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The quest for smaller and faster integrated circuits (ICs) continues, but traditional 

photolithography, the patterning process used to fabricate them, is rapidly approaching its 

physical limits. Step and Flash Imprint Lithography (S-FIL®) is a low-cost patterning 

technique which has shown great potential for next generation semiconductor 

manufacturing. To date, all methods of imprint lithography have utilized a sacrificial 

resist to produce device features. Our goal has been to develop functional materials such 

as insulators that can be directly patterned by S-FIL and then remain as a part of the end 

product. Directly patternable dielectric (DPD) materials must meet multiple mechanical 

and physical requirements for application in microelectronic devices. In some cases these 

requirements are conflicting, which leads to material design challenges. Many different 

materials and curing methods have been evaluated. Thiol-ene based approaches to 

patterning hyperbranched materials incorporating Polyhedral Oligomeric Silsesquioxanes 

(POSS) have shown the greatest promise. Thiol-ene polymerization takes place by a free 

radical mechanism, but it has the advantage over acrylates of not being inhibited by the 

presence of oxygen. This greatly eases some engineering design challenges for the S-FIL 
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process. A number of thiol-ene formulations have been prepared and their mechanical 

and electrical properties evaluated. 

SFIL-R has been introduced as an alternative technology to SFIL. SFIL-R offers 

improvements to SFIL in several ways, but requires a high silicon content, low viscosity, 

planarizing material. Photopolymerizable branched siloxanes were synthesized and 

evaluated to function as a planarizing topcoat for this technology.  

Both SFIL and SFIL-R require a clean separation of the template from the resist 

material. Fouling of templates is a major concern in imprint lithography and fluorinated 

materials are used to treat templates to lower their surface energy for better separation. It 

has been observed that the template treatment degrades over time and needs to be 

replaced for further imprinting. A fluorinated silazane was designed to repair the 

degraded areas. This material was evaluated and functions as designed. 
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Chapter 1: Introduction to Nanolithography 

1.1 SOCIETAL IMPACT 

The domestication of animals, farming with irrigation, the wheel, and penicillin 

are a few adaptations and discoveries that have had a profound impact on the world, but 

few discoveries have had a greater impact than the transistor. ENIAC, the first electronic 

computer, was based on vacuum tube technology. It consisted of approximately 18,000 

vacuum tubes, weighed over 30 tons, and occupied an area of about 1800 square feet [1]. 

Its impressive demonstration of solving mathematical problems led the drive to develop 

smaller and more efficient computing technology. The transistor was discovered in the 

middle of the 20th century and rapidly replaced vacuum tubes. The integrated circuit (IC) 

was developed independently by Robert Noyce of Fairchild Semiconductor and Jack 

Kilby of Texas Instruments in 1959 and is the basis of today’s semiconductor industry. It 

is an industry that employs several hundreds of thousands of people and touches the lives 

of billions of people all around the world whether it is through personal computing, 

communication devices, or medical equipment. Since the introduction of ICs, the 

development of faster, smaller, and more integrated semiconductor devices has taken 

place at an astonishing rate, and over the years the semiconductor industry has seen 

tremendous growth [2].  

 1.2 MOORE’S LAW 

In the 1960’s, the co-founder and former CEO of Intel, Gordon Moore, observed a 

trend in the development and cost for the production of microprocessors. He has been 

credited with predicting that the number of transistors would double approximately every 

two years (Figure 1.1). In fact, this conclusion was drawn from Moore’s original 
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statement in 1965 that the cost of manufacturing transistors would decrease so newer 

products could continually be developed at the same price [3].  

 

Figure 1.1: The evolution of the microprocessor confirms that Moore’s law has held true 
for the past four decades [4]. 

By comparison, a cell phone battery with approximately 30 minutes of talk time 

in the early 1990’s [5] would last for about 19 days (of constant talking) in 2010 if it had 

followed the same trend as microprocessor development. A former graduate student, 

Jacob Adams, made a more impressive and relevant comparison when comparing the 

efficiency of the combustion engine from 1978 until the year 2000. He claimed that even 

though the average car has continually improved its fuel efficiency over the years, it is 

nowhere near the 26,000 miles per gallon that would be the improvement relative to the 

transistor density increase that the microelectronic industry was able to achieve over the 

same time span [6]. The demand for faster and better computing devices is out there, but 

how has the technology been able to improve at such an incredible pace? 
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1.3 THE PHOTOLITHOGRAPHIC PROCESS 

A major force behind this remarkable evolution has been due to advances in 

photolithography. The word lithography stems from two Greek words: lithos, which 

translates to stone, and graphia, which translates to writing [7]. The process by which 

photolithography works is illustrated in Figure 1.2. The basic steps will be briefly 

discussed to give a better understanding of the technology. 

 

Figure 1.2: Schematic representation of the photolithographic process. 

1.3.1 Preparation of Substrate for Projection Lithography 

The first step in the process is to prepare the substrate or wafer for optimal resist 

performance. Silicon wafers are highly reflective, and to avoid reflection of light and 

exposure of resist in undesirable areas, a bottom anti-reflective coating (BARC) is coated 

onto the wafer. In addition to a BARC, an adhesion promoter may also be coated on the 
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wafer. The surface of the wafer is highly hydrophilic and by coating a silicon-containing 

material such as hexamethyldisilazane (HMDS), the hydrophilicity can be decreased to 

facilitate the adhesion of mainly organic-based (hydrophobic) photoresist. 

1.3.2 Deposition of Photoresist Formulations 

The resist formulations are prepared by resist vendors and are ready for use upon 

delivery. Most formulations are trade secrets but generally consist of a photosensitive 

polymer or a polymer containing reactive functional groups, a low vapor pressure 

solvent, and some sort of photoacid or photobase generator (PAG or PBG). The acid or 

base generator is the photosensitive component and is used to locally alter the solubility 

of the polymer. Common casting solvents include: chlorobenzene, propylene glycol 

methyl ether acetate (PGMEA), and diglyme. Photoresists are coated onto the wafer by 

spin-coating, and resist thickness is controlled by the amount of resist dispensed, spin 

speed, and spin duration. 

1.3.3 Post Apply Bake 

A soft bake or post apply bake (PAB) is carried out to evaporate any residual 

solvent from the polymer film. The time and temperature are dependent on the 

photoresist formulation used for spin-coating. The wafer is now ready to undergo 

exposure. 

1.3.4 Exposure of Photoresist 

In order to expose the photoresist, light is passed through a photomask and then 

focused onto the wafer. As the photons strike the resist material, a photochemical 

reaction takes place decomposing the PAG or the PBG into an actual acid or base [8]. 

The exposed area forms a latent image of the photomask with an acid or base 

concentration that is higher than in the unexposed regions. Light sources for the 
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lithography process have been driven to shorter and shorter wavelengths, from mercury 

g-line (436 nm) sources in the early 1980’s to the ArF excimer laser (193 nm) used in 

current lithography. Part of the reason for this shortening is because of Rayleigh’s 

equation described later in this chapter. This decrease of wavelength over the years 

requires newer and more advanced resist formulations to be developed. The conventional 

resists in use today are sacrificial resists, and have only one purpose: to transfer a pattern 

replicated from a master photomask into an underlying substrate. When light of an 

appropriate wavelength is used to expose the resist, a change in dissolution rate (a switch 

in solubility) occurs with respect to the resist developer. As depicted in Figure 1.2, 

whether the change makes the resist more or less soluble determines whether the resist is 

positive or negative in tone, respectively.  

1.3.5 Post Exposure Bake 

After the exposure has taken place, a post exposure bake (PEB) is carried out. 

This bake facilitates the controlled diffusion of the acid or the base generated throughout 

the exposed regions of the film. It is also performed in order to overcome the activation 

energy barrier required to deprotect or cross-link the polymer. The deprotection of poly(t-

BOC-styrene), a positive-tone resist component commonly used in 365 nm lithography, 

is illustrated in Scheme 1.1 [9]. 

 

Scheme 1.1: Acid-catalyzed deprotection of poly(t-BOC-styrene). 
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This is the step that produces the solubility switch. The more groups that are 

deprotected or crosslinked, the greater the difference in solubility; however, a balance 

needs to be maintained since the acid or base diffuses isotropically and parts of the 

unexposed regions may start to become soluble.  

1.3.6 Develop Exposed or Unexposed Regions 

Once the solubility switch has taken place, the more soluble areas are developed 

away (dissolved) by an efficient solvent. Aqueous mixtures of tetramethylammonium 

hydroxide are commonly used as developer.  

1.3.7 Pattern Transfer 

As described before, the term photoresist suggests two functions. Photo for its 

photoresponsive nature, and resist due to its resistance to some etchant. A reactive ion 

etch (RIE) is a common way to transfer a photoresist pattern into an underlying layer. 

Ions are accelerated toward the surface of the substrate where they act to ‘chip’ away the 

material. The source for the ions is selected to achieve high etch selectivity between the 

photoresist and the exposed underlying layer. Once the etch process is finished and the 

pattern has been transferred into the substrate or some other layer (dielectric or insulating 

layer, polysilicon, etc.), the remaining photoresist is then stripped off. 

1.3.8 Damascene 

The final stage in the fabrication process step is the deposition of a metal that can 

efficiently carry an electrical signal. There are two basic structures in the wiring of a 

microelectronic device: trenches that form the channels for the wires and hole-like vias 

that connect one wiring layer to the next one located above or below it. This metallization 

process is referred to as a damascene or dual damascene process depending on whether 

only via or trench structures or both via and trench structures are metallized 
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simultaneously. Once the metal has been deposited and polished, the entire process is 

repeated to generate the next layers of a wiring component. 

1.4 CHEMISTRY OF RESIST MATERIALS 

As with the wavelength of radiation and the miniaturization of feature size, 

photoresist materials have undergone continuous change [10]. For the photoreaction to 

take place efficiently, the polymer needs to be transparent to the incident radiation so that 

photons are only absorbed by the photoactive component, PAC, such as PAG or PBG in 

the formulation. In addition, to avoid pattern collapse, the material has to have sufficient 

mechanical strength to withstand a variety of fabrication processes such as heating and 

cooling cycles, and etch steps. Bis-azides were used in the 1980’s as a negative-tone 

photoresist, meaning that the exposed areas become less soluble than the unexposed areas 

due to the cross-linking of the polymer. Scheme 1.2 illustrates a generic azide-based 

photo crosslinking reaction with a reactive nitrene intermediate. 

 

Scheme 1.2: Nominal structure for a bis-azide crosslinking reaction used as negative-tone 
photoresist. 

The nitrene intermediate can undergo a variety of reactions, such as coupling with 

other nitrenes to form azo compounds, amine formation from hydrogen abstraction, and 

most importantly, addition to unsaturated functionalities. This crosslinks the material 

rendering it insoluble in developer. Bis-azide-based photoresists were used for many 

years, until the development of positive tone resists. Positive tone photoresists generally 
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have greater thermal stability and resolution and exhibit less swelling. Negative tone 

resists use an organic solvent to dissolve unexposed areas whereas positive tone resists 

use an aqueous developer to remove exposed regions. Dissolution with organic solvents 

tends to swell the resist, reducing pattern fidelity. Diazonaphthoquinone – Novolac was 

one of the first commercial positive tone resists. It consists of a polyphenol matrix (seen 

in Figure 1.3) with a photoactive dissolution inhibitor mixed in the matrix.  

 

Figure 1.3: Structure of novolac resin. 

Novolac is soluble in organic solvent and in aqueous base developer due to the 

phenolic functionalities. Addition of diazonapthoquinone (DNQ) renders the resin 

insoluble in aqueous base. The photo-induced decomposition of DNQ that renders 

exposed regions soluble can be seen in Scheme 1.3. 

 

Scheme 1.3: Exposure of diazonaphthoquinone results in a photochemical decomposition 
ultimately resulting in a carboxylic acid.  

As the exposure wavelength was shortened to below 300 nm, the output intensity 

from the source began to decrease dramatically. There was an imminent need to develop 

a resist that was much more photosensitive than novolac-based resins. Chemically 

amplified resists (CARs) were developed at IBM in the 1980’s. CARs function through a 

two-step process. First, a photoacid generator decomposes upon irradiation to form an 
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acid. Second, a post-exposure bake allows for controlled diffusion of the acid in the 

photoresist film and provides energy to promote acidolysis of some labile functionality. 

The deprotection reaction produces more acid, and chemical amplification is achieved. 

One example, the acid-catalyzed deprotection of a t-butyl ester, is shown in Scheme 1.4. 

 

Scheme 1.4: Illustration of the deprotection of a chemically amplified 193 nm resist. 

The introduction of chemically amplified resists greatly improved the resist 

sensitivity and allowed for use of lower power radiation sources.  

1.5 THE RAYLEIGH RESOLUTION EQUATION 

Resolution can best be described as the smallest feature that can be printed with a 

certain technology, equipment, and set of conditions [7].  
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Figure 1.4: Illustration of substrate irradiation through the photomask and objective lens. 

The Rayleigh equation, represented by Equation 1.1, describes the optimum 

resolution that can be obtained in a lithography exposure. 

 

NA
kR

!
1

=         Eq. 1.1 

 

According to Equation 1.1, resolution, R, depends on several variables: a scalable 

resolution factor, k1, the wavelength of light, λ, and the numerical aperture of the lens, 

NA. Rayleigh’s criterion, k1, depends on the type of lithography being used and has a 

physical limit of 0.25. It is not practical to push this “constant” to its limit because this 

would shrink the process window beyond the point of economic feasibility. Exposure 

wavelength reduction has been a source of constant improvement. It has helped 

tremendously in reducing obtainable resolution, but it is rapidly approaching the limits of 

its usefulness. Current lithography is performed with 193 nm radiation. The numerical 

aperture is the last variable that can be altered to improve resolution. The numerical 
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aperture depends on the refractive index, n, of a material and can be calculated from 

Equation 1.2. 

 

!sinnNA =         Eq. 1.2 

 

Since sin θ has a maximum value of unity, the numerical aperture cannot exceed 

the refractive index of the material between the objective lens and the substrate. 

 

Figure 1.5: Illustration of the complexity of the lens system utilized in modern projection 
lithography tools [11]. 

With 193 nm light sources currently being used by the semiconductor industry, 

the best possible resolution attainable according to Rayleigh’s Equation is approximately 

36 nm. How is it then that Intel recently announced the fabrication and shipment of 
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devices with 22 nm features using optical lithographic techniques? [12]. It is not that they 

have circumvented Rayleigh’s Equation, but rather a more fundamental change in the 

way transistors are manufactured. First, the numerical aperture has increased with the 

addition of a liquid between the objective lens and the substrate. Second, there are other 

methods available known as resolution enhancement techniques (RETs) that allow for the 

manufacturing of smaller features.  However, these techniques alter the structures after 

photolithography. 

1.6 NEXT GENERATION LITHOGRAPHY 

As the minimum feature size for microprocessor components has decreased in 

size, new materials and processes have become necessary. There are many technological 

challenges with advanced optical lithography, which is the current patterning technology, 

but its limit may be economical rather than technical [13]. The cost of the exposure tools 

used in device fabrication has grown enormously since the late 1970’s, leading several 

research groups to explore more cost-effective alternatives as next generation lithography 

(NGL) technology. For nearly five decades, the microelectronic industry has kept up with 

Moore’s Law. Once the limit of one technology was reached, a new technology had 

always been ready to replace it. Implementation of these new technologies has come with 

significant materials, engineering, and financial difficulties. Critics have constantly 

claimed that the miniaturization of features cannot continue and, in general, they have 

been proven wrong every time so far. However, this time around, a viable alternative to 

193 nm immersion lithography (the current technology of record) has not yet been 

demonstrated and accepted by industry leaders. Optical projection lithography is rapidly 

approaching physical limits and, to avoid a stagnation of today’s technological growth, 

new ideas must be implemented.  
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The technology projected to follow 193 nm was 157 nm lithography. However 

due to its relatively small reduction in exposure wavelength with respect to the resolution 

required by the upcoming technology nodes, the need for new masks, and the need for 

new resist materials, the microelectronic manufacturers cancelled all 157 nm R&D and 

began to push for extreme UV (11 nm radiation) technology. EUV lithography would 

have a significant impact on the minimum resolution possible for a lithography process if 

all other factors could stay constant. 

1.6.1 Immersion Lithography 

193 nm Immersion Lithography is the current technology being used in the 

manufacturing of microprocessors. It was started as an extension of traditional 193 nm 

projection lithography to improve the resolution of the process by increasing its 

numerical aperture via Rayleigh’s Equation. To obtain a greater depth of focus, a liquid is 

placed in the space between the substrate and the objective lens in the optical lens system 

to increase the refractive index. It is of utmost importance that the liquid is extremely 

pure and free of contaminants that can change the refractive index or damage the 

substrate or the lens. A variety of solvents with high refractive indices and transparency 

at 193 nm were initially evaluated. Hydrocarbons fulfill both of these criteria, but due to 

drawbacks such as flammability and high vapor pressure, more suitable alternatives are 

needed [14].  

1.6.2 Extreme Ultraviolet Lithography 

Extreme UV lithography has been a technology candidate for over a decade, but 

its implementation as a production tool has been heavily delayed. The use of 11 nm 

radiation has posed many challenging problems to researchers. One major problem is the 

source: molten tin bombarded with powerful lasers in order for it to emit highly energetic 
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photons. This presents another problem as tin is deposited elsewhere in the tool and must 

be periodically removed. The next issue is the matter of how well the radiation is 

projected from the mask onto the substrate. At the wavelengths used for EUV, most 

materials are highly absorbing. Therefore, lenses must be replaced by mirrors that reflect 

the radiation. As scientists and engineers solve one problem related to the EUV 

technology, half a dozen new problems are seemingly discovered. Several major chip 

manufacturers have stopped spending their time and money on a technology that many 

people believe is not economically feasible. 

1.6.3 Electron Beam Lithography 

Electron beam lithography is yet another technology that has been around for 

several decades. It can currently achieve the best resolution of any lithography tool 

available as it is capable of writing features on the order of a few nanometers. It is a 

“direct-write” method in which the images are formed serially, pixel by pixel. It takes a 

beam of electrons a very long time to write one field, let alone all the fields on a 12- or 

possibly 18-inch wafer. The fact that the technology can achieve such great resolution has 

made it the best choice for writing masks and templates for other lithographic 

technologies. In an effort to increase throughput for e-beam processing, it is proposed to 

use multiple beams grouped together to simultaneously write resist patterns. Two such 

technologies are called Complementary Electron Beam Lithography (CEBL) and 

MAPPER. A major concern with using multiple electron beams involves the feasibility of 

each beam being controlled and moved without affecting the neighboring beams. A large 

amount of research and development is still needed to convince the lithography 

community in general that this technology is a viable option for NGL. 
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1.6.4 Pitch Division Lithography 

Pitch division lithography was introduced by our research group in 2009 [15]. It is 

based on the idea that one can take advantage of a material behaving both as a positive 

and a negative tone resist by utilizing a specific combination of a PAG and a PBG [15-

18]. This technology is shown in comparison to traditional optical lithography in Figure 

1.6. 

 

Figure 1.6: Pitch division lithography compared to tradition optical lithography. To 
achieve the doubling response the photoresist must act as both a positive and 
negative tone. (Courtesy of Xinyu Gu) 

A traditional photoresist requires a certain dose to undergo the photochemical 

reaction. This energy is referred to as E0. For pitch division, the formulation contains both 

a PAG and a PBG. When the exposure dose is below a threshold level, E0, the resist acts 

as a positive tone, whereas an exposure dose above En switches the behavior of the resist 

to a negative tone resist. This can be achieved by implementing a latent PBG that 

quenches the acid once a certain level of dose has been reached [19]. 
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1.6.5 Nanoimprint Lithography 

Imprint lithography has been around for over a thousand years [20]. It is based on 

a technology in which a mold or template is replicated in some medium. A printing press 

is a simplified example of this technology wherein the mold is replicated by the 

application of ink to protruding structures thereby transferring the pattern onto paper.  

Nanoimprint technology was first introduced in 1996 as a technique for 

replicating nanostructures in microelectronic device manufacturing. Unlike projection 

lithography which uses masks and lenses (governed by Rayleigh’s Equation), it has been 

shown that imprint lithography is only limited by the size of the pattern that can be made 

on the mold [21].  

1.7 SUMMARY 

The microelectronics industry is made up of scientists and businesspeople from 

all around the world. At some point in the near future, they all have to come together to 

answer the question, “What’s next?” There are a number of different technologies that are 

currently being evaluated, some of which have the potential to become the next 

generation of lithography. Old-timers and hardcore projection lithographers may have to 

step out of their comfort zone and evaluate alternative, “disruptive” technologies in a 

non-biased way. The remainder of this dissertation will be focused on one such disruptive 

technology: nanoimprint lithography. Chapter two gives a brief introduction to imprint 

technology, specifically step and flash imprint lithography (SFIL). Chapter three covers 

the synthesis of imprint resist materials, and chapter four covers mechanical and 

electrical evaluation of the aforementioned resists. Chapter five describes a different 

version of SFIL and the materials required for its implementation, and chapter six covers 

the surface modification of molds for SFIL. 
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Chapter 2: Step and Flash Imprint Lithography 

2.1 INTRODUCTION TO NANOIMPRINT LITHOGRAPHY 

The cost of exposure tools used in the fabrication of microelectronics has 

substantially increased since the late 1970’s, as illustrated in Figure 2.1. Consequently, 

several research groups have begun to explore low-cost alternatives. 

 

Figure 2.1: Lithography tools – Cost of Ownership. 

In 1995, Dr. Stephen Chou and his research group first introduced imprint 

lithography as a plausible, low-cost Next Generation Lithography (NGL) [1]. Chou et al. 

used thermal embossing to replicate patterns from a silicon master template with PMMA 

[2]. Today, two main streams of imprint lithography are being explored. One is the 

aforementioned thermally activated imprinting of a thermoset or thermoplastic material, 

and the other is the imprinting of a photocurable liquid. The latter was developed at The 

University of Texas at Austin in 1999 [3]. “Step and Squish Imprint Lithography”, as it 

was first called, was developed into what is today known as Step and Flash Imprint 

Lithography (S-FIL®), or Jet and Flash™ Imprint Lithography (J-FIL™) as Molecular 

Imprints, Inc. has renamed the technology. Using this technology, Rogers et al. 
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demonstrated in 2004 that structures as small as 2.4 nm can be reliably replicated [4], 

which is approximately an order of magnitude better than what is currently in production 

at leading semiconductor corporations.  

One advantage of nanoimprint lithography is the capability of reducing the 

number of processing steps required to manufacture a semiconductor device. The flow 

chart in Figure 2.2 illustrates the steps within the lithographic process relating to via and 

trench structure fabrication. There are two basic structures in microelectronic devices: 

trenches form the channels for the wires and hole-like vias connect one wiring layer to 

the next one located above or below it. 

 

Figure 2.2: An illustration of select process steps for traditional projection lithography in 
generating via and trench pattern. 

For traditional dual damascene, an initial film stack consisting of alternating 

layers of etch barrier and insulator with the photoresist layered on top is deposited in 

multiple steps. The alternating layers assist in the etch process for successful pattern 

transfer. The overall process requires two lithographic steps and several etch steps, 

whereby additional depositions of bottom anti-reflective coating (BARC) and photoresist 

films are coated in between the lithography and etch steps. The reduction in the number 
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of steps that can be achieved by using SFIL is depicted in Figure 2.3. This reduction in 

process steps is attributed to the use of multi-layer templates, which enables production 

of the structures with far fewer thin-film, lithography, and etch steps. 

 

Figure 2.3: Significant reductions in the number of process steps for via and trench 
pattern generation can produce substantial cost-savings for IC 
manufacturers. 

2.2 THE SFIL PROCESS 

Nanoimprint lithography (NIL) is best described as a molding technology that 

dates back to the ancient method of sealing documents or letters. A mold with a relief 

pattern is fabricated and used as a stamp to produce an inverse copy of the original 

mold’s relief features in some recording material. Figure 2.4 illustrates the process flow 

for SFIL. Each step of the SFIL process is briefly discussed in the following section. 
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Figure 2.4: Process flow for SFIL. 

The initial step after the template and the wafer have been loaded onto the tool is 

to level and align the template. Newer tools manufactured by Molecular Imprints, Inc. are 

equipped with manual and automated alignment options that have registration and 

alignment capability of <10 nm, 3σ [5]. The template chuck is mounted on flexures as 

this reduces wear on sliding joints that can dislodge particles [6]. The template is leveled 

and aligned by analysis of marks on the template and substrate as shown in Figure 2.5 

[7]. 
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Figure 2.5: Imprinted alignment marks from the template. 

The polymerizable monomer is dispensed once the template is aligned. This step 

is accomplished through a piezoelectric dispense mechanism attached to the imprint tool. 

The drop pattern is specifically designed to facilitate spreading of the liquid and to avoid 

trapping air. Therefore, the drop pattern is customized for the type of template used. Two 

different drop patterns are illustrated in Figure 2.6.  

 

Figure 2.6: Illustrated are two tailored drop patterns that are optimized for different 
templates for fast fill time and bubble-free imprints. 
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The amount of resist dispensed can easily be controlled for each droplet. In this 

way, it is possible to dispense more or less liquid as needed for areas with high or low 

pattern density. 

Once the imprint resist has been dispensed, the template is lowered into the liquid. 

The force that presses on the template is on the order of a few Newtons compared to the 

several hundred Newtons that is required for a thermal imprint process. A force vs. time 

curve for SFIL is shown in Figure 2.7.  

 

 

Figure 2.7: Template approach, fill, cure, and separation. 

After allowing a short time for resist spreading, curing of the resist takes place by 

UV exposure through the backside of the transparent quartz template. The template is 

then separated from the solidified resist, and the process can be replicated time and again.  
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It has been repeatedly established that a residual layer of the imprint resist will 

always be present due to the slowing of flow in the resist as the volume between the 

substrate and the template decreases. This residual layer can be removed by a selective 

etch step called a breakthrough etch. Thus, the template never contacts the substrate [8]. 

The thickness of this layer has been reduced to approximately 10 nm for UV NIL and 

thinner than 100 nm for thermal NIL [9, 10]. 

This process produces an inverse copy of the template relief pattern on the 

substrate. Depending on the composition of the imprint resist, either a halogen etch or an 

oxygen reactive ion etch (RIE) step can either increase or decrease the aspect ratio of the 

imprinted features by transferring the pattern into an underlying layer [11]. Once the etch 

processes are completed, metallization can be carried out to fabricate the actual wires and 

interconnects. 

2.3 TEMPLATE DESIGN 

Whereas SFIL tools themselves are inexpensive in comparison to optical 

projection tools, templates are not. The high cost of templates derives from costs 

associated with template manufacturing. The templates for NIL are different than the 

masks used in projection lithography. Unlike projection lithography masks, the template 

has to be in scale since there is no opportunity to reduce the feature sizes. Electron beam 

lithography (e-beam) is a direct-write technique that is used in template manufacturing 

[12, 13]. In essence, every line and space is written in the scale of the final IC pattern. 

Figure 2.8 depicts one method of utilizing electron beam lithography for template 

manufacturing.  
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Figure 2.8: Template manufacturing process. 

2.4 DUAL DAMASCENE 

The term, damascene, stems from the ancient method of fabricating decorative 

structures in a metal, e.g. knives, swords, jewelry, etc. The method by which it works 

consists of overfilling a pre-patterned surface then polishing off excess metal as 

illustrated in Figure 2.9.  

 

Figure 2.9: Illustration of the damascene process in which a substrate is patterned, coated 
with a noble metal, and excess metal is polished off. 

In lithography for microelectronics, damascene refers to the process for creating 

interconnect wiring. At the time when copper was incorporated, there was no efficient 

way to etch copper [14]. It was therefore necessary to fabricate both via and trench before 

the metallization took place, and hence the technique is referred to as dual damascene. As 
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previously mentioned, NIL can produce both the wire and the via layers simultaneously 

by using a multi-tier template. 

2.5 MATERIALS 

The materials used in NIL can be divided into two different categories:  thermal 

and UV-curable materials. There are subcategories of materials within these two groups, 

which are briefly discussed in the following section. 

2.5.1 Thermally Activated Materials 

Thermal materials can consist of two basic types:  polymers or thermally curable 

pre-polymers / monomers, or a combination of the two. A polymer, such as polymethyl 

methacrylate (PMMA) can be used in NIL by spin-coating. The polymer can then be 

heated above the glass transition temperature (Tg), inducing flow when the template is 

lowered and pressed into it as shown in Figure 2.10.  

 

Figure 2.10: PMMA use in thermal embossing. 

High pressure is needed to displace the molten polymer since the viscosity of such 

materials is fairly high. Once the polymer has spread and filled the pattern, the system is 

cooled down, which allows the polymer to solidify before the template is removed. The 

high pressure required to improve the throughput can easily cause irreparable defects to 

the template if particles are present. They can “chip” the pattern. A thermally curable 
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material is also a possibility for use as an imprint resist. The substrate does not need to be 

heated for extended periods of time to aid in spreading of a polymer. Instead, the 

monomer can flow unassisted and then be cured. While this method is seemingly simple, 

serious potential complications must be avoided. Specifically, the coefficients of thermal 

expansion (CTE) must match in order to prevent stress and strain from building up inside 

the different materials. This can cause cracks to form, which will ruin the device. In 

addition to the CTEs, the elevated temperature and pressure required can result in 

imprecise overlay, leading to non-functional circuits [6, 7].  

2.5.2 UV Activated Sacrificial Materials 

Using UV cross-linkable liquid polymers or monomers in the SFIL process has 

shown great promise. Curable materials can be formulated in a way that overcomes 

underlying concerns with thermal imprinting. Lowering the viscosity makes it possible to 

operate the system at low pressure and ambient temperature, which improves alignment 

accuracy and throughput.   

In the early stages of SFIL, the technology took advantage of standard 

photopolymerizable resist materials that were readily available. One such formulation is 

illustrated in Table 2.1. 

 

Table 2.1: A typical resist formulation for imprint lithography. 
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With traditional projection lithography, the resist used is ultimately removed as it 

only functions as a transfer layer. These organic-based resists are called sacrificial 

imprint resists. An improvement to the sacrificial resists occurred when de-crosslinkable 

groups were incorporated into the material. Templates are repeatedly exposed to the resist 

formulations and are susceptible to fouling as resist material can adhere to the template, 

which requires cleaning of the template. A piranha etch is commonly performed and, in 

some cases, an alkali solution cleaning is performed as well. Both of these methods are 

aggressive and slowly etch the template and change the critical dimension (CD) of the 

features [15]. A de-crosslinkable material has the advantage of undergoing 

depolymerization and can be removed much more easily. The idea was to incorporate a 

cross-linking unit that contains a degradable functionality [16, 17]. Figure 2.11 illustrates 

how one such material works. 

 

Figure 2.11: De-crosslinkable polymers can be removed from a template surface in 
several different ways [16]. 

Crosslinkable acetals along with reversible Diels-Alder groups were investigated 

and the results showed that the acetals readily undergo hydrolysis under acidic conditions 

and fouled templates were easily cleaned. Scheme 2.1 provides examples of degradable 

acetal and thermally degradable Diels-Alder reaction-based de-crosslinking chemistries. 
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Scheme 2.1: Shown are two schemes for degradable polymers. A significant increase in 
solubility occurs when the polymer is decomposed into smaller 
segments. A) Acid hydrolysis of acetal, and B) retro Diels-Alder. 

2.5.3 UV Functional Materials 

Although the number of process steps involved in the manufacturing of ICs is 

reduced significantly through the use of the SFIL process (Figure 2.12), there are 

additional steps that could be removed by implementing an imprint resist that become a 

functional part of the final device [18-20].  

 

Figure 2.12: Imprint lithography with SIM requires etch barrier and dielectric films to be 
deposited in an initial stack. 

A functional resist that is also an interlayer dielectric (ILD) has the potential to 

remove additional steps as seen in Figure 2.13. In this case, instead of dispensing a 

sacrificial material on top of a film stack, the ILD is directly dispensed and imprinted. 
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Figure 2.13: Imprinting using a functional material that will become an integral part of 
the final product. 

These functional resists or directly patternable dielectric (DPDs) materials will be 

discussed in greater detail in the following chapter. 

2.6 NIL LIMITATIONS? 

Despite the tremendous progress in materials and tool development that has 

already occurred, NIL has many skeptics who point to overlay, throughput, and defect 

limitations. From a personal viewpoint, most of the resistance comes from researchers 

and managers that have invested billions of dollars in a non-functional, non-performing, 

and much delayed EUV technology. However, the resistance does raise an interesting 

point regarding throughput. Projection lithography can now process approximately 100 

wafers per hour, whereas SFIL has only been able to reach around 20 wafers per hour. It 

is true that imprint does not have the capacity for high volume manufacturing because 

imprint is fundamentally a slower process. However, their argument falls short if one 

considers that EUV will be implemented as a NGL even though throughput is even worse 

for EUV. 

Another point that is constantly brought up by skeptics of NIL is that of defects. 

Defectivity was a valid point when NIL was first introduced, but thanks to the work of 

several independent research groups, defectivity, while still a concern, has seen 
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significant improvement. One study demonstrated that even though a template had 

become fouled, after several imprints the template had self-cleaned and the defects did 

not propagate further [21, 22]. As demoralizing as these limitations may seem, there is 

much room for improvement that can be achieved through industrial collaboration if a 

fraction of the money spent on EUV were to be allocated to NIL. 

2.7 SUMMARY 

Thermal imprint has slowly lost its initial attraction due to the fact that it is 

constrained by having multiple slow heating cycles and mismatched CTEs. SFIL has had 

tremendous growth and momentum over the past decade as a potential candidate for 

NGL. It has been illustrated that nanoimprint lithography can outperform optical 

projection lithography by repeatedly replicating features that are half the size of what has 

been achieved through immersion lithography, and at a fraction of the cost. Templates are 

commercially available and progress in their manufacturing has been made. Imprinting of 

smaller features is currently limited by the template manufacturing process. Thus, 

production e-beam tools are being pushed near their limits to pattern features that are 

several carbon atoms in width. There has been a great improvement in the materials used 

for SFIL and several research groups are working on a variety of polymerization 

techniques.
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Chapter 3: Directly Patternable Dielectrics 

3.1 INTRODUCTION TO DIRECTLY PATTERNABLE DIELECTRICS 

Step and Flash Imprint Lithography (SFIL) can be used with the dual damascene 

interconnect process to create imprintable dielectrics. This term, coined by Stewart and 

Willson in 2005 [1], refers to a dielectric material that can be patterned to form multi-

level structures. If successful, this process could remove as many as 100 unit process 

steps from the manufacturing of advanced microprocessors. Independent cost analysis 

studies have shown that this process could save between 20% and 60% of the cost of 

manufacturing such devices. This dramatic cost saving can be realized by new materials 

that are compatible with current microelectronic processing equipment. 

Imprintable dielectric materials are comprised of a photopolymerizable precursor 

that upon light exposure reacts to form a thermally stable insulator with a low dielectric 

constant and has the properties required for implementation in the manufacturing of 

microelectronic devices. The material must meet not only the requirements for use in 

SFIL, but also the end use requirements for on-chip interlayer dielectric applications. 

First, the material needs to be photocurable and possess a low viscosity. Low viscosity 

imprint formulations are needed for acceptable throughput since they flow and spread 

faster than high viscosity materials [2]. At the same time the materials must have low 

vapor pressures to avoid resist loss due to evaporation. There are restrictions on the 

polymerization as well; to avoid formation of cracks and pattern distortion, the cured film 

must not shrink significantly. In addition to these requirements, the dielectric constant has 

to be below three to properly function as an insulator [3]. For this reason, the material 

cannot absorb water since this would alter the dielectric constant. The material must also 

tolerate elevated temperatures and have a coefficient of thermal expansion (CTE) close to 

that of copper and other material components of a device. The matching of CTEs is 
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important to avoid stress buildup within materials due to expansion/shrinkage. Lastly, for 

the material to be functional, it must have a sufficient tensile modulus to withstand CMP 

processes. These requirements are listed in Figure 3.1. 

 

Figure 3.1: List of material requirements for implementation into the semiconductor 
manufacturing as an ILD [4]. 

3.2 METHODS FOR DEPOSITING DIELECTRICS 

There are two basic methods that semiconductor manufacturers use to deposit 

ILDs: spincoating (spin-on) and vapor deposition. Typically, chemical vapor deposition 

(CVD) is employed. Historically, silicon dioxide (SiO2) has been used as a dielectric and 

is deposited by CVD [5]. Most dielectric materials are based on doped SiO2 that are 

deposited by the same technology. Spin-on dielectrics is a concept that gained 

momentum in 2001 [5]. Spincoating is not a new technology, but one the semiconductor 

industry is very familiar with since it is used to deposit films of photoresist. Spin-on 

dielectrics consist of organic polymers, inorganic materials, or combinations of the two. 

Over time, interest in spin-on dielectrics has slowly diminished, as improved materials 

can still be deposited either through CVD or physical vapor deposition (PVD). A third 
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possible method to deposit low-k dielectric films is to imprint directly into the material, 

as with DPDs or imageable dielectrics [1, 3, 6-8]. 

3.3 MATERIALS 

Directly patternable dielectric (DPD) materials will not be removed from the 

substrate but instead become an integral part of the final device. A number of approaches 

have been explored for the design of such materials, and it has been concluded that 

siloxane-based materials have promise for this application. 

3.3.1 Sol-gel 

Palmieri et al. developed a sol-gel based pre-polymer for use as an imprint resist. 

The material was based on the incomplete condensation of alkoxy-silanes through sol-gel 

reactions. A great variety of formulations were made from a set of methacryloyl 

substituted precursors and evaluated [3, 9]. These were prepared by mixing the materials 

and subjecting the mixture to acid-catalyzed condensation for a specific period of time. 

Scheme 3.1 below depicts one such formulation. This pre-polymer, only a nominal 

structure, was functionalized with photopolymerizable methacrylate groups. 

 

Scheme 3.1: Sol-gel components and a nominal structure for a crosslinkable pre-polymer 
[3]. 

The sol-gel materials produced good quality imprints and were processed through 

metal deposition, plating, and CMP processes to produce via chain test structures that 

demonstrated electrical connectivity. 
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Several formulations were evaluated and the best candidate met almost all end use 

criteria except that it exhibited significant shrinkage along the z-axis upon exposure and 

possessed a low modulus [3]. The effect of the low modulus can be seen in the metal 

patterns below manifested as “dishing” between the metal lines (Figure 3.2). 

 

Figure 3.2: Dishing is clearly visible between the metal wires (Courtesy of Dr. F. 
Palmieri). 

3.3.2 Polyhedral Oligomeric Silsesquioxanes 

Commercially available ILDs or insulators such as Black Diamond (Applied 

Material) or Coral (Novellus) are proprietary materials composed mainly of silicon 

dioxide that has been doped with carbon or organic substituents to lower the overall 

dielectric constant [5]. For silicon dioxide to be used as a DPD in SFIL, it must be 

dissolved in a liquid, or rendered a liquid and polymerizable. Polyhedral oligomeric 

silsesquioxane are of the general formula RSiO1.5 and are great candidates to use as DPD 

(Figure 3.3).  

 

Figure 3.3: Structure of the POSS cage core. 
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POSS materials assemble into cubic structures commonly referred to as cages. 

When the R groups are oxygen atoms the molecule is referred to as Q8, which refers to 

each of the eight core silicon atoms being bonded to four oxygen atoms. A superscript is 

commonly used to describe the terminal group such as Q8
H indicating a terminal 

hydrosilane. Q8
H describes a POSS cage with R = -O-SiMe2H. POSS cages have shown 

high thermal stability, high modulus, and the compatibility to be incorporated into low-k 

materials [10]. Unsubstituted Q8 derivatives are highly crystalline solids. However, the 

corners are readily functionalized with a variety of polymerizable groups. In this way, we 

can hope to achieve low viscosity due to limited entanglement and low vapor pressure 

due to high molecular weight.  

3.3.3 Epoxide Functionalized POSS 

Epoxides are one type of functional group crosslinkable by acid or base. This is 

advantageous for semiconductor applications because PAGs can be used to give the 

material photoreactivity. The epoxide functionalized POSS is shown in Figure 3.4.  

 

Figure 3.4: Structure of epoxide functionalized cage obtained from Prof. Laine at The 
University of Michigan. 

Though the material was quit viscous, imprinting was carried out successfully [6]. 

Unfortunately, upon heating, the pattern started to decompose at unexpectedly low 

temperatures. It was speculated that scrambling and decomposition of the siloxane 

backbone catalyzed by residual PAG and acid in the film was the cause. This hypothesis 

was tested and verified by exposing the films after polymerizations to ammonia gas to 
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quench any residual acid. This increased the overall thermal stability, but due to the early 

onset of decomposition and high viscosity, another method for polymerizing POSS cages 

was needed. 

3.3.4 Methacrylate Functionalized POSS 

A free radical polymerization mechanism could have less impact on the stability 

of the films generated since there would be no residual acid present. The POSS cage was 

functionalized through a hydrosilylation reaction between allyl methacrylate and Q8
H 

(Figure 3.5). The material was unstable under laboratory conditions, and its viscosity was 

unsuitable for the imprinting processes. The fully functionalized methacrylate POSS was 

abandoned not only due to the lack of storage stability, but also because methacrylates 

have a tendency to have poor thermal properties and to shrink upon curing, leading to 

stress and defects in the films. 

 

Figure 3.5: Methacrylate functionalized cage. 

3.3.5 Dually Functionalized POSS 

Because the methacrylate functionalized POSS cage was too unstable, it was 

speculated that several methacrylates could be replaced by a thermally curable 

functionality. Q8 was first symmetrically substituted with a disiloxane that terminates in a 

hydrosilane. This lowered the melting point of the structure and allowed for materials to 

be a liquid at STP. Allyl methacrylate was determined to be an excellent photocurable 

segment and benzocyclobutene an effective thermal crosslinker. Scheme 3.2 shows the 

functionalized material for S-FIL and DPD, and the two different paths to crosslinking.  
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Scheme 3.2: Structure and two paths to polymerizing dually functionalized POSS. 

The POSS was functionalized with allyl benzocyclobutene and allyl methacrylate 

[11]. This produces a mixture of substitutional isomers that is a viscous liquid. The 

methacrylate enables free radical-mediated photopolymerization, but that linkage is not 

very thermally stable and the polymerization through this group introduces shrinkage. 

The benzocyclobutene functionality is used to vitrify the structure by thermal curing 

subsequent to printing. This thermal cure proceeds via a ring-opening reaction producing 

thermally stable linkages and is not accompanied by large shrinkage. The optimum ratio 

of the two substituents was determined to be five BCBs to three methacrylates. This was 

determined by using the minimum amount of methacrylate to render the material a solid 

upon photopolymerization. This POSS formulation meets many of the end use criteria but 

suffers from very high viscosity (~600 cP) and a lower than desirable modulus (2-5 GPa) 

[3]. The material also seems to have a limited shelf life, as older samples gel within in a 

few days. The quality of the imprints from this material is acceptable as seen below 

(Figure 3.6). 
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Figure 3.6: SEM images of imprinted BA5x3. The apparent dishing is actually micro-
faceting. This faceting is due to imperfections on the template that SFIL 
reproduces faithfully. 

Clearly there is a need for new approaches to the design of these materials. We 

need to greatly reduce the viscosity. We also need to improve the material’s mechanical 

properties and solve the shelf life problem.  

3.3.6 Nitrene Based Photopolymerization 

Another class of DPD POSS materials that was investigated is based on 

polymerization reactions of vinylsiloxanes. A model system based on nitrene chemistry 

was tested. Nitrene based polymerization, which has been used in photolithography in the 

past (in g-line negative resist formulations), is based on the photolysis of azides to form 

nitrenes [12]. Nitrenes undergo addition to olefins readily resulting in cross-linking of 

materials as illustrated in Scheme 3.3.  

 

Scheme 3.3: Nitrene based polymerization of vinyl POSS. 

A major difference in the type of reactions described previously is that the azide 

mediated reaction is not catalytic. It was shown that model systems underwent cross-



 45 

linking, but due to the release of nitrogen gas, bubble formation was observed and 

incomplete pattern transfer resulted when imprints were carried out. 

3.3.7 Thiol-ene Based Photopolymerization 

The thiol-ene reaction is another potential polymerization mechanism that was 

explored.  The use of the thiol-ene chemistry for curing has two advantages over 

acrylates. The reaction is not inhibited by the presence of oxygen [13], and it avoids the 

shelf life problems common with multifunctional acrylates and methacrylates. Thiols 

undergo homolytic cleavage when exposed to deep UV light [14, 15]; the radicals formed 

can then undergo addition to olefins as shown in Scheme 3.4 [13].  

 

Scheme 3.4: Thiol-ene based photopolymerization of vinyl POSS. 

Thiols initiate a free radical reaction and can therefore be used in sub-

stoichiometric amounts and still generate high conversion of monomers to polymers. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Polyhedral Oligomeric Silsesquioxane 

The preparation of the tetramethylammonium silicate cage structure was carried 

out according to literature procedures [16, 17]. The highest overall yield and purity (97% 

yield) was obtained by following Moran and Cuadrado’s procedure [16] (Scheme 3.5). 

SiO O
Si

HO

N OH 10% H2O 10 hrs at 60 ºC
O

OH

H2O NO

8 

Scheme 3.5: Preparation of silicate salt. 
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In accordance with the same literature, the silicate salt was then converted to Q8
H 

(cage) without any unexpected results, except for a disappointing yield of 28.6% 

(literature value reports 85% yield [16], but after closely inspecting their results an error 

must have been made in their calculations). The solid product was re-crystallized from 

hexanes to remove POSS cages that were not fully condensed and other impurities, 

yielding fairly large, clear crystals of Q8
H (Scheme 3.6). 

NO

8

8 ClMe2SiH
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0 ºC-RT, H2O

8

O SiH

 

Scheme 3.6: Synthesis of Q8
H. 

For the preparation of Q8
OSiH, Q8

H was oxidized. The hydrolysis was carried out by 

the use of palladium on carbon and water to form the silanol Q8
OSiOH shown in Scheme 3.7 

[18]. No attempt was made to isolate and purify the silanol since it was only an 

intermediate in the path to the final product. 

8

O SiH
Pd/C, THF

0 ºC-RT, H2O

8

O Si OH

 

Scheme 3.7: Silanol synthesis. 

The freshly made silanol was slowly added to a solution of chlorodimethylsilane 

(Scheme 3.8). After careful optimization the product was obtained in 62% yield as a clear 

gelatinous material. The liquid and the gelatinous solid were both analyzed by Matrix 

Assisted Laser Desorption/Ionization (MALDI). It was observed that the less viscous 

material contained a significant amount of partially functionalized corners while the 

gelatinous solid appeared to be a single product (see Appendix A for MALDI spectra). 

Sublimation was attempted at high vacuum (<40 mTorr) and elevated temperature (135 
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°C) for 8 hrs. It was observed that the liquid remained at the bottom of the vessel and that 

a solid was “crawling” up the sides of the sublimer instead of collecting on the cold 

finger. IR analysis showed hydroxyl groups in the product (broad peak at 3446 cm-1 was 

observed).  

8

O Si OH
Heptane, DMF
0 ºC-RT, H2O

8

O Si O SiH8 ClMe2SiH

 

Scheme 3.8: Silane synthesis, extension of siloxane chains. 

3.4.2 Benzocyclobutene 

The synthesis of 4-allyl-1,2-dihydrocyclobutabenzene (allylbenzocyclobutene) 

was carried out and optimized in collaboration with a visiting scientist from JSR, Yukio 

Nishimura. Reduction of 2-bromophenyl acetic acid was carried out with borane in THF. 

This is illustrated in Scheme 3.9. The product was isolated in 62% as a clear liquid and 

purified by distillation. 

Br

OH

O

Br

OHBH3  THF

THF, !x

 

Scheme 3.9: Synthesis of 2-(2-bromophenyl)ethanol. 

Toluenesulfonyl chloride (TsCl) was used to convert the hydroxyl group into a 

better leaving group (Scheme 3.10). Product was isolated as a crystalline solid in 69%. 

Br

OH

Br

OTs
Pyridine

Ts-Cl

 

Scheme 3.10: Synthesis of 2-(2-bromophenyl)ethyl 4-methylbenzenesulfonate. 
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As can be seen in Scheme 3.11, lithium bromide was used to displace the tosyl 

group in refluxing acetone. The product was obtained after column chromatography as a 

slightly yellowish liquid in 60%.  

Br

OTs
LiBr

Acetone
55 ºC, o.n.

Br

Br

 

Scheme 3.11: Synthesis of 1-bromo-2-(2-bromoethyl)benzene. 

A lithium halogen exchange using n-butyllithium in THF at -78 °C lead to ring 

closing to form benzocyclobutene (BCB), illustrated in Scheme 3.12. 

 

Scheme 3.12: Ring-closing reaction to obtain benzocyclobutene (BCB). 

One of the most facile ways to functionalize BCB is by bromination of the phenyl 

ring to result in 4-bromo-benzocyclobutene (Scheme 3.13). Following column 

chromatography, the product was obtained as a clear liquid in 58%.  

 

Scheme 3.13: Bromination of BCB. 

There were two separate paths investigated to render 4-bromo-BCB functional in 

order to be appended to POSS; both are shown in Scheme 3.14. 
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Scheme 3.14: Two synthetic paths to prepare BCB to be appended onto two different 
POSS, hydrosilane and vinylsilane terminated. 

3.4.3 Functionalizing POSS cages 

Once all starting materials were available, trial and model reactions were carried 

out. First, the Q8
H cage was homo-functionalized with allyl acetate (Scheme 3.15) to 

provide a stable analogue to the photocurable allyl methacrylate. Allyl acetate was used 

for characterization studies. The hydrosilylation reaction was done in collaboration with 

Dr. Jianjun Hao. Using Karstedt’s catalyst [Pt(dvs)], a silane (Si-H) can be added to a 

terminal olefin [19, 20]. 

O SiH

8
O Si

8

O

O

O

Pt(dvs), Toluene

O

 

Scheme 3.15: Attempted hydrosilylation of Q8
H with allyl acetate. 

Allylbenzene was used as a model to BCB. The same reaction procedure was 

performed and after two silica gel columns led to the product, a slightly yellow-colored, 

viscous oil in 73% (Scheme 3.16).  

O SiH

8

O Si

8Pt(dvs), Toluene  

Scheme 3.16: Hydrosilylation of Q8
H with allylbenzene. 
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A reaction with allyl methacrylate was also attempted (illustrated in Scheme 3.17) 

with hydroquinone present (radical inhibitor). Upon removal of the solvent, the material 

formed an insoluble, thick gel. A miniscule amount was dissolved in a fairly large 

quantity of deuterated chloroform, and an NMR spectra was collected. Proton NMR 

spectra indicates that product is present but mixed with impurities. 

O SiH

8

O Si

8

O

O

O

Pt(dvs), Toluene

O

 

Scheme 3.17: Synthesis of octa functionalized Q8
H with allyl methacrylate resulted in a 

material with very poor shelf stability. 

Q8
OSiH was reacted with BCB (Scheme 3.18) using the same procedure. A short (2 

inches) silica gel plug was used to purify the product, which is a slightly yellow viscous 

oil (81%).  

O Si O SiH

8

O Si O Si

8Pt(dvs), Toluene  

Scheme 3.18: Octa allylBCB functionalized POSS cage resulted in a viscous thermally 
crosslinkable material. 

3.4.4 Dually Functionalized POSS 

Since the method for carrying out the hydrosilylation reaction was established, it 

was time to dually-functionalize the Q8M8
OSiH POSS. Because there are eight corners 

available to append side groups. Many combinations were tried to determine the correct 

ratio of the two substituents in order to generate a product with the above-mentioned 

mechanical and chemical properties. It was determined that a ratio of five 

allylbenzocyclobutenes to three allyl methacrylates groups attached to the cage (BA5x3) 

gave the best properties for the material. The two functional groups were appended 
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(Scheme 3.19) using the same hydrosilylation method as for the other reactions described 

above. One main difference being that hydroquinone was added to inhibit premature 

radical polymerization. A critical problem yet to be overcome is how to purify the final 

product. This is because it has a statistical distribution of the two functional groups. This 

was modeled by Dr. Kane Jen and verified by MALDI. 1H-NMR can only show an 

average of what is appended to the core cage, but MALDI data gives insight into the 

distribution of products. 

O Si O SiH

8 O

O

O Si O Si

O Si O Si O

O

x

y

x+y=8
Pt(dvs), Toluene

 

Scheme 3.19: Hydrosilylation of POSS cage with allylBCB and allyl methacrylate to 
render the material photocrosslinkable and thermally stable. 

The reason for appending the two functional groups was described in Scheme 3.2. 

With BA5x3, a network polymer can be produced by first curing the material with UV 

and then vitrifying by heating to fully crosslink the material. Several batches were tested 

by hand imprinting with assistance from Dr. Frank Palmieri. Figure 3.7 below shows the 

result of a successful imprint. In order to obtain those patterns, several issues needed to 

be overcome, such as adhesive and/or cohesive failure (material sticking to the template 

and not releasing or material tearing). These problems were worked out by optimizing the 

surface treatments on the wafer and the template. The best process included AP410 as an 

adhesion promoter and a fluorinated self-assembled monolayer (FSAM) to promote 

template release. 
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Figure 3.7: SEM images from hand imprint of BA5x3. Microfaceting is replicated from 
defects created during manufacturing of the template used. 

3.4.5 Vinyl POSS with Azides 

Ultimately homo-functionalized material was explored to provide a single, pure 

substance rather than a mixture and to avoid the instability of the acrylate functionality. 

One such material was POSS with terminal vinyl groups. The vinyl group is not 

sufficiently reactive to enable polymerization but can undergo crosslinking by the 

addition of nitrenes. All of the same steps described above to synthesize Q8
H were used to 

synthesize the vinyl cage. Instead of using chlorodimethylsilane, 

vinyldimethylchlorosilane was used in the last step. The reaction is illustrated in Scheme 

3.20. The product is a crystalline solid that was obtained in moderate yield (46%). 

Purification was carried out in a manner similar to that described above.  

NO

8

Heptane, DMF
0 ºC-RT, H2O

8

O Si8 Cl Si

 

Scheme 3.20: Synthesis of vinyl terminated Q8 (Q8
vinyl). 

As with the silane POSS, Q8
H was hydrolyzed and reacted with 

vinyldimethylchlorosilane to extend the siloxane linkages from each corner. The reaction 

was carried out with the same observations as in the preparation of Q8
OSiH. The product 
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PS2V (Q8
OSiVinyl, seen in Scheme 3.21), is a colorless viscous liquid that was obtained in 

52% yield. Spectral analysis along with HRMS verified the structure. 

8

O Si O Si8
Heptane, DMFClMe2Si

8

O Si OH
0 ºC-RT, H2O

 

Scheme 3.21: Preparation of PS2V cage (Q8
OSiVinyl). 

In order to study the chemistry of the vinyl POSS, benzyldimethyl(vinyl)silane 

was used as a model compound (Scheme 3.22). The colorless liquid product was obtained 

in 83%. Analysis compared to published data confirmed the structure [21]. 

Cl Mg

Diethylether

MgCl Cl Si Si

 

Scheme 3.22: Synthesis of benzyldimethyl(vinyl)silane. 

Benzyloxydimethyl(vinyl)silane was also synthesized as a model compound as 

shown in Scheme 3.23. The product was obtained as a colorless liquid in 61%. 

OH
Cl Si O Si

DMAP

Pyr / DCM  

Scheme 3.23: Synthesis of benzyloxydimethyl(vinyl)silane. 

As for the azide model compounds, two simple azides were synthesized 

(according to slightly modified published procedures [22, 23]: azidobenzene and 

benzylazide (Scheme 3.24). 
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Br N3

1) NaNO2, HCl, H2O, 0 ?C

2) NaN3, H2O, 0 ?C

NH2 N3

NaN3

DMSO, 50 ºC, o.n.  

Scheme 3.24: Synthesis of model azide compounds. 

These azide compounds were mixed with the model vinylsilanes between two IR 

plates and exposed to UV irradiation. Reactions were monitored at first by IR to observe 

the disappearance of the azide group. Later, mixtures of model compounds were 

dissolved in deuterated acetonitrile and exposed to UV in a quartz cuvette. In this way the 

reactions could be monitored by NMR (appearances and shifts of signals).  

A difunctional azide or an azide appended onto POSS is necessary to achieve 

crosslinking. A diazide, 1,3-bis(azidomethyl)-1,1,3,3-tetramethyldisiloxane (bisazide), 

was synthesized by a slight modification of a literature procedure [24]. A colorless liquid 

(99%) was isolated upon aqueous workup (Scheme 3.25). 

 

Scheme 3.25: Synthesis of bisazide crosslinker. 

A polyfunctional azide can also mediate crosslinking. 4-Azidostyrene (p-

azidostyrene), was therefore synthesized in collaboration with a visiting scientist, Dr. 

Sangwoong Yoon according to Scheme 3.26 [25]. This azide can be appended to a POSS 

cage by hydrosilylation and tested as a crosslinker. 

NaNO2, H2O

HCl, 0 ºC

NH2 N2 N3NaN3

H2O, 0 ºC  

Scheme 3.26: Synthesis of 4-azidostyrene. 
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4-Azidobenzyl alcohol was also prepared in collaboration with Dr. Yoon 

(illustrated in Scheme 3.27) [26]. The idea for the design of this molecule was to append 

it to the POSS cage or various chlorosilanes. 

NaNO2, H2O

HCl, 0 ºCHO

NH2

HO

N2

HO

N3NaN3

H2O, 0 ºC  

Scheme 3.27: Synthesis of 4-azidobenzyl alcohol. 

UV exposures were carried out on glass slides to see if a solid film would form 

from formulations of bisazide and PS2V (shown in Scheme 3.28). Solid films formed 

when drops were dispensed on glass slides and exposed. 

 

Scheme 3.28: POSS containing imprint formulations based on azide chemistry. 

Hand imprints were tried with quartz templates. Adhesive and cohesive failure 

was catastrophic. Closer attention to the actual UV exposure was made and large bubbles 

were observed forming between the wafer and the template. Occasionally these bubbles 

forced the template off the wafer. It was determined that the amount of nitrogen gas 

generated from the reaction was too large to diffuse through the material and that nitrene 

chemistry would not work for imprint lithography. 

3.4.6 Vinyl POSS with Thiols 

Thiol-ene chemistry has been known for over a century [13] It is similar to click 

chemistry in that it forms products in nearly quantitative yield. The reaction takes place 

as a free radical reaction. Another attractive characteristic of this chemistry is that it is not 

inhibited by oxygen.  
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Benzyldimethyl(vinyl)silane, trimethylvinylsilane, and vinyltetramethyldisiloxane 

model compounds were formulated with ethanethiol, 1,2-ethanedithiol, and thiophenol 

and tested. Reactions were monitored by the disappearance of the vinylic and thiol 

protons and the appearance of methylene groups in NMR spectra. It was observed that 

the thiophenol formulation crosslinked while being stored in a dark cabinet. This could 

obviously become a problem if one cannot store the mixture, and shelf-life studies need 

to be carried out. None of the products were characterized by techniques other than 

NMR.  

A formulation of PS2V and 1,2-ethanedithiol (Scheme 3.29) was successfully 

patterned by hand imprinting. However, the two components of this initial formulation 

phase-separated and further trials were abandoned.  

 

Scheme 3.29: Initial thiol-ene based imprint formulation solidified upon exposure, but 
phase separate upon storage. 

Pentaerythritol tetrakis(3-mercaptopropionate) was tried as well but was not 

miscible with PS2V either.  

Because of the initial success with 1,2-ethanedithiol the synthesis of potentially 

phase compatible multi-thiols was investigated. Initially, 1,2-bis(mercaptomethyl)-

1,1,3,3-tetramethyldisiloxane (bisthiol) was synthesized according to a slightly modified 

and adapted thiouronium salt procedure (see Scheme 3.30) [27]. The product, a colorless, 

low-viscosity liquid, was obtained in 51%.  
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Scheme 3.30: Synthesis of 1,3-bis(mercaptomethyl)-1,1,3,3-tetramethyldisiloxane 
crosslinker. 

An additional path to the thiol involved first carrying out a displacement of the 

chloride by thioacetate as illustrated in Scheme 3.31. 

 

Scheme 3.31: Synthesis of 1,3-bis(methylene ethanethioate)-1,1,3,3-
tetramethyldisiloxane. 

This procedure converted starting material to product in nearly quantitative yield. 

Hence attempts toward cleaving the acetate to provide the free thiol. There are only a few 

alkyl halide terminated silanes and siloxanes commercially available. However, there are 

a large number of commercially available vinyl-terminated silanes and siloxanes. So, it 

would be convenient to find an efficient way to synthesizing thiols directly from such 

starting materials. Several methods of installing thiols were explored and are illustrated in 

Scheme 3.32.  

 

Scheme 3.32: Various unsuccessful methods attempted to install thiols directly or 
indirectly. 
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Various conditions were attempted to add hydrogen sulfide directly to a vinyl 

silane. No conversion of starting material was observed. Displacement of the alkyl halide 

with either thiourea or thioacetate resulted in modest to almost quantitative yields. 

Several methods were tried to add a halide in anti-markovnikov fashion with little 

success. Reduction of the vinyl functionality with borane was also attempted without 

success. There was much disappointment when the above reactions did not proceed to 

any appreciative conversion or not at all. Fortunately the reaction between the various 

vinyl terminated compounds and thioacetic acid to yield thioacetates as seen in Scheme 

3.33 produced in excellent yield. 

 

Scheme 3.33: Thiol-ene reaction producing a thioester. Although the anti-Markovnikov is 
the major product, the B-addition is shown as it is produced in small 
quantity. 

Cleavage of the thioesters would yield the desired thiols.  

 

Scheme 3.34: Attempts to cleave thioesters. The LAH procedure worked best and even 
then only in meager yields. 
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Several methods were attempted but there was little success in cleaving the 

thioacetate. Heating the thioester to reflux in alcoholic potassium hydroxide lead to 

formation of thiols in model compounds. However, this method is not suitable for 

cleaving thioesters from siloxane derivatives as the basic conditions scramble the 

siloxane linkages. Reduction of the thioesters with LAH, provided a series of thiols in 

low yield as illustrated in Figure 3.8. 

 

Figure 3.8: Attempted synthesis of multi-thiols containing silane and siloxanes. 

The new multi-thiols were fully characterized and evaluated for compatibility 

with PS2V (Scheme 3.34). Unfortunately, only multi-thiol B, and C were phase 

compatible with the vinyl cage.  

 

Scheme 3.35: Crosslinking of PS2V and bisthiol formulation under UV exposure. 
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Imprint images were examined by scanning electron microscope (SEM). Results 

can be seen in Figure 3.9. 

     

 

Figure 3.9: SEM images of hand imprinted patterns with PS2V–bis(mercaptomethyl)-
tetramethyldisiloxane formulation.   

3.4.7 Reactive Diluents 

As noted, POSS cages have a tendency to be crystalline or viscous liquids. For 

these materials to be useful for high volume manufacturing (HVM), the time required to 

fill the template before curing must be minimized. Solvents cannot be used to reduce 

viscosity as they evaporate over time and change the composition of the films. However, 

a nonvolatile solvent that is reactive could be used to lower the viscosity. Figure 3.10 

shows several commercially available and synthesized reactive diluents that were tested 

in various imprint formulations. 
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Figure 3.10: Various reactive diluents evaluated in formulations. Compound A and D 
were synthesized whereas the rest are commercially available. As a side 
note, many of these reactive diluents were used in the preparation of the 
above multi-thiols. 

The addition of a reactive diluent can alter the viscosity of formulations 

tremendously. It was determined by viscometry, thermal stability tests, and the ability to 

solidify upon exposure that compound B and C are the two most promising candidates. 

Reactive diluents become a permanent part of the film and will therefore impact its 

physical properties after photopolymerization. It was observed that a loading of any 

reactive diluent greater than 15 wt.%, produced films that were sticky and rubbery.  

3.5 IMPRINTING OF RESIST FORMULATIONS 

An optimum imprint resist formulation consisting of PS2V, bisthiol, compound C 

in Figure 3.10 above, and a photo initiator was chosen and used in imprint tests on an 

Imprio 55. The resist formulation is based on the lowest possible viscosity while 

maintaining the highest possible thermal stability. The formulation used can be seen in 

Table 3.1. 
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Table 3.1: Best performing imprint resist formulations used in imaging attempts on an 
Imprio 55. 

3.8 SUMMARY 

Several polymerization techniques have been evaluated to provide a functional 

DPD material. Each new method has brought us closer to discovering a formulation that 

meets all of the requirements set by the microelectronic industry. The development of a 

thiol-ene based formulation has shown great promise. Unfortunately, the viscosity of 

current formulations is too high for high-volume manufacturing. Higher concentrations of 

a reactive diluent solves the viscosity problem but compromises other requirements a 

material must meet. A more advanced formulation consisting of additional components 

will be required to meet all the criteria set on ILD materials.
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3.10 SYNTHESIS OF MATERIALS 

General experimental procedures and comments. Chemicals were purchased 

and used in reactions without further purification unless otherwise indicated. Solvents 

were dried and distilled according to commonly used literature procedures [28]. All 

reactions were performed under a dry nitrogen atmosphere unless otherwise indicated. 

Q8
OH was not isolated, but instead run through a celite plug and a micro filter to remove 

catalyst, and used directly in subsequent reactions.  
1H NMR spectra were obtained on a Varian Mercury (400 MHz), Varian (400 

MHz System, Direct Drive), Varian INOVA (500 MHz) or Unity plus (300 MHz) 

instruments referenced to deuterated chloroform (7.24 ppm), deuterated DMSO (2.49 

ppm) or deuterated water (4.79 ppm). Chemical shifts are reported in delta units (∂), parts 

per million, and coupling constants (J) are reported in Hertz (Hz). 13C spectra were 

obtained on a Varian Mercury (100 MHz), Varian (100 MHz System, Direct Drive), 

Varian INOVA (125 MHz) or a Unity plus (75 MHz) instruments referenced to 77.000 

ppm for deuterated chloroform, or 39.5 ppm for deuterated DMSO. 13C NMR spectra 

were routinely run with broadband decoupling. 29Si spectra were obtained on a Varian 

INOVA (75 MHz) or a Unity plus (60 MHz). Low-resolution mass spectra were obtained 

on an Agilent GC/MS 6890N Gas Chromatograph and 5973 Mass Spectrometer, or a 

Finnigan LCQ instrument. High-resolution mass spectroscopy analyses were carried out 

on an ION-SPEC, FT-ICR/MS instrument. FT-IR spectra were obtained on a Nicolet 

Avatar 360 FT-IR instrument. Thermal stability and melting points were measured on a 

MEL-TEMP II or a TA instruments DSC Q100 / TGA Q500. UV exposures were either 

carried out on a The Southern N.E. Ultraviolet Co. Rayonet Photochemical Reactor (16 
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bulbs, 300 nm) or a JH Technoligies Novacure® 2100 System (High Pressure 100 W 

Mercury Vapor Short Arc Lamp, ~250-500 nm). 

Preparation of tetramethylammonium silicate [16]. Tetramethylammonium 

hydroxide pentahydrate (17.187 g, 0.095 mol, 1.3 eq.) was added to a 250 mL single 

necked round-bottom flask equipped with a magnetic stir bar and a rubber septum. To 

this was added distilled water (85 mL) and then silicic acid (5.684 g, 0.073 mol, 1.0 eq.) 

slowly portion wise. The white cloudy mixture was stirred at room temperature for 7 

hours and then heated to 60 °C overnight. The resulting clear colorless solution was 

concentrated in vacuo and cooled to 0 °C to obtain a wet white solid. The solid was 

isolated by filtration and dried further under high vacuum to yield 10.1 g, 97% of 

tetramethylammonium silicate. Decomposition occurs above 380 °C. 1H-NMR (500 

MHz, D2O): δ 3.086 (t, J = 0.6 Hz, 96H). 13C-NMR (125 MHz, D2O): δ 55.435 (t). 29Si-

NMR (100 MHz, D20): δ -72.020 (s). FT-IR (KBr): 3196 (br), 1457, 1375, 1107, 1060, 

1002, 948, 881, 705 cm-1 (m). 

Preparation of Q8
H (POSS) [16]. A mixture of dried heptane (200 mL), 

dimethylformamide, (400 mL), and dimethylchlorosilane (200 mL, 188.6 g, 2 mol) was 

prepared in a 2 L single necked round-bottom flask equipped with a septum and a 

magnetic stir bar. The mixture was stirred for about 15 min. at room temperature and then 

cooled to 0 °C before tetramethylammonium silicate (9.528 g, 0.0084 mol) was added 

slowly to the mixture. The resulting mixture was stirred for 15 min. before ~1 L of 

chilled distilled water was added drop wise through an addition funnel at a rate of a few 

drops/s. The organic layer was separated from the aqueous layer, then washed with 

distilled water (3x400 mL) until the organic layer was neutralized. The solvent was 

removed under reduced pressure at 50 °C to leave a white solid that was purified by 

crystallization from hexanes and isolated to yield 2.435 g (29%) of product which 
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sublimes between 166-245 °C (modulated mode, modulation temperature amplitude: +/- 

5° C, modulation period: 200s, heating rate: 2° C/min). Spectral data corresponds well 

with reported values [16]. 1H NMR (500 MHz, CDCl3): δ 4.710 (t sep., J = 2.8 Hz, JSiH = 

105 Hz, 8H), 0.24-0.22 (m, 48H). 13C-NMR (75 MHz, CDCl3): δ 0.042 (s). 29Si-NMR 

(100 MHz, CDCl3): δ -1.368 (dp, J = 7.2/209.9 Hz), -108.630 (d, J = 1.9 Hz). FT-IR 

(KBr): 2963, 2361, 2359, 837 (m), 2144, 1096, 901, 771, 552 cm-1 (s). HRMS (CI+, [M-

1]+) calcd. for C16H55O20Si16: 1014.9595, found = 1014.9595. 

Preparation of Q8
OH (POSS silanol). Palladium on carbon (0.04 g) was weighed 

into a 250 mL single necked round-bottom flask equipped with a magnetic stir bar. 

Distilled water (2.0 mL, 0.111 mol) was added along with THF (30 mL) to the reaction 

flask. An addition funnel was fitted on the reaction flask containing a solution of Q8M8
H 

(2.0 g, 1.96 mmol) dissolved in THF (70 mL). Q8M8
H which was slowly added drop wise 

over several hours while the temperature was kept at 0 °C. The resulting mixture was 

then stirred for 8 hrs at room temperature. The product was kept in the THF mixture and 

used directly in subsequent reactions. 

Preparation of Q8
OSiH (POSS) [11]. A mixture of heptane (160 mL), DMF (320 

mL), and dimethylchlorosilane (50 mL, 47.2 g, 0.50 mol) was stirred at 0 °C for 15 

minutes in a 1 L round-bottom flask equipped with a magnetic stir bar. The freshly made 

POSS silanol (~2 g, 2 mmol) in THF was poured into an addition funnel that was fitted 

on the reaction flask. Nitrogen was flushed through the system for a few minutes before 

the silanol was slowly added drop wise into the reaction flask at a rate of ~1 drop/s. After 

all the silanol was added the reaction mixture was stirred for an additional 15-20 minutes 

before quenching the reaction by drop wise addition of chilled distilled water (~350 mL). 

The reaction flask was kept in an ice bath during the entire addition of silanol and water. 

The organic layer was separated out and washed with distilled water (3x500 mL) until the 
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organic layer was neutralized. The solvent was removed under reduced pressure over 

several hours to give a gelatinous colorless product in 1.98 g, 62% yield. 1H NMR (400 

MHz, CDCl3): δ 4.710 (sep., J = 2.7 HZ, JSiH = 102.6 Hz, 8H), 0.199 (d, J = 2.7 Hz, 

48H), 0.123 (s, 48H). 13C-NMR (100 MHz, CDCl3): δ 0.618, 0.313. 29Si-NMR (75 MHz, 

CDCl3): δ -4.09 (d sep., J = 7.2/205.3 Hz), -16.97 (dp, J = 1.4/7.4 Hz), -110.00 - -110.14 

(m). FT-IR (neat): 3054, 2964, 2130 (m), 3446 (br), 1265, 1114, 1060, 913, 847, 746 cm-

1 (s). HRMS (CI+, [M-1]+) calcd. for C32H103O28Si24: 1607.1099, found = 1607.1091. 

Preparation of 2-(2-bromophenyl)ethanol. A 250 mL three necked round 

bottomed flask was equipped with a magnetic stir bar, rubber septa, and an addition 

funnel with a rubber septum. The setup was flame dried under vacuum. 2-

Bromophenylacetic acid (4.039 g, 18.8 mmol, 1 eq.) was dissolved in freshly distilled 

THF (60 mL) and the solution was transferred to the reaction flask via canula. Borane in 

THF (24 mL, 1.0 M, 24 mmol) was added to the addition funnel via canula and slowly 

added dropwise into the reaction flask. After addition of BH3·THF, the solution was 

stirred at room temperature for 1 h and then heated at 100 °C for 2 h. After this time, the 

solution was cooled to room temperature, and a mixture of THF and water (20 mL) was 

added slowly. Potassium carbonate was then added (a full spatula tip, along with diethyl 

ether (60 mL). The organic layer was separated from the mixture, and washed with water 

(60 mL), aqueous NaHCO3 (60 mL), and brine (60 mL) before it was dried over 

magnesium sulfate, filtered, and concentrated to give the crude product. Residue was 

purified by distillation and the product 2.34 g, 62% was collected at 115 °C and 10 Torr 

as a colorless oil. Spectral data corresponds well with reported values [29]. 1H NMR (400 

MHz, DMSO-d6): δ 7.549 (d, J = 8.0 Hz, 1H), 7.346-7.267 (m, 2H), 7.147-7.109 (t, J = 

7.5, 1H), 4.760-4.734 (t, J = 5.3 Hz, 1H), 3.618-3.569 (dd, J = 6.9/5.7 Hz, 2H), 2.869-

2.833 (t, J = 7.1 Hz, 2H). 13C NMR(100 MHz, DMSO-d6): δ 138.366, 132.362, 131.462, 
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128.180, 127.615, 123.932, 60.333, 39.068. FT-IR (neat): 3341 (br), 3057, 1567, 1337 

(w), 2959, 2880, 659 (m), 1471, 1440, 1041, 750 cm-1 (s). HRMS (CI+, [M-1]+) calcd. for 

C8H8OBr: 198.9759, found = 198.9761. 

Preparation of 2-(2-bromophenyl)ethyl 4-methylbenzenesulfonate. 2-

Bromophenethyl alcohol (1.852 g, 9.2 mmol, 1.0 eq.) was dissolved in freshly distilled 

pyridine (25 mL) in a 200 mL three-necked round-bottom flask equipped with a rubber 

septa and a magnetic stir bar the. The reaction flask was flushed for several minutes with 

nitrogen while stirring in an ice bath. Recrystallized p-toluenesulfonyl chloride (3.520 g, 

18.46 mmol, 2.0 eq.) was added in small amounts via spatula over 5 minutes and the 

mixture was stirred at 0 ºC for several hours. DCM (50 mL) was added and the organic 

layer was thoroughly washed with dilute HCl (aq.), water, saturated sodium carbonate, 

water and brine, dried over magnesium sulfate, filtered, and concentrated in vacuo. The 

product 3.26 g, 69% was isolated as a crystalline solid. Melting point = 41-43 °C (lit. 39-

39.5 °C) and spectral data corresponds well with reported values [30]. 1H NMR (400 

MHz, CDCl3): δ 7.669 (app. d, J = 8.4 Hz, 2H), 7.441 (dd, J = 0.9/7.9 Hz, 1H), 7.257 

(app. d, J = 7.8 Hz, 2H), 7.157-7.241 (comp., 2H), 7.049-7.092 (m, 1H), 4.231 (t, J = 6.9 

Hz, 2H), 3.071 (t, J = 6.9 Hz, 2H), 2.413 (s, 3H). 13C NMR (100 MHz, CDCl3): δ 

144.595, 135.414, 132.780, 132.661, 131.426, 129.700, 128.613, 127.713, 127.505, 

124.261, 68.645, 35.550, 21.533. FT-IR (neat): 3735, 3565, 2737, 2279 (w), 3669, 2586, 

1805, 1732, 1650 (m), 3064, 2955, 2916, 2893, 2866, 1922, 1600, 1565 (s), 1491 cm-1 

(br). HRMS (CI+, [M+1]+) calcd. for C15H16O3SBr: 355.0004, found = 354.9997. 

Preparation of 1-bromo-2-(2-bromoethyl)benzene. 2-(2-Bromophenyl)ethyl 4-

methylbenzenesulfonate (2.237 g, 6.3 mmol, 1.0 eq.) was added to a flame dried 50 mL 

single-necked round-bottom flask. Freshly distilled acetone (15 mL) and lithium bromide 

(1.106 g, 12.7 mmol, 2.0 eq.) was added to the reaction flask. The reaction was refluxed 
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overnight. The resulting solid was removed via vacuum filtration and washed with 

acetone. The acetone was evaporated under reduced pressure and the resulting oil was 

dissolved in diethyl ether, washed with sodium carbonate. The aqueous layer was 

extracted once more with diethyl ether and the combined organic layers were washed 

with brine, dried over magnesium sulfate and rotary evaporated. The residue was purified 

by column chromatography with hexanes on silica gel to give the product 0.99 g, 60% as 

a slightly yellowish liquid. Spectral data corresponds well with reported values [31]. 1H 

NMR (400 MHz, CDCl3): δ 7.553 (s, J = 8.0 Hz, 1H), 7.255-7.279 (m, 2H), 7.109-7.161 

(m, 1H), 3.575-3.613 (app. t, J = 7.6 Hz, 2H), 3.277-3.315 (t, J = 7.6 Hz, 2H). 13C-NMR 

(100 MHz, CDCl3): δ 138.348, 133.296, 131.450, 129.017, 127.849, 124.605, 39.845, 

31.334. FT-IR (neat): 2858, 1950, 1918, 1798, 1693, 1158, 921, 852, 822 (w), 3010, 

1592, 1182, 1138, 944, 867 (m), 3060, 2959, 1565, 1472, 1437, 1320, 1293, 1257, 1217, 

1095, 1045, 1024, 751, 662, 644 cm-1 (s). HRMS (CI+, [M+1]+) calcd. for C8H9Br2: 

262.9071, found = 262.9071. 

Preparation of 4-bromo-benzocyclobutene [32, 33]. Benzocyclobutene (0.46 g, 

4.4 mmol, 1.0 eq.), methanol (0.43 mL), and DCM (2.15 mL) were added to a 10 mL 

round bottom flask and immersed in an ice bath. Bromine (0.72 g, 4.5 mmol, 1.0 eq.) was 

slowly added dropwise by a syringe into the flask. The resulting mixture was stirred for 

16 hrs. Aqueous sodium bisulfate solution was then added and the aqueous layer was 

extracted with diethyl ether twice. The combined organic layer was washed with brine, 

dried with magnesium sulfate, filtered and the solvent was removed under reduced 

pressure. The residue was purified by column chromatography with hexanes on silica gel. 

The product 0.47 g, 58 % was recovered as a clear liquid. 1H NMR (400 MHz, CDCl3): δ 

7.353 (d, J = 7.6 Hz, 1H), 7.211 (s, 1H), 6.938 (d, J = 8 Hz, 1H), 3.190 (app. t, J = 4.4 

Hz, 2H), 3.126 (app. t, J = 4.4 Hz). 13C-NMR (100 MHz, CDCl3): δ 147.214, 144.134, 
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129.826, 125.860, 124.283, 120.466, 29.442, 29.427, 29.166, 29.151. FT-IR (neat): 2969, 

2825, 1740 (weak), 2932, 1579, 1303, 1249, 1201, 1136, 1094, 1038 (medium), 1455, 

866, 813, 688 cm-1 (strong). HRMS (CI+, [M+1]+) calcd. for C8H8Br: 182.9809, found = 

182.9809. 

Preparation of 4-allyl-benzocyclobutene. 4-bromo-benzocyclobutene (0.59 g, 

3.2 mmol, 1.0 eq.) was added to a 50 mL three-necked round-bottom flask equipped with 

a magnetic stir bar and a reflux condenser. The setup was stirred under vacuum for 

approximately 60 minutes before vented with nitrogen gas. Freshly distilled THF was 

added by a canula. Magnesium (0.09 g, 3.6 mmol, 1.1 eq.) was added and the reaction 

was stirred for 30–60 min at room temperature. The reaction vessel was immersed in an 

ice bath at 0 ºC and allyl bromide (0.79 g, 6.5 mmol, 2.0 eq.) was slowly added by 

syringe. The resulting mixture was removed from the ice bath and warmed to room 

temperature then heated to reflux for 60 minutes. The solvent was evaporated under 

reduced pressure and the remaining liquid was poured into cold DI water, extracted with 

diethyl ether, and the organic layer was washed with brine, dried over magnesium sulfate 

and concentrated on a rotary evaporator. The product was isolated by column 

chromatography with hexanes on silica gel as a clear liquid 0.15 g, 32%. 1H NMR (400 

MHz, CDCl3): δ 6.993–7.240 (m, 2H), 6.936 (s, 1H), 5.938–6.039 (m, 1H), 5.050–5.129 

(m, 2H), 3.387 (d, J = 6.8 Hz 2H), 3.171 (s, 4H). 13C-NMR (100 MHz, CDCl3): δ 

145.897, 143.367, 138.620, 138.070, 127.043, 122.802, 122.408, 115.340, 40.863, 

29.330, 29.189. FT-IR (neat): 3075, 3002, 1602, 1203 (weak), 2963, 2829, 802, 705 

(medium), 2928, 1638, 1473, 1432, 993, 826 cm-1 (strong). HRMS (CI+, [M+1]+) calcd. 

for C11H13: 145.1017, found = 145.1017. 

Preparation of p-azidostyrene [25]. 4-vinylaniline (1.192g 0.010 mol, 1.0 eq.) 

and dioxane (10 mL) were added to a 250 mL single necked round-bottom flask. The 
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mixture was cooled to 0 ºC before adding an aqueous HCl solution (2 M, 50 mL) while 

stirring. Sodium nitrite (0.691 g, 0.010 mol, 1.0 eq.) dissolved in water (10 mL) was then 

added and the resulting mixture was stirred for 30 min at 0 ºC. During this time the 

solution changed color to a dark yellow and an orange solid precipitated while gas 

evolved. Sodium azide (0.792, 0.012 mol, 1.2 eq.) dissolved in water (10 mL) was slowly 

added and more gas was produced. The reaction mixture was stirred at 0 ºC for 1hr and 

then slowly warmed to room temperature by removing the ice bath. Saturated NaHCO3 

(aq.) was added to pH 7. The organic phase was extracted with ethyl acetate (3x30 mL) 

and washed with water (3x30 mL) and brine (3x30 mL), dried over magnesium sulfate 

and concentrated on a rotary evaporator. Column chromatography with n-pentane on 

silica gel afforded the product as a slightly yellow liquid 0.494, 34% yield. 1H NMR (300 

MHz, CDCl3): δ 7.154-7.188 (app. d, J = 8.8 HZ, 2H), 6.747-6.782 (app. d, J = 8.8 Hz, 

2H), 6.461-6.532 (dd, J = 11.0/17.6 Hz, 1H), 5.506-5.552 (dd, J = 0.8/17.6 Hz, 1H), 

5.053-5.082 (dd, J = 0.8/11.0 Hz, 1H). 13C NMR (75.5 MHz, CDCl3): δ 139.082, 

135.629, 134.275, 127.348, 118.867, 113.227. FT-IR (neat): 3220, 3088, 3035, 3008, 

2981, 2926, 1963, 1893, 1820 (w), 2418, 2257, 2043, 1629, 1571, 1407, 1206, 1182, 

1129, 1117, 751 (m), 2101, 1603, 1505, 1295, 989, 907, 836 cm-1 (s). HRMS (CI+, 

[M+1]+) calcd. for C8H8N3: 146.0718, found = 146.0715. 

Preparation of p-azidobenzyl alcohol [26, 34]. 4-aminobenzyl alcohol (1.23 g, 

10 mmol, 1.0 eq.) was dissolved in 2 M aqueous HCl (30 mL) at 0 ºC in a 250 mL single-

necked round-bottom flask equipped with a magnetic stir bar. Sodium nitrite (1.035 g, 15 

mmol, 1.5 eq.) in water (10 mL) was slowly added and the reaction was stirred for 15 min 

at 0 ºC. Sodium azide (15 mmol) dissolved in water (10 mL) was carefully added at 0 ºC 

with gas evolution. The reaction mixture was stirred for 1h at room temperature. A 

brownish oil separated from the aqueous solution. Diethyl ether (50 mL) was added and 



 76 

the organic layer was dried over magnesium sulfate and concentrated on a rotary 

evaporator. Column chromatography with ether/n-pentane (30% → 90%) on silica gel 

afforded the product as a brownish oil 1.08 g, 65%. Spectroscopic data matched literature 

values. 1H NMR (400 MHz, CDCl3): δ 7.184-7.205 (d, J = 8.4 Hz, 2H), 6.885-6.906 (d, J 

= 8.4 Hz, 2H), 4.460 (s, 3H). 1H NMR (300 MHz, DMSO-d6): δ 7.340-7.369 (app. d, J = 

8.7 Hz, 2H), 7.039-7.082 (dt, J = 2.1/8.7 Hz, 2H), 5.208-5.246 (t, J = 5.74 Hz, 1H), 

4.476-4.495 (d, J = 5.7 Hz, 2H). 13C-NMR (100 MHz, CDCl3): δ 138.561, 137.147, 

127.944, 118.465, 63.481. FT-IR (in CDCl3): 3343 (br), 3033, 1894, 1458, 1368, 1112, 

938 (w), 2928, 2875, 2411, 2255, 1582, 1420, 1209, 1180, 774 (m), 2106, 1609, 1507, 

1291, 1129, 1012, 815 cm-1 (s). HRMS (CI+, [M+1]+) calcd. for C7H8ON3: 150.0667, 

found = 150.0662. 

Preparation of aB8x POSS (octa functionalized Q8
H with allylbenzene). Q8

H 

(2.014 g, 1.98 mmol, 1.0 eq.), allylbenzene (2.6 mL, 0.0196 mol, 9.9 eq.), and freshly 

distilled toluene (10 mL) were added to a 25 ml round bottom flask. Karstedt’s catalyst 

(0.5 mL, 2mM solution in xylenes) was slowly added at 0 °C. The reaction mixture was 

stirred at room temperature for 6 hours before filtering through celite (2 mL) and a micro 

filter (0.45 µ). Solvent was removed under reduced pressure and the product was placed 

on high vacuum for ~24 hrs. The crude product was purified by column chromatography 

on silica gel. First 100% hexanes were used to collect 2 fractions then a second column 

was run with 50% ethyl acetate in hexanes as eluent. The product 3.082 g, 79% as thick 

yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.132-7.224 (m, 16H), 7.037-7.089 (m, 24H), 

2.497 (t, J = 7.6 Hz, 16H), 1.513-1.593 (m, 16H), 0.506-0.548 (m, 16H), -0.016-0.029 

(m, 48H). 13C-NMR (100 MHz, CDCl3): δ 142.475, 128.457, 128.212, 125.593, 39.508, 

24.985, 17.440, -0.327. 29Si-NMR (100 MHz, CDCl3): δ 12.632-12.914 (m), -108.768 (s). 

FT-IR (neat): 3731, 3646, 1739, 1681, 1654(w), 3110, 2792, 1937, 1864, 1797, 1580 (m), 
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3083, 3059, 3021, 2959, 2920, 2854, 1599, 1494, 1452, 1405, 1343, 1249, 1172, 1090, 

838, 698 cm-1 (s). HRMS (CI+, [M+1]+) calcd. for C88H137O20Si16: 1961.6012, found = 

1961.6016 

Preparation of B8x POSS (octa functionalized Q8
OSiH with 

allylbenzocyclobutene). The same procedure for the preparation and isolation of aB8x 

was used here. Q8
OSiH (0.563 g, 0.35 mmol, 1.0 eq.), freshly distilled toluene (5 mL) 

allylbenzocyclobutene (0.813 g, 5.6 mmol, 16 eq.), and Karstedt’s catalyst (0.45 mL, 2 

mM) were combined in a 25 mL round bottom flask as described above. After workup 

product was isolated as slightly yellowish liquid. TLC showed two spots that were easily 

separated using a short silica plug with hexanes and ethyl acetate. The product 0.777 g 

was obtained in 81% as a slightly yellowish oil. 1H NMR (400 MHz, CDCl3): δ 6.812-

6.887 (dd, J = 15.3 Hz, J = 7.5 Hz, 16H), 6.759 (s, 8H), 3.006 (s, 32H), 2.463-2.501 (t, J 

= 7.6 Hz, 16H), 1.484-1.564 (m, 16H), 0.484-0.526 (m, 16H), 0.000-0.015 (2 overlapping 

signals, 96H). 13C-NMR (75 MHz, CDCl3): δ 145.525, 142.750, 141.292, 126.991, 

122.616, 122.185, 40.357, 29.300, 29.137, 25.960, 17.991, 0.722, 0.186. 29Si-NMR (100 

MHz, CDCl3): δ 8.921 (s), -18.318 (s), -109.748 (s). FT-IR (neat): 2858, 1475, 1410, 704 

(w), 2960, 2926 (m), 1259, 1112, 1056, 846, 802 (s), 446 cm-1 (br). HRMS, MALDI 

calcd. for C108H194O28Si24 = 2760.8688 found = 2783.934). 

Imprint Formulation BA5x3. Two to three drops of BA5x3 was added to an 

eppendorf tube. A very small amount (two to three millimeter in the tip of a Pasteur 

pipette) of Darocur® 1173 (2-hydroxy-2-methyl-1-phenyl-1-propanone) was added to the 

eppendorf tube. Aluminum foil was used to wrap the eppendorf tube to avoid light 

exposure and the mixture was shaken on a Maxi Mix II Type 37600 Mixer. A wafer 

cleaned with acetone and 2-propanol was coated with adhesion promoter AP410. 

Templates were soaked in a piranha bath, rinsed with water, quickly dipped in aqueous 
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potassium hydroxide solution (25%), rinsed with water and placed under oxygen plasma 

for 15-20 min. A crystallization dish was prepared with a 1 wt.% solution of toluene and 

(tridecafluoro-1,1,2,2-tetrahydrooctyl)dimethylchlorosilane. The template was soaked in 

the solution for at least 24 hrs before imprints were carried out. Hand imprints were 

performed by placing a drop of the mixture on a wafer shard and slowly lowering the 

template into the liquid. Care was taken to make sure that no air was trapped between the 

wafer and the template. The liquid completely filled the surface under the template then 

the material was flood exposed through the quartz template. The template was removed 

from the substrate by carefully prying a razorblade between the two. Successfully 

transferred patterns were inspected by SEM. 

Preparation of vinyl Q8 [35]. A mixture of heptane (70 mL) and freshly distilled 

DMF (100 mL), and vinyldimethylchlorosilane (28 mL, 0.20 mol, 60 eq.) was added to a 

500 mL single necked round bottomed flask and stirred at 0 °C. Tetramethylammonium 

silicate (3.85 g, 3.39 mmol, 1.0 eq.) was slowly added by a spatula over 10 minutes. The 

reaction was stirred for about 15 minutes before 1 L of chilled distilled water was slowly 

added. The organic layer was separated and washed with water until neutral pH was 

reached. The solvent was removed under reduced pressure on a rotary evaporator at 50 

°C. The residue 1.911 g, 46% of white crystals was recrystallized by slow evaporation of 

hexanes. 1H NMR (400 MHz, CDCl3): δ 6.062-6.150 (dd, J = 20.1/14.9 Hz, 8H), 5.919-

5.967 (app. dd, J = 3.9/14.9 Hz, 8H), 5.739-5.800 (app. dd, J = 3.9/20.2 Hz, 8H), 0.186 

(s, 48H). 13C-NMR (100 MHz, CDCl3): δ 137.929, 132.467, -0.223. 29Si-NMR (60 MHz, 

CDCl3): δ 0.522, -109.116. FT-IR (neat): 3052, 3014, 2901, 734, 699, 517 (w), 2963, 

1410, 1254, 1002, 955, 614 (m), 1091, 839, 784, 555 cm-1 (s). HRMS (CI+, [M-CH3]+) 

calcd. for C31H69O20Si16: 1209.0691, found = 1209.0702. 
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Preparation of PS2V “vinyl cage”[35]. A mixture of heptane (170 mL), DMF 

(350 mL), and vinyldimethylchlorosilane (20 mL, 0.15 mol) was stirred at 0 °C in a 1 L 

round-bottom flask equipped with a magnetic stir bar. The reaction flask was purged with 

nitrogen gas for approximately 5 minutes. Then Q8
OH in THF was added dropwise at a 

rate of 1 drop/s. The reaction mixture was stirred for 3 hrs before dropwise addition of 

chilled distilled water (250 mL). The reaction was kept in an ice bath during the addition 

of both silanol and water. The organic layer was separated, and washed with distilled 

water (3x500 mL) until pH = 7. The solvent was removed under reduced pressure and 

pumped on for several hours to give a highly viscous colorless liquid in 3.886 g, 52% 

yield. 1H NMR (400 MHz, CDCl3): δ 6.07-5.97 (dd, J = 20.1/15.0 Hz, 8H), 5.86-5.80 

(app. dd, J = 4.1/14.9 Hz, 8H), 5.67 - 5.59 (app. dd, J = 4.2/20.1 Hz, 8H), 0.156 (s), 0.100 

(s). 13C-NMR (75 MHz, CDCl3): δ 139.0, 131.8, 0.7, 0.2. 29Si-NMR (100 MHz, CDCl3): 

δ -2.8- -3.29 (m), -17.69 - -18.20 (m), -110.07 - -110.20 (m). FT-IR (neat): 3013, 2904, 

1051, 846, 801, 707 (m), 3052, 2963, 1406, 1259, 956 cm-1 (s). HRMS (CI+, [M-CH3]+) 

calcd. for C47H117O28Si24: 1801.2194, found = 1801.2192. 

Preparation of benzyldimethyl(vinyl)silane [21]. Freshly grounded magnesium 

(0.250, 10.3 mmol, 1.3 eq.) and a small crystal of iodine were added along with distilled 

THF (30 mL) to a flame dried 100 mL single necked round-bottom flask. Benzylchloride 

(1.0 g, 7.9 mmol, 1.0 eq.) was slowly added via syringe to the flask. The reaction was 

gently heated and then stirred at RT for ~2-3 hrs. Vinyldimethylchlorosilane (1.91 g, 15.8 

mmol, 2.0 eq.) was added slowly and the mixture was stirred overnight, carefully poured 

into chilled water (100 mL), and extracted with diethyl ether (2x30 mL). The combined 

organic layers were washed with water (2x30 mL) and brine (2x30 mL), dried over 

magnesium sulfate, filtered, and concentrated to give 1.17 g, 83% of crude product as a 

colorless liquid. Spectral data corresponds well with reported values [21]. 1H NMR (400 
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MHz, CDCl3): δ 7.7.124-7.161 (m, 2H), 6.987-7.023 (m, 1H), 6.935-6.957 (m, 2H), 

6.029-6.116 (dd, J = 20.2/14.7 Hz, 1H), 5.884-5.930 (dd, J = 3.9/14.7 Hz, 1H), 5.577-

5.637 (dd, J = 3.9/20.2 Hz, 1H), 2.089 (s, 2H), 0.000 (s, 6H). 13C-NMR (100 MHz, 

CDCl3): δ 139.804, 138.129, 132.155, 128.204, 128.092, 124.000, 25.766, -3.735. 29Si-

NMR (60 MHz, CDCl3): δ -6.280 (s). FT-IR (neat): 3082, 667 (w), 3049, 2892, 1452, 903 

(m), 3026, 2957, 1601, 1493, 1405, 1248, 1207, 1156, 1057, 1008, 952, 832, 793, 760, 698 

cm-1 (s). HRMS (CI+, [M+1]+) calcd. for C11H17Si: 177.1100, found = 177.1102. 

Preparation of benzyloxydimethyl(vinyl)silane. A 100 mL single necked 

round-bottom flask was flame dried under vacuum. To the reaction vessel was added 

dimethylaminopyridine (DMAP, 0.04 g, 0.33 mmol, 4 mol%), freshly distilled benzyl 

alcohol (0.9 mL, 8.7 mmol, 1.0 eq.), vinyldimethylchlorosilane (3.0 mL, 22 mmol, 2.6 

eq.), freshly distilled DCM (30 mL), and pyridine (30 mL). The resulting mixture was 

stirred for 14 hrs. The solid was filtered and washed with DCM. The organic layer was 

washed with saturated aqueous cupric sulfate solution several times to remove pyridine, 

then washed with water (50 mL), and brine (50 mL) before it was dried over magnesium 

sulfate, filtered, and concentrated to leave 1.018 g, 61% of a colorless liquid. 1H NMR 

(400 MHz, CDCl3): δ 7.361 (d, J = 4.5 Hz, 4H), 7.256-7.310 (m, 1H), 6.157-6.244 (dd, J 

= 20.0/14.9 Hz, 1H), 6.064-6.101 (dd, J = 4.3/14.9 Hz, 1H), 5.828-5.889 (dd, J = 4.1/20.0 

Hz, 1H), 4.741 (s, 2H), 0.266 (s, 6H). 13C-NMR (100 MHz, CDCl3): δ 140.778, 137.177, 

133.397, 128.212, 127.058, 126.508, 64.783, -2.083. 29Si-NMR (60 MHz, CDCl3): δ 

7.539. FT-IR (neat): 3087, 2730 (w), 3049, 3025, 2862, 2357, 2338, 1495, 1452, 1406, 

1375, 1208, 1029, 1006, 955 (m), 2959, 1254, 1095, 1068, 839, 784, 726, 695 cm-1 (s). 

HRMS (CI+, [M+1]+) calcd. for C11H17OSi: 193.1049, found = 193.1047. 

Preparation of Azidobenzene [22]. A stock solution of 2M aqueous HCl (100 

mL, 0.2 mol, 2.8 eq.) was added to a 250 mL single necked round-bottom and cooled to 0 
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°C. Aniline (6.6 mL, 0.073 mol, 1.0 eq.) was added to HCl solution. Sodium nitrite 

(10.5g, 0.15 mol, 2.1 eq.) was dissolved in a small quantity of water before added very 

slowly it to the mixture at 0 °C. The reaction was stirred at 0 °C for 45 minutes then 

sodium azide (14.1 g, 0.217 mol, 3.0 eq.) dissolved in a small amount of water was added 

very carefully as gas evolved. The reaction was slowly poured into saturated sodium 

carbonate (~200 mL) then extracted with pentane. The organic layer was washed with 

water (150 mL), brine (150 mL) before it was dried over magnesium sulfate, filtered, and 

concentrated to give the crude product. The residue was purified by column 

chromatography with ethyl acetate and hexanes on silica gel to give 4.9 g, 57% of a deep 

reddish brown liquid. Spectral data corresponds well with reported values [22]. 1H NMR 

(400 MHz, CDCl3): δ 7.340-7.392 (m, 2H), 7.133-7.187(m, 1H), 7.030-7.063 (m, 2H). 
13C-NMR (100 MHz, CDCl3): δ 139.929, 129.673, 124.784, 118.944. FT-IR (neat): 1938 

(w), 3245, 3064, 3036, 2418, 2257, 1129, 1076 (m), 2128, 1594, 1492, 1296 cm-1 (s). 

Preparation of Benzylazide [23]. Benzylbromide (10 mL, 84 mmol, 1.0 eq.), 

DMSO (150 mL), and sodium azide (18.1 g, 0.278 mol, 3.3 eq.) were added to a 250 mL 

single necked round-bottom flask. The reaction was heated to 50 °C for 12 hrs. The 

reaction mixture was cooled and poured into water (300 mL). Product was extracted with 

ether (3x50 mL) and washed with water (100 mL), and brine (100 mL) before it was 

dried over magnesium sulfate, filtered, and concentrated to give the product. The product 

4.632 g, 41% as a yellow liquid. Spectral data corresponds well with reported values [23]. 
1H NMR (400 MHz, CDCl3): δ 7.335-7.452 (m, 5H), 4.346 (s, 2H). 13C-NMR (100 MHz, 

CDCl3): δ 135.266, 128.702, 128.168, 128.091, 54.628. FT-IR (neat): 3066, 3032, 2932, 

2877, 1496, 1455, 1349, 1202 (m), 2094 cm-1 (s). 

Preparation of Bis(azidomethyl)-1,1,3,3-tetramethyldisiloxane (Bisazide). 

Bis(chloromethyl)-1,1,3,3-tetramethyldisiloxane (2.78 g, 0.012 mol, 1.0 eq.) was added 
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to 250 mL single necked round bottomed flask was equipped with a magnetic stir bar and 

a septum. Dimethylsulfoxide (DMSO, 80 mL) was added along with sodium azide (11.72 

g, 0.180 mol, 15.0 eq.). The resulting mixture was heated at 50 °C and stirred for 14 hrs. 

Water (100 mL) was used to dissolve the solid and diethyl ether (3x50 mL) was used for 

extraction. The ether layer was washed with water (50 mL) and brine (50 mL) before it 

was dried over magnesium sulfate, filtered, and concentrated to leave 2.92 g, 99% of a 

colorless liquid. 1H NMR (400 MHz, CDCl3): δ 2.702 (s, 4H), 0.161 (s, 12H). 13C-NMR 

(100 MHz, CDCl3): δ 41.964, -0.885. 29Si-NMR (60 MHz, CDCl3): δ 5.012. FT-IR 

(neat): 2961, 2888, 2187, 1411, 1291, 840 (m), 2094, 1258, 1067 cm-1 (s). HRMS (ESI, 

[M]+) calcd. for C6H16N60Si2Na+1: 267.0816, found = 267.0819. 

General Procedure for UV Exposure of Model Compounds for Vinyl and 

Azide Cross-Linking. The vinyl compound was weighed into an aluminum wrapped 6 

mL vial. The vial was then tared again and the azide was weighed into the vial with the 

molar ratio of 1:1 (olefin:azide). The mixture was shaken rigorously for 1-2 minutes and 

examined for evidence of phase separation. Exposures and reactions were carried out in 

deuterated acetonitrile and monitored by NMR or neat between NaCl IR plates. The 

appearance of methylene groups and the disappearance of vinylic and thiol protons in 

NMR spectrum indicate that a reaction took place.  

Imprint Formulation with Vinyl POSS and Bisazide. The same procedure 

described for the imprinting of BA5x3 was utilized here. A 1:1 molar ratio of azide to 

vinyl was initially used. Wafer and template were treated the same way as described for 

BA5x3. The exposure was carried out for 10 min. Imprints were only inspected by the 

naked eye. 

Preparation of 1,3-Bis(mercaptomethyl)-1,1,3,3-tetramethyldisiloxane. 

Thiourea (3.64 g, 47.7 mmol, 4.0 eq.) was weighed into a 100 mL round bottom flask. 
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Ethanol (48 mL) and bis(chloromethyl)-1,1,3,3-tetramethyldisiloxane (2.72 g, 11.8 

mmol, 1.0 eq.) were added. A condenser was attached and mixture was refluxed for 48 

hrs. The ethanol was evaporated on a rotary evaporator and the resulting white solid was 

dissolved in water (24 mL) and stirred for one hour before 40 % aqueous sodium 

hydroxide (48 mL) was added. The resulting mixture was stirred for less than 30 seconds 

then extracted with diethyl ether (2x30 mL). The aqueous layer was acidified with 1.0 M 

HCl (aq.) and diethyl ether was once again used for extraction (1x40 mL). The combined 

organic layers were washed with water and brine (50 mL each time). Dried over 

magnesium sulfate and evaporated to produce 1.353 g, 51% of a colorless liquid. 1H 

NMR (400 MHz, CDCl3): δ 1.591-1.621 (dd, J = 1.2/7.2 Hz, 4H), 1.113-1.152 (dt, J = 

1.2/7.2 Hz, 2H), 0.138 (d, J = 1.2 Hz, 12H). 13C NMR(60 MHz, CDCl3): δ 8.899, -0.796. 
29Si-NMR (100 MHz, CDCl3): δ 5.289 (s). FT-IR (neat): 2955, 2897, 1390, 1157, 687 

(m), 1258, 1068, 843, 800 (s), 2551, 1573 cm-1 (w). HRMS (CI+, [M+1]+) calcd. for 

C6H19OSi2S2: 227.0416, found = 227.0418. 

Synthesis of S,S’((1,1,3,3-tetramethyldisiloxane-1,3-diyl)bis(methylene))-

diethanethioate. A 250 mL round bottom flask was charged with 1,3-bis(chloromethyl)-

1,1,3,3-tetrametyldisiloxane (0.63 g, 2.7 mmol, 1.0 eq.), potassium thioacetate (0.71 g, 

6.2 mmol, 2.3 eq.), and 100 ml dry THF. The reaction was heated to reflux and stirred 

overnight, cooled to room temperature and the resulting solid was filtered out. The 

organic layer was washed water, brine then dried over magnesium sulfate, and rotary 

evaporated to leave 0.81 g, 96% of a brownish liquid. 1H NMR (400 MHz, CDCl3): δ 

0.076 (d., J = 1.2 Hz, 12H), 2.028 (d., J = 1.2 Hz, 4H), 2.266 (d., J = 1.4 Hz, 6H). 13C-

NMR (100 MHz, CDCl3): δ -0.1, 14.9, 30.0, 196.2. 29Si-NMR (60 MHz, CDCl3): δ 

4.854. FT-IR (neat): 2959, 2900 (weak), 1354, 1138, 954, 695 (medium), 1688, 1254, 



 84 

1054, 838 cm-1 (strong). HRMS (CI+, [M+Na]+ calcd. = 333.0440, found = 333.0441). 

C10H22NaO3S2Si2 

Preparation of S-2-(trimethylsilyl)ethyl ethanethioate [36]. Trimethyl-

vinylsilane (1.13 g, 11.3 mmol, 1 eq.) and thioacetic acid (0.84 mL, 12 mmol, 1.1 eq.) 

were added to a 25 mL quartz test tube. The reaction vessel was flushed with nitrogen gas 

for approximately one minute while the mixture was gently swirled. The reaction vessel 

was placed in the Rayonet UV exposure box and exposed for approximately 12 hrs, 

removed from the UV reactor and added to water (20 mL), extracted with diethyl ether 

(2x20 mL), and the combined organic layer was washed with aqueous NaHCO3 (2x20 

mL), water (2x20 mL), and brine (60 mL) before it was dried over magnesium sulfate, 

filtered, and concentrated in vacuo. The residue was purified by column chromatography 

with ethyl acetate and hexanes on silica gel to give the product 0.964 g, 49% as a 

colorless liquid. It is worth noting that spectral data indicates an approximate 10% β-

addition. 1H NMR (400 MHz, CDCl3): δ 2.797–2.841 (m, 2H), 2.222 (s, 3H), 0.763–

0.807 (m, 2H), -0.031 (s, 9H). 13C-NMR (100 MHz, CDCl3): δ 196.290, 30.550, 25.342, 

17.262, -1.889. FT-IR (neat): 2953, 2926, 2897 (weak), 1412, 1353, 1012, 953, 750 

(medium), 1687, 1248, 1134, 837 cm-1 (strong). 

Preparation of 2-(trimethylsilyl)ethanethiol [36]. Trimethylvinylsilane (6.20 g, 

35.1 mmol, 1.0 eq.) and potassium hydroxide (100 mL, 10 wt.% in ethanol) were added 

to a 250 mL round bottom flask. The solution was then refluxed for two hours, cooled to 

room temperature and neutralized with acetic acid.  Pentene (3x50 mL) was added, and 

the organic portion was washed with water and then with brine, dried over magnesium 

sulfate and the solvent was removed under reduced pressure. The residue was purified by 

distillation at 55 °C and 25 mmHg (lit. 52-54 °C [37]). The product 2.99 g, 63% was 

collected as a colorless liquid. 1H NMR (400 MHz, CDCl3): δ 2.528–2.589 (m, 2H), 
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1.457 (t, J = 6.7 Hz, 1H), 0.889–0.933 (m, 2H), -0.024 (s, 9H). 13C-NMR (100 MHz, 

CDCl3): δ 23.065, 20.640, -1.815. FT-IR (neat): 2897, 2561, 1124 (weak), 2953, 1414, 

1170, 1017 (medium), 1248, 835, 692 cm-1 (strong). HRMS (CI+, [M-1]+) calcd. for 

C5H13SiS: 133.0507, found = 133.0504. 

Preparation of S’,S’’,S’’’-2,2,2-(methylsilanetriyl)tris(ethane-2,1-diyl)- 

triethane-thioate (Trithioestermethylsilane). The same procedure as that used in the 

preparation of S-2-(trimethylsilyl)ethyl ethanethioate was implemented here. 

Trivinylmethylsilane (11.3 g, 90.7 mmol, 1 eq.) and thioacetic acid (43 mL, 0.60 mmol, 

6.7 eq.) were added to a 100 mL quartz test tube. Product was distilled using a Kugelrohr 

at 135 °C and less than 1 Torr as a slightly yellowish oil 25.67 g, 80.3%. 1H NMR (400 

MHz, CDCl3): δ 2.846–2.890 (m, 6H), 2.274 (s, 9H), 0.923–0.967 (m, 6H), 0.098 (s, 3H). 
13C-NMR (100 MHz, CDCl3): δ 195.955, 30.573, 24.777, 14.502, -5.595. 29Si-NMR (60 

MHz, CDCl3): δ 2.636. FT-IR (neat): 2924, 1274, 1255, 1170 (weak), 1409, 1352, 1006, 

875 (medium), 1682, 1132, 1103, 952 cm-1 (strong). HRMS (CI+, [M-1]+ calcd. for 

C13H25SiO3S3 = 353.0732, found = 353.07296). 

Preparation of 2,2,2-(methylsilanetriyl)triethanethiol. The same procedure 

used in preparation of 2-(trimethylsilyl)ethanethiol was implemented here. 

Trithioestermethyl silane (22.8 g, 64.8 mmol, 1.0 eq.) and alcoholic potassium hydroxide 

(300 mL 10 wt.%) were added to a 1 L round-bottom flask. Product was distilled at 104-

118 °C at 3-5 Torr to provide 9.457 g, 64% of product as a slightly yellowish oil.  1H 

NMR (400 MHz, CDCl3): δ 2.512–2.572 (m, 6H), 1.502 (t, J = 6.8 Hz, 3H), 0.942–0.985 

(m, 6H), 0.011 (s, 3H). 13C-NMR (100 MHz, CDCl3): δ 20.178, 19.873, -5.401. FT-IR 

(neat): 2950, 2552, 1127 (weak), 2926, 1413, 1173, 807 (medium), 1276, 1254, 1011, 

908, 728 cm-1 (strong). HRMS (CI+, [M-1]+ calcd. for C7H17SiS3 = 225.0262, found = 

225.0261). 
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Preparation of S,S’-((3-(((2-(acetylthio)ethyl)dimethylsilyl)oxy)-1,1,3,5,5-

pentamethyltrisiloxane-1,5-diyl)bis(ethane-2,1-diyl))diethanethioate (Tris(thioester-

dimethylsiloxy)methylsilane). The same procedure used in preparation of S-2-

(trimethylsilyl)ethyl ethanethioate was implemented here. 

Tris(vinyldimethylsiloxy)methylsilane (10.4 g, 30.1 mmol 1.0 eq.) and thioacetic acid (15 

mL, 0.21 mol, 7 eq.) were added to a 100 mL quartz test tube. Product 15.6 g, 90% was 

carried on without further purification to the next step. 1H NMR (400 MHz, CDCl3): δ 

2.852–2.902 (m, 6H), 2.665 (s, 9H), 0.849–0.901 (m, 6H), 0.102 (s, 12H), 0.018(s, 3H). 
13C-NMR (100 MHz, CDCl3): δ 196.037, 30.543, 24.524, 18.676, -0.014, -2.239. 29Si-

NMR (60 MHz, CDCl3): δ 6.587, -64.024. FT-IR (neat): 2957, 2926, 1009, 755, 703 

(weak), 1412, 1353, 1169, 1134, 1102, 953, 880 (medium), 1687, 1253, 1042, 835, 783 

cm-1 (strong). HRMS (ESI+, [M+Na]+ calcd. for C19H42O6NaSi4S3 = 597.1118, found = 

597.1111). 

Preparation of 2,2’-(3-(((2-mercaptoethyl)dimethylsilyl)oxy)-1,1,3,5,5-

pentamethyltrisiloxane-1,5-diyl)diethanethiol ,Tris(2-mercaptoethyldimethylsiloxy)-

methylsilane). Lithium aluminum hydride (10.2 g, 0.27 mmol, 7.2 eq.) was added to a 

flame dried 1 L three-necked round-bottom flask equipped with a reflux condenser, a 

magnetic stir bar, and rubber septa.  Dry diethyl ether (400 mL) was added to the flask 

and the suspension was heated to reflux for 1 hour, cooled and held at 0 °C while 

tristhioester (21.4 g, 37.2 mmol, 1.0 eq.) was added dropwise via a syringe.  The mixture 

was then refluxed for 12 hours, cooled to room temperature and poured onto ice. The 

aqueous layer was acidified and extracted with diethyl ether. The diethyl ether layers 

were combined, washed with water and brine, dried over magnesium sulfate and the 

solvent was evaporated to give a clear liquid 4.947 g, 30%. 1H NMR (400 MHz, CDCl3): 

δ 2.552–2.626 (m, 6H), 1.501 (t, J = 7.2 Hz, 3H), 0.932–1.004 (m, 6H), 0.083 (s, 18H), -
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0.021(s, 3H). 13C-NMR (100 MHz, CDCl3): δ 24.382, 19.784, 0.112, -2.187. 29Si-NMR 

(60 MHz, CDCl3): δ 6.050, -64.277. FT-IR (neat): 2930, 2562, 1440, 1395, 755, 700 

(weak), 2958, 1172 (medium), 1252, 1044, 833, 785 cm-1 (strong). HRMS (CI+, [M-1]+ 

calcd. for C13H37O3Si4S3 = 449.0982, found = 449.0987). 

Preparation of S,S’,S’’-((1,1,3,5,5-pentamethyltrisiloxane-1,3,5-

triyl)tris(ethane-2,1-diyl))triethanethioate (trithioestertrisiloxane). 

The same procedure used in the preparation of S-2-(trimethylsilyl)ethyl 

ethanethioate was implemented here. 1,3,5-trivinyl-1,1,3,5,5-pentamethyltrisiloxane 

(10.0 g, 36.7 mmol 1.0 eq.) and thioacetic acid (18 mL, 0.26 mmol, 7.0 eq.) were added 

to a 100 mL quartz test tube, irradiated and was carried on to the next step. 

Preparation of 2,2’,2’’-(1,1,3,5,5-pentametyltrisiloxane-1,3,5-

triyl)triethanethiol, (1,3,5-Tri(2-mercaptoethyl)-1,1,3,5,5-pentamethyltrisiloxane). 

The same procedure used in the preparation of tristhiol was implemented here. Lithium 

aluminum hydride (15.2 g, 0.40 mol, 5.7 eq.) was added to a flame dried 1 L three-

necked round-bottom flask equipped with a reflux condenser, a magnetic stir bar, and 

rubber septa. Dry diethyl ether (400 mL) was added and the suspension was refluxed for 

1 hour. The reaction vessel was cooled and held at 0 °C while S,S’,S’’-((1,1,3,5,5-

pentamethyltrisiloxane-1,3,5-triyl)tris(ethane-2,1-diyl))triethanethioate (11.7 g, 23.3 

mmol, 1.0 eq.) was added dropwise via a syringe. The product 2.824 g, 31% was isolated 

as a clear liquid. 1H NMR (400 MHz, CDCl3): δ 2.497–2.596 (m, 6H), 1.488 (m, 3H), 

0.843–0.967 (m, 6H), 0.068 (d, J = 0.8 Hz, 12H), 0.007(s, 3H). 13C-NMR (100 MHz, 

CDCl3): δ 24.338, 23.698, 19.747, 19.509, 0.253, -0.126. 29Si-NMR (60 MHz, CDCl3): δ 

6.174, -24.426. FT-IR (neat): 2562, 1435, 1278, 700 (weak), 2956, 1411, 1174, 834 

(medium), 1255, 1043, 780 cm-1 (strong). HRMS (CI+, [M-1]+ calcd. for C11H31Si3O2S3 = 

375.0794, found = 375.0795). 



 88 

Preparation of 1,7-divinyl-3,5-bis(trimethylsiloxy)hexamethyltetrasiloxane, 

RD Si-6. Palladium on carbon (0.04 g), distilled water (0.4 mL, 0.02 mol, 3 eq.), and 

THF (75 mL) were added to a 250 mL single-necked round bottom flask. The resulting 

mixture was cooled to 0 °C. 1,3-Bis(trimethylsiloxy)-1,3-dimethyldisiloxane (2.0 g, 7.1 

mmol, 1 eq.) dissolved in THF (25 mL) was then added by an addition funnel. The 

mixture was stirred for approximately 30 minutes at 0 °C then 3 hours at room 

temperature. To a clean and dry 500 ml single-necked round-bottom flask equipped with 

a magnetic stir bar, a nitrogen inlet needle and a rubber septum and flushed with nitrogen 

gas was added diethyl ether (200 mL) via syringe along with freshly distilled 

triethylamine (8.89 mL). Vinyldimethylchlorosilane (5.87 mL, 42.5 mmol, 6 eq.) was 

added via a graduated cylinder and a lot of white solid formed. The mixture was cooled 

in an ice bath and equipped with a 125 mL addition funnel previously flushed with 

nitrogen. The hydrolyzed silane (silanol) was filtered through celite and then added to an 

addition funnel. The reaction flask was stirred for 5 minutes at 0 ºC before addition of 

silanol was started. The rate of addition was set to roughly one drop per second. After 

addition was complete the reaction was kept in the ice bath for an additional 15 minutes 

then stirred over night at room temperature. 500 mL of cold distilled water was added via 

the addition funnel slowly into the reaction flask to quench excess chlorosilane. A 

separatory funnel was used to separate the organic layer from the aqueous layer and the 

organic layer was washed with approximately 750 mL of additional distilled water. The 

organic layer was dried over magnesium sulfate and rotary evaporated to leave a clear 

liquid of low viscosity. The product 1.57 g, 46% yield was isolated by distillation at 10 

Torr and 135 °C. 1H NMR (400 MHz, CDCl3): δ 6.115 (dd, J = 14.8 Hz, 20 Hz, 2H), 

5.912 (dd, J = 3,6 Hz, 15 Hz, 2H), 5.731 (dd, J = 4 Hz, 20.4 Hz, 2H), 0.150 (s, 12H), 

0.083 (s, 18H), 0.018 (s, 6H). 13C-NMR (100 MHz, CDCl3): δ 139.156, 131.708, 1.674, 
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0.157, -2.217. 29Si-NMR (60 MHz, CDCl3): δ 7.756, -3.845, -65.814. FT-IR (neat): 1735, 

1313 (weak), 1912, 956, 840, 787, 706 (medium), 3052, 2960, 2902, 1596, 1407, 1252, 

1050 cm-1 (strong). HRMS (CI+, [M-1]+ calcd. for C15H39O5Si6 = 467.1413, found = 

467.1412). 

Preparation of 1,7-divinyl-1,1,3,3,5,5,7,7-octamethyltetrasiloxane, RD Si-

4(Vi,Vi). The procedure used to prepare RD Si-6 was implemented here. 1,1,3,3-

Tetramethyldisiloxane (5.0 g, 37mmol, 1.0 eq.) was hydrolyzed with palladium on carbon 

(0.205 g), water (2.0 mL, 0.11 mol, 3.0 eq.) in THF (175 mL). The silanol was reacted 

with vinyldimethylchlorosilane (31 mL, 0.22 mol, 6.0 eq.) in triethylamine (46.7 mL, 9.0 

eq.) and diethyl ether (400 mL). The product was purified by distillation at 106-107 °C 

and 10 Torr. Product 3.15 g, 25% as a clear liquid. 1H NMR (400 MHz, CDCl3): δ 6.113 

(dd, J = 20.2/14.9 Hz, 2H), 5.918 (dd, J = 14.9/3.9 Hz, 2H), 5.720 (dd, J = 20.2/3.9 Hz, 

2H), 0.142 (s, 6H), 0.041 (s, 6H). 13C-NMR (100 MHz, CDCl3): δ 139.342, 131.642, 

1.169, 0.261. 29Si-NMR (60 MHz, CDCl3): δ -3.820 – -4.423 (m), -20.980 (p, J = 7.4 

Hz). FT-IR (neat): 3053, 2904, 1699, 1596, 1008 (weak), 2962, 1407, 954, 836, 705 

(medium), 1257, 1031, 790 cm-1 (strong). HRMS (ESI, [M+Na]+ calcd. for C12H30O3NaSi4 

= 357.1170, found = 357.1164). 

General Procedure for UV Exposure of Model Compounds for Thiol-Ene 

formulations. A vinyl compound was weighed into an aluminum wrapped 6 mL vial. 

The vial was tared and the thiol containing molecule was weighed into the vial with the 

molar ratio of 1:1 (olefin:thiol). The mixture was shaken rigorously for 1-2 minutes. The 

mixture was examined for phase compatibility. The reaction was carried out in either an 

NMR tube in CDCl3 (reaction monitored by NMR), or a small droplet was placed on a 

glass slide and exposed to broadband UV radiation. 
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Imprio 55. The normal inkjet and the viscous dispense mechanisms were 

temporarily out of order and the imprint formulations had to be dispensed manually 

through a micropipette. This lead to several issues as it is nearly impossible to manually 

dispense droplets on the order of nanoliters. Instead, fewer larger droplets were dispensed 

in a star pattern. To circumvent the Imprio 55’s system manual imprinting had to be 

carried out with a combination of automatated and manual functions. A wafer substrate 

treated with AP410 adhesion promoter was manually loaded and automatically leveled. A 

surface treated (to facilitate separation from resist) template was loaded automatically 

and aligned and leveled. The manual imprint window was used to give full control of the 

process. All steps were carried out manually so a blank dispense was carried out before 

the wafer chuck was given coordinates to move the wafer to the front. The imprint resist 

was manually dispensed and the wafer chuck was moved back to its original coordinates 

to allow an imprint to be carried out.  Successfully transferred patterns were inspected by 

SEM. 

Preparation of Chloromethyl Q8
OSiMeCl. The procedure used in the synthesis of 

vinyl Q8
OSiVi,was applied here. Heptane (70 mL), DMF (100 mL), and 

chloromethyldimethylchlorosilane (25 g, 0.18 mol, 53 eq.) was stirred at 0 °C in a 500 

mL single-necked round-bottom flask. Tetramethylammonium silicate (3.71 g, 3.26 

mmol, 1.0 eq.) was added slowly via spatula. A yield of 14 grams of material was 

isolated after workup. A few crystals were isolated from liquid after 6 hrs on high 

vacuum (<500 mTorr). The crystals were separated and distillation was carried out on the 

remaining liquid. Fractions 1 (38-44 °C) and 2 (44-45 °C) were collected at 1.8 Torr, oil 

bath at 60 °C. Fraction 3 (45 °C) was collected at 1.8 Torr and oil bath at 70 °C. The 

distillation flask went dry and a white solid was left behind. The product, a semi-

crystalline solid, 1.205 g, 26% was isolated. Sublimation occurred between 237-338 °C 
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(modulated method described above). 1H NMR (300 MHz, CDCl3): δ 2.773 (s, 16H), 

0.274 (s, 48H). 13C-NMR (75 MHz, CDCl3): δ 29.884, -1.939. 29Si-NMR (60 MHz, 

CDCl3): δ 7.302, -109.407. FT-IR (KBr): 2930, 1397 (w), 2965, 1258, 803, 754, 676, 606 

(m), 1090, 853, 555 cm-1 (s). HRMS (CI+, [M+1]+) calcd. for C24H65Cl8O20Si16: 

1400.7886, found = 1400.7898.  

Fractions 2-4 collected from distillation of above mentioned compound are pure 

bis(chloromethyl)tetramethyldisiloxane, which is a commercially available substance (all 

spectral data were compared to purchased substance from Gelest Inc.). 1H NMR (300 

MHz, CDCl3): δ 2.695 (s, 4H), 0.179(s, 12H). 13C-NMR (75 MHz, CDCl3): δ 30.580, -

1.490. 29Si-NMR (60 MHz, CDCl3): δ 3.512. FT-IR (neat): 469 (br), 651, 621, 601 (w), 

2924, 745, 679 (m), 2963, 1394, 1258, 1180, 1075, 846, 819 cm-1 (s). HRMS (CI+, 

[M+1]+) calcd. for C6H17Cl2OSi2: 231.0195, found = 231.0197. 

Preparation of p-Tolyl Q8
Tolyl (POSS). A mixture of dried heptane (100 mL) and 

chlorodimethyl(p-tolyl)silane (10.0 g, 54.1 mmol) was prepared in a 250 mL single 

necked round-bottomed flask equipped with a septum and a magnetic stir bar. The 

mixture was stirred for about 15 minutes at room temperature then cooled to 0° C before 

the tetramethylammonium silicate (2.04 g, 1.79 mmol) was added slowly to the mixture 

via a spatula. The reaction mixture was stirred for about 15 minutes with no visible 

change as the solid was stirring at the bottom of the flask. As the reaction was slowly 

brought to room temperature the mixture turned slightly cloudy. Upon addition of a few 

drops of triethylamine, a large quantity of white solid formed. The reaction was stirred 

for 12 hrs then the solid was removed by vacuum filtration. The organic layer was 

washed with distilled water and brine. The solvent was removed on a rotary evaporator at 

50 °C to leave 7.063 g of a reddish liquid. Crystals were isolated from the liquid after a 

few hours on high vacuum (<500 mTorr). The white crystalline solid was purified by re-
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crystallized from hexanes and an analytical sample 0.058 g was isolated. 1H NMR (400 

MHz, CDCl3): δ 7.413 (d, 2H, J = 8 Hz), 7.049 (dd, 2H, J = 0.8 Hz, and J = 8 Hz), 2.274 

(s, 3H), 0.287 (s, 6H). 13C-NMR (100 MHz, CDCl3): δ 139.112, 134.967, 133.040, 

128.509, 21.451, 0.313. 29Si-NMR (60 MHz, CDCl3): δ 2.221, -108.4.  

The reddish transparent liquid that was isolated in 7.063 g corresponds to 83% is 

bis(p-tolyl)tetramethyldisiloxane, a commercially available substance (all spectral data 

match previously published results). 1H NMR (400 MHz, CDCl3): δ 7.498 (d, 2H, J = 7.6 

Hz), 7.220 (dd, 2H, J = 0.6, 8.0 Hz), 2.398 (s, 3H), 0.362 (s, 6H). 13C-NMR (100 MHz, 

CDCl3): δ 139.045, 136.321, 133.070, 128.494, 21.488, 0.953. 29Si-NMR (60 MHz, 

CDCl3): δ -1.356. FT-IR (neat): 3068, 2922 (weak), 2981, 1604, 1392, 1020 (medium), 

1252, 1111, 1042, 831, 776 cm-1 (strong). HRMS (CI+, [M]+) calcd. for C18H26OSi2: 

314.1522, found = 314.1520. 
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Chapter 4: Mechanical and Electrical Evaluation of Imprint 

Formulations 

4.1 INTRODUCTION TO MODULUS 

As mentioned earlier, an ILD must meet many industrial requirements. One of 

these requirements is a modulus greater than 4 GPa. One of the reasons for this modulus 

value can best be described by the illustration in Figure 4.1.  

 

Figure 4.11: Illustration of the metallization process and CMP. As seen in the bottom left 
structure, dishing (an indentation of the dielectric surface) has occurred that 
will ultimately lead to a failed circuit. 

Once the substrate has been patterned and is ready to undergo a metallization 

process, the entire surface is coated with metal and the pattern is overfilled. The excess 

metal is then removed by CMP, which physically etches away the top metal layer. CMP 

uses a slurry containing dispersed abrasive particles on the order of a few nanometers to 

several hundred nanometers in size and a polishing pad to remove the excess metal in a 

rotary grinding process. The mechanical polishing by itself leaves residue and a rough 

surface behind, therefore a chemical etch is carried out simultaneously. However, if the 
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ILD is of insufficient modulus, a defect known as dishing can result, as illustrated in 

Figure 4.1. Dishing can ultimately lead to complete device failure. 

4.2 MODELS FOR NANOINDENTATION 

The elasticity of a material can be determined from its tensile strength by 

measuring the sample elongation experimentally under an applied force. However, these 

bulk data cannot be transferred reliably to thin films, as thin films can exhibit unexpected 

property changes such as deviations from the bulk glass transition temperature [1]. The 

materials tested herein are functional ILDs, and it would be beneficial to measure their 

moduli as thin film samples. There are two common techniques for measuring the 

modulus of a material in thin film form. Surface acoustic wave spectroscopy, SAWS, can 

be used to measure the modulus and density of the sample. However, this method is 

highly sensitive to variations in film thickness and materials are preferably deposited via 

spincoating. Spincoating of imprint formulations with multiple components is not 

possible due to separation by centripetal forces and evaporation of higher vapor pressure 

components. Indentation is the second technique. Since the development of the 

nanoindentation tool, the technique has become the standard for such measurements. 

Nanoindentation measurements can be carried out using an atomic force microscope 

(AFM) [2, 3], a nanoindenter [4], or an interfacial force microscope (IFM) [5]. There are 

many different models for contact indentation; however, only the three most common 

will be discussed. The different models are based on the shape of the tip that makes the 

actual indentation. H. J. Hertz first proposed a model in 1882 describing a spherical tip 

indenting a surface as illustrated in Figure 4.2 [6]. The required force can be calculated 

from Equation 4.1, where R is the radius of curvature of the sphere and δ is the depth of 

the indentation.  
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Figure 4.12: A sphere indenting a flat surface was initially studied by Hertz and is 
referred to as the Hertz model [7]. 
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The value of K can be expressed as Equation 4.2 where ν is the Poisson ratio and 
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 One can assume that the modulus of the sphere or tip (Et) is significantly greater 
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From Equation 4.3 the modulus can be obtained from the slope of the indentation 

(F vs. δ3/2), which is equivalent to 
)1(3

4
2

2
1

!"

RE
s . 

Several decades later, I. N. Sneddon published a set of models that are able to 

describe an indentation carried out by tips of various shapes [8]. In addition to Hertz’s 

spherical indentation model, two of the more commonly used shapes are cylindrical and 

conical. The two types of indentations are illustrated in Figures 4.3 and 4.4.  

 

Figure 4.13: Sneddon’s cylinder model depends on the radius of the cylinder and the 
depth of the indentation [7]. 

 

Figure 4.14: Sneddon’s pyramidal model takes the angle of the tip and the indentation 
depth into consideration when calculating the modulus of a material [7]. 
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For simplicity, the cylindrical tip will be referred to as a flat-bottom tip. The force 

of an indentation can be described by Equation 4.4 for the cylindrical model and 

Equation 4.5 for the pyramidal indentation [7].  
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The different geometries of the tips give different expressions for the indentation. 

For the flat-bottom indentation, the slope can be expressed as F vs. δ, or 
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is the radius of the cylinder. For the pyramidal shaped tip, the slope is expressed as F vs. 

δ2, or
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E , where α is the approach angle of the pyramidal shaped tip. 

When utilizing an AFM, the majority of tips are mounted on a flexible cantilever. 

This adds to the complexity of the measurements, as it has to be taken into consideration 

when calculating the modulus of a material. As described in Equation 4.2 above, it is 

assumed that the modulus of the tip is significantly greater than that of the film to be 

measured, and the contribution from the tip equals zero. However, when a tip is mounted 

on a cantilever, the deflection of the cantilever must be considered during indentation of 

the surface. This is illustrated in Figure 4.5 below. 
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Figure 4.15: Illustration of a cantilever flexing while the tip is indenting a sample. 

Figure 4.6 illustrates a generic data plot for an indentation. The slope of the 

pressure vs. indentation depth plot corresponds to the flexing of the cantilever and the 

modulus or the total spring constant. 

 

 

Figure 4.6: Generic pressure versus displacement slope from AFM indentation while in 
contact with the sample. 

To extract the modulus of the material, one must first separate the deflection of 

the cantilever from the indentation into the sample. This can be accomplished by treating 

the problem as two springs in series using Hooke’s law. As shown in Figure 4.7, the force 

required to stretch or compress the two springs involves the spring constant of the sample 

(ks), the spring constant of the cantilever (kc), and the distance that each is displaced.  
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Figure 4.7: A two springs in series model illustrates the variables involved in determining 
the force and elongation / compression [9]. 

The total stretch or compression of the two springs is the sum of each spring’s 

deformation as described in Equation 4.6. 
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As the pressure is equal throughout the system, one can divide the displacement by 

pressure as shown in Equation 4.7. 
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This expression is the inverse of the slope seen in Figure 4.6 above, and by using 

Hooke’s law, it can be expanded further to Equation 4.8.  
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From this we see that each term in Equation 4.7 can be rewritten as Equation 4.9 

and the spring constant of the cantilever can be calculated separately and subtracted from 

the data to obtain the modulus of the material. 
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4.3 EXPERIMENTAL 

4.3.1 Materials and Instrumentation 

Materials were either synthesized and purified or purchased and used without 

further purification. Darocur® 1173 was obtained from Ciba Specialty Chemicals Inc. 

1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane and 1,3,5,7-tetravinyl-1,3,5,7-tetramethyl-

cyclotetrasiloxane were purchased from Gelest Inc. Silicon wafers were purchased from 

Silicon Quest International, Inc. Two different models of AFM tips were obtained from 

Veeco, Inc. The first was a silicon probe (Model MPP-21120) with a reported spring 

constant of 3 N/m. The second was a silicon probe (Model TESPA) with a spring 

constant of 20 – 80 N/m. Both models have a backside coating of 50 ± 10 nm of 

aluminum. Two other models were obtained from Nano World. The first was model 

NVLR-SPL, Series-10, with a spring constant of 48 N/m. The second was a silicon probe 

model NCHR-50 with a spring constant of 42 N/m. Again, both of these models have 

their detector side coated with an aluminum layer. AFM experiments were carried out 

with assistance from Prof. Ed Yu’s research group in the department of Electrical and 

Computer Engineering at The University of Texas at Austin. Nanoindentation 

experiments were carried out at the Texas A&M University’s Materials Characterization 

Facility (TAMU MCF). SEM images were obtained on a Zeiss Supra 40 VP Scanning 

Electron Microscope. The Poisson’s ratios were unknown for the materials tested; 

therefore, the moduli are reported as reduced moduli. 
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4.3.2 Film Preparation 

It was shown by Matthew Colburn that if the indentation reached a depth of ten 

percent of the film thickness or greater, the underlying substrate had a great impact on the 

modulus [7]. For this reason, films with thicknesses of several microns were prepared. 

Imprint resist formulations were drop casted onto clean ~0.5 square inch silicon wafer 

substrates for use in the AFM experiments (Table 4.1) and Nanoindenter experiments 

(Table 4.2). All values are reported as weight percent. 

 

 % PS2V % Bisthiol % PI % RD 

AFM-F-1 84.4 10.7 4.9 0 

AFM-F-2 72.6 11.3 5.0 11.1a 

AFM-F-3 74.7 10.0 5.3 10.0b 

Table 4.1: Formulations for AFM experiments. Reactive diluent a 1,3,5-trivinyl-1,3,5-
trimethylcyclotrisiloxane and b 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclo-
tetrasiloxane. 

 

 % PS2V % Bisthiol % PI % RD 

NI-F-1 84.4 10.7 4.9 0 

NI-F-2 74.7 10.0 5.3 10.0 

Table 4.2: Formulations for nanoindenter experiments. Reactive diluent is 1,3,5,7-
tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane. 

The liquid was allowed to spread unassisted, then it was cured with a JH 

Technologies Novacure® 2100 System with a high pressure, 100 W mercury vapor short 

arc lamp (exposure wavelength of ~250-500 nm). Film thicknesses were determined by 

scoring a film with a razor blade and then taking measurements with a stylus 
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profilometer. A profilometry cut of this type on an imprint resist film is illustrated in 

Figure 4.8. On the left side at the bottom of the cut is the bare wafer and on the right is 

the polymer film. In this case the thickness is approximately 5.5 µm. All films were 

several micrometers thick, which is advantageous for indentation measurements as 

substrate interference can be avoided.  

 

 

Figure 4.8: Stylus profilometer trace across a cut in the material shows the thickness of 
the polymer-coated film to be approximately 5.5 µm.  

Half of the films were baked under vacuum at 200 °C for 30 minutes and cooled 

to room temperature overnight. The slow cooling process was used to circumvent 

formation of cracks. The other films were left untouched after exposure. A reference 

sample for AFM measurements was prepared by spin coating a solution of PMMA in 

PGMEA to a thickness of 360 nm as measured by ellipsometry.  
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4.3.3 Atomic Force Microscope  

A Bruker Veeco Icon Dimension with Scan Asyst AFM was run in peak-force 

contact mode. The different probes that were used had varying spring constants and 

different radii of curvature but were all made from silicon. The tips were calibrated 

according to a slightly modified procedure from Veeco [10]. The deflection sensitivity 

was first determined using a clean wafer as an infinitely hard surface. A built-in thermal 

tuning function evaluates the spring constant of the tips as the reported values from tip 

manufacturers are approximations. This information was required to calculate the 

modulus of the materials being evaluated. It is also critical to know the complete 

geometry of the tips to obtain reproducible results. There are several methods for 

measuring the tip radius. A few instruments have a function called tip-evaluation 

software that can determine the geometry of the tip being used. Another, very simple 

method uses a reference sample with a known modulus. By using the latter method, a 

reference can be chosen to match the estimated modulus of the samples being evaluated. 

This allows one to test a tip at frequent intervals to verify its robustness to change. A 360 

nm thick PMMA film was used as the reference material to extract the radius of each tip. 

The reference film was used at the very beginning and at the very end to verify that the 

shape of the tips had not changed during the measurements.  

A typical data plot is illustrated in Figure 4.9 when the tip is retracted from the 

sample.  
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Figure 4.9: Tip retracting from, A) PMMA, and B) imprint formulation. 

Since Figure 4.9 illustrates the retracting of a tip, the graph is analyzed from right 

to left. Initially the force decreases linearly as the indentation becomes smaller. Adhesive 

forces hold the tip to the material until it snaps away from the sample, as seen by the 

change in the slope. Once the tip is no longer in contact with the sample, the force 

remains constant. Looking at the indentation portion of the graph, the three different 

models can be applied and the fit for all three is excellent as illustrated in Figures 4.10, 

4.11, and 4.12 with R2 values all very close to 0.99. 
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Spherical Model
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Figure 4.10: Hertz model describing a spherical tip retracting from a sample surface. 
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Figure 4.11: Sneddon’s Conical Model. 
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Cylindrical Model
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Figure 4.12: Sneddon’s cylindrical indentation model. 

From these models, the slope of the indentation can be calculated and used to 

determine the overall modulus of the material. Moduli values are reported in Table 4.3. 

 

 % PS2V % Bisthiol % PI % RD Modulus 

AFM-F-1 84.4 10.7 4.9 0 128 MPa 

AFM-F-1-Baked     173 MPa 

AFM-F-2 72.6 11.3 5.0 11.1a 67.3 MPa 

AFM-F-2-Baked     142 MPa 

AFM-F-3 74.7 10.0 5.3 10.0b 97.6 MPa 

AFM-F-3-Baked     141 MPa 

Table 4.3: Modulus results from AFM measurements. a The reactive diluent in this 
formulation is 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane. b The reactive 
diluent for this formulation is 1,3,5,7-tetravinyl-1,3,5,7-tetramethyl-
cyclotetrasiloxane. 
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It was noted that the greater the spring constant of the tip, the more consistent the 

data. This is believed to be caused by a decreased deflection of the cantilever and 

therefore the indentation reading comes from indenting the surface. However, it was also 

observed that the modulus did change over the duration of the measurements by 

comparing the data collected from the PMMA standard. The tips were analyzed by 

scanning electron microscopy and it was clear that the tip geometries had changed 

drastically as shown in Figure 4.13. 

 

 

Figure 4.13: Images of AFM tip before and after indentation experiments clearly indicate 
that the tip geometry has changed during the measurements. 

4.3.4 Nanoindenter 

Due to the inconsistent data obtained from traditional AFM measurements another 

method for analysis was selected. A nanoindenter is very similar to an atomic force 

microscope. One of the major differences between the two instruments has to do with the 

tips used. On an AFM, the tip is mounted on the edge of a flexible cantilever while, on a 

nanoindenter, the tip is mounted on an inflexible indentation probe [11]. For these 

experiments, a Hysitron Triboindenter Nanoindenter (341-F) was run in indentation mode 

with a Berkovitch diamond tip with three sides each with an angle of 142.35º (curvature 

of radius ~150 nm). An aluminum sample was used to calibrate the microscope with the 
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indentation stage so the area of indentation could be visually inspected for defects. Three 

indentations were carried out in a row then repeated parallel to the first indentations. The 

indentation stage was moved into the field of view of a camera for inspection and a 

seventh indentation was done in the center of the two parallel lines to generate an H 

pattern. This was carried out to calibrate the X and Y distances from the center of the 

stage. A thick polystyrene sample was used as a reference sample and an image of an 

indentation can be observed on a rough surface in Figure 4.14.  

 

Figure 4.14: A topographic image of indentations in polystyrene. 

The instrument was configured to stop a measurement if a depth of 5 µm was 

reached. To ensure that this depth was not reached, various peak forces were tested on the 

samples, and it was found that 1000 µN was the highest force that could be used. Each 

sample was indented nine times in various locations on the film to obtain a reliable value. 

A plot of force versus distance that is generated by such an indentation experiment is 

provided as Figure 4.15; all nine data points overlap nicely. 
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Figure 4.15: A typical result from an indentation experiments illustrates an elastic 
response. 

Nanoindentation was used to measure the modulus of two different formulations 

shown in Table 4.4. Samples were prepared as described above, and half were baked at 

200 ºC under vacuum for 30 minutes before being cooled back to room temperature. 

 

 % PS2V % Bisthiol % PI % RD* Modulus 

NI-F-1 84.4 10.7 4.9 0 22.0 ± 0.4 MPa 

NI-F-1-Baked     69.3 ± 0.7 MPa 

NI-F-2 74.7 10.0 5.3 10.0 13.9 ± 0.2 MPa 

NI-F-2-Baked     28.4 ± 0.5 MPa 

Table 4.4: Formulations used along with modulus values from nanoindentation 
experiments. *Reactive diluent used in the formulations is 1,3,5,7-tetravinyl-
1,3,5,7-tetramethylcyclotetrasiloxane. 
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4.4 SUMMARY OF MODULUS EVALUATION 

The choice of AFM tip is critical for indentation applications. It is important to 

recognize that if a low spring constant cantilever (AFM probe) is used on a hard surface, 

the deflection observed is mainly due to the flexing of the cantilever and not due to an 

indentation to the surface. Therefore, higher spring constant cantilevers are preferred for 

these measurements. However, even though sturdier cantilevers were used, consistent 

data was hard to obtain, and nanoindentation is much better if available. 

As anticipated, from the modulus data obtained from both the AFM and the 

nanoindenter measurements, it is clear that the baked samples have increased hardness 

than the cured-only materials. However, the materials are far too soft for implementation 

as ILDs, so new formulations must be evaluated. 

4.5 INTRODUCTION TO DIELECTRIC CONSTANTS 

The dielectric constant, also known as the relative permittivity, is an important 

factor for manufacturing ILD materials, as it affects the electrical signal that is sent 

through the ICs. The dielectric material must prevent current leakage and limit cross-talk 

between wires [12]. Therefore, a lower dielectric constant can lead to smaller and faster 

devices because of better insulating capability and less charge buildup. The dielectric 

constant can be determined from capacitance measurements. 

Capacitance is a measure of a material’s ability to store charge. A capacitor is 

basically two electrodes separated by an insulating material. The capacitance is 

influenced by the area of the electrodes, the thickness of the material separating the 

electrode, and the dielectric constant of the insulator according to the Equation 4.10 

below.  



 111 

 

d

S
C

r 0
!!=         Eq. 4.101 

εr is the dielectric constant, ε0 is the electrical constant, also known as the 

permittivity of free space, (~8.854e−12 Fm-1), S is the area of the electrodes, and d is the 

thickness of the insulating material separating the electrodes. This equation can be 

rearranged to solve for the dielectric constant of the insulating material. 

4.6 EXPERIMENTAL 

4.6.1 Instrumentation  

Film thicknesses were measured on either a J.A. Woollam ellipsometer, or a 

Stylus Profilometer. The experimental setup was tested by purchasing four capacitors of 

known capacitance. Initially, a box consisting of four contact points for easy attachment 

of commercial capacitors and four input/output jacks for source measure unit (SMU) 

connectors were used to measure the capacitance. However, since thin films would be 

tested, the box was only used to verify the reported capacitance of the purchased 

capacitors. For the thin film capacitors, a Karl Suss probe station was used. The wafers 

were held with a vacuum chuck to facilitate the probes touching the top and bottom 

electrodes. The blunt end of the probes were used to make a connection to the electrodes 

as the sharp point can punch through the metal and cause an inaccurate reading of the 

capacitance.  

                                                
1 Traditionally the capacitance is calculated from 

d

A
C != , where A is the area of the electrodes, d is the 

thickness of the insulating material separating the electrodes, and ε is the permittivity. The dielectric 
constant, ε0, can be determined from 

0
!!!
r

= . 
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4.6.2 CV Analysis 

The capacitance versus voltage measurements were carried out on a Keithley 

4200 SCS equipped with a Keithley 590 CV Analyzer (experimental setup can be seen in 

APPENDIX B). The test equipment was connected to a Karl Suss Probe Station equipped 

with a wafer chuck to hold the wafers in place and to facilitate the connection between 

the substrate and the probes. Measurements were carried out between -5 and 5 V and a 

typical CV graph is shown in Figure 4.16 for a purchased capacitor.  
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Figure 4.16: A CV graph illustrating the classical behavior of a capacitor with a reported 
value of 20 pF. 

The measurement resulted in an average capacitance of 20.7 pF, comparable to 

the reported capacitance of 20 pF. Control measurements were carried out with additional 

20 pF and 820 pF capacitors with an accuracy within +/- 5% of reported values. 
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4.6.3 Preparation of Parallel Plate Capacitors 

Before imprint formulations were tested, MIM (metal insulator metal) capacitors 

were generated with aluminum / polystyrene / copper or copper / polystyrene / copper as 

shown in Figure 4.17.  

 

Figure 4.17: Process for making MIMs and measuring capacitance.  

Bottom electrodes were either deposited by thermal evaporation or by e-beam 

sputtering to a thickness of approximately 100 nm on a silicon wafer. The thickness was 

verified by a microbalance during the deposition and by a stylus profilometer by 

scratching the film surface once the deposition was done. It is crucial for capacitance 

measurements to have a uniform and known thickness, and this was accomplished by 

spin coating the polymers. Spin coating imprint resists from solution could alter resist 

composition due to the differing evaporation rates of the components therefore spin 

coating cannot be used to produce films under these circumstances. Instead, imprints with 

a 25 mm x 25 mm blank mesa template were used. Polystyrene was spin coated at 

approximately 1400 rpm from a 7.0 wt.% solution in toluene to a thickness of 280 nm. 
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The thickness of the polymer film was measured by profilometry and ellipsometry after a 

60 second bake at 110 °C to evaporate residual solvent. A 3 by 3 inch aluminum plate 

was used as a shadow mask with four holes of four different dimensions drilled through it 

as illustrated in Figure 4.18. Different diameters of holes were used to vary the area of the 

electrodes. 

 

Figure 4.18: Aluminum shadow mask for deposition of top electrodes. 

The top electrodes were deposited by sputtering copper to a thickness of 

approximately 100 nm. The top electrode was deposited thicker than 100 nm to give 

enough mechanical stability to avoid damage by the probes when capacitance 

measurements were carried out. The diameters of the top electrodes were confirmed by 

profilometry. 

Figure 4.19 is a profilometry trace of a MIM on a wafer, where two of the top 

electrodes with different diameters are clearly observed. The jagged edges of the 

electrodes result from the metal deposition step. 
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Figure 4.19: A profilometry trace of a MIM profile with thick top electrodes clearly seen. 

Imprint formulations, shown in Table 4.5, were dispensed onto metal-coated 

substrates and cured under a mesa-only template. Film thicknesses were measured by a 

stylus profilometer over several millimeters to verify film uniformity. A film thickness 

variation of around 10-15 % was observed over approximately 15 mm. Capacitances 

were measured before and after a bake. The dielectric constants reported in Table 4.5 

were calculated from average capacitance measurements of different-sized electrodes. 

 

 % PS2V % Bisthiol % PI % RD* Dielectric Constant 

Polystyrene     2.10 ± 0.06 

CV-F-1 84.4 10.7 4.9 0 2.92 ± 0.05 

CV-F-1-Baked     3.00 ± 0.02 

CV-F-2 74.7 10.0 5.3 10.0 2.94 ± 0.05 

CV-F-2-Baked     2.98 ± 0.04 
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Table 4.5: Formulations with average dielectric values presented. Reactive diluent used 
in the formulations is 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclo-
tetrasiloxane. 

4.7 SUMMARY OF DIELECTRIC CONSTANT EVALUATION 

The reported capacitance values for purchased capacitors versus values obtained 

experimentally fall within approximately a 5 % range. The dielectric constant for the 

PMMA sample was on average ~8 % lower than the reported value of 2.3 [13]. This 

systematic offset error was consistent for repeat experiments with new samples. For the 

imprint resist formulations, there is no statistically significant difference in the dielectric 

constant between the two formulations whether they were exposed to a PEB or not. This 

indicates that there is no significant change in material composition while baking the 

samples. The errors reported with the dielectric values do not take into consideration any 

variation of film thickness or discrepancy in electrode area. The measured dielectric 

constants of the imprint materials are comparable to reported POSS based ILDs [14].  

4.8 HOW TO GET AN ACCEPTABLE MATERIAL 

Illustrated in this chapter are the modulus and dielectric values obtained from 

various imprint formulations. It is clear from modulus evaluation that the materials do not 

measure up to the ILD requirements set by the semiconductor industry. It has been shown 

that the higher the POSS content is, the lower the resulting modulus [15]. It is speculated 

that this is due to the lowering of the density of the cured material [15]. To achieve an 

acceptable material, the solution could be the addition of another cross-linking agent, 

thereby lowering the overall weight percentage of vinyl POSS. Previous studies have 

illustrated that a combination of methacrylates and a thermally curable group (BCB) 

resulted in a modulus much closer to 4 GPa [14, 15]. Since the dielectric constant of the 
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materials tested are below the requirements, nothing has to be adjusted to lower these 

values. Since current ILD materials are silicon dioxide-doped with carbon or organic 

components, the addition of a cross-linkable functionality may actually lower the 

dielectric constant even further. 



 118 

4.9 REFERENCES 

[1] S. Napolitano, A. Pilleri, P. Rolla and M. Wubbenhorst. "Unusual Deviations from 
Bulk Behavior in Ultrathin Films of Poly(tert-butylstyrene): Can Dead Layers 
Induce a Reduction of Tg?" ACS Nano, 4, 841-848, 2010. 

 
[2] J. Domke and M. Radmacher. "Measuring the Elastic Properties of Thin Polymer 

Films with the Atomic Force Microscope". Langmuir, 14, 3320-3325, 1998. 
 
[3] A. C.-M. Yang. "Young's moduli of materials in polymer deformation zones by an 

AFM deflection technique". Materials Chemistry and Physics, 41, 295-298, 1995. 
 
[4] D. J. Shuman, A. L. M. Costa and M. S. Andrade. "Calculating the elastic modulus 

from nanoindentation and microindentation reload curves". Materials 
Characterization, 58, 380-389, 2007. 

 
[5] M. Wang, K. M. Liechti, J. M. White and R. M. Winter. "Nanoindentation of 

polymeric thin films with an interfacial force microscope". Journal of the 
Mechanics and Physics of Solids, 52, 2329-2354, 2004. 

 
[6] H. J. Hertz. "Ueber die Berührung fester elastischer Körper". Journal Fur Die Reine 

Und Angewandte Mathematik, 156-171, 1882. 
 
[7] M. E. Colburn. "Step and Flash Imprint Lithography: A Low-Pressure, Room-

Temperature Nanoimprint Lithography". Ph.D. University of Texas at Austin, 
2001. 

 
[8] I. N. Sneddon. "The relation between load and penetration in the axisymmetric 

boussinesq problem for a punch of arbitrary profile". International Journal of 
Engineering Science, 3, 47-57, 1965. 

 
[9] K. M. Liechti. Personal Communication. 2011. 
 
[10] G. M. Schmid. Personal Communication. 2011. 



 119 

 
[11] A. Henkes-Young. Personal Communication. 2011. 
 
[12] S. Franssila. "Introduction to Microfabrication"; 2nd Ed.; John Wiley & Sons, Ltd.; 

Chichester, West Sussex, 2010. 
 
[13] G. Odian. "Principles of Polymerization"; 4 Ed.; John Wiley & Sons, Ltd.; 

Chichester, 2004. 
 
[14] F. L. Palmieri. "Step and Flash Imprint Lithography: Materials and Applications for 

The Manufacture of Advanced Integrated Circuits". Ph.D. University of Texas at 
Austin, 2008. 

 
[15] H. Lin, X. Wan, X. Jiang, Q. Wang and J. Yin. "A Nanoimprint Lithography Hybrid 

Photoresist Based on the Thiol-Ene System". Advanced Functional Materials, 21, 
2011. 

 
 
 



 120 

Chapter 5: Planarizing Materials for SFIL-R 

5.1  INTRODUCTION TO SFIL-R AND THE NEED FOR PLANARIZING MATERIALS 

UV nanoimprint lithography has made many advances in the past decade. One of 

these advances is the development of reverse-tone SFIL (SFIL-R) technology. Figure 5.1 

illustrates how SFIL-R differs from traditional SFIL.  

 

Figure 5.1: Schematic flow of SFIL and SFIL-R. 

It was first developed and demonstrated by Molecular Imprints, Inc. in 2005 as a 

simplification and improvement of certain processing steps related to traditional SFIL [1]. 

Such improvements include more accurate template alignment, lower susceptibility to 

forming defects by allowing imprinting of lower-aspect ratio features with thicker 

residual layers, and the potential for higher throughput as lower-aspect ratio patterns 

require less fill time due to the smaller quantity of liquid that needs to be redistributed to 

form the uniform residual layer [2]. Instead of a silicon-containing imprint resist, SFIL-R 

uses an organic resist as a medium for printing the template pattern features. Organic 
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resist formulations are more versatile than traditional SFIL resists because there are more 

component options to tailor the vapor pressure and viscosity of the formulations as a 

whole, and templates used with these resists are generally easier to clean. This resist 

option, however, requires a planarizing top layer to be deposited by some deposition 

technique such as spincoating, CVD, CMP, etc. This topcoat functions as a hard etch 

mask and must have high silicon content to achieve the etch selectivity desired [1]. 

Once the liquid planarizing topcoat has been deposited, it is then cured to solidify 

it into a thin film. An etch step is then carried out to remove excess topcoat and expose 

the features in the imprint resist layer. It is important to note that this etch step does not 

affect the features that were originally imprinted and full control of the feature sizes is 

maintained. After the imprinted features have been exposed, an anisotropic oxygen 

reactive ion etch (RIE) is performed. This allows for high-selectivity etching of the 

organic imprint resist material. Accordingly, high aspect ratio features can be achieved if 

thick organic resist films are used or additional layers were previously deposited before 

imprinting. SFIL-R reverses the imprinted pattern and produces an exact copy of the 

template.  

There are many requirements for planarizing materials that are often conflicting. 

These requirements include: high silicon content for etch selectivity, photolytically or 

thermally curable functional groups for polymerization, low volatility to limit 

evaporation during coating, and low viscosity for fast flowing and planarization [3]. 

5.2 PLANARIZING TECHNIQUES 

There are basically four different methods by which planar surfaces can be 

obtained. The main concern for these methods is their cost due to the additional 
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processing required, their low throughput, and the fact that they require additional 

expensive equipment.  

5.2.1 Chemical Mechanical Polishing 

One such technique is chemical mechanical polishing (CMP), a method 

frequently used in the manufacturing of microelectronics, especially for planarizing 

various metal and oxide layers. As the name implies, the technology uses a chemical 

solution in combination with a rotating polishing pad to obtain planar surfaces [4]. 

Significant advances in the development of advanced abrasive slurries and polishing pads 

has been achieved, but this has led to a significant increase in cost of ownership (CoO) 

for the process.  

5.2.2 Polymer Melt 

Another method for obtaining planar surfaces is the deposition of a polymer or 

pre-polymer that is then heated to a temperature above its Tg [5]. The polymer can then 

flow freely and self-planarize driven by capillary, surface tension, and gravitational 

forces. Once a critical degree of planarization (DOP) is obtained, the temperature is 

allowed to return to room temperature and the polymer hardens again. This technology 

presents itself as a cheap alternative to CMP. The planarizing forces are small and they 

diminish asymptotically as the film approaches planarity. There are other factors that 

must be met as well, including the matching of the coefficients of thermal expansion 

(CTE) for the different films in order to avoid stresses from building up within the film 

stack leading to the generation of cracks. 

5.2.3 Imprinting of an Optical Flat 

A third method comprises imprinting an optical flat on top of a pre-patterned 

substrate. An optical flat template can be pressed onto a curable liquid or pre-polymer 
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that is heated above its Tg. Brewer Science has commercialized this technology and 

demonstrated its use on pre-patterned features [6]. The most viable option is to use a 

polymerizable liquid in order to avoid heating and cooling cycles, but this requires 

additional templates and imprint tools which further increase the processing costs. These 

three methods are illustrated in Figure 5.2 below. 

 

Figure 5.2: Illustration of the three methods for obtaining planar surfaces. From left to 
right, using CMP to polish the surface, heating a pre-polymer to decrease 
viscosity and allowing for the material to self-planarize, and imprinting an 
optical flat [5]. 

5.2.4 Curable Planarizing Liquids 

The last method is a technique in which a non-volatile pre-polymer is spincoated 

over a patterned surface. This method has several advantages over the three previous 

techniques as it allows for the use of low-cost equipment and requires no additional 

instrumentation with the exception of a spincoater. Spincoating to obtain planar surfaces 

has been studied in great detail; simulations and experimental data have been previously 

published by Lin, et al. [2, 5, 7].  

The importance of using non-volatile polymerizable liquids becomes clear when 

the process is studied in greater detail. To achieve successful reverse-tone imprinting, it is 

important that the planarizing material reaches a certain degree of planarization over the 

patterned substrate (Figure 5.3) [7]. It has been shown that spincoating a material over a 
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pre-patterned surface causes the material to essentially conform to the pattern [5]. If the 

material being spincoated does not freely flow after spinning has stopped, the rate of 

planarization is simply too slow to be used as a manufacturing operation.  

 

Figure 5.3: Importance of forming a planar layer for successful etch pattern transfer [5]. 

If a non-volatile, polymerizable, low-viscosity liquid is used, then it can planarize 

more quickly after the target thickness has been reached by spincoating. The 

polymerizable material never reaches perfect planarization, but a critical degree of 

planarization can be defined which allows for successful etch and pattern transfer 

processes. The material can then be cured thermally or photolytically. However, if a 

polymer is dissolved in a solvent and then spincoated, the solvent evaporates as the film 

becomes thinner, which causes an increase in viscosity and slower redistribution of the 

material across the wafer. Eventually, all the solvent evaporates and the polymer forms a 

conformal layer on top of the pre-patterned substrate [5]. SEM images of a poorly 

planarized polymer layer over a patterned substrate are shown in Figure 5.4. 
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Figure 5.4: An uneven surface obtained by spincoating a solution with a volatile solvent 
over a patterned substrate is clearly visible over lines and trenches as well as 
isolated trenches. This would ultimately lead to defects after the etch 
process is completed. 

5.3 MATERIALS 

As mentioned previously, a planarizing liquid must meet several requirements to 

be implemented into the SFIL-R process. In certain cases these characteristics conflict, 

which adds to the challenges of synthesizing a suitable material. Several siloxane-based 

materials have been investigated as photocurable, planarizing liquids since they meet the 

aforementioned requirements [8]. Branched materials were chosen in order to produce 

lower viscosities while maintaining a low vapor pressure. The first material, named Si-14 

(1H,23H-11,13-bis(trimethylsiloxy)docosamethyldodecasiloxane, shown in Figure 5.5), 

was synthesized, and its planarizing properties were evaluated in detail [5, 8, 9].  

 

Figure 5.5: Structure of Si-14 (so-named because of its 14 silicon atoms). 
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Si-14 was functionalized with methacrylate groups to render it polymerizable. 

Methacrylate groups were chosen due to their synthetic accessibility and the large amount 

of literature on their use in semiconductor applications. Hyperbranched polymers 

represent another area that has potential as a planarizing material. Both epoxide and thiol-

ene functional groups were considered and evaluated as polymerizable moieties. 

Synthesis of asymmetrically and symmetrically substituted monomers of thiol-ene type 

AB2, A2B2, and AB3 or epoxide type A2, A3, and A4 was attempted for evaluation as 

planarizing materials.  

5.4 EXPERIMENTAL 

5.4.1 Instrumentation 

The materials were characterized as described in the synthesis section and 

evaluated using a variety of techniques. Film thicknesses were determined using a J. A. 

Woollam ellipsometer. Viscosities were determined using a Physica MCR 500 

Rheometer. SEM images were taken on a Zeiss Neon 40 installed at The University of 

Texas Micro Electronics Research Facility (MER). Imprints were performed on an 

Imprio 100® (Molecular Imprints, Inc.) and etching was carried out using an Oxford 

Plasmalab 80 Plus; both also installed at MER. Vapor pressures were determined by 

initially exposing the samples to a series of freeze-pump-thaw cycles before allowing the 

material to reach equilibrium at room temperature while pressure in the container was 

measured. A Varian Diffusion Pump set-up was built with a MKS HPS® 943 Vacuum 

Gauge Controller and a 423 I-Mag Vacuum Sensor. 

5.4.2 Si-14 

The first material investigated for this role was Si-14. The synthesis involved two 

steps that were repeated multiple times to produce the desired product. The commercially 
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available 3H,5H-octamethyltetrasiloxane was hydrolyzed to a silanol and then reacted 

with chlorodimethylsilane (Scheme 5.1) to extend the siloxane backbone by two units to 

form Si-6 (H,H). 

 

Scheme 5.1. The palladium-assisted hydrolysis of Si-4 (H,H) and subsequent reaction 
with chlorodimethylsilane to yield Si-6 (H,H). 

Si-6 (H,H) was functionalized with allyl methacrylate by hydrosilylation to render 

it polymerizable (Scheme 5.2). 

 

Scheme 5.2. Polymerizable Si-6 obtained after hydrosilylation of Si-6 (H,H) and allyl 
methacrylate. 

This methacrylate-functionalized siloxane was deposited via spincoating, but the 

material evaporated too rapidly and was deemed unsuitable due to its high vapor 

pressure. Thus, the hydrolysis and chlorosilane reaction steps were repeated four more 

times to yield Si-14 (H,H) as illustrated in Scheme 5.3.  
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Scheme 5.3. Repetitive steps in the full synthesis of Si-14 (H,H). 

Si-14 was functionalized with the same polymerizable group as Si-6 to be 

evaluated as a planarizing material. Results from complete evaluation of this material 

have been published elsewhere and are shown in Table 5.1.  

 

Table 5.1: Properties of functionalized Si-14. 

5.4.3 Si-12 

The synthesis of Si-14 was successful, but it was a tedious process, so a more 

efficient alternative route was investigated. Polydimethylsiloxane (PDMS) can be 

synthesized by a ring opening polymerization of hexamethylcyclotrisiloxane (D3) [10], 

and it was found that cyclic siloxanes can also be opened to provide asymmetrically 

substituted siloxanes (Scheme 5.4) [3, 11, 12].  
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Scheme 5.4. Ring opening of hexamethylcyclotrisiloxane with chlorodimethylsilane to 
render the asymmetrically substituted Si-4 (H,Cl). 

This asymmetrically substituted chlorosiloxane can be used to synthesize Si-12 

(1H,19H-9,11-bis(trimethylsiloxy)octadecamethyldecasiloxane) in a total of three steps 

(Scheme 5.5) [11]. 

 

Scheme 5.5. Synthesis of Si-12 utilizes the asymmetric product obtained from the ring 
opening reaction of D3. 

Si-12 was functionalized with either epoxide or methacrylate groups via a 

platinum catalyzed hydrosilylation reaction (Scheme 5.6). 
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Scheme 5.6. Platinum catalyzed functionalization of Si-12 with either methacrylate or 
epoxide. 

Both materials were evaluated and the results are illustrated in Table 5.2 [3, 11].  

 

Table 5.2: Physical properties of functionalized Si-12. 

In addition to the complete evaluation of functionalized Si-12 as a planarizing 

material, the epoxide-substituted version of Si-12 was tested in an SFIL-R experiment.  
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5.4.4 SFIL-R Study with Epoxide Si-12 

After all the material requirements were met by Si-12, it was time to test it in an 

actual SFIL-R imprint study. Epoxide Si-12 was chosen for its lower vapor pressure and 

resistance to shrinkage, which would allow for the spincoating of a thinner planarizing 

layer. Clean wafers were coated with an organic adhesion layer (NCI-NIL-01, Nissan 

Chemical Industries, Ltd.) to function as the underlayer for imprint lithography. A 

template was made at The University of Texas at Austin consisting of 80 nm lines and 

180 nm spaces. The template was exposed to tridecafluoro-1,1,2,2-

tetrahydrooctyldimethyl-chlorosilane to function as a release layer. Imprints were made 

in an organic resist formulation (Table 5.3).  

 

Table 5.3: Organic resist formulation used in the SFIL-R experiments. 

An SEM image of the imprinted pattern (Figure 5.6) indicates that 80 nm lines 

and 180 nm spaces were clearly patterned. Epoxide functionalized Si-12 was then 

spincoated over the pre-patterned substrate before being cured by UV light. Figure 5.7 

shows the planarized Si-12 over the patterned substrate. 
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Figure 5.6: Imprinted lines and spaces in the organic resist referred to as F1 and F2.  

 

Figure 5.7: Epoxy-Si-12 planarized over the patterned substrate. 

A timed blanket etch was carried out using CHF3 to remove excess Si-12 and to 

expose the top of the imprinted pattern. At this point, the etch conditions were changed to 

an oxygen etch in order to selectively etch the organic resist since the high silicon content 

of Si-12 would function as an etch mask. Figure 5.8 illustrates the etch transfer into the 

organic resist. As the exposed organic material was etched away, a reverse tone image 

was generated giving 180 nm lines and 80 nm spaces. 
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Figure 5.8: Final pattern transfer into the organic resist after blanket etching to obtain the 
reverse tone features (an exact replica of the template). 

5.4.5 Hyperbranched Monomers 

As an alternative to the first materials evaluated, it was believed that 

hyperbranched polymers would have lower viscosities resulting in thinner layers during 

spincoating. The synthesis of hyperbranched polymers demands AB2 type monomers or 

something similar. A few such siloxane precursor materials are available from chemical 

suppliers, but they can also be synthesized. Three approaches to the hyperbranched 

materials were considered. The first is based on work by Jean Frechet and David Son’s 

groups, where the propagation step is a platinum-catalyzed hydrosilylation reaction [13-

15]. This reaction requires the presence of a metal catalyst for polymerization. The 

semiconductor industry goes to great lengths to remove metal to levels that are on the 

parts per billion scale. Consequently, this polymerization mechanism was not 

investigated. The second approach is based on work done by James Crivello [16, 17], in 

which the propagation step for multi-epoxide functionalized materials is an acid 

catalyzed epoxide-opening reaction. The epoxide-based polymerization technique is very 

common in the manufacturing of microelectronics, and several photoresists exist that are 

based on epoxides. The third approach is the addition reaction of thiol-ene based 
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materials. Examples of target monomers for hyperbranched polymers based on this 

chemistry are shown in Figure 5.9 below.  

 

Figure 5.9: Monomer candidates for hyperbranched polymers. 

Figure 5.10 illustrates three potential epoxides. The first two are commercially 

available, whereas the third has to be synthesized. 

 

Figure 5.10: Two commercially available epoxides and a third candidate that can be 
appended onto a siloxane backbone through a hydrosilylation reaction. 

2-Allyloxirane (allylepoxide) was synthesized using the procedure illustrated in 

Scheme 5.7 [18]. 

 

Scheme 5.7: Synthesis of 2-allyloxirane.  

Starting materials are commercially available for a variety of multifunctional 

siloxane precursors and the following species were purchased (Figure 5.11).  
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Figure 5.11: Various hydrogen terminated siloxanes. 

With the starting materials in hand, epoxide-functionalized siloxanes were 

prepared according to a procedure published by Crivello et al. [19-21] as illustrated in 

Scheme 5.8. 

 

Scheme 5.8: Platinum catalyzed hydrosilylation to obtain multi-epoxide functionalized 
siloxanes [16]. 

In addition to the candidates above, epoxides can be synthesized from vinyl 

functionalities. Epoxidation of vinylsiloxanes was carried out with m-CPBA, or peracetic 

acid as shown in Scheme 5.9. 

 

Scheme 5.9: Example of epoxide structure from epoxidation of vinylsiloxane. 

To our surprise, it was observed that all of the epoxide-functionalized materials 

were highly viscous. Due to the high viscosity, this approach was abandoned.  
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The second group of materials investigated was the asymmetrically substituted 

molecules designed for the thiol-ene reaction. The thiol-ene reaction requires 

multifunctional thiol monomers which provide the maximum thermal stability possible 

while contributing to the reduction of the formulation’s viscosity. These materials must 

have reasonably low vapor pressure. Blending the thiols with multi-ene compounds offers 

freedom to achieve the desired properties in the formulation. 

 

Figure 5.12: Asymmetrically substituted thiol-ene monomers for use in hyperbranched 
polymers. 

Attempts were made to synthesize the first three materials in Figure 5.12 in two steps as 

indicated in Scheme 5.10. 

 

Scheme 5.10: Synthesis of asymmetrically substituted thiol-ene monomers through a 
two-step path. 
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Various efforts were also made to synthesize 4-(trivinylsilyl)benzenethiol shown 

in Figure 5.12 (and product in Scheme 5.11) by protecting the thiol functionality before 

appending the vinylsilane by employing a Grignard reaction. A variety of protecting 

groups were attempted with little success. Consequently, a reduction in yield was deemed 

acceptable by skipping the protection of the thiol and carrying out the Grignard reaction 

directly as illustrated in Scheme 5.11. 

 

Scheme 5.11: One possible synthetic route to obtain the AB3 monomer. 

However, upon isolation of the product, it was noted that the thiol functionality 

seemed to react with the vinyl moieties even in the absence of light and the presence of a 

radical inhibitor. This was confirmed by following the reduction of the thiol proton and 

the appearance of methylene protons in NMR experiments. 

5.5 RESULTS AND CONCLUSIONS 

Methacrylate-functionalized Si-14 illustrates excellent planarizing properties. It 

meets all of the specified material requirements. However, the initial synthesis is lengthy 

and costly as two steps must be repeated multiple times and yields are low. Although the 

material served as a great candidate in a university research setting, it is not suitable for 

industrial scale-up. For this purpose, a simplified path was needed. The significantly 

shorter synthetic path of the precursor to Si-14, Si-12, was discovered, and the material 

was functionalized with polymerizable groups and fully evaluated. Si-12 also meets all 

the specified material requirements. It was scaled up by a chemical company and was 

tested as a planarizing material for a SFIL-R demonstration. The SFIL-R demonstration 
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was successful in that the final features of the multiple etch processes were inverted to 

provide an exact replica of the template (reverse tone SFIL). The dually functionalized 

monomers of the thiol-ene type species all had vapor pressures that were too high and 

were unsuccessfully spincoated onto substrates. In addition, due to the dual functionality, 

dimerization and polymerization took place even in dark and cold storage conditions. 

5.6 FUTURE WORK 

Si-12 was successfully demonstrated as a planarizing liquid, but there is room for 

improvement. In order to achieve high throughput, it is important to reach the critical 

degree of planarization as rapidly as possible. Materials with even lower viscosities could 

accomplish this. When spincoating materials without a volatile solvent, the thickness 

depends on the spin time and the amount of material dispensed on the substrate. The 

thiol-ene based materials have the potential of becoming great planarizing materials if 

this viscosity can be kept low while molecular weight is increased to lower the vapor 

pressure. 
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5.8 SYNTHESIS OF MATERIALS 

General experimental procedures and comments. Chemicals were purchased from 

various sources and used in reactions without any further purification unless otherwise 

indicated. Solvents were dried and distilled according to commonly used literature 

procedures [22]. All reactions were performed under a dry nitrogen atmosphere unless 

otherwise indicated. 
1H NMR spectra were obtained on a Varian Mercury (400 MHz), Varian (400 

MHz System, Direct Drive), Varian INOVA (500 MHz) or Unity plus (300 MHz) 

instruments referenced to deuterated chloroform (7.24 ppm), deuterated DMSO (2.49 

ppm) or deuterated water (4.79 ppm). Chemical shifts are reported in delta units (∂), parts 

per million, and coupling constants (J) are reported in Hertz (Hz). 13C spectra were 

obtained on a Varian Mercury (100 MHz), Varian (100 MHz System, Direct Drive), 

Varian INOVA (125 MHz) or a Unity plus (75 MHz) instruments referenced to 77.000 

ppm for deuterated chloroform, or 39.5 ppm for deuterated DMSO. 13C NMR spectra 

were routinely run with broadband decoupling. 29Si spectra were obtained on a Varian 

INOVA (75 MHz) or a Unity plus (60 MHz). Low-resolution mass spectra were obtained 

on an Agilent GC/MS 6890N Gas Chromatograph and 5973 Mass Spectrometer, or a 

Finnigan LCQ instrument. High-resolution mass spectroscopy analyses were carried out 

on an ION-SPEC, FT-ICR/MS instrument. FT-IR spectra were obtained on a Nicolet 

Avatar 360 FT-IR instrument. Thermal stability and melting points were measured on a 

MEL-TEMP II or a TA instruments DSC Q100 / TGA Q500. UV exposures were either 

carried out on a The Southern N.E. Ultraviolet Co. Rayonet Photochemical Reactor (16 

bulbs, 300 nm) or a JH Technologies Novacure® 2100 System (High Pressure 100 W 

Mercury Vapor Short Arc Lamp, ~250-500 nm). 



 143 

Preparation of 3,5-Bis(dimethylsiloxy)octamethyltetrasiloxane or 1H,7H-3,5-

bis(trimethylsiloxy)hexamethyltetrasiloxane (Si-6). Palladium on carbon (0.10 g), 

distilled water (9.0 mL, 0.50 mol, 14 eq.), and THF (300 mL) were added to a 500 mL 

round bottom flask equipped with a magnetic stir bar and a rubber septum. 1,3-

Bis(trimethylsiloxy)-1,3-dimethyldisiloxane (10.0 g, 35 mmol, 1.0 eq.) in THF (50 mL) 

was slowly added via an addition funnel and the reaction was stirred for ~8 hrs. To a 

clean and dry 1 L round-bottomed flask equipped with a magnetic stir bar, a nitrogen 

inlet needle, a rubber septum, and flushed with nitrogen gas was added heptane (100 mL) 

via syringe along with freshly distilled DMF (100 mL). Dimethylchlorosilane (44 mL, 

0.4 mol, 11.0 eq.) was added via a volumetric cylinder and as gas evolved it was flushed 

out with a stream of nitrogen. The round-bottomed flask was then cooled in an ice bath 

and equipped with a large addition funnel previously flushed with nitrogen. The 

hydrolyzed silane in the 500 mL flask was filtered through celite and then added to the 

large addition funnel attached to the 1 L reaction flask. The reaction flask was stirred for 

5 minutes at 0 ºC before addition of silanol was started. The rate of addition was set to 

roughly one drop per second. After addition was complete the reaction was kept in the ice 

bath for an additional 15 minutes before cold distilled water was added slowly via the 

addition funnel to quench excess chlorosilane. A separatory funnel was used to separate 

the organic layer from the aqueous layer and the organic layer was washed with 

approximately 1.5 L of distilled water to remove DMF. The organic layer was dried over 

magnesium sulfate before being placed on a rotary evaporator and under high vacuum to 

remove solvents. TLC indicated two spots with large difference in Rf value. The residue 

was chromatographed through a short plug run with 100% hexanes to yield a clear liquid 

with low viscosity in 12.3 g, 80.4% yield. 1H NMR (400 MHz, CDCl3): δ 4.707 - 4.748 

(sep, J = 2.739 Hz, 2H), 0.197 (d, J = 2.738, 12H), 0.110 (s, 18H), 0.048 (s, 6H). 13C-
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NMR (100 MHz, CDCl3): δ 1.652, 0.573, -2.552. 29Si-NMR (60 MHz, CDCl3): δ 8.013 

(s), -6.596 (d, J = 207 Hz), -65.108. IR (neat): 2903, 1417 (w), 2961, 2132, 800, 770 (m), 

1253, 1061, 909, 843 cm-1 (s). HRMS (CI+, [M-1]+) calcd. for C12H37O5Si6: 429.1257, 

found = 429.1259. 

Preparation of Functionalized Si-6 with Allyl Methacrylate. Allyl 

methacrylate (2.4 mL, 18 mmol, 2.4 eq.), and 1H,7H-3,5-bis(trimethylsiloxy)hexamethyl-

tetrasiloxane (3.161 g, 7.3 mmol, 1 eq.) were added to a flame dried nitrogen flushed 25 

mL round-bottom flask equipped with a magnetic stir bar and a rubber septum. Freshly 

distilled toluene was added via syringe as well as Karstedt’s catalyst (0.5 mL). The 

reaction was stirred for 48 hrs under N2 at RT. A 10 mL plastic syringe equipped with a 

0.2 micro filter and about 2 mL of celite was used to filter the product. The toluene was 

evaporated and the crude product was recovered in 3.555 g, 71% yield. Column 

chromatography with ethyl acetate and hexanes 10/90 as eluent gave product in 5%, 

(0.273 g). 1H NMR (400 MHz, CDCl3): δ 6.064-6.057 (q, J = 1.0 Hz, 2H), 5.507-5.492 

(p, J =1.6 Hz, 2H), 4.081-4.046 (t, J = 7.0 Hz, 4H), 1.906-1.900 (dd, J = 0.6 Hz, J = 1.0 

Hz, 6H), 1.710-1.632 (m, 4H), 0.523-0.566 (m, 4H), 0.05-0.074 (m, 30H), -0.020-0.001 

(m, 6H). 13C-NMR (100 MHz, CDCl3): δ 167.421, 136.489, 125.059, 67.101, 22.510, 

18.272, 13.934, 1.606, -0.114, -2.279. 29Si-NMR (60 MHz, CDCl3): δ 7.776 (s), -65.898 

(s). IR (neat): 2899 (w), 1639, 1455, 1406, 1321, 1296, 939 (m), 2959, 1722, 1253, 1164, 

1056, 844, 791 cm-1 (s). HRMS (CI+, [M-CH3]+) calcd. for C25H55O9Si6: 667.2462, found 

= 667.2465. 

Preparation of 1H,11H-5,7-bis(trimethylsiloxy)decamethylhexasiloxane (Si-

8). The procedure used for the preparation and isolation of Si-6 was utilized here. 

Palladium on carbon (0.10 g), distill water (9 mL, 0.50 mol, 17 eq.), and THF (300 mL) 

were added and stirred in a 500 mL round bottom flask. 1H,7H-3,5-
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bis(trimethylsiloxy)hexamethyltetrasiloxane, Si-6, (12.46 g, 29 mmol, 1.0 eq.) was added 

dropwise. Dimethylchlorosilane (45 mL, 0.4 mol, 14 eq.), heptane (100 mL), and DMF 

(100 mL) were added to a 1 L single necked round bottom flask equipped with an 

addition funnel. The hydrolyzed Si-6 was added to the addition funnel and slowly added 

to the reaction to obtain the product Si-8 as a colorless low viscosity liquid (12.768 g, 

76% yield). 1H NMR (400 MHz, CDCl3): δ 4.687-4.722 (sep, J = 2.7 Hz, 2H), 0.184 (d, J 

= 2.7 Hz, 12H), 0.108 (s, 18H), 0.079 (s, 12H), 0.059 (s, 6H). 13C-NMR (75 MHz, 

CDCl3): δ 1.683, 0.785, 0.732, -2.295. 29Si-NMR (100 MHz, CDCl3): δ 7.855 (s), -6.872 

(d, J = 202 Hz), -20.020, -66.845 (s). IR (neat): 2903, 1414 (w), 757 (m), 2962, 2129, 

1260, 1050, 913, 843, 797 cm-1 (s). HRMS (CI+, [M-1]+) calcd. for C16H49O7Si8: 

577.1633, found = 577.1626. 

Preparation of 1H,15H-7,9-bis(trimethylsiloxy)tetradecamethyloctasiloxane 

(Si-10). The procedure used for the preparation and isolation of Si-6 was utilized here. 

Palladium on carbon (0.05 g), distill water (3.3 mL, 0.18 mol, 14 eq.), and THF (150 mL) 

were added to a 500 mL flask. Dimethylchlorosilane (29 mL, 0.26 mol, 20 eq.), DMF 

(150 mL), and heptane (150 mL) were stirred at 0 °C while hydrolyzed Si-8 (7.62 g, 13.2 

mmol, 1.0 eq.) was slowly added to the flask. Product (Si-10) was obtained as a colorless 

low viscosity liquid (7.16 g, 74.7% yield). 1H NMR (400 MHz, CDCl3): δ 4.677-4.718 

(sep., J = 2.7 Hz, 2H), 0.173 (d, J = 2.7 Hz, 12H), 0.046-0.108 (m, 48H). 13C-NMR (75 

MHz, CDCl3): δ 1.674, 0.968, 0.878, 0.700, -2.269. 29Si-NMR (60 MHz, CDCl3): δ 

7.855, -6.872 (d, J = 202 Hz), -19.783, -21.836, -66.924. IR (neat): 1414, 690 (w), 2128, 

766 (m), 2962, 1261, 1043, 913, 842, 800 cm-1 (s). HRMS (CI+, [M-1]+) calcd. for 

C20H61O9Si10: 725.2008, found = 725.2003. Elemental analysis calcd. for C20H62O9Si10: C: 

33.02%, H: 8.59%, found: C 33.16%, H: 8.65%. 
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Preparation of 1H,19H-9,11-bis(trimethylsiloxy)octadecamethyldecasiloxane 

(Si-12). The procedure used for the preparation and isolation of Si-6 was utilized here 

Palladium on carbon (0.06 g), distill water (4.5 mL, 0.25 mol, 14 eq.), and THF (200 mL) 

were added to a 500 mL round bottom flask. Si-10 (13.18 g, 18.1 mmol, 1.0 eq.) was 

slowly added to the mixture. Dimethylchlorosilane (40 mL, 0.36 mol, 20 eq.), DMF (200 

mL), and heptane (200 mL) were added to a 1 L round bottom flask and stirred at 0 °C 

while the hydrolyzed Si-10 was slowly added. Product, Si-12, was obtained as a colorless 

low viscosity liquid (10.83 g, 68% yield). 1H NMR (400 MHz, CDCl3): δ 4.698 (sep, J = 

2.7 Hz, 2 H), 0.172 (d, J = 2.7 Hz, 12 H), 0.108-0.044 (m, 60 H). 13C-NMR (75 MHz, 

CDCl3): δ 1.682, 1.057, 0.990, 0.975, 0.863, 0.700, -2.254. 29Si-NMR (60 MHz, CDCl3): 

δ 7.815, -5.212, -8.607, -19.898, -21.871, -66.875. IR (neat): 2904, 1413 (w), 2128, 766 

(m), cm-1 2963, 1661, 1034, 913, 802 (s). HRMS (CI+, [M-1]+) calcd. for C24H73O11Si12: 

873.2384, found = 873.2380. 

Preparation of 1H,23H-11,13-bis(trimethylsiloxy)docosamethyldodeca-

siloxane (Si-14). The same procedure used for the preparation and isolation of Si-6 was 

employed here. Palladium on carbon (0.040 g), water (2.0 mL, 0.11 mol, 14 eq.), and 

THF (100 mL) were stirred together in a 250 mL single necked round bottom flask. 

Dimethylchlorosilane (20 mL, 0.18 mol, 23 eq.), DMF (100 mL), and heptanes (100 mL) 

were added and stirred at 0 °C in a 500 mL flask. Si-12 (6.96 g, 7.9 mmol, 1.0 eq.) was 

slowly added to the reaction vessel. Product Si-14 as a colorless low viscosity liquid 

5.525 g, 68% yield. 1H NMR (400 MHz, CDCl3): δ 4.648 (t sep., 2H, J = 2.7/102 Hz), 

0.128 (d, J = 2.9 Hz, 12 H), 0.071 - 0.00 (m, 72 H). 13C-NMR (75 MHz, CDCl3): δ 1.667-

1.481 (m), 1.012-0.558 (m), -2.284 (s), -2.660 (d). IR (neat): 767, 690 (m), 2962, 2128, 

1261, 1028, 913, 801 cm-1 (s). HRMS (CI+, [M-1]+) calcd. for C28H85O13Si14: 1021.2760, 



 147 

found = 1021.2756. Elemental analysis calcd. for C28H86O9Si14: C: 32.84%, H: 8.46%, 

found: C 32.77%, H: 8.61%. 

Preparation of Functionalized Si-14 with Allyl Methacrylate. The procedure 

used for the preparation and isolation of functionalized Si-6 was employed here. Allyl 

methacrylate (1.3 mL, 9.6 mmol, 2.7 eq.), Si-14 (3.61 g, 3.5 mmol, 1 eq.), and toluene 

(20 mL) were added together to a 50 mL round bottom flask. The mixture was flushed for 

several minutes with nitrogen before Karstedt’s catalyst (0.5 mL) was added via syringe. 

Reaction was stirred for 48 hrs under N2 and RT. A 10 mL plastic syringe was equipped 

with a 0.2 micro filter and about 2 mL of celite before the reaction mixture was carefully 

added and filtered into a tared 25 mL flask. Toluene was evaporated and a slightly 

yellowish liquid was recovered. No yield quoted as product is impure by proton NMR. 

Additional attempts to purify were unsuccessful and often led isolation of insoluble gels. 
13C-NMR (75 MHz, CDCl3): δ 167.504, 136.537, 125.116, 67.142, 22.597, 18.318, 

14.077, 1.652, 1.124, 1.042, 0.968, 0.298, 0.060, -2.284. 

Synthesis of asymmetric linear siloxane, Si-4[H,Cl]. Hexamethylcyclotri-

siloxane, D3, (116.7 g, 0.524 mol), activated carbon (2.15 g) and hexane (330 mL) were 

added to a 2 L round bottom glass flask equipped with a 250 mL addition funnel. 

Dimethylchlorosilane (88.5 mL, 0.795 mol) in hexane (110 mL) were added to the 

addition funnel and slowly added dropwise over 1 hour at room temperature. The reaction 

was allowed to stir overnight. The reaction was monitored by GC/MS periodically, and if 

un-reacted D3 was still present over 20%, additional activated carbon and 

dimethylchlorosilane was added. The solution was filtered through a 0.2 micro PTFE 

filter to remove the activated carbon. Then the solvent was evaporated on a rotary 

evaporator. Distillation at 10 Torr and 75 °C was carried out to obtain the product 129.6 g 

78% as a colorless liquid. 1H NMR (CDCl3): δ 4.69 (m, 1H), 0.43 (s, 6H), 0.17 (d, J = 2.8 
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Hz, 6H), 0.11 (s, 6H), 0.06 (s, 6H). 13C NMR (CDCl3): δ 4.06, 0.88, 0.80, 0.68. 29Si NMR 

(CDCl3): δ 3.75, -6.63 (d, J = 204 Hz), -18.94, -19.27. 

Synthesis of 1H,19H-9,11-bis(trimethylsiloxy)octadecamethyldecasiloxane 

(Si-12, preferred method). Palladium on carbon (0.16 g), water (1.9 g, 0.11 mol) and 

THF (175 mL) were added to a 500 mL round bottom glass flask equipped with an 

addition funnel. 1,3-Bis(trimethylsiloxy)-1,3-dimethyldisiloxane (10.0 g, 35 mmol) and 

THF (75 mL) were added to the addition funnel. The solution was slowly added dropwise 

into the flask and stirred at RT for 6 hours. The solution was filtered through celite. Si-

4[H,Cl] (56.4 g, 0.178 mol), triethylamine (27.8 g, 0.275 mol) and diethyl ether (700 mL) 

were added to a 3 L round bottom glass flask equipped with a 250 mL addition funnel. 

The filtrate from above was added to the addition funnel and slowly dripped into the flask 

at 0 °C. The suspension was stirred overnight at RT. Water (1 L) was added to the 

solution to quench excess Si-4[H,Cl] and then the organic layer was separated from the 

aqueous layer. The organic layer was washed with water and dried over anhydrous 

magnesium sulfate. The solvent was removed under reduced pressure. Distillation using a 

Kugelrohr apparatus at 170 °C and <1 Torr was carried out to remove impurities. Product 

was obtained 28.9 g 93% as a colorless liquid. Spectral data corresponds well with data 

obtained from previous Si-12 synthesis. 

Synthesis of epoxide functionalized Si-12. Si-12 (12.7 g, 14.5 mmol), 4-vinyl-1-

cyclohexene 1,2-epoxide (4.8 g, 38 mmol) and toluene (130 mL) were added to a 500 mL 

round bottom glass flask. The flask was flushed with nitrogen gas for several minutes 

before 25 drops of Karstedt’s catalyst was added to the solution with vigorous stirring. 

The solution turned to a yellowish hue and was allowed to stir overnight. The solvent was 

removed under reduced pressure, and the excess epoxide was removed under high 

vacuum (<1 Torr) at room temperature. 14.1 g of slightly yellowish liquid was obtained 
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as 86.7 % yield. 1H NMR (CDCl3): δ 3.104–3.140 (m, 4H), 0.793–2.178 (comp. m, 18H) 

0.442–0.486 (m, 4H), 0.015–0.093 (m, 72Hz, 12H), 0.06 (s, 12H), 0.05 (s, 12H), 0.03 (s, 

6H). 13C NMR (CDCl3): δ 53.280, 52.752, 52.008, 51.963, 35.409, 32.269, 31.525, 

30.394, 30.096, 29.531, 26.726, 25.372, 24.025, 23.571, 15.074, 14.970, 1.660, 1.169, 

1.094, 0.975, 0.023, -2.276. FT-IR (neat): 2916, 2850, 1436, 1413, 1338 (w), 2961, 840, 

685 (m), 1257, 1019, 788 cm-1 (s). HRMS (ESI+, [M+Na]+) calcd. for C40H98O13Si12: 

1145.4131, found = 1145.4117. 

Synthesis of methacrylate functionalized Si-12. Si-12 (12.0 g, 13.7 mmol), allyl 

methacrylate (4.41 g, 34.9 mmol) and toluene (130 mL) were added to a 500 mL round 

bottom glass flask. Karstedt’s catalyst (25 drops) was added to the solution. The solution 

turned to a yellow color and was allowed to stir overnight covered with aluminum foil. 

The solvent was removed under reduced pressure and the excess allyl methacrylate was 

removed under high vacuum (<1 Torr) at room temperature to provide the product. No 

yield quoted as product was impure by NMR. HRMS (ESI+, [M+Na]+) calcd. for 

C38H94O15Si12: 1149.3716, found = 1149.3718. 

Synthesis of 5-Chloro-4-hydroxy-1-pentene [18]. Cu(I)Br (0.90 g, 6.3 mmol) 

and diethyl ether (200 mL) were added to a 1 L single necked round bottom flask. The 

solution was cooled to -73 °C in a dry ice 2-propanol bath. Vinylmagnesium bromide (60 

mL of a 1 M THF solution, 1.1 eq.) was added via a syringe. Epichlorohydrin (5.03g, 

54.3 mmol 1.0 eq.) was slowly added via syringe and the reaction was stirred at -73 °C 

for 3 hrs. The cooling bath was removed and mixture was stirred at room temperature for 

~12 hrs. The reaction was added to 150 mL of water and stirred for 5 minutes. The two 

layers were separated in a separatory funnel and the aqueous layer was extracted twice 

with 100 mL diethyl ether. The ether layers were combined and dried over sodium sulfate 

before the solvent was removed in vacuo. Distillation of the product yielded a colorless 
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liquid. 1H NMR (400 MHz, CDCl3): δ 5.723-5.827 (m, 1H), 5.094-5.157 (m, 2H), 3.809-

3.878 (m, 1H), 3.590 (dd, J = 11 Hz, 3.7 Hz, 1H), 3.473 (dd, J = 11.2 Hz, 6.7 Hz, 1H), 

2.426 (d, J = 4.9 Hz, 1H), 2.289-2.337 (m, 2H). 13C-NMR (100 MHz, CDCl3): δ 133.219, 

118.576, 70.534, 49.307, 38.616. HRMS (CI+, [M-1]+ calcd. for C5H8OCl = 119.0264, 

found = 119.0266). 

Synthesis of tetraepoxycyclotetrasiloxane (2,4,6,8-tetrakis(2-(7-oxabicyclo-

[4.1.0]heptan-3-yl)ethyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane). 

1,3,5,7-tetramethylcyclotetrasiloxane (10.33 g, 43.0 mmol, 1.0 eq.) and freshly distilled 

toluene (250 mL) were added to a 500 mL round bottom flask. The flask was purged with 

nitrogen gas for a couple of minutes before 4-vinyl-1-cyclohexene 1,2-epoxide (34 mL, 

0.26 mol, 6.0 eq., mixture of isomers) was added. Karstedt’s catalyst was slowly added 

(0.1 mL, 2 mM solution in xylenes) to the reaction mixture. The reaction was stirred for 

six hours before filtering through celite and a micro filter (0.45 µ). Solvent was removed 

under reduced pressure and the product was placed on high vacuum overnight. The crude 

product contained vinyl-epoxide residue and was distilled under vacuum (5-10 Torr) at 

110 °C. Product was obtained as yellowish highly viscous oil. 1H NMR (400 MHz, 

CDCl3): δ 3.102–3.132 (m, 8H), 0.777–2.155 (m, 36H), 0.406–0.426 (m, 8H), 0.003 (s, 

12H). 13C-NMR (100 MHz, CDCl3): δ 53.176, 52.663, 51.911, 51.829, 35.119, 35.074, 

32.053, 32.016, 31.532, 31.495, 30.320, 29.799, 29.263, 26.726, 25.290, 23.988, 23.527, 

14.048, 13.996, 13.891, 13.839, -0.796, -0.863. 29Si-NMR (60 MHz, CDCl3): δ -19.933. 

HRMS (CI+, [M-1]+ calcd. for C36H65O8Si4= 737.3757, found = 737.3745). 

Synthesis of 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)di-

siloxane. 1,1,3,3-tetramethyldisiloxane (0.44 g, 3.3 mmol, 1.0 eq.) and DCM (30 mL) 

were added to a 100 mL round bottom flask. The flask was flushed with nitrogen gas. 

Allyl glycidyl ether (1.5 mL, 13 mmol, 3.9 eq.) was added to the reaction vessel via a 
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syringe. The reaction was cooled to 0 °C before the platinum catalyst was slowly added 

via a syringe (5 drops). The reaction was removed from the ice bath and stirred at RT 

overnight, conversion was monitored by GC. Residue was filtered through a celite plug, 

followed by a 0.2 micro filter, and then chromatographed through a short silica plug. The 

product was isolated as a light yellow oil 0.617 g, 52%. 1H NMR (400 MHz, CDCl3): δ 

3.65 (dd, J = 3 Hz, 11 Hz, 2H), 3.296–3.431 (m, 6H), 3.073–3.106 (m, 2H), 2.721–2.752 

(m, 2H) 2.536–2.562 (m, 2H), 1.492–1.596 (m, 4H), 0.423–0.480 (m, 4H), -0.005 (s, 

12H). 13C-NMR (100 MHz, CDCl3): δ 74.212, 71.330, 50.759, 44.207, 23.377, 14.113, 

0.167. 29Si-NMR (60 MHz, CDCl3): δ 7.68 (m). IR (neat): 2955, 2931, 2870, 1729, 1480, 

1413, 1186, 1159 (w), 1338, 1104, 909, 699 (m), 1252, 1043, 836 cm-1 (s). HRMS (CI+, 

[M+1]+ calcd. for C16H35O5Si2= 363.2023, found = 363.2016). 

Preparation of 1,1,3,3,5,5,7,7-octamethyl-1,7-di(oxiran-2-yl)tetrasiloxane. m-CPBA 

(3.201 g, 77%, 14 mmol, 9.5 eq.) and DCM (15 mL) were added to a flame dried 50 mL 

round bottom flask. The suspension was stirred at 0 °C and 1,7-divinyl-1,1,3,3,5,5,7,7-

octamethyltetrasiloxane (0.502 g, 1.5 mmol, 1 eq.) was slowly added. The reaction was 

allowed to stir at 0 °C for 30 minutes before removing the cooling bath. Stirring was 

continued for 72 hours at RT. Solid residue was filtered out and washed with DCM. 

Organic layer was washed with aqueous sodium bisulfite, sodium bicarbonate, water and 

brine before dried over magnesium sulfate. No yield quoted as residual aromatic protons 

were observed in NMR. Additional attempts to purify the product were unsuccessful. 

HRMS (CI+, [M-C2H3]+ calcd. for C10H27O4Si4 = 323.0986, found = 323.0989). 

Synthesis of 5.1 (AxBy thioester). Trivinylmethylsilane (23.04 g, 185.4 mmol, 1.0 

eq.) and thiolacetic acid (24 mL, 0.34 mol, 1.8 eq.) were added to a large quartz test tube. 

The test tube was placed in a Rayonet UV reactor and allowed to be irradiated for 

approximately 14 hrs. Residue was added to water (100 mL) and extracted with diethyl 
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ether. Organic layer was washed with aqueous sodium bicarbonate, water, and brine 

before being dried over magnesium sulfate. Solvent was removed under reduced pressure 

and product was obtained as a slightly yellowish viscous liquid 41.463 g, 85%. NMR 

analysis indicated a mixture with a ratio of vinyl to methylene spacer of 

approximately1.2:1.8 (vinyl to thioester). 

Synthesis of 5.2 (AxBy thiol-ene). Lithium aluminum hydride (1.28 g, 33.7 

mmol) was added to a flame dried 100 mL three-necked round-bottom flask equipped 

with a reflux condenser, a magnetic stir bar, and rubber septa. Dry diethyl ether (25 mL) 

was added to the flask and suspension was heated to reflux for 2 hour. Reaction vessel 

was cooled and kept at 0 °C for 5 minutes before compound 5.1 (8.542 g) was added 

dropwise via a syringe. Reaction was stirred overnight before poured onto ice. Aqueous 

layer was acidified and extracted with diethyl ether. Organic layers were combined and 

washed with water and brine before drying over magnesium sulfate. Solvent was 

evaporated to give product as a clear liquid 4.1 g. NMR analysis indicated a mixture with 

a ratio of vinyl to thiol of approximately 1.2:1.8 (vinyl to thiol). 

Synthesis of 5.3 (A2B2 thioester). 1,3,5,7-tetramethylcyclo-tetrasiloxane (30.145 

g, 87.5 mmol, 1.0 eq.) and thiolacetic acid (12.5 mL, 175.4 mmol, 2.0 eq.) were added to 

a large quartz test tube. The test tube was placed in a UV reactor and allowed to be 

irradiated for approximately 6 hrs. Residue was added to water (100 mL) and extracted 

with diethyl ether. Organic layer was washed with aqueous sodium bicarbonate, water 

and brine before being dried over magnesium sulfate. Solvent was removed under 

reduced pressure and product was obtained as a slightly yellowish viscous liquid 39.5 g, 

91%. NMR analysis indicated a mixture with a ratio of vinyl to methylene spacer a 

distribution of 1:1 (vinyl to thioester). 
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Synthesis of 5.5 (AxBy thioester). Tris(vinyldimethylsiloxy)methylsilane (10.4 g, 

30.1 mmol) and thioacetic acid (3.8 mL, 53 mmol) were added to a large quartz test tube. 

The test tube was placed in a UV reactor and allowed to be irradiated for approximately 

14 hrs. Residue was added to water (100 mL) and extracted with diethyl ether. Organic 

layer was washed with, aqueous sodium bicarbonate, water and brine before being dried 

over magnesium sulfate. Solvent was removed under reduced pressure and product was 

obtained as a slightly yellowish viscous mixture 12.742 g, 88%. NMR analysis indicated 

product as a mixture with a ratio of vinyl to methylene spacer of approximately 1.2:1.8 

(vinyl to thioester).  

Synthesis of 5.6 (AxBy thiol-ene). Lithium aluminum hydride (3.31 g, 87.3 

mmol) was added to a flame dried 500 mL three-necked round-bottom flask equipped 

with a reflux condenser, a magnetic stir bar, and rubber septa. Dry diethyl ether (250 mL) 

was added to the flask and suspension was heated to reflux for 2 hour. Reaction vessel 

was cooled and kept at 0 °C for 5 minutes before compound 5.5 (5.013 g) was added 

dropwise via a syringe. Reaction was stirred overnight before poured onto ice. Aqueous 

layer was acidified and extracted with diethyl ether. Organic layers were combined and 

washed with water and brine before drying over magnesium sulfate. Solvent was 

evaporated to give product as a clear liquid. Product was obtained as a mixture with a 

ratio of vinyl to thiol of approximately 1.2:1.8 (vinyl to thiol). 

Preparation of benzyl(4-bromophenyl)sulfane. Sodium hydride (60% in oil, 

0.60 g, 15 mmol, 1.3 eq.) and freshly distilled THF (100 mL) was added to a flame dried 

250 mL round bottom flask and cooled to 0 °C. 4-bromo-thiophenol (2.105 g, 11.1 mmol, 

1.0 eq.) was added very slowly via a syringe. Reaction was stirred at 0 °C for 30 minutes 

before benzyl bromide (1.5 mL, 12.5 mmol, 1.1 eq.) was added dropwise. Reaction was 

removed from ice bath and heated in an oil bath at 60 °C overnight. Reaction was cooled 
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to 0 °C before residue was carefully poured into chilled water (100 mL). Saturated 

aqueous ammonium chloride (100 mL) was added. The solution was extracted with 

diethyl ether and washed with water and then brine before being dried over magnesium 

sulfate. Solvent was removed under reduced pressure and product isolated as an off white 

solid 1.913 g, 62%, MP = 61-63 °C. 1H NMR (400 MHz, CDCl3): δ 7.519–7.541 (m, 

2H), 7.238–7.288 (m, 3H), 7.174–7.196 (m, 2H), 6.943–6.963 (m, 2H), 4.020 (app. m, 

2H). 13C-NMR (100 MHz, CDCl3): δ 141.753, 131.939, 130.295, 128.517, 128.487, 

128.368, 125.965, 125.540, 63.310. IR (neat): 3063, 3040, 2846, 1340, 1183, 917 (weak), 

2921, 1434, 1239, 1112, 1025, 1003 (medium), 1493, 1473, 1454, 1386, 1089, 1070, 807, 

780, 710, 696 cm-1 (strong). HRMS (CI+, [M-1]+ calcd. for C13H11SBr = 277.9765, found 

= 277.9761). 

Preparation of (4-(benzylthio)phenyl)trivinylsilane. Magnesium turnings 

(0.094 g, 3.9 mmol, 1.0 eq.) and distilled THF (20 mL) were added to a flame dried 100 

mL round bottom flask. Benzyl(4-bromophenyl)sulfane (1.05 g, 3.8 mmol, 1.0 eq.) was 

dissolved in THF (20 mL) in a flame dried 50 mL conical shaped flask before being 

slowly added via syringe to the reaction vessel containing the magnesium. A heat gun 

was used to bring the reaction to refluxing conditions and allowed to stir for 3 hrs. 

Trivinylchlorosilane (0.72 g, 4.9 mmol, 1.3 eq.) was slowly added via syringe into the 

reaction flask. Upon completion of addition, reaction was stirred overnight. The reaction 

was cooled in an ice bath and dilute aqueous HCl was slowly added until mixture was 

slightly acidic. Product was extracted with diethyl ether, washed with water and brine 

before dried over magnesium sulfate. Solvent was removed under reduced pressure. No 

yield quoted as compound was impure by NMR. HRMS (CI+, [M]+ calcd. for C19H20SSi 

= 308.1055, found = 308.1050). 
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Preparation of 4-(trivinylsilyl)benzenethiol, AB3. Freshly ground magnesium 

turnings (0.11 g, 4.6 mmol, 1.0 eq.) and distilled THF (15 mL) was added to a flame 

dried 50 mL three necked round bottom flask. Trivinylchlorosilane (0.82 g, 5.6 mmol, 1.2 

eq.) was slowly added dropwise. 4-bromo-thiophenol (1.08 g, 5.7 mmol, 1.2 eq.) was 

dissolved in 5 mL of dry THF and slowly added via syringe. A heat gun was used to 

bring the reaction to refluxing conditions. Let reaction stir overnight. Cool the reaction in 

an ice bath and slowly add dilute aqueous HCl until mixture is slightly acidic. Extract 

with diethyl ether, wash with water and brine before drying the organic layer over 

magnesium sulfate. Solvent was removed under reduced pressure. No yield quoted as 

product was impure and observed to crosslink by NMR. HRMS (CI+, [M-1]+ calcd. for 

C12H13SSi = 217.0507, found = 217.0509). 

Spincoating of asymmetrically-substituted thiol-ene-based monomer. Silicon 

wafers were first cleaned with acetone and IPA and then adhesion promoter AP410 was 

spincoated to a thickness of about 10 nm. A drop of either 5.2 or 5.6 was dispensed onto 

the wafer and spin-coated at approximately 2000 rpm for 30 s. Film thicknesses were 

determined by ellipsometry. It was observed that evaporation occurred as the thickness of 

the films decreased over time, and uneven surfaces resulted from spincoating for longer 

durations. 
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Chapter 6: Surfactant Effect on S-FIL Adhesion  

6.1 INTRODUCTION TO SURFACE TREATMENT AND MODIFICATION 

While SFIL has many advantages over traditional optical lithography, one 

concern unique to imprint lithography is the fouling of templates. Template fouling is an 

adverse occurrence that has been studied in great detail [1-3] and can be very costly in 

terms of system downtime, defective imprints, and template removal and cleaning. 

Template contamination occurs when the template is separated after curing of the imprint 

resist. In order for template separation to take place, a crack must propagate at the 

interface of the resist film [4]. Figure 6.1 illustrates three different outcomes resulting 

from the separation of two interfaces.  

 

Figure 6.1: Three possible outcomes from template and resist separation [5]. 
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In order to obtain a clean separation without defects or template fouling, forces 

required for the crack to propagate at the interface must be lower than the forces holding 

the resist to the substrate. On the other hand, if the force for separation is greater than the 

adhesion of the resist to the substrate, a complete lift-off from the substrate can occur. 

Cohesive failure due to separation forces being greater than the cohesive forces in the 

cured resist lead to partial pattern transfer. This type of defect can be very small and hard 

to observe.  

It is well understood what criteria must be met in order to facilitate the separation 

of the template from an imprinted resist pattern. However, there are very few known 

materials and solutions that meet such criteria. One approach to improving separation is 

to treat the substrate with a material that facilitates and increases the adhesion of the 

resist to the substrate. Such materials are designed to accommodate a variety of 

formulations and types of resists (organic, inorganic, etc.), although only a few are 

commercially available. Nevertheless, while this addresses the issue of adhesion to the 

substrate, it does not aid in template separation. The second solution is to treat the 

template with a material that facilitates release and decreases adhesion of the resist to the 

template [6]. To date, the best material is (tridecafluoro-1,1,2,2-

tetrahydrooctyl)dimethylchlorosilane, which forms a Fluorinated Self Assembled 

Monolayer (FSAM) on the surface [7]. Both of these treatments can be seen in Figure 

6.2. Note that the FSAM is covalently bound to the surface of the template [2], while the 

adhesion promoter layer interacts with the substrate through van der Waals forces.  
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Figure 6.2: Illustration of surface treatment promoting adhesion (AP) to substrate and 
release from template (FSAM). 

The adhesion layer in Figure 6.2 can be designed in a way so as to provide 

multiple functions including adhesion promoter and etch barrier.  The release agent only 

needs to lower the adhesive forces of the template. While this design seemingly has its 

advantages, it has been observed that surface treatments degrade over time [8] and need 

to be replaced. Causes of degradation include: mechanical failure from physical contact 

and separation of the resist (at which point chain entanglement may occur [9]), chemical 

degradation upon exposure to UV radiation, and / or reactive species such as radicals that 

are generated under exposure [10].  

Initially it was thought that adding a surfactant to the imprint resist in order to 

facilitate clean separation could slow degradation [4]. It has been shown that fluorinated 

materials migrate to certain boundaries based on interaction parameters of different 

molecules [11]. This has been illustrated both experimentally and in theory [11, 12]. This 

phenomenon is shown in Figure 6.3.  
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Figure 6.3: Possible migration of fluorinated materials to the resist / air- or template 
interface. 

Ideally, a fluorinated layer forms at the interface between the template and the 

resist as this facilitates clean and easy template separation. This lowers the surface energy 

without affecting the overall bulk properties of the film. In addition, it lowers the 

interaction of the FSAM layer and the polymer resist allowing for slower degradation of 

the template treatment [4]. 

To test the hypothesis of a surfactant migrating in an imprint resist, Lin et al. 

tested two different molecules [4]. These molecules are shown in Figure 6.4. The gradient 

that is expected is illustrated in green and dark green indicates a higher concentration of 

the surfactant. As anticipated, migration occurs and the process is explained in the 

experimental section below [3, 4, 7]. 

 

Figure 6.4: Two surfactants added to resist formulations to facilitate template separation. 
As it migrates towards the template-resist interface, a concentration gradient 
develops in the film [5]. 
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The idea of replenishing the degraded FSAM layer was developed a few years 

ago by Michael Lin, a former member of the Willson group. This process was termed 

“Self Replenishing Fluorinated Self Assembling Monolayer” (SeRFSAM). The concept 

is illustrated in Figure 6.5.  

 

Figure 6.5: Pretreatment of the template and degradation while imprinting. SeRFSAM 
could be a solution as it replenishes the degraded FSAM [5]. 

Specifically, the template is first treated to form the FSAM layer. This layer 

eventually wears down causing defects after multiple imprints. However, imprinting can 

continue uninterrupted if a fluorinated species is added to the imprint resist. This 

fluorinated species can migrate toward the low surface energy FSAM layer to repair the 

release layer in the degraded regions of the template surface treatment.  

The criteria that a SeRFSAM material must meet are described in Table 6.1. 
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Table 6.1: Criteria for replenishing surface materials. 

6.2 EXPERIMENTAL 

All materials for imprint formulations and methyl perfluorooctanoate were 

purchased from Sigma-Aldrich and used without further purification. FSAM 

(tridecafluoro-1,1,2,2-tetrahydrooctyl) dimethylchlorosilane was purchased from Gelest 

Inc. F-Silazane was obtained from Central Glass Co., Ltd. Silicon wafers were purchased 

from Silicon Quest International, Inc. AP410 was purchased from Silicon Resources and 

Darocur® 1173 was purchased from Ciba Specialty Chemicals. Exposures were carried 

out under a UV cut off filter lighting before photopolymerization of imprint resist. XPS 

analysis was carried out at the Texas Materials Institute. Imprinting was carried out in a 

cleanroom at the Microelectronics Research Center (MER) at The University of Texas at 

Austin. 

6.2.1 Materials 

As previously mentioned, several different materials have been screened for use 

as surfactants or additives to replace degraded FSAM. It was shown that a fluorinated, 
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non-reactive material (methyl perfluorooctanoate) assists in the separation of the template 

from the resist polymer by lowering the adhesive forces after photopolymerization [4]. 

However, the problem of FSAM degradation still exists, which eventually leads to 

defects; unreactive additives do very little to prevent this. To overcome the degradation 

problem, a new material was developed to replenish the FSAM layer at exposed areas, 

two of which are described below [5].  

6.2.2 Stability in Imprint Formulation 

For a SeRFSAM to be useful, it must be stable in the imprint formulation. The 

compatibility and stability was evaluated by GC/MS (Agilent Technologies 6890N 

equipped with an Agilent HP-5MS capillary column and an Agilent 5973N Mass 

Selective Detector). Imprint formulations were prepared and two such formulations 

consisting of two possible SeRFSAM are shown in Table 6.2 [5].  

 

Table 6.2: Imprint formulations for GC analysis. An increased loading of SeRFSAM 
simplifies the observation of decomposition taking place [5]. 

Additive concentrations were tested as a function of time in order to observe 

whether decomposition occurs. Results indicate that FSAM decomposes upon storage in 

the imprint formulations, and is unsuitable as a SeRFSAM. However, no noticeable 

change was observed in the formulations containing F-Silazane.  
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6.2.3 Surface Analysis 

F-Silazane successfully passed the stability test, so the water contact angle was 

measured to compare the surface energy to that of FSAM. The first step was to clean the 

surface by treating a one square inch glass plate with piranha solution2 (2:1 ratio of 

concentrated sulfuric acid and 30 wt.% hydrogen peroxide in water) for 30 minutes 

followed by a thorough DI water rinse. A gentle stream of nitrogen gas was used to 

remove residual water droplets. The glass plate was then immersed in a toluene solution 

with 20 wt.% of the surface treatment material for 100 minutes then rinsed with toluene 

and dried with a gentle stream of nitrogen gas. The water contact angle was measured on 

a goniometer (Ramé-Hart m100). Control samples were only exposed to the piranha 

solution, rinsed thoroughly with DI water, and then immersed in toluene, which left the 

surface very hydrophilic as indicated by the water contact angle shown in Figure 6.6.  

 

Figure 6.6: Water contact angle of FSAM and SeRFSAM treated quartz surfaces. Control 
surface is only exposed to a rigorous cleaning process and an Oxygen RIE 
[5]. 

                                                
2 Extreme caution must be taken when mixing and handling piranha solution as it is an extremely 
dangerous substance. It is recommended that a thick chemical apron, goggles, and a face shield be used, 
along with heavy-duty long sleeved gloves to avoid any skin exposure [13] 
http://www.stanford.edu/dept/EHS/prod/researchlab/lab/safety_sheets/08-111.pdf. 2011. 
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As expected, the contact angle of FSAM indicates a hydrophobic surface (highest 

contact angle, and as shown, SeRFSAM treatment generates a similar hydrophobic 

surface. 

6.2.4 Elemental Analysis by XPS 

X-ray photoelectron spectroscopy (XPS), also referred to as Electron 

Spectroscopy for Chemical Analysis (ESCA), is a widely used surface science technique. 

It allows for an elemental analysis of the surface to a depth of roughly 1-10 nm, which, in 

general terms, occurs through monochromatic X-ray irradiation of known energy that 

causes displacement of electrons from the sample surface [14]. The kinetic energies of 

the ejected electrons are then recorded with an electron spectrometer. The binding energy 

of the emitted electrons can then be calculated because they function as a fingerprint of 

the atom and orbital from which they originated. One such spectrum is provided in Figure 

6.7 where the analysis for carbon, nitrogen, chlorine, and sulfur was carried out. The area 

under the peaks can then be integrated and ratios calculated. 
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Figure 6.7: XPS spectrum analyzing for nitrogen (black), carbon (blue), chlorine (red), 
and silicon (pink). 

 Figure 6.8 illustrates a simplified version of the X-ray incident beam and emitted 

electrons. The incident angle is normally set to 45°, which corresponds to an analysis 

depth of approximately 8 nm.  

Rotating the sample changes the depth that photons penetrate the surface and thereby the 

depth from which electrons is emitted yielding a concentration profile. 

 

Figure 6.8: Incident X-ray beam angle controls the depth of analysis [15]. 
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Films were prepared by imprinting formulations as illustrated by Table 6.3. The 

samples were analyzed under ultra high vacuum (10-8 Torr) with a Kratos Axis Ultra 

Photoelectron Spectrometer. An aluminum target was used to generate X-ray photons that 

were then filtered through a monochromator.  

 

Table 6.3: Imprint formulations for XPS analysis. 

In previous experiments conducted by Lin et al., it was found that the unreactive 

surfactant (methyl perfluorooctanoate) tested was well below the anticipated value [3]. It 

is believed that the fluorinated molecule‘s vapor pressure was too high, evaporating 

under the high vacuum conditions in which XPS operates. However, in a separate 

experiment in which a surfactant (2-(perfluorodecyl)ethyl acrylate) was covalently bound 

to the polymer film, migration was observed, and a higher concentration of fluorine was 

located by the resist-air interface rather than in the bulk of the material as seen in Figure 

6.9 [3].  
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Figure 6.9: Illustrates the migration and inclusion of a fluorinated surfactant into the 
resist surface [4] (Courtesy of Dr. M. Lin). 

Several films of two different compositions containing fluorinated silazane were 

prepared and analyzed by XPS. The results are illustrated in Figure 6.10. 
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Figure 6.10: XPS data for a non-covalently bonded surfactant illustrates the lower than 
anticipated F/C ratio. 

While F-Silazane has higher molecular weight and lower vapor pressure than 

previously tested materials, the presence of fluorine was well below the expected ratio in 

all of the samples similar to what Lin et al. discovered. It is believed that, while 

migration may take place of set fluorinated molecules, evaporation of non-covalently 

bound molecules causes the lower than anticipated ratio in the film (shown in Figure 

6.11).  
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Figure 6.11: Migration of surfactant towards the surface. The high vacuum exerted by the 
XPS instrument can cause the evaporation of smaller molecules. 

In order to confirm the migration for non-covalently bound species, it is evident 

that either a low-vacuum method for analysis has to be employed or a completely 

different technology must be used. 

6.2.5 Multiple Imprint Study 

After completing all analytical experiments, the material was tested in an imprint 

study. The study was carried out on an Imprio 100 (Molecular Imprints, Inc.) installed at 

The University of Texas at Austin. Non-patterned 25 mm2 mesa templates were used 

after they had been cleaned and pre-treated with FSAM. Bare silicon substrates were 

cleaned and then coated with BT20 (Brewer Science, USA) as an adhesion-promoter 

layer. Water contact angles were used to verify template surface uniformity. The 

formulations depicted in Table 6.4 were used in these experiments. 
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Table 6.4: Two resist formulations tested in a multiple imprint experiment [5]. 

It is clear that the control formulation caused a significantly faster degradation of 

the FSAM layer on the imprint as the quality of the imprinted images worsened to the 

point that no more imprints could be carried out. However, as Figure 6.12 illustrates, the 

SeRFSAM addition to the resist formulation did not cause the release layer to degrade to 

any noticeable degree. The water contact angle stayed fairly constant above 90°.  

 

Figure 6.12: Confirming F-Silazanes characteristics of replenishing the degraded FSAM 
in a multiple imprint study [5]. A and B are images of SeRFSAM free 
formulation taken after 50 and 80 imprints respectively, whereas C contains 
F-Silazane and was taken after 100 imprints. 

6.3 RESULTS AND CONCLUSIONS 

  F-Silazane shows promise as a candidate for SeRFSAM. It behaves similarly to 

FSAM, but is also miscible and stable in imprint formulations. Although the XPS and 

ATR-IR experiments were inconclusive, it is believed that the silazane undergoes a 

migration towards the air or template interface and minimizes the unfavorable interaction 
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between the fluorinated SeRFSAM and the remainder of the resist components. The 

multiple imprint study demonstrates much slower degradation.  

6.4 FUTURE WORK 

A replenishing material has been demonstrated. However, it has not directly been 

confirmed that migration takes place and that there is a concentration gradient in the bulk 

of the material. Currently, instruments capable of carrying out elemental analysis of a 

surface under ambient conditions are available. Some of these instruments also have the 

ability to etch away at the surface and, if our hypothesis stands true, a gradient could be 

observed. Additionally, a much longer imprint study must also be carried out in order to 

test the capability of the SeRFSAM. The SeRFSAM works well for 100 imprints in 

MonoMat, but should be tested to failure, and the stability in other imprint formulations 

must be verified, especially in DPD formulations. Lastly, as the loading of SeRFSAM is 

fairly low, additives remain in the film after curing and will cause changes in physical 

and chemical properties. Full materials characterization of the imprinted films must be 

carried out in order to determine whether physical and/or chemical properties are altered 

beyond acceptable limits. 
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Appendix A: MALDI of Q8
OSiH 

A.1 MATRIX ASSISTED LASER DESORPTION/IONIZATION OF Q8
OSIH 

 

Figure A.1: MALDI spectra of fully substituted Q8
OSiH. 
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Appendix B: p-Tolyl-POSS X-ray Crystal Analysis 

B.1 CRYSTAL INFORMATION 

Figure B.1: ORTEP diagram of the cube shaped p-tolyl-POSS. 

 

X-ray Experimental for C72H104Si16O20: Crystals grew as colorless, cube shaped 

prisms by precipitating from 1,3-bis(p-tolyl)-1,1,3,3-tetramethyldisiloxane. The data 

crystal had approximate dimensions; 0.24 x 0.22 x 0.16 mm. The data were collected on a 

Nonius Kappa CCD diffractometer using a graphite monochromator with MoKa radiation 

(l = 0.71073 Å). A total of 520 frames of data were collected using w-scans with a scan 

range of 1.2° and a counting time of 74 seconds per frame. The data were collected at 153 

K using an Oxford Cryostream low temperature device. Details of crystal data, data 

collection and structure refinement are listed in Table B.1. Data reduction were 

performed using DENZO-SMN [1]. The structure was solved by direct methods using 

SIR97 [2] and refined by full-matrix least-squares on F2 with anisotropic displacement 

parameters for the non-H atoms using SHELXL-97 [3]. Structure analysis was aided by 

use of the programs PLATON98 [4] and WinGX [5]. The hydrogen atoms were observed 

in a ∆F map and refined with isotropic displacement parameters.   
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The initial unit cell assignment showed the c-axis to be 7.693 Å or ½ the value 

reported here. The cell volume with the 7.693 Å axis is too small to contain the 

octasilicate silane. Solution of the structure resulted in a highly disordered silane that had 

all the substituents of the target molecule. Further analysis of the raw data revealed 

highly diffuse scattering halfway along the 7.693 Å axis, indicating that the true cell 

length should be doubled. The stacking of the molecule and its geometry resulted in 

highly diffuse scattering for hkl reflections where l is odd in the 15.386 Å cell. The 

structure was refined using only those reflections where l is even. The net effect of this 

strategy is that the calculated data completeness is only 50%. 

The function, Σw(|Fo|2 – |Fc|2)2,was minimized, where w = 1/[(s(Fo))2 + 

(0.0543*P)2 + (2.0523*P)] and P = (|Fo|2 + 2|Fc|2)/3. Rw(F2) refined to 0.112, with R(F) 

equal to 0.0434 and a goodness of fit, S, = 1.03. Definitions used for calculating 

R(F),Rw(F2) and the goodness of fit, S, are given below. The data were corrected for 

secondary extinction but no correction was necessary. Neutral atom scattering factors and 

values used to calculate the linear absorption coefficient are from the International Tables 

for X-ray Crystallography (1992) [6]. All figures were generated using SHELXTL/PC 

[7]. Tables of positional and thermal parameters, bond lengths and angles, torsion angles 

and figures are found elsewhere.  

Table B.1: Crystal data and structure refinement for B.1. 

_______________________________________________________________________

_ 
Empirical formula  C72 H104 O20 Si16 

Formula weight  1738.99 

Temperature  153(2) K 

Wavelength  0.71075 Å 
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Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 12.5575(5) Å α= 75.734(2)°. 

 b = 12.7807(5) Å β= 74.746(2)°. 

 c = 15.3862(7) Å γ = 86.369(2)°. 

Volume 2308.92(17) Å3 

Z 1 

Density (calculated) 1.251 Mg/m3 

Absorption coefficient 0.282 mm-1 

F(000) 920 

Crystal size 0.24 x 0.22 x 0.16 mm 

Theta range for data collection 2.35 to 27.45°. 

Index ranges -16<=h<=16, -16<=k<=16, -18<=l<=18 

Reflections collected 9918 

Independent reflections 5237 [R(int) = 0.0226] 

Completeness to theta = 27.45° 49.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00 and 0.93 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5237 / 691 / 421 

Goodness-of-fit on F2 1.030 

Final R indices [I>2sigma(I)] R1 = 0.0434, wR2 = 0.1046 

R indices (all data) R1 = 0.0595, wR2 = 0.1123 

Largest diff. peak and hole 0.376 and -0.285 e.Å-3 
________________________________________________________________________ 
 

Table B.2: Atomic coordinates (x 104) and equivalent isotropic displacement parameters 
(Å2

 x 103) for B.1. U(eq) is defined as one third of the trace of the 
orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________  
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Si1 3228(1) 5462(1) 6257(1) 21(1) 

Si2 4506(1) 3297(1) 6468(1) 21(1) 

Si3 6706(1) 4548(1) 5770(1) 21(1) 

Si4 5430(1) 6715(1) 5559(1) 21(1) 

O1 3646(2) 4261(2) 6637(2) 34(1) 

O2 5731(2) 3703(2) 6360(2) 32(1) 

O3 6275(2) 5754(2) 5800(2) 32(1) 

O4 4190(2) 6316(2) 6104(2) 32(1) 

O9 2937(2) 5556(2) 5287(2) 32(1) 

O10 4455(2) 2968(2) 5537(2) 32(1) 

Si5 1588(4) 5462(3) 8085(3) 26(1) 

O5 2152(2) 5724(3) 6972(2) 34(1) 

C1 2631(4) 5699(4) 8661(3) 40(1) 

C2 1130(5) 4048(4) 8463(5) 40(1) 

C3 453(7) 6449(7) 8224(11) 34(2) 

C4 -547(9) 6209(9) 8891(10) 33(2) 

C5 -1368(10) 6971(8) 8993(11) 39(2) 

C6 -1199(11) 8036(8) 8506(11) 35(2) 

C7 -186(11) 8304(9) 7887(10) 46(3) 

C8 638(10) 7538(8) 7762(10) 39(3) 

C9 -2048(11) 8912(10) 8648(12) 50(3) 

Si6 4530(2) 1653(3) 8302(2) 26(1) 

O6 4230(4) 2266(2) 7301(3) 34(1) 

C10 4300(4) 2665(3) 8995(3) 40(1) 

C11 5958(4) 1193(4) 8038(5) 40(1) 

C12 3494(6) 549(6) 8817(11) 30(2) 

C13 2411(6) 671(7) 8715(9) 29(2) 

C14 1642(6) -154(7) 9099(8) 35(2) 

C15 1917(8) -1154(9) 9603(14) 34(2) 

C16 2998(7) -1323(7) 9627(9) 34(2) 

C17 3772(8) -500(7) 9241(10) 33(2) 

C18 1058(10) -2024(10) 10051(13) 52(3) 

Si7 8445(4) 4466(3) 6883(3) 26(1) 
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O7 7737(2) 4301(3) 6174(2) 34(1) 

C19 7527(4) 4230(5) 8055(3) 40(1) 

C20 9045(5) 5845(4) 6457(5) 40(1) 

C21 9539(6) 3415(7) 6811(10) 23(2) 

C22 9367(9) 2375(7) 7385(10) 31(2) 

C23 10145(10) 1569(8) 7285(10) 36(2) 

C24 11149(11) 1755(9) 6620(12) 38(2) 

C25 11363(9) 2791(8) 6103(11) 42(2) 

C26 10603(9) 3618(9) 6225(11) 38(2) 

C27 11991(11) 874(11) 6470(12) 61(4) 

Si8 5591(2) 8412(3) 6649(2) 26(1) 

O8 5714(3) 7746(2) 5841(2) 34(1) 

C28 5834(7) 7518(4) 7679(4) 40(1) 

C29 4164(4) 8982(4) 6825(5) 40(1) 

C30 6643(6) 9506(6) 6137(10) 28(2) 

C31 7754(7) 9297(8) 6127(9) 38(3) 

C32 8556(7) 10081(8) 5742(9) 39(2) 

C33 8293(9) 11129(9) 5333(15) 37(2) 

C34 7239(8) 11312(8) 5233(10) 41(2) 

C35 6422(7) 10529(8) 5624(10) 38(2) 

C36 9145(11) 12010(9) 4957(12) 50(3) 

___________________________________________________________________________________ 
 

Table B.3: Bond lengths [Å] and angles [°] for B.1. 

______________________________________________________________________________________

__  

Si1-O5  1.579(3) 

Si1-O9  1.603(2) 

Si1-O1  1.609(2) 

Si1-O4  1.611(2) 

Si2-O6  1.578(4) 

Si2-O10  1.606(2) 

Si2-O2  1.610(2) 

Si2-O1  1.610(2) 

Si3-O7  1.562(3) 

Si3-O9#1  1.605(3) 

Si3-O3  1.609(2) 

Si3-O2  1.609(2) 
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Si4-O8  1.574(3) 

Si4-O10#1  1.604(3) 

Si4-O3  1.609(2) 

Si4-O4  1.609(2) 

O9-Si3#1  1.605(3) 

O10-Si4#1  1.604(3) 

Si5-O5  1.630(5) 

Si5-C2  1.837(5) 

Si5-C1  1.840(5) 

Si5-C3  1.848(5) 

C1-H1A  0.98 

C1-H1B  0.98 

C1-H1C  0.98 

C2-H2A  0.98 

C2-H2B  0.98 

C2-H2C  0.98 

C3-C4  1.394(7) 

C3-C8  1.400(7) 

C4-C5  1.377(7) 

C4-H4  0.95 

C5-C6  1.382(7) 

C5-H5  0.95 

C6-C7  1.378(7) 

C6-C9  1.511(6) 

C7-C8  1.388(7) 

C7-H7  0.95 

C8-H8  0.95 

C9-H9A  0.98 

C9-H9B  0.98 

C9-H9C  0.98 

Si6-O6  1.674(4) 

Si6-C11  1.824(4) 

Si6-C10  1.834(5) 

Si6-C12  1.858(5) 

C10-H10A  0.98 

C10-H10B  0.98 

C10-H10C  0.98 

C11-H11A  0.98 

C11-H11B  0.98 

C11-H11C  0.98 

C12-C13  1.404(6) 

C12-C17  1.405(5) 

C13-C14  1.384(6) 

C13-H13  0.95 

C14-C15  1.397(6) 

C14-H14  0.95 

C15-C16  1.369(6) 

C15-C18  1.503(6) 

C16-C17  1.386(6) 

C16-H16  0.95 

C17-H17  0.95 

C18-H18A  0.98 

C18-H18B  0.98 

C18-H18C  0.98 

Si7-O7  1.635(4) 

Si7-C19  1.830(5) 

Si7-C20  1.856(5) 

Si7-C21  1.861(4) 

C19-H19A  0.98 

C19-H19B  0.98 

C19-H19C  0.98 

C20-H20A  0.98 

C20-H20B  0.98 

C20-H20C  0.98 

C21-C22  1.396(7) 

C21-C26  1.400(7) 
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C22-C23  1.382(7) 

C22-H22  0.95 

C23-C24  1.390(7) 

C23-H23  0.95 

C24-C25  1.368(7) 

C24-C27  1.512(6) 

C25-C26  1.393(7) 

C25-H25  0.95 

C26-H26  0.95 

C27-H27A  0.98 

C27-H27B  0.98 

C27-H27C  0.98 

Si8-O8  1.642(4) 

Si8-C28  1.796(5) 

Si8-C30  1.862(5) 

Si8-C29  1.869(4) 

C28-H28A  0.98 

C28-H28B  0.98 

C28-H28C  0.98 

C29-H29A  0.98 

C29-H29B  0.98 

C29-H29C  0.98 

C30-C31  1.400(6) 

C30-C35  1.404(6) 

C31-C32  1.375(6) 

C31-H31  0.95 

C32-C33  1.391(6) 

C32-H32  0.95 

C33-C34  1.371(6) 

C33-C36  1.501(6) 

C34-C35  1.388(6) 

C34-H34  0.95 

C35-H35  0.95 

C36-H36A  0.98 

C36-H36B  0.98 

C36-H36C  0.98 

O5-Si1-O9 108.21(15) 

O5-Si1-O1 109.84(16) 

O9-Si1-O1 110.19(14) 

O5-Si1-O4 110.32(15) 

O9-Si1-O4 108.85(14) 

O1-Si1-O4 109.40(14) 

O6-Si2-O10 108.49(16) 

O6-Si2-O2 108.77(19) 

O10-Si2-O2 109.56(14) 

O6-Si2-O1 111.62(17) 

O10-Si2-O1 109.35(14) 

O2-Si2-O1 109.03(14) 

O7-Si3-O9#1 108.23(15) 

O7-Si3-O3 110.05(16) 

O9#1-Si3-O3 109.37(14) 

O7-Si3-O2 110.26(15) 

O9#1-Si3-O2 109.68(14) 

O3-Si3-O2 109.24(14) 

O8-Si4-O10#1 107.79(14) 

O8-Si4-O3 110.15(14) 

O10#1-Si4-O3 109.51(14) 

O8-Si4-O4 110.52(15) 

O10#1-Si4-O4 109.75(14) 

O3-Si4-O4 109.10(14) 

Si1-O1-Si2 148.53(18) 

Si3-O2-Si2 146.47(17) 

Si3-O3-Si4 148.96(17) 

Si4-O4-Si1 146.55(17) 

Si1-O9-Si3#1 150.26(18) 

Si4#1-O10-Si2 150.23(17) 
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O5-Si5-C2 108.0(3) 

O5-Si5-C1 108.0(3) 

C2-Si5-C1 111.4(3) 

O5-Si5-C3 104.5(5) 

C2-Si5-C3 114.1(4) 

C1-Si5-C3 110.4(6) 

Si1-O5-Si5 140.3(3) 

Si5-C1-H1A 109.5 

Si5-C1-H1B 109.5 

H1A-C1-H1B 109.5 

Si5-C1-H1C 109.5 

H1A-C1-H1C 109.5 

H1B-C1-H1C 109.5 

Si5-C2-H2A 109.5 

Si5-C2-H2B 109.5 

H2A-C2-H2B 109.5 

Si5-C2-H2C 109.5 

H2A-C2-H2C 109.5 

H2B-C2-H2C 109.5 

C4-C3-C8 116.1(6) 

C4-C3-Si5 122.9(6) 

C8-C3-Si5 120.1(6) 

C5-C4-C3 121.5(7) 

C5-C4-H4 119.2 

C3-C4-H4 119.2 

C4-C5-C6 121.6(7) 

C4-C5-H5 119.2 

C6-C5-H5 119.2 

C7-C6-C5 117.4(6) 

C7-C6-C9 119.3(8) 

C5-C6-C9 123.3(8) 

C6-C7-C8 121.5(7) 

C6-C7-H7 119.3 

C8-C7-H7 119.3 

C7-C8-C3 121.2(7) 

C7-C8-H8 119.4 

C3-C8-H8 119.4 

C6-C9-H9A 109.5 

C6-C9-H9B 109.5 

H9A-C9-H9B 109.5 

C6-C9-H9C 109.5 

H9A-C9-H9C 109.5 

H9B-C9-H9C 109.5 

O6-Si6-C11 108.1(3) 

O6-Si6-C10 105.9(3) 

C11-Si6-C10 113.0(3) 

O6-Si6-C12 103.5(4) 

C11-Si6-C12 114.3(4) 

C10-Si6-C12 111.1(5) 

Si2-O6-Si6 142.7(3) 

Si6-C10-H10A 109.5 

Si6-C10-H10B 109.5 

H10A-C10-H10B 109.5 

Si6-C10-H10C 109.5 

H10A-C10-H10C 109.5 

H10B-C10-H10C 109.5 

Si6-C11-H11A 109.5 

Si6-C11-H11B 109.5 

H11A-C11-H11B 109.5 

Si6-C11-H11C 109.5 

H11A-C11-H11C 109.5 

H11B-C11-H11C 109.5 

C13-C12-C17 115.1(5) 

C13-C12-Si6 122.2(5) 

C17-C12-Si6 122.3(5) 

C14-C13-C12 122.0(6) 
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C14-C13-H13 119.0 

C12-C13-H13 119.0 

C13-C14-C15 121.0(6) 

C13-C14-H14 119.5 

C15-C14-H14 119.5 

C16-C15-C14 117.7(5) 

C16-C15-C18 122.0(7) 

C14-C15-C18 120.3(7) 

C15-C16-C17 121.2(6) 

C15-C16-H16 119.4 

C17-C16-H16 119.4 

C16-C17-C12 122.3(6) 

C16-C17-H17 118.8 

C12-C17-H17 118.8 

C15-C18-H18A 109.5 

C15-C18-H18B 109.5 

H18A-C18-H18B 109.5 

C15-C18-H18C 109.5 

H18A-C18-H18C 109.5 

H18B-C18-H18C 109.5 

O7-Si7-C19 108.5(3) 

O7-Si7-C20 108.0(3) 

C19-Si7-C20 113.2(3) 

O7-Si7-C21 104.5(5) 

C19-Si7-C21 110.8(4) 

C20-Si7-C21 111.4(4) 

Si3-O7-Si7 150.8(2) 

Si7-C19-H19A 109.5 

Si7-C19-H19B 109.5 

H19A-C19-H19B 109.5 

Si7-C19-H19C 109.5 

H19A-C19-H19C 109.5 

H19B-C19-H19C 109.5 

Si7-C20-H20A 109.5 

Si7-C20-H20B 109.5 

H20A-C20-H20B 109.5 

Si7-C20-H20C 109.5 

H20A-C20-H20C 109.5 

H20B-C20-H20C 109.5 

C22-C21-C26 115.2(5) 

C22-C21-Si7 121.6(6) 

C26-C21-Si7 123.1(6) 

C23-C22-C21 121.7(7) 

C23-C22-H22 119.1 

C21-C22-H22 119.1 

C22-C23-C24 121.8(7) 

C22-C23-H23 119.1 

C24-C23-H23 119.1 

C25-C24-C23 116.9(6) 

C25-C24-C27 120.4(8) 

C23-C24-C27 122.7(8) 

C24-C25-C26 121.6(7) 

C24-C25-H25 119.2 

C26-C25-H25 119.2 

C25-C26-C21 121.8(7) 

C25-C26-H26 119.1 

C21-C26-H26 119.1 

C24-C27-H27A 109.5 

C24-C27-H27B 109.5 

H27A-C27-H27B 109.5 

C24-C27-H27C 109.5 

H27A-C27-H27C 109.5 

H27B-C27-H27C 109.5 

O8-Si8-C28 109.8(3) 

O8-Si8-C30 105.0(5) 

C28-Si8-C30 112.0(5) 
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O8-Si8-C29 105.3(3) 

C28-Si8-C29 113.3(3) 

C30-Si8-C29 110.9(3) 

Si4-O8-Si8 148.6(2) 

Si8-C28-H28A 109.5 

Si8-C28-H28B 109.5 

H28A-C28-H28B 109.5 

Si8-C28-H28C 109.5 

H28A-C28-H28C 109.5 

H28B-C28-H28C 109.5 

Si8-C29-H29A 109.5 

Si8-C29-H29B 109.5 

H29A-C29-H29B 109.5 

Si8-C29-H29C 109.5 

H29A-C29-H29C 109.5 

H29B-C29-H29C 109.5 

C31-C30-C35 115.5(5) 

C31-C30-Si8 120.8(5) 

C35-C30-Si8 123.0(6) 

C32-C31-C30 122.3(6) 

C32-C31-H31 118.8 

C30-C31-H31 118.8 

C31-C32-C33 120.9(6) 

C31-C32-H32 119.6 

C33-C32-H32 119.6 

C34-C33-C32 117.3(6) 

C34-C33-C36 121.0(7) 

C32-C33-C36 121.6(7) 

C33-C34-C35 121.8(6) 

C33-C34-H34 119.1 

C35-C34-H34 119.1 

C34-C35-C30 121.2(6) 

C34-C35-H35 119.4 

C30-C35-H35 119.4 

C33-C36-H36A 109.5 

C33-C36-H36B 109.5 

H36A-C36-H36B 109.5 

C33-C36-H36C 109.5 

H36A-C36-H36C 109.5 

H36B-C36-H36C 109.5 

______________________________________________________________________________________

__ 

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+1  

Table B.4: Anisotropic displacement parameters (Å2 x 103) for A.1. The anisotropic 
displacement factor exponent takes the form: -2π2 [h2 a*2U11 + ... + 2 h k a* 
b* U12] 

______________________________________________________________________________  

 U
11

 U
22

  U
33

 U
23

 U
13

 U
12

 

______________________________________________________________________________  

Si1 20(1)  19(1) 23(1)  -5(1) -2(1)  1(1) 

Si2 22(1)  17(1) 23(1)  -1(1) -4(1)  1(1) 
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Si3 20(1)  21(1) 24(1)  -4(1) -9(1)  1(1) 

Si4 22(1)  17(1) 27(1)  -8(1) -7(1)  0(1) 

O1 34(1)  24(1) 36(1)  -4(1) -2(1)  8(1) 

O2 26(1)  32(1) 33(1)  1(1) -7(1)  -6(1) 

O3 31(1)  25(1) 43(2)  -10(1) -16(1)  6(1) 

O4 26(1)  31(1) 38(1)  -13(1) -3(1)  -5(1) 

O9 28(1)  42(2) 27(1)  -10(1) -6(1)  0(1) 

O10 39(2)  27(1) 28(1)  -6(1) -9(1)  0(1) 

Si5 25(1)  26(1) 28(1)  -7(1) -6(1)  -1(1) 

O5 34(1)  31(1) 37(1)  -7(1) -10(1)  2(1) 

C1 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C2 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C3 34(4)  32(3) 34(4)  -1(3) -11(3)  -9(3) 

C4 26(3)  31(3) 33(4)  4(2) -2(3)  5(2) 

C5 36(4)  37(4) 35(3)  2(3) -3(2)  1(3) 

C6 33(3)  38(4) 30(4)  -5(3) -6(2)  11(3) 

C7 54(4)  35(4) 40(5)  5(3) -9(3)  3(3) 

C8 30(3)  42(4) 37(5)  -4(3) 0(3)  6(3) 

C9 56(5)  46(4) 48(4)  -12(3) -17(3)  13(3) 

Si6 25(1)  26(1) 28(1)  -7(1) -6(1)  -1(1) 

O6 34(1)  31(1) 37(1)  -7(1) -10(1)  2(1) 

C10 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C11 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C12 29(3)  31(4) 27(3)  -3(3) -8(3)  7(2) 

C13 30(3)  25(3) 28(3)  -2(2) -2(3)  -4(2) 

C14 28(3)  42(3) 33(4)  -8(2) -4(3)  1(2) 

C15 40(4)  29(3) 29(4)  -2(2) -3(4)  -7(3) 

C16 35(3)  26(3) 32(4)  3(2) -1(3)  2(2) 

C17 29(3)  25(3) 35(4)  2(2) 2(3)  -2(2) 

C18 51(5)  55(6) 49(5)  -10(4) -15(4)  -7(3) 

Si7 25(1)  26(1) 28(1)  -7(1) -6(1)  -1(1) 

O7 34(1)  31(1) 37(1)  -7(1) -10(1)  2(1) 
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C19 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C20 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C21 15(3)  27(3) 28(4)  -12(3) -6(2)  8(2) 

C22 30(3)  30(3) 25(3)  3(2) -5(2)  -2(3) 

C23 36(3)  30(3) 32(4)  3(2) -5(2)  8(2) 

C24 37(4)  37(4) 39(5)  -3(3) -14(3)  7(3) 

C25 21(3)  48(5) 47(5)  -6(4) 3(3)  10(3) 

C26 31(3)  38(4) 39(4)  4(3) -12(3)  -2(3) 

C27 46(5)  69(6) 65(7)  -21(5) -14(4)  36(5) 

Si8 25(1)  26(1) 28(1)  -7(1) -6(1)  -1(1) 

O8 34(1)  31(1) 37(1)  -7(1) -10(1)  2(1) 

C28 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C29 41(1)  38(1) 38(1)  -7(1) -8(1)  0(1) 

C30 39(4)  20(3) 26(3)  -7(2) -4(3)  -11(3) 

C31 36(3)  31(3) 38(5)  -1(3) -5(3)  9(2) 

C32 30(3)  39(3) 40(4)  -4(3) 1(3)  -3(2) 

C33 37(4)  40(4) 32(4)  -10(3) -4(4)  -8(3) 

C34 46(5)  30(3) 35(4)  2(2) 1(3)  -1(3) 

C35 37(4)  42(4) 30(4)  -1(2) -8(3)  7(3) 

C36 61(5)  36(4) 48(5)  3(4) -13(5)  -31(4) 

___________________________________________________________________________________ 
 

Table B.5: Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2x103) 
for B.1. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H1A 3255 5209 8539 59 

H1B 2304 5566 9331 59 

H1C 2890 6448 8420 59 
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H2A 558 3953 8161 59 

H2B 829 3858 9137 59 

H2C 1758 3579 8291 59 

H4 -666 5504 9285 40 

H5 -2067 6759 9409 47 

H7 -49 9028 7538 55 

H8 1341 7756 7356 47 

H9A -1814 9379 8983 75 

H9B -2762 8582 9010 75 

H9C -2120 9343 8044 75 

H10A 4824 3261 8687 59 

H10B 4408 2332 9612 59 

H10C 3545 2941 9058 59 

H11A 6019 607 7718 59 

H11B 6187 929 8615 59 

H11C 6436 1794 7637 59 

H13 2199 1341 8374 35 

H14 916 -39 9017 42 

H16 3222 -2018 9913 41 

H17 4516 -650 9264 40 

H18A 1417 -2709 10262 77 

H18B 662 -2102 9601 77 

H18C 536 -1829 10584 77 

H19A 6937 4770 8069 59 

H19B 7949 4288 8494 59 

H19C 7204 3506 8228 59 

H20A 9571 5906 5850 59 

H20B 9427 5983 6897 59 

H20C 8454 6376 6399 59 

H22 8697 2218 7856 37 

H23 9989 869 7682 43 

H25 12047 2950 5650 51 
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H26 10811 4339 5901 45 

H27A 12065 740 5857 91 

H27B 11748 211 6949 91 

H27C 12705 1101 6508 91 

H28A 5325 6904 7880 59 

H28B 5713 7907 8172 59 

H28C 6597 7257 7548 59 

H29A 4090 9483 6248 59 

H29B 4025 9368 7321 59 

H29C 3627 8394 6997 59 

H31 7961 8587 6396 45 

H32 9299 9906 5755 47 

H34 7063 11995 4886 49 

H35 5700 10687 5542 46 

H36A 9177 12331 4303 74 

H36B 9867 11708 5013 74 

H36C 8946 12566 5311 74 

_______________________________________________________________________________ 

Table B.6: Torsion angles [°] for B.1. 

______________________________________________________________________________________  

O5-Si1-O1-Si2 176.2(3) 

O9-Si1-O1-Si2 57.1(4) 

O4-Si1-O1-Si2 -62.6(4) 

O6-Si2-O1-Si1 -177.2(4) 

O10-Si2-O1-Si1 -57.2(4) 

O2-Si2-O1-Si1 62.6(4) 

O7-Si3-O2-Si2 -177.0(3) 

O9#1-Si3-O2-Si2 -57.9(4) 

O3-Si3-O2-Si2 62.0(4) 

O6-Si2-O2-Si3 176.0(3) 

O10-Si2-O2-Si3 57.5(4) 

O1-Si2-O2-Si3 -62.1(4) 

O7-Si3-O3-Si4 176.5(3) 

O9#1-Si3-O3-Si4 57.7(4) 

O2-Si3-O3-Si4 -62.3(4) 

O8-Si4-O3-Si3 -176.4(3) 

O10#1-Si4-O3-Si3 -58.1(4) 

O4-Si4-O3-Si3 62.1(4) 

O8-Si4-O4-Si1 177.5(3) 

O10#1-Si4-O4-Si1 58.8(4) 

O3-Si4-O4-Si1 -61.2(4) 

O5-Si1-O4-Si4 -177.5(3) 
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O9-Si1-O4-Si4 -58.9(4) 

O1-Si1-O4-Si4 61.6(4) 

O5-Si1-O9-Si3#1 -177.1(4) 

O1-Si1-O9-Si3#1 -57.0(4) 

O4-Si1-O9-Si3#1 63.0(4) 

O6-Si2-O10-Si4#1 -179.6(4) 

O2-Si2-O10-Si4#1 -61.0(4) 

O1-Si2-O10-Si4#1 58.4(4) 

O9-Si1-O5-Si5 153.6(4) 

O1-Si1-O5-Si5 33.3(4) 

O4-Si1-O5-Si5 -87.4(4) 

C2-Si5-O5-Si1 -71.8(5) 

C1-Si5-O5-Si1 48.8(5) 

C3-Si5-O5-Si1 166.4(6) 

O5-Si5-C3-C4 144.9(15) 

C2-Si5-C3-C4 27.2(18) 

C1-Si5-C3-C4 -99.2(15) 

O5-Si5-C3-C8 -46.3(16) 

C2-Si5-C3-C8 -164.0(13) 

C1-Si5-C3-C8 69.6(16) 

C8-C3-C4-C5 9(3) 

Si5-C3-C4-C5 178.3(15) 

C3-C4-C5-C6 -7(3) 

C4-C5-C6-C7 2(3) 

C4-C5-C6-C9 -175.4(19) 

C5-C6-C7-C8 -1(3) 

C9-C6-C7-C8 177.1(18) 

C6-C7-C8-C3 4(3) 

C4-C3-C8-C7 -8(3) 

Si5-C3-C8-C7 -177.1(14) 

O10-Si2-O6-Si6 145.9(4) 

O2-Si2-O6-Si6 26.8(5) 

O1-Si2-O6-Si6 -93.5(5) 

C11-Si6-O6-Si2 -67.8(5) 

C10-Si6-O6-Si2 53.5(5) 

C12-Si6-O6-Si2 170.5(6) 

O6-Si6-C12-C13 -35.5(14) 

C11-Si6-C12-C13 -152.9(11) 

C10-Si6-C12-C13 77.8(13) 

O6-Si6-C12-C17 137.1(13) 

C11-Si6-C12-C17 19.7(15) 

C10-Si6-C12-C17 -109.7(13) 

C17-C12-C13-C14 6.8(19) 

Si6-C12-C13-C14 179.9(10) 

C12-C13-C14-C15 -0.3(19) 

C13-C14-C15-C16 -6(2) 

C13-C14-C15-C18 177.2(17) 

C14-C15-C16-C17 6(2) 

C18-C15-C16-C17 -177.5(18) 

C15-C16-C17-C12 1(2) 

C13-C12-C17-C16 -7(2) 

Si6-C12-C17-C16 179.9(12) 

O9#1-Si3-O7-Si7 150.6(5) 

O3-Si3-O7-Si7 31.2(6) 

O2-Si3-O7-Si7 -89.4(6) 

C19-Si7-O7-Si3 51.1(6) 

C20-Si7-O7-Si3 -71.9(6) 

C21-Si7-O7-Si3 169.4(5) 

O7-Si7-C21-C22 -88.4(14) 

C19-Si7-C21-C22 28.3(15) 

C20-Si7-C21-C22 155.2(12) 

O7-Si7-C21-C26 95.3(14) 

C19-Si7-C21-C26 -148.0(13) 

C20-Si7-C21-C26 -21.1(16) 
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C26-C21-C22-C23 -9(2) 

Si7-C21-C22-C23 174.9(13) 

C21-C22-C23-C24 1(2) 

C22-C23-C24-C25 4(3) 

C22-C23-C24-C27 -177.3(19) 

C23-C24-C25-C26 -1(3) 

C27-C24-C25-C26 179.9(19) 

C24-C25-C26-C21 -7(3) 

C22-C21-C26-C25 11(2) 

Si7-C21-C26-C25 -172.3(14) 

O10#1-Si4-O8-Si8 156.4(4) 

O3-Si4-O8-Si8 -84.2(4) 

O4-Si4-O8-Si8 36.5(5) 

C28-Si8-O8-Si4 46.9(5) 

C30-Si8-O8-Si4 167.5(5) 

C29-Si8-O8-Si4 -75.4(5) 

O8-Si8-C30-C31 -80.4(12) 

C28-Si8-C30-C31 38.7(14) 

C29-Si8-C30-C31 166.3(11) 

O8-Si8-C30-C35 89.9(13) 

C28-Si8-C30-C35 -151.1(12) 

C29-Si8-C30-C35 -23.4(15) 

C35-C30-C31-C32 8(2) 

Si8-C30-C31-C32 179.0(11) 

C30-C31-C32-C33 -1(2) 

C31-C32-C33-C34 -8(2) 

C31-C32-C33-C36 176.5(17) 

C32-C33-C34-C35 8(2) 

C36-C33-C34-C35 -176.0(18) 

C33-C34-C35-C30 0(2) 

C31-C30-C35-C34 -8(2) 

Si8-C30-C35-C34 -178.3(11) 

______________________________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1 
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Appendix C: Keithley 4200 Settings 

 
Site Coordinate 0,0         
Last Executed 03/31/2011 12:56:18       
Library Name KI590ulib       
Module Name CvSweep590       
Return Type INT         
            
Parameter Name In/Out Type Value     
CabCompFile Input CHAR_P c:\\S4200\\kiuser\\usrlib\\   
      ki590ulib\\misc\\ki590CableComp.dat 
InstIdStr Input CHAR_P CMTR1     
InputPin Input INT 0     
OutPin Input INT 0     
OffsetCorrect Input INT 1     
Waveform Input INT 1     
FirstBias Input DOUBLE 5.000000e+000     
LastBias Input DOUBLE -5.000000e+000     
StepV Input DOUBLE -1.000000e-001     
Frequency Input INT 0     
DefaultBias Input DOUBLE 0     
StartTime Input DOUBLE 2.000000e+000     
StepTime Input DOUBLE 1.000000e-001     
Range Input DOUBLE 2.000000e-009     
Model Input INT 0     
Filter Input INT 1     
ReadingRate Input INT 3     
C Output DBL_ARRAY N/A     
Csize Input INT 1350     
V Output DBL_ARRAY N/A     
Vsize Input INT 1350     
G_or_R Output DBL_ARRAY N/A     
G_or_Rsize Input INT 1350     
T Output DBL_ARRAY N/A     
Tsize Input INT 1350     

Table C.1: CV instrument settings [8-10]. 
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Glossary 

AFM – Atomic Force Microscopy (Microscope) 

AP – Adhesion Promoter 

CAR – Chemically Amplified Resist 

CMOS – Complimentary metal-oxide-semiconductor 

CMP – Chemical Mechanical Polishing 

CoO – Cost of Ownership 

CV – Capacitance vs Volt 

CVD – Chemical Vapor Deposition 

DCM – Dichloromethane 

DMF – Dimethyl Formamide 

DPD – Directly Patternable Dielectric 

DUV – Deep UV 

EUV – Extreme Ultra Violet 

FSAM – Fluorinated Self Assembled Monolayer 

HDD – Hard Disk Drive 

HRMS – High Resolution Mass Spectrometry 

IC – Interconnect 

IFM – Interfacial Force Microscopy 

ILD – Interlayer Dielectric 

IR – Infra Red 

LAH – Lithium Aluminum Hydride 

MER – The University of Texas Microelectronics Research Center 

MIM – Metal-Insulator-Metal 
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NGL – Next Generation Lithography 

NIL – Nanoimprint Lithography 

NMR – Nuclear Magnetic Resonance Spectroscopy 

PAG – Photoacid Generator 

PBG – Photobase Generator 

PI – Photo Initiator 

PMMA – Polymethyl Methacrylate 

POSS – Polyhedral Oligomeric Silsesquioxane 

PS – Polystyrene 

PS2V – Vinyl Terminated  

PVD – Physical Vapor Deposition 

Q8 – Octakis(dimethylsilyloxy)silsesquioxane 

RD – Reactive Diluent 

SAM – Self Assembling Monolayer 

SAWS – Surface Acoustic Wave Spectroscopy 

SEM – Scanning Electron Microscope 

SFIL – Step and Flash Imprint Lithography 

SFIL-R – Reverse Tone SFIL 

SeRFSAM – Self Replenishing Fluorinated Self Assembling Monolayer 

TAMU MCF – Texas A&M Material Characterization Facility 

THF - Tetrahydrofuran 

UV – Ultra Violet 
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