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Scenario-Based Architectural Design Decisions

Documentation and Evolution

Meiru Che, M.S.E
The University of Texas at Austin, 2011

Supervisor: Dewayne E. Perry

Software architecture is considered as a set of architectural design de-

cisions. Capturing and representing architectural design decisions during the

architecting process is necessary for reducing architectural knowledge evapora-

tion. Moreover, managing the evolution of architectural design decisions helps

to maintain consistency between requirements and the deployed system. In

this thesis, we create the Triple View Model (TVM) as a general architecture

framework for documenting architectural design decisions. The TVM clarifies

the notion of architectural design decisions in three different views and covers

key features of the architecting process. Based on the TVM, we propose a

scenario-based methodology (SceMethod) to manage the documentation and

the evolution of architectural design decisions. We also conduct a case study

on an industrial project to validate the applicability and the effectiveness of

the TVM and the SceMethod. The results show they provide complete docu-

mentation on architectural design decisions for creating a system architecture,

and well support architecture evolution with changing requirements.
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Chapter 1

Introduction

Software architecture plays an important role in achieving functional

and non-functional requirements. The architecting process provides a high-

level framework to support designing, developing, testing, and maintaining

software systems after deployment. The traditional concept of software ar-

chitecture focuses on components and connectors, as Perry/Wolf proposed in

[26]. Although the achievement by recognizing components and connectors

is significant in research and industry, some problems still remain in software

architecture theory and practice. As the most critical aspects of the problems

for researchers and practitioners, architectural knowledge representation and

knowledge evaporation have major influence on complexity and cost of sys-

tem evolution, communication among stakeholders, and software architecture

reuse.

Perry and Wolf considered the selection of elements and their form to

be architectural design decisions, and the justification for these decisions to

be found in the rationale. It was not until 2004, with Bosch’s paper [4] at

the European Workshop on Software Architecture, that software architecture

has finally come to be considered as a set of architectural design decisions.
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This specific focus on architectural design decisions led to a broader focus on

architectural knowledge [23]. Capturing and representing architectural design

decisions helps to organize architectural knowledge and reduce its evaporation,

thus providing a better control on many fundamental architectural drift and

erosion problems in the software life cycle. In the research related to our work,

the focus has been on the development of models and tools to capture, manage,

and share architectural design decisions [32], [9], [20]. A brief comparison and

analysis of the existing models and tools has been conducted in [28]. However,

there is still no agreed notion on what should be considered as an architectural

design decision during an architecting process. Besides, current models and

tools do not support architecture evolution very well, which is also critical

for architectural knowledge management and needs more attention in research

and industry [24].

To address this need, we propose the Triple View Model (TVM) as

a general architecture framework of architectural design decisions. The TVM

divides architectural design decisions set into three different views, i.e., the ele-

ment view, the constraint view, and the intent view. These three views specify

architectural design decisions by three aspects, “what”, “how”, and “why”, and

all the architectural design decisions are regarded as a software architecture.

In addition, based on the TVM, we present a scenario-based methodology

(SceMethod) for architectural design decisions documentation and evolution,

which enables us to manage architectural knowledge effectively. We subse-

quently conduct a case study to validate our TVM and SceMethod.
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1.1 Contributions

We make the following three contributions in this thesis:

1) The Triple View Model (TVM) - A general framework of architec-

tural design decisions. The “what” - “how” - “why” triple view clarifies the

notion when documenting architectural design decisions;

2) The scenario-based methodology (SceMethod) - A scenario-based

approach to architectural design decisions documentation and evolution. It

provides an effective way to derive architectural design decisions and keep

architectural knowledge complete and consistent during architecture evolution;

3) A substantial case study - A validation for the TVM and the SceMethod

on an industrial project. The results demonstrate the applicability and the ef-

fectiveness of the TVM and the SceMethod.

1.2 Organization

The rest of this thesis is organized as follows. Section 2 describes the

overview of the TVM, and then discusses the TVM in detail. Section 3 presents

the scenario-based method of architectural design decisions documentation and

evolution. In section 4, we conduct a case study to validate the TVM and the

SceMethod in an industrial project, and analyze the research questions based

on the study results. Section 5 discusses related work on architectural design

decision models and architecture evolution. Section 6 discusses the ideas for

future work, and we conclude the thesis in section 7.
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Chapter 2

Triple View Model

This chapter first presents the overview of the Triple View Model

(TVM), and then describes the contents of the TVM in detail. It finishes

by discussing the advantages of the TVM.

2.1 Overview

The TVM is defined by three views: the element view, the constraint

view, and the intent view. This is analogous to Perry/Wolf model’s elements,

form, and rationale but with expanded content and specific representations

[26]. Each view in the TVM is a subset of architectural design decisions,

and the three views constitute an entire architectural design decisions set.

Specifically, the three views mean three different aspects when creating an

architecture, i.e., “what”, “how”, and “why”, as shown in Figure 2.1. The three

aspects aim to cover design decisions on “what” elements should be selected in

an architecture, “how” these elements combine and interact with each other,

and “why” a certain decision is made.

During the architecting process in the software life cycle, architects are

the main role operating architectural design decisions. However, architectural
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Figure 2.1: Triple View Model Framework

decisions may also be brought forward by programmers, project managers,

or customers in real software project environment. In any case, the TVM

provides a right selection of architectural design decisions, and it is applicable

for all stakeholders. Moreover, the TVM suggests a systematical way to include

complete architectural decisions for creating an architecture. Figure 2.2 shows

the relations among architectural design decisions, the TVM and software

architecture in a system.

2.2 Model Details

In this section, we discuss the detailed contents of each view in the

TVM, which are illustrated in Figure 2.3.

In the element view, the architectural design decisions describe “what”

elements should be selected in an architecting process. We define computation

elements, data elements, and connector elements in this view. Computation el-
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Figure 2.2: Triple View Model and Software Architecture

Figure 2.3: Triple View Model for Architectural Design Decisions
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ements represent processes, services, and interfaces in a software system. Data

elements indicate data accessed by computation elements. Both computation

elements and data elements are regarded as components in software archi-

tecture, and connector elements are communication channels between those

components in the architecture. Note that the architectural design decisions

in the element view consist of traditional architecture concepts, which are

mainly represented by components and connectors.

In the constraint view, the architectural design decisions are defined as

behavior, properties, and relationships. They describe constraints on system

operations and are typically derived from requirement specifications. Specifi-

cally, behavior illustrates what a system should do and what it should not do

in general. It specifies prescriptions and proscriptions based on requirement

specifications, and influences the design decisions in the element view. Prop-

erties are defined as constraints on a single element in the element view, and

relationships mean interactions and configurations among different elements.

The architectural design decisions in the intent view are composed of

rationale and best-practices in the architecting process. Rationale, which in-

cludes alternatives, motivations, trade-offs, justifications and reasons, is gener-

ated when analyzing and justifying every decision that is made. Best-practices

are styles and patterns we choose for system architecture and design. The ar-

chitectural decisions in the intent view mainly exist as tacit knowledge [31],

and we need to document them during the decision making process, so that

stakeholders can clearly understand these tacit architectural knowledge during
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the architecting process. What’s more, the consistent communication among

different stakeholders effectively decreases architectural knowledge evapora-

tion.

2.3 Advantages of the Triple View Model

The Triple View Model provides us a fundamental framework for archi-

tectural design decisions and covers key features of the architecting process.

It has the following advantages:

First, the TVM captures architectural design decisions not only on

components, connectors, and their relationships, but also on intent behind

each design decision. It is essentially consistent with the traditional concept of

software architecture, and helps researchers and practitioners grasp both the

fundamental concepts and the decision making strategies in an architecting

process;

Second, the TVM enables us to establish a complete set of architectural

knowledge, which provides clear directions for communication among different

stakeholders in the software development life cycle;

Third, the TVM supports scenario-based architectural design decisions

documentation and evolution, and finally supports software architecture evo-

lution.
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Chapter 3

Scenario-based Methodology

In this chapter, we propose the scenario-based architectural design deci-

sions documentation and evolution method (SceMethod). We first provide the

overview of the SceMethod, and then discuss the methodology step by step to

illustrate how to manage the documentation and the evolution of architectural

design decisions.

3.1 Overview

The TVM is the foundation of architectural design decisions documen-

tation and evolution. In the SceMethod, we aim to obtain and specify the

element view, constraint view, and intent view through end-user scenarios,

which are represented by Message Sequence Charts (MSCs). Most functional

requirements can be represented by end-user scenarios through MSCs; while

non-functional requirements and quality attributes probably cannot be directly

shown in the scenarios. However, in the end, all non-functional properties can

be reified functionally into architecture design decisions, so that we still can

manage non-functional properties in the SceMethod. Figure 3.1 illustrates the

SceMethod process. We can see that for the first time we apply this method,
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we obtain initial architectural design decisions results. Later on, as the require-

ments change, the architectural decisions are evolved and refined according to

the newly requirements. By documenting all the possible architectural de-

sign decisions and evolving these decisions with changing requirements, the

SceMethod effectively makes architectural knowledge explicit and reduces ar-

chitectural knowledge evaporation.

Figure 3.1: The SceMethod Process

3.2 Methodology Details

In the following sections, we discuss each step of the SceMethod in

detail. Basically, the SceMethod includes an initialization step which uses

MSCs to specify scenarios, and the other three steps each deriving one single

view in the TVM.
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3.2.1 Initialization

Before applying the TVM to end-user scenarios, the requirements of

the software system are elicited, and then we use MSCs to describe both

the positive and negative scenarios. MSC is used for representing end-user

scenarios [27], and it is a widespread notation for describing scenarios as its

UML counterpart, sequence diagrams. Specifically, an MSC is composed of

vertical lines, horizontal arrows, and agent instances. Figure 3.2 is a simple

example of an MSC [27].

Figure 3.2: An MSC Example

The vertical line associated with the agent instance specifies the time-

line of the corresponding agent. The horizontal arrow shows the interaction

message between the source and the target agent instances. In Figure 3.2,

we can see that i1, i2, i3, and i4 are agent instances, and each of them has

a timeline. m1, m2, and m3 are three interaction messages among the four

agent instances. Based on the end-user scenarios represented by MSCs, we

initially derive the architectural design decisions as defined in the TVM. If the

scenarios change afterward, we then track the evolution of the decisions and

11



refine them based on the changing requirement specifications. The following

three steps illustrate the complete SceMethod process.

3.2.2 Element View Derivation

As we mentioned previously, the element view captures architectural

design decisions on components and connectors we need in the architecting

process. Since an MSC is associated with several agent instances, we can

derive the element view directly from the syntax of MSCs.

Specifically, each agent instance is taken as a computation element,

which includes its services or interfaces according to requirement specifica-

tions. Besides, from the interaction messages between the source and target

agent instances, we can extract data elements that accessed by computation

elements. Connector elements serve as communication channels between com-

putation elements.

Therefore, the element view is derived as follows:

Computation Elements = {Agent Instances}

Data Elements = {Interaction Messages}

Connector Elements = {Channels between Agents}

From the syntax of MSCs, the element view is initially documented.

When new scenarios are introduced by end-users, the element view is then

evolved and refined based on updated MSCs.

12



3.2.3 Constraint View Derivation

Based on the semantics of MSCs, we analyze behavior, properties, and

relationships of the goal system, in order to document architectural design

decisions in the constraint view.

In terms of behavior, we focus on general functionality of the system

that is specified by the end-user scenarios, i.e., the prescriptions and the pro-

scriptions. Typically, in the end-user scenarios, positive scenarios describe the

desirable behavior of the system, while negative scenarios describe the undesir-

able behavior. Therefore, we can tell what the system should do from positive

scenarios, and what should not do from negative scenarios as well as excep-

tions handled in the MSCs. Through this information, the architectural design

decisions on the behavior of the system are documented by the following steps:

Behavior = {Prescriptions; Proscriptions}

Prescriptions = {Positive Scenarios}

Proscriptions = {Negative Scenarios; Exceptions}

Properties in the constraint view mean the constraints on a single ele-

ment. We use “Receive”, “Issue”, and “Check” factors to define properties.

Properties = {Receive; Issue; Check}

“Receive” and “Issue” factors identify the responsibility of each element.

For a computation element, “Receive” factor indicates the data which inputs

to the element, and “Issue” factor means the data which outputs from the

element. Both of them are achieved according to the message interactions

13



in the MSCs. If the element is a data element or a connector element, the

“Receive” and “Issue” factors are specified as the corresponding computation

elements directly operating the data element or connected by the connector el-

ement. “Check” factor is the precondition and the postcondition for an element

according to requirement specifications. Generally, properties capture archi-

tectural decisions for a single element, through which we are able to grasp the

responsibility of the element and the requirement constraints on the element.

Relationships are architectural design decisions on interactions and con-

figurations among different elements. In order to find out the interactions

among agent instances, we use simple path expressions to illustrate the inter-

acted events in the MSCs.

Relationships = {Event Traces by Path Expressions}

The event traces provide us with general information about the inter-

action among agent instances. Based on the event traces results, the cou-

plings and the structure of the components are obtained. Additionally, inter-

actions and configurations among different elements provide a blueprint for

us to choose architectural styles and patterns for subsequent architecting and

designing process.

3.2.4 Intent View Derivation

Documenting the intent, i.e., decision making strategy, is necessary for

communicating clearly among different stakeholders and keeping architectural

knowledge complete in the software development life cycle. Since decision mak-

14



ing strategies are usually behind architects and other stakeholders’ thoughts,

the intent view cannot be derived and evolved directly from MSCs as the ele-

ment and constraint view, which make it difficult to define a formal specifica-

tion for documenting the intent view. The best way to make the intent explicit

is to record decision making strategies as the architecting process moves for-

ward. Specifically, answering each question that occurs to the stakeholders in

the architecting and designing phase is helpful to constitute the architectural

design decisions in the intent view. For instance, we may document the mo-

tivations why we choose some elements as computation elements while others

as connector elements, and the reasons that we put a certain property on an

element, etc. Basically, rationale evolves together with the element view and

the constraint view. When the decisions in the element and constraint view

change, the documented rationale is to be updated as well in order to keep the

architectural knowledge up-to-date.

Besides, architectural styles, architectural patterns and design patterns

that we apply as best-practices should also be recorded as design decisions

in the intent view. At the same time, the justifications, alternatives, and

trade-offs generated when selecting a certain best-practice during the decision

making process are documented in the rationale as well.

In conclusion, the intent view are documented in two aspects:

Rationale = {Answers or Solutions to The Intent-Related Questions}

Best-Practices = {Architectural Styles; Architectural Patterns; Design

15



Patterns}

The intent view is as important as the element and constraint view,

and is critical for architectural knowledge management. Therefore, when we

update the element view and the constraint view according to the changing

requirements, it is necessary to update the intent view as well.
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Chapter 4

Case Study

In order to evaluate the applicability and the effectiveness of the TVM

and the SceMethod, we conduct a case study on an industrial project. This

chapter first presents the background of our case study, and then describes

research questions, end-user scenarios, results, analysis, and discussion respec-

tively.

4.1 Background

Our TVM and SceMethod have been validated in a substantial case

study on an industrial project provided by the Italian electrical company ENEL

[1]. In this project, an information system is designed to manage ENEL’s

thermal power plant operations. The purpose of the project aims to improve

power plant efficiency, to reduce operation and maintenance costs, and to

avoid forced outages [33]. Therefore, a power plant monitoring system is to

be established with functions such as data acquisition from the field through

sensors, fault detection in the power plant, and alarm raising in case of fault

occurred. The main requirements of the system are gathered from [11], [13],

[14].
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Perry and Brandozzi have presented a method that transforms goal ori-

ented requirement specifications into architectural prescriptions [6], [7]. The

power plant monitoring system has already been applied in a case study by us-

ing Perry/Brandozzi’s method [18]. We conducted the case study on the same

real world project. On the one hand, we assessed the applicability of the TVM

and the SceMethod for a real industrial project; on the other hand, we further

evaluated the effectiveness of the TVM and the SceMethod by comparing our

results with those in the previous case study which used Perry/Brandozzi’s

method.

4.2 Research Questions

The TVM and the SceMethod provide a general architecture frame-

work and a complete process to support the documentation and evolution of

architectural design decisions. This leads to the following research questions:

RQ1: Are the TVM and the SceMethod feasible when applied to real

scenarios in an industrial project context?

RQ2: How well do the architectural design decisions derived from the

SceMethod cover the main architectural specifications and issues?

RQ3: How well do the derived results on architectural design decisions

support architecture evolution?

We conduct a case study to address these questions. In the following

sections, we describe our end-user scenarios, results, analysis, and discussion

18



respectively.

4.3 End-user Scenarios

Based on the requirement specifications of the power plant monitoring

system, we established end-user scenarios to cover the functionality of the

system, including all the positive scenarios and some of the negative scenarios.

Figure 4.1 and Figure 4.2 show the MSC specifications for the positive and

negative scenarios of the power plant monitoring system.

4.4 Results

Taking the MSC specifications as the input, we followed the SceMethod

to derive the architectural design decisions of the power plant monitoring sys-

tem.

4.4.1 Element View

From the syntax of the MSCs in Figure 4.1 and Figure 4.2, all the agent

instances are considered as the computation elements, and the information

transmitted by the interaction messages are the data elements. We defined four

connector elements as the channels between the source and target computation

elements. Table 4.1 shows the element view of the power plant monitoring

system.

19



Figure 4.1: MSC Specifications of the Power Plant Monitoring System (posi-
tive scenarios)
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Figure 4.2: MSC Specifications of the Power Plant Monitoring System (nega-
tive scenarios)
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Table 4.1: The Element View Results

Computation Elements

Sensor Manager
FaultDetection Engine
Alarm Manager
UpdateDB Manager
UserInteraction Manager
QueryDB Manager

Data Elements

Sensor Information
Fault Information
Alarm Information
Alarm Diagnosis
Fault Diagnosis
User Request
Query Answer

Connector Elements

Sensor Connector
FaultDetectionAlarm Connector
UpdateDB Connector
QueryDB Connector

22



4.4.2 Constraint View

From the semantics of the MSCs, we derived architectural design deci-

sions on behavior, properties, and relationships of the power plant monitoring

system. First of all, we focused on the behavior of the system. The positive and

the negative scenarios tell the system behavior, and each conclusion we draw

from the end-user scenarios can be seen as an architectural design decision on

system behavior. Such as “when the Alarm Manager receives fault informa-

tion, it should send alarm information to the UpdateDB Manager to update

the database” and “If the FaultDetection Engine does not receive abnormal

sensor information, it should not release fault information”. The architectural

design decisions relevant to the system behavior provide us general function-

ality of the power plant monitoring system, based on which we find out the

detailed system architecture through further analysis.

Secondly, we documented the properties of each element in the element

view. The results are shown in Table 4.2. From these results, the responsibility

of each element enables us to extract the requirement constraints (precondition

and postcondition) that we need to comply with in the later architecting and

designing process.

As for relationships among different elements, we obtained each event

trace from the MSC specifications of the system. One example of the event

trace is:

23



Table 4.2: The Properties Results For The Constraint View

Elements Receive Issue Check
Sensor Manager (S_M) Field Data S_I Data Correctness
FaultDetection Engine
(FD_E) S_I F_I, F_D Sanity, Consistency

UpdateDB Manager
(UDB_M)

A_I, A_D,
S_I, F_D - -

UserInteraction
Manager (UI_M) User Operations U_R -

QueryDB Manager
(QDB_M) U_R Q_A -

Sensor Information (S_I) S_M FD_E Sanity, Consistency
Fault Information (F_I) FD_E A_M Fault Detected
Alarm Information (A_I) A_M UDB_M Fault Detected
Alarm Diagnosis (A_D) A_M UDB_M Alarm Transmitted
Fault Diagnosis (F_D) FD_E UDB_M Fault Detected
User Request (U_R) UI_M QDB_M -
Query Answer (Q_A) QDB_M UI_M -
Sensor Connector (S_C) S_M FD_E Data Correctness
FaultDetectionAlarm
Connector (FDA_C) FD_E A_M Sanity, Consistency

UpdateDB Connector
(UDB_C)

S_M, FD_E,
A_M UDB_M Secure,

TimeConstraint=2s
QueryDB Connector
(QDB_C) UI_M QDB_M TimeConstraint=5s

24



S_M : send abnormal sensor info

→ FD_E : transmit fault info

→ A_M : transmit alarm info

→ UDB_M

Based on all the event traces from the end-user scenarios, we captured

the coupling relationship among the computation elements, data elements, and

connector elements. Structure diagram is the best way to show how each ele-

ment related with others to establish the complete architecture. We illustrated

the structure diagram of the power plant monitoring system in Figure 4.3,

which is generated from the event traces.

Figure 4.3: The Structure Diagram of The Power Plant Monitoring System

4.4.3 Intent View

Since the intent view reflects the thoughts behind stakeholders’ head

during the architecting process, as mentioned previously, we documented the
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answers to the questions that concerned with the decision making process as

architectural design decisions.

We did not specify all the possible decisions in the intent view. We only

illustrated some questions as examples here, which are shown in Table 4.3.

Answers to these questions provide us with the intent during the architecting

process.

Table 4.3: Questions For Establishing The Intent View

Rationale

(Motivation)
What is the motivation to establish the monitoring system?
(Alternatives)
How can we get the six computation elements?
(Reasons)
Why do we need the computation element “FaultDetection
Engine”?
(Trade-offs)
What is the trade-off between using “Sensor Manager” or not?
(Justifications)
How to justify “Alarm Manager” works according to the
requirements?

...

Best-
Practices

(Architectural styles)
What kind of architectural style we can use to establish the
system?
(Architectural patterns)
Is the layers architectural pattern applicable to the system?
(Design patterns)
Is there any design pattern we can adopt to design the system?

...
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4.5 Analysis

RQ1: Are the TVM and the SceMethod feasible when applied to real

scenarios in an industrial project context?

The power plant monitoring system is an industrial project that sup-

ported by the Italian company ENEL. We note that after we have described

the end-user scenarios based on the requirement specifications of the system,

it is easy to apply the TVM and the SceMethod to those scenarios to derive

most of the architectural design decisions. Basically, the end-user scenarios

specified by MSCs enable us to obtain the element view, the constraint view,

and the intent view respectively according to the SceMethod.

RQ2: How well do the architectural design decisions derived from the

SceMethod cover the main architectural specifications and issues?

Table 4.1 shows all the components and connectors that we need to

establish the power plant monitoring system. Comparing with the previous

case study by using Perry/Brandozzi’s method on the same system, we find

that the elements generated from the SceMethod have covered all the pro-

cess components, data components, and connectors from Perry/Brandozzi’s

method [18]. However, there is a little difference that we have one more com-

putation element, i.e., the Sensor Manager, in our element view. Because

by providing more computation elements, we can make the architecture more

flexible, which helps to support detailed functionality and is also easier for

us to manage the coupling and the evolution of the architecture. Table 4.2
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indicates that the properties enable us to clarify the responsibility of each ele-

ment and the requirement constraints that need to be considered in the future

designing process. In addition, in order to establish a whole blueprint of the

goal system, we generate Figure 4.3 based on the relationships among all the

computation and connector elements, which is similar as the box diagram in

the architecture results using Perry/Brandozzi’s method [18]. Note that the

architectural decisions derived from the SceMethod have covered all the archi-

tecture prescriptions from Perry/Brandozzi’s method, and in our case study,

the main issues on the components, connectors, and their relationships have

been achieved as well when deriving architectural design decisions. Further-

more, we captured all the possible intent-related design decisions, which are

then used to record and track the architectural knowledge and the decision

making process during the architecting phase. On the contrary, the intent-

related decisions were not mentioned in Perry/Brandozzi’s method.

RQ3: How well do the derived results on architectural design decisions

support architecture evolution?

The architecture derivation process is basically an evolutionary pro-

cess. Since architecture is regarded as a set of architectural design decisions,

we primarily analyze the evolution of architectural design decisions to manage

architecture evolution. The initial architectural design decisions results largely

cover the functional requirements of the power plant monitoring system, from

which we can obtain the architecture blueprint of the system. During the evo-

lutionary change, the architectural decisions in the elements, the constraints,
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and the intent view should be tracked and updated with the changing sce-

narios and requirements. Here, we take the constraint view evolution as an

example. For the constraint view, non-functional requirements influence the

properties of the elements, and they may be changed after the components, the

connectors, and the structure diagram of the system are derived. Specifically,

as the architecting process proceeds, some quality attributes, e.g., reliability

requirements, are more crucial for the whole system, and adding these quality

requirements will make the system more realistic. For instance, we have basic

requirement constraints between the FaultDetection Engine and the Alarm

Manager in the initial architecture, and some new reliability requirements are

added to the system afterward. One requirement may be “once a fault is

detected by the FaultDetection Engine, the alarm should be raised within 5

seconds”. When this new limitation is included in the requirement specifica-

tions, we need to find out how it affects the current design decisions results.

Based on the TVM, we find that the element view does not change, since

there is no change on the syntax of the end-user scenarios. However, the con-

straint view is to be updated, because the “Check” factor of the property for

the FaultDetectionAlarm connector should comply with the new requirement

specification, i.e., we need to add “TimeConstraint=5s” to the “Check” factor.

Most of the time, the intent view evolves together if the element view or the

constraint view changes. Hence we also need to document the reason or the

justification in the intent view, in order to specify why the time constraint

should be within 5 seconds for the FaultDectection Alarm connector.

29



Generally, the architecture evolution process is based on the initial ar-

chitectural design decisions results. When new requirements or new decisions

via end-user scenarios arrive, we apply the SceMethod to the changing in-

formation to evolve the initial decisions. The SceMethod ensures that the

architecture evolution results are consistent with the changing requirement

specifications, and keeps architectural knowledge complete in the changing

environment.

4.6 Discussion
4.6.1 Practicality

The TVM and the SceMethod, which are applied during the architect-

ing and designing process, enable us to capture architectural design decisions

and manage their evolution. As the software life cycle proceeds, the archi-

tectural design decisions results are widely employed throughout the entire

software development process. Specifically, the documentation on architec-

tural design decisions intuitively reflects development artifacts, such as the

decisions in the element view, which trigger the implementation of the par-

ticular classes in the development phase. Furthermore, the constraint view

brings benefits to system testing and system configuration, since the decisions

on properties and relationships enable us to define effective test cases and

system configuration framework. The architectural knowledge is also impor-

tant for training and project management by providing efficient understanding

among different stakeholders in the software development life cycle.
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By applying the TVM and the SceMethod, the architectural design

decisions are employed in most of the software development phases, and finally

architectural knowledge is well incorporated in various levels of the software

development process.

4.6.2 Scalability

In the case study, we applied the TVM and the SceMethod to the power

plant monitoring system and it worked well. As the system become more com-

plex, for instance, more requirements need to be considered, our method can

be applied incrementally. Each time we obtain new requirements, we describe

them as scenarios by MSCs, and then follow the process of the SceMethod to

derive the newly architectural design decisions. Our method right now is not

quite applicable to distributed system, because the decision-collection mecha-

nism in the SceMethod does not support for distributed environment. We try

to improve this by providing tool support as integrating the SceMethod into

configuration management tools, in order to better support the application

and the management of architectural decisions for complex systems.

4.6.3 Limitations

One limitation of the TVM and the SceMethod is lack of automatic

traceability from architectural design decisions to requirement specifications.

The automatic traceability between requirement and architectural knowledge

will be more efficient when considering large-scale software systems, which have
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larger architectural design decisions set and more difficult to trace by hand.

Therefore, tool support of the TVM and the SceMethod is also necessary to

manage the traceability. Moreover, it may be useful to include a status for

each decision to support the traceability. Another limitation is that current

architectural design decisions results do not show the relations among each

decision, and thus cannot provide in-depth architectural knowledge informa-

tion. We aim to overcome this limitation by creating a network of the design

decisions, through which we are capable of looking into further relationships

of each decision, such as the cause and effect influence among them.
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Chapter 5

Related Work

The key concepts of the traditional view on software architecture are

components and connectors [26], [3]. Nowadays, software architecture has been

seen as a set of architectural design decisions [4], [19], [30]. The architectural

decisions in the software architecting process are increasingly focused by re-

searchers and practitioners [16], [22], and architectural design decisions are also

considered to be a part of architectural knowledge [23]. In [15], a systematic

review for architectural knowledge is presented, and different definitions on

architectural knowledge and how they are relevant to each other are discussed

as well.

Guidelines for documenting software architecture has been provided

in [12], [17], however, those documentation approaches do not explicitly cap-

ture architectural design decisions in the architecting process. Recently, many

models and tools have been proposed for capturing, managing, and sharing

architectural design decisions.

Tyree’s template [32] provides a simple document describing key ar-

chitectural decisions, which establishes a concrete direction for design and

implementation, and also clarifies the rationale for different stakeholders. In
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[23], an ontology of architectural design decisions and their relationships have

been described. This ontology then can be used to construct architectural

knowledge of a software system. ADDSS [9] is a web-based tool for document-

ing architectural design decisions. It establishes the backward and forward

traceability between requirements, decisions, and architectures. Archium [20]

is a Java tool, including a complier and a run-time environment, for supporting

architectural design decisions capturing, tracing, and managing. It also pro-

vides visualization for design decisions by using a dependency graph, which

is easy for stakeholder to evaluate and track the decisions. Other models

and tools such as AREL [29] and PAKME [2] are also proposed for managing

architectural knowledge.

A detailed comparison of these existing models and tools has been done

in [28]. Since each model has its own strong and weak points, it is still difficult

for researchers and practitioners to choose which one is more suitable for their

architecting process, and the existing models are hard to support architecture

evolution very well [10]. Perry and Grisham have focused on architecture and

design intent in [25], and our work in this thesis tries to further generalize the

concept of the intent and architectural decisions in software architecture and

its evolution. Our TVM intends to provide a general architecture framework

to clarify the notion of architectural design decisions, and the triple views

perfectly cover the key features in software architecture. In addition, the

SceMethod based on the TVM gives a simple and consistent way to manage

the documentation and the evolution of architectural design decisions, which
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is effective in operating and maintaining the architecting process in a changing

software development context.
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Chapter 6

Extension for Future Work

6.1 Basic Idea

A recent phenomenon in the evolution of software development strate-

gies is that of encouraging external software developers to become involved in

software development. These third parties make their contributions to soft-

ware development and software organizations realize intrinsic benefits. This

significant shift in traditional software development process has resulted in a

new software development paradigm called “software ecosystems”. The adop-

tion of the software ecosystem approaches establishes a new area in software

engineering research and practice. Basically, in a software ecosystem, soft-

ware organizations have broken their organization boundaries, and different

parties collaborate under a common architecture and within a social network-

ing context to achieve innovation. Therefore, the traditional closed software

development has changed to open software development.

The current approach to managing architectural design decisions within

a software organization for single product development may not be applica-

ble for software ecosystems. The popularity of software ecosystems forces

researchers and practitioners to reconsider how to manage architectural knowl-
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edge in open software development, since architectural design decisions should

be shared not only within the organization but also with external parties.

Thus, a number of challenges of managing architectural design decisions in a

software ecosystem platform will arise, and it is important to find a way for

effectively managing architectural knowledge in order to adapt the increasing

openness and interoperability in the software community. So far, little work

has been done in this area to the best of our knowledge.

Hence, the research question that will need to be addressed is: How

to manage architectural design decisions in software ecosystems to adapt to

collaboration and openness in software development. In order to manage ar-

chitectural design decisions in software ecosystems, models and tools should be

capable of capturing and representing decisions not only in an organization’s

architecting process, but also among those external parties in the social com-

munity. Here, we analyze the characteristics of software ecosystems in order to

obtain a deeper insight into architectural knowledge for a software ecosystem.

6.2 Software Ecosystems Characteristics

A software ecosystem is defined as a set of businesses functioning as a

unit and interacting with a shared market for software and services, together

with the relationships among them [21]. Compared with the traditional soft-

ware engineering process, software ecosystems have the following characteris-

tics:
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• A social community. In a software ecosystem, third parties are en-

couraged to contribute to an organization’s product development, which

establishes a social network that includes not only the team within the

organization but also external developers, sharing technologies, skills,

knowledge and even issues in the network. This further accelerates so-

cial interactions among the organization and the external parties, and

forms a software social community.

• Extensive business innovation. Innovations are always used to illus-

trate the capability of an organization to be creative in product develop-

ment [8]. In a software ecosystem, both the employees in the organiza-

tion and the third parties have opportunities to provide innovative ideas

to solve business problems, which extends the organization’s innovative

strategy and supports both reactive and proactive business innovations

[8].

• Architecture platform commonality and variability. The con-

cept of a software ecosystem focuses on multiple product development

achieved by sharing a common architecture platform in open software

development. However, software organizations also need to provide sta-

ble interfaces through the architecture platform to external developers,

without disabling the operation of externally developed applications on

top of the platform [5]. The concern of the architecture in a software

ecosystem is to manage its commonality and variability to suit different

business entities.
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• Diverse resources management. In a software ecosystem, both em-

ployees in an organization and external developers share community re-

sources which include not only technical resources in the development but

also tacit knowledge behind the thoughts of all parties. Thus, resources

management is required to deal with the diverse resources distributed

in multiple development and multiple stakeholders, which in uences the

decision-making processes and the corresponding architectural knowl-

edge.

Due to the aforementioned characteristics, it is more difficult to docu-

ment architectural design decisions in software ecosystems than in single prod-

uct development. Basically, some key aspects of architectural design decisions

in open software development should be identified.

For single product development, we have proposed the element view,

the constraint view, and the intent view constitute a complete architectural de-

sign decisions set. When applied to software ecosystems, these three views are

still able to document the most fundamental design decisions. However, the

openness and the sociability of a software ecosystem bring us new challenges of

further capturing architectural decisions influenced by a software social com-

munity. We argue that a new architectural design decisions set for software

ecosystems should be established, including basic architecture elements, prop-

erties, and relationships that form a common architecture platform, and also

decision-making strategies in the social community that support multiple de-
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velopment and communication. Additionally, new strategies to ensure consis-

tent communication should be developed for sharing architectural knowledge

in a software ecosystem.

6.3 Open Challenges

We summarize major challenges of developing new technologies and

tools for managing architectural design decisions in software ecosystems.

• Comprehensive definition. Aiming to identify and manage effectively

architectural knowledge, a definition of what should be considered as ar-

chitectural design decisions in a software ecosystem is firstly required.

The existing definition for architectural design decisions may not be suf-

fcient to meet software ecosystem requirements.

• Multi-level communication. Sharing and communicating architec-

tural design decisions within an organization, between an organization

and external developers, and among third parties are all necessary in a

software ecosystem. Therefore, how to keep architectural knowledge con-

sistent in a complex distributed and communicating environment should

be addressed.

• Completeness. Our work on the Triple View Model (TVM) helps to

document complete architectural design decisions in single product devel-

opment. However, for complete architectural knowledge representation
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in a software ecosystem approach, an adequate model and tool support

are still needed.

• Knowledge gain and evolution. Since different parties contribute

to multiple product development, models and tools for architectural

knowledge should address scalability issues as the amount of decisions

increases. This further accelerates the evolution of architectural design

decisions, which could be another potential issue in software ecosystem

approaches.

• Traceability. Efficient automatic traceability between system drivers

(such as requirements, business and market needs) and architectural de-

sign decisions is necessary for a large architectural design decisions set

in software ecosystems, and requires extensive research on knowledge

traceability.
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Chapter 7

Conclusion

A recent strand of software architecture research is that software archi-

tecture is considered as a set of architectural design decisions. Architectural

design decisions are also defined as a part of architectural knowledge, and are

necessary to be documented and managed in order to control fundamental

problems in the software life cycle.

In this thesis, we discussed the documentation and evolution of archi-

tectural design decisions. We proposed the Triple View Model (TVM) as a

general architecture framework, which includes an element view, a constraint

view, and an intent view to indicate “what”-“how”-“why” features for archi-

tectural design decisions. Based on the TVM, we presented a scenario-based

methodology (SceMethod) for architectural design decisions documentation

and evolution. In the SceMethod, we obtained and specified the element view,

the constraint view, and the intent view through end-user scenarios, which

are represented by Message Sequence Charts (MSCs). When applying this

method for the first time, we obtained initial architectural design decisions

results. Later on, as requirements change, the initial architectural decisions

are evolved and refined according to the newly requirements.
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We also conducted a case study on an industrial-strength project to

validate the applicability and the effectiveness of the TVM and the SceMethod.

The results show they provide complete documentation on architectural design

decisions for creating a system architecture, and well support architecture

evolution with changing requirements.
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