spectral Analysis

To measure the change in oscillatory activity of the brain due to intensive meditation train-

ing spectral analysis was employed. This chapter presents the methodology and the results

from such analysis. In this chapter, first, an introduction is provided about the motivation,

the challenges, and the approach used. Second, the methodological pipeline for the analysis

is presented. Third, the results from three empirical experiments are furnished. Fourth, the

interpretation of these results and their broader impact is discussed.

4.1 Introduction

A quick overview of what spectral analysis is and how it is used in neuroimaging is provided

below. Followed by the motivation for using it to understand meditation and an overview of

previous findings. Lastly, the challenges faced by previous studies and the approach used

by this dissertation is presented along with an outline to the chapter.

4.1.1 What is spectral analysis and how is it used in neuroimaging?

Time-series data contain oscillatory activity, i.e., the signal changes with time. These

changes can be rhythmic (e.g. 60Hz oscillations in power lines) or arrhythmic (e.g. ran-
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domly varying white noise). To study the underlying mechanisms (or the generator) of

these rhythms, one first needs to determine what kinds of rhythms are being generated. In

some cases, the rhythm is quite obviously visible, e.g. shopping expenses go up during the

holiday season every year. However, in other cases, e.g. in a mixture of rhythms (Figure

4.1d), it is hard to determine the rhythm by just looking at it. Brain-imaging data measured

at the scalp, especially EEG, is similarly a mixture of different rhythms. These rhythms are

very complex in nature, mainly because they are generated by various cortical, sub-cortical,

and cortico-subcortical dynamics (Baillet et al., 2001; Speckmann and Altrup, 1993; Steri-

ade et al., 1993; Buzsaki and Draguhn, 2004). Thus, to understand the brain-imaging data

collected during a task (or otherwise), a sophisticated method is first required to untan-

gle different rhythms out of the measured mixture. Once separated, different rhythms and

their dynamics can be mapped to different functional roles (Pizzagalli, 2007) and thereby

advance our understanding of information processing in the brain.

One such method to estimate the contribution of various frequencies to the measured

data (EEG in this case) is spectral analysis. The most common approach to do this is to use

Fourier transform to convert the time-series data into the frequency domain, followed by

estimating the power of each frequency or range of frequencies (a.k.a. bands) to determine

their contribution to the measured signal. Based on previous research, different frequency

bands have been assigned different putative functional roles (Pizzagalli, 2007). Hence,

when the contribution of certain frequency band increases (or decreases) in a particular

experimental condition, the researchers can make claims about the functional roles based

on the manipulation of those conditions. A brief review of the functional roles of these

frequency bands is given below.

The lowest frequency band, delta (1-4Hz), is typically associated with sleep (Nie-

dermeyer, 1993) and brain pathologies (Gilmore and Brenner, 1981; Fernandez-Bouzas

et al., 1999) and, hence, it is considered as an inhibitory rhythm. The next band - theta (4-

8Hz), is also dominant during sleep. However, during the awake state two different types of
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Figure 4.1: Spectral analysis of oscillations. By just looking at Signals 1, 2, and 3, one can
find their frequency of oscillation. However, when these three signals (oscillating at 5, 10,
and 30 Hz) are mixed (e.g. Signal-4, simply by linear summation with equal weights) it is
hard even to determine the frequency content of the mixture let alone the weights of each
of the contributing signals. Thus, spectral analysis (using Fourier transform, followed by
power estimation) is done to determine the contributing frequencies and their weights, as
shown in the last row for Signal-4.

theta rhythms can be seen. One of them has a large distribution over the scalp and has been

linked with drowsiness and impaired information processing (Schacter, 1977). The other

type of theta rhythms are topographically distributed over the frontal-midline areas of the

scalp (hence these rhythms are also known as Fmθ) and have been linked with increased

memory load and attention (Jensen and Tesche, 2002; Sauseng et al., 2007). Anterior cin-

gulate gyrus is considered to be the generator for the second kind of theta band oscillations

(Asada et al., 1999; Luu et al., 2003; Onton et al., 2005).
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Next up is the alpha band (8-13Hz). Alpha rhythms can be easily seen over the

parietal-occipital regions while resting with eyes closed. They immediately diminish by

opening the eyes or with mental concentration (Pizzagalli, 2007). Due to this behavior they

have been long considered as “idling-rhythms” (Pfurtscheller et al., 1996). However, recent

studies have characterized a new form of alpha rhythm over the anterior-frontal-midline

areas, whose amplitude (or power) increases with increased concentration and information

processing. This relatively newer version is also known as paradoxical alpha (Cooper et al.,

2003; Klimesch et al., 1999). Further, new evidence has come to light about the alpha sub-

bands (α1:8-10Hz, α2:10-12Hz, and α3:12-13Hz) and their functional dissociation with

increasing task demands (Klimesch, 1999).

The next frequency band is the beta band (13-30Hz). Earlier studies have shown

symmetric fronto-central distribution of beta rhythm, which increases with increasing at-

tentional and vigilance task demands (Murthy and Fetz, 1992). More recent M/EEG studies

in conjunction with fMRI, have shown negative correlation of alpha and beta activity with

blood-oxygen-level-dependence (BOLD) signal (Goldman et al., 2002; Laufs et al., 2003;

Yuan et al., 2010; Ritter et al., 2009; Scheeringa et al., 2011), indicating that decrease in

beta activity implies increased cortical activation. These negative correlations were found

in somatosensory/motor cortical areas. It has also been proposed that the beta-band activity

could be responsible for binding distributed somatosensory and motor cortical areas into a

functional network (Brovelli et al., 2004).

The last frequency band is the gamma band (30-50Hz). Activity in this band has

been linked to visual binding (Tallon et al., 1995; Csibra et al., 2000; Gruber et al., 2006;

Engel and Singer, 2001), attention (Jensen et al., 2007; Bichot et al., 2005; Fries et al.,

2001; Lakatos et al., 2008), arousal (Balconi and Lucchiari, 2008; Müller et al., 1999),

learning and memory (Medendorp et al., 2007; Jokisch and Jensen, 2007; Gruber et al.,

2004), and even consciousness (Engel et al., 1999; Melloni et al., 2007; Singer, 2001).

Further, the hemodynamic response in fMRI has also been shown to positively correlate
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with the activity in gamma band and this activity has been shown to explain the variance in

the BOLD signal (Scheeringa et al., 2011).

Based on these and myriad of other studies on gamma band activity (after the

paradigm shifting study of ”binding-by-synchrony” (Singer, 1993)), it may seem that gamma

band is behind everything our brain does. However, it is important to note that the inter-

pretation of high-frequency activity from the scalp-recorded EEG is difficult (Menon et al.,

1996; Nunez and Srinivasan, 2010), since such an activity is almost always accompanied by

muscular (Whitham et al., 2007), saccadic (Yuval-Greenberg et al., 2008 also see Schwartz-

man and Kranczioch, 2010), and other artifacts. To add to the interpretation issues, gamma

band (and other higher frequencies) have been shown to provide different cognitive func-

tions in different experimental settings (Tallon-Baudry, 2009). Further complexifying the

issue is the fact that multiple frequency bands (e.g. theta and gamma) can interact to provide

completely different set of cognitive functions than the usual “binding” (Tallon-Baudry,

2009). Hence, extreme care should be taken and all the factors should be considered, in

order to safely interpret spectral analysis results for high-frequency bands.

Given the studies defining functional roles for each band, it seems possible (at least

to some extent) to decipher the mechanisms underlying the experiment at hand, based on

spectral analysis. It is especially useful in experimental designs where the data are contin-

uous in nature, i.e. without any events/trials (such as resting state or meditation data).

4.1.2 Why spectral analysis of meditation?

Focused-attention meditation involves sustaining focus on an object or a phenomenon (Wal-

lace, 2006). Previous studies have shown that the participants take a while to reach such a

meditative state (Baijal and Srinivasan, 2010). Hence, to understand the mechanisms un-

derlying meditation, most studies use continuous data collection strategy (Cahn and Polich,

2006), thereby not disrupting the meditation process every now and then with trials. But,

no trials means that the event related measures (e.g. ERP) could not be used to under-
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stand the temporal dynamics of the task. However, in such cases spectral analysis can be

used to determine the changes in oscillatory cortical activity (in the frequency domain) and

these changes can be mapped to different functional brain states, which in concert with

the task structure at hand (and other observations) may reflect the recruitment of brain re-

sources (Pizzagalli, 2007). Further, using a dense EEG sensor array, detailed spatio-spectral

changes can also be assessed using spectral analysis.

4.1.3 What do we already know about oscillations in meditation?

There is an increasing recognition that meditation can play an important role in the cul-

tivation of attention and emotion regulation in both normative and clinical contexts (Lutz

et al., 2008a; Slagter et al., 2011). Over the past 55 years many studies have attempted

to characterize the brain activity patterns that occur during meditation. Such patterns may

reflect effects of contemplative training that are ultimately expressed as trait changes in be-

havior. Following is a very brief overview of some of the continuous EEG studies done on

meditation (for detailed review see Cahn and Polich, 2006).

Starting with the early results on meditation, increased global alpha-band power

was often observed in meditators when meditation was compared with rest (or other con-

trol conditions; Cahn and Polich, 2006; Aftanas and Golocheikine, 2001; Deepak et al.,

1994; Wallace, 1970; Taneli and Krahne, 1987; Dunn et al., 1999). Further, even during

rest the alpha-band power was found to be higher in meditators as compared to control par-

ticipants (Cahn and Polich, 2006; Travis, 1991; Aftanas and Golocheikine, 2001; Deepak

et al., 1994), thereby indicating both state and trait changes in long-term meditators. It is

important to note, however, that the trait changes associated with alpha-band power were

later suggested to be due to the individual differences, i.e. perhaps long-term meditators

had more relaxed personality to begin with (Cahn and Polich, 2006). Further, recent studies

on meditation do not show an increase (some rather show a decrease) of alpha-band power

even during meditation, especially when counterbalanced controlled relaxation conditions
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are used for comparison (Cahn and Polich, 2006; Benson et al., 1990; Travis and Wallace,

1999; Jacobs and Lubar, 1989; Pagano et al., 1983). As opposed to alpha-band power, alpha

frequency has been repeatedly shown to be reduced during meditation (Cahn and Polich,

2006; Banquet, 1973; Taneli and Krahne, 1987; Deepak et al., 1994) and rest (Cahn and

Polich, 2006; Aftanas and Golocheikine, 2001; Stigsby et al., 1981) in experienced medita-

tors.

Theta band activity, mainly the frontal-midline theta (Fmθ) (Baijal and Srinivasan,

2010; Aftanas and Golocheikine, 2001; Hebert and Lehmann, 1977), has also been found

to increase especially during concentration meditation (Jacobs and Lubar, 1989; Baijal and

Srinivasan, 2010; Aftanas and Golocheikine, 2001; Banquet, 1973; Pagano et al., 1983).

However, this effect could not be reproduced in some studies (Dunn et al., 1999), rather

they showed an opposite effect - more frontal theta for mindfulness meditation than the

concentrative kind.

Gamma band activity has also been associated with meditation training. Early stud-

ies on meditation have shown widespread increase in high-frequency activity (20-40Hz)

during meditation (Cahn et al., 2010; Banquet, 1973; Anand et al., 1961; Das and Gastaut,

1955). The gamma band activity has also been used to dissociate between advanced and

novice meditation practitioners and to define deep meditation states in experienced medita-

tors (Banquet, 1973; Das and Gastaut, 1955). More recent a study by Lehmann et al. (2001)

showed that activity in gamma band can reliably distinguish between different meditative

states (in a single individual). Another recent study showed that long-term Buddhist medi-

tation practitioners had a markedly increased gamma-band power (as compared to baseline

rest) after engaging in compassion meditation (Lutz et al., 2004). Lastly, a very recent work

by Cahn et al. (2010) showed increased occipital gamma-band power, during meditation

as compared to rest, in long-term Vipassana meditators. Although meditation seems to af-

fect high frequencies, it is also important to note that the gamma-band activity has always

been marked as the hardest one to be measured using scalp-recorded EEG, due to muscular
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artifacts and other issues (Nunez and Srinivasan, 2010). Furthermore, these self-induced

high-frequency oscillations have also been a center of debate (Lansky and St Louis, 2006)

regarding whether meditation is an epileptogenic (Jaseja, 2005, 2006) or an antiepileptic

process (Orme-Johnson, 2006; Fehr, 2006).

Altogether, it is difficult to come to consensus about how meditation does what it

does. The overall pattern, however, is that meditation influences oscillatory activity in the

brain, especially in alpha, theta, and gamma bands (Cahn and Polich, 2006).

4.1.4 Why is there so much variability in the findings?

Several factors contribute to the large variability in results. First, several different medi-

tation techniques were assessed. Even though meditation techniques can be classified as

“mindfulness” or “concentrative” (Cahn and Polich, 2006; Davidson and Goleman, 1977;

Lutz et al., 2008a) 1. It is not a binary classification and the techniques actually fall into a

spectrum between the two extreme ends of maintaining open-monitoring and one-pointed

focus (Cahn and Polich, 2006; Wallace, 1999; Andresen, 2000). Further, this classifica-

tion is done based only upon one factor - “how attention processes are directed” (Davidson

and Goleman, 1977). There could be several other factors to consider, e.g., based on the

benefits of meditation (such as stress reduction, emotion regulation, etc.) rather than the

technique itself (Cahn and Polich, 2006). Lastly, it is also important to consider whether

these two extreme types of meditation really are that different from each other or are there

any common factors that can be used to unite all these findings. As per Buddhist literature,

both open-monitoring and one-pointed focus need samprajanya (the faculty of “meta”

awareness (Lutz et al., 2006)) to make sure that the goal is being met. Hence, some kind

of theoretical dimensional reduction analysis (like PCA in signal processing) is required to

reduce the variance in these findings.
1Some researchers feel that there should be a third class for transcendental meditation (TM R©; Travis and

Shear, 2010). Currently TM R© is considered as to be a concentrative type of meditation (although effortless
concentration; Cahn and Polich, 2006)
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Second, the individual participants enrolled in these studies differ greatly in terms of

degree of meditation practiced, age, gender, socio-economic factors, and so on. For exam-

ple, it is known that aging affects neurophysiological measures (especially scalp recorded

EEG; Polich, 1997). Thus, care should be taken while comparing studies of elderly medita-

tors with studies of young meditators. Another related point is to make sure that the control

participants are adequately matched with meditators, to avoid making wrong claims about

effects of meditation practices. Further, it has also been shown that long-term meditators

have reduced alpha frequency (Cahn and Polich, 2006; Aftanas and Golocheikine, 2001).

Hence, if individual alpha frequencies are not measured before analysis and each frequency

band is not defined based on the individual alpha differences, then one might wrongly at-

tribute changes in alpha-band to that of theta. According to Cahn and Polich (2006) only

one study (Aftanas and Golocheikine, 2001) had taken these differences into account.

Third, early studies did not employ sophisticated measures and as a result their find-

ings and analysis do not generalize (Cahn and Polich, 2006). Hence, extreme care should

be taken while comparing and hypothesizing based on very early studies of meditation.

Fourth, even though recent advanced studies on meditation (Lutz et al., 2004; Cahn

et al., 2010) have well characterized practices, expert practitioners, and modern methods

they still did not examine the longitudinal changes in brain activation associated with med-

itation. Such an examination is crucial to properly understand the evolution of oscillations

with meditation training. Further, it can also help in defining the spectrum of cortical activ-

ity results starting from beginners on one end to intermediate practitioners to more advanced

adepts at the other end.

Fifth, in future studies the variability in meditation results can be reduced by ap-

plying systematic correlation analysis between cortical activity findings and other measures

(e.g. self-reported measures and behavioral data on attention- and emotion-related tasks).

These correlations will not only help ground the findings as neuronal, by providing more

credibility to them, but will also help weed out the findings that might be artifactual.
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Altogether, comprehensive empirical and theoretical studies are required to advance

our understanding about what mechanisms underlying meditation and how they provide

enhanced cognitive control.

4.1.5 Approach

In the present study two three-month meditation retreats were conducted in a random-

ized wait-list design using matched control and training groups that examined both trait

(MacLean et al., 2010; Sahdra et al., 2011; Jacobs et al., 2010) and state variables during

intensive practice of focused-attention meditation (Shamatha-Project, 2007). See section

2.3 for complete details.

Individual differences were kept in check by matching the training and control

groups on age, sex, gender, socio-economic, educational and other features (Shamatha-

Project, 2007). Further, individual alpha frequency was estimated (during rest) to define

the frequency bands separately for each participant, thereby controlling for the individual

neurophysiological differences (see section 4.2.2 for more details). A drop in individual

alpha frequency was found in training groups; the results are presented in Experiment-1.

Longitudinal testing was done using nonparametric cluster-based permutation ap-

proach to understand the evolution of cortical changes across the retreat. Both spatial (73-

channel EEG) and spectral dimensions were tested longitudinally. Reduced alpha- and beta-

band power was found in both the training groups; the results are presented in Experiment-2.

Third, relations were found using systematic correlation analysis between longitu-

dinal changes in cortical activity and participants’ performance in other attention-related

tasks. Experiment-3 provides results based on this analysis.

Altogether, a comprehensive empirical analysis was done to explore the cortical

correlates of intensive meditation training. Section 4.4, discusses the implications of this

research and provides future directions for it.
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4.2 Methods

In this section the spectral analysis pipeline is described in details, along with brief in-

formation about data, participants, task, and meditation training (see Chapter 2 for more

details).

4.2.1 Data acquisition and preparation

A high-density EEG cap was used with 88 equidistant scalp locations (later converted to

standard normalized 10-10 system of 81-channels (Chatrian, 1985) for analysis). However,

eight channels from the 10-10 montage were rejected because the original 88-channel cap

did not cover the scalp locations of these eight channels; hence, finally only 73-channels

were used in the final setup. Three dimensional (3D) location of the electrodes on each

participant was determined with a magnetic digitizer. The data was collected using the

Biosemi Active Two system (BIOSEMI, 2006), at a sampling rate of 2048 Hz.

Data preprocessing was done using second-order blind source separation (Belouchrani

et al., 1997) and semi-automatic meticulous artifact removal tool (SMART; developed in

this dissertation). Using SMART components related to muscular activity, ocular activity,

and interference from power lines were removed, without loosing the neural components,

as discussed in detail in Chapter 3.

4.2.2 Spectral analysis pipeline

After data acquisition and preprocessing, 73-channel EEG data during meditation and rest

(pre- and post-meditation) was analyzed using the six-step spectral analysis pipeline shown

in Figure 4.2(a). Each step is described below in detail.

Scalp current density estimation

Scalp-recorded EEG data is measured as a voltage difference between a given electrode

and the recording reference. The choice of reference has a large effect on the EEG wave-
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forms (Lehmann, 1987; Dien, 1998). Thus, a reference-free transformation is required to

avoid choosing a single or multiple electrodes as reference. Re-referencing is an impor-

tant methodological consideration that is still not often recognized in the EEG literature

(Pizzagalli, 2007). In this dissertation, scalp-current density (SCD, also known as surface

Laplacian) was computed using the CSDToolbox (Kayser and Tenke, 2006; Kayser, 2009)

for Matlab (MATLAB, 2010), as the second derivative of the voltage surface to transform

the data to a reference-free representation (Figure 4.2(b)). SCD helps in visualizing the

focal patterns of occipital activity by acting as a spatial filter (Nunez and Pilgreen, 1991).

SCD transformation also helps reduce the effects of volume conduction (Pizzagalli, 2007;

Winter et al., 2007).

Power spectrum estimation

The EEG signal is assumed to be stationary2 for up to 3.5 seconds (Gasser and Molinari,

1996). Thus, the power spectrum should be calculated on segments shorter than 3.5 sec-

onds. Further, at least one minute of data are required to get stable power spectrum estima-

tion (Nuwer et al., 1999a). Thus, the data (six-minutes during meditation and one-minute

for each rest condition) was divided into segments of two-seconds duration with 75% over-

lap, thereby providing approximately 119 segments for every one-minute of data. Power

spectra were then calculated for each of these segments using multi-tapered power spectral

density estimation method (Mitra and Pesaran, 1999; Oostenveld et al., 2011). Later, aver-

aged power spectrum was calculated over these segments for each condition. It is important

to note that before calculating the power spectra, a quality check was implemented (as part

of the preprocessing step) to weed out segments with leftover artifacts (e.g. rare signal

jump etc.) using individually calculated amplitude and gradient thresholds (see Chapter 3

for more details).
2A time-series is stationary if its statistical properties (e.g., mean, variance) do not change over time.
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IAF calculation and individual frequency bands

Individual alpha frequency (IAF) is the frequency at which the alpha-band power peaks

(usually seen clearly in an eyes-closed state; Klimesch, 1999). Estimating IAF is cru-

cial, since the alpha frequency shows large inter-individual (Klimesch, 1999) and intra-

individual differences (Cahn and Polich, 2006; Aftanas and Golocheikine, 2001; Klimesch,

1999). If fixed-range frequency bands are used, one can wrongly attribute changes in

alpha-band power to that in theta (and vice-versa) (Figure 4.2(c); Cahn and Polich, 2006).

Thus, lower frequency bands were individualized by taking IAF as an anchor. IAF can

be estimated using a center of gravity method between certain frequency range f1 − f2Hz

(Klimesch, 1999),

αIAF =

∑f2
i=f1

(a(fi) ∗ fi)∑f2
i=f1

a(fi)
, (4.1)

where power-spectral estimates at fi are denoted by a(fi). Also f1 was set to 7 Hz

and f2 to 14 Hz. The αIAF values were calculated for each channel and then were collapsed

across all channels to get a single IAF value per subject for statistical analysis. IAF values

during baseline resting state (or pre-meditation rest) were used to define individualized

frequency bands (Table 4.1) separately for each participant and at each test-point.

Nonparametric cluster-based permutation testing

The dissertation is aimed at finding the longitudinal changes in cortical activity associated

with intensive meditation training. However, finding such changes in a rich spatio-temporal

dataset is statistically hard due to the multiple comparisons problem (MCP). For example,

to assess changes in any one frequency-band power for all the 73 channels and at all three

test-points (beginning, middle, and end of the retreat) would require 73× 3 = 219 multiple

comparisons. Now, for a predefined critical alpha level (e.g. p = 0.05), one needs to

calculate a corrected critical alpha level to account for 219 multiple comparisons. A simple

method to correct for MCP, without taking into account any spatial information, would be to
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Frequency range for bands
Fixed width IAF based

Delta 1− 4 Hz 2− 0.4× αIAF Hz
Theta 4− 8 Hz 0.4× αIAF − 0.6× αIAF Hz
Alpha 8− 14 Hz 0.6× αIAF − 1.2× αIAF Hz

Alpha1 8− 10 Hz 0.6× αIAF − 0.8× αIAF Hz
Alpha2 10− 12 Hz 0.8× αIAF − 1.0× αIAF Hz
Alpha3 12− 14 Hz 1.0× αIAF − 1.2× αIAF Hz

Beta 14− 30 Hz 1.2× αIAF − 30 Hz
Gamma 30− 50 Hz 30− 50 Hz

Table 4.1: Frequency band definitions: fixed-width and IAF-based bands. In total, eight
bands were analyzed in this study. The bands were defined for each individual and at each
test-point.

use Bonferroni correction. But Bonferroni is an overly conservative approach, and it would

bring down the critical alpha value to p = 0.05/219 = 0.00023, and sensitivity would be

lost.

Thus, to avoid being overly conservative and at the same time include spatial infor-

mation, nonparametric cluster-based permutation testing (Maris and Oostenveld, 2007) was

used to find out spatio-temporal changes in spectral band power. In contrast to parametric

testing, nonparametric testing can solve the MCP in a simple way (Maris and Oostenveld,

2007). Nonparametric testing is powerful for two reasons: (a) validity of these tests is

not dependent on the distribution of the data; and (b) any test statistic can be used to base

the statistical inference (t- or F-statistic or any other). The later reason allows us to use

a cluster-based (to avoid spatial MCP) F-statistic (to avoid temporal MCP) with multiple

comparisons. Further, this approach is better than the traditional method of dividing the

scalp channel into various regions and calculating parametric statistics based on an aver-

age value from all those regions. As opposed to a priori division of scalp into regions, it

considers clusters of channels across scalp that are significantly different in conditions un-

der consideration. Thus, if an effect takes place between two traditional regions (Figure
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4.2(d)), the cluster approach will provide more power, and it is not necessary to divide the

scalp into an optimized set of regions. Furthermore, dividing scalp channels into regions

and then calculating average spectral power over regions to do the parametric analysis de-

feats the purpose of having high-density EEG cap in the first place.

This non-parametric cluster-based approach is becoming standard in MEG and EEG

(M/EEG) analysis (Capilla et al., 2011; Jung et al., 2011; Altmann et al., 2009; Grützner

et al., 2010) and has been shown to work for analyzing changes in power spectra (Maris

and Oostenveld, 2007) and coherence (Maris et al., 2007) in M/EEG data. The algorithm

for finding changes in spectral band power is presented in Algorithm 2 and 3, based on

previous work by Maris et al. (2007). Fieldtrip (Oostenveld et al., 2011), the open-source

toolbox for Matlab R©(MATLAB, 2010), was used to do these statistical tests.

Algorithm 2 Group-level nonparametric statistical test for each frequency band fi
Null Hypothesis(H0): Spectral power in fi does not differ across the three test-points

1. Collect the spectral power in fi for all the 73-channels and all the subjects, during the
three test-point in a single super-set.

2. Randomly partition the super-set to three equal sets.

3. Calculate the cluster-based test-statistic (using Algorithm 3).

4. Repeat steps 2 and 3 a large number of times (e.g. 10,000) and construct a histogram
of the test statistics.

5. Using the actually observed test-statistic and the histogram from step 4, estimate the
proportion of random partitions that resulted in larger test-statistic than the observed.
This proportion is the p-value.

6. If the p-value is less than the critical alpha-level, then conclude that the null hypoth-
esis H0 is rejected and that the power in fi band is different across test points.
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Algorithm 3 Cluster-based test statistic

1. For every channel, compare the spectral power in fi band across the three test-points,
using a F-statistic.

2. Select all channels, with F-statistic value larger than some threshold.

3. Cluster the selected channels in connected sets on the basis of spatial adjacency.

4. Calculate the cluster-level F-statistic, by taking a sum over all F-values within a clus-
ter.

5. Output the largest of the cluster-level statistic.

Parametric testing of clusters

Although non-parametric cluster-based permutation approach works well with M/EEG data,

it cannot handle more than one independent variable in the experimental design. This is be-

cause it is not possible to construct an exact permutation test for interactions, due to lack

of exchangeable units to permute. The current work has at least two independent vari-

ables - Group (training vs. control) and Test-points (beginning, middle, and end of retreat).

The previous subsection illustrated how non-parametric approach can be used to handle

the second independent variable (Test-points). False discovery rate (FDR; Benjamini and

Hochberg, 1995) is used after finding clusters to control for testing each group, frequency

band, and state (rest or meditation) individually.

However, it is also important to explore the interactions between independent vari-

ables. Especially between group and test-points (for Retreat 1) and between retreat and

test-points (for Retreat 2). In order to find such interactions a hybrid approach was created.

Once the clusters were found and were corrected using FDR-based correction, the average

spectral power for that cluster was extracted and log-transformed (to get normal distribution

(Pizzagalli, 2007; Davidson et al., 2000)). Later this log-transformed spectral power was

used to calculate interaction between group/retreat and test-points using parametric analysis
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of variance approach (ANOVA) 3.

Thus, using this hybrid approach the best of both approaches (non-parametric and

parametric) was achieved.

4.2.3 Subjects

Thirty participants in the retreat group (RG1), and another thirty in the wait-list control

group (CG) were matched on age, sex, handedness, psychological measures, attention per-

formance, and previous meditation experience (see Chapter 2 for more details). Retreat

participants stayed at a remote mountain retreat center (Shambhala Mountain Center, CO)

during the three months of training. Control group participants were flown to the retreat

center for testing during Retreat-1, and later comprised as participants for Retreat-2 (RG2).

Thus, data from the control group in Retreat-1 would act as a control for retreat group in

Retreat-1, and as a control for themselves in Retreat-2. Due to technical difficulties (unus-

able data, missing EEG files, etc.), data is analyzed only for twenty-two subjects in each

group (RG1, CG, and RG2).

4.2.4 Task

The participants were assessed at several psychological tasks, at the three test-points (be-

ginning, middle, and end) during the retreats. The spectral analysis, however, is done on

the task where participants practiced eyes-closed focused-attention meditation (twelve min-

utes) and rest (one minute before and after meditation). Please refer to Chapter 2 for details

about the task structure. Due to technical difficulties only first six minutes of EEG data was

recorded during meditation. Hence, the analysis was based on three eyes-closed states: one-

minute of pre-meditation rest, six-minutes of focused-attention meditation, and one-minute

of post-meditation rest.
3Parametric approaches are well suited to analyze datasets with multiple independent variables (Tabachnick

et al., 2001)
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Figure 4.2: Spectral analysis of oscillatory activity (Color figure). (a) After preprocessing,
there is a six-step pipeline for spectral analysis. These steps were implemented to make
sure the data was as free of interference by artifacts as possible. (b) This image illustrates
why scalp current density (SCD) estimation is important. During eyes-closed conditions,
huge alpha activity can be seen in the occipital regions. Thus, when the average reference
is subtracted from each channel, artifactual negative dips (as seen in central regions on left
topographical map) can result. However, such artifacts are avoided in SCD and a reference-
free estimation is achieved (right topographical map). (c) This plot shows why individual
alpha frequency (IAF) estimation is important. With age, the alpha peak frequency (or
IAF) varies, it increases during development and then decreases with aging (Klimesch,
1999). Thus, in studies like current one, where the participants’ age varies from 22-69
years, it is important to estimate IAF and define frequency bands based on IAF as an anchor.
Otherwise, the changes in spectral power in one band (e.g. alpha) can be wrongly attributed
to other frequency band (e.g. theta; Cahn and Polich, 2006). (d) This image shows why non-
parametric cluster-based approach (on right) is better than traditional division into regions
(on left). Assuming there is an effect in the highlighted channels (colored red, on right),
the traditional approach will have less statistical power, after division into regions, than the
cluster-based approach.
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4.2.5 Meditation Training

The participants practiced meditation under the guidance of Dr. Alan Wallace. Each par-

ticipant practiced for several hours each day. Training consisted of sustaining attention to

breath, mental events, or awareness (on average six hrs/day combined) and generating ben-

eficial aspirations (on average one hr/day) (Wallace, 2006). Please refer to Chapter 2 for

details about the training.

4.3 Results

To understand how cortical oscillations change with intensive meditation training, over the

period of three months, a set of three experiments were run. First, changes in IAF during

rest and meditation were measured to test the hypothesis that alpha frequency reduces with

meditation training. Second, longitudinal changes in cortical activity of participants and

controls were analyzed using nonparametric cluster-based permutation testing. The clus-

ters retrieved from this approach were then log-transformed and analyzed parametrically to

explore the group/retreat by test-point (three month period) interactions. The hypothesis

here was that given the nature of the meditation practice, increased activation should be

found in attention-related areas. Further, the intense practice (on average 6 hrs/day) should

induce changes in cortical activity even during rest (a.k.a. trait changes). Third, the cortical

activity changes observed in the first two experiments were systematically correlated with

psychological function and performance during attention-related tasks. The goal for this

experiment was to ground changes in cortical activity into behavioral interpretations.

4.3.1 Experiment 1: Longitudinal changes in individual alpha frequency

One of the consistent findings in meditation research literature is that of reduced alpha

frequency in meditators (Cahn and Polich, 2006). Thus, the hypothesis for this experiment

was that similar reductions (in IAF) should also be seen in the retreat groups (RG1 and
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RG2) due to training. IAF values were calculated for each of the three states: pre-meditation

rest, meditation, and post-meditation rest. Average values (and standard deviations), across

participants, in each group, state, and test-point are presented in Table 4.2.

For the first retreat, repeated-measures ANOVA with between-subjects factors re-

vealed an effect of state (F (2, 84) = 10.9, p < 0.001), test-point (F (2, 84) = 29.121, p <

0.001), and an interaction between group and test-points (F (2, 84) = 10.753, p < 0.001).

The interaction was further explored using post-hoc analysis (Student’s t-test, Bonferroni-

corrected for nine tests). Collapsed across states, RG1 showed a drop in IAF value at the

middle and end test-points (as compared to the beginning of the retreat). CG showed no

difference in IAF across test-points. However, when CG became RG2, a similar drop as in

RG1 was revealed in IAF values (Figure 4.3).

Altogether, the reduction previously seen only in long-term meditators was also

found with just three months of intensive meditation training. Further, the reduction in IAF

did not correlate with the meditation experience prior to the retreat and it was replicated in

both the retreats. Correlation analysis (section 4.3.3) will shed some light on the relation

between this reduction and the behavioral and self-reported measures. The next experiment

was setup to explore the longitudinal changes in cortical activity associated with training,

as described below.

4.3.2 Experiment 2: Longitudinal changes in spectral power

Changes in cortical activity, during rest and meditation, were assessed by measuring lon-

gitudinal changes in spectral power across all the channels. Given the focused-attention

style of meditation (during training and assessment), increased activity in attention-related

networks due to training was predicted. Further, provided the intense nature of practice

(on average 6 hrs/day), changes in cortical activity even during rest states (both pre- and

post-meditation) was also predicted. This change in trait itself will be a strong effect than

the previously shown short-term carry over effects of meditation (Lutz et al., 2004).
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Figure 4.3: Change in Individual Alpha Frequency (IAF), across test-points (Color figure).
Top row: shows IAF values, averaged across participants and states, in each group and at
each test-point. Error bars are standard errors of the mean. Significant reductions in IAF
were found in both retreat groups at T2 and T3 (as compared to T1). No change was found
in the CG. Bottom row: Power spectrum, averaged over across participants and states, in
each group and at each test-point. Close up at around 10 Hz to see the change in IAF in RG1
and RG2 at T2 and T3 (as compared to T1). No such change is evident in CG. Thus, even
though a small effect (in terms of value) in IAF was found, it was a strong effect (in terms of
statistical power). Although consistent effect in experienced meditators, its biological basis
are unknown. Computational modeling will be employed in Chapter 5 to better understand
its basis.
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RG1 CG RG2
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

R1 T1 10.012 0.630 9.848 0.650 9.803 0.593
T2 9.734 0.603 9.790 0.660 9.439 0.676
T3 9.794 0.629 9.842 0.626 9.512 0.656

M T1 10.058 0.554 10.010 0.645 9.949 0.610
T2 9.785 0.595 9.916 0.671 9.531 0.685
T3 9.845 0.592 9.959 0.634 9.614 0.740

R2 T1 10.049 0.621 9.998 0.680 9.993 0.609
T2 9.767 0.634 9.905 0.669 9.524 0.723
T3 9.843 0.648 9.982 0.694 9.550 0.670

Table 4.2: Mean and standard deviation values of IAF for each state (pre-meditation rest
(R1), meditation (M), and post-meditation rest (R2)), test-point (beginning (T1), middle
(T2), and end of retreat (T3)), and group. Drop in IAF can be seen for each state in the
retreat groups, across test-points.

These longitudinal changes were assessed using a hybrid approach (Figure 4.4). In

this way, first a non-parametric cluster-based permutation testing was performed to find

spatio-spectro-temporal clusters that change significantly due to training, in each group

separately. Second, a parametric approach was employed on the log-transformed spectral

power extracted from the clusters to measure the main effects and interactions (between

group/retreat and test-points). Two different parametric methods were used for each retreat:

(1) a repeated-measures ANOVA with between-subject factors to compare spectral band

power in RG1 and CG; and (2) a repeated-measures ANOVA with within-subject factors to

compare spectral-band power in CG and RG2.

Results from this hybrid approach are shown in Figures 4.5, 4.6, 4.7, 4.8, 4.9, and

4.10. Results from each state are discussed below.

Pre-meditation rest During the eyes-closed pre-meditation rest state, changes in spectral

power (across test-points) were found in both the retreat groups. No cluster was found in

the control group. The changes were found in two frequency bands: alpha3 and beta band.
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Figure 4.4: Experimental setup to measure longitudinal changes in spectral power. Three
groups of participants were tested (RG1 and CG in Retreat1 and RG2 in Retreat2 (i.e. CG
when they returned for their own retreat)). Each group was tested thrice during the three-
month retreat period: beginning (T1), middle (T2), and end (T3). After estimating spectral
power in each band, three null hypotheses were tested (H1

0 , H2
0 , and H3

0 ) using the non-
parametric cluster-based permutation analysis, followed by False Discovery Rate (FDR)
correction (Benjamini and Hochberg, 1995) for 72 high level nonparametric tests. Later,
log-transformed spectral power (extracted from the clusters found by nonparametric analy-
sis) was tested using parametric approach to measure the interactions between group/retreat
and test-points. Overall, this setup provides a hybrid statistical approach to do longitudinal
analysis of spectral power.
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First, in the alpha3 band (1.0×IAF-1.2×IAF Hz), changes in the spectral power,

using cluster analysis, were observed only in RG2 at the right-anterior-frontal region (Fig-

ure 4.5). No effect was found for CG or RG1 in this band. Further, comparing CG

and RG2, using the log-transformed spectral power extracted from the cluster location

found in RG2, repeated-measures ANOVA with within-subjects factors revealed main ef-

fect of retreat (F (1, 21) = 25.458, p < 0.001) and an interaction between retreat and test-

point (F (2, 42) = 5.822, p < 0.01). The interaction was further explored using post-hoc

Student’s t-test method (Bonferroni-corrected for six tests). Significant drop in alpha3-

band power was found at the end of retreat (as compared to beginning of retreat) in RG2

(p < 0.001). No change was found in CG for the same cluster location. It is important to

note that CG and RG2 are the same individuals, simply tested when they were controls vs.

when they were subsequently (6 months later) engaged in their own retreat.

Another similar cluster was found in the full alpha band (0.6×IAF-1.2×IAF Hz),

again only in RG2. However, this cluster just missed (pcluster = 0.0062) the critical alpha

level set by FDR (pcritical
cluster <= 0.0046). For completeness the cluster and its post-hoc results

are shown in Figure 4.6.

Second, in the beta band (1.2×IAF-30 Hz), changes in the spectral power, using

cluster analysis, were observed in both RG1 and RG2. However, as before, no such cluster

was found in CG. In RG1, the cluster location was more posterior than RG2. But, in both

retreats, clusters were found at bilateral-midline regions (Figure 4.7). Further, RG1 and CG

were compared using the log-transformed spectral power extracted from the cluster location

found in RG1. Repeated-measures ANOVA with between-subjects factors revealed main

effects of group (F (1, 42) = 4.693, p < 0.05) and test-points (F (2, 84) = 12.471, p <

0.001) and an interaction between group and test-point (F (2, 84) = 8.675, p < 0.001).

This interaction was further explored using post-hoc Student’s t-test method (Bonferroni-

corrected for six tests) and a significant drop in beta-band power was found at the middle

(p < 0.0000001) and at the end (p < 0.001) of retreat (as compared to the beginning of
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retreat) in RG1. Interestingly, an increase in beta-band power was found in CG at the end

(p = 0.0076) of retreat (as compared to the middle of retreat). It is important to note that

no cluster was found in CG itself (hence, tested on the channels found in RG1). Further,

this small effect in CG was found in the opposite direction (increase in beta power) to that

found in retreat groups. Thus, it is possible that this effect was found only due to multiple

comparisons and is not a true effect.

CG and RG2 were also compared using the log-transformed beta-band power ex-

tracted from the cluster location found in RG2. Repeated-measures ANOVA with within-

subjects factors revealed main effects of retreat (F (1, 21) = 12.758, p < 0.01) and test-

points (F (2, 42) = 5.384, p < 0.01) and an interaction between group and test-point

(F (2, 42) = 11.965, p < 0.001). The interaction was further explored using post-hoc

Student’s t-test method (Bonferroni-corrected for six tests) and a significant drop in beta-

band power was found at the middle (p < 0.0001) and the end (p < 0.0001) test-points

(as compared to the beginning of retreat) in RG2. No reduction or increase was found in

beta-band power across test-points for CG.

Meditation During the six minutes of focused-attention meditation (on breath sensa-

tions), changes in spectral band power were observed only in the retreat groups. No cluster

was found in the control group. The changes were again found in alpha3 and beta frequency

bands.

First, in the alpha3 band (1.0×IAF-1.2×IAF Hz), cluster analysis of spectral power

revealed significant changes in RG2 at frontal-midline channels (Figure 4.8). No cluster

was found in RG1 or CG. Further, CG and RG2 were compared using log-transformed

spectral power extracted from the cluster (found in RG2) and repeated-measures ANOVA

with within-subjects factors revealed significant interaction between retreat and test-point

factors (F (2, 42) = 5.504, p < 0.01). This interaction was further explored using post-hoc

Student’s t-test method (Bonferroni-corrected for six tests) and a significant drop in alpha3-

band power was observed at the end (p < 0.001) of retreat (as compared to the beginning
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Figure 4.5: Reduction in alpha3-band power during pre-meditation rest (Color figure). No
clusters were found for RG1 or CG. However, right-anterior-frontal cluster was found for
RG2 (pcluster = 0.0046). The topographic plot shows F-statistic for testing all three test-
points. The critical alpha level set by FDR procedure is pcritical

cluster <= 0.0046. Further,
retreat by test-point interaction was found using parametric analysis of this cluster (in RG2
and CG). Using Student’s t-test method (Bonferroni-corrected for six tests), significant drop
in alpha3 power was found at T3 (compared to T1) in RG2 (p < 0.001). No change was
found in CG for the same cluster location. Overall, the result was in line with the second
hypothesis about the trait effect to resting states.
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Figure 4.6: Weak effect Reduction in alpha-band power during pre-meditation rest (Color
figure). This cluster just missed (pcluster = 0.0062) the critical alpha level set by FDR
(pcritical

cluster <= 0.0046). FDR procedure can be overly conservative at times, and hence for
completeness the results are included here. Fronto-central-midline cluster was found only
in RG2. The topographic plot shows F-statistic for testing all three test-points. Further,
comparing CG and RG2, using the log-transformed spectral power extracted from the clus-
ter location found in RG2, repeated-measures ANOVA with within-subjects factors revealed
main effect of retreat (F (1, 21) = 4.854, p < 0.05) and an interaction between retreat and
test-point (F (2, 42) = 5.790, p < 0.01). The interaction was further explored using post-
hoc Student’s t-test method (Bonferroni-corrected for six tests). Significant drop in alpha
power was found at T3 (compared to T1) in RG2 (p < 0.001). No change was found in CG
for the same cluster location. Again, the result was in line with the second hypothesis.
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Figure 4.7: Reduction in beta-band power during pre-meditation rest (Color figure). No
clusters were found for CG. However, bilateral-posterior-midline cluster was found for RG1
(pcluster = 0.000) and midline-fronto-central-parietal cluster for RG2 (pcluster = 0.0001).
The topographic plot shows F-statistic for testing all three test-points. The critical alpha
level set by FDR procedure is pcritical

cluster <= 0.0046. Further, group by test-point interaction,
while comparing RG1 and CG, was found using parametric analysis of the cluster found in
RG1. Using Student’s t-test method (Bonferroni-corrected for six tests), significant drop in
beta power was found at T2 (p < 0.0000001) and T3 (p < 0.001) (compared to T1) in RG1.
Interestingly, a barely significant increase in beta power was found in CG at T3 (compared
to T2). While comparing RG2 and CG, using parametric analysis, for the cluster found in
RG2, a significant drop in beta power was found at T2 (p < 0.0001) and T3 (p < 0.0001)
(compared to T1). No change in cluster power was found in CG. Overall, similar effects of
beta-power reduction were found in both retreat groups and the results were in line with the
second hypothesis.
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of retreat). No change in alpha3-band power was observed in CG for this cluster.

Second, cluster analysis of the spectral power in beta band (1.2×IAF-30 Hz) re-

vealed significant changes in both the retreat groups. No change was found for the control

group. As in the case of pre-meditation rest, the location of cluster in RG1 was more

posterior than in RG2. However, in both the retreats, clusters were found at bilateral-

midline regions (Figure 4.9). Comparing RG1 and CG using parametric analysis of the log-

transformed spectral power, extracted from the cluster found in RG1, revealed main effects

of group (F (1, 42) = 5.013, p < 0.05) and test-point (F (1.7114, 84) = 8.008, p < 0.01)

and an interaction between group and test-point (F (1.711, 84) = 5.342, p < 0.05). The

interaction was further explored using Student’s t-test approach (with Bonferroni correc-

tion for six individual tests). A significant reduction (p < 0.0000001) in beta power was

found at the middle test-point (as compared to the beginning) and a non-significant reduc-

tion (p < 0.05 compared to Bonferroni critical pcritical = 0.0083) was found at the end

test-point (as compared to the beginning). No effect was found in the CG.

Similar parametric analysis between RG2 and CG, using the cluster found in RG2,

was performed and a repeated-measures ANOVA with within-subjects factor revealed main

effects of retreat (F (1, 21) = 18.75, p < 0.001) and test-point (F (2, 42) = 7.534, p <

0.01) and an interaction between retreat and test-point (F (2, 42) = 11.817, p < 0.001).

The interaction revealed no effect in the CG, but did reveal a significant drop in beta power

in RG2 at the middle (p < 0.001) and the end (p < 0.00001) of retreat (compared to the

beginning of retreat).

Post-meditation rest Finally, the post-meditation rest was analyzed and a cluster was

found in the beta band in RG2. No cluster was found for the CG or RG1. The cluster

was located at posterior-bilateral midline region (Figure 4.10). This location was in line

with the beta-band clusters found in other states. Parametric analysis between RG2 and CG
4Corrected using Greenhouse-Geisser method for violation of Sphericity assumption (Mauchly’s Sphericity

test p < 0.05)
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Figure 4.8: Reduction in alpha3-band power during focused-attention meditation (Color
figure). No clusters were found for RG1 or CG. However, midline-anterior-frontal cluster
was found for RG2 (pcluster = 0.0024). The topographic plot shows F-statistic for testing
all three test-points. The critical alpha level set by FDR procedure is pcritical

cluster <= 0.0046.
Further, retreat by test-point interaction was found using parametric analysis of this cluster
(in RG2 and CG). Using Student’s t-test method (Bonferroni-corrected for six tests), sig-
nificant drop in alpha3 power was found at T3 (compared to T1) in RG2 (p < 0.001). No
change was found in CG for the same cluster location. Overall, the reduction was in line
with the first hypothesis about increased cortical activity in the attention-related regions
during meditation.
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Figure 4.9: Reduction in beta-band power during focused-attention meditation (Color fig-
ure). No clusters were found for CG. However, bilateral-posterior-midline cluster was
found for RG1 (pcluster = 0.000) and midline-central-parietal cluster for RG2 (pcluster =
0.000). The topographic plot shows F-statistic for testing all three test-points. The critical
alpha level set by FDR procedure is pcritical

cluster <= 0.0046. Further, group by test-point inter-
action, while comparing RG1 and CG, was found using parametric analysis of the cluster
found in RG1. Using Student’s t-test method (Bonferroni-corrected for six tests), significant
drop in beta power was found at T2 (p < 0.0000001) (compared to T1) in RG1. However,
only a trend reduction (p < 0.05 compared to Bonferroni critical pcritical <= 0.0083) was
found at T3 (compared to T1) in RG1. No change was found in CG for the same cluster
location. While comparing RG2 and CG, using parametric analysis, for the cluster found in
RG2, a significant drop in beta power was found at T2 (p < 0.001) and T3 (p < 0.00001)
(compared to T1). No change in cluster power was found in CG. Overall, similar effects
of beta-power reduction were found in both retreat groups, indicating increased cortical
activity in the attention-related regions. 75



for this cluster revealed main effects of retreat (F (1, 21) = 17.737, p < 0.001), test-point

(F (2, 42) = 7.282, p < 0.01), and an interaction between retreat and test-point (F (2, 42) =

8.173, p < 0.01). Further, post-hoc Student’s t-test (with Bonferroni correction for six tests)

revealed a significant drop in beta power in RG2 at the middle (p < 0.0001) and the end

(p < 0.001) of retreat (as compared to the beginning). No change in beta-band power was

found in the control group.

Summary Altogether, reduced spectral power in two frequency bands (alpha3 and beta)

was found in both the retreat groups. The reduction was evident at the middle and the end

point of the retreat, as compared to the beginning. No significant change was found between

middle and end points of the retreat, indicating a step-wise drop in power. No cluster was

found in the control group, and parametric analysis also revealed no change in power for

the control group.

Reduction in alpha- and beta-band power has been related to increased cortical

activity (Goldman et al., 2002; Laufs et al., 2003; Yuan et al., 2010; Ritter et al., 2009;

Scheeringa et al., 2011). The results thereby indicate increased cortical activity in the re-

treat groups due to meditation training. Further, the clusters were located at the bilateral-

midline-parietal locations for the beta band and the anterior-frontal for the alpha3 band.

These areas have been previously implicated as attentional regions (Posner and Dehaene,

1994; Posner and Rothbart, 2007; Capotosto et al., 2009), hence substantiating the first hy-

pothesis that meditation training provides increased cortical activity in the attention-related

networks, even during resting states.

Regarding the second hypothesis, i.e. the trait effect of meditation training on rest-

ing states, the experiment found similar drop in alpha- and beta-band power during resting

states as found during meditation state itself. Further, the effect was seen in both pre-

meditation and post-meditation rest. This result indicates that the trait effect is not just

limited to a small duration of time after meditation (i.e. during post-meditation rest), but

also provides more generalized changes to the “default-mode” of the brain.
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Figure 4.10: Reduction in beta-band power during post-meditation rest (Color figure). No
clusters were found for RG1 or CG. However, posterior-midline cluster was found for RG2
(pcluster = 0.0002). The topographic plot shows F-statistic for testing all three test-points.
The critical alpha level set by FDR procedure is pcritical

cluster <= 0.0046. Further, retreat by
test-point interaction was found using parametric analysis of this cluster (in RG2 and CG).
Using Student’s t-test method (Bonferroni-corrected for six tests), significant drop in beta
power was found at T2 (p < 0.0001) and T3 (p < 0.001) (compared to T1) in RG2. No
change was found in CG for the same cluster location. Overall, the reduction was in line
the second hypothesis about the trait effects of meditation.
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In sum, the observed changes in spectral power supported the hypotheses. Next, the

changes found in cortical activity were correlated with other behavioral and psychological

functions.

4.3.3 Experiment 3: Correlating longitudinal changes in cortical activity with

other measures

In the third experiment, the observed changes in cortical activity patterns were correlated

with behavioral and other measures also acquired during the retreat. There were two goals:

(1) to ground the changes observed in cortical activation in behavior and other self-reported

psychological functions; and (2) to disentangle the effects of meditation training from that

of other factors.

The longitudinal changes in spectral power were compared with (a) self-reported

measures, including lifetime hours spent in meditation, daily time spent in meditation dur-

ing the retreat, and adaptive socio-emotional functioning (Sahdra et al., 2011); (b) perfor-

mance in attention-related tasks, including sustained attention task (MacLean et al., 2010)

and response inhibition task (Sahdra et al., 2011); and (c) difference in elevation between

the participants’ place of residence and the retreat location.

Self-reported measures In order to understand a complex brain phenomenon like medita-

tion, it is necessary to complement the observer’s perspective (i.e. scientific measurements)

with first-person accounts of the actual lived experience (phenomenology; Varela and Shear,

1999). It is important to note that in the current work self-reported questionnaires were used

for correlation, instead of actual accounts by the participants (e.g., structured interviews).

Thus, the presented correlations are only first approximations of the unique individual ex-

perience.

During the retreat period, participants recorded the time spent in meditation prac-

tices each day. Additionally, the participants answered questionnaires about their adaptive

functioning at the beginning and the end of retreats. If these observations correlate well
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with the measured changes in cortical activity, the changes are likely due to the meditation

practice and not other factors associated with the retreat. The hypothesis is that the partici-

pants with more hours of practice and with more enhanced mental states should have larger

changes in the cortical activity with training.

It is important to note that some of these self-reported observations were quite easy

to quantify, e.g. daily time spent in meditation. However, to quantify more complex pa-

rameters (from the questionnaires), theoretical models were constructed. One such model

used second-order latent difference score approach to cover the following self-reported ob-

servations: avoidant attachment, attachment anxiety, depression, anxiety, neuroticism, dif-

ficulties in emotional regulation, mindfulness, ego resiliency, empathy, extroversion, agree-

ableness, conscientiousness, openness to experience, and psychological well-being (Sahdra

et al., 2011). The longitudinal changes, due to meditation training, in these observations

were attributed to a single latent factor named as adaptive socio-emotional functioning (AF;

Sahdra et al., 2011).

Starting with longitudinal changes in the individual alpha-frequency values, signif-

icant correlations were found between reduction in IAF and daily time spent in meditation,

for both the retreat groups (Figure 4.11). In RG1, the reduction in IAF values were related

with daily time spent in the shamatha meditation (r(20) = −0.442, p < 0.05), while in

RG2, the reduction in IAF values were related with daily time spent in the compassion

meditation (r(20) = −0.453, p < 0.05). Thus, the more the participants meditated, the

more the IAF values dropped. It is interesting that time spent in different meditation prac-

tices correlated with reduction in IAF in different retreats. However, still, the biological

basis for this drop in IAF is unclear, perhaps computational modeling can shed more light

on this.

Next, the observed changes in spectral power, across test-points, were correlated

with the self-reported measures (Figure 4.12). In RG1, significant correlation (r(20) =

−0.445, p < 0.05) between reduction in beta-band power during meditation and changes
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Figure 4.11: Correlation between reduction in individual alpha frequency (IAF) and self-
reported measures (daily time spent in meditations). These relations suggest that the more
the participants spent time in meditation, the more was the drop in IAF. Thereby providing
some bases for the reduction observed in IAF (Figure 4.3).

in adaptive socio-emotional functioning were observed. This relation suggests that partici-

pants with more reduced beta-band power, during meditation, had better adaptive function-

ing at the end of retreat. No such correlation was found in RG2. However, in RG2, the re-

duction in beta-band power during meditation correlated with daily time spent in shamatha

meditation (r(20) = −0.584, p < 0.005), suggesting that the more the participants medi-

tated, the more beta-band power during meditation dropped.

Altogether, interesting correlations were found between the cortical activity changes

and self-reported measures. These relations provide a basis for claiming that the cortical

activity changes are associated with intensive meditation training. In the next set of cor-

relations, the changes observed on the scalp were related to performance improvements in

sustained attention and response inhibition tasks.

Performance in attention-related tasks In addition to participating in the meditation

experiment, participants also took part in a number of attention related tasks (e.g. sustained

attention (MacLean et al., 2010); response inhibition (Sahdra et al., 2011) etc.). Since
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Figure 4.12: Correlation between reduction in beta-band power during meditation and
the self-reported measures: daily time spent in meditations and change in adaptive socio-
emotional functioning (Color figure). The relation found in RG1 suggests that higher re-
duction in beta-band power during meditation could result in higher adaptive functioning
(or emotional well-being). In RG2, however, no such relation was found. Further, the drop
in beta-band power in RG2 did correlate with daily time spent in shamatha meditation.
Hence, the more participants meditated the more the beta-band power dropped during med-
itation. Overall, these relations grounded the change in cortical activity during meditation
into self-reported psychological functions.
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the primary meditation practice was that of sustaining attention on breath sensations, the

hypothesis was that changes in cortical activity should correlate to performance in sustained

attention tasks. Further, another study from the Shamatha project showed that meditation

training enhances cognitive control (Sahdra et al., 2011). Thus, changes in cortical activity

associated with meditation training should also correlate with participants’ performance in

the response inhibition task.

Previous work on the Shamatha project showed that the participants’ improved

sustained-attention (or vigilance), due to increased perceptual discrimination, after three-

months of meditation training (MacLean et al., 2010). Performance was assessed on a

32-minute line discrimination task. The participants were required to press a button during

rare-target trials (short lines, presented only in 10% of the stimuli). In the first retreat, pa-

rameter estimation using sequential testing (PEST) method was used at each test-point, to

make the task highly demanding of sustained attention by setting the length of short lines

at participants’ visual discrimination threshold (75% accuracy). However, the perceptual

threshold itself was improved in the retreat participants across test-points, thereby making

the task harder for them as compared to the control group. Thus, the improvement in vigi-

lance performance across test-points could not be evaluated. However, in the second retreat,

PEST was only used at the first test-point, hence the improvements in vigilance dependent

upon perceptual discrimination could be measured.

Changes in cortical activity observed during rest and meditation states were corre-

lated with improvements in observed vigilance. A significant relation was found between

reduction in alpha-band power, during pre-meditation rest, and change in vigilance decre-

ment (r(18) = −0.46, p < 0.05) (Figure 4.13), thereby indicating that the participants with

higher reduction in alpha-band power during resting state had better sustained attention

performance during the task.

Second, correlations were performed between changes in cortical activity during

rest and meditation and changes in participants’ performance during response-inhibition

82



task (RIT). The task structure was similar to sustained attention task, but instead of re-

sponding to the rare target trials, the participants were asked to withhold their response to

the target trials (Sahdra et al., 2011).

Unexpectedly, no significant correlation was found between reduction in spectral

power, during rest and meditation and participants’ improved performance in RIT.

Altogether, longitudinal change in cortical activity (although weak effect) was found

to relate with performance improvements in sustained attention task, thereby substantiating

the first hypothesis.

Difference in elevation The two retreats were conducted at the Shambhala Mountain

Center in Red Feather Lakes, Colorado. The center is about 2370 meters above the sea

level. For acclimatization, the participants in the control group arrived 3 days (range =

65-75 hr) before the beginning of testing.

Although every care was taken in collecting and preprocessing the scalp-recorded

EEG data in order to avoid artifactual influence in the data, nonetheless sudden change in

altitude is known to effect EEG (Guger et al., 2005). Thus, longitudinal changes in cortical

activity, observed during rest and meditation, were correlated with difference in elevation

between the participant’s city of residence and the center. No significant correlations were

found between the two, in any state or group.

Summary In sum, these three correlation experiments not only provided behavioral in-

terpretation for the changes observed on the scalp, but also helped to rule out the influence

of altitude.

4.4 Discussion

Summary of findings How does meditation affects oscillatory activity in the brain? -

This question has been the driving force behind several EEG studies on meditation, for the
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Figure 4.13: Correlation between reduction in alpha-band power (weak effect) during pre-
meditation rest and performance in sustained attention task (Color figure). A significant
correlation (after removing the outlier (> 1.5 s.d.) shown in red) was found between drop
in alpha-band power for this cluster and improved vigilance during the sustained attention
task. The relation suggests that the participants with higher drop in alpha power at fronto-
central location, during rest, had less decrement in vigilance during the task, i.e. better
sustained attention.
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past 55 years or so (Cahn and Polich, 2006). Nonetheless, there is still a lack of consensus

in answering this question (Cahn and Polich, 2006). Several factors, including inadequacy

of control participants, individual differences, numerous meditation techniques, and lack of

longitudinal studies, have lead to such a state of the field. The current study, however, aimed

to control for several of these factors, while characterizing the longitudinal changes in corti-

cal activity patterns during focused-attention meditation and rest. EEG data collected from

two three-month retreats were analyzed. Reduction in alpha frequency was found in the

retreat participants at the middle and the end point of retreat (as compared to the begin-

ning). Further, the retreat participants also had reduced alpha- and beta-band power in the

midline-frontal and bilateral-central-parietal areas, respectively, at the end of retreat. These

longitudinal changes in cortical activity were then correlated with self-reported measures,

performance in attention-related tasks, and altitude. Satisfactory correlations were found

between self-reported progress in meditation practice, performance in sustained attention

tasks, and changes in cortical activity. Hence, providing a behavioral interpretation for the

observed cortical changes.

Individual alpha frequency In meditation research literature, several previous studies

found a reduction in alpha frequency in experienced meditators (Cahn and Polich, 2006;

Kasamatsu and Hirai, 1966; Wallace, 1970; Banquet, 1973; Zhang et al., 1988; Aftanas and

Golocheikine, 2001; Aftanas and Golosheikin, 2003). In fact, this finding is among the very

few consistent findings across meditation studies (Cahn and Polich, 2006). This reduction

has been suggested to reflect one of the cumulative characteristic changes due to long-term

meditation practice (Aftanas and Golosheikin, 2003). However, it is unclear as to what does

this reduction mean in meditators.

Outside of meditation research literature, several studies have found the IAF (a.k.a.

peak alpha frequency or PAF) to change with the task demands. For example, it has been

shown to increase during a visuospatial, arithmetic, and auditory memory tasks as compared

to control tasks (Osaka, 1984; Osaka et al., 1999). Further, Klimesch et al. (1990) suggested
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that IAF can index the ability to memorize. Angelakis et al. (2004) showed that IAF can

detect both trait and state differences in “cognitive preparedness” (which refer to the brain’s

capacity to perform high-level cognitive functions, and not simply alertness or arousal;

Angelakis et al., 2004). Taking these studies into account would mean that the small (but

statistically powerful) drop found in IAF indicates that retreat participants were at lesser

cognitive capacity at end of retreat. However, this outcome is very unlikely, since the same

retreat participants had enhanced perceptual discrimination, sustained attention, response

inhibition, cognitive control, and even enhanced emotional well-being at the end of retreat

(MacLean et al., 2010; Sahdra et al., 2011).

IAF is also shown to be highly stable intra-individual measure, which is also heri-

table (Posthuma et al., 2001). Further, a more recent study has suggested that IAF should

be qualified as an individual’s cortical activity signature, due to its high reproducibility

(Näpflin et al., 2007). Given these studies it becomes all the more important to understand

the basis of reduction in IAF in meditators. Computational modeling can shed more light

on the theoretical basis of this reduction, as will be discussed in the next chapter.

Alpha-band power Several early meditation studies found increased alpha-band power

in meditators (Cahn and Polich, 2006; Aftanas and Golocheikine, 2001; Deepak et al., 1994;

Wallace, 1970; Taneli and Krahne, 1987; Dunn et al., 1999). However, more recent work

could not replicate these findings and rather reduction in alpha power was found in some

(Baijal and Srinivasan, 2010; Cahn and Polich, 2006; Benson et al., 1990; Travis and Wal-

lace, 1999; Jacobs and Lubar, 1989; Pagano et al., 1983). There could be several reasons

for this variability, ranging from difference in assessed meditation techniques and lack of

adequate controls, to individual differences. One important individual difference is that

of alpha frequency. Experienced meditators are known to have reduced alpha frequency.

Thus, if fixed frequency-band widths are used, the reduced IAF can cause changes in the

theta-band to be wrongly attributed to the alpha-band.

In the current work, frequency-band widths were calculated individually for each
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participant, based on their IAF values. A weak effect was found in the alpha-band power,

during resting state at midline-frontal location, where a reduction in power was found at

the end of retreat. Further, this reduction was related to the improvements in participants’

performance in a vigilance task, thereby suggesting that intensive meditation practice of

sustaining attention, primarily on breathing sensations, can induce changes in behavior even

during rest. However, it is also important to understand the basis behind the reduction

in alpha-band power. In previous research, alpha and beta rhythms have been shown to

negatively correlate with the BOLD response in fMRI experiments (Goldman et al., 2002;

Laufs et al., 2003; Yuan et al., 2010; Ritter et al., 2009; Scheeringa et al., 2011). Thus, it is

reasonable to assume that the drop in alpha-band power during rest, at the frontal location,

indicates increased frontal network engagement due to meditation. This increase could

also be a sign of increased cognitive control (specifically the vigilance component) due to

meditation retreat.

Spectral power in a sub-band of alpha rhythms, upper alpha-band (or alpha3), was

also found to reduce in the anterior-frontal location after three months. This effect was

evident during both rest and meditation states, but it was not replicated across the retreat

groups and was only significant in the second retreat. Upper alpha power has been known to

vary during development: it increases from early childhood to adulthood and then decreases

during later part of life (Klimesch et al., 1990). It also decreases when the ability to respond

to external stimuli decreases (e.g. transition from waking to sleeping stage; Tanaka et al.,

1997). Desynchronization in the upper alpha band has been shown to be most sensitive

(compared to other alpha sub-bands) to the encoding and processing of sensory-semantic

information (Klimesch et al., 1997; Klimesch, 1999). It is hard to say exactly what the

reduction in anterior-frontal upper-alpha power mean in the current study, due to lack of

correlations with other variables. However, the reduction in upper alpha-band may reflect

the inhibition of distracting external stimuli as a state effect during focused-attention on

breathing sensations and as a trait effect during rest (in the absence of the task).
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Beta-band power In the current study, participants practiced sustaining their attention on

the breath sensations. This self-regulation of attention at such minute sensory events could

in turn enhance cortical activity in the somatosensory regions. Previously, it has been argued

that the anticipatory modulation of oscillatory activity in alpha- and beta-band can effect

neural processing and behavior (van Ede et al., 2011). Since the alpha- and beta-band power

are inversely correlated with cortical excitability (Goldman et al., 2002; Laufs et al., 2003;

Yuan et al., 2010; Ritter et al., 2009; Scheeringa et al., 2011; Tamura et al., 2005; Sauseng

et al., 2009), the reduction in power in these bands at posterior locations could indicate

their functional role in sustaining attention to sensory events (van Ede et al., 2011). Thus,

when the sensory input arrives at the time of high cortical activity in somatosensory regions,

enhanced sensory processing is made possible. Similarly, distracting stimuli can be blocked

with reduced cortical activity in sensory regions. Taking these studies into account, along

with the fact that reduction in beta-band power was replicated across the retreat groups,

and that these reductions correlated with daily time spent in meditation, it seems likely that

the reduction in beta-band power facilitated enhanced sensory processing, thereby allowing

continuous flow of sensory information associated with the breath sensations.

Previous studies on meditation have mixed results, on beta-band power, with some

finding an increase (Benson et al., 1990; Dunn et al., 1999) and others a decrease in medi-

tators (Ikemi, 1988; Jacobs et al., 1996; Travis et al., 2010). Future work in this area is re-

quired to disentangle the factors responsible for these variabilities. However, one plausible

reason for this particular variability can be the difference in meditation techniques them-

selves. Thus, a technique where all sensory processing is inhibited could lead to increased

beta-band power at posterior locations (thereby indicating reduced cortical excitability at

those locations), whereas a technique where sustained focus is maintained on the sensory

information will show reduced beta-band power at sensory regions (and hence more cortical

activity).

Reduction in beta-band power has also been related to reduced complexity of EEG
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dynamics during meditation (Aftanas and Golocheikine, 2002), thereby indicating that med-

itation involves “switching off” irrelevant networks to sustain focus on the object. Further,

these nonlinear complexity estimates of EEG dynamics have been shown to increase with

high emotional states (positive or negative, compared to neutral; Aftanas et al., 1998, 1994).

Thus, given these studies on increased complexity with affective processing, the fact that

less beta power indicates less complexity, and the correlation found (in current work) be-

tween reduced beta power and enhanced adaptive socio-emotional functioning at the end of

retreat, all indicate that beta oscillations during meditation could play an important role in

enhanced emotional balance (which is likely a prerequisite for increased adaptive function-

ing) in meditators.

Rest vs. Meditation states In the current work, longitudinal changes in cortical activity

were analyzed in two resting states (one-minute before and after meditation) and in one

meditation state (six minutes). However, the meditation state was not compared with the

rest state, because of the difference in length of these states. By design, spectral analysis

of meditation data would have higher SNR as compared to the short length resting state.

However, in the future the plan is to study the temporal evolution of meditative states by

dividing the six minutes of meditation data into smaller chunks and then comparing the pre-

and post-meditation rest data with these chunks.

Nonetheless, just looking at the longitudinal changes, separately in rest and medita-

tion, a similar pattern of changes was found in both states: Reduction in both alpha and beta

power was found at the end of retreat. This similarity can be attributed to the trait effect of

meditation, i.e. intensive meditation practice every day for three months altered the cortical

activity such that the brain state during meditation generalized as the “default state” of the

brain. This generalization infers that the participants at the end of meditation retreat were

able to sustain their focus for longer durations even during rest. This inference is bolstered

by the correlation found between reduction in alpha power during pre-meditation rest and

improved participants’ performance in the vigilance task.
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4.5 Conclusion

Altogether, a comprehensive empirical study was conducted to find the cortical correlates

of intensive meditation training. The spectral analysis on EEG data, collected during rest

and meditation, provided crucial insights into how intensive meditation training alters the

cortical activity during rest and meditation. Further, the ability to correlate these changes

with other measures (like self-reported daily time spend in meditation) provided essential

behavioral interpretations for these changes. Based on these analyses the next chapter the-

oretically explores how and why meditation training alters the cortical activity, the way it

did.
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Chapter 5

Computational Modeling

Measuring and interpreting longitudinal changes in cortical activity associated with inten-

sive meditation training is a novel proposition in itself. However, it just answers “what”

changed in the brain due to training and not “how” (mechanistic aspect) or “why” (teleo-

logical aspect) those changes appear. To begin to answer these questions, the dissertation

employed computational modeling, which is presented in this chapter. First, an introduction

to modeling and its application in neuroimaging is given. Second, the model architecture

used in this dissertation and the extensions developed for it are presented. Third, four com-

putational experiments are described, which were run to understand the mechanistic and

teleological reasoning behind meditation. Fourth, correlations were performed to ground

the modeling results into behavioral interpretations. Finally, the results and the broader

implications of this work are discussed.

5.1 Introduction

Computational modeling was undertaken in order to formalize the mechanisms underlying

meditation. This section provides an introduction to modeling, its previous applications in

neuroimaging, and the approach used to model meditation.
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5.1.1 What is computational modeling?

Computational modeling is a branch of mathematical modeling where extensive computa-

tional resources are employed to simulate, test, and refine theories about the behavior of

a complex system. Usually, no intuitive closed-form analytical solutions are available for

such complex systems. Hence, experimentation is done with the model parameters to deci-

pher the underlying mechanisms responsible for apparent system behavior. Numerous com-

putational models have been created to study a wide range of nonlinear complex systems,

from weather forecasting (Done et al., 2004; Krishnamurti et al., 1999), financial markets

(Campbell et al., 1997), and flight simulators (Zeigler et al., 2000), to brain behaviors (Itti

and Koch, 2001; O’Reilly and Munakata, 2000; Saggar et al., 2007, 2010; Miikkulainen,

1993).

5.1.2 Why modeling?

The dissertation focuses on computational modeling of brain processes in general and in

meditation in particular. The human brain is highly complex, and even a simple task in-

volves several factors, e.g., attention, emotion, memory, learning, decision making, phys-

ical complexity of the brain itself, and the environment. Hence, it is currently impossible

to create a single computational model to account for all aspects of the brain. In fact, it

is impractical to model even a single factor completely. However, the goal of computa-

tional modeling is not necessarily to build absolutely correct theories. Some of the most

successful models are based on approximate and relatively crude underlying assumptions.

Rather, the goal is to enable progress in understanding a particular complex phenomenon

(Shiffrin, 2010). The complex phenomena is simulated based on an initial formulation, of

a theory, generating novel hypothesis from this simulation, collecting new data based on

these predictions, and then refining the model (and the underlying theory itself). The pro-

cess thereby implements the classic cycle of theory development, testing, and revision to

advance the field (Figure 5.1; O’Reilly et al. (2010)).
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Figure 5.1: The cycle of theory development, testing, and revision. The modeling phase
(highlighted) formalizes the analytical results and thereby provides concrete testable hy-
pothesis to further understanding of a particular phenomenon.

5.1.3 Why model neuroimaging data?

With the recent advances in neuroimaging (fMRI, M/EEG, PET, DTI, etc.), an enormous

amount of data is being collected to study human and animal cognition. These data are usu-

ally high-dimensional and voluminous, and require sophisticated statistical analyses (usu-

ally based on multivariate-regression) to extract meaningful information. However, it is

becoming evident that it is not enough to just look at the areas where the changes in neural

activity are found (even if those changes correlate with behavior), but it is more important

to understand how the involved networks in the brain interact and evolve within the exper-

imental context (Bullmore and Sporns, 2009; Shiffrin, 2010; Bassett and Bullmore, 2009).

To this goal, models are now being developed to not just tie together neural activity and

behavioral findings, but also advance our understanding of brain processes by providing
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precise formulations and testable predictions about the underlying mechanisms (Anderson

et al., 2008; Shiffrin, 2010).

5.1.4 Why model meditation?

Since the early 1960s, hundreds of studies have been performed to understand the effects

of meditation (Cahn and Polich, 2006). Meditation has been shown to provide increased at-

tentional stability (MacLean et al., 2010), enhanced cognitive control (Sahdra et al., 2011;

Slagter et al., 2011), better regulation of attention and emotion (Lutz et al., 2008b), im-

proved handling of brain resources (Slagter et al., 2007), better handling of physical pain

(Grant et al., 2010), and even anatomical changes such as increased cortical thickness (Lazar

et al., 2005). Due to such enhancements meditation research has generated a lot of interest

in the cognitive neuroscience and health psychology community. However, to date, most

of the research is done to find out the beneficial effects of meditation training. Very little

is known about the neural processes underlying meditation. Exploration of such mecha-

nisms can provide: (a) insights into cognitive system as a whole; and (b) better treatments

of several neurodevelopmental disorders such as ADHD, autism, and schizophrenia.

The dissertation, thus, models the neuroimaging (EEG) data collected during two

three-month long meditation retreats to advance our knowledge about meditation training.

This is done by: (a) formulating the mechanisms underlying observed longitudinal changes

in cortical-activity; and (b) providing testable hypotheses about the effects of meditation,

for future research in this area.

5.1.5 Approach

Several approaches exist to model EEG (Rennie et al., 2002), ranging from purely phe-

nomenological (Wright et al., 1990; Isaksson et al., 1981), to mean-field (Wilson and

Cowan, 1972, 1973; Lopes da Silva et al., 1974; Freeman, 1972, 1987; Nunez, 1974a,b;

Robinson et al., 2003), and detailed neural networks (Traub et al., 1997; Wilson and Bower,
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1992; Lagerlund and Sharbrough, 1989; Lumer et al., 1997). Mean-field modeling is the

best suited approach for this dissertation, since each EEG sensor (approximately 3-4 mm in

diameter) covers thousands of neurons underneath (Pizzagalli, 2007). Hence, modeling a

population of neurons for each sensor, while keeping the desired assumptions of anatomical

and physiological constraints intact, is tractable. In contrast, modeling each sensor using a

detailed neural network model would give rise to a combinatorial explosion during parame-

ter fitting (73 EEG sensors times thousands of neurons for each sensor). Further, the purely

phenomenological approach lacks the anatomical and physiological constraints required to

understand the mechanisms underlying meditation. Please see Chapter 2 (Background) for

a detailed comparison of these three approaches.

As a starting point for the model, the architecture of Robinson et al. (2001) was

used. This model uses cortico-cortical, cortico-thalamic, and intra-thalamic loops to sim-

ulate EEG spectra at the scalp, which is appropriate in that sustained attention (the task

under investigation during meditation) is believed to involve cortico-thalamic interactions.

Further, the model was extended to measure (a) longitudinal changes in parameter values;

and (b) connectivity changes in the reticular nucleus (TRN). The model architecture and

extensions are provided in the next section, followed by novel computational experiments

(Section 3), run to formalize the mechanisms underlying meditation. Section 4 presents

the results from correlation analysis performed between the changes in model parameters,

psychological function, and performance during attention-related tasks. Section 5 discusses

current and future work, and is followed by concluding remarks.

Altogether, this dissertation presents the first computational model of meditation

that grounds the empirical descriptions of meditation effects into a formal theory and makes

testable predictions to advance the research in this area.
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5.2 Methods

The current section describes the model architecture used and how it was extended to model

the large EEG dataset. Further, it briefly introduces the data itself (see Chapter 2 for more

details), followed by data fitting procedure.

5.2.1 Model Architecture

Broadly speaking, sustaining attention on an object (e.g., breath sensations), a task (e.g.,

balancing a pole), or even a phenomenon (e.g., movie watching) has been hypothesized

to require cortico-thalamo-cortical interactions (LaBerge, 1997, 2005; Portas et al., 1998;

McAlonan et al., 2008; Crick, 1984). The thalamus acts as a gateway to the cortex, filtering

sensory information en route to cortex (bottom-up processing; McAlonan et al., 2008). The

cortex also uses the reticular nucleus of thalamus (TRN) for attention modulation based

on cortico-thalamic signals (top-down processing; Figure 5.2(a); McAlonan et al., 2008;

Crick, 1984). Intra-thalamic circuits are also implicated in transferring sleep spindles to the

cortex (Ferrarelli and Tononi, 2011). Thus, to model the core processes involved during

sustained-attention meditation, the model architecture should include cortico-thalamic and

thalamo-cortical interactions. Further, such a model should fit to high-density neuroimaging

data (especially EEG), allowing dynamical analysis of the system, and generating concrete

testable hypotheses about mechanisms underlying meditation.

Fortunately, such a model already exists: that of Robinson et al. (2001, 2002, 2003).

The dissertation implements this model as it is and uses it as a starting point to understand

core brain processes during meditation and rest. The model will then be extended, as de-

scribed later in this section.

The Robinson et al. (2001) approach uses mean-field model of cortico-thalamic

dynamics to simulate scalp-EEG. This approach is based on earlier work on continuum

modeling for EEG (Freeman, 1975; Liley and Wright, 1994; Lopes da Silva et al., 1974;

Nunez, 1974b; Rennie et al., 1999; Robinson et al., 1997, 1998; Wilson and Cowan, 1973).
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The Robinson et al. (2001) model also includes primary neurophysiological principles and

structures, ranging from transmission delays in axonal propagation, different neural popula-

tions (excitatory and inhibitory), connections dependent on range to subcortical and cortical

networks.

The Robinson et al. (2001) model has been successfully used to mimic several fea-

tures of the EEGs, including evoked potential (Kerr et al., 2008, 2011), seizure dynamics

(Robinson et al., 2002; Breakspear et al., 2006), power spectra (Rennie et al., 2002; Robin-

son et al., 2001; Rowe et al., 2004a), coherence and correlations (Robinson, 2003), changes

in arousal (Robinson et al., 2002), and even changes due to aging (Kerr et al., 2011, 2010b;

van Albada et al., 2010). Further, model fitted to real data has been used to gain insights

into subcortical and cortico-subcortical dynamics, by analyzing the changes in parameter

values (a.k.a. inverse modeling; van Albada et al., 2010; Rowe et al., 2005a). Hence, the

model provides an indispensable noninvasive method to generate hypothesis about the deep

structures of the brain by providing average properties of large subcortical neural popula-

tions and their dynamics. Such an information about the populations cannot be retrieved

even by the most invasive methods (van Albada et al., 2010).

A brief overview of this model is presented below, limited to modeling power spec-

tra, divided into following parts: neurophysiology, cerebral connectivity, theoretical spec-

tral and parameter sensitivity, and modeling the whole head. For more details see Rowe

et al. (2004a).

Neurophysiology The neurophysiology of the model is presented in Figure 5.2(b), de-

picted using a cortical neuron. First, the action potentials from cortical excitatory, in-

hibitory, and subcortical neurons, represented as pulse-rate fields (φb; where, b = e, i, s

for cortical excitatory, inhibitory and subcortical connections), arrive at the dendritic tree.

Second, due to this arrival the membrane potential (Va) is perturbed. The magnitude of this

perturbation is dependent upon the input and the rate constants of the dendrites. Third, the

mean firing rate of this cortical neuron (Qa) is set to follow nonlinear sigmoidal function.

97



Fourth, the action potential propagates away from the neuron, forming an average pulse

density (φa). It is important to note that the magnitude of these densities reduce with dis-

tance and this effect was incorporated in the model as the damping rate, γa = va/ra, where

ra is the characteristic range of type a axons and va is the velocity (Jirsa and Haken, 1996;

Robinson et al., 1997; Rowe et al., 2004a).

By assuming that normal EEG activity is due to small perturbations about a steady

state, the sigmoidal response of Qa can be replaced by its steady-state slope ρa. This slope,

when combined with the approximate number of input connections (Nab) and an average

synaptic strength (sb), provides gain factor, Gab = ρaNabsb. These gains reflect the effect

of input from various neural fields, φb, on the firing rate, Qa, of excitatory and inhibitory

neurons (Rowe et al., 2004a).

Cerebral connectivity The connectivity structure of the model is shown in detail in Fig-

ure 5.2(c). The pyramidal cells in the cortex have intracortical, cortico-cortical and sub-

cortical connections. Each reciprocal connection can be represented as a gain, Gab, where

additional subscripts r and n refer to the TRN and the external source, respectively. Figure

5.2 provides detail about these gain factors.

To estimate the power spectrum, the interacting pathways can be written in Fourier

domain (Rowe et al., 2004b) as,

φs = TφN + Sφe, (5.1)

where

T =
LGsne

iωt0/2

1− LGsrGrs
, (5.2)

S =
(LGse + LGsrLGre)eiωt0

1− LGsrLGrs
. (5.3)
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Figure 5.2: The cortico-cortical and the cortico-thalamo-cortical parameters of the Robin-
son et al. (2001) model. (a) Schematic of cortico-thalamic connections in the left hemi-
sphere, via thalamic reticular nucleus (TRN). TRN acts as a shield for corticothalamic and
thalamocortical signals, and is used by cortical areas for attention modulation (Crick, 1984;
Zikopoulos and Barbas, 2007). (b) Basic neuronal physiology incorporated in the model,
shown in a cortical neuron. Synaptic connections at the dendritic tree are shown ema-
nating from pulse-rate fields φb, where, b = e, i, s for cortical excitatory, inhibitory and
subcortical connections. Somatic membrane potential is shown as Va, where a = e, i,
with resultant impulse firing rate Qa and the spread of action potentials as field φa along
the axons. (c) A schematic showing primary pathways between cortex, TRN, and tha-
lamic secondary relay nuclei (SRN). The dashed line represents an inhibitory connection
while the solid line represents an excitatory connection. The Gei depicts the projections
between local excitatory and inhibitory neurons in the cortex, while Gee depicts similar
projections between excitatory cortical neurons. These excitatory pyramidal neurons also
project (through φe) to the thalamus, where signals may propagate (i) via TRN and then
SRN with gain Gesre = GesGsrGre, or (ii) directly via SRN with gain Gese = GesGse.
The SRN projects back (through φs) to the cortex, parametrized as the gainGes. Within tha-
lamus, the intrathalamic loop has the gain Gsrs = GsrGrs. The cortical activation (through
sensory input) occurs via φn and φs with the gain GesGsn. The diagram is adapted from
Rowe et al. (2005a).

99



T represents the thalamic transfer function, S represents the corticothalamic transfer func-

tion, L represents the dendritic filtering, t0 is the delay in the corticothalamic loop, and φN

is the driving signal, approximated as white noise in space and time.

By linearizing the sigmoidal response,Qa, and combining the Fourier domain forms

of the remaining equations, spectral power density can be obtained (Robinson et al., 2001):

PEEG(ω) = P0

∣∣∣∣ L(ω)T/Gsn
1−GieL(ω)

∣∣∣∣2 (2π)2

lxly

∞∑
m,n=−∞

e−k
2
m,n/k

2
0

|k2
m,nr

2
e + q2(ω)r2e |2

, (5.4)

where

q2(ω)r2e = (1− iω

γe
)2 − GeeL(ω) +GesL(ω)S

1−GeiL(ω)
, (5.5)

P0 =
π|φn|2

re
GesGsn, (5.6)

and the discrete wave numbers km,n are defined by

k2
m,nr

2
e = (2πmre/lx)2 + (2πnre/ly)2. (5.7)

Here subscripts m,n denote mode numbers, related to boundary conditions. The

value of these mode numbers can be restricted to < fmax/2, where fmax is the maximum

frequency one is interested in modeling (Robinson et al., 2001). The e−k
2
m,n/k

2
0 factor is

introduced to approximate the effect of volume conduction (Robinson et al., 2001).

The power due to EMG activity can also be accounted using a theoretical model,

previously developed to determine the optimal bandwidth to measure pericranial EMG

(Rowe et al., 2004b; Shwedyk et al., 1977; Van Boxtel et al., 1983; Van Boxtel, 2001).

It is given by

PEMG(f) =
A(f/fc)2

[1 + (f/fc)2]1+δ/2
, (5.8)

where fc refers to low-frequency cut-off, δ the high frequency asymptotic power law index,

and A the power normalization factor.
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This theoretical spectrum can be fitted to the scalp EEG data; later in this section

the fitting procedure is explained.

Theoretical power spectrum and sensitivity to parameters The model generated (or

theoretical) power spectrum needs only ten or so parameters (Robinson et al., 2001), these

parameters and their physiologically plausible range of values are listed in Table 5.1. The

parameter set includes the gain for five loops: (a) excitatory cortico-thalamo-cortical loop

(Gese = GesGse); (b) inhibitory cortico-thalamo-cortical loop via TRN (Gesre = GesGsrGre);

(c) inhibitory intrathalamic loop (Gsrs = GsrGrs); (d) excitatory cortico-cortical loop

(Gee); and (e) inhibitory cortico-cortical loop (Gei). Additionally, the parameter set in-

cludes cortical damping rate (γe), decay rate of cell-body potential (α), cortico-thalamic

axonal latency (t0), normalization for power spectrum (p0), and amplitude of the EMG

component (AEMG).

To analyze the sensitivity of each parameter on the spectrum, first, a theoretical

spectrum was calculated using equations 1.4-1.8 and the nominal values for each of the ten

parameters. As is evident from the figure (Figure 5.3), the theoretical spectrum is in ac-

cordance with the real EEG spectrum. Second, each parameter was varied (independently,

keeping other parameters fixed to their nominal values) to see its effect on the power spec-

trum (Figure 5.3).

The sensitivity plots are useful in generating predictions about changes in the power

spectrum, based on the changes in parameters. These predictions can also help infer changes

in underlying physiology when the power spectrum changes in a particular way (Rowe et al.,

2004a).

Modeling all the channels All the 73 channels in the EEG data were modeled indepen-

dently using the Robinson et al. (2001) approach (as described above), making it possible

to discover changes in parameters across the scalp. This methodology assumes spatial uni-

formity in model parameters, i.e., a change in a parameter value at a far away channel
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Model Parameter Description Limits Initial
Value

EEG model γe Cortical damping [40,
400]

130 s-1

α Dendritic decay rate [10,
200]

75 s-1

β Dendritic rise rate - 3.8α*
t0 Conduction delay

through thalamic nuclei
and projections

[0.06,
0.13]

0.084s

Gee Excitatory gain-
pyramidal cells

[0, 50] 5.4

Gei Local intracortical gain-
stellate cells

[-35, -1] -7

Gese Corticothalamocortical
gain via SRN

[0, 50] 5.6

Gesre Corticothalamocortical
gain via TRN

[-30, 0] -2.8

Gsrs Intrathalamic gain [-15,-
0.5]

-0.6

k0re Volume conduction filter
parameter

- 3.0*

lx, ly Linear dimension of cor-
tex

- 0.5m*

re Characteristic pyramidal
axon length

- 0.08m*

P0 Overall power normal-
ization

- Calculated

EMG model A Power normalization [0, 99] 0.5µV 2/Hz
fpk Spectra peak frequency - 40Hz*
δ Asymptotic slope - 2*

Table 5.1: Initial and fixed (indicated by *) values of the model parameters, as prescribed
by Rowe et al. (2004a); these values were used as is for this work. The limits refer to the
physiologically restricted ranges within which the solutions were explored. As per Rowe
et al. (2004a), the limits, fixed values, and initial values are inline with independent sources
and physiological measures (Robinson et al., 1997; Shwedyk et al., 1977; Van Boxtel, 2001;
Rowe et al., 2004a).
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Figure 5.3: Independent effects of each parameter on the theoretical (simulated) power
spectrum. Spectrum with solid line is estimated using fixed initial values. Spectrum with
dashed (or dash-dotted) line is generated by decreasing (or increasing) the initial values
by 20%. These sensitivity plots can be used to create and test hypothesis about the phe-
nomenon under study.

will not affect the spectrum on the channel under observation (i.e., local independence is

assumed). However, while modeling each channel, the values of parameters were chosen

such that the modeled spectrum for each channel matched its real EEG spectrum. Such an

approach, although just first approximation of real parameter values, has been previously

used to successfully model various datasets and it is know as local effective value model

(LEV; O’Connor and Robinson, 2004).

LEV models are favored, as compared to non-uniform coupled models, since they
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are both analytically tractable and computationally light (O’Connor and Robinson, 2004).

Further, it has been shown that for eyes-closed state, local independence assumption is

maintained, except for two cases: (a) local activity at < 2Hz frequency; and (b) local

activity at alpha frequency. In these cases the local activity also depends on similar activ-

ity at distant sites. However, the effect at alpha frequency is much less than that at low-

frequencies (O’Connor and Robinson, 2004). The model extensions, as described below,

attempt to alleviate these issues.

5.2.2 Model Extensions

The model architecture was extended for two reasons: (1) to allow for measuring longitu-

dinal changes in model parameters, and thereby gain insights into changes in cortical and

subcortical interactions associated with meditation; and (2) to understand the role of TRN

in regulating attention during meditation.

Longitudinal analysis The dissertation aims at modeling longitudinal changes in EEG

data associated with meditation training. To fulfill this goal, the Robinson et al. (2001)

approach was extended to find changes in parameter values across time (three test-points

during the two three-month retreats) and space (73 channels). Analyzing temporal change

will help understand the evolution of brain dynamics with meditation training. Further, ana-

lyzing changes in space would not only help in recognizing regional differences, but would

also strengthen the LEV modeling approach (by taking information about the neighbors

into account).

It is important to note that finding spatiotemporal changes in model parameters is

a statistically difficult task, due to the multiple comparisons problem (MCP). For exam-

ple, to assess changes in any one parameter for all 73 channels and at all three test-points

(beginning, middle, and end of the retreat) would require 73 × 3 = 219 multiple compar-

isons. Now, for a predefined critical alpha level (e.g., p = 0.05), one needs to calculate

a corrected critical alpha level to account for 219 multiple comparisons, to control for the
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family-wise error rate (FWER). A simple method to correct for MCP, without taking into

account any spatial information, would be to use Bonferroni correction (Bonferroni, 1935).

But Bonferroni, being an overly conservative approach, would bring down the critical alpha

value to p = 0.05/219 = 0.00023, thereby loosing sensitivity. Thus, to avoid being overly

conservative and at the same time include spatial information, nonparametric cluster-based

permutation testing (Maris and Oostenveld, 2007) was used to find out the spatio-temporal

changes in model parameters. In contrast to parametric testing, nonparametric testing can

solve the MCP in a straightforward way. Nonparametric testing is powerful for two rea-

sons: (a) their validation does not dependent on the distribution of the data; and (b) any

test statistic can be used to base the statistical inference (t- or F-statistic or any other). In

particular, a cluster-based (to avoid spatial MCP) F-statistic (to avoid temporal MCP) can

be used to keep the family-wise error rate low. This approach has been used previously for

analyzing changes in power spectra (Maris and Oostenveld, 2007) and coherence (Maris

et al., 2007) in MEG and EEG data. The algorithms for finding changes in model param-

eters are presented in Algorithm 4 and 5, based on previous work by Maris et al. (2007).

Fieldtrip (Oostenveld et al., 2011), the open-source toolbox for Matlab R©(MATLAB, 2010),

was used to do these statistical tests.

Connectivity in TRN The current model accounts for the interactions between cortex,

reticular nucleus (TRN), and specific relay nucleus (SRN) of the thalamus. However, it

does not account for the within-TRN interactions.

The TRN has been known to play a crucial role in modulating the thalamic informa-

tion to the cerebral cortex and vice versa (Guillery and Harting, 2003; Jones, 1975; Crick,

1984; Steriade et al., 1986; Sherman and Guillery, 2006; Zikopoulos and Barbas, 2007).

This modulation is believed to be due to TRN’s unique influential sieve-like positioning

(Crick, 1984; Guillery et al., 1998; Sherman and Guillery, 2006) and extensive lateral con-

nectivity (Scheibel and Scheibel, 1966). These properties are in marked contrast with the

other thalamic nuclei, where the neurons rarely have lateral connections (Crick, 1984). An-
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Algorithm 4 Group-level nonparametric statistical test for each model parameter pi
Null Hypothesis(H0): pi does not differ across the three test-points

1. Collect pi for all the 73-channels and all the subjects, during the three test-points in
a single super-set.

2. Randomly partition the super-set to three equal sets.

3. Calculate the cluster-based test-statistic (using Algorithm 5).

4. Repeat Steps 2 and 3 a large number of times (e.g., 10,000) and construct a histogram
of the test statistics.

5. Using the actually observed test-statistic and the histogram from Step 4, estimate the
proportion of random partitions that resulted in larger test-statistic that the observed.
This proportion is the p-value.

6. If the p-value is less that the critical alpha-level, then conclude that the null hypothesis
H0 is rejected and that the parameter pi is different across test points.

Algorithm 5 Cluster-based test statistic

1. For every channel, compare the parameter value pi across the three test-points, using
F-statistic.

2. Select all channels, with F-statistic value larger than some threshold.

3. Cluster the selected channels in connected sets on the basis of spatial adjacency.

4. Calculate the cluster-level F-statistic, by taking a sum over all F-values within a clus-
ter.

5. Output the largest of the cluster-level statistic.

other important distinction between TRN and other thalamic nuclei is that almost all the

neurons in TRN are GABAergic (GABA = γ-aminobutryic acid), and hence inhibitory in

nature, as opposed to the neurons in other nuclei that are almost always excitatory in nature

(Houser et al., 1980; Oertel et al., 1983; Ohara et al., 1983; Crick, 1984). The structural

topography of TRN has also been widely studied. Both the afferent and efferent connec-

tions are believed to be topographically organized according to the relevant cortical areas
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and thalamic nuclei. (Scheibel and Scheibel, 1966; Montero and Scott, 1981; Jones, 1975;

Minderhoud, 1971; Crabtree and Killackey, 1989; Lozsadi, 1995; Guillery et al., 1998; Lam

and Sherman, 2011).

Due to such unique properties TRN acts like a nexus, providing ample opportuni-

ties for several functionally and structurally related cortical and thalamic areas to interact

(Guillery et al., 1998). This hub of connections is thought to be responsible for attention

regulation and other related cognitive control faculties (Crick, 1984; Sherman, 1996; Sher-

man and Guillery, 2002). The sustaining of attention during meditation is also hypothesized

to involve TRN (Newberg and Iversen, 2003; Austin, 1999). Hence, it is crucial to model

the intra-TRN dynamics to understand how regulation of attention is manifested using the

TRN and how this regulation evolves with intensive meditation training. Such an under-

standing can also provide testable hypotheses for treating neurodevelopmental disorders,

which occur due to lack of within-TRN connectivity (e.g., schizophrenia, Pinault, 2011;

Ferrarelli and Tononi, 2011).

One approach for modeling lateral connectivity in TRN, using the Robinson et al.

(2001) model, is to add additional parameters in the TRN layer and fit the data to these

additional parameters. The challenge, however, is that modeling coupled connectivity be-

tween 73 TRN cells (due to 73 channel EEG) would be computationally and analytically

intractable. Thus, a novel procedure was used to model the lateral connectivity, shown in

Figure 5.4.

First, all the EEG channels were fit independently using the LEV approach. Second,

to determine the lateral connectivity in TRN, white noise was injected into the modeled

cortical cells. Third, activity in the TRN cells, due to injected noise in the cortical cells,

was recorded using a formula derived using linear algebra on the model equations in time

domain:

φr(t) =
φe(t− t0/2)[Gesre +GeseGsrs] + φn(t)[GesGsnGsrs]

(GesGsr)(1−Gsrs)
, (5.9)
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where Gsn = 1, Ges =
√
Gese, and Gsr = −

√
|Gsrs|. Fourth, functional connectivity

analysis was performed on the signal extracted from TRN cells (Figure 5.5). It is important

to note that the injected noise will not induce any connectivity structure into the TRN cells

and hence the extracted structure should depict the true connectivity. Fifth, longitudinal

changes were assessed in the connectivity structure of TRN cells, due to meditation training,

to understand the temporal and structural evolution of such changes.

Altogether, two extensions were applied to the model architecture. These extensions

should allow for better understanding of the mechanisms underlying meditation. Section 5.3

uses this extended model to run four computational experiments.

5.2.3 Data acquisition and preparation

Details of the data are provided in Chapter 2. To recap, a high-density EEG cap was used

in the project, with 88 equidistant scalp channels (later converted to normalized 10-10 sys-

tem of 81-channels (Chatrian, 1985) for analysis). However, eight channels were rejected

(out of the standard 81-channel system) due to the fact that the original 88-channel cap

did not cover the scalp locations of these eight channels. Hence, 73-channels were used

in the analysis. The 3-D locations of the electrodes on each participant were determined

with a magnetic digitizer. The data was collected using the Biosemi Active Two system

(BIOSEMI, 2006), at a sampling rate of 2048 Hz.

As was described in detail in Chapter 3, data preprocessing was done using second-

order blind source separation (Belouchrani et al., 1997) and semi-automatic artifact removal

tool. Components related to muscular activity, ocular activity, and interference from power

lines were removed, without losing the neural components.

As described in Chapter 4, after preprocessing, data was transformed using scalp

current density estimation (Kayser and Tenke, 2006; Kayser, 2009), to reduce the effects

of volume conduction (Pizzagalli, 2007). Power spectra was then calculated using multi-

tapered power spectral density estimation method (Mitra and Pesaran, 1999; Oostenveld
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Figure 5.4: Measuring interactions in the modeled TRN layer. (a) Two units of the model
and their interactions (dashed lines) in the TRN layer are shown. Ideally, gains for such
interactions should be fitted along with all the other parameters of the model. However,
given 73 such units in total, this approach will lead to a combinatorial explosion of the
fitting procedure. (b) The three layers of the model. Each column is modeled independently
using the LEV approach. (c) The procedure formalizing within-TRN connectivity. After
fitting the model to real EEG data, white noise was injected in the cortical cells and the
resulting activity in the TRN cells was measured. Further, connectivity analysis in the
TRN layer was performed to understand the role of connectivity in TRN during meditation
training. (d) Correlation matrix of injected white noise and of resulting activity in the TRN
cells are shown. The diagonal elements in the TRN layer are set to zero for clarity. The
structure found in the correlation matrix of TRN cells activity suggests that even though
these cells were modeled independently, connectivity information between them can still
be discovered.
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Figure 5.5: Connectivity analysis in the TRN layer. The resulting activity in TRN cells, due
to injected white noise in the cortical cells, is measured using equation 5.9. Correlations
between all the 73 TRN cells are estimated. For robust estimation several trials (n=100)
of injecting noise and measuring correlation matrix was performed for each cell. The cor-
relation matrix was then averaged over all trials and k-means clustering was performed on
the matrix. The value of k was chosen based on the dendrogram generated by hierarchical
clustering. Longitudinal changes in the structure and the connectivity of the clusters were
evaluated. Altogether, using this procedure, it was possible to assess connectivity in TRN
cells in a simple but elegant fashion.

et al., 2011).

Overall, this rich spatio-temporal dataset provides a unique opportunity to under-

stand the mechanisms underlying meditation using computational modeling.

5.2.4 Participants

As discussed in detail in Chapter 2, thirty participants in the retreat group (RG1), and an-

other thirty in wait-list control group (CG) were matched on age, sex, handedness, psy-

chological measures, attention performance, and previous meditation experience. Retreat

participants stayed at a remote mountain retreat center (Shambhala Mountain Center, CO)

during the three months of training. Control group participants were flown to the retreat

center for testing during Retreat1, and later comprised as participants for Retreat2 (RG2).

Thus, data from the control group in Retreat1 acted a control for the retreat group in Re-
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treat1, and as a control for themselves in Retreat2. Due to technical difficulties, data was

analyzed only for twenty-two subjects in each group (RG1, CG, and RG2).

5.2.5 Task

Chapter 2 also provides detailed instructions for the task. The participants were assessed

at several psychological tasks, at the three test-points (beginning, middle, and end) during

the retreats. The model, however, is developed for the task where participants practiced

eyes-closed focused-attention meditation (12 minutes) and rest (one minute before and af-

ter meditation). Due to technical difficulties, only the first six minutes of EEG data was

recorded during meditation. Hence, the model was based on three eyes-closed states: one

minute of pre-meditation rest, six minutes of focused-attention meditation, and one minute

of post-meditation rest.

5.2.6 Meditation Training

The participants in this project practiced meditation under the guidance of Dr. Alan Wal-

lace. Each participant practiced meditation for 6 hours each day, on average. Training

consisted of sustained attention to breath sensations (primarily), mental events, or aware-

ness, on average six hrs/day combined, and generating beneficial aspirations, on average

one hr/day (Wallace, 2006). Detailed training structure is provided in Chapter 2.

5.2.7 Data Fitting

The sum of EEG and EMG spectrum was fit to that of the experimental spectrum Pexp(f)

at each site on the head. The estimated power spectrum is given by

Pest(f) = PEEG(f) + PEMG(f). (5.10)

No smoothing was done on the experimental spectrum. The χ2 error between

Pest(f) and Pexp(f) was reduced using the trust-region-reflective constrained optimiza-
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tion algorithm (Coleman and Li, 1993), implemented in MATLAB (MATLAB, 2010), in

which χ2 is calculated for each site as

χ2 =
N∑
i=1

[log(Pexp(fi))− log(Pest(fi))]2. (5.11)

The range for parameter values was physiologically bounded using the limits pre-

sented in Table 5.1).

5.3 Computational Experiments

The extended model was used to run four computational experiments to formally understand

the mechanisms underlying meditation training. First, to test the ability of the model to

account for real high-density EEG data, a data fitting experiment was performed. After

fitting the model to the data collected during rest and meditation, a second experiment was

run to understand how the model parameters changed during the three months of meditation

training. Such insights would provide information about the evolution of cortical, cortico-

thalamic, and intrathalamic dynamics. The third experiment was run to find the teleological

reasoning behind the changes observed in model parameters, thus theoretically revealing

why such changes were preferred by the brain (and what purpose those changes served).

The fourth experiment was designed to understand how lateral connectivity in the modeled

TRN changes with meditation training. Such an understanding can provide insight into how

the TRN helps regulate attention in general (and during meditation in particular).

5.3.1 Experiment 1: Data Fitting

The extended model was used to fit the power spectra estimated from all the channels in-

dependently, during rest and meditation states, for each group (RG1, CG, and RG2), and

at each test-point (before, middle, and end of retreat). The model successfully fitted all the

channels over the scalp, as shown graphically in Figures 5.6, 5.7, and 5.8, while keeping all
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the parameters in the physiologically plausible range (Tables 5.2 and 5.3).

Further, the statistics to measure the goodness-of-fit were calculated using the R-

square method (MATLAB, 2010). R-square is used to find out how much variance in the

data can be explained by the model and is defined as follows,

Rsquare = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − y)2

, (5.12)

where yi is the original data, ŷi is the modeled data, and n represents the number of data

points. The value of R-square can vary between 0 and 1, with a value closer to 1 indicating

that a large proportion of variance in the data is accounted for by the model. Thus, a value

of 0.9234 means that the model accounts for 92.34% variance in the data about the mean.

Table 5.4 shows average R-square values for each group, state, and test-point. The model

consistently accounted for more than 97% variance in the data in each group, state, and

test-point.

To make sure that the fitting procedure did not differentiate between groups or test-

points, a non-parametric false-discovery-rate (FDR) based approach was used to find differ-

ences in sum-squared errors for each channel across the three test-points within each group.

Dependent sample F-statistic was used (with an alpha level of p < 0.05) to test difference

across test-points. The results were post-hoc corrected for doing three such tests for each

group (RG1, CG, and RG2). This approach is similar to the one used in longitudinal anal-

ysis of model parameters, except in this case an FDR-based test-statistic was used instead

of the cluster-based test-statistic used in longitudinal analysis. The reason was that the ac-

curacy of fitting each channel was to be tested independent of its neighbors (as opposed to

the cluster-based approach). No channel was found to be fit differently across test-points in

each group, thereby concluding that the model is not biased for (or against) any test-point

or group.

Altogether, this experiment turned out to be successful. This result is important

computationally, since it is the building block for all the other experiments. After fitting the
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α t0 Gsrs γe Gee Gei Gesre Gese p0 A

RG1 T1 R1 114.35 0.0867 -0.9679 265.52 23.48 -29.60 -5.57 16.53 0.2204 7.97

M 113.71 0.0889 -0.8977 282.67 24.51 -29.93 -4.99 15.12 0.1652 7.82

R2 116.03 0.0881 -0.8723 278.75 24.73 -30.32 -5.15 15.14 0.1602 8.21

T2 R1 116.68 0.0851 -0.9039 262.04 24.38 -29.81 -4.84 15.04 0.1895 7.88

M 116.88 0.0865 -0.8027 287.09 24.65 -30.34 -3.73 14.48 0.1468 6.81

R2 117.71 0.0860 -0.7774 289.14 25.17 -30.78 -4.30 14.42 0.1458 7.44

T3 R1 115.44 0.0851 -0.9411 252.68 23.25 -29.18 -5.41 16.04 0.1890 7.44

M 113.81 0.0860 -0.8471 287.88 24.04 -30.10 -3.94 15.54 0.1694 7.15

R2 115.31 0.0872 -0.8368 281.21 24.46 -30.01 -4.78 14.62 0.1518 7.71

CG T1 R1 110.47 0.0867 -0.9760 266.94 23.02 -29.86 -4.60 18.97 0.3391 8.43

M 112.00 0.0863 -0.9474 275.61 24.03 -29.89 -3.86 16.31 0.2702 8.09

R2 111.78 0.0877 -0.9183 267.90 23.21 -29.36 -4.85 16.93 0.3225 10.58

T2 R1 112.21 0.0844 -0.9428 263.04 23.24 -29.86 -3.62 17.33 0.2763 7.93

M 113.20 0.0850 -0.9288 281.82 25.02 -30.75 -3.64 15.04 0.2117 7.92

R2 112.11 0.0847 -0.9000 262.68 24.03 -29.97 -4.25 16.31 0.2653 8.75

T3 R1 111.61 0.0849 -0.9559 254.00 23.17 -29.86 -4.80 18.88 0.2811 7.81

M 111.19 0.0850 -0.9295 273.61 23.92 -29.87 -3.81 16.38 0.2508 7.60

R2 111.90 0.0847 -0.9256 262.02 23.74 -29.28 -5.09 17.02 0.2541 9.07

RG2 T1 R1 110.31 0.0882 -0.9647 284.63 23.89 -30.00 -4.57 16.17 0.2699 9.53

M 111.58 0.0913 -0.8419 296.06 25.51 -30.68 -4.95 15.50 0.2244 9.37

R2 110.65 0.0911 -0.9013 286.76 24.35 -30.21 -4.72 16.11 0.2466 9.35

T2 R1 112.84 0.0862 -0.9490 272.19 23.79 -29.94 -4.27 16.34 0.2779 8.98

M 112.40 0.0897 -0.8046 293.95 26.09 -31.16 -4.35 15.02 0.2051 8.88

R2 110.20 0.0890 -0.8554 281.21 24.79 -30.53 -4.16 16.32 0.2374 8.04

T3 R1 113.38 0.0860 -0.9373 270.83 23.75 -29.50 -4.90 17.39 0.2876 10.14

M 114.57 0.0896 -0.8030 287.75 25.83 -30.26 -4.72 14.83 0.1937 8.92

R2 111.19 0.0898 -0.8280 287.86 24.89 -30.45 -4.13 16.10 0.2312 8.86

Table 5.2: Average values of fitted model parameters. The values are averaged over all
channels and participants for each state (rest-before-meditation (R1), meditation (M), and
rest-after-meditation (R2)), test-point (beginning (T1), middle (T2), and end (T3) of re-
treat), and group (RG1, CG, and RG2), after fitting to the real EEG spectrum. The final
parameter values were within physiologically plausible range (refer to Table 5.1).
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α t0 Gsrs γe Gee Gei Gesre Gese p0 A

RG1 T1 R1 15.67 0.0065 0.4248 60.21 3.92 3.63 3.03 4.30 0.1673 4.44

M 13.53 0.0047 0.4006 57.31 3.09 2.07 2.53 4.14 0.1384 4.09

R2 13.97 0.0064 0.3485 52.56 3.36 1.97 2.87 5.03 0.1157 4.25

T2 R1 12.74 0.0060 0.3490 60.30 4.65 3.75 4.12 4.79 0.1667 4.79

M 13.90 0.0056 0.2812 49.51 3.17 2.40 2.72 4.92 0.1245 3.69

R2 14.10 0.0057 0.2735 49.74 3.32 2.18 3.15 5.11 0.1177 4.34

T3 R1 14.63 0.0058 0.3812 50.06 3.90 3.56 3.44 4.58 0.1458 4.39

M 13.03 0.0060 0.3318 52.82 4.04 2.32 3.01 4.92 0.1552 4.37

R2 13.73 0.0059 0.3461 52.95 2.99 2.88 2.64 4.69 0.1173 4.31

CG T1 R1 11.17 0.0066 0.4196 54.15 3.14 1.98 2.77 5.34 0.2685 3.19

M 11.21 0.0066 0.4187 55.60 2.77 2.05 2.01 4.62 0.1910 2.91

R2 10.28 0.0056 0.3938 51.77 2.54 2.44 2.15 4.73 0.2527 6.70

T2 R1 11.19 0.0065 0.4188 57.88 3.61 2.53 2.62 6.67 0.2083 3.02

M 11.27 0.0072 0.4193 62.91 3.25 2.55 2.50 6.22 0.1578 2.89

R2 8.19 0.0061 0.3855 59.11 2.37 1.92 2.55 5.76 0.2147 4.38

T3 R1 10.51 0.0074 0.4391 56.11 3.57 1.74 2.82 5.08 0.2365 3.88

M 11.12 0.0064 0.4239 60.13 3.61 1.99 2.22 6.31 0.1849 2.64

R2 9.54 0.0070 0.4303 70.23 3.00 2.63 3.26 6.00 0.1870 4.52

RG2 T1 R1 11.30 0.0055 0.4748 63.73 2.80 2.52 2.26 3.94 0.1716 4.96

M 10.90 0.0059 0.3918 65.96 3.16 2.12 2.84 5.14 0.1696 4.13

R2 8.53 0.0065 0.4177 63.27 3.79 2.73 2.37 4.38 0.2359 4.38

T2 R1 12.76 0.0064 0.4568 64.62 2.67 2.84 3.00 5.91 0.2307 4.50

M 9.44 0.0070 0.3619 66.38 3.54 2.90 2.71 5.39 0.1566 3.71

R2 6.78 0.0071 0.3659 65.17 3.86 3.27 2.31 5.54 0.2356 3.76

T3 R1 13.21 0.0064 0.4372 62.02 2.45 2.73 2.81 5.43 0.2530 5.54

M 9.94 0.0077 0.3691 64.37 3.63 2.89 2.63 4.18 0.1687 3.81

R2 6.87 0.0069 0.3661 60.29 3.28 2.87 2.00 4.93 0.2064 5.10

Table 5.3: Standard deviation of parameter values, averaged over all channels and partici-
pants for each state.

data, the next step is to see changes in model parameters with meditation training. These

changes will provide crucial insights from the model that may reflect changes in attention-

related brain mechanisms due to meditation training. The next computational experiment

will explore them.
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Figure 5.6: Model fitting results for the meditation state for RG1 (Color figure). Real
EEG spectrum is shown in solid black line and modeled EEG spectrum in dashed red line.
Each cluster of five rows displays results from the first five participants (P1, P2, ..., P5;
out of twenty-two, due to space limitations) is shown at a different test-point (beginning,
middle, and end of retreat). Each column shows a different mid-line channel across the
scalp (out of seventy-three channels, due to space limitations). The model successfully
fitted the channels across the scalp, the participants, and the test-points. Only meditation
state is shown, due to space limitations, but similar results were obtained for both the resting
states as well. 116



Figure 5.7: Model fitting results for the meditation state for CG (Color figure). The model
successfully fitted the channels across the scalp, the participants, and the test-points.
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Figure 5.8: Model fitting results for the meditation state for RG2 (Color figure). The model
successfully fitted the channels across the scalp, the participants, and the test-points.
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RG1 CG RG2

µRsquare σRsquare µRsquare σRsquare µRsquare σRsquare

R1 T1 0.9745 0.0066 0.9734 0.0077 0.9732 0.0074

T2 0.9734 0.0077 0.9757 0.0056 0.9752 0.0066

T3 0.9739 0.0067 0.9717 0.0138 0.9734 0.0067

M T1 0.9846 0.0055 0.9837 0.0053 0.9834 0.0063

T2 0.9829 0.0076 0.9850 0.0057 0.9841 0.0057

T3 0.9836 0.0061 0.9845 0.0063 0.9830 0.0069

R2 T1 0.9748 0.0053 0.9737 0.0066 0.9737 0.0061

T2 0.9732 0.0079 0.9756 0.0060 0.9746 0.0079

T3 0.9741 0.0069 0.9750 0.0065 0.9750 0.0070

Table 5.4: Goodness-of-fit results, based on R-square values. The results are averaged over
all channels and participants for each state, test-point, and group, after fitting to the real
EEG spectrum. Overall, the model accounted for more than 97% variance in all the cases.
More importantly, low standard deviation σRsquare indicates that the model fits the data
consistently across the scalp and the participants. It is important to note that the meditation
state was fitted slightly more accurately than the resting state, probably because it had a high
signal-to-noise ratio (SNR; since it was estimated from six minutes of data, as opposed to
the one minute available for resting states).

5.3.2 Experiment 2: Inverse Modeling

Inverse modeling refers to a method in which the fitted model parameters are analyzed to

gain insight about how the observed changes in the data are emerged. Changes found in

the model parameters can be used to construct formal theories about the underlying mecha-

nisms and even guide future experiments. Further, in the current modeling approach, inverse

modeling cannot only provide useful information about the longitudinal changes in cortico-

cortical dynamics, but also cortico-thalamic and intra-thalamic dynamics due to meditation

training. Thus, allowing for generating hypothesis at the level of neural populations, which

is hard to obtain even with the most sophisticated invasive approaches.

After the extended model was fit to the real EEG spectrum in the previous exper-

iment, parameters were analyzed using the longitudinal analysis extension to the model.

Figure 5.9 shows the experimental design and Figure 5.10 shows the model parameters an-
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alyzed. Based on the meditation type (focused-attention) and the results from spectral anal-

ysis (Chapter 4), the role of cortico-thalamic and intra-thalamic dynamics was suspected.

Overall, changes in three (out of ten) parameters were found using the longitudi-

nal analysis. These parameters were intrathalamic gain (Gsrs), cortico-thalamic delay (t0),

and normalization factor (p0). The changes in intrathalamic gain and corticothalamic de-

lay were evident in both retreat groups, however, no such change was found in the control

group. Further, the normalization factor was the only parameter that changed in CG (Fig-

ure 5.11). It was found to drop from the beginning to the middle test-point in left lateral

parietal region, but no difference was found between the beginning or the middle and the

end test-point. A similar drop was also found in RG1 at the right anterior frontal region:

the normalization factor dropped at the middle of retreat, but no difference was found at

the end of retreat (compared to the beginning; Figure 5.12). The normalization parameter

is responsible for the scaling of the theoretical spectrum, according to Experiment 1, and is

related to parameters Ges, Gsn, φn, and re (equation 5.6). In the current work, parameter

re was kept constant (Table 5.1) and parameters Gsn and φn represented white noise in

space and time. Further, no longitudinal change in parameters Gese or Gesre, and hence

Ges, were found. Considering all these facts, it seems that the changes observed in p0 at

the middle test-point are not related to physiological changes. Correlation analysis (sec-

tion 5.5) between changes in p0 and other measures, if found, will shed more light on why

normalization factor dropped.

The intrathalamic gain parameter represents the interaction between reticular (TRN)

and relay (SRN) nuclei of thalamus. Reduced intrathalamic gain was found in right lateral

parietal areas, during rest and meditation, in RG1 and RG2 after the retreat. Figures 5.13

and 5.14 show the location of clusters and the results from posthoc Wilcoxon tests for each

state (see the caption for statistics). These revealed a step-wise drop in Gsrs during both

retreats, i.e., significant drop from beginning (T1) to middle (T2) and from the beginning to

the end (T3) of the retreat, but no change from the middle to the end of the retreat.

120



Figure 5.9: Experimental design for inverse modeling. Three groups of participants were
tested (RG1 and CG in Retreat1 and CG later underwent its own retreat (Retreat2) and
became RG2). Each group was tested thrice during the three-month retreat period: begin-
ning (T1), middle (T2), and end (T3). After fitting the model for each test-point, three null
hypotheses were tested (H1

0 , H2
0 , and H3

0 ) using the nonparametric cluster-based permu-
tation analysis, followed by False Discovery Rate (FDR) correction for 90 nonparametric
tests. Later the parameter values from the significant clusters were fed into Wilcoxon’s test
(with Bonferroni correction) to determine the direction of effects, i.e., how parameter val-
ues change from T1 to T2 to T3. Overall, this experiment provides a statistical approach to
longitudinal analysis of model parameters.
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Figure 5.10: Model parameters analyzed during inverse modeling (Color figure). Five
model parameters (or loops) are shown in the figure: cortico-cortical excitatory (Gee; in
green), cortico-cortical inhibitory (Gei; in red), cortico-thalamo-cortical via TRN (Gesre;
in blue), cortico-thalamo-cortical without TRN (Gese; in purple), and intrathalamic loop
(Gsrs; in orange). Apart from these loops, five other parameters (not shown in the figure)
were also analyzed: cortical damping rate (γe), dendritic decay rate (α), conduction delay
in the signal from cortex to thalamus and back (t0), normalization parameter for the spec-
trum (p0), and normalization parameter for the EMG model (A). The oscillatory activity
produced by the model is due to the temporal dynamics in the five loops.

Simply put, increase in Gsrs will lead to increased inhibition of SRN using TRN,

and decrease in Gsrs will lead to reduced inhibition of SRN (Steriade and Amzica, 1998;

Timofeev et al., 1996). The latter is characteristic of increased arousal states, where SRN

cells become more depolarized and TRN cells become more hyperpolarized (Steriade,

2000). Thus, the reduction in magnitude of intrathalamic gain after three months of in-

tensive meditation training in consistent with increased arousal or alert state during rest and

meditation.

The corticothalamic delay (t0) parameter represents axonal and other propagation

delays in transmitting signal from cortex to thalamus and back to cortex (Robinson et al.,

2001). Increased corticothalamic delay was found in midline and right-lateral parietal areas,
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Figure 5.11: Changes in normalization factor (p0) during pre-meditation rest (Color figure).
A cluster in the left lateral parietal location was found for CG (pcluster = 0.0018), no clus-
ters were found for either retreat groups. The location of cluster is separate from all the
other effects found in RGs, such as intrathalamic gain and corticothalamic delay. Post-hoc
Wilcoxon test revealed a reduction in normalization factor at the middle of retreat (as com-
pared to the beginning; pw = 0.005). No difference was found between the beginning and
the end of retreat. Further, p0 values extracted from RG1 and RG2 for the same cluster as
in CG showed no change. It is important to note that no effect was found in the parameters
from which p0 is calculated (equation 5.6), thus it is not clear why this change was seen in
CG alone. This effect does not seem to be due to physiological reasons.
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Figure 5.12: Changes in normalization factor (p0) during meditation (Color figure). Cluster
was found in the right anterior-frontal location in RG1 (pcluster = 0.0018), no clusters were
found in either CG or RG2. The location of this cluster separate from all the other effects.
Post-hoc Wilcoxon test revealed a reduction in normalization factor at the middle of retreat
(pw = 0.000), as compared to the beginning, and at the end of retreat (pw = 0.003), as
compared to the middle, but, no difference was found between the beginning and the end
of retreat, indicating a weak effect. Further, p0 values extracted from CG for the same
cluster as in RG1 showed no change. It is important to note that no effect was found in the
parameters from which p0 is calculated (equation 5.6), thus, it is not clear why this change
was seen in RG1 during meditation. As with the effect found in CG (Figure 5.11), this
effect also does not seem to be due to physiological reasons.
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Figure 5.13: Reduction in intrathalamic gain (Gsrs) during pre-meditation rest (Color
figure). No cluster was found in RG1 or CG. However, right lateral parietal cluster
was found in RG2 (pcluster = 0.0022 ≤ pcritical

FDR = 0.0022). Post-hoc Wilcoxon test
for the cluster revealed a significant reduction in intrathalamic gain at T2 when com-
pared with T1 (pw = 0.001, which cleared Bonferroni critical alpha level for six tests
pcritical
Bonferroni = 0.0083). However, the reduction was lost at T3 (compared to T1) and only a

trend of reduction was found at the end of retreat (pw = 0.072). Overall, a relatively weak
effect was found for intrathalamic gain at pre-meditation rest.
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Figure 5.14: Reduction in intrathalamic gain (Gsrs) during meditation (Color figure). Using
nonparametric cluster-based permutation approach, significant clusters were found in RG1
and RG2, whereas no clusters were found in CG. In RG1, a large right lateral parietal-
occipital cluster was found (pcluster = 0.001 ≤ pcritical

FDR = 0.0022). Post-hoc Wilcoxon test
for the cluster revealed a significant reduction in intrathalamic gain at T2 (pw = 0.000) and
T3 (pw = 0.007) when compared to T1 (both less than pcritical

Bonferroni = 0.0083). In RG2, a
right-parietal cluster was found (pcluster = 0.0066). It just missed the pcritical

FDR = 0.0022
and hence it is a weak effect, indicated by gray-colored bar plots underneath. FDR-based
cutoff can be overly conservative (especially when testing for 90 tests), thus results from this
cluster are still included. Post-hoc Wilcoxon tests for the cluster in RG2 revealed reduction
in Gsrs at T3 (as compared to T1; pw = 0.001, which cleared Bonferroni critical alpha
level for six tests pcritical

Bonferroni = 0.0083). Overall, the reduction in intrathalamic gain during
meditation was replicated across the retreats in similar spatial locations and no effect was
found for the CG.
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during meditation and rest, after the retreat. No effect was found in the control group.

Figures 5.15, 5.16, and 5.17 show the location of the clusters and the results from posthoc

Wilcoxon tests for each state, respectively. Parallel to the intrathalamic gain, a step-wise

change (although increase) in delay values was found in both retreat groups.

The temporal dynamics of cortico-thalamo-cortical loop are considered as one of

the generators for alpha frequency on the scalp (Pizzagalli, 2007; Fisch and Spehlmann,

1999; Larson et al., 1998). The main impact of increasing cortico-thalamic and thalamo-

cortical delay parameter is to reduce the alpha and beta frequency (Robinson et al., 2001).

Sensitivity analysis of model parameters confirms this theory (Figure 5.3). Further, various

previous studies on meditation research showed that long-term meditators have reduced

alpha frequency even during baseline rest (Cahn and Polich, 2006). Similar results were

also found with the current dataset with just three months of meditation (see Chapter 4).

However, the biological basis for this finding in meditators is still unknown. The model,

however, proposes that the increased corticothalamic delay can account for the reduced

alpha frequency found in meditators. Correlation analysis (section 5.5) will further test this

claim.

Altogether, the inverse modeling experiment provided crucial insights into what

might be happening inside the brain during focused-attention meditation training, thereby

creating a putative mechanistic account for the cortical changes seen after the retreat. How-

ever, another important aspect about these changes is that of the teleological reasoning be-

hind them, i.e., why such changes were preferred by the brain (and what purpose did those

changes serve). The next computational experiment attempts to develop such reasoning.

5.3.3 Experiment 3: Stability Analysis

The previous experiment showed how the cortico-cortical, cortico-thalamo-cortical, and

intrathalamic dynamics change due to intensive meditation training. This result is novel and

important by itself, but it provides only a mechanical explanation. To provide a teleological
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Figure 5.15: Increase in corticothalamic delay (t0) during pre-meditation rest (Color figure).
No cluster was found in RG1 and CG. However, in RG2 a bilateral parietal-occipital cluster
was found (pcluster = 0.0002 � pcritical

FDR = 0.0022). Post-hoc Wilcoxon tests revealed
a significant increase in corticothalamic delay at T2 (pw = 0.001) and T3 (pw = 0.000)
(as compared to T1), but no difference between T2 and T3. The pattern in corticothalamic
delay is thus similar, but in opposite direction, to the reduction found in the intrathalamic
gain.
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Figure 5.16: Increase in corticothalamic delay (t0) during meditation (Color figure). No
clusters were found in the CG. However, parietal-occipital clusters were found in both re-
treat groups. In RG1, a bilateral parietal-occipital cluster was found (pcluster = 0.0001 �
pcritical
FDR = 0.0022). Post-hoc Wilcoxon test for the cluster revealed a significant increase

in the corticothalamic delay at T2 (pw = 0.000) and T3 (pw = 0.007) when compared to
T1. In RG2, a right parietal-occipital cluster was found (pcluster = 0.0008 � pcritical

FDR =
0.0023). Post-hoc Wilcoxon tests were performed to find the direction of change. Increased
delay value was found at T2 (pw = 0.001) and T3 (pw = 0.001), when compared with T1,
but no change was found between T2 and T3. Overall, increased cortico-thalamic delay was
found parietal-occipital regions, in both retreat groups, at the middle and the end test-points
of the retreat.
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Figure 5.17: Increase in corticothalamic delay (t0) during post-meditation rest (Color fig-
ure). No cluster was found in CG, but, parietal-occipital clusters were found in both
retreat groups. In RG1, a small right parietal cluster was found (pcluster = 0.008).
It just missed the pcritical

FDR = 0.0022 and hence it is a weak effect, indicated by gray-
colored bar plots underneath. Post-hoc Wilcoxon test for the cluster revealed a signif-
icant increase in the corticothalamic delay at T2 (pw = 0.000) and T3 (pw = 0.001)
when compared to T1. In RG2, relatively large right parietal-occipital cluster was found
(pcluster = 0.0002 � pcritical

FDR = 0.0023). Increased delay value was found using post-hoc
Wilcoxon tests at T2 (pw = 0.001) and T3 (pw = 0.000), when compared with T1, but no
change was found between T2 and T3. The overall results here are similar to those found
during meditation, indicating trait effect of meditation training at post-meditation rest.
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explanation as well, i.e., why the model parameters changed the way they did and what

purpose those changes serve, stability analysis was done on the model equations. The

hypothesis for this experiment was that the changes found in Experiment 2 induce more

stability in the brain. Thus, three months of intensive meditation practice should transform

the brain such that it becomes less chaotic and more stable.

Previously, Robinson et al. (2002), showed that the stability boundaries in parameter

space occur approximately where

(1− iω/γe)2 − x−
y(1−Gsrs)
1−GsrsL2

eiωt0 = 0 (5.13)

is satisfied. Here,

x = Gee/(1−Gei) (5.14)

and

y =
Gese +Gesre

(1−Gsrs)(1−Gei)
. (5.15)

The parameter x represents cortical and y represents corticothalamic activity. Another pa-

rameter z was chosen to represent the intrathalamic activity,

z = −Gsrsαβ/(α+ β)2. (5.16)

Thus, the whole parametric space can be reduced to a three-dimensional space <

xyz >. The stability zone in the < xyz > space, defined by equation 5.13, is shown in

Figure 5.18. The stable zone for the brain is under the multicolored tent. Above the tent

lies different instabilities as shown with the different different colors. Different brain states

can be mapped to this < xyz > space and changes in the coordinates of those states result

in increased stability (or instability) in the brain (Robinson et al., 2002).

The experimental design for this experiment was similar to the previous one, except

instead of model parameters, longitudinal changes in the three coordinates were assessed.
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Figure 5.18: Stability of different brain states, and the states of participants before and after
meditation training (Color figure). Brain states are reported by points in the 3-D volume.
The colored surfaces represent the boundary between stable (below) and unstable (above)
states. Four such boundaries are shown (cartoon adapted from a real data plot in Robinson
et al., 2002). First, above the red surface, is the theta instability defined area, for small
z. Second, above the blue surface, is the spindle instability which peaks at z = 1. Third,
above the green surface, is the alpha instability. Fourth, the invisible (to clearly show the
inside) front of the tent towards the reader, is the slow-wave instability, defined by the
plane x+ y = 1. Overall, this colored tent surface marks the onsets of generalized seizures
(Robinson et al., 2002). Approximate locations for eyes-closed rest (EC) and eyes-open rest
(EO) are shown as labeled points. These locations were determined previously by Robinson
et al. (2002). Locations of group mean are also shown for the retreat groups, using the
legend on right. These values were extracted from the cluster found in longitudinal analysis
of z stability parameter. Significant reduction in z values show that the participants were
further away from the unstable tent surface and hence in a more stable zone, after the retreat.
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Significant clusters were found in both retreat groups, during rest and meditation states, for

the intrathalamic stability parameter z. It is important to note that the cluster locations found

for z were identical to the ones found for Gsrs (in Experiment 2). No cluster was found

for the CG. In RG1, a significant cluster was found at the right lateral parietal-occipital

location, during meditation (Figure 5.19). Post-hoc Wilcoxon test revealed a reduction in z

at the middle and the end of retreat as compared to the beginning. Similar, but weak, effect

was also found in RG2 during meditation (Figure 5.19). Another right parietal cluster was

found in RG2 during pre-meditation rest. Post-hoc tests revealed a significant reduction in

z at the middle and a trend reduction at the end of retreat (as compared to the beginning),

but no difference between the middle and the end of retreat (Figure 5.20).

Why is the change only in z-dimension, and why is it a reduction? The only model

parameter that changed longitudinally, and was also used in stability analysis, was Gsrs.

Both y and z are estimated using Gsrs and the change in z is obviously due the reduc-

tion found in Gsrs: Even the exact same cluster locations were found for both Gsrs and z.

Apparently y did not change in the same way because changes in its numerator and denom-

inator canceled each other. That is, the increase due to reduction ofGsrs in the denominator

was diminished, due to decrease in Gesre 1.

What does the reduction in z-dimension mean? Most likely more stability. Figure

5.18 shows the location of average brain states of the participants in < xyz > space before

and after the retreat. For reference, the figure also shows approximate locations for eyes-

closed and eyes-open resting brain states, estimated in a separate study and a different group

of people (Robinson et al., 2002). Although the participants were already in the stable zone,

the decrease found in z-dimension after three months of intensive meditation, suggests that

participants were even further away from the instability boundaries (or the tent surface).

Hence, they were in a significantly more stable state after meditation training than before it.

Altogether, this experiment suggests that the teleological purpose of reduced in-
1Since, Gesre = GesGsrGre and reduction in Gsrs implies reduction in Gsr and hence reduction in Gesre

too.
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Figure 5.19: Stability analysis during meditation (Color figure). No clusters were found in
CG, however, right lateral parietal clusters were found in both RG1 (pcluster = 0.0012 ≤
pcritical
FDR = 0.002) and RG2 (pcluster = 0.0074 > pcritical

FDR = 0.002). The cluster in RG2
just missed the FDR critical alpha level and hence is a weak effect, but is included here
for completeness. Post-hoc Wilcoxon test, for the cluster in RG1, revealed a significant
decrease in the z at T2 (pw = 0.0015) and T3 (pw = 0.0005) when compared to T1,
however no change in z values extracted from CG for the same cluster. Post-hoc Wilcoxon
test, for the cluster in RG2, revealed a significant decrease in the z at T3 (pw = 0.0007),
when compared to T1, but again, no change in z values extracted from CG for the same
cluster. Overall, a strong effect was found for reduction in value of inthrathalamic stability
parameter. This reduction implies participants were more stable after meditation training.
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Figure 5.20: Stability analysis during pre-meditation rest (Color figure). No clusters were
found in RG1 and CG. However, a right lateral parietal cluster was found in the RG2
(pcluster = 0.002 ≤ pcritical

FDR = 0.002). Post-hoc Wilcoxon test for the cluster revealed
a significant decrease in the z parameter at T2 (pw = 0.0009) and a trend decrease at T3
(pw = 0.07) when compared to T1, but no change in z values extracted from CG for the
same cluster. Overall, a weak effect was found for reduction in value of inthrathalamic sta-
bility parameter. This reduction implies that participants were more stable after meditation
training.
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trathalamic gain after intensive meditation training is to provide more stability to the brain

dynamics. This finding has great consequences for patient populations suffering from insta-

bility, such as epilepsy. Focused-attention meditation might provide a therapeutic approach

to treat such disorders.

5.3.4 Experiment 4: Connectivity in TRN

The unique influential positioning of the TRN and its extensive lateral, mostly inhibitory,

connectivity suggests that it acts as a nexus between several functionally and structurally re-

lated cortical and thalamic areas (Scheibel and Scheibel, 1966; Guillery and Harting, 2003;

Jones, 1975; Crick, 1984; Steriade et al., 1986; Sherman and Guillery, 2006; Zikopoulos

and Barbas, 2007). This nexus has been suggested to be responsible for attention regula-

tion and cognitive control functions (Crick, 1984; Sherman, 1996; Sherman and Guillery,

2002; Zikopoulos and Barbas, 2007), even during meditation (Austin, 1999; Newberg and

Iversen, 2003). Thus, it is important to model and understand the intra-TRN dynamics in

order to understand how attention is regulated during intensive meditation retreat.

Methodological details about this experiment are provided in section 5.2.2. Briefly,

after fitting the model with real EEG data, white noise was injected in the cortical cells of

the model. The resulting activity was measured in the TRN cells and connectivity analysis

was performed to gauge the lateral connectivity in the TRN layer. Further, longitudinal

analysis was performed on the structural changes in TRN (i.e., the location of the clusters)

and connectivity changes within and between clusters.

Using a cluster dendrogram, the value for maximum number of clusters was cho-

sen to be two. The clusters were then visualized using topographical maps, as shown in

Figure 5.21(b). Overall, clear anterior-posterior division was found at each test-point (for

all groups and states) in the TRN layer. This discovery is in line with the idea of afferent

cortical connections to the TRN layer are topologically structured (Zikopoulos and Barbas,

2007): The clear functional division in the modeled layer, rather than some messy arrange-
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ment, thus provides computational support to such experimental results.

To measure the longitudinal changes in this division, nonparametric cluster-based

permutation testing was performed on these topographical maps. However, no significant

change was found across test-points in the retreat for any group or state.

To gauge changes in connectivity in the TRN layer, correlations were estimated

within and between clusters. No difference was found in these correlations for pre-meditation

rest and meditation states in any group. However, for post-meditation rest, significant

increase in within-cluster correlation, for the posterior cluster, was found in both retreat

groups. No significant effect was found for the control group (Figure 5.21(a)). This increase

could indicate a temporary “after-effect” of meditation, resulting in more synchronized ac-

tivity in TRN at the end of retreat (as compared to the beginning). Thus, even a small

lateral (inhibitory) or cortical (excitatory) input to the posterior TRN can have a spatially

large, and perhaps, a strong impact. More work is required to understand the exact reasons

behind such a change in the posterior region of TRN. Correlation analysis and discussion,

in the next two sections, will shed some light on this issue.

5.4 Correlation Analysis

Correlation analysis between the observed changes in model parameters and the other mea-

sures, also acquired during the retreat, was performed in order to (a) provide behavioral

interpretations for the changes observed in model parameters; and (b) disentangle the ef-

fects of meditation training from those of other factors of the retreat.

The longitudinal changes in the model parameters were compared with, (a) self-

reported measures, including lifetime hours spent in meditation, daily time spent in medita-

tion during the retreat, and adaptive socio-emotional functioning (Sahdra et al., 2011); (b)

performance in attention-related tasks, including sustained attention task (MacLean et al.,

2010) and response inhibition task (Sahdra et al., 2011); (c) longitudinal changes found in

cortical activity patterns (Chapter 4); and (d) difference in elevation between the place of
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Figure 5.21: Connectivity analysis of the TRN layer during post-meditation rest (Color
figure). (a) Sample posterior and anterior clusters, found after k-means clustering on the
correlation matrix of TRN cells. (b) Topographical maps for each test-point (and group) are
shown during the post-meditation rest state. Across test-points, no topographical changes
were found in any group or state. These group maps were created by tagging each channel
with -1 (when it was in posterior cluster) or +1 (for anterior cluster) region. The regional
location was determined using center of mass of the channels in it, thus negative x indicates
posterior and positive x indicated anterior (as shown in (a)). (c) Significant increase was
found in within-cluster correlation for the posterior cluster in both RG1 and RG2, whereas
no change was found for CG. To reduce the number of tests in this experiment, only T3 was
compared to T1. Wilcoxon’s test was used to compare T3 with T1 in each state and group
for each retreat. Error-rate due to multiple comparisons was checked using FDR-based
correction (for 18 tests in R1 and 9 tests in R2). Overall, clear separation between anterior
and poster regions of the TRN was found and increased correlation within posterior region
of TRN indicates more synchronized activity in that region, after retreat. The meaning of
such connectivity changes is discussed in section 5.4 and 5.5.
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residence (of participants) and the retreat center. Each one of these correlations will be

discussed in turn below.

Self-reported measures As described in the previous chapter, to understand a complex

cognitive phenomenon, such as meditation, the first person perspective must be taken into

account (Varela and Shear, 1999). Such phenomenological accounts will not only help in

providing meaningful explanation for the changes observed in model parameters, but also

help develop the theory of meditation itself. It is important to note, however, that in the cur-

rent work self-reported questionnaires were used for correlation, instead of actual accounts

by the participants. Thus, the presented correlations are only the first approximations of the

unique individual experience.

Some of the self-reported measures were easy to quantify, such as, daily time spent

in meditation. To quantify more complex measures theoretical models were constructed.

One such model used second-order latent difference score approach, to cover avoidant at-

tachment, attachment anxiety, depression, anxiety, neuroticism, difficulties in emotional

regulation, mindfulness, ego resiliency, empathy, extroversion, agreeableness, conscien-

tiousness, openness to experience, and psychological well-being (Sahdra et al., 2011). Lon-

gitudinal changes in these parameters, due to meditation training, were attributed to a single

latent factor named adaptive socio-emotional functioning (Sahdra et al., 2011).

Starting with Experiment 2, significant correlations were found between longitu-

dinal increase in corticothalamic delay (during pre- and post-meditation resting states) and

lifetime hours of meditation (Figure 5.22): more experienced meditators had higher increase

in corticothalamic delay at the end of retreat.

Longitudinal changes found Experiment 3 (stability analysis) and Experiment 4

(connectivity analysis) did not correlate with any self-reported measures. One explanation

for the former one could be that since the participants were already neurologically typical

(or stable) the increase in brain stability was not large enough to be evident in behavior.
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Figure 5.22: Correlations between corticothalamic delay and self-reported measures (Color
figure). Strong correlations were found between t0 and lifetime hours of meditation, in-
dicating that more experienced meditators had higher increase in t0. In total, three such
correlations were found and the most representative ones are shown here. These corre-
lations were: (a) change (T2-T1) in t0 during pre-meditation rest, and lifetime hours of
meditation (r(20) = 0.527, p < 0.05); and (b) change (T2-T1) in t0 during post-meditation
rest, and lifetime hours of meditation (r(20) = 0.565, p < 0.01);

Performance in attention-related tasks In addition to participating in the meditation

experiment, the participants also took part in a number of attention related tasks, such as,

sustained attention (MacLean et al., 2010) and response inhibition (Sahdra et al., 2011).

Since the primary meditation practice was that of sustaining attention on breath sensations

the hypothesis was that change in model parameters could correlate to performance in sus-

tained attention tasks. Considering widespread theories about TRN and its role in attention

regulation, the main focus for this correlation was the TRN experiment.

Details about the data from sustained attention and response inhibition tasks are

provided in Chapter 4. Quite unexpectedly, no significant correlation was found between

any model parameters in any computational experiment and the participants’ performance

in these attention-related tasks. Since attention regulation and cognitive control has been

associated with the frontal areas of the brain, it is possible that the lack of relation between

changes in TRN layer and performance in attention-related tasks can be attributed to the
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fact that the changes in TRN were only significant in the posterior regions.

Longitudinal changes in cortical activity patterns In Chapter 4, spectral analysis was

performed on the EEG data to explore the longitudinal changes in cortical activity, and

interesting changes were indeed found. Among them was reduction in individual alpha

frequency after three months, which has been consistently shown in experienced meditators

(Cahn and Polich, 2006). However, no biological basis is known for this change. The

sensitivity maps of model parameters (Figure 5.3) indicate that increased corticothalamic

delay is a possible explanation. To corroborate this hypothesis, correlations were measured

between reductions in the alpha frequency and the increment in corticothalamic delay. As

expected, the correlations were indeed very large during all the three states (Figure 5.23).

This result predicts that, perhaps, increased corticothalamic delay (and hence reduced alpha

frequency) could be the signature of experienced meditators. It is also important to provide

a teleological reason for such an increase, as will be done in Chapter 6.

Another consistent cortical activity change found in both retreat participants was the

reduction in beta-band power at posterior sites of the brain. This reduction was attributed to

increased cortical activity in the parietal lobes, i.e. enhanced processing of breath sensations

during meditation (Chapter 4). However, the exact mechanism for such a enhancement and

the role of sensory information filtering (i.e., through thalamus) was unclear. One hypoth-

esis is that reduced intrathalamic gain leads to increased cortical activity. This hypothesis

quite plausible, considering that reduced inhibition of thalamic nuclei by TRN can selec-

tively increase the flow of incoming stream of sensory information to the cortex. To test this

theory, correlations were measured between reduction in intrathalamic gain and in spectral

power in the beta-band. Strong correlations were indeed found in both retreat groups (Fig-

ure 5.24). This relation corroborates the theory that higher the reduction in intrathalamic

gain, higher the drop in beta-band power. In other words, increased inhibition of TRN lead

to increased cortical activity in the parietal region. However, more questions arise before

this hypothesis can be accepted. For example, TRN and cortical areas are connected in a
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Figure 5.23: Correlations between corticothalamic delay and individual alpha frequency
(IAF) (Color figure). Very strong correlations were found between changes in t0 and in
reduction in IAF, indicating that participants with larger drop in IAF also had larger increase
in t0. These relations and parameter sensitivity plots (Figure 5.3) suggest that t0 is indeed
responsible for reduction in IAF in meditators. In total seven similar correlations were
found and the most representative ones are shown here. These correlations were: (a-b)
between change in t0 during pre-meditation rest, and change in IAF (for (a), r(20) =
−0.698, p < 0.0001, and for (b), r(20) = −0.639, p < 0.01); (c) between change (T3-T1)
in t0 during meditation, and in IAF (r(20) = −0.615, p < 0.01); and (d-e) between change
in t0 during post-meditation rest, and in IAF (for (d), r(20) = −0.453, p < 0.05, and for
(e), r(20) = −0.486, p < 0.05).
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Figure 5.24: Correlations between the change in the intrathalamic gain parameter and
reduction in beta band-power (Color figure). Reduction in Gsrs was found to corre-
late with reductions in beta power, indicating the higher the drop in Gsrs corresponds to
higher reduction in beta-band power (for (a), r(20) = −0.628, p < 0.01, and for (b),
r(20) = −0.444, p < 0.05).

feedback loop, where an increased activity in cortical areas will induce high activity in the

TRN and hence reduce TRN’s inhibition. This reduction will in turn block underlying tha-

lamic nuclei and hence sensory information reaching cortical areas. Thus, the first question

is how is TRN’s activity inhibited in a sustained fashion, while keeping the cortical areas

active? The second question is what inhibits the activity in TRN in the first place? Third

question is what is role of other parameters (e.g., corticothalamic delay, increase in which

also correlates with drop in beta band-power; Figure 5.26)? To answer these questions,

Chapter 6 proposes a plausible mechanism by taking into account changes in all model

parameters related to meditation training.

A parameter related to the intrathalamic gain was the intrathalamic stability z. Due

to reduced intrathalamic gain at the end of retreat, reduced values for z were also found

in the exact same locations. Thus, it was expected that reduction in z was also correlated

with reduction in beta power. This relation was indeed found (Figure 5.25) indicating that

reduction in beta power lead to increased stability of the brain, thereby suggesting stability

as the teleological cause for such reduction.
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Figure 5.25: Correlations between the change in stability parameter z and reduction in
beta band-power (Color figure). Significant correlation was found between change in in-
trathalamic stability parameter during meditation and reduction in beta-band power during
pre-meditation rest (r(20) = 0.629, p < 0.01). Although this effect was only significant in
RG1, it suggests that more stability was attained by participants with higher drops in beta
power.

Figure 5.26: Correlations between corticothalamic delay and spectral power (Color figure).
Strong correlations were found between changes in t0 and in reduction in beta power, indi-
cating that participants with larger drop in beta power also had larger increase in t0. In total,
three such correlations were found and the most representative ones are shown here. These
correlations were: (a) between change (T2-T1) in t0 during meditation, and in beta power,
during pre-meditation rest (r(20) = −0.463, p < 0.05); and (b) between change (T3-T1)
in t0 during post-meditation rest, and change (T2-T1) in beta power, during pre-meditation
rest (r(20) = −0.492, p < 0.05).
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Fourth, during spectral analysis, reduction in alpha power was also found at pre-

meditation rest in the second retreat. This reduction was related to increased vigilance

in a sustained-attention task, i.e., participants with higher reduction in alpha-band power

were able to sustain their attention longer (Chapter 4). Based on the location of the clus-

ter (midline-frontal) and the nature of alpha-rhythms (inversely related to cortical activity),

it was proposed that the increased cortical activity in the frontal areas enabled better sus-

taining of attention. To find out the underlying mechanism, changes in connectivity values

within posterior cluster of TRN layer were correlated with reduced alpha power. Strong

correlation was found (Figure 5.27), suggesting that increased intra-cluster correlation in

posterior region of modeled TRN was responsible. Ideally, a correlation between connec-

tivity changes in frontal regions of TRN and reductions in frontal alpha power should have

been found. However, the change in connectivity in frontal regions of TRN, although in the

same direction as posterior, was not significant. Thus, it seems that the found correlation

is secondary, although still quite strong. The lack of connectivity changes in the frontal

regions of TRN might also be responsible for the lack of correlations with participants’

performance in attention-related tasks (as described in previous subsection).

Difference in elevation The two retreats were conducted at the Shambhala Mountain

Center in Red Feather Lakes, Colorado. The center is about 2370 meters above the sea

level. The participants in the control group arrived 3 days (range = 65-75 hr) before the

beginning of testing, for acclimatization.

Although every care was taken to collect and preprocess the scalp recorded EEG

data, nonetheless high altitudes are known to effect EEG data (Guger et al., 2005). Thus,

longitudinal changes in model parameters, observed during rest and meditation, were cor-

related with difference in elevation between the participant’s city of residence and the cen-

ter. No significant correlations were found between the two in any state or group. Thus,

providing more confidence that the changes found in model parameters are indeed due to

meditation training.
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Figure 5.27: Correlations between changes in connectivity in the TRN layer and reduction
in alpha band-power. Reduction in frontal alpha power correlated with increased posterior
connectivity in TRN (r(20) = −0.494, p < 0.05). Such strong correlation indicates that
more posterior connectivity was related with higher drops in frontal alpha power. The
reduction in alpha power correlated with improved performance in sustained attention task
(Chapter 4). Although no direct correlation was found between connectivity in TRN and
participants’ performance, based on this secondary correlation the role of TRN in attention
regulation can be suspected.

Summary In sum, four correlation experiments fulfilled their purpose: they not only

provided meaning for the changes observed in computational experiments, but also helped

corroborate theories proposed in previous chapters.

5.5 Discussion

Computational modeling was employed to provide a theoretical grounding for the mecha-

nisms underlying focused-attention meditation. A mean-field model, originally created by

Robinson et al. (2001), was extended to assess longitudinal changes in model parameters

and to explore the role of TRN in attention regulation during meditation. After success-

ful data fitting, model parameters were analyzed to gain insights into the cortico-cortical,

cortico-thalamic, intra-thalamic dynamics and their evolution with intensive meditation
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training. Two model parameters: intrathalamic gain and corticothalamic delay were found

to change with meditation training, thereby providing a mechanistic view of what might be

happening inside the brain. Further, stability analysis revealed that the drop in intrathala-

mic gain increased the overall stability of the system. This finding provides a teleological

purpose for the changes observed in model parameters. Fourth, connectivity analysis in the

TRN layer discovered an anterior-posterior functional division and a change in connectiv-

ity within the posterior division due to training. To provide behavioral interpretations to

these changes, they were correlated with self-reported measures, performance in attention-

related tasks, longitudinal changes in cortical activity, and difference in elevation. In this

section, advanced issues related to the model architecture, the model fitting procedures, the

computational experiments, and the task itself are discussed.

Model architecture As a starting point, the model developed by Robinson et al. (2001)

was used. This model has been successfully employed to understand various complex brain

phenomena, ranging from seizures and tumors (Robinson et al., 2002; Kim et al., 2009;

Breakspear et al., 2006; Roberts and Robinson, 2008; O’Connor and Robinson, 2005), to

depression (Kerr et al., 2010a), to age-trends in EEG (van Albada et al., 2010; Kerr et al.,

2010b, 2011), and attention-related disorders (Rowe et al., 2005a,b, 2004b).

Even though sophisticated, this model is obviously still a simplified version of what

might be happening inside the brain. One might ask why only cortico-cortical, cortico-

thalamic, and intrathalamic interactions are included, while other subcortical areas are also

hypothesized to be involved in meditation training (Newberg and Iversen, 2003).

To answer this question one must first understand how the scalp-recorded EEGs

are generated. A significant body of research focuses on three main physiological bases

(Pizzagalli, 2007). The first is the summation of excitatory and inhibitory post-synaptic

potentials in the pyramidal cells of the cortex (Pizzagalli, 2007; Speckmann and Altrup,

1993). The idea is that synchronized activity of these cells, which are perpendicular to the

cortical surface and parallel to each other, can sum up to a high enough electric field that
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can reach the scalp (Nunez and Srinivasan, 2006; Pizzagalli, 2007; Baillet et al., 2001).

The second major contributor to scalp-recorded EEG is subcortical areas, especially

the thalamus (Steriade et al., 1993). In animals, reliable signals were measured on the scalp

induced by thalamic oscillations (Steriade et al., 1993). Further, in human neurophysiology,

cortico-cortical and cortico-thalamic interactions are known to contribute oscillations in

delta, alpha, and beta band (Pizzagalli, 2007; Fisch and Spehlmann, 1999; Larson et al.,

1998). However, limbic regions were implicated for the generation of oscillations in theta

band (Pizzagalli, 2007; Vinogradova, 1995; Bland et al., 1999).

Third, recent evidence indicates that local and large-scale synchronization also

plays a role in the generation of EEG (Pizzagalli, 2007; Buzsaki and Draguhn, 2004).

High-frequency oscillations (e.g., gamma) are generated due to local-scale synchrony with

smaller populations, while low-frequency oscillations (e.g., theta) are generated using long-

range synchrony between larger neural populations (Buzsaki and Draguhn, 2004).

The architecture of the model is based on the mean-field approach, and it assumes

that the scalp-recorded EEG signal is generated primarily by the pyramidal cells of the

cortex. Further, it uses the cortico-thalamic and other loops to simulate the oscillatory

activity in EEG. Given that only alpha- and beta-band power changes were observed in the

spectral analysis of meditation data, this model is appropriate. In the future, however, it can

certainly be extended to include limbic areas as well, so that other meditation types, like

compassion meditation, can also be formally analyzed.

Modeling the whole head All the 73 channels of EEG were modeled independently,

using the local effective value (LEV) approach. LEV is analytically tractable and compu-

tationally light (O’Connor and Robinson, 2004). For eyes-closed state, the local indepen-

dence assumption has been shown valid for all but two cases (O’Connor and Robinson,

2004). At < 2Hz and at alpha frequency, local activity is dependent on similar activity at

distant sites (O’Connor and Robinson, 2004).

In the current work, steps were taken to avoid these two violations, and at the same
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time, model all channels. First, the lowest frequency band was defined to be 2 − 4Hz,

thus the first violation was avoided by not analyzing lower frequencies. Two measures were

taken to avoid the second violation. First, scalp current density (SCD) was estimated during

the preprocessing of EEG data. SCD transformed data was used to calculate power spectra

density, which was then used to fit the model. SCD not only helps create reference-free EEG

data, but also reduces the effects of volume conduction (Pizzagalli, 2007). Thus, the effect

of distant activity on the local sensor is greatly reduced. Second, the model was extended to

include longitudinal analysis. This analysis uses nonparametric cluster-based permutation

approach to find longitudinal changes in model parameters. This cluster-based approach

is similar to the cluster-corrected algorithms in fMRI data analysis, where neighborhood

information is taken into account when considering the activity at local locations. For

example, consider a channel that has high t-test value (when comparing two conditions) but

has no neighboring channels with higher t-values. Such a channel will be considered noisy

(or by chance only) and will be rejected. Thus, only channels with similar neighboring

activations will be taken into account in the analysis. This approach, although insensitive

to extremely local changes, works well for EEG data (Maris and Oostenveld, 2007). This

approach also benefits the LEV modeling, by including information about neighboring sites

and by reducing the chances of violation of local independence. Thus, together, SCD and

nonparametric cluster-based approach should reduce the chances for local independence

violation at alpha frequency due to distant sites. In future, more rigorous empirical testing

can be employed to quantify the improvement.

Fitting experiment During data fitting, on average more than 97% variance was ex-

plained by the model, across sites, test-points, and groups. Fitting was done using trust-

region-reflective-constrained optimization algorithm (Coleman and Li, 1993). The param-

eter values were limited by previously set physiologically plausible range (Table 5.1). Fur-

ther, all the test-points and groups were fitted in the same way and no difference was found

in accuracy across test-points or groups.
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Although the model-fitting was successful, it is possible to improve accuracy even

further with a more sophisticated fitting algorithms. For example, Kerr et al. (2011) showed

that multiple random initializations for data fitting can be done, using thousands of Monte

Carlo simulations. This way, the initial bias was reduced. Further, an unconstrained opti-

mization algorithm can also be used, however, in the end only those solutions that are in the

physiologically plausible range of parameter values should be kept (Robinson et al., 2004).

In current work, most of the effort went into cleaning and preprocessing of EEG data, so

that every analysis would have a higher SNR. Perhaps that is the reason why even basic op-

timization lead to good results. In the future, more sophisticated optimization approaches

can be tested to gauge if they are worth the time and effort.

Inverse modeling Using inverse modeling and nonparametric cluster-based statistics, the

intrathalamic gain for the TRN-SRN-TRN loop was found to decrease over the right parietal

region, during rest and meditation, in both retreat groups. Reduced inhibition by the TRN

has been linked with increase in arousal or alertness (Steriade et al., 1993), thereby indicat-

ing that the participants were more alert even during baseline rest. Interestingly, Rowe et al.

(2005a) showed that the same intrathalamic gain parameter can be reduced in attention-

deficit hyperactivity disorder (ADHD) patients, through proper medication. Hence, the

model predicts that customized focused-attention meditation might provide the same effect

without any chemical interaction.

In another study using SPECT, Newberg et al. (2001) found increased thalamic

activity in the right hemisphere in experienced meditators at baseline rest. This finding

is in agreement with the results from the second computational experiment: Reduction in

TRN inhibition naturally increases the activity of the thalamus. Further, the location of

this effect is the same as the region where increased thalamic activity was found using

SPECT (Newberg et al., 2001). It is important to note that while Newberg et al. (2001) used

a neuroimaging technique that has better spatial resolution than EEG, the modeling results

using EEG data alone hypothesized even finer resolution of this subcortical interaction. This
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result bolsters the argument that the fusion of computational modeling and neuroimaging

techniques is essential to uncover the mechanisms underlying complex brain phenomena.

Another parameter, corticothalamic delay, was found to change with meditation

training. Increased delay was found in the parietal-occipital regions after training, and

strongly correlated with reduction in IAF in both retreat groups. Further, using parameter-

sensitivity analysis, it was found that increasing corticothalamic delay, keeping all the other

model parameters constant, shifts the alpha frequency to lower values. Given these two

pieces of evidence, the model predicts that increased corticothalamic delay is the biological

basis for reduction in alpha frequency. However, what purpose such increased delay would

serve is unclear. The next chapter provides one plausible account for the same.

Stability analysis Experiment 3 was run to understand what purpose the longitudinal

changes in model parameters serve, especially in terms of stability of brain activations.

Although the participants in this study were healthy normal individuals, even more stabil-

ity in the brain was found at the end of three months retreat. This finding implies that

focused-attention meditation can be applied to treat patients with unstable brain states (e.g.,

epileptic patients). In fact, a group of researchers at UCLA are working towards reducing

the frequency and intensity of epileptic seizures in this manner (Project: Mindful Attention

Training for Epilepsy; Engel et al., 2006). This finding might also help end the debate as to

whether meditation is epileptogenic (Jaseja, 2005, 2006) or antiepileptic influence (Orme-

Johnson, 2006; Fehr, 2006).

Connectivity analysis in TRN Due to its strategic location and intensive lateral inhi-

bition, TRN has been previously implicated in attention regulation and cognitive control

(Zikopoulos and Barbas, 2007; Crick, 1984; Sherman, 1996; Sherman and Guillery, 2002;

Austin, 1999; Newberg and Iversen, 2003). TRN is also known to play an important role

in building up reciprocal connections between the thalamus and the cortex (Mitrofanis and

Guillery, 1993; Ulfig et al., 1998; Pinault, 2011). Due to its pivotal role, connectivity anal-
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ysis was performed in the modeled TRN layer to explore the longitudinal changes, if any,

associated with meditation training. Two interesting results came out. First, an anterior-

posterior functional division that did not change with training was found in TRN. Second,

increased connectivity within (significant only in posterior division) and among (although

trend) these divisions was found at the end of the meditation retreat (in both RG1 and RG2).

These findings suggest that meditation training, at least partly, influence the connectivity

structure of the TRN layer by increasing lateral connectivity. This result can have impli-

cations in treatment of neurodevelopmental disorders (especially schizophrenia), which are

manifested due to lack (or reduction) of this lateral connectivity in TRN (Pinault, 2011; Fer-

rarelli and Tononi, 2011). Thus, the modeling results predict that focused-attention training

can potentially help patients with mental disorders related to connectivity in TRN.

Trait effect of meditation training In the current work, longitudinal changes in the

model parameters were analyzed in two rest states (one minute before and after medita-

tion) and one meditation state (of six minutes). However, the meditation state was not

compared with the rest state, because of the difference in length of these states. By design,

the power spectral density of meditation data would have higher SNR as compared to the

short resting state. In the future, the plan is to study the temporal evolution of the meditative

state by dividing the six minutes of meditation data into smaller chunks and then modeling

and comparing each of those chunks with the resting data.

Nonetheless, by just looking at the longitudinal changes separately in rest and med-

itation, similar pattern of changes in model parameters was found in both the states. This

similarity can be attributed to the trait effect of meditation training, i.e., intensive medita-

tion practice every day for three months altered the cortical activity such that the rest state

(or “default state”) started to resemble the meditation brain state.
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5.6 Conclusion

A comprehensive theoretical model, based on the EEG data, was developed to understand

the mechanisms underlying meditation training. Both mechanistic and teleological explana-

tions were theoretically discovered for the longitudinal changes in cortical activity. Further,

by correlating changes in model parameters with other measures (including cortical activity

changes), biological basis was provided to some of the most consistent findings of medita-

tion research. Interesting future predictions were also generated using the model, including

suggestion that focused-attention training can help treat several neurodevelopmental disor-

ders. Future work is particularly compelling in this area. The next chapter presents a bio-

logically plausible theory of focused-attention meditation, by taking all the changes (both

in cortical activity and model parameters) into account.
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Chapter 6

Discussion and Future Work

In this chapter, first, the empirical and theoretical results are combined into a global theory

of what goes on in the brain during focused-attention meditation. Second, this theory is

linked to the long-held views about what meditation does to the brain. Third, the chap-

ter explored how a secluded retreat setting could have affected the participants and which

factors to keep in mind while assimilating the results. Fourth, future implications of this

research are explored in the areas of cognitive science, medicine, and engineering.

6.1 An interdisciplinary account of meditation

Given the comprehensive empirical and theoretical analysis of cortical activity during the

intensive meditation training, let us see if a common theory can be built. Regarding spectral

analysis three main results were found at the end of retreat, only in retreat participants: (a)

reduced individual alpha frequency; (b) reduced frontal midline alpha band-power; and (c)

reduced parietal-occipital beta-band power. In the computational experiments four main

results were also found in the retreat participants, at the end of retreat, (a) increased cortico-

thalamic delay at the parietal locations; (b) reduced intrathalamic gain at the parietal loca-

tions; (c) increased stability due to reduced intrathalamic gain; and (d) anterior-posterior
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Figure 6.1: Theory of focused-attention meditation (Color figure). As a participant begins,
he or she will focus attention on sensations of breath, activating frontal areas. These areas
use the reticular nucleus of the thalamus (TRN) to regulate the focus, by inhibiting posterior
regions of TRN so that incoming sensory information can flow straight to the posterior
cortex. To avoid re-activating the posterior TRN region through reciprocal connections the
cortex introduces a delay in the signal transmission. Thus, to let the participant be in the
state of śamatha (i.e. focusing continuously on breath sensations) the incoming flow of
sensory information is not disturbed and the cortical activation in the posterior cortex is
maintained.

division in TRN and increased connectivity in the posterior cells of the TRN layer. Based

on these findings, following formalization is proposed (also shown in Figure 6.1).

1. At the end of the retreat, as a participant starts meditating, by willfully focusing and

sustaining his/her attention on breath sensations, the frontal areas are activated. This

initial step is supported by the following three pieces of evidence. First, the volitional
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acts of sustaining attention are known to be initiated by the activation in the prefrontal

cortex and cingulate gyrus (Newberg and Iversen, 2003; Ingvar, 1994; Frith et al.,

1991; Pardo et al., 1991; Posner, 1989; Vogt et al., 1992). Second, in previous studies,

these areas were found to be active during meditation (Lazar et al., 2000; Newberg

and Iversen, 2003; Brefczynski-Lewis et al., 2007; Newberg et al., 2001). Third, the

reduction in alpha power, found during spectral analysis, indicates increased cortical

activation in frontal areas. Additionally, this reduced alpha power correlated with

increased performance in the vigilance task. Future research using causality analysis

(Ding et al., 2006; Pearl, 2000) might be able to provide even more evidence for this

initiation of brain activity in frontal cortices, at the start of meditation.

2. The activation in the frontal regions of the brain should in turn activate the thalamic

nuclei, including both reticular and sensory-relay nuclei. This flow of activation from

frontal regions to thalamus is due to the dense reciprocal connectivity between frontal

and thalamic nuclei (Cornwall and Phillipson, 1988; Crick, 1984; Portas et al., 1998).

However, the reticular nucleus (TRN) also has dense lateral inhibitory connections

(Guillery and Harting, 2003; Jones, 1975; Crick, 1984; Steriade et al., 1986; Sherman

and Guillery, 2006; Zikopoulos and Barbas, 2007). These connections will inhibit

other TRN cells, especially in the posterior regions of TRN. This proposal of division

of anterior-posterior regions of TRN is based on the results from connectivity analysis

in Chapter 5.

3. Apart from inhibiting other cells in the TRN laterally, the TRN cells also inhibit

the underlying sensory-relay nuclei of thalamus. Hence, they modulate the incom-

ing stream of sensory input to the cortex and act as a gateway of sensory informa-

tion (Crick, 1984; Guillery et al., 1998; Sherman and Guillery, 2006; Scheibel and

Scheibel, 1966). The inhibition of posterior TRN cells will in effect reduce the inhi-

bition of underlying sensory relay nucleus (SRN) of thalamus. This step is consistent

with the computational modeling results, where reduction in intrathalamic gain (and
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hence reduced inhibition of SRN) was found at the end of meditation training in the

posterior regions of TRN.

4. Since the participants are trying to focus on breath sensations, reduced inhibition of

SRN cells will in turn allow for an increased flow of incoming sensory information

to the cortex. Hence, the sensory information is not gated at the thalamic level and

reaches the parietal cortex (i.e. somatosensory areas) of the brain.

5. Previous work showed that in order to attend to the upcoming sensory stimuli, the

cortical regions must also be active (van Ede et al., 2011). Further, due to reciprocal

connections between thalamus and cortical areas, posterior cortical regions will have

increased activation. This activation and the continuous flow of sensory information

from the thalamus will allow the participants to constantly attend to the breath sensa-

tions (and hence be focused at the object). The drop in beta-band power (and hence

increased cortical activity) at the end of retreat over the parietal regions supports this

claim.

However, there is an issue: such an increased activation of the parietal cortex would in

turn, due to reciprocal connections, activate the parietal TRN cells and this activation

would make the TRN cells inhibit the incoming sensory information (by inhibiting

the SRN cells) and hence reduce the ongoing flow of information to cortex. Yet no

sensory input will distract the participant to lose the focus.

6. As a solution, a significant delay in the corticothalamic loop is introduced. One plau-

sible mechanism for such delay in signal transmission could be due to the repeated

firing of cortical cells in the parietal region. This increase in delay will cause a phase

shift in the usual transmission of signal from the cortex to the thalamus. Such phase-

shifted cortical signals to the TRN cells selectively suppress and weaken their activity

(similar out-of-phase inputs are also shown to be responsible for weakening of previ-

ously strengthened inputs in hippocampal cells; Huerta and Lisman, 1995; Csicsvari
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et al., 2003). Thus, the system makes sure that the incoming stream of sensory stimuli

is not disturbed by TRN cells and the focus on breath sensations is maintained.

The modeling experiments confirm this proposal: Increased corticothalamic delay

was found in the retreat participants in the parietal regions of the brain. Further,

modeling experiments also suggested that the increase in corticothalamic delay is the

biological basis for the consistent finding of reduced alpha frequency in experienced

meditators (Cahn and Polich, 2006). The current theory, however, provides a novel

(and perhaps the only) teleological reasoning behind increased corticothalamic delay

(and hence, reduction in alpha frequency) in meditators.

Altogether, a plausible theory follows from the analysis and modeling, which not

only accounts for all the empirical and theoretical results but also uncovers biologically

plausible mechanisms underlying focused-attention meditation. The theory also provides

concrete and testable hypotheses, which can be tested and refined in future (as outlined in

section 6.4).

6.2 Linking theory to folklore

Earliest accounts of meditation can be found in the Hindu texts of Vedic traditions (2000-

3000 B.C.). The concept of meditation grew rapidly in the east after the advent of Buddhism

(500-600 B.C.). The term meditation is derived from its Sanskrit counterpart bhavana,

which literally means cultivation. In Tibetan Buddhism the term implies the idea of culti-

vation of familiarity (Jinpa, 2006). Several cultures and religions assimilated this concept

in their own way, giving rise to numerous styles of meditation techniques. Nonetheless,

in almost all the traditions it is believed that meditation provides emotional and mental

equanimity and that this equanimity is the stepping stone towards attaining enlightenment

(Singh, 1999; Wallace, 2006). Further, given that many people find modern life stressful,

the belief that meditation can provide the tranquility of the mind actually attracts many
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contemporary people to it. It is therefore pertinent to evaluate whether the scientific theory

developed in this dissertation can be linked to these traditional beliefs about the nature and

effects of meditation.

Living in the moment One of the most common beliefs about the effects of meditation

is that it teaches one to always live in the present moment, be it meditation or just cleaning

dishes. This moment-to-moment awareness is supposed to employ the mind, so that it

stops worrying about the past (remorse for the previous actions) and the future (fear of the

unknown). The idea is that by focusing one’s attention fully at the task at hand such an

unnecessary drainage of energy can be stopped. A recent study found that people spend

more than half of their time thinking about something other than what they were actually

doing (Killingsworth and Gilbert, 2010). The authors also noted that it is indeed a unique

ability to focus on something else, e.g., to reflect on the past or to plan for the future, while

working on jobs that are not very demanding. But at the same time, this cognitive ability

was shown to come at an additional cost of decreased happiness (Killingsworth and Gilbert,

2010). In meditation traditions, emotional tranquility is the exact reason given for living in

the moment (Kabat-Zinn, 1994). But what mechanisms underlying meditation could be

responsible for this change and how does one achieve this awareness through meditation?

Link to theory Consider the following thought experiment with a traditional

story. If a child is left alone in a dark room without any toys or other attractions, very soon

he will grow restless and will start banging the door. Now, in traditional language, replace

the child with the mind and the dark room with one’s inner space (eyes-closed state). If

there is no object to which to pay attention the mind will grow restless and starts bombard-

ing thoughts of the past and future, which in turn will cause the turmoil and loss of inner

peace. The theory states that during focused-attention meditation the participants were al-

lowed continuous flow of incoming sensory information (breath sensations at the nostrils),

so that they could constantly attend to it and stay focused at the task at hand (meditation).
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This constant awareness of each breath sensation provided participants a taste of living in

the moment. Both empirical and theoretical experiments suggested that the changes ob-

served during meditation persisted in the resting state. Perhaps the intensive practice of

focusing attention on breath sensations led to the generalization of the meditative state into

a new “default process” of the brain.

The theory also claims that after three-months of intensive meditation retreat the

participants were able to hold this state of focused-attention for longer durations, which

should provide better emotional balance (Wallace, 2006). This claim is supported by corre-

lations found between (1) daily time spent in meditation and change in cortical activity, i.e.

the more the participant meditates the more reduced beta power (and hence increased corti-

cal activity); and (2) change in cortical activity and improvements in adaptive self-reported

socio-emotional functioning, i.e. the more the drop in beta power the more enhanced emo-

tional well being.

From chaos to stability Another common belief about meditation is that it can help re-

duce mental turmoil and can lead to more stable and calming states of the mind. In Buddhist

traditions stability of the mind is considered a crucial requirement for attaining higher stages

of spirituality. Wallace (2006) compares meditation practice with looking at the stars using

a telescope. If the tripod at which the telescope is based is not stable, the user cannot focus

and see clearly. Similarly, if the mind is full of anxiety and restlessness it will not allow the

participant to focus. Buddhist teachers prescribe regular meditation practice and relaxation

for attaining stability. However, it is unclear how meditation practice provides it and using

which mechanisms.

Link to theory The brain is commonly considered as a highly complex self-

organizing nonlinear dynamical system (Buzsaki, 2006). As with any dynamical system

there are stable and unstable states. Although the retreat participants were already healthy,

stability analysis of the computational model showed that reduced intrathalamic gain pro-
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vided even more stability to the brain, by retracting from the unstable (hyperactive) bound-

aries. Thus, apparently, the more the incoming sensory information, the more stable was the

system. It is interesting to note that the effect of reduced intrathalamic gain found in retreat

participants was also achieved in patients suffering from attention-deficiency-hyperactivity-

disorder (ADHD) using medication (Rowe et al., 2005a). Further, in previous work, med-

itation practice was shown to reduce the nonlinear complexity of the brain (Aftanas and

Golocheikine, 2002). Thus it seems that intensive meditation practice led to more simple

and stable brain states. In future, it would be interesting to correlate such changes in brain

state and self-reported experiences of stability and calmness.

Loss of sense of self Another claim about the effects of meditation on the brain is that it

allows for alterations to the sense of self (Newberg and Iversen, 2003). In the Zen Buddhism

tradition, such a loss of sense of “self” is associated with the loss of “ego” and hence with

the sense of unity with the outer world (Austin, 1999). Further, the traditional claim is

that experienced meditators lose the subjectivity (or bias) and attain “objective reality”, i.e.,

interpreting reality in an unbiased fashion (Austin, 1999). In Tibetan Buddhism similar

objectivity is attained using non-referential meditation practice (Lutz et al., 2006).

Link to theory: Previous neuroimaging studies have bolstered this claim by show-

ing reduced activity in the posterior superior parietal lobule during meditation (PSPL; New-

berg et al., 2001). The PSPL is believed to be involved in creating a 3D representation of

the body in space (Steinmetz et al., 1987; Newberg and Iversen, 2003). Thus, the deaf-

ferentation of PSPL, and hence its reduced activity, is linked to the loss of sense of “self”

during meditation1. This claim, however, is in contrast with the findings and the theory

presented in this work, where increased activity in the parietal regions was found during

meditation and rest after intensive meditation training. This contrast makes sense because
1It is important to note that the so-called sense of “self” is malleable and can be modified using virtual

reality paradigms (Lenggenhager et al., 2007).
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of the difference in the meditation techniques assessed. Newberg et al. (2001) had partici-

pants that focused on an internally visualized image and tried to lose the sense of space and

time by absorbing their attention into this image. Due to this internalized attention, external

sensory information was reduced and hence less sensory information was sent to the pari-

etal regions. However, in the current work, participants focused on their breath sensations

at an external point (nostrils). Thus, the goal was opposite to that in visualized imagery

meditation: Rather than blocking out sensory information, increased sensory information

was desired. In sum, such contrasts beg for the need of systematic evaluations of different

kinds of meditation, before all the claims about meditation can be founded in neuroscience.

Altogether, this exercise suggests that it is indeed possible, to some extent, to ground

the folklore about meditation into tangible scientific results. Based on these links it would

be appropriate to suggest that in simple terms meditation is a mental exercise, which allows

the mind to stay more alert and stable. It is perhaps analogous to the musicians practicing

scales, which then form a good foundation to playing real musical pieces.

Next, several factors associated with an isolated retreat setting and their potential

contributions to the results are discussed.

6.3 Effect of retreat setting

In previous work on meditation, it has been difficult to draw conclusions because it is hard to

rule out alternative explanations, due to multiplicity of meditation techniques assessed, in-

dividual differences among the practitioners, unsophisticated measures, lack of longitudinal

studies, etc. This dissertation controlled for several of these factors by using a longitudinal

design and a randomized matched control group of participants. Additionally, state of the

art measures and techniques were used at each step of the analysis. Thus, the observed

results are likely due to intensive meditation practice. However, certain factors related to

the retreat setting may have contributed to the results and need to be understood.
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The main such factor is the environmental setting of the retreat at an altitude of

approximately 2400 meters above the sea level. Sudden change in altitude is known to af-

fect EEG recording and analysis (Fast cable car ascent to 2700 meters; Guger et al., 2005).

The data from the retreat and control participants were collected only after they had ac-

climatized2 to the environment. More importantly, lack of correlation between change in

altitude (difference in altitude at the participant’s residence and the retreat center) and any

effect found in the current study shows that the effects of meditation are not likely affected

by altitude. Further, several of the results strongly correlated with the hours spent daily in

meditations, thereby suggesting main contribution of the practice itself.

Other important factors of the retreat setting include the role of the meditation

teacher and the personal motivation of the retreat participants (as opposed to that of con-

trols). One interesting experimental design to test both of these factors, simultaneously, is

to have the same meditation teacher provide meditation training to the retreat participants

and a controlled relaxation training to the control group (MacLean et al., 2010). In the

current work, such a design was not available, but could be explored in the future.

A third factor is social-connectedness. The participants spent most of their time

alone in meditations, but they also practiced meditation as a group (twice a day) in addition

to occasional conversations with their peers. As pointed out by Sahdra et al. (2011), it is

unlikely that just social-connectedness can contribute to enhancements in both cognitive

control and psychological well-being. However, in future the contribution of this factor

should also be taken into account.

In sum, although great care was taken to control possible complicating factors, cer-

tain aspects of the study still need refinement in future. Nonetheless, the current work

will hopefully provide a solid starting point for future research in understanding cognitive

control and meditation, as will be discussed next.
2The participants in the control group reached 3 days (range = 65-75 hr) before the beginning of testing.
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6.4 Future Work

Using a tight interaction between data analysis and computational modeling this dissertation

developed a concrete theory of meditation training. In the future, the work can be expanded

further into several directions, to understand the mechanisms underlying cognitive control

in general and meditation in particular. The most compelling directions are:

Broader understanding of meditation The scope of the research can be expanded from

focused-attention meditation to emotion-regulation meditation (a.k.a. compassion medita-

tion). Such an extension requires incorporating limbic areas into the computational model.

The EEG data required for this extension is already part of the Shamatha project, where

EEG was recorded during compassion meditation and emotion-related tasks (e.g. measur-

ing participants’ emotional response to a movie using facial expressions encoding). Analyz-

ing both attention and emotion regulation will help in creating a general theory of cognitive

control during meditation.

Medical Applications The theory of attention-regulation during meditation can be used

to develop better treatments for patients suffering from neurodevelopmental disorders. The

computational model suggests that meditation training has an effect similar to that of medi-

cation on ADHD patients (Rowe et al., 2005a). Further, the model suggests that meditation

makes brain activity more stable (and less prone to seizures), suggesting that it can also

help epileptic patients. Researchers in UCLA are already working on understanding how

effective attention training is in reducing the frequency and intensity of epileptic seizures

(Mindful Attention Training or MAT project for epilepsy; Engel et al., 2006). In the future

customized meditation trainings based on formal theories, like the one proposed in this dis-

sertation, can be more effective. For example, just like focused-attention meditation, other

meditation techniques can be modeled and analyzed to assess their effects on brain stabil-

ity; and custom meditation techniques can then be prescribed to the patients based on their
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brain’s instability (e.g., theta vs. spindle). Similarly, video games and other virtual reality

systems based on computational modeling can also be developed to help children and adult

patients improve their sustained attention, response inhibition, and overall cognitive con-

trol. Such approaches may in turn provide a better understanding of neurodevelopmental

disorders and the root causes behind them.

Engineering Applications The current theories of cognitive control (of attention or emo-

tions; Cooper, 2011) have rarely been put to test in real world applications. However,

they could be useful in domains like neural engineering, robotics, and human-computer

interaction systems. Such applications would initiate knowledge sharing between neu-

ral/psychological labs and hands-on engineering, e.g. by applying cognitive control theory

to improve regulation of neural-prosthetics and human-computer interaction systems, and

by simulating real world tasks, like driving a car, in the lab experiments to better understand

cognitive control.

Towards a unified theory of cognitive control Starting from the theory of attention-

and emotion-regulation, other important cognitive control components, such as response

priming and memory monitoring/update, can also be modeled to create a comprehensive

theory of cognitive control. Such a model would provide a unique window into the cognitive

system as a whole and would make it possible to understand the interactions between the

individual control components. It is important to note that only computational modeling can

provide such a platform, since it is quite difficult to design experiments which can study all

(or several) of them at once.

6.5 Conclusion

This chapter provided a concrete theory of focused-attention meditation. This theory not

only accounts for the results seen in the empirical and theoretical experiments, but also helps
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uncover teleological explanations for the observed changes in the cortical activity. Further,

the chapter also provided scientific basis to several ancient views about meditation does to

the brain and behavior, by linking those views with solid scientific findings. Additionally,

crucial factors of the retreat setting were discussed and experiments to evaluate them are

presented. Lastly, the work in this dissertation may make is possible to use mechanisms

underlying meditation for not only understanding cognitive control but also enhance (or

retrieve) it.
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Chapter 7

Conclusion

This dissertation aims at understanding the mechanisms underlying focused-attention medi-

tation. The results from spectral analysis and computational modeling helped in developing

a concrete and testable theory regarding such mechanisms. This chapter concludes this

work by reviewing the main contributions (Figure 7.1) and by estimating the impact of this

area of research.

7.1 Contributions

The dissertation was presented in four steps: preprocessing, spectral analysis, computa-

tional modeling, and correlation analysis. Starting with the preprocessing phase, advanced

blind source separation method (SOBI) was implemented as it is (Belouchrani et al., 1997)

to separate sources of activity in the EEG data. However, given the huge dataset, man-

ual identification and separation of sources was not feasible or advised (due to subjective

bias). Thus, a semi-automated tool (SMART) was developed to identify and remove arti-

factual sources of contamination. SMART extracts several spatio-temporal features from

the sources and uses rule-based classification to identify them. Further, it creates an interac-

tive web page for quick and efficient quality check, where the user can overrule SMART’s
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decision for classification of any source. This novel and successful integration of SOBI

and SMART is currently being applied to several other datasets (in both healthy and patient

population) at UC Davis (Saron et al., 2008).

Next, the reconstructed and clean EEG data was transformed using scalp current

density estimation. This advanced preprocessing step was implemented as it is, using the

CSDToolbox (Kayser, 2009; Kayser and Tenke, 2006). Scalp current density estimation

resolves the problem of choosing an optimal reference point for measuring voltage in EEG

datasets, by calculating reference-free estimation. Further, it also controls for the volume

conduction issue in EEG (Nunez et al., 1997).

In the second step, spectral analysis, preprocessed EEG data was analyzed to deter-

mine how brain oscillations change due to meditation training. Spectral power in several

frequency bands (i.e. range of frequencies that can be mapped to functional roles) was

estimated and changes in power analyzed. Considering the wide age-range of participants

in the Shamatha project and the fact that power spectrum is known to change with age

(Klimesch et al., 1997), individual alpha frequency was used to determine frequency bands

for each participant at each test point. This determination is crucial: If instead fixed band

widths were used for all the participants, then changes in power in one frequency band

could be wrongly attributed to the other. Such misattribution in turn would lead to wrong

conclusions about how meditation affects the brain.

Next, in order to assess longitudinal changes in cortical activity, a novel statistical

approach using advanced nonparameteric cluster-based permutation testing was developed.

Nonparametric approach was chosen over parametric methods, since it does not require

any assumptions about the underlying data distribution. Further, cluster-based approach

was used to determine changes in spectral power across neighboring EEG sensors. This

approach avoids region of interest analysis, which requires a priori assumptions, and also

avoids division of high-density EEG sensor grid into a small number of sparse regions.

Lastly, since nonparametric analysis can only handle one independent variable at a time,
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spectral power from clusters found during nonparametric analysis was log-transformed

and fed into parametric ANOVA (to determine interaction between group/retreat and test-

points). Thus, using this hybrid approach of nonparametric and parametric analysis best of

both worlds was achieved.

After determining what has changed, the dissertation aimed at understanding how

and why those changes appear due to meditation training. Thus, in the third step, computa-

tional modeling was employed to build a formal theory. The model architecture (Robinson

et al., 2001) was implemented as it is and was later extended to include (1) longitudinal

analysis of model parameters; and (2) connectivity analysis in the TRN layer. Four com-

putational experiments were run: First, the EEG power spectrum from all the seventy-three

channels and all the three test-points was fitted independently. Second, the novel longi-

tudinal analysis extension was used to gain insights into the changes observed in model

parameters due to training. Third, a stability analysis was performed on model equations to

understand why the brain preferred such changes. Fourth, novel connectivity analysis was

performed in the modeled TRN layer to measure changes in connectivity and the role of

TRN in attention regulation. Thus, overall, a set of comprehensive computational experi-

ments was run, so that a concrete and testable model could be constructed.

In the fourth and final step, correlation analysis was performed to ground the changes

in cortical activity and model parameters into changes in behavioral and self-reported psy-

chological functions. Such grounding is necessary to make sure that the results are indeed

relevant. This step not only helps understand the basis for the observed changes, but also

provides hypotheses for future research.

After completing all four steps, a comprehensive theory of focused-attention medi-

tation was constructed. Further, this scientific theory was linked to the “folk-wisdom” about

meditation and its effects on the brain. Thus, the results from this dissertation were suc-

cessfully, although speculatively, grounded in the age-old beliefs about meditation. Next

section concludes this chapter by estimating the overall impact of this work.
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Figure 7.1: Contributions of the four steps in the dissertation. The new analyses developed
during the course of dissertation are identified in bold dashed outline. Advanced signal pro-
cessing steps and/or their novel application, required for the analysis are shown in regular
dashed outline. Overall a large interdisciplinary framework was developed as a first step
towards understanding meditation in neurobiological terms.

7.2 Conclusion

The dissertation was aimed at constructing a concrete and testable theory of mechanisms

underlying meditation. This theory is supported by evidence from computational experi-

ments, spectral analysis, behavioral performance, and self-reported measures of psycholog-
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ical functions. Further, since the theory is formalized in a computational model, one cannot

only test its predictions but can also refine it using more advanced analyses (e.g. causality

analysis).

Before this dissertation, no such concrete and testable theory of meditation existed,

previous work had been limited to verbal formulations. Although the dissertation is just a

beginning it should set an example that similar interdisciplinary approaches are useful in

understanding complex cognitive phenomena, like meditation.
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