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The fundamentally fluctuating nature of the strength of a wireless link

poses a significant challenge when seeking to achieve reliable communication

at high data rates. Common sense, supported by information theory, tells us

that one can move closer towards achieving higher data rates if the transmitter

is provided with a priori knowledge of the channel. Such channel knowledge

is typically provided to the transmitter by a feedback channel that is present

between the receiver and the transmitter. The quality of information provided

to the transmitter is proportional to the bandwidth of this feedback channel.

Thus, the design of feedback channels is a key aspect in enabling high data

rates. In the past, these feedback channels have been designed locally, on a

link-by-link basis. While such an approach can be globally optimal in some

cases, in many other cases, this is not true. In this thesis, we identify various

settings in wireless networks, some already a part of existing standards, others

under discussion in future standards, where the design of feedback channels
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is a problem that requires global, network-wide optimization. In general, we

propose the treatment of feedback bandwidth as a network-wide resource, as

the next step en route to achieving Gigabit wireless.

Not surprisingly, such a global optimization initiative naturally leads us

to the important issue of computational efficiency. Computational efficiency

is critical from the point-of-view of a network provider. A variety of optimiza-

tion techniques are employed in this thesis to solve the large combinatorial

problems that arise in the context of feedback allocation. These include dy-

namic programming, sub-modular function maximization, convex relaxations

and compressed sensing. A näıve algorithm to solve these large combinato-

rial problems would typically involve searching over a exponential number of

possibilities to find the optimal feedback allocation. As a general theme, we

identify and exploit special application-specific structure to solve these prob-

lems optimally with reduced complexity. Continuing this endeavour, we search

for more intricate structure that enables us to propose approximate solutions

with significantly-reduced complexity. The accompanying analysis of these al-

gorithms studies the inherent trade-offs between accuracy, efficiency and the

required structure of the problem.
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Chapter 1

Introduction

The advent of wireless communication technology over the last two

decades has significantly improved connectivity and access to information in

general. Wireless devices have found a place in almost all walks of life, per-

forming increasingly challenging tasks. There is an ever-growing demand from

the end user for a device that is versatile, portable and yet efficient, and one

that can support high-data rate services. Consequently, it is imperative on

the part of the network designer to provide these high-date rate services in a

computationally-efficient manner.

Fundamentally, the wireless medium is a shared medium of commu-

nication. Subsequently, any network of wireless nodes has the following two

properties that differentiate it from a wireline network.

• Broadcast: When a single node transmits a signal, all nodes in the net-

work receive an attenuated version of the signal.

• Superposition: When two nodes simultaneously transmit a signal, the

received signal is a superposition of the two attenuated transmit signals.

These fundamental properties ensure that in order for any two nodes to com-
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municate, they will have to endure fluctuations in the strength of the wireless

link often called the channel. It is in general reasonable to believe that if the

transmitter had a priori knowledge of the channel, it should be able to exploit

this knowledge to achieve better communication rates. More formally, it is a

well-known, fundamental, information-theoretic result that the use of up-to-

date channel state information at the transmitter increases the communication

rate. This brings into play the role of a feedback channel. Feedback refers to

the process of communicating the current state of the channel, measured at

the receiver, back to the transmitter. It is important in turn to ensure that

the bandwidth of the feedback channel is large enough to ensure a sufficient

quality of channel state information at the transmitter, since overly-corrupt

and/or outdated information might not be useful. At a high level, this thesis

deals with allocating feedback bandwidths on the network-wide scale so as

to facilitate high data-rate communication. As networks seek to meet user

demands through advanced technologies such as multiple-antenna communi-

cation, which call for increased levels and more sophisticated uses of feedback,

the computational complexity of any feedback allocation scheme becomes a

central issue; if an algorithm to determine optimal or near-optimal allocations

cannot be implemented in larger systems due to prohibitive computational

complexity, its usefulness is severely limited. Thus, in designing these feedback

channels, this thesis focuses keenly on the topic of computational efficiency,

which is an integral component of any viable system design.

Transmitter adaptation promises to be an indispensable part of almost
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all future wireless systems. The advent of multiple-antenna technology has

further fuelled the necessity for transmitter adaptation or precoding as it is

commonly referred to. It is reasonable to assume that any network provider

would be interested in consuming the least amount of cumulative feedback

bandwidth (across the network) in order to enable high data rate transmis-

sions on the “feedforward” link. Over the last decade, this has prompted much

research into the field of limited feedback, which concerns the design the best

possible transmit precoding systems under a constraint on the bandwidth of

the feedback channel. However, much of this literature on limited feedback for

multiple-input-multiple-output (MIMO) systems focuses on optimizing a sin-

gle transmitter-receiver-transmitter closed-loop wireless system. For example,

consider a single-stream beamforming MIMO system. For such a system, it is

known that the rate-optimal strategy is for the receiver to measure the channel

(matrix-valued in general) and feed back the right singular vector correspond-

ing to the maximum singular value of the channel. Maximum-rate quantization

codebooks have been designed for such systems under a bandwidth constraint

on the feedback channel.

In this thesis, we propose the treatment of feedback channels as a

network-wide resource that must allocated judiciously. Our work builds on

the aforementioned body of research by identifying network scenarios where

the feedback bandwidths across users in the system become coupled. Such

scenarios demand a careful allocation of this resource. Two design criteria

immediately come to mind, criteria that are well-established in the literature
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on resource allocation: One can maximize the network-wide transmission rate

given a constraint on the number of feedback resources or alternatively, one

can minimize the number of feedback resources consumed, while offering a tar-

get quality-of-service. While these criteria have been applied in the context of

other resource allocation problems such as power control, they have not been

considered in the context of feedback allocation to the best of our knowledge.

Accordingly, we take the perspective of a network controller by formulating

and solving (exactly if possible) many important feedback resource allocation

problems. In general, such allocations will be made as a function of the state

(e.g., queue sizes, channel conditions, etc.) of the network.

The first problem we consider is that of feedback allocation in a tradi-

tional cellular uplink setting. Here, we have a group of users in a cell that are

served orthogonally (no interference between the users) by a base station. The

base station has a fixed/limited feedback budget with which to form its feed-

back packet. This packet communicates rate instructions to each user, thereby

enabling link adaptation. A user that is assigned a larger chunk of bits within

the feedback packet is able to perform finer rate adaptation. Thus, the rate

seen by each user is a function of the size of its feedback partition within the

feedback packet in addition to other system parameters. In this scenario, we

are interested in optimally partitioning the feedback packet at each network

scheduling instant in order to maximize system throughput. Note that in this

case, the coupling amongst users that necessitates global optimization across

all feedback links is induced by the total fixed feedback budget. The algorithms
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proposed here are suitable for applications that do not require the aggressive,

high-frequency data schedulers, i.e., the data schedules remain fixed for long

periods of time.

The second problem builds on the first in that we now consider sys-

tems with high frequency data scheduling. Furthermore, we allow for groups

of users to communicate on the same spectrum thereby generating inter-user

interference. We cover both traditional cellular networks as well as future net-

work architectures that include femtocells, microcells and distributed-antenna-

systems. We design feedback allocation algorithms that operate in tandem

with fast data schedulers in both interference-free and interference-limited en-

vironments. As the density of access points is only set to grow, interference

becomes a major impediment to achieving high data rates in wireless networks.

Therefore, designing feedback mechanisms that enable the application of in-

terference cancellation techniques such as MIMO precoding is crucial. Note

that any perfect MIMO interference cancellation technique would require an

infinite-capacity feedback channel. Hence, a feedback channel with bandwidth

constraints would immediately cause residual interference to the neighbouring

access points. For such a setting as well as for others, we are interested in

determining the minimum network-wide feedback budget that guarantees a

given worst-case loss in throughput. Network-wide optimization is required in

this case due to the coupling that is induced by the presence of interference

amongst users.

The third research thrust focuses on a future network architecture in
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the form of whitespace networks. Here we have a set of unlicensed users (called

whitespace users) operating on the same spectrum as a group of primary users

or incumbents. The whitespace users operate with the intention of improving

spectral efficiency while not causing undue performance loss to the primary

network. The whitespace network consists of a whitespace base station serv-

ing the group of whitespace users. We study the process of network state

acquisition through feedback for the purposes of scheduling in the downlink

of this whitespace network. As with the previous problem, we are interested

in devising feedback strategies that consume the least amount of bandwidth

while guaranteeing optimal or near-optimal throughput performance.

As one might imagine, feedback allocation problems are typically com-

binatorial in nature owing to the basic fact that the feedback bandwidth is

modelled to be an integer number of bits. As the number of users and access

points present in a network can be large in general, it is of primary interest for

the controller to ensure that resource allocation algorithms are computation-

ally efficient. In other words, it is imperative that the algorithmic solutions

scale gracefully in the size of the problem. Through the course of this disserta-

tion, we encounter several large combinatorial problems where a näıve solution

would typically involve searching over an exponential number of possibilities.

In order to reduce this exponential complexity, we search for, identify and

exploit specific structure that is inherent in the application. As a general

theme, we first propose optimal solutions that succeed in a significant reduc-

tion in complexity over the first order brute-force approach. Subsequently, we
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identify more intricate structure that allow us to propose polynomial-time or

pseudo-polynomial-time algorithms that solve the feedback allocation prob-

lem approximately. Often, we provide analytical guarantees on the accuracy

of these algorithms. In some cases, we provide numerical evidence of near-

optimal performance of these algorithms.

Some of the combinatorial optimization techniques employed in this

research work have been used in other areas such as machine learning but

have not often been used in the domain of wireless networks to the best of

our knowledge. These include dynamic programming, sub-modular function

optimization, greedy algorithms and compressed sensing. We strongly believe

that the techniques introduced in this dissertation can be used to solve other

important problems in the area of wireless networks.

Organization: In Chapter 2, we provide background on some of the combi-

natorial optimization techniques that will be used during the course of this

dissertation. In Chapter 3, we introduce the first feedback allocation problem

that aims to maximize throughput under a total feedback budget for net-

works without interference. The case with interference and the dual criterion

– minimize feedback budget under quality-of-service constraints – is studied

in Chapter 4. Chapter 5 considers the dual criterion in the specific context of

whitespace networks.

Notation: We denote the (i, j)-th element of matrix X by xij while xi denotes

element i of vector x. Given matrices X,Y ∈ Rp×q, X ≤ Y denotes xij ≤

yij, ∀i = 1, . . . , p, j = 1, . . . , q. We denote the transpose and Hermitian-
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transpose operators by (.)T and (.)† respectively. The sets R+, N0 and N

represent the non-negative real numbers, non-negative integers and positive

integers respectively. [x]+ = max{x, 0} and || · || is the two-norm operator.

Finally, the Frobenius norm of matrixX is denoted by ||X||F ; [x]+ = max{x, 0}

and [x]+1 = min{x, 1}.

8



Chapter 2

Background

In this chapter, we provide the basic background, as well as some key

references, to some of the optimization techniques we use in the core chapters of

this thesis. Section 2.1 introduces some basic concepts regarding sub-modular

function optimization. Sub-modular functions are used in combinatorial op-

timization, and the basic result of interest says that if our objective has the

property of “diminishing returns” then while combinatorial, it can nonetheless

be efficiently approximated. The second section in this chapter, Section 2.2,

introduces the topic of compressed sensing. Sparsity and structure are increas-

ingly important concepts, and the need for computationally efficient tools that

can exploit this structure is growing. Compressed sensing is precisely such a

framework where sparsity can be exploited.

2.1 Sub-modular function maximization

The background in this section is most relevant to Chapter 3. This sec-

tion presents a primer on sub-modular optimization (summarized from [67–69])

that will be useful for our purposes. We start with preliminary definitions and

properties. Concluding this section is a recent application of sub-modularity

9



in solving a sensor selection problem [7].

2.1.1 Definitions and properties

A sub-modular function is defined as follows:

Definition (Sub-modular Function): Let E be a finite set and 2E represent all

its subsets. Then, F : 2E → R+ is a non-decreasing, normalized, sub-modular

function if:

• F (∅) = 0 (normalized)

• F (A) ≤ F (B) if A ⊆ B ⊆ E (non-decreasing)

• F (A∪ {e})− F (A) ≥ F (B ∪ {e})− F (B), ∀A ⊆ B ⊆ E and e ∈ E \B

(sub-modular)

The following property of sub-modular functions is useful for reasons that are

obvious.

Lemma 1. If Fk, k = 1, . . . , K, are sub-modular on set E, then
∑K

k=1wkFk(A), A ⊆

E is a sub-modular function for wk ≥ 0, ∀k.

Proof: The proof follows from direct application of the definition of sub-

modularity. Let Fk(A), k = 1, . . . , K, A ⊆ E, be sub-modular functions

on set E. Then, for all A ⊆ B ⊆ E and e ∈ E \B, we have the property

∑K
k=1wkFk(A ∪ {e})−∑K

k=1wkFk(A) =
∑K

k=1wk (Fk(A ∪ {e})− Fk(A))

≥ ∑K
k=1wk (Fk(B ∪ {e})− Fk(B)) .

(2.1)
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✷

Having provided the definition of sub-modularity along with a useful property,

we now introduce the kinds of constraint sets that are typically considered in

the context of sub-modular optimization.

Definition (Independence System): A set system (E, I) where E is a finite set

and I is a collection of subsets of E is called an independence system if it

satisfies the following properties:

• ∅ ∈ I

• A ⊆ B and B ∈ I, then A ∈ I

Definition (Matroid): An independence system is called a matriod if it satisfies

the following additional property; if A,B ∈ I and |A| < |B|, then there exists

e ∈ B \ A such that A ∪ {e} ∈ I.

We are interested in a special class of matroids called uniform matroids,

defined as follows.

Definition (Uniform Matroid): I is a uniform matroid if I = {F ⊆ E : |F | ≤ k}

for k ∈ N.

The optimization problem that has been considered in the context of

sub-modular functions and independence systems is

F ∗ = maximize F (A)
s.t A ∈ I, A ⊆ E.

(2.2)
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Since many NP-hard problems can be reduced to a sub-modular function max-

imization over an independence system, significant research has focused on

developing efficient approximation algorithms. In particular, the performance

of the greedy algorithm in solving special cases of (2.2) has been extensively

studied. Nemhauser et al. [70] considered problem (2.2) over uniform matroids

and showed that the greedy algorithm provides a (1− 1
e
) approximation factor

for this special case.

At each step, this algorithm augments the existing subset solution with

an additional element from the set E such that the new subset solution belongs

to the independence system. The additional element is selected to maximize

the incremental utility. Given sets S, T ⊂ E, we define

ρT (S) = F (S ∪ T )− F (S) (2.3)

and write the greedy algorithm (borrowing some notation from [67]) when I

is a uniform matroid, parametrized by size k, as follows.

Algorithm (Greedy algorithm for maximizing non-decreasing, normalized,
sub-modular functions over uniform matroids):

• Step 1: Set i = 1 and Sg,0 = ∅.

• Step 2: Select element ei ∈ E such that

ei = maximize ρe(Sg,i−1)
s.t e ∈ E \ Sg,i−1

. (2.4)

• Step 3: Set Sg,i = Sg,i−1 ∪ {ei}.

• Step 4: Stop if i = k; else set i = i+ 1 and go to Step 2.
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In the above, Sg,i represents the set constructed by the greedy algo-

rithm after i iterations. The approximation factor result is formally stated in

Theorem 1 below. We re-state the proof of Theorem 1 as it provides insight

into the operation of the greedy algorithm.

Theorem 1. Let F : 2E → R+ be a normalized, non-decreasing, sub-modular

function on set E, I be a uniform matroid, and Fgreedy be the solution provided

by the greedy algorithm. Then
Fgreedy

F ∗ ≥
(
1− 1

e

)
.

Proof: Firstly, we present an alternate characterization of sub-modular func-

tions from Nemhauser et al. [70] that is useful for the proof. For any two

disjoint subsets S and T = {t1, . . . , tN}, S, T ⊆ E, we can write

F (S ∪ T ) =
[
∑N

i=2 F (S ∪ {t1, . . . , ti})− F (S ∪ {t1, . . . , ti−1})
+ (F (S ∪ {t1})− F (S))] + F (S)

(2.5)

through telescoping. By the sub-modularity of F , we have

F (S ∪ T ) ≤
[
∑N

i=1 F (S ∪ ti)− F (S)
]

+ F (S)

= F (S) +
∑N

i=1 ρti(S)
(2.6)

and furthermore, for S ⊆ T , this simplifies to

F (T ) ≤ F (S) +
∑

t∈T\S
ρt(S). (2.7)

Now, let S∗ and Sg be the optimal solution and the solution generated

by the greedy algorithm respectively; ρi represents the incremental value that

is obtained during the i-th iteration of the greedy algorithm. Then, by setting
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S = Sg,0 = ∅ in (A.11) and noting that |S∗| ≤ k since it is a uniform matroid,

we calculate

F ∗ ≤
∑

e∈T
F ({e}) ≤ kρ1 = k maxe∈EF ({e}). (2.8)

Recalling that F (Sg,0) = 0 due to normalization and applying (A.11) to set

Sg,j generated by the greedy algorithm after j iterations, we have

F ∗ ≤ F (Sg,j) +
∑

t∈T\Sg,j
ρt(Sg,j)

=
∑j

i=1 (F (Sg,i)− F (Sg,i−1)) +
∑

t∈T\Sg,j
ρt(Sg,j)

≤ ∑j
i=1 ρi + kρj+1.

(2.9)

By dividing both sides by k, re-arranging and adding
∑j

i=1 ρi to both sides,

we get
j+1
∑

i=1

ρi ≥
1

k
F ∗ +

k − 1

k

j
∑

i=1

ρi. (2.10)

The following result is proved through induction in order to solve the recursion.

j
∑

i=1

ρi ≥
(
kj − (k − 1)j

kj

)

F ∗. (2.11)

For j = 1, we get ρ1 ≥ F ∗

k
, which is true since, for S∗ = {s∗1, s∗2, . . . , s∗K}, we

have

F ∗ = F (S∗)

=
∑k

i=2

[

F ({s∗1, s∗2, . . . , s∗i })− F
(

{s∗1, s∗2, . . . , s∗(i−1)}
)]

+ F ({s∗1})
≤ (k − 1)F ({s∗1}) + F ({s∗1})
= kF ({s∗1}) .

(2.12)

Assuming the statement holds true for (j − 1), and substituting it in (A.14),

14



we get
∑j

i=1 ρi ≥ 1
k
F ∗ + k−1

k

(
kj−1−(k−1)j−1

kj−1

)

F ∗

= 1
k
F ∗ + (k − 1)

(
kj−1−(k−1)j−1

kj

)

F ∗

=
kj−1+(k−1)(kj−1−(k−1)j−1)

kj
F ∗

=
(
kj−(k−1)j

kj

)

F ∗,

(2.13)

which proves the claim. Now, by setting j = k, we calculate

Fg =
k∑

i=1

ρi ≥
(
kk − (k − 1)k

kk

)

F ∗, (2.14)

or in other words,

Fg

F ∗ ≥
(
kk − (k − 1)k

kk

)

= 1−
(

1− 1

k

)k

. (2.15)

The result follows since limk→∞
(
1− 1

k

)k
= 1

e
and the fact that

(
1− 1

k

)k
is

increasing in k. ✷

Please refer to Goundan et al. [67], Calinescu et al. [68] and Vondrak [69]

for a summary of related results on sub-modular function optimization over

other families of constraint sets.

2.1.2 Sensor selection

In this section, we present a recent application of sub-modularity from

Shamiah et al. [7] in developing efficient algorithms to approximately solve a

sensor selection problem. The sensor selection problem can be described as

follows. There are N sensors that form a network. All sensors in the system

15



observe a common phenomenon x ∈ R
M . The sensing or received signal model

is

yi = hTi x+ ni,

where ni is additive white Gaussian noise such that E[n2
i ] = σ2, ∀i and

E[ninj ] = 0, i 6= j. The signal is modelled as a zero-mean Gaussian ran-

dom vector with E[xxT ] = Σx. The channel follows the standard block fading

model and is assumed known to the fusion center. The fusion center is in-

terested in acquiring observations from only a subset of the sensors S. More

specifically, due to a constraint on the acquisition bandwidth, it is necessary

for the queried set of sensors to satisfy |S| = k.

Let yS denote the acquired observations. Then, the maximum a poste-

riori estimate of x given yS is

x̂ =

(

σ−2
∑

i∈S
hih

T
i + Σ−1

x

)−1
∑

i∈S
yihi.

The above estimate can also be shown to be optimal according to the minimum-

mean-squared-error criterion. The estimation error (x̂−x) under the above es-

timation criterion has a covariance matrix Σmap(S) =
(
σ−2

∑

i∈S hih
T
i + Σ−1

x

)
.

Often-used measures of quality in the sensor selection literature are mean ra-

dius of the error covariance matrix or the volume of its confidence ellipsoid.

We refer the reader to [7,144] for details about these metrics. Suffice it to say

that these metrics are non-increasing functions of log det (Σmap(S)). Thus, it

is of interest to solve the following problem

max
|S|=k

log det

(

σ−2
∑

i∈S
hih

T
i + Σ−1

x

)

,
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which essentially finds the subset of sensors that minimize the error or provide

maximum confidence. The authors [7] show that log det
(
σ−2

∑

i∈S hih
T
i + Σ−1

x

)

is a monotone sub-modular function of S. Thus, the constraint set can be re-

written |S| ≤ k making it a uniform matroid. The greedy algorithm described

in the previous section can hence be applied to solve this problem with an

accuracy guarantee of
(
1− 1

e

)
according to Theorem 1.

2.2 Compressed sensing

The background in this section is most relevant to Chapter 5. Sparsity

is naturally present or can be artificially induced in many real-world signals

or data. It is this observation that prompted the development of the JPEG

image compression scheme where the data (image in this case) is transformed

into the frequency domain. In particular, the discrete cosine transform is used

to create a sparse frequency map of the image owing to the fact that images

predominantly contain low frequencies. For such settings, we are immediately

charged with the task of storing this sparse data or signal using as little space

as necessary. Thus, we are confronted twin goals which are clearly conflicting,

that of low storage requirements along with the need to perfectly recovery the

original data. As engineers, one immediately recognizes a tradeoff and asks

the question “How small can we make the storage overhead while guaranteeing

perfect recovery of our sparse signal?” In the sequel, we use the terms signal

and data interchangeably.

Of course, an immediate and partial answer to this question would be
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“It depends on the storage mechanism.”. The technique of compressed sens-

ing, which has received tremendous interest in recent years, proposes a linear

mechanism (that is independent of the signal) in that the acquired measure-

ments are linear combinations of the sparse signal. Of course, the motivation

for such a choice is clearly understood as simplicity of implementation. Math-

ematically, this can be written as

y = Mx, (2.16)

where

x ∈ RN : signal or data, which has S non-zero entries
M ∈ Rk×N : sensing matrix
y ∈ R

k : acquired measurements.
(2.17)

Our twin goals can be re-phrased mathematically by saying that we are inter-

ested in recovering x perfectly using any algorithm of our choice while using

as few measurements k as possible. In some applications, we might be able

to choose an appropriate sensing matrix M while in some others such as the

wireless application we will describe in Chapter 5, the sensing matrix will be

provided by the underlying system. In either case, M is assumed known as is

y. Given M and y, we would like to recover x perfectly using any algorithm

of our choice.

If S = N or in other words, if there is no sparsity at all, then it is clear

that one would need k = O(N) measurements in order to recover x. A recover

algorithm for this case would just be to perform matrix inversion. However,

when S << N , can we do better?

18



In general, it has been shown that x can be recovered perfectly using

– what is arguably the most natural recovery algorithm one can think of –

ℓ0-norm minimization. As this problem is combinatorial and NP-hard more-

over, the natural convexification has been considered, where the || · ||0 norm

is replaced by its closest convex approximation, the || · ||1 norm. It has been

shown that x can be recovered perfectly using ℓ1-norm minimization if the

sensing matrix M satisfies certain properties. Specifically, we can recover x

perfectly by solving the following ℓ1-norm minimization problem

minimize ||x||1
subject to Mx = y

. (2.18)

iff M satisfies the Null Space Property (NSP), which will be defined later.

These results, predominantly scattered across the statistics literature, are thus

attractive from an algorithmic perspective as well.

Unfortunately, the NSP and other sufficient conditions such as the Re-

stricted Isometry Property (RIP) that point to it are difficult to establish for

any arbitrary deterministic matrix. This is where compressed sensing steps

in. Recently, it was shown that it is possible to verify these conditions ana-

lytically for random matrices. The seminal papers by Donoho [10] and Cades

et al. [11] show that Gaussian and Bernoulli matrices with independent, iden-

tically distributed (i.i.d.) entries satisfy the RIP with high probability when

k = O(SlogN) thereby allowing for perfect recovery of x through ℓ1-norm

minimization (often called Basis Pursuit in the compressed sensing literature).

Thus, by adopting a probabilistic selection rule, we buy ourselves analytical
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guarantees on the goodness of these matrices. This initial result has given rise

to a flurry of research activity over the last decade leading to many alternate

recovery algorithms such as the greedy correlation approach [175], and the

least absolute shrinkage and selection operator (LASSO) [177] given by

minimize 1
2
||Mx− y||2 + λ||x||1. (2.19)

The RIP has subsequently been proven for other random matrix ensembles

such as sub-gaussian and sub-exponential ensembles [14,18,19,21,188]. To tie

the above discussion back to the twin goals mentioned earlier, this means that

perfect recovery with logarithmic storage is now possible for a large number

of matrix distributions.

2.2.1 Mathematical preliminaries

We now step into the mathematical details. We define the null space

property from Gribonval et al. [183]. Given a matrix M, let N(M) denote its

null space.

Definition (Null space Property): A matrix M satisfies the null space property

of order S if for all subsets S ⊆ {1, 2, . . . , N} with |S| ≤ S, the following holds

||vS||1 ≤ ||vSc||1, ∀v ∈ N(M) \ 0.

where Sc = {1, 2, . . . , N} \ S. Based on this property, the following recovery

result [183] has appeared both implicitly and explicitly in works such as [181,

184]. Let the support set of x(t) be denoted by S. A vector x(t) is S-sparse if

|S| ≤ S.

20



Theorem 2. Let M ∈ R
k×N . Every S-sparse vector x ∈ R

N is the solution

to the ℓ1-norm minimization problem in (2.18) with y = Ms iff M satisfies

the NSP of order S.

Proof [180]: Let every S-sparse vector be the solution to (2.18). In particular,

let the generative S-sparse vector be vS where S ⊆ {1, 2, . . . , N}, |S| = S

and v ∈ N(M). Then, the vector −vSc is also consistent with the set of

observations because MvS = −MvSc , which follows from the fact that v ∈

N(M). Thus, ||vS||1 < || − vSc||1 = ||vSc||1.

Assume the NSP of order S holds. Then let x and z be the true and

estimated sparse vectors respectively that is consistent with the observations,

i.e., Mx = Mz. Let the true support be S = support(x). Then x − z ∈

N(M) \ 0. From the NSP, we can write

||x||1 = ||x− zS + zS||1
≤ ||x− zS||1 + ||zS||1 by the triangle inequality
= ||xS − zS||1 + ||zS||1 since x is S-sparse
= ||vS||1 + ||zS||1 by the definition of v
≤ ||vSc||1 + ||zS||1 by NSP
= || − zSc||1 + ||zS||1 since x is S-sparse
= ||z||1.

(2.20)

✷

The NSP is typically quite difficult to prove directly leading to the develop-

ment of sufficient conditions that are easier to establish. One such sufficient

condition is the restricted isometry property [186] that has become quite pop-

ular in recent years and is defined below.
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Definition (Restricted Isometry Property): A matrix M satisfies the Restricted

Isometry Property (RIP) of order p if there exists ǫp(M) ∈ (0, 1) such that

(1− ǫp(M))||vT||22 ≤ ||MvT||22 ≤ (1 + ǫp(M))||vT||22, ||v||2 = 1 (2.21)

holds for all sets T with |T| ≤ p.

Here, ǫp(M) is called the restricted isometric constant of M. The RIP

essentially requires that all k × |T| sub-matrices of M be well-conditioned.

Under such a conditioning, perfect recovery of x is possible as described in the

following theorem.

Theorem 3. [8] Let M ∈ Rk×N . If M satisfies the RIP with ǫ2S(M) ≤
2(3−

√
2)

7
≈ 0.4531, then every S-sparse vector s ∈ RN is the solution to the

ℓ1-norm minimization problem in (2.18).

✷

As the proof of the above theorem is quite involved, we will prove a weaker

result from Rauhut [180] that uses mathematical machinery similar to that

used in the proof of Theorem 21 above.

Theorem 4. [180] Let M ∈ Rk×N . If M satisfies the RIP with ǫ2S(M) ≤ 1
3
,

then the NSP of order S is satisfied.

Proof: Let v ∈ N(M). Let So contain the S largest element of v. Let Sk, k =

1, 2, . . . contain the S largest absolute elements of {1, . . . , N} \⋃k−1
i=0 Si. Since
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v ∈ N(M), it follows that AvS0 = −A (vS1 + vS2 + . . .) and hence, from the

RIP, we get

||vS0||22 ≤ 1
1−εS(M)

||AvS0||22
≤ 1

1−ε2S(M)
||AvS0||22

= 1
1−ε2S(M)

vTS0M
TM (vS1 + vS2 + . . .)

= 1
1−ε2S(M)

∑

i v
T
S0
MTMvSi

≤ 1
1−ε2S(M)

∑

i |vTS0MTMvSi |

(2.22)

where the second inequality follows from the fact that εn(M) is non-decreasing

in n.

We now argue that |vTS0MTMvSi| ≤ ε2S(M)||vS0 ||2||vSi||2. This is be-

cause

vTS0M
TMvSi = [ṽS0 0Si]M

T
S0∪SiMS0∪Si [ṽSi 0S0]

T

= [ṽS0 0Si]
[
MT

S0∪SiMS0∪Si − I
]
[ṽSi 0S0 ]

T
.

(2.23)

The claim follows from standard inequalities concerning the matrix operator

norm. Substituting this bound into (2.22), we get

||vS0||2 ≤ ε2S(M)
1−ε2S(M)

∑

i≥1 ||vSi||2. (2.24)

Now since all entries of vSi−1
are greater than vSi , it follows that

|vj| ≤
1

S

∑

l∈Si−1

|vl| (2.25)

and hence ||vSi||2 =
(
∑

j∈Si |vj |
) 1

2 ≤ 1√
S
||vSi−1

||1. From the Cauchy-Schwartz

inequality

||vS0||1 ≤
√
S||vS0||2 ≤ ε2S(M)

1−ε2S(M)

∑

i≥1 ||vSi−1
||1

= ε2S(M)
1−ε2S(M)

[
||vS0||1 + ||vSc0

||1
]
.
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Since ε2S(M) ≤ 1
3
, we get ||vS0 ||1 ≤ 1

2
||vSc0

||1 ≤ ||vSc0
||1 giving us the result. ✷

Thus, the RIP with a sufficiently small constant immediately implies

the NSP in the context of ℓ1-recovery. We are immediately confronted with

the question “why is the RIP not a necessary condition as well in the con-

text of ℓ1-recovery?”. This is because the RIP is extremely sensitive to left-

multiplications. Consider multiplying the good sensing matrix by an invertible

matrix that has a large condition number. This should not affect the recov-

ery properties of the product matrix because the null spaces are invariant to

invertible transformations. However, the condition number of the product ma-

trix is quite large affecting adversely the RIP. This exposes a lack of robustness

inherent in the RIP.

In fact, for the case when ǫ2S(M) is close to 1√
2
, Gribonval and Davies [9]

have systematically constructed examples where all sparse vectors cannot be

recovered. Surprisingly, for ǫ2S(M) = 1, they have constructed examples where

all sparse vectors can indeed be recovered further illustrating the inherent

weakness of the RIP in identifying the entire space of good sensing matrices.

As mentioned earlier, it was shown in the earlier part of the decade, that

Gaussian and Bernoulli ensembles [10, 11] satisfy the RIP (with a sufficiently

small RIP constant to enable ℓ1-recovery). Since then a number of other

ensebles have be proven to lend themselves favourably to ℓ1-recovery. These
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include i.i.d. ensembles with each matrix entry [21]1 is given by

mij =







√
3
N
, w.p. 1

3

0, w.p. 1
3

−
√

3
N
, w.p. 1

3

,

Fourier ensembles [14] and i.i.d. sub-gaussian ensembles [13].

Recent research, which renders some of the above results special cases,

includes matrices with:

• independent rows where each row is a correlated, Gaussian random vec-

tor (NSP) [15].

• independent rows where each row is a correlated, sub-gaussian random

vector (NSP) [16].

• independent columns where each column is an uncorrelated, sub-gaussian

random vector (RIP) [19, 188].

• independent rows/columns where each row is an uncorrelated, sub-exponential

(heavy-tailed) random vector (RIP) [188].

We will reproduce two of these results along with proof sketches. In par-

ticular, we will present a recent result by Vershynin [188] that concerns matri-

ces with independent rows where each row is an uncorrelated, sub-gaussian ran-

dom vector. We will follow this up with a recent result by Vershynin [188] and

1Achlioptas [21] proves that these ensembles make for good Johnson-Lindenstrauss
(JL) embeddings. Baranuik et al. [12] subsequently provides the connection between JL-
embeddings and the RIP.
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Adamcyzk et al. [19] that concerns matrices with independent columns where

each column is an uncorrelated, sub-gaussian random vector. We present proof

sketches instead of verbatim proof reproductions as the former would arguably

be more useful for researchers that are looking for high-level summary of the

pieces that constitute a typical RIP proof.

Before we summarize these recent RIP results, we present a primer on

sub-gaussian and sub-exponential random variables along with some useful

results from non-asymptotic matrix theory.

2.2.2 Useful concentration inequalities

We refer the reader to the tutorial paper by Vershynin [188] for a great

introduction to non-asymptotic matrix theory. Lemmas 17-19 below are well-

known past results that are summarized in this paper [188]. The proofs are

not reproduced.

Lemma 2. Let z be random variable. The following properties are equivalent

with parameters Ki > 0 differing from each other by at most an absolute con-

stant factor.

(i) Tails: Pr(|z| > t) ≤ exp(1− t2

K2
) for all t > 0,

(ii) Moments: (E [|z|p]) 1
p ≤ K2

√
p for all p ≥ 1,

(iii) Super-exponential moment: E
[

exp
(
z2

K3

)]

≤ e.

Moreover, if E[z] = 0 then properties (i)-(iii) are also equivalent to the follow-

ing one:

(iv) Moment generating function: E [exp (tz)] ≤ exp(t2K4) for all t ∈ R.
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✷

A random variable that satisfies the above property is called a sub-gaussian

random variable. Such random variables are often characterized by the ψ2-

norm2, which is defined as

||z||ψ2 = supp≥1

(E [|z|p]) 1
p

√
p

. (2.26)

It follows that if the ψ2-norm of z is finite, then z is a sub-gaussian random

variable with ||z||ψ2 = K2. This is the case for bounded random variables with

symmetric distributions.

Lemma 3. Let z be a symmetrically distributed, bounded random variable with

|z| ≤ M, M > 0. Then, z is a sub-gaussian random variable with ||z||ψ2 ≤

cM2, c > 0.

✷

Next, we present a large-deviations result for sums of independent,

centered, sub-gaussian random variables.

Lemma 4. Let {zi}Mi=1 be a collection of independent, zero-mean, sub-gaussian

random variables with ψmax,z = maxi ||zi||ψ2. Then, for every a ∈ RM and

every t > 0, we have

Pr

(∣
∣
∣
∣
∣

M∑

i=1

aizi

∣
∣
∣
∣
∣
> t

)

≤ exp

(

− ct2

ψ2
max,z||a||22

)

.

2Alternate definitions of this norm have been adopted (such as in [19]) that are all
equivalent to within a constant factor.
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✷

In higher dimensions, a random vector z of dimensionM is called sub-gaussian

if zTx is sub-gaussian for every x ∈ RM .

Lemma 5. Let {zi}Mi=1 be a collection of independent, zero-mean, sub-gaussian

random variables. Then, z is a sub-gaussian random vector with ||z||ψ2 =

Cmaxi ||zi||ψ2.

✷

One can make a similar characterization of sub-exponential random variables

through the following lemma.

Lemma 6. Let z be random variable. The following properties are equivalent

with parameters Ki > 0 differing from each other by at most an absolute

constant factor.

(i) Tails: Pr(|z| > t) ≤ exp(1− t
K2

) for all t > 0,

(ii) Moments: (E [|z|p]) 1
p ≤ K2p for all p ≥ 1,

(iii) Super-exponential moment: E
[

exp
(

z
K3

)]

≤ e.

✷

A random variable that satisfies the above property is called a sub-exponential

random variable. The ψ1-norm of z is defined as

||z||ψ1 = supp≥1

(E [|z|p]) 1
p

p
. (2.27)

This immediately brings us to the next two lemmas, which explore the con-

nection between sub-gaussian and sub-exponential random variables.
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Lemma 7. z is a sub-gaussian random variable if and only if z2 is a sub-

exponential random variable. Furthermore, we have that ||z||2ψ2
≤ ||z2||ψ1 ≤

2||z||2ψ2
.

✷

The following lemma contains a large-deviations result for a sum of sub-

exponential random variables.

Lemma 8. Let {zi}Mi=1 be a collection of independent, zero-mean, sub-exponential
random variables and let ψmax,z = maxi ||zi||ψ1. Then,

Pr

(∣
∣
∣
∣
∣

M∑

i=1

zi

∣
∣
∣
∣
∣
> t

)

≤ exp

(

−cmin

{
t2

ψ2
max,z

,
t

ψmax,z

})

.

✷

We are now ready to discuss the recent RIP results for matrices with

independent, sub-gaussian columns and rows. Before we move on to this task,

we require one more definition. A random vector m of dimension M is called

isotropic if E[|mTx|2] = ||x||2 for all x ∈ RM .

2.2.3 Recent RIP Results

Typically, RIP proofs use the concept of ε-nets, which is defined as

follows in the context of the unit sphere in Euclidean space:

Definition (Nets): Let UN−1 denote the unit sphere in RN . Then, a subset

Nε (N) is called an ε-net of UN−1 if for every x ∈ UN−1, we can find a point
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y ∈ Nε such that ||x− y||2 ≤ ε.

This brings us to the natural question “what is the minimum size of

Nε (N)?”. This is called the covering number of UN−1, denoted CN(N, ε).

This is answered in the following lemma [188]. The proof follows from standard

Euclidean volume arguments and is not reproduced.

Lemma 9. For every ε > 0, we have that

CN(UN−1, ε) ≤
(

1 +
2

ε

)N

.

✷

We first present the result concerning matrices with independent, sub-

gaussian rows. This result will be used to prove the subsequent result concern-

ing matrices with independent, sub-gaussian columns. We essentially combine

Theorem 39 and Theorem 64 from Vershynin [188].

Theorem 5. (Sub-gaussian rows) Let M̃ = 1√
k
M be a k×N matrix containing

independent, isotropic, sub-gaussian rows with worst-case sub-gaussian norm

ψmax,m. Then, M̃ satisfies for every 1 ≤ S ≤ min{k,N}, and every number

ε ∈ (0, 1):

if k ≥ Cψmax,mε
−2Slog

(
N

S

)

then εS(M̃) ≤ ε

with probability at least 1 − 2exp
(
−cψmax,mε

2k
)
. Here, cψmax,m and Cψmax,m

depend only the worst-case sub-gaussian norm ψmax,m.
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Proof sketch: The proof has three steps essentially:

Step 1: First, it proves the concentration (1 − ε)||xT||22 ≤ ||MTxT||22 ≤

(1 + ε)||xT||22 for a particular choice of subset T∗ and any arbitrary vector

xT∗ ∈ R
|T∗|, ||x∗

T||22 = 1. This is established using the fact that ||MT∗xT∗||22 =
1
k

∑k

i=1 |mT
i xT∗|2, where {mi} are the rows of MT∗ , is a sum of indepen-

dent, sub-exponential random variables. This follows from Lemma 7 and the

fact that mT
i xT∗ is a sub-gaussian random variable for each vector xT∗ ∈

R|T∗|, ||xT∗||22 = 1. Since we have a sum of independent, sub-exponential ran-

dom variables, we can apply Lemma 8 to obtain a concentration.

Step 2: Now for the same fixed subset T∗, we would like to show a concentra-

tion for all xT∗ ∈ R|T∗|, ||xT∗||22 = 1. The immediate use of the union bound

is precluded since the space is uncountable. Thus, we turn to the concept of

ε-nets. The idea here is if the concentration holds for every point in the ε-net

of the sphere ε-net, then the concentration holds for the entire sphere since the

net represents – within a distance of ε – all points of the sphere. More specif-

ically, we can determine a worst-case magnification factor β > 0 such that

sup||z||=1

∣
∣ 1
k
||MT∗z||22 − 1

∣
∣ ≤ βmaxz∈Nε(|T∗|)

∣
∣ 1
k
||MT∗z||22 − 1

∣
∣. By Lemma 9, the

condition number of the ε-net of a sphere and hence |Nε (|T∗|) | is finite al-

lowing us to apply the union bound over the points contained in the net to
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compute an exponential bound on

Pr
(
βmaxz∈Nε(|T∗|)

∣
∣ 1
k
||MT∗z||22 − 1

∣
∣ ≥ δ

)

≤ |Nε (|T∗|) |Pr
(
κ
∣
∣ 1
k
||MT∗z||22 − 1

∣
∣ ≥ δ

) (2.28)

where κ > 0 is a constant.

Step 3: As the final step, we remove the conditioning on a specific set T∗ by

applying the union bound on (2.28) over all sets |T| ≤ S. Note that there are
(
N

S

)
≤
(
eN
S

)S
of them. ✷

In order to present the result concerning matrices with independent

sub-gaussian columns, we require the following decoupling technique for double

arrays [22,188]. The lemma essentially estimates the sum of a double array in

terms of the sum across disjoint subsets of the array.

Lemma 10. Consider a matrix M with zeroes on the diagonal, i.e. mii = 0.

Then,

4 min
T∈{1,...,N}

∑

i∈T,j∈Tc

aij ≤
∑

i,j

aij ≤ 4 max
i∈T∈{1,...,N}

∑

i∈T,j∈Tc

aij.

✷

Theorem 6. (Sub-gaussian columns) Let M be a k×N matrix whose columns

mi are independent, isotropic, zero-mean, sub-gaussian random vectors in R
k

with ψmax,m = maxi ||mi||ψ2. The columns satisfy the norm-concentration

property ||mi||22 = k almost surely. Let M̃ = 1√
k
M be the normalized version.

Then, M̃ satisfies for every 1 ≤ S ≤ min{k,N}, and every number ε ∈ (0, 1):

if k ≥ Cψmax,mε
−2Slog

(
N

S

)

then εS(M̃) ≤ ε
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with probability at least 1 − 2exp
(
−cψmax,mε

2k
)
. Here, cψmax,m and Cψmax,m

depend only the worst-case sub-gaussian norm ψmax,m.

Proof sketch: The proof has three main steps:

Step 1: As with the previous proof, it is sufficient to prove a concentration

for a fixed vector in the ε-net, x ∈ Nε (|T∗|), and for a fixed subset T∗.

Step 2: For such a fixed x ∈ Nε (|T∗|), we can write

1

k
||Mx||22 =

1

k

N∑

i=1

||mi|2|2x2i +
1

k

N∑

i=1

N∑

j=1, i 6=j
mT

i mjxixj .

Note that in contrast to the earlier proof sketch, we have replaced

xT∗ with x for simplicity of exposition. It should be understood that x is of

dimension |T∗|. By assumption, ||mi||22 = k a.s. and ||x||22 = 1. Substituting

these assumptions in the above expression, we get

∣
∣
∣
∣

1

k
||Mx||22 − 1

∣
∣
∣
∣
=

1

k

∣
∣
∣
∣
∣

N∑

i=1

N∑

j=1, i 6=j
mT

i mjxixj

∣
∣
∣
∣
∣
= xTG0x.

where G0 the off-diagonal part of the Gram matrix MTM with zeros on the

diagonal. The elements of xTG0x are not independent. As a first step to-

wards manufacturing independence (and hence analytical tractability), we ap-

ply Lemma 10 to bound xTG0x in terms of a sum over elements (i, j) where

i and j come from disjoint sets. This gives us the following bound

∣
∣
∣
∣

1

k
||Mx||22 − 1

∣
∣
∣
∣
= xTG0x ≤ 4

k
max

V⊆{1,...,N}
|RV(x)|.
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where RV(x) =
∑

i∈V
∑

j∈Vc mT
i mjxixj is the sum of correlations over disjoint

sets. Note that our goal is prove an exponential bound on

Pr

(
4

k
max

V⊆{1,...,N}
|RV(x)| ≥ ε

)

.

Since the number of subsets V ⊆ {1, . . . , N} is finite, we can apply the union

bound and hence focus our attention on

Pr

(
4

k
|RV(x)| ≥ ε

)

instead.

Step 3: In the second and final step towards obtaining a sum of independent

terms, we condition on a realization of vectors {mi}i∈Vc and re-write the sum

of correlations as

RV(x) =
∑

i∈V
xjm

T
i z where z =

∑

j∈Vc

xjmj .

Upon conditioning, z is fixed and hence RV(x) now contains a sum of indepen-

dent correlations. Furthermore, {mT
i z}Ni=1 is a set of independent, centered,

sub-gaussian random variables and thus, we can form an exponential bound

on

Pr

(
4

k
|RV(x)| ≥ ε |{mi}i∈Vc

)

by applying Lemma 4. Removing the conditioning on {mi}i∈Vc is the final

step, which is straightforward and will not hurt the exponential bound. ✷

On comparing the above two RIP results for matrices with independent

rows and columns respectively, one observes that the latter result requires a
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concentration of the norm of each column. This additional assumption is

required since the singular values of a matrix M can be bounded as [188]

min
i

||mi|| ≤ σmin(M) ≤ σmax(M) ≤ max
i

||mi||.

This concludes the background section on optimization techniques. We

now move on to the applications of such techniques to solve some important

design problems in the field of wireless networks.
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Chapter 3

Feedback allocation with slow data scheduling

In this chapter, we consider a cellular uplink problem where the base

station has a fixed feedback budget, which it has to allocate across the users

it is serving in an orthogonal manner. The feedback bandwidth allocated to a

user determines the effective transmission rate seen by the user. The current

state-of-the-art allocates an equal amount of feedback bandwidth to each user.

We propose computationally-efficient dynamic feedback allocation algorithms

that adapt to system parameters such as arrival rate and channel quality to

improve the throughput of the system.

3.1 Introduction

In many currently-implemented wireless standards, channel state infor-

mation (CSI) is fed back by the receiver to the transmitter to allow for the

latter to adapt its transmit strategy. This includes power and rate adapta-

tion, which is known to increase capacity over the case when there is no CSI

at the transmitter (CSIT) and precoder adaptation for a fixed transmission

rate in the case of multiple-input-multiple-output (MIMO) systems, which

can be used to increase link reliability. Current state-of-the-art opportunistic
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scheduling algorithms such as multi-user diversity and proportional fairness

assume the availability of CSIT through feedback, thus allowing for the trans-

mitters to adapt their respective transmission strategies as a function of their

link quality and other network state information. An important example is

multi-user diversity downlink scheduling. Here, the user with the best channel

is scheduled in each time slot and the base station transmits (ideally) at the

Shannon capacity of its link to that user. It is well-known (Sharif and Has-

sibi [26]) that for this scheduling policy, the sum-rate scales as Ω(log log K)1,

where K is the number of users. However, as noted by Huang et al. [27] this

increase comes with a linear increase in feedback rate. This observation has

motivated the development of limited feedback techniques. Past literature on

limited feedback, reviewed next, can be broadly classified into techniques for

point-to-point links and for multi-user systems, with some overlap between the

two.

The impact of limited feedback on the performance of MIMO point-

to-point wireless links has been studied extensively. For a comprehensive sur-

vey of the current state-of-the-art in limited feedback techniques for point-

to-point links, refer to the tutorial paper by Love et al. [79]. Two popular

techniques are Grassmannian Quantization and Random Vector Quantization

(RVA). The former [76] explores the merits of quantization on the Grassmann

manifold. According to the latter technique [30,31], a codebook is constructed

1f(n) = O(g(n)) if ∃n̄ and c1 > 0 such that f(n) ≤ c1g(n), ∀n ≥ n̄; f(n) = Ω(g(n)) if
f(n) = O(g(n)) and ∃n̄ and c2 > 0 such that f(n) ≥ c2g(n), ∀n ≥ n̄.
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by throwing points uniformly at random on the surface of a complex unit

sphere. Bounds have been derived on some suitably-chosen measure of distor-

tion [30, 31, 34–37, 76–78].

A parallel body of work [80–82] focuses on developing limited feed-

back protocols for multi-user systems. Here, past research efforts can be

sub-divided into two categories. Work in the first category focuses on tradi-

tional single-antenna downlink orthogonal frequency-division multiple-access

systems. Chen et al. [80] and Sanayei et al. [82] propose a limited feedback

scheme where each user, with associated priority, is restricted to a feedback

budget of one bit per tone, i.e., each user transmits a bit that indicates whether

its channel is above a certain threshold. Given a set of users with good chan-

nels, the base station schedules the user with the highest priority on each

tone. The authors compute thresholds that achieve the optimal tradeoff be-

tween feedback rate and data rate for this class of data and feedback scheduling

policies. While the above work assumes that the feedback window has number

of slots equal to the product of the number of users and tones, Agarwal et

al. [81] relax this assumption by considering feedback windows of arbitrary

size. They propose an opportunistic feedback scheme where a user contends

for a feedback slot if their channel strength is greater than a pre-set threshold.

Work in the second category focuses on limited feedback for MIMO multiple-

access systems. Jindal [83] investigates the impact of finite rate feedback on

a downlink space-division multiple-access network where a multiple-antenna

base-station serves a number of single-antenna users. This work assumes that
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the number of users is equal to the number of antennas at the base-station

and that the latter uses a zero-forcing precoding transmission policy to simul-

taneously serve all users. Jindal shows that when each mobile uses an RVQ

codebook, the feedback budget needs to scale linearly in the signal-to-noise-

ratio in order to achieve the full multiplexing gain (equal to the number of

users) offered by the channel. Huang et al. [84] study the ergodic sum-rate

performance for a space-division multiple-access system that uses the per-user

unitary rate control joint scheduling and feedback protocol (defined therein).

The authors calculate the sum-rate scaling of this protocol in the number of

users and antennas. Unlike time-division-duplexing networks where channel

reciprocity cannot be exploited, explicit feedback for the uplink is required

for current and future standards (such as Long Term Evolution) that em-

ploy frequency-division-duplexing (FDD), thus motivating limited feedback

research specifically dealing with the uplink. Dai et al. [85] consider a MIMO

uplink where the base-station obtains the channel perfectly for each user and

feeds back (broadcasts) an index that maps to a collection of transmit co-

variance matrices, each for one mobile in the network. The mobile then uses

this covariance matrix to design its Gaussian vector codeword. The quantizer

design problem that they formulate is as follows: given a constraint on the

number of quantization states (or feedback rate equivalently), they seek to

find the optimal quantization policy that maximizes the ergodic sum-rate. As

this problem is too difficult to solve in its most general form, Dai et al. [85]

restrict their attention to a sub-optimal strategy as applicable to a scenario
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where all users employ single-stream beamforming/combining, thus requiring

knowledge of the right singular vector of the channel. The quantization code-

book is a composite Grassmannian matrix and given a set of right singular

vectors across the users, the base-station chooses an index or quantization

point such that the sum-squared chordal distance is minimized. Jorswieck et

al. [86] consider a MIMO successive interference cancellation uplink scheme

where each mobile uses transmit precoding along with orthogonal-frequency-

division-multiplexing. Here, the authors propose a limited feedback protocol

that involves reducing the number of precoding matrices, which ideally would

be equal to the number of sub-carriers.

While the aforementioned literature considers feedback strategies that

are primarily static in nature, dynamic or adaptive feedback bandwidth control

(that adapt to the current state of the system) has been recognized by Love et

al. [79] as a promising future direction in limited feedback research. Zakhour

and Gesbert take a first stride in this direction in a series of papers [45, 46]

where they propose an adaptive feedback allocation strategy for a downlink

system where the base station serves a subset of users (equal to the number

of transmit antennas) using multi-user zero-forcing transmissions. The subset

of users is chosen based on limited feedback that it receives during the initial

control segment of the time slot. The users are allowed to adapt the quality of

their feedback during this control segment, i.e., a user would provide higher-

quality feedback if it anticipates being scheduled during this time slot. They

essentially seek to design a channel-adaptive feedback scheme that maximizes
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the expected throughput under an average feedback constraint. As the opti-

mization is difficult to solve, they propose effective sub-optimal solutions to

the problem without guarantees on accuracy.

In this chapter, we develop dynamic feedback allocation policies for the

uplink of a cellular system. Fig. 3.1 depicts the uplink of an FDD cellular

network where the base station serves multiple mobiles or users and has a lim-

ited feedback budget represented as a maximum number of feedback bits to

communicate a transmit strategy to all users. Feedback allocation is necessary

because limited feedback induces errors that predominantly stem from quan-

tization and delay2. Thus, for the uplink scenario under consideration, if the

network objective is rate fairness across users for instance, then a user with

a poor channel would demand more accurate CSIT. On the contrary, if the

objective is sum-rate maximization, a stronger user might be provided with

greater CSIT accuracy. More importantly, as a consequence of the total feed-

back constraint and independent of the choice of objective, the post-feedback

uncertainties in CSIT (and hence throughputs) become coupled across the

users even in the case when they transmit data on orthogonal channels.

A general transmission policy is a map from the entire content of the

feedback packet to a collection of transmission strategies across users. Ide-

2Quantization error is encountered during the process of estimating the channel at the
receiver and mapping it to a set of bits or states in order to be sent back to the transmitter.
Delay error is due to the fact that the signal passing through the feedback channel is received
at the transmitter after some delay depending on the user’s location and the fact that the
true channel might have changed over this period.
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ally, this map should be selected dynamically as a function of the system

state. However, very little work has gone into this approach, which requires

high-dimensional optimization rendering it intractable as recognized by Dai et

al. [85]. Thus, we focus on polices that partition the feedback broadcast packet

into smaller chunks, each intended for one user. The partition is adapted based

on the state of the system. We pursue this intuitively appealing partition-

ing approach in the interest of analytical tractability and implementability.

Henceforth, all claims of optimality are with respect to this space of parti-

tioning policies. A parallel, independent effort by Ouyang and Ying [163]

considers OFDMA downlink with a similar partitioning model. In particular,

each user reports CSI for at most Fi bands such that
∑N

i=1 Fi ≤ F . This work

assumes that all wireless links can be modelled as ON-OFF channels. In each

time slot, the proposed Longest-Queue-First Feedback Allocation (LQF-FA)

policy computes the optimal feedback partition {F ∗
i } as one that maximizes

the queue-weighted expected throughput. A greedy algorithm is developed

that solves the queue-weighted throughput maximization under a mean-field

approximation on the channel without guarantees on accuracy.

Our work differs fundamentally from Ouyang and Ying [163] in that we

have full observability of the channel and queue state in the uplink and are

concerned with how to control the quality of CSIT that we distribute back to

the users. This has not been considered before to the best of our knowledge.

On the other hand, Ouyang and Ying [163] are interested in acquisition of

partial CSI from the users, which is more applicable to the downlink. Further-
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more, we deal extensively with the question of computational complexity by

proposing a variety of algorithms with analytical guarantees on accuracy. The

B a s e  S t a t i o n

M o b i l e  S t a t i o n s

B r o a d c a s t

F e e d b a c k

C h a n n e l
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C h a n n e l s

Figure 3.1: FDD Cellular uplink where the base-station has a feedback link to
each user.

main contributions of this chapter are the following:

1. We propose a theoretical framework for limited feedback in cellular up-

link that models this coupling in throughput performance across users.

The scheme proposed by Jorswieck et al. [86] is a special case of our

framework, as will be described later in Section 5.1.

2. Optimal – randomized and history-dependent online – multi-user feed-

back scheduling policies are designed for two long-term network objec-

tives.

(a) Queue stability: This classical network objective [48, 52] is appli-

cable to queueing systems where each user does not have infinitely
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back-logged data to transmit, henceforth referred to as unsaturated

systems.

(b) Utility maximization: This second objective applies to systems that

have infinitely back-logged data, called saturated systems [53].

Optimal throughput regions are determined in the process.

3. The optimal randomized policy can be obtained by solving a convex

optimization problem with linear constraints and with an exponentially

large number of variables. An optimal history-dependent online policy,

which involves solving a weighted sum-rate maximization problem at

each scheduling time slot, is presented as an alternative. The latter pol-

icy has the added advantage of not requiring a priori knowledge of the

arrival rates in unsaturated systems.

While the above contributions introduce the proposed theoretical frame-

work and the types of scheduling policies of interest for multi-user limited

feedback in the uplink, implementability of these policies is an equally-

critical design requirement. In light of this, the remaining contributions

deal exclusively with the topic of computation complexity, which is the

primary focus of this chapter. Here, we present a host of practical al-

gorithms to solve the online optimization that explore the tradeoff be-

tween computational efficiency, accuracy, and required structure of the

weighted sum-rate function. Following the seminal work on link schedul-
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ing by Tassiulus and Ephremedis [48] where they show that throughput

optimality can be achieved by solving a maximum-weight independent

set problem at each scheduling time slot, there has long been immense

interest in finding polynomial-time solutions to this problem for special

cases. This has resulted in a variety of algorithmic approaches over the

last decade (see eg. [49, 50] and references therein) for specific network

structures. Prior to this work and the parallel contributions by Ouyang

and Ying [163], the maximum-weight independent set problem has not

been considered in the context of feedback allocations, to the best of our

knowledge.

4. Notwithstanding the exponential size of the space of all possible feedback

allocations, we develop a dynamic programming algorithm that solves

the weighted sum-rate maximization with pseudo-polynomial complex-

ity in the number of users and in the total feedback bit budget. This

approach is exact and requires no assumptions on the structure of the

weighted sum-rate function.

5. We show that in many practical wireless systems, the weighted sum-

rate is non-decreasing and sub-modular. Using this observation, we then

leverage sub-modular optimization results from combinatorial optimiza-

tion (e.g. [67–69]) and propose a reduced-complexity feedback allocation

algorithm with a multiplicative approximation guarantee of (1− 1
e
).

6. Single-stream multiple-input-multiple-output beamforming and combin-
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ing is being considered as a potential transmission mode in the Long

Term Evolution standard [54]. For such systems, we show that when the

popular RVQ codebooks are used, we are able to reduce the complex-

ity even further. We provide additive approximation guarantees for this

algorithm.

The rest of this chapter is organized as follows. In Section 3.2, we

introduce the system model for multi-user feedback scheduling. In Section

3.3, we discuss the two long-term objectives that drive our choice of schedul-

ing policies. We present a convex optimization approach to compute the

throughput-optimal randomized feedback allocation policy, introduce an al-

ternate throughput-optimal online feedback policy and provide a result useful

later when we obtain approximate but computationally more efficient online

feedback allocation schemes. In Section 3.4, we solve the optimal online feed-

back optimization problem for both objectives while in Section 3.5, we inves-

tigate methods of reducing the complexity of the optimal online optimization

problem by exploiting more structure of the objective function. Section 3.6

contains a numerical study of the performance of some of the proposed algo-

rithms. Concluding remarks are made in Section 3.7.

3.2 System model

Consider the uplink of a slotted-time cellular system with K users scat-

tered across a cell. Each user-base-station channel is modeled as a finite-state
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discrete-time process where the composite channel across users (in appro-

priate units) at time t, m[t], takes values in set M, |M| = M . For exam-

ple, if we model all the channels as Gilbert-Eliot (or ON-OFF channels),

then M = {0, 1}K. We assume that the base-station has perfect knowl-

edge of the channel state m[t] in every time slot. Each user transmits on

a separate frequency band thereby removing the need for data scheduling,

since the focus of this work is primarily on feedback scheduling. To this

effect, we assume that the base station has an error-free control channel

that is broadcast in nature, which it uses for feedback purposes. Each feed-

back packet has a total size B bits and is intended to carry quantized chan-

nel state information back to all users. The base station has to allocate

bk, k = 1, . . . , K, bits of each feedback packet to user k such that
∑K

k=1 bk ≤ B.

Let B = {b ∈ NK
0 :

∑K

k=1 bk ≤ B, B ∈ N} represent the set of allowable bit

allocation vectors. In each time slot, the base station decides on a bit alloca-

tion that it will use to form the feedback packet. An insufficiently large budget

B will lead to loss of information in the quantization process. In addition to

quantization effects, we assume the presence of delay in the feedback link, the

combination of which motivates the following general transmission model. In

channel state m ∈ M, user k chooses its transmission rate µk(mk, bk) ∈ R+

based on the bit allocation bk, the quantized CSIT that it receives and its in-

herent tendency towards tolerating outage or packet drops. Since we assume

that maximum tolerable outage probability remains fixed over the entire period

that the user is in the system, we do not explicitly include it in the functional
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definition of rate µk(mk, bk). We assume that the channel process {m[t]} is an

ergodic Markov chain and that the feedback link has zero-delay, for simplicity.

The limited feedback policy proposed by Jorswieck et al. [86] falls within our

framework since their protocol allocates an equal number of bits to each user,

i.e. bk =
B
K
, and given bk bits, a user transmits at a rate that is determined by

the collection of precoding matrices it is assigned by the base-station according

to some utility. The above model can also account for delayed feedback with

independent and identically distributed (i.i.d.) channels. Here, the user would

choose a transmission rate according the distribution of the current channel

state conditioned on the delayed channel information received through the

feedback link.

3.3 Long-term network objectives

In Sections 3.3.1 and 3.3.2, we define the two objectives that we briefly

introduced earlier – queue stability and utility maximization – and justify the

use of SSS policies, which are randomized policies by definition, to characterize

the system rate region for each objective. In the context of feedback, such a

characterization has not been made in the past to the best of our knowledge.

This characterization immediately allows for the computation of an optimal

randomized scheduling policy (under either objective) by solving a convex

optimization problem with linear constraints, but one that has an exponen-

tial number of variables. Once we establish this initial result, we proceed by

proposing an alternate computationally less-demanding online allocation pol-
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icy that takes into account the history of allocation decisions. We show that

in order to achieve either long-term objective, the online allocation problem to

be solved is a weighted sum-rate maximization. This allows us to propose an

optimal history-dependent feedback allocation algorithm in Section 3.4, which

solves this weighted sum-rate maximization problem at every scheduling in-

stant.

3.3.1 Queue stability

Assume that each user k, k = 1, 2, . . . , K, has a queue of untransmitted

packets with queue-length qk[t] and associated arrival rate λk. The state of the

system at time t is given by S[t] = {m[t],q[t]}3 where q[t] is the vector of queue

lengths. A mapping H from the state S[t] to a probability distribution H(S[t])

on the set of bit allocations B is called a feedback scheduling or allocation

policy. This means that when the system is in state S[t], bit allocation b is

picked according to the probability distribution H(S[t]).

Let ak[t] denote the packet arrival process for user k. For simplicity, let

us assume that ak[t] is an ergodic Markov chain and that the arrival processes

are mutually independent across users. Under these standard assumptions,

the queue-state process is Markov and evolves according to

q[t] = q[t− 1] + a[t]− d[t],

3A general policy, in principle, is allowed to depend on the entire history of the state
(e.g. channel, queues, etc.) of the system but it is well-known [51] that it is sufficient to
consider stationary scheduling policies that depend only on the current state at time t .
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where dk[t] = min{qk[t], µk(mk[t], b
∗
k[t])}; b∗[t] is the allocation decision at

time t. Queue stability is traditionally defined as the positive recurrence of

the queue-state process q[t] under a given scheduling policy.

Let V be the system rate region, i.e., the set of all long-term stabilizable

service rates under all possible feedback allocation policies. While a general

policy as introduced above can depend on both queue and channel state, we

characterize this set through the use of Static Service Split (SSS) scheduling

rules, which are a simplification of it, following the approach pursued by An-

drews et al. [52]. We will comment shortly on why it is sufficient to consider

SSS feedback allocation policies in order to characterize the system rate region.

An SSS rule can be described as follows. In channel state m, the scheduler

chooses bit allocation b with probability φmb; a SSS policy is completely char-

acterized by a stochastic matrix Φ. The long-term rate region for this space

of policies is written as

V =

{

ν(Φ) :
∑

b∈B
φmb = 1, φmb ∈ [0, 1], ∀m,b

}

, (3.1)

where ν(Φ) =
∑

m∈M πm
∑

b∈B φmbµ(m,b) and

µ(m,b) = [µ1(m1, b1) µ2(m2, b2) . . . µK(mK , bK)]
T ;

ν(Φ) is the long-term average rate under scheduling policy Φ since
∑

b∈B φmbµ(m,b) represents the expected rate while in channel state m,

which is subsequently averaged over all channel states.

The following theorem states that if some feedback allocation policy

(possibly randomized) can stabilize a system, then there exists a SSS policy,
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as given in (3.1), that can also stabilize the system. In particular, the theorem

says that one can obtain a throughput-optimal feedback allocation strategy

by solving a linear program.

Theorem 7. If a scheduling rule H exists under which the system is stable,

then there exists an SSS scheduling policy Φ such that the system is stable,

i.e., λ < ν(Φ).

✷

The proof of the theorem follows very similar lines as the proof in the paper by

Andrews et al. [52]. Here, the authors prove the above claim under a definition

of scheduling policies that maps the state S[t] to a probability distribution on

the users indices {1, . . . , K} as opposed to a probability distribution on the

set of bit allocations B. The core idea of the proof involves a marginalization

across the queue states q[t] in order to compute an equivalent SSS probability

that picks an allocation or user in a given channel state m[t].

This theorem, in particular, justifies our use of SSS policies in order to

characterize the rate region or stability region4, equivalently, of an unsaturated

system. The above theorem directly motivates the computation of a stabilizing

SSS policy Φ∗ given arrival rate vector λ, through the following linear program

Φ∗ = argmin c

s.t λ ≤ cν(Φ)
∑

b∈B φmb = 1, ∀m ∈ M

φmb ∈ [0, 1], ∀m,b

. (3.2)

4The stability region of an unsaturated system is defined as the set of arrival rates
Λ ⊂ RK

+ that are stabilizable under any scheduling policy.
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This linear program characterizes the throughput region and also provides

the optimal feedback allocation policy. However, there are two key issues.

The first issue is that the linear program requires the scheduler to have a

priori knowledge of the arrival rates. To alleviate the requirement on a priori

knowledge of arrival rates, Tassiulus and Ephremedis [48] proposed the well-

known max-weight or back-pressure online scheduling algorithm. Observing

the natural connection between the independent sets defined by Tassiulus and

Ephremedis in [48] and the feedback bit allocations in our model, it follows that

if λ < ν(φ̄) for some SSS scheduling matrix φ̄, then the following per-instant

scheduling rule

b∗[t] = argmax b∈Bq[t]
Tµ(m[t],b) (3.3)

stabilizes the system.

The second issue is more fundamental and it concerns computational

complexity. The linear program (3.2) has an exponential number of variables

since the stochastic matrices Φ have dimension |M| × |B| = M ×
(
B+K−1
K−1

)
.

Furthermore, the per-instant scheduling rule of Tassiulas and Ephremides in

(3.3) also requires optimization over the set B, which may have exponentially

many facets. We take up the issue of complexity starting in Section IV.

3.3.2 Utility maximization

The following alternate long-term network objective, proposed in [53],

is applicable to saturated systems where each user has an infinite amount

of data to be served (transmitted). For such systems, the state is given by
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S[t] = m[t] and hence, any scheduling rule is automatically a SSS scheduling

rule thereby giving us the same characterization of rate region5 V as in (3.1).

In such systems. we are concerned with optimizing the vector of long-term

service rates ν(φ) such that we maximize some utility function H(ν) over the

region V introduced earlier, i.e., we are interested in

maximizeν∈V H(ν). (3.4)

The following two classes of long-term utility functions are defined in [53]:

(i) Type I Utility Function - H(u) is a continuous strictly concave function on

RK
+ . In addition, H(u) is continuously differentiable, i.e., the gradient ∇H is

finite and continuous everywhere in RK
+ .

(ii) Type II Utility Function - H(u) =
∑K

k=1H(uk) where each H(uk) is a

strictly concave continuously differentiable function, defined for all uk > 0 and

such that H(uk) → −∞ as uk → 0, e.g. H(u) =
∑K

k=1 log(uk).

For the aforementioned utility functions, we have a convex optimization

problem with linear constraints in (3.4). As an alternative to solving this

problem, which again has a large number of variables, Stolyar [53] shows that

using the following gradient-weighted sum-rate maximization at each instant

solves (3.4) for δ sufficiently small

b∗[t] = argmax b∈B∇H
(
µδemp[t]

)T
µ(m[t],b) (3.5)

5the notion of rate region is slightly different here since we are not stabilizing anything
– here it is the region of long term average rates that the system provides
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where

µδ
emp[t] = (1− δ)µδemp[t] + δµ(m[t],b∗[t])

is the empirical rate vector measured till time t. Formally stated, the statement

proven in [Theorem 2, [53]] says:

Theorem 8. Let A be a bounded subset of RK
+ . Then, for any ε > 0, there

exists T > 0 (depending on ε and A) such that

lim
δ→0

sup
µδ

emp[0]∈A,t>T
δ

P
(
||µδemp[t]− ν∗|| > ε

)
= 0.

✷

As is the case for the stability objective, solving this problem requires optimiz-

ing over the set B. The computational burden this presents may be non-trivial.

We turn to this now.

3.4 Optimal allocation through dynamic programming

In Section 3.3, we have established that for queue stability in (3.12) and

for Type I/II utility maximization in (3.5), we are interested in the following

online weighted sum-rate maximization problem

maximizeb∈B wTµ(m[t],b), (3.6)

where w = [w1, . . . , wK ]
T is a vector of non-negative weights. The form of the

function µ(m[t],b) would, in general, depend on the underlying system. In

fact, for complex modulation/coding schemes the function might only be avail-

able as a look-up table. While the optimization problem characterizes optimal
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performance, solving it exactly may be computationally prohibitive. Thus, the

focus of this chapter becomes algorithmic. We propose novel solutions to (3.6)

through Theorems 9-14 that explore the natural tradeoffs between accuracy,

complexity and the structure of the weighted sum-rate function. We start by

showing that using Dynamic Programming, the exact solution can be obtained

in pseudo-polynomial time.

Theorem 9. The online resource allocation problem (3.6) can be solved exactly

in time O (KB2).

Proof: Order the users arbitrarily. We choose to work with the existing order

w.l.o.g. Define

A(i, j)
△
= wiµi(mi, j) (3.7)

to be the weighted sum-rate for user i given we allocate j bits to this user and

define

R(k, b)
△
= maximize∑k

i=1 bi≤b, bi∈N0

k∑

i=1

wiµi(mi, bi) (3.8)

to be the maximum weighted sum-rate if we have b bits to allocate amongst the

first k users with R(0, b) = 0. It follows that R(1, b) = A(1, b), b = 0, . . . , B.

We can write a recursion

R(k, b) = maximize j=0,...,b {R(k − 1, b− j) + A(k, j)} . (3.9)

The optimality of the recursion (3.9) can be established using standard induc-

tion arguments. This rule gives rise to a table with a total ofK(b+1) elements.
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In order to compute element (k, b) in the table, using our recursion, we incur

a complexity of O(b+ 1). Hence, the total complexity can be calculated as
∑K

k=1

∑B
b=0(b+ 1) = K

∑B
b=0(b+ 1)

= K
(

B + 1 + B(B+1)
2

)

= K
(B+1)(B+2)

2

= O(KB2).

(3.10)

✷

Thus, we have proposed an exact solution using dynamic programming, which

has pseudo-polynomial6 complexity O (KB2) and which is applicable to any

type of weighted sum-rate function.

It is clear that the complexity of this algorithm depends critically on

how the bit budget B scales in the number of users K. If B = O(1) and

is a small constant, then the algorithm provides an implementable linear-

complexity solution in the number of users. However, in order to prevent a

throughput ceiling, it is necessary for the bit budget to scale with the number

of users [98]. In LTE, a physical downlink control channel (PDCCH) carries

resource assignments to a user. Each PDCCH can vary in size ranging from

72 bits to 576 bits per user depending on the user’s channel conditions and

required robustness [55, 56]. The standard is expected to accommodate an

average of 100 users (indoor, high-speed etc.) for services such as VoIP services

[58] thus resulting in a complexity of roughly KB2 = 100 × 100 × 100 = 106

operations for dynamic programming. Here, we are assuming a feedback packet

6An algorithm has pseudo-polynomial complexity if its running time is a polynomial in
the size of the input in unary. The size of the input to (3.6) in unary at mostKBAmax+B =
O(KB) where Amax = max(i,j)A(i, j).
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size of 100 bits, a number that will only grow with the advent of technologies

such as MIMO-OFDMA coupled with high-data rate applications such as video

and gaming. While complexity might not be too large for some applications,

others might demand faster running times.

This motivates the development of algorithms with faster running times

that might be less accurate. This forms the focus of the remainder of this

chapter.

3.5 Reduced-complexity resource allocation

In this section, we develop more computationally efficient algorithms

that approximately solve (3.6) for a special class of weighted sum-rate func-

tions. We provide theoretical lower bounds on their performance. The long-

term performance of these approximate algorithms in achieving queue stability

is characterized by Theorem 10 below.

We say that an algorithm is a multiplicative β-approximation, β ∈

(0, 1], to (3.3) if it provides a solution balg such that

wTµ(m[t],balg) ≥ β maxb∈Bw
Tµ(m[t],b).

We say that an algorithm is an additive β-approximation to (3.3) if it provides

a solution balg such that

maxb∈Bw
Tµ(m[t],b)−wTµ(m[t],balg) ≤ βwT1.

The following theorem is a generalization of the original result by Tassiulus
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and Ephremedis. It essentially states that local approximation is consistent

with the long-term objectives we consider.

Theorem 10. (i) (Multiplicative) If λ < βν(φ̄), β ∈ (0, 1] for some SSS

scheduling matrix φ̄, then a β-approximation to the following per-instant schedul-

ing rule

b∗[t] = argmax b∈Bq[t]
Tµ(m[t],b) (3.11)

stabilizes the system.

(ii) (Additive) If λ+β < ν(φ̄) where β = β1, β > 0 for some SSS scheduling

matrix φ̄, then the approximate bit allocation policy b̄[t] satisfying

q[t]Tµ(m[t], b̄[t]) ≥ q[t]T [µ(m[t],b∗[t])− β] (3.12)

stabilizes the system. Here, b∗[t] = maxb∈Bq[t]
Tµ(m[t],b).

Proof: See Appendix A.1. ✷

The theorem essentially states that for unsaturated systems: (i) If we

calculate a multiplicative β-approximate solution, β ∈ (0, 1] to (3.3) in every

time slot, one can achieve a β-fraction of the stability region V, and (ii) if we

calculate a solution that is within βq[t]T1, β > 0 of (3.3) in every time slot,

one can achieve all rates within the region (V−β1)+, where (x)+ = max{0, x}.

This is the set formed by subtracting β1 from each vector in V. Of course,

it is understood that if β is large leading to vectors with negative elements,

these elements are made zero since we cannot have negative rates. This result
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paves the way for the design of computationally efficient algorithms for the

long-term objectives, by constructing approximations to (3.6).

In Section 3.5.1, we consider weighted sum-rate functions that are non-

decreasing and sub-modular in the bit allocation. In short, sub-modularity,

as discussed in Section 2.1, refers to diminishing returns with respect to the

allocation of resources. This is a property that is exhibited quite frequently

by wireless systems in general since transmission rates typically behave log-

arithmically. Sub-modularity enables us to propose a greedy bit allocation

algorithm that has complexity O((B +K)log2K) with multiplicative approx-

imation factor
(
1− 1

e

)
. In the example above, this reduces the running time

from 106 operations to roughly 103 operations. Our main contributions are

contained in Lemma 11 and Theorem 11. We review the basic concepts and

definitions of sub-modular function optimization in Section 2.1.

In Section 3.5.2, we focus on a class of weighted sum-rate functions

that arise in uplink scenarios where all nodes (including the base-station)

are equipped with multiple antennas and the adopted transceiver scheme is

single-stream beamforming and combining with quantized beamformer feed-

back. Single-stream beamforming and combining MIMO systems have been

extensively studied in the past [30, 31, 34, 37, 64, 65, 76]. This is an attractive

method for achieving reliable data transmission through significant diversity

and array gain making them part of standards such as W-CDMA [66] and

LTE [55]. We show that for this choice of physical layer signalling proto-

col, the weighted sum-rate maximization problem in (3.6) is sub-modular for
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certain types of beamformer quantizers. More importantly, this sub-class of

non-decreasing, sub-modular functions allows for the development of an ap-

proximation algorithm with a further-reduced complexity of O(Klog2K) thus

reducing the running time even further from 1000 operations to roughly 600

operations in the example above. We prove an additive approximation factor

for this algorithm that is a function of the beamformer quantizer parameters.

3.5.1 Resource allocation through sub-modularity

In this section we show that under some mild assumptions, bit alloca-

tion has sub-modular structure. Roughly speaking, this means that a users’

performance exhibits diminishing returns with respect to the number of feed-

back bits received. This allows us to leverage results from sub-modular func-

tion optimization. Preliminary definitions and results on sub-modular function

maximization are presented in Chapter 2.

We now show that the optimal bit allocation problem in (3.6) is indeed a

sub-modular function maximization over a uniform matroid. Let G = (U, V, E)

be a bipartite graph where U contains K user nodes and V contains B bit

nodes, both ordered arbitrarily, i.e. |U | = K and |V | = B. Let E contain the

set of all edges E = {ekb : i = 1, . . . , K and j = 1, . . . , B}. Given A ⊆ E,

we define |A|i △
= |{ekb ∈ A : k = i}| to represent the number of bits allocated

to user i, i.e., |A|i = bi. The independence we are interested in is I = {A ⊆

E : |A| ≤ B} where B is the total bit budget. By definition, I is a uniform

matroid and furthermore, I is the set of all valid allocations since if A ∈ I, then
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∑K

k=1 bk =
∑K

k=1 |A|k ≤ B and if A 6∈ I, then
∑K

k=1 bk =
∑K

k=1 |A|k = |A| > B.

Now the weighted sum-rate maximization problem in (3.6) when the channel

is in state m[t] in time slot t as

maximizeb∈B
∑K

k=1wkµk(mk[t], bk)

≡ maximize
∑K

k=1wkµk(mk[t], bk)− µk(mk[t], 0)
s.t. bk = |A|k,

∑

k |A|k ≤ B, A ⊆ E

= maximizeA∈I
∑K

k=1wkµk(mk[t], |A|k)− µk(mk[t], 0).

(3.13)

The following result becomes immediate.

Lemma 11. If the function µk(mk, bk) is non-decreasing and sub-modular in

the bit allocation bk = |A|k, A ⊆ E for all users k = 1, . . . , K, and channel

states m ∈ M, then
∑K

k=1wkµk(mk[t], |A|k) − µk(mk[t], 0) is a normalized,

non-decreasing, sub-modular function on set E for all channel states m ∈ M.

Proof: The result follows from Lemma 1. ✷

Hence, the result in Theorem 1 is applicable and the greedy algorithm

can be used to solve the optimal bit allocation problem in (3.13) with approx-

imation factor
(
1− 1

e

)
. The greedy algorithm for the specific case of our bit

allocation problem in time slot t can be written as follows where

uk(bk)
△
= wk (uk(mk[t], bk + 1)− uk(mk[t], bk)) (3.14)

is the increase in rate or marginal utility if user k is given one extra bit.
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Algorithm (Greedy algorithm for feedback bit allocation):

• Step 1: Set b = 1 and bk = 0, ∀k, which is essentially a bit counter for
each user.

• Step 2: Compute uk(bk), ∀k.

• Step 3: Sort this list of marginal utilities.

• Step 4: Assign a bit to user k∗ who is on top of this list, update bk∗ =
bk∗ + 1 and re-compute uk∗(bk∗)

• Step 5: If b < B, set b = b+ 1, and go to Step 3; else exit.

We end this section by investigating the complexity of the above algo-

rithm in the following theorem.

Theorem 11. The greedy algorithm has complexity O((B + K)log2K) when

applied to the optimal bit allocation problem in (3.6).

Proof: Step 2 of this algorithm incurs complexity O(Klog2K) for the first

iteration b = 1. Subsequently, every re-sort in Step 3 costs O(log2K) with a

maximum of B such re-sorts. Thus, the total complexity is O((B+K)log2K).✷

3.5.2 Resource allocation for MIMO systems

By assuming that the rate µk(mk, b) is a non-decreasing sub-modular

function in the bit allocation b in every channel state mk, we use the greedy

algorithm in Section 3.5.1 to approximately solve the online feedback allo-

cation problem in (3.6) with complexity O((B + K)log2K). In this section,
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we show that when single-stream beamforming and combining with quan-

tized beamformer feedback is used as the physical layer transmission scheme,

the weighted-sum-rate maximization problem in (3.6) is non-decreasing and

sub-modular for a broad class of quantizers. Thus, we are able to develop

an approximation algorithm with a further-reduced complexity of O(Klog2K)

with an additive guarantee that depends on the parameters of the quantizer.

The technique involves relaxing the integral constraint on the bits, solving

the weighted sum-rate maximization using fractional bits under an assumed

form on the expected post-quantization signal-to-noise ratio (SNR) or quan-

tized SNR in short, followed by rounding to obtain the integer solution. Thus,

aside the usual impact on precision that are typically omitted from running

time calculations, the running time of our algorithm no longer depends on the

feedback budget B.

We begin this section by investigating the effects of limited feedback

on the aforementioned class of MIMO systems.

3.5.2.1 Single-stream MIMO with limited feedback

The classical Nt×Nr single-stream beamforming and combining MIMO

link for a typical user (shown in Fig. 3.2) can be described using the following

received signal model,

y =
√
αz†Hgs+ z†n, (3.15)
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Figure 3.2: Single-stream beamforming and combining MIMO system.

where

s ∼ Complex Gaussian transmit codeword with E[|s|2] = P

n ∈ CNr ∼ CN (0, NoI) is additive white Gaussian noise
g ∈ CNt : Transmit beamformer with ||g||2 = 1 to satisfy

the transmit power constraint
z ∈ CNr : Receive combiner
H ∈ C

Nr×Nt : Complex-valued MIMO channel
α ∈ R+ : Large-scale fading gain

.

The model in (3.15) is a comprehensive description of the wireless channel in

that it explicitly accounts for the composite effects of small-scale (SS) fading

and large-scale (LS) fading. We use α to represent the path-loss or shadowing

effects of the channel, henceforth referred to as LS effects, while the matrix

H denotes SS fading. Composite models have been used in past literature

(see [61] and references therein). The SNR for this system can be written as

SNR =
|z†Hg|2
||z||2

Pα

No

. (3.16)

For simplicity, we assume that all users have the same number of antennas Nt

although all results presented in the remainder of this section can be extended

to scenarios where this is not true. It is well-known that the SNR in (5.3) can
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be maximized by setting g∗ = v and z∗ = Hg∗ where v is the right singular

vector corresponding to the maximum singular value σ of the channel matrix

H. By introducing user indices, the maximum SNR for user k can be written

as

SNRk,PF =
αkPk||Hvk||2

No

=
αkPkσ

2
k

No

. (3.17)

The choice of notation reflects the fact that the user requires Perfect Feedback

of the right singular vector vk from the base-station in order to achieve this

maximum SNR. However, feedback in realistic systems is imperfect due to

limited feedback budgets, the primary motivation for this work. Through the

remainder of this section, we restrict our attention to quantization error: error

that is introduced when the base-station quantizes the optimal precoder vk

using bk bits in preparation for feedback, the feedback link is assumed to be

delay- and error-free. We assume that user k uses a quantized beamformer v̂k

for which we can write the SNR with Imperfect Feedback as

SNRk,IF =
αkPk||Hkv̂k||2

No

. (3.18)

3.5.2.2 Time-scales and structure of rate vector µ(m,b)

In this section, we describe the structure of rate vector µ(m,b) that

arises out of employing the single-stream MIMO physical layer scheme de-

scribed earlier.

We consider changing feedback allocations once every LS fading coher-

ence time, which typically spans mutiple SS fading coherence times, say D of
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Figure 3.3: Composite effects of small-scale fading and large-scale fading in a
wireless channel with D = 4.

them, as shown in Fig. 3.3. In other words, we provide feedback about the

faster time-scale (small-scale fading) and the quality of feedback is varied at

a slower time-scale (large-scale fading). Such a design choice has two bene-

fits: First, it might require too much overhead to compute and communicate

optimal allocations on the SS fading time-scale, which typically spans a few

milliseconds. Second, this allows each user to estimate their LS coefficient αk

without the need for feedback from the base-station by exploiting reciprocity

on the downlink. This is possible since path-loss and/or shadowing are de-

pendent solely on the distance between the user and the base-station. The

increasing availability of GPS-enabled devices also offers the user an alternate

means to compute their path-loss.

Capturing the two separate time-scales, we define the channel state as

m[t] = {α[t], [Hk[(t− 1)D + 1], . . . ,Hk[tD]] , k = 1, . . . , K}

for the single-stream MIMO system we are considering. We assume that {α[t]},

is a finite-state process that is either (i) i.i.d. across time or (ii) an ergodic

Markov chain7, taking values from the set P with a unique stationary distri-

7Markovian and i.i.d. models for user mobility in a cell (and hence path-loss) have been
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bution {πα}α∈P. On the faster time-scale, we assume that

{[Hk[(t− 1)D + 1], . . . ,Hk[tD]] , k = 1, . . . , K}

is again a finite-state process that is either i.i.d. across time or ergodic Markov

taking values from the set H. Traditionally, each element of the channel

matrix Hk is modeled as a complex Gaussian random variable. However, we

can consider a finite-state process by discretizing this random variable and

creating set H by sampling the support of its probability density function

sufficiently finely. As is the case in past literature (see [61] and references

therein), large-scale fading is assumed to be independent of the small-scale

fading. Finally, the small-scale fading channels are assumed to be identically

distributed across users.

In each state m ∈ M = P×H, given bit allocation b, we assume that

user k transmits at a rate µk(αk, bk) that is independent of the realization

{[Hk[(t− 1)D + 1], . . . ,Hk[tD]] , k = 1, . . . , K}. Given a fixed αk and bit al-

location bk through the course of a large coherence time, we define µk(αk, bk)

to be the goodput (a notion that is discussed by Lau et al. [62]) when trans-

mitting at the maximum possible rate γ∗k(αk, bk) while allowing for an outage

probability of at most ǫk, i.e.,

µk(αk, bk)
△
= γ∗k(αk, bk)(1− ǫk).

utilized by El Gamal et al. [59] and Toumpis et al. [60] respectively in studying how mobility
impacts the performance of a wireless network.
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In this framework, outages arise due to delay constraints that dictate that

a packet must be decoded within a SS coherence time. This means that a

particular SS fading realization within the larger coherence time might not be

able to support the chosen transmission rate in accordance with Shannon’s

capacity formula.

To compute γ∗k(αk, bk), we need to quantify the outage probabilty of

the single-stream beamforming/combining MIMO system. From (3.18), the

SNR with imperfect feedback is a random variable whose distribution depends

on the joint distribution of σ2
k and vk along with the quantization policy.

Thus, the outage probability for user k that transmits at rate γk(αk, bk) can

be written as

P

(
αkPk||Hkv̂k||2

No

≤ 2γk(αk ,bk) − 1

)

. (3.19)

We can use the Markov inequality to bound (3.19):

P

(
αkPk||Hkv̂k||2

No
≤ 2γk(αk ,bk) − 1

)

= P

(
No

αkPk||Hkv̂k||2 ≥ 1
2γk(αk,bk)−1

)

≤ No

αkPk
E

[
1

||Hkv̂k||2

] (
2γk(αk ,bk) − 1

)

by Markov’s inequality.
(3.20)

From Jensen’s inequality, we know that E
[

1
||Hkv̂k||2

]

> 1
E[||Hkv̂k ||2] . In order to

proceed, we note that one can find a function e(·) such that

E

[
1

||Hkv̂k||2
]

= e(bk)
1

E [||Hkv̂k||2]
. (3.21)

While it is true that e(·) is dependent on the quantization codebook/policy

and the channel distribution as well, we do not explicitly write down this

dependence since we are interested only in optimizing bit allocations. This
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function can be computed numerically at the beginning of the communication

session and furthermore, we can find a bound emax = maxke(bk) such that

E

[
1

||Hkv̂k||2
]

≤ emax
1

E [||Hkv̂k||2]
, ∀k. (3.22)

For our analysis, we use the popular Random Vector Quantization

(RVQ) technique [30, 31]. According to this approach, a codebook Ck(b) for

user k, corresponding to a bit allocation of b bits, is constructed by throwing

2b points uniformly at random on the surface of a complex unit sphere. These

codebooks offer the combined advantages of analytical tractability along with

implementability [34]. On the other hand, Grassmannian codebooks [35, 76],

which are optimal maximum-SNR fixed codebooks for single-stream transmis-

sion over a Rayleigh fading channel are unfortunately not available for all com-

binations of feedback bits and transmit antennas [34]. Recent results [34,36,37]

quantify the loss in SNR due to quantization when using RVQ codebooks. In

these works, the authors show that the expected SNR with feedback quanti-

zation using b bits for a single-stream beamforming/combining MIMO system

can be described accurately by a function of the form

EC(b),H [||Hv̂||2] = E[σ2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)b
)
, (3.23)

where c1(Nt, Nr) ∈ (0, 1], c2(Nt, Nr) > 0. Some user indices have been dropped

in the above expression since all users transmit throgh i.i.d. Rayleigh MIMO

channels and employ the same codebook, i.e., Ck(b) = C(b), ∀k. Now since

(3.23) is true on an average over all realizations of the codebook C(b), it follows
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that there exists at least one codebook C∗(b) with quantized SNR

EH

[
||Hv̂||2|C∗(b)

]
≥ E[σ2]

(
1− c1(Nt, Nr)2

−c2(Nt,Nr)b
)
. (3.24)

We can collect codebooks across all b = 0, . . . , B, to form a super codebook

C∗ =
⋃B
b=0 C

∗(b). Through the remainder of our analysis, we assume that the

system uses such a codebook C∗ and do not include an explicit dependence on

C∗ in our notation henceforth.

Substituting (3.22) and (3.24) in (3.20), we get

P

(
αkPk||Hkv̂k||2

No
≤ 2γk(αk,bk) − 1

)

≤ No

αkPk
E

[
1

||Hkv̂k||2

] (
2γk(αk ,bk) − 1

)

= No

αkPk

emax

E[σ2](1−c1(Nt,Nr)2−c2(Nt,Nr)bk)

(
2γk(αk ,bk) − 1

)

= No

αkPk

emax

E[σ2](1−c1(Nt,Nr)2−c2(Nt,Nr)bk)

(
2γk(αk ,bk) − 1

)
.

Therefore, by using

{

No

αkPk

emax

E[σ2](1−c1(Nt,Nr)2−c2(Nt,Nr)bk)

(
2γk(αk ,bk) − 1

)
≤ εk

}

as

our outage event, we are being conservative. We enforce the maximum outage

probability constraint of εk and explicitly compute γ∗k(αk, bk) as

εk ≥ No

αkPk

emax

E[σ2](1−c1(Nt,Nr)2−c2(Nt,Nr)bk)

(
2γk(αk ,bk) − 1

)

⇒ γ∗k(αk, bk) = log2

(

1 + αkPkεk
emaxNo

E[σ2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)bk
))

,

Thus, we have computed the goodput when transmitting at γ∗k(αk, bk) while

incurring outage probability of at most ǫk as

µk(αk, bk)
△
= log2 (1 + ak∆(bk)) (1− ǫk).

where ak =
Pkαkεk
emaxNo

and ∆(bk) = E[σ2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)bk
)
, c1(Nt, Nr) ∈

(0, 1], c2(Nt, Nr) > 0 is the quantizer SNR function. Recall that γ∗k(αk, bk) rep-
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resents the maximum possible transmission rate that obeys the outage con-

straints.

From (3.1), the rate region for a system that employs the single-stream

MIMO physical layer structure described thus far can be expressed in terms

of
ν(Φ) =

∑

m∈M πm
∑

b∈B φmbµ(m,b)
=

∑

α∈P πα
∑

b∈B φαbµ(α,b)
=

∑

α∈P πα
∑

b∈B φαb [log2 (1 + a1∆(b1)) (1− ǫ1) . . .

. . . log2 (1 + aKNo∆(bK)) (1− ǫK)]
T

and the optimization in (3.6) takes the specific form

maximizeb∈B
∑K

k=1wklog2 (1 + ak∆(bk)) (1− ǫk) . (3.25)

We absorb the success probability (1− εk) into weight wk henceforth.

While the above analysis calls for the use of a specific super code-

book C∗, in Section 3.6, we consider a Nt = Nr = 2 MIMO system with a

randomly-generated super codebooks. We estimate the constants c1(Nt, Nr)

and c2(Nt, Nr) thereby forming a lower bound (3.24) on quantized SNR for

many codebook realizations. We also compute the function e(b) (and hence

emax) to demonstrate the feasibility of this approach.

3.5.2.3 Relaxation and approximation guarantees

In Theorems 12-14 below, we develop an approximation algorithm to

solve (3.25) in closed-form while incurring a complexity of O(Klog 2K)8. We

8We recognize that there is an additional storage cost of O(log B).
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provide an additive approximation guarantee of

log2

(

1 + max

{
1

1− c1(Nt, Nr)2c2(Nt,Nr)
,

1

1− c1(Nt, Nr)

})

.

In Section 3.6, we show through numerical experiments that

log2

(

1 + max
{

1
1−c1(Nt,Nr)2c2(Nt,Nr)

, 1
1−c1(Nt,Nr)

})

≈ 2 bits per second.

Theorem 12. Consider the following continuous relaxation of (3.25):

b∗[t] = argmax∑
k bk≤B,bk∈R+

maximizeb∈B

K∑

k=1

wklog2

(

1 +
Pkαk

No

∆(bk)

)

(1−ǫk).

The solution to this relaxation is

b∗k = (Nt − 1)

[

log2

((

1 + 1
(Nt−1)η∗

)(
ak(E[σ2]−Nr)

akE[σ2]+1

))]+

(3.26)

where η∗ is chosen such that
∑

k b
∗
k = B.

Proof: See Appendix A.3. ✷

Now, we argue that the weighted sum-rate function in (3.25) is non-

decreasing and sub-modular on set E = {ekb : i = 1, . . . , K and b = 1, . . . , B}.

Lemma 12. The weighted sum-rate function in (3.25) where bk = |A|k, A ⊆

E, E = {ekb : i = 1, . . . , K and b = 1, . . . , B} is non-decreasing and sub-

modular on this set E.

Proof: By setting bk = |A|k, A ⊆ E and defining a function F : bk → R on

the bit allocation for the k-th user, we observe that it is sufficient to show
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that F (bk) is ( i) non-decreasing in bk ∈ N0 and that ( ii) F (bk + n)− F (bk) ≥

F (b̄k + n)− Fk(b̄k), bk ≤ b̄k, bk, b̄k ∈ N0, n ∈ N in order to prove the claim.

Consider the relaxed function f : bk → R, bk ∈ R+ (of course f(bk) =

F (bk) for bk ∈ N0) and assume that this function is non-decreasing, concave,

and twice differentiable. Then, the conditions ( i) is trivially satisfied while

condition ( ii) is satisfied due to following argument. Since f(bk) is concave

and twice differentiable, we know that f
′

(bk) ≥ f
′

(b̄k) for bk ≤ b̄k. Thus, for

any y ∈ R+, we can write

d

dbk
[f(bk + y)− f(bk)] = f

′

(bk + y)− f
′

(bk) ≤ 0,

which implies that condition ( ii) is satisfied. Since the continuous relaxation of

(3.25) is non-decreasing, concave, and twice differentiable, the result follows.✷

Theorem 13. Computing the above solution in (3.26) incurs a complexity of

O(Klog2K).

Proof: See Appendix A.3. ✷

Comparing the results in Theorems 11 and 13, we see that by assuming less

about the exact form of the communication system, we are incurring an added

complexity cost of O(Blog2K), while providing a system-independent multi-

plicative approximation guarantee of (1− 1
e
).

Once we solve for b∗k, we apply a floor operation in order to enforce the
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integer constraints, i.e., we set

b∗k,INT =

{
⌊b∗k⌋ , b∗k ≥ 1
0, b∗k < 1

This leads us to the task of quantifying loss due to integrality, which we ad-

dress in Theorem 14 below.

Theorem 14. The bit allocation obtained by relaxing integer constraints fol-

lowed by flooring gives an additive approximation factor of

log2

(

1 +max

{
1

1− c1(Nt, Nr)2c2(Nt,Nr)
,

1

1− c1(Nt, Nr)

})( K∑

k=1

wk

)

.

Proof: See Appendix A.3. ✷

By applying Theorem 10 with w = q, we can conclude that the pro-

posed relaxation-based algorithm will result in a throughput loss of at most

log2

(

1 + max
{

1
1−c1(Nt,Nr)2c2(Nt,Nr)

, 1
1−c1(Nt,Nr)

})

bits per second for unsaturated

systems. Furthermore, the result in Theorem 14 tells us that for single-stream

beamforming/combining MIMO systems, the performance of relaxation-based

algorithm approaches the optimal as c1(Nt, Nr) and c2(Nt, Nr) approach zero.

This agrees with intuition because as c1(Nt, Nr) becomes small, the loss due to

quantization decreases. Similarly, as c2(Nt, Nr) becomes small, we are dealing

with codebooks that exhibit a slow rate of decay. This would mean that the

flooring operation to obtain integral bits would not impact the SNR too much.
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3.6 Performance of relaxation-based algorithm

In this section, we evaluate the accuracy of the convex-relaxation-based

algorithm by plotting the distribution of the approximation factor

log2

(

1 + max

{
1

1− c1(Nt, Nr)2c2(Nt,Nr)
,

1

1− c1(Nt, Nr)

})

over many RVQ codebook realizations. The goal of these experiments is to

demonstrate that the quantized SNR functional form proposed in (3.24) is

accurate for RVQ codebooks.

We generate an RVQ codebook, compute c1(Nt, Nr) and c2(Nt, Nr) for

each codebook and the resulting approximation factor. We repeat this process

for 1000 codebooks and plot the distribution of the approximation factor in

Fig. 3.4. The distribution in Fig. 3.4 shows us that the convex relaxation

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.005

0.01

0.015

0.02

0.025

0.03

Additive approximation factor

D
is

tr
ib

u
ti
o
n

Figure 3.4: Distribution of log2

(

1 + max
{

1
1−c1(Nt,Nr)2c2(Nt,Nr)

, 1
1−c1(Nt,Nr)

})

over 1000 codebook realizations.

technique offers us a guarantee of roughly 2 bits per second. Note that the
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computation of c1(Nt, Nr) and c2(Nt, Nr) for each codebook is not optimized

meaning that the above guarantee is conservative.

Finally, we compute e(b) in Fig. 3.5 for one such RVQ codebook in

order to demonstrate the implementability of this approach. From Fig. 3.5, it
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Figure 3.5: The function e(b) in Fig. 3.5 for a 2 × 2 MIMO system over a
Rayleigh fading channel with a randomly chosen codebook and B = 10.

is clear that emax ≈ 1.5 for this codebook.

3.7 Concluding remarks

We summarize the algorithmic contributions presented in Sections 3.4

and 3.5 in Table 3.1 where M = max
{

1
1−c1(Nt,Nr)2c2(Nt,Nr)

1
1−c1(Nt,Nr)

}

. We

observe from the table that these algorithms explore the tradeoffs between

accuracy, computational efficiency and the structure of the weighted sum-rate

function.

An interesting question and future direction pertaining to the section
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on single-stream MIMO systems is whether such an analysis can be extended

to cover other commonly-deployed MIMO architectures. Finally, the design of

joint data scheduling and feedback allocation policies is another direction for

future research.

In summary, we propose optimal feedback allocation policies for cellu-

lar uplink systems where the base station has a limited feedback budget. The

optimality is in the sense of queue stability for unsaturated queueing regimes

and long-term utility maximization for saturated queueing regimes. We show

that a randomized optimal allocation policy can be computed by solving a con-

vex optimization problem with linear constraints and with an exponentially

large number of optimization variables. An optimal online allocation policy,

one that involves solving a weighted sum-rate maximization problem at ev-

ery scheduling instant, is presented as an alternative. This problem is solved

using dynamic programming incurring pseudo-polynomial complexity in the

number of users and the total bit budget. When the weighted sum-rate is a

Table 3.1: Properties of proposed online feedback allocation algorithms

Algorithm Required structure on Complexity Multiplicative/Additive
weighted sum-rate approximation factor

Dynamic None O(KB2) 1/0
Programming

Greedy Sub-modular O((B +K)log2K)
(
1− 1

e

)
/–

weighted sum-rate
Convex Sub-modular O(Klog2K) –/log2 (1 +M)

weighted sum-rate
Relaxation for specific

MIMO systems
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non-decreasing sub-modular function, we leverage the theory of sub-modular

function maximization to propose a greedy algorithm with polynomial com-

plexity that has a multiplicative approximation guarantee of
(
1− 1

e

)
. For

single-stream beamforming and combining MIMO physical layer communi-

cation schemes with quantized beamformer feedback, we recognize that the

weighted sum-rate function is non-decreasing and sub-modular for RVQ code-

books. More importantly, it takes a special form that allows us to develop an

approximation algorithm based on convex relaxations that can be solved in

closed-form, incurring further-reduced complexity than the greedy algorithm.

We connect the performance of the proposed approximate online algorithms

to the long-term stability region of the system.
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Chapter 4

Feedback allocation, fast data scheduling and

interference

In the previous chapter, we considered systems where the data sched-

ule was fixed and where users did not experience inter-user interference. We

were only concerned with controlling the amount of self-interference, due to

limited feedback, that each user experienced. In this chapter, we examine two

extensions of the previous chapter. In the first part, we are interested in de-

signing feedback allocation algorithms that operate in conjunction with fast

frequency-domain scheduling (in contrast to Chapter 3) but in the absence

of interference. In the second part, we study more general network structures

where feedback allocation must take into account interference from other cells,

however, under slow data scheduling as in Chapter 3. We show that convex

relaxation, a technique that was used in Chapter 3, is applicable under both

these wireless network settings.

4.1 Introduction

Over the last decade, there has been an ever-increasing demand for

data-rate in wireless systems coupled with a growing scarcity in spectrum.
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This calls for the network service providers to utilize available spectrum in

as efficient a manner as possible to support these throughput demands. At

the physical layer, it is well-known that the availability of channel state infor-

mation at the transmitter (CSIT) and subsequent adaptation of the transmit

strategy leads to an increase in link throughput. This availability of CSIT is

made possible by the presence of feedback channels between every receiver and

transmitter in the network. Feedback channels are a regular feature in most

past, current and future wireless standards such as IS-95, GSM, Long-Term

Evolution, WiMAX, etc. [73].

These feedback channels, which are a key enabler of future multiple-

input-multiple-output enhancements in standards such as Long Term Evolu-

tion Advanced (LTE-A) [71, 72] and IEEE 802.16m [74], are unfortunately

bandwidth-limited as well. This has prompted significant research into the

impact of limited feedback bandwidth on the throughput of a system.

4.1.1 Prior work on feedback design

Past literature on feedback design for multi-user cellular systems can be

broadly classified based on a physical versus network layer perspective. The

former approach is typically applicable to saturated systems with infinitely-

backlogged data. The weighted sum-rate per scheduling slot and the ergodic

sum-rate are often-used metrics in this setting. For example, Chen et al. [80]

and Agarwal et al. [81] design feedback protocols for orthogonal frequency-

division multiple-access (OFDMA) per-instant weighted sum-rate scheduling.
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Here, a set of channel thresholds are chosen that permit only a subset of users

to report channel information, thereby achieving feedback reduction over a

full CSI system where all users report channel states on all sub-bands. Dai et

al. [85] and Jorswieck et al. [86] study the impact of limited feedback on MIMO

uplink in terms of the ergodic sum-rate. Sanayei et al. [82] propose limited feed-

back schemes for a downlink single-antenna OFDMA system that achieves the

same scaling in ergodic sum-rate as a full CSI system. Jindal [83] and Huang

et al. [84] perform a similar analysis for a downlink space-division multiple-

access system. Another online (per-instant) scheduling metric that has been

considered extensively in the literature, as an alternative to the weighted sum-

rate, is the weighted signal-to-noise-ratio (SNR) [87–94]. For example, the

normalized proportional fairness scheduling rule, where the weights are set to

be the inverse of the average SNR, has been studied in detail owing to its

favourable fairness properties. Results have been reported both under ideal

and quantized CSI settings [95–98].

In contrast to the above predominantly-physical-layer approaches, there

has been research on the impact of limited feedback on queueing or unsaturated

systems [101, 102, 161, 163], where the feedback constraint has been modelled

in a variety of ways. For instance, Gopalan at al. [161] consider a setting

where only a subset of users are allowed to feedback their CSI following which

MaxWeight scheduling is performed [48] for data transmission, i.e., the user

with the largest weighted rate is scheduled. The task of the decision-maker in

this case is to determine which subset of users to sample prior to MaxWeight

81



scheduling. Huang et al. [101] consider a zero-forcing space-division-multiple-

access downlink transmission scheme and analyse the loss in throughput due to

limited feedback from the mobile to the base-station. The authors quantify the

number of feedback bits per mobile necessary to achieve a given loss in through-

put. Ouyang et al. [163] consider the downlink of an orthogonal-frequency-

division-multiple-access network with a limited feedback model where the base

station is able to acquire channel state information on a restricted number of

frequency bands. In particular, each user is instructed to report CSI for at most

Fi bands such that
∑

i Fi does not exceed the total feedback budget. Follow-

ing CSI acquisition, MaxWeight scheduling is performed. The authors prove

throughput-optimality of the Longest-Queue-First Feedback Allocation policy

under the ON-OFF channel model along with a mean approximation. The au-

thors also quantify the shrinkage in the rate region under the same policy as a

function of the limited feedback budget but without the mean approximation.

In Chapter 3 of this thesis, we introduced a limited feedback model for uplink

systems where the base-station is constrained in the number of bits that form

the feedback packet that is broadcast to the users. Computationally-efficient

algorithms were presented that compute the optimal (or near-optimal) feed-

back partitioning across users as a function of the channel and queue state

as well as other network parameters. A key assumption made in the earlier

chapter was that the data scheduling decisions were already made, i.e., each

user was assigned to one frequency band prior to feedback optimization.
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4.1.2 Our contributions

This chapter contains two extensions to the model in Chapter 3 as

opposed to single-cell uplink that was treated earlier.

In the first part of the chapter, we consider a setting where data trans-

mission occurs on the faster time-scale (for example, one millisecond in the

case of LTE) and feedback allocation is done less often on the time scale of

large-scale fading. This is in contrast to Chapter 3 where we assume fixed

data schedules prior to feedback optimization. Single-cell downlink OFDMA

systems are considered with weighted-SNR scheduling. We show that un-

der uniform quantization, the resulting feedback allocation problem is convex

thereby admitting efficient solutions using standard convex optimization-based

techniques.

In the second part of the chapter, we consider the reverse setting where

feedback allocation occurs on the faster time-scale and the data schedules

change very slowly reverting back to the setup in Chapter 3. However, we now

study interference-limited networks and the impact of feedback allocation on

the same, a scenario that was not considered in the previous chapter. More

specifically, we consider a multi-cell uplink system with one multiple-antenna

user active per frequency per cell, pre-computed by the data scheduler. All

mobiles in the system adopt the zero-forcing interference-cancellation strat-

egy. Ideally, under infinite capacity feedback, we are able to eliminate com-

pletely the interference contributions to the neighbouring links. Under limited

feedback however, perfect interference cancellation is not possible under zero-
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forcing making the allocated feedback bandwidth the sole cause of interference,

thereby requiring careful management. Here, we show that resulting feedback

allocation problem is convex under the popular Random Vector Quantization

(RVQ) codebooks.

4.1.3 Chapter organization

The rest of this chapter is organized as follows. In Section 4.2, we

introduce the network model with emphasis in the role of feedback channel.

In Section 4.3, we study feedback allocation for multi-antenna systems with

interference. We move on to the second part of the chapter where we consider

a single-cell OFDMA system in Section 4.4. We conclude the chapter with

some remarks in Section 4.5.

4.2 System model

Consider a network comprised of K wireless transceiver pairs (i.e., a

one-hop network). Time is slotted and in each time slot, a subset of these

links are scheduled. Note that once scheduled, the transmissions might still

interfere with each other as is the case in many common scenarios. Examples

of such scenarios include an adhoc network with uncoordinated transmissions

or a cellular network with full frequency re-use where each cell employs or-

thogonal signalling. On the other hand, the subset of scheduled links can also

be interference-free as is the case in a hexagonally-deployed cellular network

with a frequency re-use factor of six and intra-cell orthogonal multiple-access.
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Channel State and achievable rate: The channel state of the network

at time t is given by
{(

gij

[

⌊ t
TLS

TLS⌋
]

, Hij[t]
)}

(i,j)∈{1,...,K}2
where gij

[

⌊ t
TLS

⌋
]

models the large-scale (fading channel between transmitter i and receiver j

and TLS ∈ {1, 2, 3, . . .} denotes the large-scale fading coherence time counted

in terms of scheduling slots; Hij [t] ∈ C
Nr,j×Nt,i denotes the small-scale fading

matrix channel between transmitter i with Nt,i antennas and receiver j with

Nr,j antennas. Note that in some specific cases such as single-cell multi-user

uplink, the index j becomes redundant since the base station is the sole receiver

here. For ease of notation, we will collect together the large-scale and small

gains to form sets G[t] = {gij[t]}i,j and H [t] = {Hij[t]}i,j respectively. We

denote the channel state of the system by C[t] = (G[t], H [t]). We assume that

each scheduling slot is designed to span a small-scale fading coherence time.

We assume that each large-scale fading coefficient g comes from a finite state

space Sl with probability distribution {pg}g∈Sl that is independent and identical

across all (i, j)1. Each small-scale fading coefficient h comes from a continuous

state space Ss with probability density function fh(x), x ∈ Ss, (e.g., Rayleigh

distribution) that is independent and identical across all (i, j). For conve-

nience, we define the joint probability density functions fG(X) =
∏

(i,j) pxij

and fH(X) =
∏

(i,j) fH(xij).

1This assumption is not necessary for our results to hold and is in place for ease of
notation.
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Quantization and Feedback: We assume that the large-scale fading channel

state G[t] is known perfectly to the decision makers in the system since this is

a slowly-varying quantity that is typically position-dependent2. With respect

to the small-scale fading channel state, we assume that receiver j can measure

hj [t] = [h1j [t] h2j [t] . . . hKj[t]]
T perfectly. This can be accomplished through

the transmission of pilots by all the appropriate transmitters. Now, once this

is measured, we require a mechanism to (i) communicate this information to

the decision makers in order to facilitate link scheduling and (ii) advise the

transmitters of the rate at which they must transmit. In general, these two

tasks are accomplished through the insertion of feedback channels into the

network. If these feedback channels were of infinite capacity, there would be

no loss of information in this process but in practice, this is of course not

the case. Feedback channels are bandwidth-limited and hence, we need to

understand how this can potentially affect the throughput of the network.

Let us consider the case of uplink. Here, the receivers (base stations) are

the decision-makers and have access to perfect (but maybe local) channel in-

formation. Once a scheduling decision has been made, rate instructions must

be transferred to the transmitter-side through the feedback channel. This

immediately leads to a loss in throughput as quantized feedback precludes

transmission at the true rate offered by the channel. In the downlink sce-

nario, the situation is slightly different. Here the decision-makers reside at the

2This assumption is not unreasonable given the increasing trend towards GPS-enabled
devices.
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transmitter-side while the receivers have access to perfect (but maybe local)

channel information. Quantized feedback from the receivers to the transmit-

ters in this setting means that the scheduling decisions at the transmitter-side

can never be based on perfect information. This in turn leads to a loss in

throughput.

We now introduce some notation in order to formalize the above ar-

guments. Let the bandwidth of the feedback channel serving transceiver pair

j be denoted by bj . Then, given channel state hj[t] and a serving feedback

channel with bandwidth bj , the corresponding quantized channel state is given

by h
bj
j [t]. Here, we make an implicit assumption that a separate codebook is

used for each link following the approach of recent literature on multi-user lim-

ited feedback. Furthermore, we assume that these codebooks are pre-decided.

We collect these feedback budgets and resulting quantized small-scale chan-

nel gains across all transceiver pairs to form a feedback allocation vector b

and quantized channel Hb[t]. We can then define the corresponding quantized

composite channel state Cb[t] =
(
G[t], Hb[t]

)
. Note that there is no quantiza-

tion under infinite feedback bandwidth, i.e., C[t] = C∞[t] = (G[t], H∞[t]) , ∀t.

4.3 Part I: Feedback allocation under fast data schedul-

ing

In this section, we consider the downlink of an OFDMA cellular net-

work with sufficiently small frequency re-use to ensure that there is no inter-cell
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interference. This means that it suffices to study the throughputs in a single

cell. Furthermore, we study the throughputs on a single sub-band since the

cell throughput scales linearly in the number of sub-bands. We consider feed-

back allocation under single-cell weighted-SNR scheduling and show that the

resulting problem is convex and hence admits efficient, though sub-optimal,

algorithmic solutions.

The K wireless links in the context of a single-cell OFMDA system

where we are interested in per-band throughputs correspond to the channels

between the base station and the K users it serves. The SNR for link i is given

by

SNRi[t] =
Pgii [t̄TLS]hii[t]

No

.

The family of weighted-SNR scheduling policies [87–94] under infinite feedback

chooses user

i∗ = argmax iwi [t̄TLS] SNRi[t]. (4.1)

at each instant. Then, the per-band average rate for link i in the ideal case

(without quantization), through the course of TLS scheduling slots where the

path-loss coefficients {gii}i remain constant, can be bounded as

µ̄∗
i [w, diag{G}]

= Pr (link i is chosen)Eh

[

log2

(

1 + Pgiihii
No

) ∣
∣
∣ link i is chosen

]

where h = diag{H}
= Pr

(

i = argmaxj wj
Pgjjhjj
No

)

Eh

[

log2

(

1 + Pgiihii
No

) ∣
∣
∣ i = argmaxj βjhjj

]

= Pr (i = argmaxj βjhjj)Eh

[

log2

(

1 + Pgiihii
No

) ∣
∣
∣ i = argmaxj βjhjj

]

≤ Pr (i = argmaxj βjhjj)Eh

[

log2

(

1 + Pgiih

No

)]

,

(4.2)
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where βj = Pgiiwi

No
. The last step follows since Eh

[

log2

(

1 + Pgiih

No

)]

is the

best-possible rate the user can achieve assuming no other user in the system

is served. As would be expected, the rate obtained by the users in system

critically depend on the ratios

σij =
βi

βj
, (4.3)

as we will precisely characterize later in this section.

Now, a more realistic system with quantization and feedback operates

as follows. The mobile quantizes the small-scale fading channel gain hii and

reports channel gain [hii]bi . We use a simple uniform quantization policy that

is comprised of 2bi levels in the range [0,M ]; M is chosen such that

M = max{γ1σmax, γ2} (4.4)

where γ1,γ2 are large positive constants and σmax = maxij{σij}. The quantized

state is given by

[hii]bi =

⌊
hii2

bi

M

⌋
M

2bi
. (4.5)

Then, the rate for link i with quantization is

µ̄i [w,G [t̄TLS ] ,b]

= Pr
(
i = argmaxj βj [hjj]bj

)
Eh

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ i = argmaxj βj [hjj]bj

]

.

(4.6)

Having expressed the average rates through one large-scale coherence

time of TLS time slots in (4.2) and (4.6), we now describe our proposed two

time-scale feedback allocation and data scheduling policy below:

89



Algorithm 1 Joint feedback allocation and data scheduling

1: for t = t̄TLS, . . . , t̄TLS − 1 do
2: (Slow feedback allocation): The feedback allocation vector b is given as

the solution to

b∗ = argmin c(b)
s.t. µ̄i [w,G [t̄TLS] ,b] ≥ δµ̄∗

i [w,G [t̄TLS]] , ∀i
bk ∈ {0, 1, . . . ,∞}.

(4.7)

where c(b) =
∑

k γkbk or c(b) = minmaxk γkbk.
3: (Fast data scheduling): Given b∗, the users are scheduled according to

i∗ = argmax iwi [t̄TLS]
Pgii [t̄TLS] [hii[t]]b∗i

No

. (4.8)

4: end for

In what follows, we derive a lower bound on the ratio µ̄i[w,G[t̄TLS ],b]
µ̄∗i [w,G[t̄TLS ]]

.

This lower bound possesses the property that as b → ∞ element-wise and as

M → ∞, the bound approaches one, which agrees with intuition and means

that (4.7) is feasible for any δ. Most importantly, we show that the bound

is convex in b. The bound is derived using the following four lemmas. The

first two lemmas derive a lower and upper bound on Pr (i = argmaxj βjhjj)

and Pr
(
i = argmaxj βj [hjj]bj

)
respectively. The third lemma derives a lower

bound on

Eh

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ i = argmaxj βj [hjj]bj

]

.

Lemma 13. Given any set of non-negative, constants {κi}Ni=1 with κ1 = 1,
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the following relationship holds for N ≥ 2

∫

xkκN

∫

xk−1κk−1

. . .

∫

x2κ2

e−w
k−1∏

i=2

e−xidwdx2dx3 . . . dxk−1 =

[
k−1∏

i=1

1

δi

]

e−δk−1κkxk .

(4.9)

where δ1 = 1 and δi = δi−1κi + 1.

Proof. Refer to Appendix B.1.

For the purposes of the next few lemmas, we introduce some notation.

Let Pk denote the set of all permutations of {1, 2, . . . , K} with k as the first

element of the sequence, i.e., for all p = (i1, i2, . . . , iK) ∈ Pk, we have that

i1 = k.

Lemma 14. The probability of user k begin scheduled in the case where there

is no quantization can be computed as

Pr

(

k = argmax
j
βjhjj

)

=
∑

p∈Pk

K∏

j=1

1

δ
p
j

where δp1 = 1 and δpj = δ
p
j−1σp(j)k + 1.

Proof. Refer to Appendix B.1.

Extending the above analysis to cover the case with quantization poses

significant analytical challenges as we will see. Nevertheless, we infuse analyt-

ical tractability and obtain insightful closed-form expressions by making the

simple approximation exp
(

− M
σmax

)

≈ 0. This is reasonable because, by defini-

tion in (4.4), M scales with σmax and exp
(

− M
σmax

)

≤ exp (−γ1) which can be
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made as small as we wish for γ1 sufficiently large. For convenience, we will use

x
.
= y to mean “x is equal to y under the approximation exp

(

− M
σmax

)

= 0”

and x
.

≥ y to mean “x is greater than or equal to y under the approximation

exp
(

− M
σmax

)

= 0”.

Lemma 15. The probability of user k begin scheduled in the case where there

is quantization and when b satisfies the added constraints
{
∑K−2

j=1 σji2
−bj ≤ 1− 1

γ3
, ∀i

}

can be bounded as

Pr
(
k = argmaxj βj [hjj]bj

) .

≥ ∑

p∈Pk
e−M

∑K
i=1 γ

p
i δ

p
i

[
∏K

j=1
1
δ
p
j

]

.

≥
(

e−M maxp∈Pk

∑K
i=1 γ

p
i δ

p
i

)
∑

p∈Pk

∏K

j=1
1
δ
p
j

where δp1 = 1 and δpj = δ
p
j−1σp(j)k + 1.

Proof. Refer to Appendix B.1.

Lemma 16. (a) Let i∗ = argmaxj βj be the user with highest priority. Then,

for this user, the rate with quantization can be bounded as

Eh

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ i = argmaxj βj [hjj]bj

]

≥ (1− 2−bi,min)Ehkk

[

log2

(

1 + Pgiihkk
No

) ∣
∣
∣ hkk ∈

[
M

2bj
,M
]]

,

where bi,min = minj 6=i bj.

(b) For the remaining users, the rate with quantization can be bounded as

Eh

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ i = argmaxj βj [hjj]bj

]

≥ (1− 2−bi,min)Ehkk

[

log2

(

1 +
Pgiiσ

∗
i hkk

No

) ∣
∣
∣ hkk ∈

[
M

2bj
,M
]]

.

Proof. Refer to Appendix B.1.
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By applying the results in Lemmas 14, 15 and 16, we now present the

main result of this section.

Theorem 15. Given priority vector w, large-scale gains G [t̄TLS] and bit al-

location b that satisfies the constraints {∑K−2
j=1 σji2

−bj ≤ 1− 1
γ3
, ∀i} , the loss

in rate due to quantization is given by

µ̄i [w,G [t̄TLS] ,b]

µ̄∗
i [w,G [t̄TLS]]

.

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p
i δ

p
i

)

(1− 2−bi,min).

Proof. Refer to Appendix B.2.

By applying the result in Theorem 15 and including the extra con-

straints mentioned therein, we can re-write problem (4.7) as

min
∑

i c(b)

s.t.
(

e−M maxp∈Pi

∑K
i=1 γ

p
i δ

p
i

)

(1− 2−bi,min) ≥ δi, ∀i
∑K−2

j=1 σji2
−bj ≤ 1− 1

γ3
, ∀i.

(4.10)

Sufficiently small throughput degradation targets δi, which is often the regime

of interest, would ensure large optimal feedback allocations rendering the sec-

ond set of convex constraints redundant. We will therefore focus only on the

first set of constraints and establish their convexity. By applying a − log(·)-

transformation, we write the following equivalent constraint

−M max
p∈Pi

K∑

i=1

γ
p
i δ

p
i − log

(
1− 2−bi,min

)
≤ − log(δi), ∀i.

It is well-known that for any convex function f : RK → R, the sub-level sets

{x : f(x) ≤ a}, a ∈ R, it induces are convex. Thus, it is sufficient for us to
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show that

hi(b) = −M max
p∈Pi

K∑

i=1

γ
p
i δ

p
i − log

(
1− 2−bi,min

)

are convex for all i in order to establish that the resource allocation problem in

(4.10) under the structure imposed by weighted-SNR scheduling. This follows

directly from two facts. The first fact is that the set of convex functions is

closed under the sum and maximum operators. The second fact is that the

functions 2−x, x > 0 and 2−mini xi = maxi 2
−xi are convex.

Once the fractional solution b∗j , j = 1, . . . , N, to (4.10) is computed,

we obtain the integral solution through the operation bIj = ⌈b∗j⌉. The increase

in the feedback budget due to this operation is quantified in the following

theorem.

Theorem 16. The convex relaxation algorithm has the following approxima-

tion guarantees:

(i)
∑

i γib
I
i ≤

∑

i γib
∗
i +Nγmax

(ii) maxi γib
I
i ≤ minmaxi γib

∗
i + γmax

where γmax = maxi γi.

Proof. Both results follow from the fact that bIi ≤ b∗i + 1.

It is well-known that if one uses interior point methods [144] to solve

(4.7), the number of Newton steps to arrive within ε of the optimal solution

scales as O
(√

K log
(
K
ε

))

.
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Next, we study feedback allocation for networks with interference. We

revert back to the setting in Chapter 3 where data scheduling is performed on

a slow time-scale. We show that here too, convex optimization may be used

to compute efficient solutions.

4.4 Part II: Feedback allocation with interference

In this section, we focus on uplink multi-antenna networks, where the

mobiles transmit using block-diagonalization, which is a well-established in-

terference cancellation technique [139–143]. The structure induced by block-

diagonalization precoding and allows us to leverage convex optimization-based

techniques to solve the resulting feedback allocation problem.

Consider a wireless network of K mobiles, that have been pre-selected

by some scheduling policy, and are communicating with their corresponding

home base stations. The K mobiles and base stations are each equipped

with Nt,i and Nr,i transmit and receive antennas respectively. Each mobile

transmits elements of a Gaussian codeword xi with power Pi. A transmission

from mobile i passes through channels {gijHij}j∈Ne(i) where gij is the path-loss

and Hij is the MIMO channel between mobile i and base station j. As in the

earlier section, the path-loss coefficients changes every TLS slots and we are

interested in making feedback allocations on this slower time-scale. First, we

study the infinite feedback case before introducing the effects of quantization.

Under perfect feedback, the discrete-time equivalent sampled signal model for

one channel use at baseband with perfect synchronization at receiver i can be
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written as

yi =
√
PiGiiwixi +

∑

j∈N(i)

√
PjGjiwjxj + ni

=
√
αiiPiHiiwixi +

∑

j∈N(i)

√
αjiPjHjiwjxj + ni,

(4.11)

where ni ∼ CN (0, NoI) is additive white Gaussian noise that is independent

across receivers. Recall that the receiver has perfect knowledge of the chan-

nel states {Hji}j∈Ne(i). According to the block-diagonalization approach, the

precoder wi ∈ CNt,i×1 is selected to satisfy

Hijwi = 0, j ∈ N(i) (4.12)

thereby eliminating all interference user i generates. We assume that the num-

ber of transmit antennas at user i is Nt,i >
∑

j∈N(i)Nr,j+1 since this is required

in order to cancel
∑

j∈N(i)Nr,j interfering dimensions. This follows from the

fact that the null space of the augmented matrix
[
{Hij}j∈N(i)

]
has dimension

Nt,i−min{∑j∈N(i)Nr,j, Nt,i}. Thus, the maximum number of independent data

streams that can be transmitted is min{Nt,i−min{∑j∈N(i)Nr,j, Nt,i}, Nr,i}. We

let µ̄∗
i [G [t̄TLS]] denote the rate under infinite capacity.

This technique is being actively researched in industry as a multiple-

antenna interference mitigation solution on the uplink [107–111]. Furthermore,

the proposed uplink interference cancellation model finds concrete application

in recent deployments of distributed antenna systems, a topic of active re-

search [113–118], by AT&T in Palo Alto, California [112] and at other loca-

tions around the continent such as Seattle, Philadelphia and San Diego to

name a few [119–123]. In Palo Alto for instance, AT&T envisions putting up

96



small antenna units on utility poles for instance to improve capacity. These

small antennas are linked to a centralized controller through high-speed back-

haul. The other use case involves covering high-load areas such as stadiums

and theme parks with distributed antennas [121–123]. These are real-world

scenarios where it is indeed possible for a multi-antenna mobile to be interfer-

ing with many single-antenna receivers and thus falls squarely in the regime

where our results are applicable, and hence our optimization algorithms can

be used to efficiently compute optimal feedback allocations. Yet another po-

tential application involves the future deployment of “lightRadios” by Alcatel-

Lucent [124], which again are low-cost single antenna nodes that might receive

transmissions from multi-antenna mobiles.

Figure 4.1: Uplink interference neighbourhood

Note that any kind of coordinated beamforming such as block-diagonalization

requires the presence of control channels connecting neighbouring links. Ex-

change of real-time channel information through high-capacity backhaul links
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is being seriously considered [131] in both major IMT Advanced candidate

standards, LTE-A and IEEE 802.16m. Since feedback in realistic systems is

imperfect due to limited feedback budgets, we must consider and appropri-

ately incorporate the effects of quantization error – error that is introduced

when the receiver quantizes the precoder wi using bi bits in preparation for

feedback – into our signal model in (4.11). The quantized precoder is denoted

by ŵi and the signal model with limited feedback now becomes

yi =
√

αiiPiHiiŵixi +
∑

j∈N(i)

√

αjiPjHjiŵjxj + n. (4.13)

We let µ̄i [G [t̄TLS] ,b] represent the rate under feedback allocation b.

Similar to the last section, we are interested in the following resource

allocation problem

b∗ = argmin c(b)
s.t. µ̄i [G [t̄TLS] ,b]− µ̄∗

i [G [t̄TLS]] ≤ δ, ∀i
bk ∈ {0, 1, . . . ,∞}.

(4.14)

where c(b) =
∑

k bk or c(b) = minmaxk bk. However, in contrast to the earlier

section where the focus was on a multiplicative loss in throughput, here we

are interested in the additive loss due to quantization. The impact of limited

feedback on block-diagonalization precoding has been studied by Jindal [83]

and Ravindran et al. [133]. We leverage these results in order to write down

the rate loss

µ̄∗
i [G [t̄TLS]]− µ̄i [G [t̄TLS] ,b] ≤ δ

as a function of the quantization bits available. Ravindran et al. [133] and

Jindal [83] bound the loss in rate due to quantization, specifically random
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vector quantization, but in their model, all receivers quantize the precoders

using the same budget. Since this is not the case in our setup, we re-derive

their result with this minor generalization in Theorem 17 below. The proof is

given in Appendix B.3.

Theorem 17. When all users transmit one stream and maximal-ratio-combining

aligned to the quantized precoder is used at the receiver, the rate loss for user i

due to quantization by its receiver as well as in its neighbouring cells is given

by

µ̄∗
i [G [t̄TLS]]−µ̄i

[
G [t̄TLS] , {bj}j∈N(i)

]
= log2



1 +Nt,i

∑

j∈N(i)

gjiPjNr,i

∆j(bj)

Nt,i − 1



 ,

(4.15)

where ∆j(bj) = 2
− bj

Nt,j−1 .

From the above theorem, it becomes clear that the feedback budget is

especially crucial for scenarios where users transmit using block-diagonalization.

Under ideal conditions (infinite feedback capacity and a sufficient number

of antennas), the interference terms would be completely nulled using block-

diagonalization. This is as opposed to other strategies where there would be

residual interference even under ideal conditions. Limited feedback however

introduces an interference contribution with power that is proportional to the

feedback budget.

Substituting the rate functions derived in the above theorem into (4.14),

the resource allocation problems for a block-diagonalization-based MIMO sys-
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tem with random vector quantization become

min
∑

i c(b)
s.t.

∑

j∈N(i) aji∆j(bj) ≤ 2δ − 1, ∀i
bi ∈ N0, ∀i

, (4.16)

where aji =
Nt,igjiPjNr,i

Nt,i−1
, j 6= i when all users transmit one stream and perform

maximal-ratio-combining at the receiver. Dropping the integral constraints in

the above equivalent problem, we obtain the following convex programs:

min −∑i γi log2 b̃i
s.t. aiib̃i +

∑

j∈N(i) ajib̃j ≤ di

b̃i ∈ [0, 1], ∀i
(4.17)

and
min maxi−γi log2 b̃i
s.t. aiib̃i +

∑

j∈N(i) ajib̃j ≤ di

b̃i ∈ [0, 1], ∀i
(4.18)

Convexity of the above problem enables us to utilize standard numerical solvers

from convex optimization to solve (4.17) and (4.18). In the following theorem,

we go a step further and use the Karush-Kuhn-Tucker (KKT) conditions to

compute an optimal solution to (4.17) in closed form. It is less straightforward

to compute the solution to (4.18) in closed form.

Theorem 18. The solution to (4.17) is

b̃∗j =

[(
1

log 2

)
γj

∑

k∈N(j)∪{j} λ
∗
kakj

]+

1

, (4.19)

where {λ∗j}Nj=1 is chosen to satisfy the constraints aiib̃
∗
i +
∑

j∈N(i) ajib̃
∗
j ≤ di, ∀i.
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Proof: Refer to Appendix B.4. ✷

Once the fractional solution b∗j = − log2 b̃
∗
i , j = 1, . . . , N, to (4.17) or

(4.18) is computed, we obtain the integral solution through the operation bIj =

⌈b∗j⌉. The increase in the feedback budget due to this operation is quantified

in the following theorem.

Theorem 19. The convex relaxation algorithm has the following approxima-

tion guarantees”

(i)
∑

i γib
I
i ≤

∑

i γib
∗
i +Nγmax

(ii) maxi γib
I
i ≤ minmaxi γib

∗
i + γmax

Proof: Both results follow from the fact that bIi ≤ b∗i + 1. ✷

The solution in (4.19) allow us to study the behaviour of the allocation as

function of the system parameters. In (4.19), if we interpret λ∗k as the price

charged by access point k for receiving one unit of interference (from in-cell

and out-of-cell), then the bit allocation for user j is inversely proportional to

the ratio of the cost per feedback bit for cell k over the total price it pays for

the interference it generates
∑

k∈N(j)∪{j} λ
∗
kakj.

As with the feedback allocation in the last section, one may use interior

point methods [144] to solve (4.17) and (4.18) with complexity O

(√
N log

(
N
ε

))

.
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4.5 Concluding remarks

In this chapter, we considered two extensions of the work in the pre-

vious chapter, where we studied feedback allocation for a single-cell OFDMA

uplink network with slow data scheduling. Firstly, we developed a joint feed-

back allocation and fast data scheduling algorithm for a single-cell downlink

OFDMA system that does not experience inter-cell interference. Secondly, we

developed a feedback allocation algorithm for the uplink of a multi-antenna

network with inter-cell interference. We showed that under both these network

settings, convex optimization can be used to efficiently compute solutions to

the respective feedback allocation problems.
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Chapter 5

Exploiting Sparse Dynamics for Controlling

Whitespace Networks

This chapter contains our final contribution where we examine future

network architectures. In particular, we consider whitespace wireless networks

where a group of secondary users operate seamlessly on the same spectrum as a

set of primary transmitters or incumbents. The secondary or whitespace users

are served by a whitespace base station. In this setting, we are interested in

acquiring channel state information for the purposes of downlink scheduling

in the whitespace network while minimizing the amount of feedback/control

bandwidth consumed for this acquisition process. Of course, in addition to

bandwidth efficiency, it is important to have computational efficiency as well.

We propose algorithms in this chapter that achieve both bandwidth and com-

putational efficiency.

5.1 Introduction

With the tremendous increase in wireless connectivity over the last

decade, the demand for wireless spectrum has never been greater. Tradition-

ally, a portion of spectrum is allocated or licensed for use by a specific group of
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users by regulatory agencies. This inherent rigidity coupled with the growing

demand for wireless applications has led to a scarcity of spectrum. How-

ever, a recent Federal Communications Commission (FCC) study [146] has

revealed that large portions of spectrum, though allocated, are significantly

under-utilized by the licensees. To increase spectral efficiency, the FCC re-

cently opened up TV whitespaces, which essentially lie in the 54 MHz - 806

MHz range, for unlicensed use [145]. Furthermore, the ruling removes the need

for spectral sensing by the unlicensed or whitespace users in order to detect

the presence of interfering transmitters (TV stations, wireless microphones,

etc.). Instead, each whitespace user is required to access a central database in

order to determine which TV band is available at its location. The database

essentially contains a list of reservations by the interfering users or incumbents

and is updated on a day-to-day basis.

It follows that any whitespace network that communicates only on the

TV bands that are deemed available by the database1 through the course of

the day will not interfere with the incumbents. This leaves one other major

impediment to achieving high throughputs in whitespace networks and this

is interference from other unlicensed users. In this chapter, we consider the

design of a whitespace network that operates in the presence of other inter-

fering unlicensed users2. In other words, the downlink transmissions of the

1The details concerning the protocols for acquisition of database information are beyond
the scope of this chapter.

2While these could potentially be other non-cooperative whitespace networks, we will
refer to them as interfering users to avoid confusion.
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whitespace network are on the same frequency band as the transmissions of

the interfering users or nodes. The objective is to control whitespace transmis-

sions to achieve maximal throughput regions for the whitespace network. We

are interested in devising scheduling algorithms to achieve near-throughput-

optimality.

The MaxWeight scheduling algorithm has been studied extensively as

a simple throughput optimal scheduling algorithm [154]. We refer to [156,157]

for a comprehensive survey on the MaxWeight algorithm and its variations. We

consider recent variants of the MaxWeight algorithm [162–164] that perform

joint feedback allocation and data scheduling. This chapter can be viewed as

an extension of the above work to scenarios with interference. The general

setup in these papers can be described as follows: The system has a feedback

bandwidth constraint of B bits. Note that the feedback constraint proposed

by Ouyang et al. [163] is in terms of a total number of sub-bands in the context

of an orthogonal-frequency-division-multiple-access (OFDMA) system. This

model can be equivalently expressed in terms of bits. A feedback bandwidth

constraint of B bits also represents a softer model than that presented by

Gopalan et al. [161] as the latter precludes a variable number of feedback bits

per user. Given this bandwidth constraint, the system periodically decides

how to partition these feedback bits across the users in order to maximize the

expected cumulative queue-weighted-rate through the course of the upcoming

period. This expectation is in general computed over the randomness inherent

in the users’ channels as well as the impinging interference in a interference-
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limited whitespace setting.

Such a computation requires knowledge about the interfering network’s

transmission process. Measuring this transmission process, however, in general

requires a feedback channel whose capacity scales linearly with the number

of interfering users and is prohibitive for most realistic networks. In our

model, the transmission process is completely parametrized by a set of target

rates, each corresponding to one interfering user. The key idea we exploit in

this chapter is the following: while the transmission process parameter vector

at a snapshot in time in general lives in some arbitrary high dimension, in

most practical networks (supporting voice calls and streaming video), there

is a time-scale separation of flow-level dynamics versus scheduling. In other

words, network layer (TCP/IP) dynamics occur at a much slower time scale

than scheduling (hundreds-of-milliseconds versus milliseconds). Thus while the

transmission vector itself may not be sparse, its dynamics are. This chapter

is about exploiting this sparsity in the dynamics, to obtain much more data-

efficient acquisition algorithms. It should be noted that fast acquisition of the

interfering process is relevant not only to the whitespace bands, but also to

other unlicensed bands (e.g. military radar bands at 5.6 GHz) where the FCC

ruling does not apply.

It has long been known, and recently popularized under the name of

compressed sensing, that whereas N linear measurements are required to re-

construct a vector (signal) in RN , if it is S-sparse (i.e., it has S non-zero

coefficients) then under appropriate conditions on the linear (non-adaptive)
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measurements, O(S logN) are enough [158–160]. By developing similar tools,

and applying them on the dynamics (rather than the signal directly) we are

able to show that with greatly reduced, and in particular, sub-linear (loga-

rithmic) feedback rates, our algorithms perform close to the full information

(linear feedback) case.

Main Contributions and Organization

To the best of our knowledge, this is the first work to exploit sparsity in

the dynamics of a network. As this is likely much more prevalent than sparsity

in the actual trajectory of the network state (of course, if the trajectory is

sparse, then so are the dynamics) we expect this high-level idea to find broad

application. More concretely, the main contributions in this chapter are as

follows:

(1) A first (to the best of our knowledge) application of compressed sensing3

in designing a joint learning, feedback allocation and scheduling protocol

for whitespace wireless networks thereby exploiting the naturally-sparse

dynamics of the interfering network.

(2) A proof that path-loss matrices satisfy the null space property thereby

allowing for efficient acquisition or sensing of the interference state us-

ing ℓ1-norm minimization. By efficient, we mean logarithmic scaling in

3Compressed sensing has been used to solve some problems pertaining to the wireless
physical layer in the past [165]- [168].
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feedback bandwidth. The proof technique is novel since path-loss matri-

ces contain entries that have non-zero mean and are not independent, a

scenario that has not been dealt with extensively in past research.

(3) Simulation results that numerically compare the performance of the full

and partial information settings. The results establish the superior qual-

ity of the joint learning, feedback allocation and scheduling algorithm.

The rest of this chapter is organized as follows. In Section 5.2, we intro-

duce the system model for the whitespace network under consideration. We

present queue-based throughput optimal feedback allocation and data schedul-

ing algorithms in Section 5.3. In Section 5.4, we discuss the compressed sensing

algorithm that enables feedback allocation using significantly-reduced control

overhead. We establish the “goodness” of path-loss sensing matrices in Section

5.5 . The joint learning, feedback allocation and scheduling algorithm is pre-

sented in Section 5.6. Simulation results establishing the superior performance

of the algorithm are contained in Section 5.7.

5.2 System model

In this section, we define the whitespace network we consider in the

chapter. We introduce the communication models employed by the whitespace

and interfering networks respectively.

Whitespace network: Each whitespace receiver is dropped uniformly

on a circle of radius rp centered at the origin. There are a total of Np whites-
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pace receivers located at points {(rp, θi′)}Np

i′=1 where θi′ ∼ U [0, 2π], ∀i′. The

whitespace base station is located at (rp,b, θp,b) anywhere on the xy-plane.

Interfering network: There areNs interfering transmitters are placed

on a collection of many circles of radii {rs,1, rs,2, . . . , rs,q} where Ns is such that

Ns

q
is even. Circle c contains Ns

q
interfering receivers located at fixed points

{(rs,c, θi)}Ns

i=1 that are equally-spaced
(

θi =
2πq
Ns
, i = 0, 1, . . . , Ns

q
− 1
)

as shown

in Fig. 5.1. We note that this would roughly be the case when Ns becomes

large and the users are uniformly distributed.

The spatial distribution we use is overly restrictive, and we believe that

our proofs could be extended to handle much broader settings, although we

have not yet been able to do so. This is supported by our simulation section.

Indeed, the proposed algorithms work even under more general spatial models

such as when the users scattered uniformly at random on a square area.

For the sake of the analysis, we also partition the whitespace receivers

according to the circle they belong to thus creating q partitions {C1,C2, . . . ,Cq}

such that
⋃q

i=1 Ci = {1, 2, . . . , Ns} and Ci∩Cj = ∅ for i 6= j. Within each circle,

the users are numbered or ordered in diametrically opposite pairs as shown in

Fig.5.1, a labelling rule that is feasible since Ns

q
is even. In other words, all

pairs (j, j +1) ∈ Ci, j odd, will correspond to a pair of diametrically opposite

receivers on circle Ci.

Channel gain model: There are three types of nodes in the network:

interfering nodes, whitespace mobiles, and the whitespace base station. Let
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Figure 5.1: Network with interfering transmitters (not shown) uniformly dis-
tributed on the blue circle of radius rp. There are Ns = 8 whitespace receivers
in the network equally-divided across two circles (q = 2) of radii rs,1 and rs,2
respectively. This gives rise to partitions C1 = {1, 2, 3, 4} and C2 = {5, 6, 7, 8}.
The whitespace receivers are equally-spaced on each circle as shown.

m and n denote any two such nodes, which are located at points (rm, θm) and

(rn, θn) respectively. The distance between these two nodes is given by

dmn =
√

r2m + r2n − 2rmrncos(θm − θn),

which determines the following path-loss gain

κmn =
1

K + d2mn
, K > 0. (5.1)

between the same. This model is an approximation of the free space path

loss model (with path-loss coefficient two) [170], a choice that affords us ana-

lytical tractability while compromising very little on modeling accuracy. The

composite channel gain between nodes m and n is given by

hmn(t) = gmn(t)κmn, (5.2)

where gmn(t) ∼ exp(1) models small-scale Rayleigh fading. In the sequel, all

whitespace mobiles will be indexed by i, the interfering transmitters by i′, and

the whitespace base station by is.
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Power models: We assume that interfering transmitter i′ has a rate

target of ri′(t) at time t. Accordingly, the transmitter adopts a power-control

policy given by pi′ (hi′(t), ri′(t)) at time t that essentially combats the effects of

the channel hi′(t) to its corresponding receiver. We assume that the rate tar-

gets {ri′(t)}i′ change every TI time slots and that TI is large enough to calculate

the average power expended during this period as p̄i′ = E [pi′ (hi′(t), ri′(t))].

Finally, we also assume that the whitespace base station transmits at power

P .

Traffic model: We define ai(t) to be the number of packets associated

with whitespace user i at time t. We assume these are random processes that

are independent and identically distributed (i.i.d.) across time slots and users.

Information available at the base station: We assume that all

interferer positions and hence {κii′} are known to the base station. While

this might be idealistic in some scenarios, it is often possible to acquire this

information through minimal cooperation with the interfering network. For

example, if the interferes consist of cellular towers that are operating in whites-

pace mode, then their positions are easy to obtain.

Scheduling and feedback allocation: We assume that at each time

slot, at most one whitespace user can be selected for downlink transmission.

This would be case in any OFDMA system with per-sub-band scheduling,

which is known not to compromise on throughput optimality [171]. In order

to decide which whitespace user to schedule, the base station must acquire

information about the signal-to-interference-plus-noise ratio (SINR) at each
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user as this determines the maximum supportable rate to that user. The

SINR at user i is given by

SINRi(t) =
Phisi(t)κisi

∑Ns

i′=1 hi′i(t)κi′ipi′ (hi′(t), ri′(t)) +No

(5.3)

where No denotes the power of additive noise. Ideally, the base station would

be able to acquire full information, i.e. {SINRi(t)}Ki=1 and then choose the

user in each time slot that maximizes

k = argmax
i
qi(t) log2(1 + SINRi(t)), (5.4)

which corresponds to the popular MaxWeight data scheduling policy [154].

However, such an acquisition of full information incurs a feedback bandwidth

of O(K). In many realistic systems, feedback bandwidth is limited as it con-

sumes valuable uplink capacity. Thus, it may not be feasible for the feedback

bandwidth to scale linearly in the number of users. In the next section, we

address this issue by considering data scheduling policies that operate under

limited feedback budgets.

5.3 Joint scheduling and feedback allocation with inter-
ference

Recent work [161, 163] has analysed the effects of limited feedback on

the throughput of a queueing system. Through the remainder of this chapter,

we adopt the feedback allocation policy proposed by Gopalan et al. [161] and

subsequently generalized to multi-carrier systems by Ganapathy et al. [162]

and two-time scale operation. The policy essentially chooses k out of K users
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to “sample” and then performs MaxWeight using the available channel infor-

mation.

The policy operates on two time-scales. Feedback allocation happens

once every TI seconds following by data scheduling. The two stages of the

policy can be described in detail as follows:

• Feedback allocation: Let t̄ =
⌊
t
TI

⌋

. Then every t̄TI time slots, the feed-

back allocation policy solves

~g(t̄)∗ = argmax E

[

max{i:gi=1} qi(t̄TI) log2 (1 + SINRi)
∣
∣
∣ ~q(t)

]

s.t.
∑K

k=1 gk ≤ c

gk ∈ {0, 1}, ∀k ∈ {j : Qj(t̄) > 0}
(5.5)

where the expectation is computed over the direct channel and the in-

terfering channel.

• Data scheduling : For t̄TI ≤ t ≤ (t̄+1)TI , given some ~g(t̄)∗, the users are

scheduled according to MaxWeight rule

max
{i:gi=1}

qi(t̄TI) log2 (1 + SINRi) . (5.6)

In (5.5), we are essentially select the subset of users that maximizes the

expected MaxWeight. Given the optimal subset, we then perform standard

MaxWeight across these users in (5.6).

The rule in (5.5) is representative of a general class of resource allocation

problems [161–163] where resources have to be allocated prior to being able

to view the realization of the channel. In such settings, one needs to compute
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the expected MaxWeight, that is function of the probability distributions of

the direct channels as well as interfering channels. Ganapathy et al. [162]

compute (5.5) in closed-form but do not consider the effects of interference

in their system. On the other hand, Gopalan et al. gopalan and Ouyang et

al. [163] do not preclude the effects of interference in their model but do not

comment on how to compute (5.5). The obvious challenge to computing the

expect MaxWeight is determining the distribution of the interference.

To address this challenge, we begin with a general assumption that

the distribution of the interference at user i is completely parametrized by a

finite set of M moments {mi1, mi2, . . . , miM}. Thus, in order to compute the

distribution of the interference, we can turn our attention to estimating the set

of moments M = {mi1, mi2, . . . , miM}. According to (5.3), the n-th moment

of the interference Zi =
∑Ns

i′=1 hi′i(t)κi′ipi′ (hi′(t), ri′(t)) at user i is

E [Zn
i ] =

∑Ns

i′=1 E [hni′i(t)] κ
n
i′iE [pni′ (hi′(t), ri′(t))] . (5.7)

For simplicity, let us assume that the interference depends only on the mean

(first moment, i.e.,M = 1). The ensuing analysis can be easily extended to the

more general case withM > 1 moments. If we define I(t̄) = [Z1 Z2 . . . ZK ]
T , H

with elements {κi′i} and p̄(t̄) = [p̄1(t̄) p̄2(t̄) . . . p̄Ns(t̄)]
T , the above relationship

(5.7) can be succinctly written as

I(t̄) = Hp̄(t̄) (5.8)

were we recall that p̄(t) is the average transmit power across TI time slots. Our

goal is to determine I(t̄) through the course of the slow time-scale as this deter-
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mines the feedback allocation policy through that period. The näıve solution

to determining I(t̄) would be to devote δTI time slots to sample averaging at

each of K receivers respectively and then transmit the measured values to the

base station. For simplicity, through the remainder of this chapter, we assume

that TI is large enough and δ small enough to ensure that the sample averag-

ing estimator is perfect. The above näıve solution would consume a feedback

control bandwidth of O(K). This is clearly not justifiable since the subsequent

feedback process of the SINRs only consumes a bandwidth proportional to k.

If the process p̄(t) is completely general, there is little that can be done

to remedy this problem, and partial feedback (of only a subset of I(t̄)) will

necessarily result in degraded performance, i.e., smaller throughput regions.

However, as discussed in the introduction, for networks where the only a subset

of rate targets {ri′(t)} vary every TI slots, we show that it is possible to reduce

the control bandwidth. Using ideas from subset selection and compressed

sensing, the next section considers how this can be exploited in order to achieve

near-optimal performance consuming a feedback bandwidth that grows only

logarithmically in Ns.

5.4 Exploiting Sparse Dynamics in Learning

In this section, we propose a compressed sensing approach to efficiently

learn p̄(t) and hence I(t). This approach is effective when the average power

transmitted by the each interfering user changes on a slower time-scale. This

is indeed what one typically expects for networks that exhibit a time-scale
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separation between higher-layer dynamics (for eg. TCP/IP) and scheduling

dynamics. This is also trivially the case for interfering networks do not perform

power control. Before we investigate how to exploit this structure, we will take

a short diversion into the topic of compressed sensing.

5.4.1 Compressed Sensing

The topic of compressed sensing has received tremendous interest in

the recent years [158–160]. The theory essentially states that one can recover

sparse data exactly, given an under-determined system of equations. Specifi-

cally, the generic problem is the following: Given a signal x ∈ R
p, one receives

k << p linear, potentially noisy measurements: y = Mx + w. Here, M

encodes the measurement matrix and w denotes additive noise, usually of

bounded norm.

For general vector x ∈ R
p, p independent measurements are required

to hope to reconstruct x. When k < p, the problem therefore is underde-

termined. If x is sparse, however, in some settings the problem is no longer

underdetermined, and can be solved by considering a combinatorial optimiza-

tion problem:

min
x∈Rp

: ||Mx− y||22 − λ||x||0,

where || · ||0 denotes the so-called ℓ0 norm (which is not really a norm) which

counts the cardinality of the support. This approach succeeds as long as

the linear equations, or measurements, satisfy a property called Null Space

Property (NSP), which essentially amount to the statement that there are no
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very sparse vectors in the null-space of the measurements.

As this problem is combinatorial, the natural convexification has been

considered, where the || · ||0 norm is replaced by its closest convex approxi-

mation, the || · ||1 norm. This gives the so-called Lasso [177] formulation for

model selection (subset selection):

min
x∈Rp

: ||Mx− y||22 − λ||x||1, (5.9)

in addition to controlling the nullspace, one can control the smallest eigenvalue

of submatrices, then the resulting problem is strongly convex around sparse so-

lutions, and hence one can show that the convex problem given above recovers

the exact solution to the combinatorial problem. Many such results have ap-

peared in the literature, e.g., [158–160,186]. Indeed, the results are attractive

from an algorithmic perspective as well since the convex relaxation is eas-

ily solvable, with computation time that scales gracefully as the size of the

problem increases, allowing the efficient solution of very large problems.

When there is no noise added, one can also solve the so-called Basis

Pursuit problem [179], which is the ℓ1-norm minimization problem given as:

min : ||x||1

Mx = y.

This can be reformulated as a linear program using standard techniques.

The theoretical connections between Lasso and Basis Pursuit have been well-

analysed by authors such as Tropp [187].
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5.4.2 The feedback protocol

Returning to our problem, we define ∆p̄(t) : ∆p̄(t) = p̄(t) − p̄(t − 1)

and apply the model selection paradigm outlined above, to the dynamics vector

rather than the power vector itself: ∆p̄(t). We can assume that at some

initial time, p̄(t0) is known. At time t, we can query the interference levels

I(t) = Hp̄(t) from all or a subset of whitespace users. We can then construct

the difference in measurements

z(t) = I(t)− I(t− 1) = H[p̄(t)− p̄(t− 1)]

= H∆p̄(t).

Since the left hand side, z(t), is known, this falls precisely into the sparse

recovery paradigm developed above, and in particular, can be solved by Basis

Pursuit in the noiseless case, and Lasso in the noisy case.

More concretely, let Q be the subset queried users and k = |Q|. Given

k = |Q|, k even is chosen according to the following algorithm:

It is necessary for the query set Q to be selected in this way for the sake

Algorithm 2 Protocol to choose query set Q

1: Set Q = ∅.
2: while i ≤ k

2
do

3: Choose any pair of diametrically opposite receivers (j, j +1) from circle
i, i.e., j ∈ Ci, j odd.

3: Q = Q ∪ {j, j + 1}.
3: Set Ci = Ci \ {j, j + 1}
4: Increment i = i+ 1.
5: end while
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of analytical tractability. Such a selection procedure would ensure that the

number of nodes in circle Ci that are selected for feedback, i.e., |Q∩ Ci| scales

linearly inNp. At the beginning of each scheduling instant, the whitespace base

station acquires observations IQ(t). It is of immediate interest to determine

the smallest query size k (or feedback bandwidth) that the whitespace base

station requires in order to recover Ap(t) reliably using

minimize ||x||1
subject to HQ,rx = zQ(t)

. (5.10)

In this work, we do not consider the number of bits required to communicate

yI(t) reliably as we are interested primarily in the scaling behaviour of feedback

bandwidth.

As briefly stated earlier, compressed sensing theory states that it is pos-

sible to recover any S-sparse vector if and only if the sensing matrix H satisfies

the NSP [181] of order S. This property will be defined in the next section.

Furthermore, the choice of subset I is not important (only the size) for this

special class of matrices. In the following section, we will show that path-loss

matrices as defined in (5.1) do indeed satisfy the NSP and hence facilitate

compressed sensing. In our setting, this means that we can exploit the spar-

sity structure induced by our wireless application and use compressed sensing

techniques to conserve feedback bandwidth. We note that in our application,

the sensing matrix is provided by the channel as opposed to traditional com-

pressed sensing where the designer is allowed to choose a convenient sensing

mechanism.
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In the next section, we present the main result of this chapter, which

states path-loss matrices H make for good sensing matrices.

5.5 NSP of path-loss matrices

In this section, we establish that path-loss matrices H satisfy the NSP

(which will be defined shortly) when the feedback bandwidth obeys k =

O(Slog Np). Lemma 20, Lemma 21 along with Theorem 23 constitute the

main results in this section.

5.5.1 Preliminaries

We define the null space property from Gribonval et al. [183]. Given a

matrix M, let N(M) denote its null space.

Definition (Null space Property): A matrix M satisfies the null space property

of order S if for all subsets S ⊆ {1, 2, . . . , N} with |S| ≤ S, the following holds

||vS||1 ≤ ||vSc||1, ∀v ∈ N(M) \ 0.

where Sc = {1, 2, . . . , N} \ S. Based on this property, the following recovery

result [183] has appeared both implicitly and explicitly in works such as [181,

184]. Let the support set of x(t) be denoted by S with |S| ≤ S. A vector x(t)

is S-sparse if |S| ≤ S.

Theorem 20. Let M ∈ Rk×N . Every S-sparse vector x ∈ RN is the solution

to the ℓ1-norm minimization problem in (5.10) with y = Ms iff M satisfies

the NSP of order S.

120



✷

The NSP is typically quite difficult to prove directly leading to the develop-

ment of sufficient conditions that are easier to establish. One such sufficient

condition is the restricted isometry property [186] that has become quite pop-

ular in recent years and is defined below.

Definition (Restricted Isometry Property): A k × N matrix M satisfies the

Restricted Isometry Property (RIP) of order p if there exists ǫp(M) ∈ (0, 1)

such that

(1− ǫp(M))||xT||22 ≤ ||MT,cvT||22 ≤ (1 + ǫp(M))||xT||22, x ∈ R
N , (5.11)

holds for all sets T with |T| ≤ p.

Here, ǫp(M) is called the restricted isometric constant of M. The RIP

essentially requires that all k × |T| sub-matrices of M be well-conditioned.

Under such a conditioning, perfect recovery of x is possible as stated in the

following theorem.

Theorem 21. [192, 193] Let M ∈ Rk×N . If M satisfies the RIP with

ǫ2S(M) ≤ 2 (3−
√
2)

7
≈ 0.4531, then every S-sparse vector x ∈ RN is the so-

lution to the ℓ1-norm minimization problem in (5.10).

✷

Thus, the RIP with a sufficiently small constant immediately implies

the NSP in the context of ℓ1-recovery. The approach we use to prove “good-

ness” of path-loss matrices H is motivated by the following observation. In
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general, the null space of a product of two matrices NM contains the null

space of M and therefore if NM satisfies the NSP, so does M. This allows us

to study the class of linearly-processed path-loss matrices A = BG = BWH

where

W = diag{J J . . .J
︸ ︷︷ ︸
k
2
times

}, J =

[
1 −1

−1 1

]

,

and diag{·} is the standard block-diagonal operator;

B = diag

{

1
√

Var{g11}
. . .

1
√

Var{gk1}

}











β1 0 0 0 · · 0 0 0
0 β2 0 0 · · 0 0 0
· · · · · · · · ·
· · · · · · · · ·
0 0 0 0 · · 0 βk−1 0
0 0 0 0 · · 0 0 βk











(5.12)

with βi ∼ Bernoulli
(
1
2

)
, ∀i and independent across i; . The Bernoulli random

variables have support {±1}. We focus our attention on establishing the re-

covery properties of A rather than H. We will show that A satisfies the RIP

with k = O(Slog Np) observations and hence the NSP. The transformation W

essentially subtracts rows of H corresponding to diametrically opposite pairs

of whitespace receivers in the same partition. Thus, the dimension of G is

still k × k. The transformation B weights and adds adjacent rows of G.

According to our spatial distribution model, when conditioned on the

positions of the whitespace users, the columns of H become stochastically

independent since each interfering transmitter is independently thrown. We

will rely heavily on recent results from Vershyin [188] and Adamcyzk et al. [189]

that deal with sensing matrices containing independent columns. Before we
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reproduce the RIP result [188,189] for matrices with independent columns, we

present a primer on sub-gaussian and sub-exponential random variables along

with some useful results from non-asymptotic matrix theory.

5.5.2 Useful concentration inequalities

We refer the reader to the tutorial paper by Vershynin [188] for a great

introduction to non-asymptotic matrix theory. Lemmas 17-19 below are well-

known past results that are summarized in this paper [188]. The proofs are

not reproduced due to lack of space.

Lemma 17. Let z be random variable. The following properties are equiva-

lent with parameters Ki > 0 differing from each other by at most an absolute

constant factor.

(i) Tails: Pr(|z| > t) ≤ exp(1− t2

K2
) for all t > 0,

(ii) Moments: (E [|z|p]) 1
p ≤ K2

√
p for all p ≥ 1,

(iii) Super-exponential moment: E
[

exp
(
z2

K3

)]

≤ e.

Moreover, if E[z] = 0 then properties (i)-(iii) are also equivalent to the follow-

ing one:

(iv) Moment generating function: E [exp (tz)] ≤ exp(t2K4) for all t ∈ R.

✷

A random variable that satisfies the above property is called a sub-gaussian

random variable. Such random variables are often characterized by the ψ2-
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norm4, which is defined as

||z||ψ2 = supp≥1

(E [|z|p]) 1
p

√
p

. (5.13)

It follows that if the ψ2-norm of z is finite, then z is a sub-gaussian random

variable with ||z||ψ2 = K2. This is the case for bounded random variables with

symmetric distributions.

Lemma 18. Let z be a symmetrically distributed, bounded random variable

with |z| ≤ M, M > 0. Then, z is a sub-gaussian random variable with

||z||ψ2 ≤ cM2, c > 0.

✷

In higher dimensions, a random vector z of dimension N is called sub-

gaussian if zTx is sub-gaussian for every x ∈ RN .

Lemma 19. Let {zi}Mi=1 be a collection of independent, zero-mean, sub-gaussian

random variables. Then, z is a sub-gaussian random vector with ||z||ψ2 =

Cmaxi ||zi||ψ2.

✷

We are now ready to prove the RIP (hence NSP) for matrix A. Before we

move on to this task, we require one more definition. A random vector m of

dimension M is called isotropic if E[|mTx|2] = ||x||2 for all x ∈ RM .

4Alternate definitions of this norm have been adopted (such as in [189]) that are all
equivalent to within a constant factor.

124



5.5.3 NSP of linearly-processed path-loss matrices A

We reproduce the recent RIP (hence NSP) result [188,189] concerning

matrices with independent columns. We refer the reader to [188, 189] for the

proof.

Theorem 22. Let M be an k×N random matrix whose columns are indepen-

dent, isotropic and sub-gaussian with ψmax,m = maxi ||mi||ψ2. Furthermore,

let the columns satisfy ||mi||2 = k almost surely. Then, the normalized matrix

1√
k
M is such that if k ≥ Cψmax,mε

−2Slog
(
eN
S

)
, then

εp

(
1√
k
M

)

≤ ε (5.14)

with probability at least 1 − 2exp(−cψmax,mε
2k). Here, cψmax,m and Cψmax,m

depend only the worst-case sub-gaussian norm ψmax,m.

✷

As mentioned earlier, the channel matrix H contains independent columns

since the positions of the whitespace users are fixed. However, each column

contains entries that are not centered, not isotropic and that are highly cou-

pled. This is because all entries in hi are completely determined by the position

of the interfering transmitter i. For this reason, it is not immediately clear

whether the columns are sub-gaussian.

To prove the NSP of H, our approach will be to suitably left-multiply

the channel matrix H by carefully-chosen matrices so as to meet the sufficient

conditions in Theorem 22. The following lemmas and theorem constitutes the

main results of this chapter.
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Lemma 20. The matrix A = BWH of size k × N contains independent,

isotropic, centered, sub-gaussian columns.

Proof: See Appendix C.1. ✷

Lemma 21. For matrix A = BWH of size k × N , we have that ||ai||2 = k

almost surely.

Proof: See Appendix C.2. ✷

Theorem 23. H satisfies NSP of order S almost surely when k = O(SlogNp).

Proof: The result follows from Lemma 20, Lemma 21 and Theorem 22. ✷

We discuss in the next section, how this sparse recovery algorithm is

integrated with scheduling. In particular, since we are estimating dynamics

rather than the signal itself, the real possibility of error propagation arises.

This has not been heretofore addressed in the literature, to the best of our

knowledge. In the next section, the algorithm introduces an explicit step to

control this. The simulations in Section 5.7 demonstrate the effectiveness of

our approach.
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5.6 Joint Learning, Feedback Allocation and Scheduling

The essential conclusion of the previous section is that the average

power vector p̄(t̄) can be recovered by acquiring logNp measurements (from

logNp whitespace users) if the dynamics of p̄(t̄) are sparse.

The complete learning, feedback allocation and scheduling is presented

in Algorithm 3.

We have the following remarks:

• The l1-minimization in Step 4 is to recover ∆p̄(t̄). The recovery can be

almost surely accurate when ∆p̄(t̄) is sparse.

• The purpose of Step 6 is to verify the accuracy of ∆p̄(t̄). We add this

step because ∆p̄(t̄) may not be always sparse, and even it is sparse, the

learning algorithm is not perfect. We introduce Step 6 to detect the

errors in learning and to protect the interfering network. The constant

ǫ is the error cap, a small positive number.

• The goal of Step 10 is to recover ∆p̄(t̄) an error is detected in Step 6.

We acquire all Ns whitespace users and use this to directly construct the

average transmission power vector. If this reconstruction also fails, then

the whitespace base station keeps silent in that time slot.

• For interfering networks that do not employ power control, we can set

δ = 1
TI
. In other words, we only need one slot to recover the average

power vector.
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Algorithm 3 Joint learning, feedback allocation and scheduling in whitespace
radio networks
1: for each t do
2: During time slots nTI ≤ t < δTI , each whitespace user (say the whitespace user

at micro-cell i) measures the interference from the interfering network and sample
average the realizations to find Ii(t), which is the ith entry of vector Hp̄(t).

3: The whitespace base station randomly queries M = Θ(logN) micro-cells containing
whitespace users and acquires the change of interference levels ∆Ii(t) = Ii(t)−Ii(t−1).
We index the queried micro-cells using j (1 ≤ j ≤M), and let ij denote the cell index
of the jth queried cell.

4: In time slot t = δTI + 1, the whitespace base station estimates the change of the
average interfering powers ∆p̄(t) by solving the following optimization problem:

∆p̃(t) = argmin ‖p̄‖1 (5.15)

subject to Hp̄ = y(t). (5.16)

In the equations above, p̄ is the optimization variable, y(t) is M -vector with yj(t) =

∆Iij (t), and H̃ is a N ×M matrix where the jth row is the ithj row of H.
5: The whitespace base station sets p̃(t) = p̃(t− 1) + ∆p̃(t).
6: The whitespace base station acquires additional M ′ cell containing whitespace users

and acquire their interference levels. We index the queried micro-cells using j′ (1 ≤
j′ ≤M), and let ij′ denote the cell index of the j′th queried cell. Then the whitespace
base station computes

e =
1

|M ′| ‖H
′p̃− y′(t)‖,

where y′(t) is M ′-vector with y′
j(t) = ∆Iij′ (t), and H̃′ is a N ×M ′ matrix where the

j′th row is the ithj′ row of H.
7: if the estimate is accurate (i.e., if e ≤ ǫ) then
8: Perform feedback allocation at time t = δTI + 1 by solving (5.5) and obtain g∗(t).
9: Through time slots δTI +1 ≤ t < t̄TI , use the above-computed allocation g∗(δTI +

1) and perform MaxWeight scheduling according to (5.6) to select a downlink
whitespace.

10: else

11: The whitespace base station queries the uplink interference levels from all whites-
pace users. The whitespace base station uses Ns −M ′ of measurements to recover
p̄(t) (by solving a l1 minimization problem similar to Step 4) and M ′ of them to
verify the accuracy of the estimated value p̃(t) (similar to Step 6).

12: if the estimate is accurate then

13: go to Step 8.
14: else

15: No whitespace downlink transmission is scheduled.
16: end if

17: end if

18: end for
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5.7 Simulations

In this section, ss we are primarily interested in the performance of the

learning component of our joint algorithm – the recovery of sparse dynamics –

we evaluate the performance of the algorithm under a simplified setting. We

compare the throughput of the joint algorithm with the scheduling algorithm

with complete knowledge of the interfering network and another one without

any knowledge of the interfering network. We set TI = 1, δ = 1
TI
, gi′i =

gisi = 1, ∀i′, i. This means that there is no feedback allocation, assume that

the channels are determined only by path-loss and are interested in learning

the instantaneous values of interference. This follows from the fact that, in

the absence of fading, (5.8) represents the instantaneous interference powers.

The simulation setting is described in detail in the following.

We consider a square cell with side length 1 kilometer, which is the size

of a typical urban network [147]. We partition this square area into N = 49

micro-cells, each micro-cell is 20(m)× 20(m) square area, which is sufficiently

small to ensure at most one user in a micro-cell in an urban network. We index

the micro-cells by i (1 ≤ i ≤ N), counted column-wise as shown in Figure 5.2.

The interfering base-station is positioned at the center of the unit square.

Each cell contains one potential interfering user that communicates with the

interfering base station. The user is located at the center of the square cell.

The whitespace users are positioned uniformly at random in 26 distinct micro-

cells. At most one whitespace user is allowed in a micro-cell. The whitespace

base is co-located with the interfering base station at the center of the square
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cell.

Micro cell number

Location of cognitive user

Location of primary and

cognitive base stations
2

3

4

1 6

5 25

Figure 5.2: Illustrative example of grid model used in simulations with N = 25
and Ns = 4.

Current wireless standards such as 3GPP Long-Term-Evolution (LTE)

can support rates of more than 25Mbps on the uplink with 200 users per cell

on 20MHz of spectrum [147]. We set the transmit powers according to the

popular channel inversion power control algorithm. Assume that the power-

rate function is p̄i =
(2R−1)(1+ε)

hi′
(Watts) where R = 25

20
bits/s/Hz is the desired

spectral efficiency and the interference compensation coefficient is ε = 0.05.

We further assume that the maximum transmit power of whitespace users

pmax = 50.

The activity of each interfering node is modeled as a Markovian ON-

OFF process where the transition probabilities from OFF to ON is η0 = 0.05

and from ON to OFF is η1 = 0.95. The probability that a interfering user

changes his/her state from one scheduling instant to the next is

2η0η1
(η0 + η1)2

=
2× 0.05× 0.95

(0.95 + 0.05)2
= 0.05.

So on average 49 × 0.05 ≈ 2.5 users change their states, which reflects the
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sparse dynamics. We initialize the system at γi(0) = 0 for all i. The arrival

processes to whitespace users are assumed to deterministic, i.e., a fixed number

of packets arrive at a whitespace user at the beginning of each time slot. In

our simulation, the arrival rates are symmetric to all whitespace users, and

denoted by λ (bits/second).

In the simulations, we compare the performance of the joint learning

and scheduling algorithm with the following two algorithms.

1. Scheduling with perfect knowledge of p̄(t).

2. MaxWeight downlink scheduling only when p̄(t) = ∅. In this case, the

whitespace base station transmits with a power that guarantees limited

interference (ǫd) to all micro-cells in the network.

The joint algorithm queries 10 whitespace users at each time slot to recover

∆Ap(t).We set the penalty parameter ξ to be 0.0005 in the Lasso (5.9). Recall

that of p̄(t) may not be always sparse due to the randomness of the activity

processes, and the estimation errors may propagate over time. Steps 6 to

8 in Algorithm 3 are in place to counter this phenomenon. The number of

additional whitespace users queried for error estimation is set to be M̃ = 4

and the error threshold is set to be 0.5.

In Figure 5.3, we plot the average maximum queue lengths under the

two cases. We observe that the per-user throughput under the joint learning

and scheduling algorithm is close to 2.5 (Mbits/second), which is 60% of the
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throughput under the complete knowledge case where the throughput is 4

(Mbits/second). This demonstrates the competitive performance of the joint

learning and scheduling approach.
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Figure 5.3: The average maximum queue lengths under the two different cases

5.8 Conclusion

In this chapter, we exploited the naturally-sparse dynamics of the inter-

fering network’s transmission processes to develop a joint learning and schedul-

ing algorithm for whitespace radio networks. The learning algorithm is a first

(to the best of our knowledge) application of compressed sensing to whitespace

networks. The simulation results established the superior quality of the joint

learning and scheduling algorithm.
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Appendix A

Appendix for Chapter 3

A.1 Proof of Theorem 10

The proof is essentially the same as in [48] with some minor modifica-

tions. It uses Foster’s theorem to prove positive recurrence of the queue state

process q[t]. We define a quadratic potential function V (x) = 1
2

∑

i x
2
i . The

standard Lyapunov drift function can be computed and bounded as

d(q)
= E [V (q[t + 1])− V (q[t]) | q[t] = q]

= 1
2

∑K
k=1E [q2k[t + 1]− q2k[t] | qk[t] = qk]

= 1
2

∑K
k=1E

[

([qk[t] + ak[t + 1]− dk[t+ 1]]+)
2 − q2k[t] | qk[t] = qk

]

≤ 1
2

∑K

k=1E
[
(ak[t + 1]− dk[t+ 1])2 + 2qk[t] (ak[t + 1]− dk[t+ 1]) |

qk[t] = qk] since [x]+ ≤ x

≤ 1
2

∑K
k=1E [a2k[t+ 1]] + E [d2k[t + 1]] + 2E [qk[t] (ak[t+ 1]− dk[t + 1]) |

qk[t] = qk] .
(A.1)

As is standard in the literature, we assume that the arrival and departure
processes have bounded second moments, i.e., E [a2k[t + 1]]+E [d2k[t+ 1]] ≤ ck,
for some ck > 0, ∀k. For Part (i), we can continue to bound the drift as

d(q)

≤ 1
2

∑K
k=1 ck + 2E [qk[t] (ak[t+ 1]− dk[t+ 1]) | qk[t] = qk]

= 1
2

∑K
k=1 ck + 2qk (E [ak[t+ 1]]− E [dk[t+ 1] | qk[t] = qk])

= 1
2

∑K
k=1 ck + 2qk

(
λk − βνk(φ̄) + βνk(φ̄)− E [dk[t+ 1] | qk[t] = qk]

)

=
(

1
2

∑K
k=1 ck

)

+ qT
(
λ− βν(φ̄)

)

+qT
(
β
∑

m∈M
πm
∑

b∈B
φmbµ(m,b)− E [d[t+ 1] | q[t] = q]

)

=
(

1
2

∑K
k=1 ck

)

+ qT
(
λ− βν(φ̄)

)
+ β

∑

m∈M
πm
∑

b∈B
φmb

(
qTµ(m[t],b)

)

−E
[
qTd[t+ 1] | q[t] = q

]

(A.2)
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Since qT
(
λ− βν(φ̄)

)
< 0 by the conditions of the theorem, we need to show

that

β
∑

m∈M
πm
∑

b∈B
φmb

(
qTµ(m,b)

)
− E

[
qTd[t+ 1] | q[t] = q

]
≤ 0, (A.3)

in order to prove positive recurrence or stability according to Foster’s Theo-

rem. To this end, we define χmb[t + 1] ∈ {0, 1}, to be random variables that

represent the scheduling decision at time t+1; χmb̄[t+1] = 1 if bit allocation b̄

is selected at time t+1 and χmb̄[t+1] = 0 otherwise. Since only one bit alloca-

tion can be selected at each time, we have the constraint
∑

b∈B χmb[t+1] = 1.

We re-write (A.3) using these newly introduced scheduling variables as

β
∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
− E

[
qTd[t+ 1] | q[t] = q

]

= β
∑

m∈M πm
∑

b∈B φmb

[
qTµ(m,b)

]

−∑m∈M πmE
[∑

b∈B χmb[t+ 1]qTd[t+ 1] | q[t] = q,m[t] = m
]

= β
∑

m∈M πm
∑

b∈B φmb

[
qTµ(m,b)

]

−∑m∈M πm
∑

b∈B χmb[t+ 1]qTE [µ(m[t+ 1],b) | q[t] = q,m[t+ 1] = m]
since given q[t] = q and m[t+ 1] = m, the scheduling variables χmb[t+ 1],
∀m,b, are no longer random

= β
∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
−∑m∈M πm

∑

b∈B χmb[t+ 1]qTµ(m,b)
= β

∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
−∑m∈M πm

(
qTµ(m,b)

)

for some b̄ ∈ B

≤ β
∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
− β

∑

m∈M πm
[
maxb∈B qTµ(m,b)

]
.

(A.4)

The last inequality follows since our scheduling rule dictates that we choose

allocation b̄ such that qTµ(m, b̄) ≥ β max b∈Bq
Tµ(m,b). Finally, it is

straightforward to see that

max
[
β
∑

m∈M πm
∑

b∈B φmbq
Tµ(m,b)

]
= β

∑

m∈M πm
[
maxb∈B qTµ(m,b)

]

s.t
∑

b∈B φmb = 1,∀m ∈ M

φmb ∈ [0, 1],∀m ∈ M,b ∈ B
.

(A.5)
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Thus, the drift d(q) is strictly negative for qk sufficiently large which proves

stability.

For Part (ii), as done in the earlier proof, we bound the drift as

d(q) ≤ 1
2

∑K
k=1 ck + 2E [qk[t] (ak[t+ 1]− dk[t+ 1]) | qk[t] = qk]

=
(

1
2

∑K
k=1 ck

)

+ qT
(
λ− ν(φ̄)

)
+
∑

m∈M
πm
∑

b∈B
φmb

(
qTµ(m[t],b)

)

−E
[
qTd[t+ 1] | q[t] = q

]
.

(A.6)

We now show that

β
∑

m∈M
πm
∑

b∈B
φmb

(
qTµ(m,b)

)
− E

[
qTd[t+ 1] | q[t] = q

]
≤ qTβ. (A.7)

We define χmb[t + 1] ∈ {0, 1}, to be random variables that represent the

scheduling decision at time t+ 1; χmb̄[t+ 1] = 1 if bit allocation b̄ is selected

at time t + 1 and χmb̄[t + 1] = 0 otherwise. Since only one bit allocation can

be selected at each time, we have the constraint
∑

b∈B χmb[t + 1] = 1. We

re-write (A.3) using these newly introduced scheduling variables as

∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
− E

[
qTd[t+ 1] | q[t] = q

]

=
∑

m∈M πm
∑

b∈B φmb

[
qTµ(m,b)

]

−∑m∈M πmE
[∑

b∈B χmb[t+ 1]qTd[t+ 1] | q[t] = q,m[t] = m
]

=
∑

m∈M πm
∑

b∈B φmb

[
qTµ(m,b)

]

−∑m∈M πm
∑

b∈B χmb[t+ 1]qTE [µ(m[t+ 1],b) | q[t] = q,m[t+ 1] = m]
since given q[t] = q and m[t+ 1] = m, the scheduling variables χmb[t+ 1],
∀m,b, are no longer random

=
∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
−∑m∈M πm

∑

b∈B χmb[t+ 1]qTµ(m,b)
=

∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
−∑m∈M πm

∑

b∈B qTµ(m, b̄)
≤ ∑

m∈M πm
∑

b∈B φmb

(
qTµ(m,b)

)
−∑m∈M πm

[
qTµ(m,b∗)− qTβ

]

since b̄ satisfies qTµ(m, b̄) ≥ qTµ(m,b∗)− qTβ.

≤ qTβ by the argument in (A.5)

(A.8)

The proof is complete from the fact that qT
(
λ+ β − ν(φ̄)

)
< 0 by the con-

ditions of the theorem.
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A.2 Proof of Theorem 1

Firstly, we present an alternate characterization of sub-modular func-

tions from Nemhauser et al. [70] that is useful for the proof. For any two

disjoint subsets S and T = {t1, . . . , tN}, S, T ⊆ E, we can write

F (S ∪ T ) =
[
∑N

i=2 F (S ∪ {t1, . . . , ti})− F (S ∪ {t1, . . . , ti−1})
+ (F (S ∪ {t1})− F (S))] + F (S)

(A.9)

through telescoping. By the sub-modularity of F , we have

F (S ∪ T ) ≤
[
∑N

i=1 F (S ∪ ti)− F (S)
]

+ F (S)

= F (S) +
∑N

i=1 ρti(S)
(A.10)

and furthermore, for S ⊆ T , this simplifies to

F (T ) ≤ F (S) +
∑

t∈T\S
ρt(S). (A.11)

Now, let S∗ and Sg be the optimal solution and the solution generated

by the greedy algorithm respectively; ρi represents the incremental value that

is obtained during the i-th iteration of the greedy algorithm. Then, by setting

S = Sg,0 = ∅ in (A.11) and noting that |S∗| ≤ k since it is a uniform matroid,

we calculate

F ∗ ≤
∑

e∈T
F ({e}) ≤ kρ1 = k maxe∈EF ({e}). (A.12)

Recalling that F (Sg,0) = 0 due to normalization and applying (A.11) to set

Sg,j generated by the greedy algorithm after j iterations, we have

F ∗ ≤ F (Sg,j) +
∑

t∈T\Sg,j
ρt(Sg,j)

=
∑j

i=1 (F (Sg,i)− F (Sg,i−1)) +
∑

t∈T\Sg,j
ρt(Sg,j)

≤ ∑j

i=1 ρi + kρj+1.

(A.13)
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By dividing both sides by k, re-arranging and adding
∑j

i=1 ρi to both sides,

we get
j+1
∑

i=1

ρi ≥
1

k
F ∗ +

k − 1

k

j
∑

i=1

ρi. (A.14)

The following result is proved through induction in order to solve the recursion.
j
∑

i=1

ρi ≥
(
kj − (k − 1)j

kj

)

F ∗. (A.15)

For j = 1, we get ρ1 ≥ F ∗

k
, which is true since, for S∗ = {s∗1, s∗2, . . . , s∗K}, we

have

F ∗ = F (S∗)

=
∑k

i=2

[

F ({s∗1, s∗2, . . . , s∗i })− F
(

{s∗1, s∗2, . . . , s∗(i−1)}
)]

+ F ({s∗1})
≤ (k − 1)F ({s∗1}) + F ({s∗1})
= kF ({s∗1}) .

(A.16)

Assuming the statement holds true for (j − 1), and substituting it in (A.14),

we get
∑j

i=1 ρi ≥ 1
k
F ∗ + k−1

k

(
kj−1−(k−1)j−1

kj−1

)

F ∗

= 1
k
F ∗ + (k − 1)

(
kj−1−(k−1)j−1

kj

)

F ∗

=
kj−1+(k−1)(kj−1−(k−1)j−1)

kj
F ∗

=
(
kj−(k−1)j

kj

)

F ∗,

(A.17)

which proves the claim. Now, by setting j = k, we calculate

Fg =

k∑

i=1

ρi ≥
(
kk − (k − 1)k

kk

)

F ∗, (A.18)

or in other words,

Fg

F ∗ ≥
(
kk − (k − 1)k

kk

)

= 1−
(

1− 1

k

)k

. (A.19)

The result follows since limk→∞
(
1− 1

k

)k
= 1

e
and the fact that

(
1− 1

k

)k
is

increasing in k.
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A.3 Proof of Theorems 12-14

A.3.1 Proof of Theorem 12

With ∆(bk) = E[σ2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)bk
)
, the objective function

(omitting dependence on t) becomes

minimizeb∈B −∑K
k=1wklog2

(
1 + akE[σ

2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)bk
))

.

(A.20)

The objective function is clearly convex since 2−c2(Nt,Nr)bk is convex. By study-

ing (A.20) closely, we can also say that b∗k is such that
∑K

k=1 b
∗
k = B since if

this not true, we can increase the bit allocation for at least one user thereby

decreasing the objective function. Since B > 0, bk = 0, ∀k is in the interior of

our constraint set B which implies that Slater’s constraint qualification condi-

tion holds. Consequently, the Karush-Kuhn-Tucker (KKT) conditions become

sufficient in nature. The Lagrangian cost function can be written as

L(bk, λk, η) = −∑K

k=1wklog2
(
1 + akE[σ

2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)bk
))

−λkbk + η (
∑

k bk − B)

(A.21)

for which the KKT conditions are

b∗k ≥ 0, λ∗k ≥ 0, b∗kλk = 0,

η∗ =
akE[σ

2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+akE[σ2])2
c2(Nt,Nr)bk−E[σ2]c1(Nt,Nr)

+ λ∗k,
(A.22)

Since
akE[σ

2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+akE[σ2])2
c2(Nt,Nr)bk−E[σ2]c1(Nt,Nr)

is a decreasing function in bk, if η
∗ ≤

akE[σ
2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+E[σ2])(ak−c1(Nt,Nr))
, then λ∗k = 0 and

b∗k = 1
c2(Nt,Nr)

log2

(
E[σ2]c1(Nt,Nr)
(1+akE[σ2])

(
akc2(Nt,Nr)(log 2)

η∗
+ 1
))

(A.23)
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is a valid solution to (A.20). If η∗ >
akE[σ

2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+E[σ2])(ak−c1(Nt,Nr))
, λ∗k = η∗ −

akE[σ
2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+E[σ2])(ak−c1(Nt,Nr))
and b∗k = 0. Hence, we can write the solution as

b∗k =
[

1
c2(Nt,Nr)

log2

(
E[σ2]c1(Nt,Nr)
(1+akE[σ2])

(
akc2(Nt,Nr)(log 2)

η∗
+ 1
))]+

(A.24)

where η∗ is chosen such that
∑

k b
∗
k = B.

A.3.2 Proof of Theorem 13

In order to compute (3.26), we first need to sort

{
akE[σ

2]c1(Nt, Nr)c2(Nt, Nr)(log 2)

(1 + E[σ2])(ak − c1(Nt, Nr))

}

in ascending order, which has complexity O(Klog2K). Call this sorted set
{
amE[σ2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+E[σ2])(am−c1(Nt,Nr))

}

. Once sorted, we need to set

η∗ =
amE[σ

2]c1(Nt, Nr)c2(Nt, Nr)(log 2)

(1 + E[σ2])(am − c1(Nt, Nr))

for each m and test feasibility. Testing feasibility incurs O(K), as it is a K-

term addition and scanning through each
amE[σ2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+E[σ2])(am−c1(Nt,Nr))
incurs

O(log2K) through the use of binary search. As we increase η∗, more b∗m terms

are set to zero. Once we locate m1 and m2 such that

η∗ =
am1E[σ

2]c1(Nt, Nr)c2(Nt, Nr)(log 2)

(1 + E[σ2])(am1 − c1(Nt, Nr))

is infeasible while η∗ =
am2E[σ

2]c1(Nt,Nr)c2(Nt,Nr)(log 2)

(1+E[σ2])(am2−c1(Nt,Nr))
is feasible, we can compute

η∗ in closed-form since it satisfies
∑

m≥m2
b∗m = B. Hence, the total complexity

is O(Klog2K) + O(Klog2K) = O(Klog2K).
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A.3.3 Proof of Theorem 14

Firstly, we have that

b∗k,INT ≥
{
b∗k − 1, b∗k ≥ 1

0, b∗k < 1
. (A.25)

From (A.25), we can bound what essentially is the quantization noise as

1−c1(Nt,Nr)2
−c2(Nt,Nr)b

∗
k

1−c1(Nt,Nr)2
−c2(Nt,Nr)b

∗
k,INT

≤ max
{

1
1−c1(Nt,Nr)2c2(Nt,Nr)

, 1
1−c1(Nt,Nr)

}

.
(A.26)

Now, we can bound the loss in weighted-sum-rate as follows

∑K
k=1wklog2

(
1 + akE[σ

2]
(
1− c1(Nt, Nr)2

−c2(Nt,Nr)b∗k
))

−∑K
k=1wklog2

(

1 + akE[σ
2]
(

1− c1(Nt, Nr)2
−c2(Nt,Nr)b∗k,INT

))

≤ ∑K
k=1wklog2




1+akE[σ

2]
(

1−c1(Nt,Nr)2
−c2(Nt,Nr)b

∗
k

)

1+akE[σ2]

(

1−c1(Nt,Nr)2
−c2(Nt,Nr)b

∗
k,INT

)





≤ ∑K
k=1wklog2

(

1 + 1−c1(Nt,Nr)2
−c2(Nt,Nr)b

∗
k

1−c1(Nt,Nr)2
−c2(Nt,Nr)b

∗
k,INT

)

≤ log2

(

1 + max
{

1
1−c1(Nt,Nr)2c2(Nt,Nr)

, 1
1−c1(Nt,Nr)

})(
∑K

k=1wk

)

from (A.26)

(A.27)

to get the result.
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Appendix B

Appendix for Chapter 4

B.1 Proofs of Lemmas

B.1.1 Proof of Lemma 13

The proof is based on induction on the variable N . For N = 2, the

result holds true because

∫

x2κ2
e−wdw = e−x2κ2 (B.1)

We will assume then that the hypothesis is true for N = k, i.e.,

∫

xkκN

∫

xk−1κk−1
. . .
∫

x2κ2
e−w

∏k−1
i=2 e

−xidwdx2dx3 . . . dxk−1

=
[
∏k−1

i=1
1
δi

]

e−δk−1κkxk .
(B.2)

Then for N = k + 1, we have that

∫

xk+1κN

∫

xkκk−2
. . .
∫

x2κ2
e−w

∏k

i=2 e
−xidwdx2dx3 . . . dxk

=
∫

xk+1κN

[∫

xkκk−2
. . .
∫

x2κ2
e−w

∏k−1
i=2 e

−xidwdx2dx3 . . . dxk−1

]

e−xkdxk

=
∫

xk+1κk+1

[
∏k−1

i=1
1
δi

]

e−δk−1κkxke−xkdxk

=
[
∏k−1

i=1
1
δi

] ∫

xk+1κk+1
e−(δk−1κk+1)xkdxk

=
[
∏k

i=1
1
δi

]

e−δkκk+1xk+1.

(B.3)

This concludes the proof.
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B.1.2 Proof of Lemma 23

The proof is based on induction on the variable N . For N = 2, the

result holds true because

∫M

x2κ2i
e−wdw = e−x2κ2i − eM , ∀i

.
= e−x2κ2i, ∀i. (B.4)

We will assume then that the hypothesis is true for N = k, i.e.,

∫ M
κ(k−1)i
xkκki

∫ M
κ(k−2)i
xk−1κ(k−1)i

. . .
∫M

x2κ2i
e−w

∏k−1
i=2 e

−xidwdx2dx3 . . . dxk−1

≥
[
∏k−1

j=1
1
δij

]

e−xkκkiδ
i
k−1 , ∀i

(B.5)

Then for N = k + 1, we have that

∫ M
κki
xk+1κ(k+1)i

∫ M
κ(k−1)i
xkκki

. . .
∫M

x2κ2i
e−w

∏k

i=2 e
−xidwdx2dx3 . . . dxk

=
∫ M

κki
xk+1κ(k+1)i

[
∫ M

κ(k−1)i
xkκki

. . .
∫M

x2κ2i
e−w

∏k−1
i=2 e

−xidwdx2dx3 . . . dxk−1

]

e−xkdxk

≥
∫ M

κki
xk+1κ(k+1)i

[
∏k−1

j=1
1
δij

]

e−xkκkiδ
i
k−1e−xkdxk

=
[
∏k−1

j=1
1
δij

] ∫ M
κki
xk+1κ(k+1)i

e−xk(κkiδ
i
k−1+1)dxk

=
[
∏k

j=1
1
δij

] [

e−xk+1κ(k+1)iδ
i
k − e

−xk+1
M
κki

]

≥
[
∏k

j=1
1
δij

]

e−xk+1κ(k+1)iδ
i
k .

(B.6)

B.1.3 Proof of Lemma 14

It is straightforward to see the following implication on events

{βkhkk ≥ βi2hi2i2 ≥ . . . βiKhiK iK} → {k = argmax
j
βjhjj}. (B.7)

Furthermore, for any two permutations (k, i2, . . . , iK) ∈ Pk and (k, j2, . . . , jK) ∈

Pk, j1 = k, the corresponding events {βkhkk ≥ βi2hi2i2 ≥ . . . βiKhiK iK} and
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{βkhkk ≥ βj2hj2j2 ≥ . . . βjKhjKjK} are mutually exclusive. Thus, it follows

that
{
∪(i1,i2,...,iK)∈Pk, i1=k{βi1hi1i1 ≥ βi2hi2i2 ≥ . . . βiKhiK iK}

}
and

{k = argmaxj βjhjj} are equivalent events and the probability of the latter

event occurring can be expressed as

Pr (k = argmaxj βjhjj)
=

∑

(i1,i2,...,iK)∈Pk , i1=k
Pr (βi1hi1i1 ≥ βi2hi2i2 ≥ . . . βiKhiKiK ) .

(B.8)

By (B.8), we can now focus on computing Pr (βi1hi1i1 ≥ βi2hi2i2 ≥ . . . βiKhiK iK )

for any arbitrary permutation (i1, i2, . . . , iK) ∈ Pk, i1 = k. For ease in nota-

tion, we set k = 1 and p∗ = [1 2 . . .K]T as the user and permutation of

interest without loss of generality. This probability can be computed from

first principles as follows

Pr (β1h11 ≥ β2h22 ≥ . . . βKhKK)
= Pr (h11 ≥ σ21h22 ≥ . . . σK1hKK)

=
∫∞
0

∫∞
σK1xK

∫∞
σ(K−1)1xK−1

. . .
∫

σ21x2
e−w

∏K−1
i=2 e−xidwdx2dx3 . . . dxK

(B.9)

We proceed by applying the result in Lemma 13 to get

Pr (β1h11 ≥ β2h22 ≥ . . . βKhKK) =

[
∏K−1

j=1
1

δ
p∗

j

]
∫∞
0
e−δ

p∗

K−1κKxKe−xKdxK

=
∏K

j=1
1

δ
p∗

j

.

(B.10)

The result follows by substituting (B.10) into (B.8).

B.1.4 Proof of Lemma 15

Using similar arguments as in the proof of Lemma 15, we get the fol-

lowing

Pr
(
k = argmaxj βj [hjj]bj

)

=
∑

(i1,i2,...,iK)∈Pk, i1=k
Pr
(

βi1 [hi1i1 ]bi1 ≥ βi2 [hi2i2]bi2 ≥ . . . βiK [hiK iK ]biK

)

.

(B.11)
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The following lemma, which relates hii and [hii]bi , is useful later in the proof.

Lemma 22. If hii ∈ [0,M ], then hii − M

2bi
≤ [hii]bi ≤ hii.

Proof. The proof follows from the definition of [hii]bi in (4.5) along with the

property ⌊x⌋ ≥ x− 1 for any x ≥ 0.

We focus again on the case k = 1 without loss of generality. From the
above result followed by a little algebra, we establish that the following event

{
h11 ≥ σ21h22 +M2−b1 ≥ σ31h33 +M2−b1 + σ21M2−b2 ≥ . . . ≥ σK1hKK+

[
∑K−1

j=1 σj1M2−bj

]}

∩ {hii ∈ [0,M ] , ∀i} (B.12)

implies the event {β1[h11]b1 ≥ β2[h22]b2 ≥ . . . βK [hKK]bK}. Thus, the proba-

bility of the event (B.12) can be used to form a lower bound on

Pr

(

k = argmax
j
βj [hjj]bj

)

and can computed from first principles as follows

Pr ({h11 ≥ σ21h22 +Mγ1 ≥ σ31h33 +Mγ2 ≥ . . . ≥ σK1hKK +MγK−1}
∩ {hii ∈ [0,M ] , ∀i})

=
∫ M

σK1
(1−γK−1)

0 . . .
∫

M
σ(K−2)1

(1−γK−3)

σ(K−1)1xK−1+MγK−2
. . .
∫M

σ21x2+Mγ1
e−w

∏K−1
i=2 e−xidwdx2dx3 . . . dxK

(B.13)

where γp =
∑p−1

j=1 σj12
−bj . The above expression can be bounded in closed-form

by using the following lemma.

Lemma 23. Given any set of ratios {σij}Ni,j=1, N ≥ 2 and if M is selected

according to (4.4), the following relationship holds when b satisfies the con-

straints {∑K−2
j=1 σji2

−bj ≤ 1− 1
γ3
, ∀i}

∫
M

σ(K−1)1
(1−γK−2)

σK1xK+MγK−1

∫
M

σ(K−2)1
(1−γK−3)

σ(K−1)1xK−1+MγK−2
. . .
∫M

σ21x2+Mγ1

∏K−1
i=1 e−xidx1dx2dx3 . . . dxK−1

.
=

[
∏K−1

i=1
e−Mγiδi

δi

]

exKδK−1σK1

(B.14)
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where δij = δij−1κji + 1 and δi1 = 1, ∀i.

Proof. The proof is based on induction on the variable N . For N = 2, the

result holds true because

∫ M
σ21

(1−γ1)
0

∫M

σ21x2+Mγ1
e−x1e−x2dx1dx2

=
∫ M

σ21
(1−γ1)

0 e−x2
[
e−(σ21x2+Mγ1) − e−M

]
dx1

.
= e−Mγ1

∫ M
σ21

(1−γ1)
0

[
e−δ2x2

]
dx2

= e−Mγ1

δ2
− e

−δ2 M
σ21

(1−γ1)

≥ e−Mγ1

δ2
− e

− M
γ3σmax

.
= e−Mγ1

δ2

(B.15)

We will assume then that the hypothesis is true for N = k, i.e.,

∫
M

σ(k−1)1
(1−γk−2)

σk1xk+Mγk−1

∫
M

σ(k−2)1
(1−γk−3)

σ(k−1)1xk−1+Mγk−2
. . .
∫M

σ21x2+Mγ1

∏k−1
i=1 e

−xidx1dx2dx3 . . . dxk−1

.
=

[
∏k−1

i=1
e−Mγiδi

δi

]

exkδk−1σk1 .

(B.16)

Then for N = k + 1, we have that

∫ M
σk1

(1−γk−1)

σ(k+1)1x(k+1)+Mγk

∫
M

σ(k−1)1
(1−γk−2)

σk1xk+Mγk−1
. . .
∫M

σ21x2+Mγ1

∏k
i=1 e

−xidx1dx2dx3 . . . dxk

=
∫ M

σk1
(1−γk−1)

σ(k+1)1x(k+1)+Mγk

[
∫

M
σ(k−1)1

(1−γk−2)

σk1xk+Mγk−1
. . .
∫M

σ21x2+Mγ1

∏k−1
i=1 e

−xidx1dx2dx3 . . . dxk−1

]

e−xk

.
=

[
∏k−1

i=1
e−Mγiδi

δi

] ∫ M
σk1

(1−γk−1)

σ(k+1)1x(k+1)+Mγk
e−xk(δk−1σk1+1)

=
[
∏k−1

i=1
e−Mγiδi

δi

] ∫ M
σk1

(1−γk−1)

σ(k+1)1x(k+1)+Mγk
e−xkδk

=
[
∏k

i=1
e−Mγiδi

δi

] [

e−σ(k+1)1x(k+1)δk − e
− M

σk1
(1−γk−1)δk

]

≥
[
∏k

i=1
e−Mγiδi

δi

] [

e−σ(k+1)1x(k+1)δk − e
− M

γ3σmax

]

.
=

[
∏k

i=1
e−Mγiδi

δi

]

e−σ(k+1)1x(k+1)δk .

(B.17)

We continue the derivation in (B.13) by applying the result in the above
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lemma

Pr ({h11 ≥ σ21h22 +Mγ1 ≥ σ31h33 +Mγ2 ≥ . . . ≥ σK1hKK +MγK−1}
∩ {hii ∈ [0,M ] , ∀i})

=
∫ M

σK1
(1−γK−1)

0 . . .
∫

M
σ(K−2)1

(1−γK−3)

σ(K−1)1xK−1+MγK−2
. . .
∫M

σ21x2+Mγ1
e−w

∏K−1
i=2 e−xidwdx2dx3 . . . dxK

.
=

[
∏k−1

i=1
e−Mγiδi

δi

] ∫ M
σK1

(1−γK−1)

0 e−xk(δk−1σk1+1)dxk
.

≥ ∏k
i=1

e−Mγiδi

δi

(B.18)

to obtain the main result.

B.1.5 Proof of Lemma 16

The event {i = argmaxj βj[hjj ]bj} can be equivalently expressed as

{βi[hii]bi ≥ maxj 6=i βj[hjj ]bj}. Consider the case when the user of interest is

has highest priority, i.e., i∗ = argmaxj βj. For i 6= i∗, the expectation of

interest can be expressed as

Eh

[

log2

(

1 + Pgiihii
No

) ∣
∣
∣ i = argmaxj βj [hjj]bj

]

= Eh

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ βi[hii]bi ≥ maxj 6=i βj [hjj]bj

]

= E{hj}j 6=i

[

Ehi

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ βi[hii]bi ≥ maxj 6=i βj [hjj]bj , {hjj}j 6=i

]]

≥ E{hj}j 6=i

[

log2

(

1 +
Pgii maxj 6=i σji[hjj ]bj

No

)]

.

(B.19)
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Now, substituting the result in Lemma 22 into (B.19), we get

Eh

[

log2

(

1 + Pgiihii
No

) ∣
∣
∣ i = argmaxj βj [hjj]bj

]

≥ E{hj}j 6=i

[

log2

(

1 +
Pgii maxj 6=i σji[hjj ]bj

No

)]

≥ Pr
(

hjj ∈
[
M

2bj
,M
]

, ∀j 6= i
)

E{hj}j 6=i

[

log2

(

1 +
Pgii maxj 6=i σji(1−2−bj )hjj

No

) ∣
∣
∣

hjj ∈
[
M

2bj
,M
]

, ∀j 6= i
]

=

(

e
− M

2
bj − e−M

)K−1

E{hj}j 6=i

[

log2

(

1 +
Pgii maxj 6=i σji(1−2−bj )hjj

No

) ∣
∣
∣

hjj ∈
[
M

2bj
,M
]

, ∀j 6= i
]

.

(B.20)

Since it is true that maxj 6=i σji(1 − 2−bj )hjj ≥ σki(1 − 2−bk)hkk, ∀k 6= i, we

have that

E{hjj}j 6=i

[

log2

(

1 +
Pgii maxj 6=i σji(1−2−bj )hjj

No

) ∣
∣
∣ hjj ∈

[
M

2bj
,M
]

, ∀j 6= i
]

≥ Ehkk

[

log2

(

1 + Pgiiσki(1−2−bk )hkk
No

) ∣
∣
∣ hjj ∈

[
M

2bj
,M
]

, ∀j 6= i
]

, ∀k 6= i,

(B.21)

and thus, for all users i 6= i∗, the result can be obtained as follows

Eh

[

log2

(

1 + Pgiihii
No

) ∣
∣
∣ i = argmaxj βj[hjj ]bj

]

≥ (1− 2−bk)Ehkk

[

log2

(

1 + Pgiiσkihkk
No

) ∣
∣
∣ hkk ∈

[
M

2bj
,M
]]

, ∀k 6= i

by Jensen’s inequality

≥ (1− 2−bi,min)Ehkk

[

log2

(

1 +
Pgiiσ

∗
i hkk

No

) ∣
∣
∣ hkk ∈

[
M

2bj
,M
]]

.

(B.22)

Now consider the user i∗ = argmaxj βj with highest priority. Then, for this

user, it follows that σ∗
i∗ = maxk 6=i∗ σki∗ ≤ 1 and hence, the event {[hi∗i∗ ]b∗i ≥

maxj 6=i∗[hjj]bj} implies the event {βi∗ [hi∗i∗ ]b∗i ≥ maxj 6=i∗ βj[hjj]bj}. Again,

through the Law of Total Probability, one can express the expectation of in-
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terest as

Eh

[

log2

(

1 + Pgi∗i∗hi∗i∗

No

) ∣
∣
∣ i∗ = argmaxj βj [hjj ]bj

]

≥ Eh

[

log2

(

1 + Pgi∗i∗hi∗i∗

No

) ∣
∣
∣ i∗ = argmaxj [hjj ]bj

]

= Eh

[

log2

(

1 +
Pgi∗i∗ [hi∗i∗ ]bi∗

No

) ∣
∣
∣ [hi∗i∗ ]bi∗ ≥ maxj 6=i∗ [hjj ]bj

]

= E{hj}j 6=i∗

[

Ehi∗

[

log2

(

1 +
Pgi∗i∗ [hi∗i∗ ]bi∗

No

) ∣
∣
∣ [hi∗i∗ ]bi∗ ≥ maxj 6=i∗ [hjj ]bj , {hjj}j 6=i∗

]]

≥ E{hj}j 6=i∗

[

log2

(

1 +
Pgi∗i∗ maxj 6=i∗ [hjj ]bj

No

)]

.

(B.23)

and using similar arguments as earlier, we get

Eh

[

log2

(

1 + Pgi∗i∗hi∗i∗

No

) ∣
∣
∣ i∗ = argmaxj βj [hjj]bj

]

≥
(

e
− M

2
bj − e−M

)K−1

(1− 2−bi,min)Ehkk

[

log2

(

1 + Pgiihkk
No

) ∣
∣
∣ hkk ∈

[
M

2bj
,M
]]

,

where bi,min = minj 6=i bj .
(B.24)

to obtain the result.

B.2 Proof of Theorem 23

We start with the definitions obtained through conditioning

µ̄i[w,G[t̄TLS ],b]
µ̄∗i [w,G[t̄TLS ]]

=
Pr(i=argmaxj βj [hjj ]bj)
Pr(i=argmaxj βjhjj)

Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj

]

Eh

[

log2(1+
Pgiihii

No
)
∣
∣
∣i=argmaxj βjhjj

]

(B.25)
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By substituting the results in Lemmas 14 and 15, we proceed to obtain

µ̄i[w,G[t̄TLS],b]
µ̄∗
i [w,G[t̄TLS]]

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p

i δ
p

i

) Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj

]

Eh

[

log2

(

1+
Pgiihii

No

)

∣
∣
∣i=argmaxj βjhjj

]

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p

i δ
p

i

)

Eh

[

log2

(

1 +
Pgii[hii]bi

No

) ∣
∣
∣ i = argmaxj βj [hjj ]bj

]

×
(

Pr
(
hii ∈

[
M
2bi
,M
])

Eh

[

log2

(

1 + Pgiihii

No

) ∣
∣
∣ hii ∈

[
M
2bi
,M
]]

+ Pr (hii ∈ [M,∞))

Eh

[

log2

(

1 + Pgiihii

No

) ∣
∣
∣ hii ∈ [M,∞)

]

+ Pr
(
hii ∈

[
0, M

2bi

])
Eh

[

log2

(

1 + Pgiihii

No

) ∣
∣
∣

hii ∈
[
0, M

2bi

]])−1

≥

(

e
−M maxp∈Pi

∑K
i=1 γ

p
i

δ
p
i

)

Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj

]

Pr
(

hii∈
[

M

2bi
,M

])

Eh

[

log2

(

1+
Pgiihii

No

)

∣
∣
∣hii∈

[

M

2bi
,M

]

]

+e−MEh

[

log2

(

1+
Pgiihii

No

)

∣
∣
∣hii∈[M,∞)

]×

.
=

(

e−M maxp∈Pi

∑K
i=1 γ

p

i δ
p

i

) Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj

]

Pr
(

hii∈
[

M

2bi
,M

])

Eh

[

log2

(

1+
Pgiihii

No

)

∣
∣
∣hii∈

[

M

2bi
,M

]

]

(B.26)

where the last step follows from the fact that

Eh

[

log2

(

1 +
Pgiihii

No

) ∣
∣
∣ i = argmax

j
βjhjj

]

≤ Eh

[

log2

(

1 +
Pgiihii

No

)]

along with the application of the Law of Total Probability. Thus we obtain

µ̄i[w,G[t̄TLS ],b]
µ̄∗
i [w,G[t̄TLS ]]

.

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p

i δ
p

i

) Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj[hjj ]bj

]

Pr
(

hii∈
[

M

2bi
,M

])

Eh

[

log2

(

1+
Pgiihii

No

)

∣
∣
∣hii∈

[

M

2bi
,M

]

]

.
=

(

e−M maxp∈Pi

∑K
i=1 γ

p

i δ
p

i

) Eh

[

log
2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj[hjj ]bj

]

Pr
(

hii∈
[

M

2bi
,M

])

Eh

[

log2

(

1+
Pgiihii

No

)

∣
∣
∣hii∈

[

M

2bi
,M

]

]

.

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p

i δ
p

i

) Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj ,hii∈

[

M

2bi
,M

]

]

Eh

[

log
2

(

1+
Pgiihii

No

)

∣
∣
∣hii∈

[

M

2bi
,M

]

] .

(B.27)
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For i 6= i∗ = argmaxj βj , we substitute the result from Lemma 16 to get

µ̄i[w,G[t̄TLS ],b]
µ̄∗i [w,G[t̄TLS ]]

.

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p
i δ

p
i

) Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj ,hii∈

[

M

2bi
,M

]

]

Eh

[

log2(1+
Pgiihii

No
)
∣
∣
∣hii∈

[

M

2bi
,M

]

]

.
= (1− 2−bi,min).

(B.28)

For the remaining users, we get

µ̄i[w,G[t̄TLS ],b]
µ̄∗i [w,G[t̄TLS ]]

.

≥
(

e−M maxp∈Pi

∑K
i=1 γ

p
i δ

p
i

) Eh

[

log2

(

1+
Pgii[hii]bi

No

)

∣
∣
∣i=argmaxj βj [hjj ]bj ,hii∈
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M

2bi
,M

]

]

Eh

[

log2(1+
Pgiihii

No
)
∣
∣
∣hii∈

[

M

2bi
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]

]

.
=

(

e−M maxp∈Pi

∑K
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p
i δ

p
i

)
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Pgiiσ

∗
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)

∣
∣
∣hkk∈
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M

2
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,M

]

]
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[

log2(1+
Pgiihii

No
)
∣
∣
∣hii∈

[

M

2bi
,M

]
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.
=

(

e−M maxp∈Pi

∑K
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p
i δ

p
i

)
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Ehkk

[
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Pgiiσ

∗
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∣
∣
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M

2
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,M

]

]
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log2

(

1+
Pgiir

∗
i
hii

No

)

∣
∣
∣hii∈

[

M

2bi
,M

]

]

.
=

(

e−M maxp∈Pi

∑K
i=1 γ

p
i δ

p
i

)

(1− 2−bi,min),

(B.29)

where the second last step follows from the fact that σ∗
i = maxj σji ≥ 1.

B.3 Proof of Theorem 17

Excluding minor generalizations, the proof is a reproduction from Ravin-

dran et al. [133] and Jindal [83]. Based on the signal model in (4.11), when the

receiver employs maximal-ratio-combining matched to the quantized beam-
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former ŵi, we can write

Ri(∞)−Ri({bj}j∈Ne(i))

=E

[

log2

(

1 + αiiPi

Nt,i

||Hiiwi||2
No

)]

− E

[

log2

(

1 + αiiPi

Nt,i

||Hiiŵi||2
∑

j∈N(i)
αiiPi
Nt,i

|ŵ†
iH

†
iiHjiwj |2+No

)]

=E

[

log2

(

1 + αiiPi

Nt,i

||Hiiwi||2
No

)]

− E

[

log2

(

1 +
∑

j∈Ne(i)
αjiPj

Nt,i
|ŵ†

iH
†
iiHjiwj|2 +No

)]

+E

[

log2

(

1 +
∑

j∈N(i)
αjiPj

Nt,j
|ŵ†

iH
†
iiHjiŵj|2 + 1

)]

≤ E

[

log2

(

1 + αiiPi

Nt,i

||Hiiwi||2
No

)]

− E

[

log2

(

1 + αiiPi

Nt,i
||Hjiŵi||2

)]

+E

[

log2

(

1 +
∑

j∈N(i)
αjiPj

Nt,j
|ŵ†

iH
†
iiHjiŵj|2

)]

by dropping some positive terms

= E

[

log2

(

1 +
∑

j∈N(i)
αjiPj

Nt,j
|ŵ†

iH
†
iiHjiŵj|2

)]

≤ log2

(

1 +
∑

j∈N(i)
αjiPj

Nt,j
E
[
||Hiiŵi||2

]
E
[
||Hjiŵj||2

])

by Jensen’s and

the Cauchy-Schwartz inequality

≤ log2

(

1 +
∑

j∈N(i)
αjiPj

Nt,j
Nr,iNt,i

∑Nr,j

k=1 E

[

|h†
k,jŵj|2

])

where hk,j is

the k-th column of H†
ji

(B.30)

In [83], the author shows that E

[

|h†
k,jŵj |2

]

=
Nt,j

Nt,i−1
∆j(bj) where ∆j(bj) =

2
− bj

Nt,j−1 . The result follows.

B.4 Proof of Theorem 5

The Lagrangian cost function for Part (i) can be written as

L(bi, λi, ηi, νi) = −∑i γi log2 b̃i −
∑

i ηib̃i +
∑

i λi

(

aiib̃i +
∑

j∈N(i) ajib̃j − di

)

+
∑

i νi(b̃i − 1)
(B.31)

for which the KKT conditions are

b̃∗i ≥ 0, η∗i ≥ 0, b̃∗i η
∗
i = 0,

ν∗i (b̃
∗
i − 1) = 0, λi ∈ R, aiib̃

∗
i +

∑

j∈N(i) ajib̃
∗
j ≤ di, ∀i

(B.32)
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and

d

db̃j
L(b∗i , λ

∗
i , η

∗
i , ν

∗
i ) = −

(
1

log 2

)
γj

b̃j
−η∗j+




∑

k∈N(j)∪{j}
λ∗kakj



+ν∗j = 0. (B.33)

We observe that b̃∗i 6= 0 implying that η∗i = 0 from (B.32), which when substi-

tuted in (B.33) yields




∑

k∈N(j)∪{j}
λ∗kakj



 =

(
1

log 2

)
γj

b̃j
− ν∗j . (B.34)

This means that if
(
∑

k∈N(j)∪{j} λ
∗
jakj

)

≤
(

1
log 2

)
γj

b̃j
, then b̃∗j = 1 and ν∗j > 0;

else

b̃∗j =

[(
1

log 2

)
γj

∑

k∈N(j)∪{j} λ
∗
kakj

]+

1

. (B.35)

The result follows.
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Appendix C

Appendix for Chapter 5

C.1 Proof of Lemma 20

In this proof, we use the j instead of i′ to index the primary transmit-

ters, i.e. the (i, j)-th entry H denotes the channel from primary transmitter j

to cognitive receiver i.

Recall that HCi,r
represent the sub-matrix of H containing the rows

specified in Ci. Then, the entries {hij} of sub-matrix HCi,r
are identically dis-

tributed. This follows from the observation that any two cognitive receivers

on the circle of radius rs,i will perceive the same distribution of primary trans-

mitters since the latter nodes are distributed on a circle. Recall that the

transformation G = WH essentially subtracts rows of H corresponding to

diametrically opposite users on each circle.

Thus, the columns of G are independent and all entries are centered.

The next step is to show that the entries gij = hij−h(i+1)j are symmetric. This

is does not follow immediately from the fact that hij and h(i+1)j are identically

distributed when indices i and i+ 1 come from the same partition since they

are not independent. Hence, we will need to employ the concept of exchange-

able random variables defined below for the specific case of a pair of random
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variables.

Definition (Exchangeability): Two random variables X and Y are called ex-

changeable if their joint cumulative distribution function (cdf) is symmetric,

i.e. if FX,Y (x, y) = FX,Y (y, x).

It is known the difference of two identically distributed, exchangeable

random variables is indeed symmetric [191]. We only need to establish this

fact for the case when hij and h(i+1)j come from the same circle, say Cc, since

the definition of G in (5.5.1) precludes any other possibility. To establish that

hij and h(i+1)j are exchangeable, we compute the cdf Fhij ,h(i+1)j
(x, y) as follows

Fhij ,h(i+1)j
(x, y)

= Pr(hij ≤ x, h(i+1)j ≤ y)
= Pr(dij ≥ 1

x
−K, d(i+1)j ≥ 1

y
−K)

= Pr(dij ≥
[
1
x
−K

]

+
, d(i+1)j ≥

[
1
y
−K

]

+
) where [u]+ = max{u, 0}

= Pr
(√

r2s,c + r2p − 2rs,crpcos(θj − θi) ≥
[
1
x
−K

]

+
,

√

r2s,c + rd2p − 2rs,crpcos(θj − θi − 2πq
Nc

) ≥
[
1
y
−K

]

+

)

= 1
2πV (R(rp, θj , rs,c, θi, x, y))

where

R(rp, θj , rs,c, θi, x, y) =
{

θj :
√

r2s,c + r2p − 2rs,crpcos(θj − θi) ≥
[
1
x
−K

]

+
,

√

r2s,c + r2p − 2rs,crpcos(θj − θi − 2πq
Nc

) ≥
[
1
y
−K

]

+

}

and V (A) denotes the volume of the set A. The volume of set

R(rp, θj , rs,c, θi, x, y)
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can be expressed as a sum of the volumes corresponding to smaller sets. To

that effect, we define

Rs(rs,c, θ, a) =

{

θj :
√

r2s,c + r2p − 2rs,crpcos(θj − θ) ≤
[
1

a
−K

]

+

}

and can thus write

V(R(rp, θj, rs,c, θi, x, y))

= 2πrp −
[

V(Rs(rs,c, θi, x)) + V

(

Rs

(

rs,c, θi +
2πq
Ns
, y
))

−
V

(

Rs (rs,c, θi, x) ∩ Rs

(

rs,c, θi +
2πq
Ns
, y
))]

.

(C.1)

From this characterization, we can immediately conclude that

V(R(rp, θj , rs,c, θi, x, y)) = V(R(rp, θj, rs,c, θi, y, x)),

which gives our the desired result that hij and h(i+1)j are exchangeable imply-

ing that the entries gij = hij − h(i+1)j are symmetric for all (i, j). It is clear

from the above arguments that exchangeabilty essentially follows due to the

uniform distribution of the primary transmitter.

The symmetry of gij is crucial for our next step where we argue that

columns of A = BG remain independent. By definition, aij =
1√

Var{gi1}
βigij.

Thus, to prove that the columns of A are independent, we need to show that

aij ⊥ ak for any arbitrary i, j and k 6= j. Since the Bernoulli random variables

are independent across rows and since gij ⊥ gmk, k 6= j, m 6= i, we clearly

have that aij ⊥ amk, k 6= j, m 6= i. Thus, we only need to establish that

aij ⊥ aik for k 6= j or equivalently that βigij ⊥ βigik. But this follows from the

symmetry of gij which means that knowledge of βigij reveals no information

about the random variable βi. Thus, the columns of A are independent. In
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addition, there are identically distributed and hence we can now focus on

studying the properties of column a1 without loss of generality.

The random vector a1 is isotropic since

E[a2i1] = 1
E[g2i1]

E [g2i1]

= 1,
(C.2)

and E[ai1ak1] =
1√
E[g2i1]

1√
E[g2

k1]
E [βiβkgi1gk1] =

1√
E[g2i1]

1√
E[g2

k1]
E [βiβk]E [gi1gk1] =

0 for i 6= k, implying that

E[|aT1 x|2] =
∑

i E[a
2
i1]x

2
i +

∑

i 6=k E[ai1ak1]xixk
= ||x||2. (C.3)

To prove that a1 is sub-gaussian, we will first condition on the position of

the first primary user (rp, θ1). This will allow us to apply Lemma 17 and

Lemma 18 since gi1 is now completely known thereby making ai1 a collection of

independent random variables. The elements ai1 are symmetric and bounded

with |ai1| ≤ |gi1|√
E[g2i1]

when conditioned on (rp, θ1).

Lemma 24. There exists Mp > 0, p = 0, 2, . . . , q − 1 such that

E[g2i1] =Mp, for p
Ns

q
< i ≤ (p+ 1)

Ns

q
and for all k. (C.4)

Proof: By definition, the distribution of gi1 for p
Ns

q
< i ≤ (p+1)Ns

q
depends on

the distance between the corresponding diametrically opposite users on circle

(p+1) along with the distribution of the first primary user. Since this distance

always remains the same independent of i and k, the result follows. ✷
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Hence, by Lemma 18 and since |gi1| ≤ 1, ai1 is sub-gaussian with

||ai1||ψ2|(rp,θ1) ≤ 1
M2

∗
where M∗ = minp=1,...,qMp. Here, we have introduced

notation || · ||ψ2|(rp,θ1) to indicate explicitly that we have conditioned on the

location of the first primary user. Now, from Lemma 17, we conclude that a1

is a sub-gaussian vector when conditioned on the location of the first primary

user with ||a1||ψ2|(rp,θ1) ≤ 2C, C > 0. However, since the sub-gaussian norm

||a1||ψ2|(rp,θ1) computed above is independent of (rp, θ1), this implies that a1 is

a sub-gaussian vector with ||a1||ψ2 ≤ 2C. This can be seen by applying the

Law of Total Probability to the definition of sub-gaussianity in Lemma 17.

C.2 Proof of Lemma 21

To show almost-sure convergence of the norm of a1, we would like to

prove that ∃c∗ > 0 such that

Pr

(

limk→∞

∣
∣
∣
∣
∣

1

k

k∑

i=1

a2i1 − c∗

∣
∣
∣
∣
∣
= 0

)

= Pr

(

limk→∞

∣
∣
∣
∣
∣

1

k

k∑

i=1

g2i1 − c∗

∣
∣
∣
∣
∣
= 0

)

= 1.

(C.5)

where the probability is computed over the random location (rp, θ), θ ∼

U [0, 2π]. We will instead prove the following more general statement that

∃c∗ > 0 such that

limk→∞

∣
∣
∣
∣
∣

1

k

k∑

i=1

g2i1
E[g2i1]

− c∗

∣
∣
∣
∣
∣
= 0 for all (rp, θ), θ ∈ [0, 2π]. (C.6)

Note that (C.6) is a completely deterministic convergence statement in contrast

to (C.5). From the proposed feedback protocol in Algorithm 2, we see that

the number of receivers selected for feedback is a monotonically increasing
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function of k for all circles. This mean that we can study the convergence of

the norm for any one circle (a sub-vector of a1) and draw conclusions about

the norm concentration of the entire vector a1. Consider the first partition of

cognitive receivers C1 and let the size of this partition be α(k) where α(k) → ∞

as k → ∞. Due to the above argument, we shift our focus to studying the

quantity

limk→∞

∣
∣
∣
∣
∣
∣

1

α(k)

α(k)
∑

i=1

g2i1
E[g2i1]

− c∗

∣
∣
∣
∣
∣
∣

= 0 for all (rp, θ), θ ∈ [0, 2π]. (C.7)

Recall that the squared-distance between the first primary transmitter located

at (rp, θ) and cognitive receiver i on C1 is given by

d2 (θi, θ) = r2s,1 + r2p − 2rprs,1cos (θi − θ), i = 1, 2, . . . , α(k), (C.8)

where θi = 2πiq
k
. Here, we have modified the distance notation to reflect

an explicit dependence on the position of first primary transmitter. Now let

f(x, y) =
(

1
x
− 1

y

)2

, x, y > 0. Then, for i ∈ C1, g
2
i1 = f

(
d2 (θi, θ) , d

2
(
θi +

π
2
, θ
))
.

We prove that c∗ = 1 for C1 thereby ensuring that the norm of the entire vector

g1 is well-behaved by the above argument. We essentially need to show that

limk→∞

∣
∣
∣
∣
∣
∣

1

α(k)

α(k)
∑

i=1

g2i1
E[g2i1]

− 1

∣
∣
∣
∣
∣
∣

= 0 for all (rp, θ1). (C.9)

This can be shown by observing that

limk→∞
1

α(k)

∑α(k)
i=1 g

2
i1 = limk→∞

1
α(k)

∑α(k)
i=1 f

(
d2 (θi, θ) , d

2
(
θi +

2πq
k
, θ
))

= 1
2π

∫ 2π

0
f
(
d2 (θi, θ) , d

2
(
θi +

π
2
, θ
))
dθi.

(C.10)
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This claim follows from that fact that the expression on the left is essentially

the Riemann sum of the integral on the right. This means that for any given

ε > 0, we can find kε such that when k ≥ kε, we have that

∣
∣
∣
∣
∣
∣

1

α(kε)

α(kε)∑

i=1

g2i1 −
1

2π

∫ 2π

0

f
(

d2 (θi, θ) , d
2
(

θi +
π

2
, θ
))

dθi

∣
∣
∣
∣
∣
∣

< ε (C.11)

Then, we can proceed by calculating

E[g2i1] =
1

2π

∫ 2π

0

f
(

d2 (θi, θ) , d
2
(

θi +
π

2
, θ
))

dθ. (C.12)

By substituting (C.8) in (C.10) and (C.12), we see that

E[g2i1] = 1
2π

∫ 2π

0
f
(
d2 (θi, θ) , d

2
(
θi +

π
2
, θ
))
dθ

= 1
2π

∫ 2π

0
f
(
d2 (θi, θ) , d

2
(
θi +

π
2
, θ
))
dθi.

(C.13)

We can then establish convergence through

∣
∣
∣

1
α(k)

∑α(k)
i=1

g2i1
E[g2i1]

− 1
∣
∣
∣

= 1
E[g2i1]

∣
∣
∣

1
α(k)

∑α(k)
i=1 g

2
i1 − E[g2i1]

∣
∣
∣

= 1
E[g2i1]

∣
∣
∣

1
α(k)

∑α(k)
i=1 g

2
i1 − 1

2π

∫ 2π

0
f
(
d2 (θi, θ) , d

2
(
θi +

π
2
, θ
))
dθi

∣
∣
∣ from (C.13)

< ε
E[g2i1]

when k ≥ kε.

The result follows since E[g2i1] is bounded below by Lemma 24.
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