Investigation of Possible Hydrogen Shielding Effect on Epithermal Neutron Activation Analysis

--A computation and experimental approach

Yang "Alex" Zhou

Adviser: Dr. Erich Schneider Dr. Sheldon Landsberger

University of Texas at Austin May 6, 2010

Introduction

Neutron activation is a popular analytical technique used to determine the presence and concentration of certain elements. It has several variations, including thermal neutron, epithermal neutron, fast neutron activation, etc, for different applications; all of those variations are non-destructive, and sensitive to small quantity. While trying to determine the concentration of CI and Br in the light water solution, Dr. Landsberger's team found the epithermal neutron activation analysis results were 25% lower than the conventional chemical method. They were not able to determine the cause of such discrepancy. This study was motivated to re-examine such discrepancy, and to study its possible causes. Furthermore, the study tries to determine if such discrepancy, if it exists, was linked with thermal neutron cut off or hydrogen absorption of neutrons.

A computer simulation using the Monte Carlo radiation transport software MCNPX was developed to radiate sample CI & Br solutions of known mass concentrations in a simulated TRIGA reactor core at 500 KW steady state power. [1] The neutron activation rate of Br, CI at each concentration was then calculated. Such procedure was then repeated for heavy water solutions. Finally, a cadmium shield was added to eliminate thermal neutrons; all samples were tested again using epithermal neutron activation. The actual neutron activation experiment was also carried out in the University of Texas's TRIGA Mark II reactor. A total of 40 samples of Br & CI solution (with and without Cd, in light water and in heavy water) were irradiated in the reactor at 500 KW steady state power.

Background and Theory

Neutron activation analysis utilizes a neutron source to bombard targeted elements with neutron flux; once such element absorbs a neutron, it is activated to an isotope of the same element—its proton number remains unchanged—which is usually radioactive. Those activation products then would decay with specific gamma emissions. By studying their emission spectra, one can identify the presence of elements by matching characteristic peaks, and estimate element concentration through counting the number of emissions. [2]

Figure 1, illustration of neutron activation reaction, the (n, γ) reaction <u>http://archaeometry.missouri.edu/naa_overview.html</u>

The neutrons used for neutron activation analysis usually have low kinetic energies, and are classified as thermal neutron (~1ev) and epithermal neutron (1ev~1Mev) for the higher neutron cross-section at those energy levels. As one can observe from figures 2~3 below, in the thermal neutron region from 0 to about 1 ev, all Cl, Br, and Cd have a high thermal neutron cross-section; in the epithermal region from 1ev to 1Mev, their cross sections go down and exhibit much resonance before they finally enter the fast neutron region with low cross-sections.

Figure 2, neutron activation cross-section spectrum for chlorine-35

Figure 3, neutron activation cross-section spectrum for bromine-81

Figure 4, neutron activation cross-section spectrum for cadmium-113

Note the lines separate neutron cross sections in all three figures into thermal neutron and epithermal neutron regions. Also note the activation cross section of Br is about 1 order magnitude lower than that of Cl cross thermal and epithermal region.

This contrast between thermal neutron and epithermal neutron cross section is especially visible in cadmium, as seen in figure 4, with its thermal neutron cross section about 3 orders magnitude higher than those of CI and Br; in epithermal neutron region, Cd's cross-section drops to about the same level as CI and Br.

Because of the interfering interactions with other elements in the thermal neutron region, epithermal neutrons are sometimes preferred for select-irradiation to enhance the desired activation rate of targeting elements. [3], [4] In this case, cadmium shielding is usually used to eliminate thermal neutron from the volume containing the testing specimen due to cadmium's very high thermal neutron cross sections

Various causes for inaccuracy in (thermal and epithermal) neutron activation analysis have been reported, such as spectrum peak area distortion, interfering isotopes, the irregular shape of epithermal neutron distribution in the reactor, and hydrogen shielding. [4], [5], [6], [7] However, spectrum peak area distortion and irregular epithermal neutron distribution from the reactor are unlikely in the well-calibrated neutron activation facility at UT TRIGA reactor, as corrections for these had been applied. Interfering isotopic activation due to higher energy neutron should also be minimal in the epithermal neutron activation experiment. [6], [7], [8], [9]

Given the abundance of hydrogen in the sample and its large neutron cross section, hydrogen shielding appeared to be possible. As shown in figure 5 and 6, the total cross sections for hydrogen in thermal and epithermal neutron region is comparable if not higher than the cross sections for CI and Br. The neutron cross section of deuterium, on the other hand, is roughly one order of magnitude lower across the same energy spectrum.

This study compares simulated activation rates of CI and Br in both light water and heavy water solutions at 5 different concentrations (0.001%, 0.01%, 0.1%, 1%, 10%). Experiments were also conducted to verify the computational results. These results would determine if hydrogen shielding indeed was responsible for the aberrant experimental result in the epithermal neutron activation analysis.

Figure 5, total neutron cross section spectrum for hydrogen.

Figure 6, total neutron cross section spectrum for Deuterium.

Computer Simulation Methodology

To simulate the radiation field in the UT TRIGA reactor, the Monte Carlo radiation transport software MCNPX code was used. [1] An existing deck developed by Braisted provided the base model of the geometry and material compositions for the UT TRIGA reactor. [10] Figures 7 and 8 below show the geometric structure of the deck as plotted in the MCNP visual editor. The modeled reactor core is a 1.5 m tall, 1.4 m diameter cylinder submerged in water (pink areas in the figure). The U-Zr-H fuel pins (light blue tall cylinders) are arranged in a hexagonal cell lattice in the center of the reactor core, with four control rods (three orange and one purple cylinder) situated in the middle. The testing sample will be loaded in the reactor for neutron activation at spots indicated by the arrows in figures 7 and 8.

Figure 7, Side view of the UT TRIGA reactor from the existing MCNPX deck. Note, the arrow is pointed at the sample location in the reactor.

Figure 8, Top view of the UT TRIGA reactor from the existing MCNPX deck. Note, the arrow is pointed at the sample location in the reactor.

The radiation level of the TRIGA reactor was estimated using the criticality calculation feature of MCNPX. This so-called K-code calculation obtains the multiplication factor Keff by tracking 10000 neutrons per generation for 60 generations. The initial guess for Keff is set to 1.0; the results of the neutrons and the Keff of the first 30 generations are discarded as the fission source must converge to its fundamental eigenmode. For better statistical results of the sample region in the much larger reactor core, more tracking particles and generations would be preferred. However, excessive computational resources would be required that way. The simulation of 10,000 particles and 60 generations took 20 minutes per run on an Intel Pentium 4 HT 3.00GHz computer.

Upon first execution, the K-code calculation revealed a slightly supercritical system with Keff= $1.02 \sim 1.03$. The TRIGA model was then modified to lower the four control rods each by about 10 cm to reach criticality. Subsequent K-code calculation showed a critical system with Keff = 1.000 + -0.001.

Because the MCNPX simulation generates the neutron flux distribution of a steady state reactor at random power level, the actual neutron flux of TRIGA reactor at 500 KW

steady state has to be calculated using a power scale factor. To determine the power scale factor, the power output of the simulated critical system was estimated with two MCNPX building tallies F4 and F7. Using F4 tally option 2, which tracked fission neutron flux, the average fission rate density of a single fuel pin was found to be 1.045E-3 fissions per cubic centimeter per second. The volume of each fuel pin was found to be 384.96 cm³ and the reactor core holds 98 fuel pins.

Average fission rate = $1.045 \text{ e} - 3 \frac{fissions}{sec.* \text{ cm}^3} * 384.96 \text{ cm}^3 * 98 \text{ fuel pins}$ = $39.42 \frac{fissions}{sec}$

Average fission energy output = 39.42 fissions/sec * 200 MeV / fission * 1.602e - 13 J / MeV = 1.3 e - 9 W

This number was double-checked by using F7 tally, which tracked average fission energy deposition of each fuel cell. Since samples would be irradiated at a steady state power of 500 Kilowatts, a multiplier was calculated.

Energy Scale factor = $\frac{500,000 W}{1.3 e} = 9 W = 4.345 e 14$

This multiplier would be used to adjust the results of all subsequent MCNPX tallies so that they corresponded to the radiation field intensity at 500 kW of fission power.

The samples, which consisted of chlorine and bromine solution of differing concentration in a polyethylene vial in each trial, were then developed using MCNPX. The cylindrical vial is 1.6 cm tall, 0.5 cm ID, 0.55 cm OD. Inside, NaCl and NaBr solution of 0.001%, 0.01%, 0.1%, 1%, and 10% in both water and heavy water (D_2O) were prepared. They were loaded in the sample holder as marked in figures 7, 8 and 9.

Figure 9, the polyethylene vial (the thin blue layer indicated by the arrow) is emerged in water. It held desired testing material chlorine and bromine solutions of different concentrations inside.

The neutron activation rate of each specimen was obtained using an F4 tally and scaled up with power scale factor and element number density. See table A in Appendix for the calculation and the complete list of number density values for various elements in different specimen. The resulting activation rate density of samples was in units of $\#/cm^{3}/sec$. Furthermore, the activation rate was assessed within two different energy bands: < ~1 ev for thermal neutrons, and 1ev-1Mev for epithermal/fast neutrons with the energy tally F.

The preliminary results had uncertainties of 40% when 10,000 neutron particles per generation were tracked. It appeared to be that 10,000 neutron particles could not provide a sufficient number of neutrons for a relatively small sample region in the reactor. In order to decrease the uncertainty to an acceptable level (<10% in most cases), the number of particles tracked was increased to 1,000,000, which would be expected to decrease the uncertainty from 40% to 4%. However, the computational time for a single run of the MCNPX code then became close to 3 days. Therefore, a surface source substitution method by Wilson and Schneider was used to reduce computational requirements, as seen in figure 4. [11]

Figure 10, the surface source substitution method developed by Wilson and Schneider. Note the dash-lined circle as the surface source.

A three plane surface (one cylindrical surface, one top, and one bottom planes) surrounding the vial of specimen in the sample location is developed. As one can see in figures 11 and 12, the surface source that encloses the testing specimen was much smaller than the whole TRIGA reactor. An MCNPX SSW command was used to record the neutron flux through those surfaces that eventually entered the sample. After an initial run, a surface source file recording all neutron influx was generated and was then renamed as rssa for subsequent use. A new MCNPX source file was also developed to take advantage of the rssa surface source. Geometrically, the deck now only included the surface source, and the vials and samples inside, as seen in figure 13. An SSR command was used to recall the rssa file for the surface source configuration. F4 tallies with various multipliers were once again used to estimate the activation rates. Now only the initial run used the original code with full TRIGA reactor deck, which took about 3 days; all the subsequent simulation took much less computation time (less than 20 sec. each).

Figure 11, the close up of the sample holder location; note the thin layer indicated by the arrow is the surface source in the original deck.

Figure 12, the side view of the sample holder location, note the thin layer indicated by the arrow is the surface source in the original deck.

Figure 13, the new MCNPX code with only the surface source, the vial and samples. Note, the empty space outside the purple water is the outer boundary of this deck. Using the new surface source, the activation rate of Cl, Br, H, D from NaCl and NaBr solution of 0.001%, 0.01%, 0.1%, 1%, and 10% in both water and heavy water (D₂O) were calculated. Finally, the rate was calculated again for all specimens with a Cd foil of 1mm thickness wrapped tightly around the polyethylene vial. Once again, the activation rate was broken into two energy levels of <1 ev for thermal neutron, and 1 eV~1 Mev for epithermal neutrons.

Neutron Activation Procedures and Calculation

The light water and heavy water solution of NaCl, NaBr were prepared using 100ml flasks, NaCl, NaBr salt, deionized light water and heavy water. **10.7 gram** of NaCl (10% of NaCl light water solution has a density of 1.07g/ml) was weighed and dissolved in deionized light water in a 100 ml flask. Light water was added until the solution reached 100 ml mark. 10 ml of the newly made10% NaCl light water solution was transferred to a new 100 ml flask and refilled with light water until the solution reached 100 ml mark. The 1% NaCl light water solution was then made. In a similar fashion, the 0.1%, 0.01% and 0.001% NaCl light water solutions were made. NaBr light water solutions at different concentrations were also made in the same fashion. Note the density of 10% NaBr light water solution was also about 1.07 g/ml. **11.7 grams** of NaCl (density of 10% NaCl heavy water solution is 1.17g/ml) was weighed and dissolved in deionized heavy water in a 100 ml flask. Adding heavy water was continued until the solution reached 100 ml mark to make 10% NaCI heavy water solution. The above process was repeated until all 1%, 0.1%, 0.01% and 0.001% mass concentration solutions were made. The process was repeated again to make NaBr heavy water solution at the above mentioned five concentrations.

Due to the available reactor time, only 20 NaCl samples in light water and heavy water were tested in thermal and epithermal neutron activation tests.

After the sample solutions were prepared at the required mass concentration, they were then transferred into polyethylene vials. The vials were filled halfway, and then placed near the core of the reactor using the pneumatic system. The samples were irradiated at 500 KW steady state for 10sec~10 minutes depending on the mass concentration. The pneumatic system then pulled them out of the core; the samples were weighed and transferred into a new polyethylene vial to avoid the background interference of activated elements in the vial itself. The gamma emissions due to the decay of Cl-35 were counted using High Purity Germanium gamma ray detectors. The gamma spectrum was then produced as seen in figure 14. The peaks of gamma emission for Cl-35 was observed at 1642 kev; the area under the peak, as seen in the lower window of figure 14, was given enough count time to reach 5000 count to reduce uncertainties. The dead time was kept under 5% during the counting process.

Based on the measurement of the activity, count time, decay time, setup, geometry, and detection efficiency, software then applied several corrections for each sample, and calculated the mass concentration of targeted elements in the sample. Note, two standard reference material of tomato leaves (SRM 1573a, 6600 pmm Cl) were irradiated with and without cadmium coating each for 1 min at 500 KW steady state.

The activation rate of the element and its concentration are related as:

$$N_{(A+1)} = \frac{\Phi \sigma_{aA} N_{aA}}{\lambda_{(A+1)}} \left[1 - e^{-\lambda_{(A+1)} t_R} \right] e^{-\lambda_{(A+1)} t}$$

where $N_{(A+1)}$ is the atomic number density of activated isotope (activation rate if we normalized by 1 sec. of irradiation time); σ_{aA} is the neutron absorption cross section of the original isotope, N_{oA} is the number density of the original isotope, t_R is the irradiation

time (1 sec. in our simulation), t is the time after irradiation, and $\lambda_{(A+1)}$ is the decay constant of the activated isotope. [12] [13] [14] Assuming irradiation time is 1 sec, time after irradiation is short and the half-life is relatively long. The concentration of the element in the sample can be calculated as:

$$N_{aA} = \frac{N_{(A+1)}\lambda_{(A-1)}}{\sigma_{aA}\phi}$$

Oftentimes, the mass concentration of the elements was established using the relative method. The sample and a standard reference of known material concentration were irradiated together in the reactor. By comparing the gamma emission of the activated product, the concentration of the sample can be easily determined. [13] The simple calculation can be carried out as:

$$C_{sample} = C_{std ref} \frac{W_{std}}{W_{sample}} \frac{A_{sample}}{A_{std}}$$

where C is the element concentration, W is element weight and A is element activity. In addition, the use of standard reference material provides correction coefficients for the reactor configuration, geometry, and detector efficiency for the calculation. [14] [15]

Figure 14, gamma spectrum of neutron activation analysis <u>http://reactor.engr.wisc.edu/naa/moreNAA.htm</u>

Data Analysis

Computer Simulation

The total activation (capture) rate density of Cl, Br, H, D and their uncertainties from the simulation are obtained from the F4 tally output file and scaled as described above. The activation rate per atom (probability of activation per atom) is calculated by dividing the total activation rate density by number density of respective elements. See Table B in Appendix for complete list of values. Note, all the activation rates are normalized by 1 sec. irradiation time.

For the neutron activation rate of CI without cadmium shield, figure 15 showed that the epithermal neutron and total activation rate of CI were identical in light water and heavy water. In both light water and heavy water samples, the epithermal neutron activation rate was about two orders of magnitude lower than the thermal (and total) neutron activation rate. The epithermal neutron and total activation rate of hydrogen in light water is about three orders of magnitude higher than deuterium in heavy water.

Figure 15, neutron activation rate of CI in light water and heavy water

For neutron activation rate of Br without cadmium shield in figure 16, similar results were observed. From there, it was concluded that the CI and Br activation rates were linear (in the lognormal graph) in their concentration in the solution, implying that even at high concentrations the salts did not induce a significant perturbation to the local radiation field.

Figure 16, neutron activation rate of Br in light water and heavy water

In addition, within statistical uncertainties there was no difference in the activation rates for the CI when heavy water was substituted for light water in figure 15; but such result was not repeated for Br. Comparison made in figure 17 revealed a 50%~100% higher activation rate for Br in heavy water solution than in light water. Also note, in both light water and heavy water, epithermal neutron activation rate accounted for about 30%~45% of the total activation rate. All these results are likely due to Br's smaller neutron cross section compared to that of hydrogen and chlorine.

Figure 17, Comparison for neutron activation rate of Br in light water and heavy water

For neutron activation rate of CI with cadmium shield, figure 18 showed that the thermal activation rate of CI had no significant difference in light water and heavy water solution; epithermal activation rate, on the other hand, has a 25% higher rate in heavy water than in light water. Note that epithermal neutron activation rate now only was about one order of magnitude lower than thermal neutron activation rate.

Figure 18, neutron activation rate of CI with Cd shielding in light water and heavy water

A direct comparison of CI's neutron activation rate with and without the presence of cadmium shielding was plotted in figure 19 for light water, and figure 20 for heavy water. Note the use of cadmium shielding reduced the epithermal neutron activation rate by 90%, while epithermal neutron activation rate was statistically unchanged.

Figure 19, comparison of neutron activation rate of CI with and without Cd shielding in

light water

Figure 20, comparison of neutron activation rate of CI with and without Cd shielding in heavy water

The result in figure 21 for Br with cadmium shielding was more interesting. For both light water and heavy water solution, the thermal neutron activation rates of Br dropped for about 90%; and both were virtually the same. Now, the thermal neutron activation rate for Br in both light water and heavy water was about 15~20% of epithermal neutron activation rate. In addition, the epithermal neutron activation rate for Br in light water solution went up 40% with no statistically significant change in the heavy water solution; however, the heavy water solution still had a 35% higher Br epithermal neutron activation rate than did the light water solution.

Figure 21, neutron activation rate of Br with Cd shielding in light water and heavy water

It is possible that the higher cross section of the light water effectively 'shields' the CI and Br by absorbing neutrons in light water. It is also possible that the hydrogen ions downscattered higher energy neutrons in light water, therefore leading to a greater thermalization of epithermal neutrons that did pass through the Cd; these thermalized neutrons were subsequently more likely to be absorbed by the surrounding Cd. It is more likely that hydrogen within the sample vials competed against Br with thermal & epithermal neutron for activation. In the heavy water solution, this effect was not observed and the Br activation rate was considerably higher.

Neutron Activation Analysis

Due to the tight reactor time schedule, the first batch of sample of NaCl was tested through thermal and epithermal neutron analysis on May 5th. The detailed experimental data analysis will be done in the next stage of this study.

Conclusion

In the absence of cadmium, the simulation did not find consistent discrepancy of neutron activation rate between light water and heavy water solution from the hygrogen shielding effect. In the presence of cadmium, a higher activation rate (~25%) in the heavy water solution compared to light water solution was observed, which was likely the same discrepency encountered by Dr. Landsberger.

This phenomenon is likely due to the thermalization and absorption of epithermal neutrons of hydrogen from water solution. The next stage of the study will simulate the neutron activation rate of selected isotopes of CI-35, Br-81 & Br-79 separately in the sample (which follows the natural abundance) to compare more directly with experimental results. In additon, more experimental neutron activation data would be collected to repeat and verify this simulation observation.

References

- [1] X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport code, V5, Vol II: User's Guide, Los Alamos, 2005 Rev.
- [2] R. Sher, Handbook on Nuclear Activation Cross-Sections Technical Report Series No. 156, International Atomic Energy Agency, Vienna, 1970, pp233-285. International Atomic Energy Agency, Vienna, 1974, pp233-285.
- [3] J. Moteff *Neutron Fluence measurements Technical Report Series No. 107,* International Atomic Energy Agency, Vienna, 1970, pp233-285.
- [4] T.I. Taylor, R.H. Anderson, W.W. Havens Jr., Science, 114 (1951) 391.
- [5] K.H. Beckurts, K. Wirtz, Neutron Physics, Part III, Springer, Berlin, Germany, 1964, pp233-285.
- [6] W.H. El-Abbady, Z.H. El-Tananhy, A. A. El-Hagg., Czech. J. Phys., 49 (1999) 1079.
- [7] L. Zikovsky, K. Soliman, J. Radioanal. Nucl. Chem., 240 (1999) 681.
- [8] C. Chilian, J. St-Pierrer, G. Kennedy, Nucl. Instr. and Meth. A 564 (2006) 629.
- [9] E. martinho, I.F. Goncalves, J. Salgado, Appl. Radiat. Isot. 58 (2003) 371.
- [10] J.D. Braisted Design and Characterization of an Irradiation Facility for Radiation Effects Testing of Elecronics with Real-Time Monitoring. Thesis, University of Texas at Austin, 2008.
- [11] P.P.Wilson, P. Snouffer, E.A. Schneider, J. Peteson, *Demonstrating High Fidelity Coupled Neutronic and Thermal Analysis of ART Experiments Report,* Advanced Test Reactor natinal Scientific User Facility, Idoho National Laboratory, Idoho Fall, 2009, pp48.
- [12] B. Diacon, Neutron activation Analysis, Engineering Physics, McMaster University
- [13] G.F. Knoll, *Raiation Detection and measurement*, 2nd Ed., John Wiley & Sons, Canada, Ltd., 1989.
- [14] M.D. Glascock, Tables for Neutron Activation Analysis, 4th Ed., The University of Missouri, 1996.
- [15] C.E. Crouthamel, Applied Gamma-Ray Spectrosocopy, 2nd Ed., Pergamon Press, Oxford,1970, pp740-747.

Appendix

Tables

Table A Atomic Number Density

Table B Activation Rate with and without cadmium

MCNPX Simulation Code

Short code with surface source

Long code with TRIGA deck

Table A, Number Density Calculation for Select Elements

1.00E-05	0.01%	0.10%	1%	10%
n				
1.00E-05	1.00E-04	1.00E-03	1.00E-02	1.00E-01
1	1	1	1.005	1.07
3.34147E+22	3.34147E+22	3.34147E+22	3.3246E+22	3.21784E+22
3.34147E+22	3.34147E+22	3.34147E+22	3.3246E+22	3.21784E+22
6.68295E+22	6.68295E+22	6.68295E+22	6.6492E+22	6.43568E+22
1.03012E+17	1.03012E+18	1.03012E+19	1.03527E+20	1.10222E+21
4.36E+14				
2.91E+13	2.91E+13	2.91E+13	2.90E+13	2.81E+13
4.49E+07	4.49E+08	4.49E+09	4.51E+10	4.81E+11
	1.00E-05 n 1.00E-05 1 3.34147E+22 3.34147E+22 6.68295E+22 1.03012E+17 4.36E+14 2.91E+13 4.49E+07	1.00E-05 0.01% n 1.00E-05 1.00E-04 1 1 1 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 6.68295E+22 6.68295E+22 6.68295E+22 1.03012E+17 1.03012E+18 4.36E+14 2.91E+13 2.91E+13 4.49E+07 4.49E+08	1.00E-05 0.01% 0.10% n 1.00E-05 1.00E-04 1.00E-03 1 1 1 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 3.34147E+22 6.68295E+22 6.68295E+22 6.68295E+22 1.03012E+17 1.03012E+18 1.03012E+19 4.36E+14 2.91E+13 2.91E+13 4.49E+07 4.49E+08 4.49E+09	1.00E-05 0.01% 0.10% 1% n 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1 1 1 1.005 3.34147E+22 3.34147E+22 3.34147E+22 3.3246E+22 3.34147E+22 3.34147E+22 3.3246E+22 3.3246E+22 3.68295E+22 6.68295E+22 6.68295E+22 6.6492E+22 1.03012E+17 1.03012E+18 1.03012E+19 1.03527E+20 4.36E+14

Heavy Water Solution

NaCl	1.00E-05	1.00E-04	1.00E-03	1.00E-02	1.00E-01
Density (g/cm^3)	1.1056	1.1056	1.1056	1.1056	1.17
Nd (heavy water)	3.32121E+22	3.32121E+22	3.32121E+22	3.288E+22	3.1632E+22
Nd (O)	3.32121E+22	3.32121E+22	3.32121E+22	3.288E+22	3.1632E+22
Nd (D)	6.64243E+22	6.64243E+22	6.64243E+22	6.576E+22	6.32641E+22
Nd (Na, Cl)	1.1389E+17	1.1389E+18	1.1389E+19	1.1389E+20	1.20524E+21
scale factor:	4.36E+14				
Nd (D)	2.90E+13	2.90E+13	2.90E+13	2.87E+13	2.76E+13
Nd (Na, Cl)	4.97E+07	4.97E+08	4.97E+09	4.97E+10	5.25E+11

	1.00E-05	0.01%	0.10%	1%	10%
Light Water Solution	n				
NaBr	1.00E-05	1.00E-04	1.00E-03	1.00E-02	1.00E-01
Density (g/cm^3)	1	1	1	1.005	1.07
Nd (water)	3.34147E+22	3.34147E+22	3.34147E+22	3.3246E+22	3.21784E+22
Nd (O)	3.34147E+22	3.34147E+22	3.34147E+22	3.3246E+22	3.21784E+22
Nd (H)	6.68295E+22	6.68295E+22	6.68295E+22	6.6492E+22	6.43568E+22
Nd (Na, Br)	5.85068E+16	5.85068E+17	5.85068E+18	5.87993E+19	6.26023E+20
scale factor:	4.36E+14				
Nd (H)	2.91E+13	2.91E+13	2.91E+13	2.90E+13	2.81E+13
Nd (Na, Br)	2.55E+07	2.55E+08	2.55E+09	2.56E+10	2.73E+11

Heavy Water Solut	ion				
NaBr	1.00E-05	1.00E-04	1.00E-03	1.00E-02	1.00E-01
Density (g/cm^3)	1.1056	1.1056	1.1056	1.1056	1.17
Nd (heavy water)	3.32121E+22	3.32121E+22	3.32121E+22	3.288E+22	3.1632E+22
Nd (O)	3.32121E+22	3.32121E+22	3.32121E+22	3.288E+22	3.1632E+22
Nd (D)	6.64243E+22	6.64243E+22	6.64243E+22	6.576E+22	6.32641E+22
Nd (Na, Br)	6.46851E+16	6.46851E+17	6.46851E+18	6.46851E+19	6.8453E+20
scale factor:	4.36E+14				
Nd (D)	2.90E+13	2.90E+13	2.90E+13	2.87E+13	2.76E+13
Nd (Na, Br)	2.82E+07	2.82E+08	2.82E+09	2.82E+10	2.98E+11

Table B, Activation Rate for Selected Elements

With Cd Coating

Br		•																
	activation r	ate								activation	probablity	per atom						
L.W.	thermal	error %	error	ері	error %	error	total	error %	error	thermal	error %	error	ері	error %	error	total	error %	error
concen.	Br																	
1.00E-05	2.11E+02	1.18E-01	2.50E+01	9.16E+02	4.74E-01	4.34E+02	1.13E+03	1.18E-01	1.33E+02	3.61E-15	1.18E-01	4.27E-16	1.57E-14	4.74E-01	7.42E-15	5 1.93E-14	1.18E-01	2.27E-15
0.01%	2.11E+03	1.18E-01	2.50E+02	9.16E+03	4.74E-01	4.34E+03	1.13E+04	1.18E-01	1.33E+03	3.61E-15	1.18E-01	4.27E-16	1.57E-14	4.74E-01	7.42E-15	5 1.93E-14	1.18E-01	2.27E-15
0.10%	2.11E+04	1.18E-01	2.50E+03	9.16E+04	4.74E-01	4.34E+04	1.13E+05	1.18E-01	1.33E+04	3.62E-15	1.18E-01	4.27E-16	1.57E-14	4.74E-01	7.42E-15	5 1.93E-14	1.18E-01	2.27E-15
1%	2.12E+05	1.18E-01	2.51E+04	9.17E+05	4.74E-01	4.35E+05	1.13E+06	1.18E-01	1.33E+05	3.61E-15	1.18E-01	4.27E-16	1.56E-14	4.74E-01	7.40E-15	5 1.92E-14	1.18E-01	2.27E-15
10%	2.26E+06	1.18E-01	2.67E+05	9.53E+06	4.81E-01	4.59E+06	1.18E+07	1.18E-01	1.39E+06	3.61E-15	1.18E-01	4.26E-16	1.52E-14	4.81E-01	7.33E-15	5 1.88E-14	1.18E-01	2.23E-15
	Н																	
1.00E-05	1.15E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.25E+07	1.18E-01	1.47E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	3 1.87E-16	1.18E-01	2.21E-17
0.01%	1.15E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.25E+07	1.18E-01	1.47E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	3 1.87E-16	1.18E-01	2.21E-17
0.10%	1.15E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.25E+07	1.18E-01	1.47E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	3 1.87E-16	1.18E-01	2.21E-17
1%	1.14E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.24E+07	1.18E-01	1.47E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	3 1.87E-16	1.18E-01	2.21E-17
10%	1.10E+07	1.18E-01	1.31E+06	9.78E+05	1.10E-01	1.08E+05	1.20E+07	1.18E-01	1.42E+06	1.72E-16	1.18E-01	2.03E-17	1.52E-17	1.10E-01	1.67E-18	3 1.87E-16	1.18E-01	2.21E-17
										optivotion	probablity	nor atom						
	activation r	ate								activation	probability	peratorn						
H. W.	activation ration ration ration ration rational section of the sec	ate error %	error	ері	error %	error	total	error %	error	thermal	error %	error	ері	error %	error	total	error %	error
H. W.	activation ra thermal Br	ate error %	error	epi	error %	error	total	error %	error	thermal	error %	error	ері	error %	error	total	error %	error
H. W. 1.00E-05	activation ra thermal Br 2.20E+02	ate error % 1.45E-01	error 3.18E+01	epi 1.30E+03	error % 4.63E-01	error 6.02E+02	total	error %	error 2.20E+02	thermal	error %	error 4.92E-16	epi 2.01E-14	error %	error 9.31E-15	total	error %	error 3.40E-15
H. W. 1.00E-05 0.01%	activation ra thermal Br 2.20E+02 2.02E+03	ate error % 1.45E-01 1.45E-01	error 3.18E+01 2.92E+02	epi 1.30E+03 1.32E+04	error % 4.63E-01 4.63E-01	error 6.02E+02 6.11E+03	total 1.52E+03 1.52E+04	error % 1.45E-01 1.45E-01	error 2.20E+02 2.20E+03	3.40E-15 3.12E-15	error % 1.45E-01 1.45E-01	4.92E-16 4.52E-16	epi 2.01E-14 2.04E-14	error % 4.63E-01 4.63E-01	error 9.31E-15 9.44E-15	total 5 2.35E-14 5 2.35E-14	error % 1.45E-01 1.45E-01	error 3.40E-15 3.40E-15
H. W. 1.00E-05 0.01% 0.10%	activation ra thermal Br 2.20E+02 2.02E+03 2.02E+04	ate error % 1.45E-01 1.45E-01 1.45E-01	error 3.18E+01 2.92E+02 2.92E+03	epi 1.30E+03 1.32E+04 1.32E+05	error % 4.63E-01 4.63E-01 4.63E-01	error 6.02E+02 6.11E+03 6.11E+04	total 1.52E+03 1.52E+04 1.52E+05	error % 1.45E-01 1.45E-01 1.45E-01	error 2.20E+02 2.20E+03 2.20E+04	3.40E-15 3.12E-15 3.12E-15	1.45E-01 1.45E-01 1.45E-01	4.92E-16 4.52E-16 4.52E-16	epi 2.01E-14 2.04E-14 2.04E-14	error % 4.63E-01 4.63E-01 4.63E-01	error 9.31E-15 9.44E-15 9.44E-15	total 2.35E-14 2.35E-14 2.35E-14	error % 1.45E-01 1.45E-01 1.45E-01	error 3.40E-15 3.40E-15 3.40E-15
H. W. 1.00E-05 0.01% 0.10% 1%	activation ra thermal Br 2.20E+02 2.02E+03 2.02E+04 2.02E+04 2.02E+05	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06	error % 4.63E-01 4.63E-01 4.63E-01 4.66E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05	3.40E-15 3.12E-15 3.12E-15 3.11E-15	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01	4.92E-16 4.52E-16 4.52E-16 4.50E-16	epi 2.01E-14 2.04E-14 2.04E-14 2.01E-14	error % 4.63E-01 4.63E-01 4.63E-01 4.66E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15	total 2.35E-14 2.35E-14 2.35E-14 2.35E-14 2.32E-14	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01	error 3.40E-15 3.40E-15 3.40E-15 3.36E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Br 2.20E+02 2.02E+03 2.02E+04 2.02E+05 2.17E+06	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04 3.11E+05	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06 1.27E+07	error % 4.63E-01 4.63E-01 4.66E-01 4.80E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05 6.08E+06	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06 1.48E+07	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05 2.13E+06	3.40E-15 3.12E-15 3.12E-15 3.11E-15 3.16E-15	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 4.92E-16 4.52E-16 4.52E-16 4.50E-16 4.55E-16	epi 2.01E-14 2.04E-14 2.04E-14 2.01E-14 1.85E-14	error % 4.63E-01 4.63E-01 4.66E-01 4.80E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15 8.88E-15	total 2.35E-14 2.35E-14 2.35E-14 2.32E-14 2.32E-14 2.17E-14	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 3.40E-15 3.40E-15 3.40E-15 3.36E-15 3.12E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Br 2.20E+02 2.02E+03 2.02E+04 2.02E+05 2.17E+06 D	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04 3.11E+05	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06 1.27E+07	error % 4.63E-01 4.63E-01 4.66E-01 4.80E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05 6.08E+06	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06 1.48E+07	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05 2.13E+06	3.40E-15 3.12E-15 3.12E-15 3.11E-15 3.16E-15	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	4.92E-16 4.52E-16 4.52E-16 4.50E-16 4.55E-16	epi 2.01E-14 2.04E-14 2.04E-14 2.01E-14 1.85E-14	error % 4.63E-01 4.63E-01 4.66E-01 4.80E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15 8.88E-15	total 2.35E-14 2.35E-14 2.35E-14 2.32E-14 2.32E-14 2.17E-14	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 3.40E-15 3.40E-15 3.40E-15 3.36E-15 3.12E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05	activation ra thermal Br 2.20E+02 2.02E+03 2.02E+04 2.02E+05 2.17E+06 D 1.60E+04	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04 3.11E+05 2.31E+03	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06 1.27E+07 1.10E+03	error % 4.63E-01 4.63E-01 4.63E-01 4.66E-01 4.80E-01 1.29E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05 6.08E+06 1.41E+02	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06 1.48E+07 1.70E+04	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05 2.13E+06 2.47E+03	3.40E-15 3.12E-15 3.12E-15 3.12E-15 3.11E-15 3.16E-15 2.40E-19	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	4.92E-16 4.52E-16 4.52E-16 4.52E-16 4.50E-16 4.55E-16 3.48E-20	epi 2.01E-14 2.04E-14 2.04E-14 2.04E-14 1.85E-14 1.65E-20	error % 4.63E-01 4.63E-01 4.63E-01 4.66E-01 4.80E-01 1.29E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15 8.88E-15 2.12E-21	total 2.35E-14 2.35E-14 2.35E-14 2.35E-14 2.32E-14 2.32E-14 2.17E-14 2.57E-19	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01	error 3.40E-15 3.40E-15 3.40E-15 3.36E-15 3.12E-15 3.71E-20
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01%	activation r. thermal Br 2.20E+02 2.02E+03 2.02E+04 2.02E+05 2.17E+06 D 1.60E+04 1.51E+04	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04 3.11E+05 2.31E+03 2.18E+03	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06 1.27E+07 1.10E+03 2.00E+03	error % 4.63E-01 4.63E-01 4.63E-01 4.66E-01 4.80E-01 1.29E-01 1.29E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05 6.08E+06 1.41E+02 2.57E+02	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06 1.48E+07 1.70E+04 1.70E+04	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05 2.13E+06 2.47E+03 2.47E+03	3.40E-15 3.12E-15 3.12E-15 3.12E-15 3.11E-15 3.16E-15 2.40E-19 2.27E-19	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01	4.92E-16 4.52E-16 4.52E-16 4.52E-16 4.50E-16 4.55E-16 3.48E-20 3.28E-20	epi 2.01E-14 2.04E-14 2.04E-14 2.04E-14 1.85E-14 1.65E-20 3.00E-20	error % 4.63E-01 4.63E-01 4.63E-01 4.66E-01 4.80E-01 1.29E-01 1.29E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15 8.88E-15 2.12E-21 3.87E-21	total 2.35E-14 2.35E-14 2.35E-14 2.35E-14 2.32E-14 2.32E-14 2.17E-14 2.57E-19 2.57E-19	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01	error 3.40E-15 3.40E-15 3.40E-15 3.36E-15 3.36E-15 3.12E-15 3.71E-20 3.71E-20
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01% 0.10%	activation r. thermal Br 2.20E+02 2.02E+03 2.02E+04 2.02E+05 2.17E+06 D 1.60E+04 1.51E+04 1.51E+04	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01 1.45E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04 3.11E+05 2.31E+03 2.18E+03 2.18E+03	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06 1.27E+07 1.10E+03 2.00E+03 1.99E+03	error % 4.63E-01 4.63E-01 4.66E-01 4.60E-01 4.80E-01 1.29E-01 1.29E-01 1.29E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05 6.08E+06 1.41E+02 2.57E+02 2.57E+02	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06 1.48E+07 1.70E+04 1.70E+04 1.70E+04	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01 1.45E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05 2.13E+06 2.47E+03 2.47E+03 2.47E+03	3.40E-15 3.12E-15 3.12E-15 3.12E-15 3.11E-15 3.16E-15 2.40E-19 2.27E-19 2.27E-19	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01	4.92E-16 4.52E-16 4.52E-16 4.52E-16 4.55E-16 3.48E-20 3.28E-20 3.28E-20	epi 2.01E-14 2.04E-14 2.04E-14 2.01E-14 1.85E-14 1.65E-20 3.00E-20 3.00E-20	error % 4.63E-01 4.63E-01 4.66E-01 4.66E-01 1.29E-01 1.29E-01 1.29E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15 8.88E-15 2.12E-21 3.87E-21 3.87E-21	total 2.35E-14 2.35E-14 2.35E-14 2.32E-14 2.32E-14 2.17E-14 2.57E-19 2.57E-19 2.57E-19 2.57E-19	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01 1.45E-01	error 3.40E-15 3.40E-15 3.30E-15 3.36E-15 3.12E-15 3.71E-20 3.71E-20 3.71E-20
H. W. 1.00E-05 0.01% 0.10% 1% 1.00E-05 0.01% 0.10% 1%	activation r. thermal Br 2.02E+02 2.02E+04 2.02E+04 2.02E+05 2.17E+06 D 1.60E+04 1.51E+04 1.51E+04 1.49E+04	ate error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01	error 3.18E+01 2.92E+02 2.92E+03 2.92E+04 3.11E+05 2.31E+03 2.18E+03 2.18E+03 2.16E+03	epi 1.30E+03 1.32E+04 1.32E+05 1.31E+06 1.27E+07 1.10E+03 2.00E+03 1.99E+03 1.97E+03	error % 4.63E-01 4.63E-01 4.66E-01 4.66E-01 4.80E-01 1.29E-01 1.29E-01 1.29E-01 1.29E-01	error 6.02E+02 6.11E+03 6.11E+04 6.09E+05 6.08E+06 1.41E+02 2.57E+02 2.57E+02 2.57E+02 2.57E+02	total 1.52E+03 1.52E+04 1.52E+05 1.51E+06 1.48E+07 1.70E+04 1.70E+04 1.70E+04 1.69E+04	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.44E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01	error 2.20E+02 2.20E+03 2.20E+04 2.18E+05 2.13E+06 2.47E+03 2.47E+03 2.47E+03 2.47E+03 2.44E+03	3.40E-15 3.12E-15 3.12E-15 3.11E-15 3.11E-15 3.16E-15 2.40E-19 2.27E-19 2.27E-19 2.26E-19	1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01	4.92E-16 4.52E-16 4.52E-16 4.52E-16 4.50E-16 4.55E-16 3.48E-20 3.28E-20 3.28E-20 3.28E-20	epi 2.01E-14 2.04E-14 2.04E-14 2.04E-14 2.01E-14 1.85E-14 1.65E-20 3.00E-20 3.00E-20 3.00E-20	error % 4.63E-01 4.63E-01 4.66E-01 4.66E-01 1.29E-01 1.29E-01 1.29E-01 1.29E-01	error 9.31E-15 9.44E-15 9.44E-15 9.37E-15 8.88E-15 2.12E-21 3.87E-21 3.87E-21 3.87E-21 3.86E-21	total 2.35E-14 2.35E-14 2.35E-14 2.32E-14 2.17E-14 2.57E-19 2.57E-19 2.57E-19 2.57E-19 2.57E-19 2.57E-19 2.57E-19 2.57E-19 2.57E-19	error % 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01 1.45E-01	error 3.40E-15 3.40E-15 3.40E-15 3.36E-15 3.12E-15 3.71E-20 3.71E-20 3.71E-20 3.71E-20

CI

	activation r	ate								activation	probablity	per atom						
L.W.	thermal	error %	error	epi	error %	error	total	error %	error	thermal	error %	error	ері	error %	error	total	error %	error
	CI																	
1.00E-05	1.79E+03	1.18E-01	2.12E+02	1.42E+02	1.40E-01	1.98E+01	1.93E+03	1.40E-01	2.70E+02	1.74E-14	1.18E-01	2.06E-15	1.38E-15	1.40E-01	1.92E-16	1.88E-14	1.40E-01	2.62E-15
0.01%	1.79E+04	1.18E-01	2.12E+03	1.42E+03	1.11E-01	1.57E+02	1.93E+04	1.11E-01	2.14E+03	1.74E-14	1.18E-01	2.06E-15	1.38E-15	1.11E-01	1.53E-16	1.88E-14	1.11E-01	2.08E-15
0.10%	1.79E+05	1.18E-01	2.12E+04	1.42E+04	1.11E-01	1.57E+03	1.93E+05	1.11E-01	2.14E+04	1.74E-14	1.18E-01	2.06E-15	1.37E-15	1.11E-01	1.52E-16	1.88E-14	1.11E-01	2.08E-15
1%	1.80E+06	1.18E-01	2.13E+05	1.43E+05	1.11E-01	1.58E+04	1.94E+06	1.11E-01	2.15E+05	1.74E-14	1.18E-01	2.06E-15	1.38E-15	1.11E-01	1.53E-16	1.88E-14	1.11E-01	2.08E-15
10%	1.86E+07	1.16E-01	2.15E+06	1.48E+06	1.08E-01	1.60E+05	2.01E+07	1.08E-01	2.17E+06	1.69E-14	1.16E-01	1.95E-15	1.34E-15	1.08E-01	1.46E-16	1.82E-14	1.08E-01	1.98E-15
	Н																	
1.00E-05	1.15E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.25E+07	1.10E-01	1.37E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	1.87E-16	1.10E-01	2.05E-17
0.01%	1.15E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.25E+07	1.10E-01	1.37E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	1.87E-16	1.10E-01	2.05E-17
0.10%	1.15E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.25E+07	1.10E-01	1.37E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	1.87E-16	1.10E-01	2.05E-17
1%	1.14E+07	1.18E-01	1.35E+06	1.01E+06	1.10E-01	1.11E+05	1.24E+07	1.10E-01	1.37E+06	1.72E-16	1.18E-01	2.03E-17	1.51E-17	1.10E-01	1.66E-18	1.87E-16	1.10E-01	2.06E-17
10%	1.07E+07	1.16E-01	1.24E+06	9.53E+05	1.08E-01	1.02E+05	1.17E+07	1.08E-01	1.25E+06	1.67E-16	1.16E-01	1.93E-17	1.48E-17	1.08E-01	1.59E-18	1.82E-16	1.08E-01	1.95E-17

activation rate

activation probablity per atom

H. W.	thermal	error %	error	epi	error %	error	total	error %	error	thermal	error %	error	epi	error %	error	total	error %	error
	CI																	
1.00E-05	1.72E+03	1.45E-01	2.49E+02	1.94E+02	1.31E-01	2.55E+01	1.91E+03	1.31E-01	2.50E+02	1.51E-14	1.45E-01	2.18E-15	1.70E-15	1.31E-01	2.23E-16	1.68E-14	1.31E-01	2.20E-15
0.01%	1.72E+04	1.45E-01	2.49E+03	1.94E+03	1.31E-01	2.55E+02	1.91E+04	1.31E-01	2.50E+03	1.51E-14	1.45E-01	2.18E-15	1.70E-15	1.31E-01	2.23E-16	1.68E-14	1.31E-01	2.20E-15
0.10%	1.72E+05	1.45E-01	2.49E+04	1.94E+04	1.31E-01	2.55E+03	1.91E+05	1.31E-01	2.50E+04	1.51E-14	1.45E-01	2.18E-15	1.70E-15	1.31E-01	2.23E-16	1.68E-14	1.31E-01	2.20E-15
1%	1.71E+06	1.45E-01	2.49E+05	1.93E+05	1.31E-01	2.54E+04	1.91E+06	1.31E-01	2.50E+05	1.51E-14	1.45E-01	2.18E-15	1.70E-15	1.31E-01	2.23E-16	1.68E-14	1.31E-01	2.20E-15
10%	1.86E+07	1.48E-01	2.75E+06	2.00E+06	1.35E-01	2.70E+05	2.06E+07	1.35E-01	2.77E+06	1.54E-14	1.48E-01	2.28E-15	1.66E-15	1.35E-01	2.23E-16	1.70E-14	1.35E-01	2.29E-15
	D																	
1.00E-05	1.51E+04	1.45E-01	2.18E+03	2.00E+03	1.29E-01	2.57E+02	1.70E+04	1.29E-01	2.19E+03	2.27E-19	1.45E-01	3.28E-20	3.01E-20	1.29E-01	3.87E-21	2.57E-19	1.29E-01	3.30E-20
0.01%	1.51E+04	1.45E-01	2.18E+03	2.00E+03	1.29E-01	2.57E+02	1.70E+04	1.29E-01	2.19E+03	2.27E-19	1.45E-01	3.28E-20	3.01E-20	1.29E-01	3.87E-21	2.57E-19	1.29E-01	3.30E-20
0.10%	1.49E+04	1.45E-01	2.16E+03	2.15E+03	1.29E-01	2.77E+02	1.70E+04	1.29E-01	2.19E+03	2.24E-19	1.45E-01	3.25E-20	3.24E-20	1.29E-01	4.17E-21	2.57E-19	1.29E-01	3.30E-20
1%	1.49E+04	1.45E-01	2.15E+03	1.97E+03	1.29E-01	2.54E+02	1.69E+04	1.29E-01	2.17E+03	2.26E-19	1.45E-01	3.27E-20	2.99E-20	1.29E-01	3.85E-21	2.56E-19	1.29E-01	3.30E-20
10%	1.47E+04	1.48E-01	2.17E+03	1.86E+03	1.32E-01	2.45E+02	1.65E+04	1.32E-01	2.18E+03	2.32E-19	1.48E-01	3.43E-20	2.93E-20	1.32E-01	3.87E-21	2.61E-19	1.32E-01	3.45E-20

Without Cd Coating

Br

	activation ra	ate								activation	probablity	per atom						
L.W.	thermal	error %	error	epi	error %	error	total	error %	error	thermal	error %	error	epi	error %	error	total	error %	error
	Br																	
1.00E-05	1.39E+03	7.13E-02	9.92E+01	6.37E+02	1.33E-01	8.46E+01	2.03E+03	1.33E-01	2.69E+02	2.38E-14	7.13E-02	1.70E-15	1.09E-14	1.33E-01	1.45E-15	3.47E-14	1.33E-01	4.60E-15
0.01%	1.39E+04	7.13E-02	9.92E+02	6.37E+03	1.33E-01	8.46E+02	2.03E+04	1.33E-01	2.69E+03	2.38E-14	7.13E-02	1.70E-15	1.09E-14	1.33E-01	1.45E-15	3.47E-14	1.33E-01	4.60E-15
0.10%	1.39E+05	7.13E-02	9.90E+03	6.37E+04	1.33E-01	8.45E+03	2.03E+05	1.33E-01	2.69E+04	2.37E-14	7.13E-02	1.69E-15	1.09E-14	1.33E-01	1.44E-15	3.46E-14	1.33E-01	4.60E-15
1%	1.39E+06	7.11E-02	9.85E+04	6.34E+05	1.31E-01	8.27E+04	2.02E+06	1.31E-01	2.64E+05	2.36E-14	7.11E-02	1.68E-15	1.08E-14	1.31E-01	1.41E-15	3.44E-14	1.31E-01	4.48E-15
10%	1.45E+07	6.98E-02	1.01E+06	6.08E+06	1.16E-01	7.05E+05	2.05E+07	1.16E-01	2.38E+06	2.31E-14	6.98E-02	1.61E-15	9.71E-15	1.16E-01	1.13E-15	3.28E-14	1.16E-01	3.80E-15
	H																	
1.00E-05	7.54E+07	7.13E-02	5.37E+06	9.52E+05	7.05E-02	6.71E+04	7.64E+07	7.05E-02	5.39E+06	1.13E-15	7.13E-02	8.04E-17	1.43E-17	7.05E-02	1.00E-18	1.14E-15	7.05E-02	8.06E-17
0.01%	7.55E+07	7.13E-02	5.38E+06	9.52E+05	7.05E-02	6.71E+04	7.64E+07	7.05E-02	5.39E+06	1.13E-15	7.13E-02	8.06E-17	1.43E-17	7.05E-02	1.00E-18	1.14E-15	7.05E-02	8.06E-17
0.10%	7.54E+07	7.13E-02	5.38E+06	9.52E+05	7.05E-02	6.71E+04	7.65E+07	7.05E-02	5.39E+06	1.13E-15	7.13E-02	8.05E-17	1.43E-17	7.05E-02	1.00E-18	1.15E-15	7.05E-02	8.07E-17
1%	7.47E+07	7.11E-02	5.31E+06	9.50E+05	7.03E-02	6.68E+04	7.56E+07	7.03E-02	5.31E+06	1.12E-15	7.11E-02	7.98E-17	1.43E-17	7.03E-02	1.00E-18	1.14E-15	7.03E-02	7.99E-17
10%	7.08E+07	6.99E-02	4.95E+06	9.13E+05	6.90E-02	6.30E+04	1.1/E+0/	6.90E-02	4.95E+06	1.10E-15	6.99E-02	7.69E-17	1.42E-17	6.90E-02	9.80E-19	1.12E-15	6.90E-02	7.69E-17
	activation r	ate								activation	nrohablity	ner atom						
нw	activation ra	ate error %	error	eni	error %	error	total	error %	error	activation	probablity error %	per atom	eni	error %	error	total	error %	error
H. W.	activation ra thermal Br	ate error %	error	ері	error %	error	total	error %	error	activation thermal	probablity error %	per atom error	ері	error %	error	total	error %	error
H. W. 1.00E-05	activation ra thermal Br 1.70E+03	ate error % 5.88E-02	error 9.97E+01	epi 1.40E+03	error % 2.30E-01	error 3.23E+02	total 3.10E+03	error % 2.30E-01	error 7.14E+02	activation thermal	probablity error % 5.88E-02	per atom error 1.54E-15	epi	error %	error 5.00E-15	total	error %	error 1.10E-14
H. W. 1.00E-05 0.01%	activation ra thermal Br 1.70E+03 1.70E+04	ate error % 5.88E-02 5.88E-02	error 9.97E+01 9.97E+02	epi 1.40E+03 1.41E+04	error % 2.30E-01 2.30E-01	error 3.23E+02 3.24E+03	total 3.10E+03 3.10E+04	error % 2.30E-01 2.30E-01	error 7.14E+02 7.14E+03	activation thermal 2.62E-14 2.62E-14	probablity error % 5.88E-02 5.88E-02	per atom error 1.54E-15 1.54E-15	epi 2.17E-14 2.18E-14	error % 2.30E-01 2.30E-01	error 5.00E-15 5.01E-15	total 4.79E-14 4.80E-14	error % 2.30E-01 2.30E-01	error 1.10E-14 1.10E-14
H. W. 1.00E-05 0.01% 0.10%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05	ate error % 5.88E-02 5.88E-02 6.01E-02	error 9.97E+01 9.97E+02 1.03E+04	epi 1.40E+03 1.41E+04 1.41E+05	error % 2.30E-01 2.30E-01 2.29E-01	error 3.23E+02 3.24E+03 3.23E+04	total 3.10E+03 3.10E+04 3.12E+05	error % 2.30E-01 2.30E-01 2.29E-01	error 7.14E+02 7.14E+03 7.15E+04	activation thermal 2.62E-14 2.62E-14 2.64E-14	probablity error % 5.88E-02 5.88E-02 6.01E-02	per atom error 1.54E-15 1.54E-15 1.59E-15	epi 2.17E-14 2.18E-14 2.18E-14	error % 2.30E-01 2.30E-01 2.29E-01	error 5.00E-15 5.01E-15 4.99E-15	total 4.79E-14 4.80E-14 4.82E-14	error % 2.30E-01 2.30E-01 2.29E-01	error 1.10E-14 1.10E-14 1.11E-14
H. W. 1.00E-05 0.01% 0.10% 1%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.93E+06	ate error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01	error 7.14E+02 7.14E+03 7.15E+04 7.18E+05	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02	per atom error 1.54E-15 1.54E-15 1.59E-15 1.74E-15	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.93E+06 1.76E+07	ate error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05 1.03E+06	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06 1.19E+07	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05 2.20E+06	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06 2.96E+07	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 7.14E+02 7.14E+03 7.15E+04 7.18E+05 5.45E+06	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14 2.57E-14	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02	per atom error 1.54E-15 1.54E-15 1.59E-15 1.74E-15 1.50E-15	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14 1.74E-14	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15 3.21E-15	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14 4.32E-14	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14 7.96E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.93E+06 1.76E+07 D	ate error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05 1.03E+06	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06 1.19E+07	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05 2.20E+06	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06 2.96E+07	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 7.14E+02 7.14E+03 7.15E+04 7.18E+05 5.45E+06	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14 2.57E-14	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02	per atom error 1.54E-15 1.54E-15 1.59E-15 1.74E-15 1.50E-15	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14 1.74E-14	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15 3.21E-15	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14 4.32E-14	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14 7.96E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.93E+06 1.76E+07 D 1.26E+05	ate error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05 1.03E+06 7.43E+03	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06 1.19E+07 1.53E+03	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05 2.20E+06 8.89E+01	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06 2.96E+07 1.28E+05	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02	error 7.14E+02 7.14E+03 7.15E+04 7.18E+05 5.45E+06 7.43E+03	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14 2.57E-14 1.90E-18	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02	per atom error 1.54E-15 1.54E-15 1.59E-15 1.74E-15 1.50E-15 1.12E-19	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14 1.74E-14 2.30E-20	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15 3.21E-15 1.34E-21	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14 4.32E-14 1.93E-18	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14 7.96E-15 1.12E-19
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.93E+06 1.76E+07 D 1.26E+05 1.26E+05	ate error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02 5.88E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05 1.03E+06 7.43E+03 7.43E+03	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06 1.19E+07 1.53E+03 1.53E+03	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05 2.20E+06 8.89E+01 8.89E+01	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06 2.96E+07 1.28E+05 1.28E+05	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02	error 7.14E+02 7.14E+03 7.15E+04 7.18E+05 5.45E+06 7.43E+03 7.43E+03	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14 2.57E-14 1.90E-18 1.90E-18	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02 5.88E-02	per atom error 1.54E-15 1.54E-15 1.59E-15 1.74E-15 1.50E-15 1.12E-19 1.12E-19	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14 1.74E-14 2.30E-20 2.30E-20	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15 3.21E-15 1.34E-21 1.34E-21	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14 4.32E-14 1.93E-18 1.93E-18	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14 7.96E-15 1.12E-19 1.12E-19
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01% 0.10%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.93E+06 1.76E+07 D 1.26E+05 1.26E+05 1.27E+05	ate error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02 5.88E-02 6.01E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05 1.03E+06 7.43E+03 7.43E+03 7.66E+03	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06 1.19E+07 1.53E+03 1.53E+03 1.50E+03	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05 2.20E+06 8.89E+01 8.89E+01 8.89E+01 8.93E+01	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06 2.96E+07 1.28E+05 1.28E+05 1.29E+05	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02	error 7.14E+02 7.14E+03 7.15E+04 7.18E+05 5.45E+06 7.43E+03 7.43E+03 7.43E+03 7.67E+03	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14 2.57E-14 1.90E-18 1.90E-18 1.90E-18 1.92E-18	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02 5.88E-02 5.88E-02 6.01E-02	per atom error 1.54E-15 1.54E-15 1.54E-15 1.74E-15 1.74E-15 1.50E-15 1.12E-19 1.12E-19 1.15E-19	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14 1.74E-14 2.30E-20 2.30E-20 2.26E-20	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15 3.21E-15 1.34E-21 1.34E-21 1.34E-21	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14 4.32E-14 1.93E-18 1.93E-18 1.93E-18 1.94E-18	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14 7.96E-15 1.12E-19 1.12E-19 1.16E-19
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01% 0.10% 1%	activation ra thermal Br 1.70E+03 1.70E+04 1.71E+05 1.33E+06 1.76E+07 D 1.26E+05 1.26E+05 1.27E+05 1.25E+05	5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.83E-02 5.88E-02 5.88E-02 6.01E-02 5.87E-02	error 9.97E+01 9.97E+02 1.03E+04 1.13E+05 1.03E+06 7.43E+03 7.43E+03 7.66E+03 7.33E+03	epi 1.40E+03 1.41E+04 1.41E+05 1.17E+06 1.19E+07 1.53E+03 1.53E+03 1.50E+03 1.50E+03	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02 5.80E-02	error 3.23E+02 3.24E+03 3.23E+04 2.71E+05 2.20E+06 8.89E+01 8.89E+01 8.93E+01 8.93E+01 8.70E+01	total 3.10E+03 3.10E+04 3.12E+05 3.10E+06 2.96E+07 1.28E+05 1.28E+05 1.29E+05 1.29E+05	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.81E-02 5.95E-02 5.80E-02	error 7.14E+02 7.14E+03 7.15E+04 7.15E+04 7.18E+05 5.45E+06 7.43E+03 7.43E+03 7.43E+03 7.67E+03 7.33E+03	activation thermal 2.62E-14 2.62E-14 2.64E-14 2.97E-14 2.57E-14 1.90E-18 1.90E-18 1.92E-18 1.92E-18	probablity error % 5.88E-02 5.88E-02 6.01E-02 5.87E-02 5.83E-02 5.88E-02 5.87E-02 5.88E-02	per atom error 1.54E-15 1.54E-15 1.59E-15 1.74E-15 1.50E-15 1.12E-19 1.12E-19 1.15E-19 1.15E-19	epi 2.17E-14 2.18E-14 2.18E-14 1.80E-14 1.74E-14 2.30E-20 2.30E-20 2.26E-20 2.28E-20	error % 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02 5.80E-02	error 5.00E-15 5.01E-15 4.99E-15 4.17E-15 3.21E-15 1.34E-21 1.34E-21 1.34E-21 1.32E-21	total 4.79E-14 4.80E-14 4.82E-14 4.77E-14 4.32E-14 1.93E-18 1.93E-18 1.94E-18 1.92E-18	error % 2.30E-01 2.30E-01 2.29E-01 2.32E-01 1.84E-01 5.81E-02 5.81E-02 5.95E-02 5.80E-02	error 1.10E-14 1.10E-14 1.11E-14 1.11E-14 7.96E-15 1.12E-19 1.12E-19 1.16E-19 1.11E-19

activation rate

activation probablity per atom

L.VV.	thermal	error %	error	epi	error %	error	total	error %	error	thermal	error %	error	epi	error %	error	total	error %	error
	CI																	
1.00E-05	1.18E+04	7.15E-02	8.44E+02	1.41E+02	7.08E-02	1.00E+01	1.19E+04	7.08E-02	8.45E+02	1.15E-13	7.15E-02	8.19E-15	1.37E-15	7.08E-02	9.71E-17	1.16E-13	7.08E-02	8.21E-15
0.01%	1.18E+05	7.15E-02	8.43E+03	1.36E+03	7.08E-02	9.60E+01	1.19E+05	7.08E-02	8.44E+03	1.14E-13	7.15E-02	8.18E-15	1.32E-15	7.08E-02	9.32E-17	1.16E-13	7.08E-02	8.19E-15
0.10%	1.18E+06	7.15E-02	8.43E+04	1.44E+04	7.08E-02	1.02E+03	1.19E+06	7.08E-02	8.45E+04	1.14E-13	7.15E-02	8.18E-15	1.39E-15	7.08E-02	9.86E-17	1.16E-13	7.08E-02	8.20E-15
1%	1.18E+07	7.17E-02	8.46E+05	1.34E+05	7.10E-02	9.51E+03	1.19E+07	7.10E-02	8.47E+05	1.13E-13	7.17E-02	8.13E-15	1.29E-15	7.10E-02	9.14E-17	1.15E-13	7.10E-02	8.14E-15
10%	1.17E+08	7.10E-02	8.30E+06	1.44E+06	7.02E-02	1.01E+05	1.18E+08	7.02E-02	8.30E+06	1.06E-13	7.10E-02	7.54E-15	1.31E-15	7.02E-02	9.19E-17	1.08E-13	7.02E-02	7.55E-15
	Н																	
1.00E-05	7.55E+07	7.13E-02	5.38E+06	9.40E+05	7.05E-02	6.63E+04	7.64E+07	7.05E-02	5.39E+06	1.13E-15	7.13E-02	8.05E-17	1.41E-17	7.05E-02	9.92E-19	1.14E-15	7.05E-02	8.06E-17
0.01%	7.54E+07	7.13E-02	5.37E+06	9.30E+05	7.05E-02	6.56E+04	7.63E+07	7.05E-02	5.38E+06	1.13E-15	7.13E-02	8.04E-17	1.39E-17	7.05E-02	9.82E-19	1.14E-15	7.05E-02	8.05E-17
0.10%	7.54E+07	7.13E-02	5.37E+06	1.02E+06	7.05E-02	7.16E+04	7.64E+07	7.05E-02	5.39E+06	1.13E-15	7.13E-02	8.05E-17	1.52E-17	7.05E-02	1.07E-18	1.14E-15	7.05E-02	8.06E-17
1%	7.49E+07	7.15E-02	5.35E+06	9.40E+05	7.07E-02	6.65E+04	7.58E+07	7.07E-02	5.36E+06	1.13E-15	7.15E-02	8.05E-17	1.41E-17	7.07E-02	1.00E-18	1.14E-15	7.07E-02	8.06E-17
10%	6.74E+07	7.08E-02	4.77E+06	8.60E+05	7.00E-02	6.02E+04	6.83E+07	7.00E-02	4.78E+06	1.05E-15	7.08E-02	7.41E-17	1.34E-17	7.00E-02	9.35E-19	1.06E-15	7.00E-02	7.43E-17
	activation ra	ate								activation	probablity	per atom						
H. W.	activation ra	ate error %	error	ері	error %	error	total	error %	error	activation thermal	probablity error %	per atom error	ері	error %	error	total	error %	error
H. W.	activation ra thermal Cl	ate error %	error	ері	error %	error	total	error %	error	activation thermal	probablity error %	per atom error	epi	error %	error	total	error %	error
H. W. 1.00E-05	activation ra thermal Cl 1.32E+04	ate error % 6.96E-02	error 9.19E+02	epi 1.70E+02	error % 6.89E-02	error 1.17E+01	total	error % 6.89E-02	error 9.21E+02	activation thermal	probablity error % 6.96E-02	per atom error 8.07E-15	epi	error % 6.89E-02	error 1.03E-16	total	error % 6.89E-02	error 8.09E-15
H. W. 1.00E-05 0.01%	activation ra thermal Cl 1.32E+04 1.32E+05	ate error % 6.96E-02 6.96E-02	error 9.19E+02 9.19E+03	epi 1.70E+02 1.70E+03	error % 6.89E-02 6.96E-02	error 1.17E+01 1.18E+02	total 1.34E+04 1.34E+05	error % 6.89E-02 6.96E-02	error 9.21E+02 9.31E+03	activation thermal 1.16E-13 1.16E-13	probablity error % 6.96E-02 6.96E-02	per atom error 8.07E-15 8.07E-15	epi 1.49E-15 1.49E-15	error % 6.89E-02 6.96E-02	error 1.03E-16 1.04E-16	total 1.17E-13 1.17E-13	error % 6.89E-02 6.96E-02	error 8.09E-15 8.17E-15
H. W. 1.00E-05 0.01% 0.10%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06	ate error % 6.96E-02 6.96E-02 7.23E-02	error 9.19E+02 9.19E+03 9.72E+04	epi 1.70E+02 1.70E+03 1.50E+04	error % 6.89E-02 6.96E-02 7.16E-02	error 1.17E+01 1.18E+02 1.07E+03	total 1.34E+04 1.34E+05 1.36E+06	error % 6.89E-02 6.96E-02 7.16E-02	error 9.21E+02 9.31E+03 9.73E+04	activation thermal 1.16E-13 1.16E-13 1.18E-13	probablity error % 6.96E-02 6.96E-02 7.23E-02	per atom error 8.07E-15 8.07E-15 8.53E-15	epi 1.49E-15 1.49E-15 1.32E-15	error % 6.89E-02 6.96E-02 7.16E-02	error 1.03E-16 1.04E-16 9.43E-17	total 1.17E-13 1.17E-13 1.19E-13	error % 6.89E-02 6.96E-02 7.16E-02	error 8.09E-15 8.17E-15 8.54E-15
H. W. 1.00E-05 0.01% 0.10% 1%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07	ate error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05	activation thermal 1.16E-13 1.16E-13 1.18E-13 1.18E-13	probablity error % 6.96E-02 7.23E-02 7.23E-02	per atom error 8.07E-15 8.07E-15 8.53E-15 8.50E-15	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07 1.33E+08	ate error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02 6.87E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05 9.12E+06	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05 1.58E+06	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04 1.07E+05	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07 1.34E+08	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05 9.14E+06	activation thermal 1.16E-13 1.16E-13 1.18E-13 1.18E-13 1.10E-13	error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02 6.87E-02	per atom error 8.07E-15 8.07E-15 8.53E-15 8.50E-15 7.54E-15	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15 1.31E-15	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17 8.88E-17	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13 1.11E-13	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15 7.55E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07 1.33E+08 D	ate error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02 6.87E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05 9.12E+06	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05 1.58E+06	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04 1.07E+05	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07 1.34E+08	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05 9.14E+06	activation thermal 1.16E-13 1.16E-13 1.18E-13 1.18E-13 1.10E-13	probablity error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02 6.87E-02	per atom error 8.07E-15 8.07E-15 8.53E-15 8.50E-15 7.54E-15	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15 1.31E-15	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17 8.88E-17	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13 1.11E-13	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15 7.55E-15
H. W. 1.00E-05 0.01% 0.10% 1% 10%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07 1.33E+07 1.33E+05	ate error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05 9.12E+06 8.04E+03	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05 1.58E+06 1.54E+03	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04 1.07E+05 1.05E+02	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07 1.34E+08 1.18E+05	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05 9.14E+06 8.04E+03	activation thermal 1.16E-13 1.16E-13 1.18E-13 1.18E-13 1.10E-13 1.75E-18	probablity error % 6.96E-02 6.96E-02 7.23E-02 6.87E-02 6.93E-02	per atom error 8.07E-15 8.07E-15 8.53E-15 8.50E-15 7.54E-15 1.21E-19	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15 1.31E-15 2.32E-20	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17 8.88E-17	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13 1.11E-13 1.77E-18	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15 7.55E-15 1.21E-19
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07 1.33E+08 D 1.16E+05 1.16E+05	ate error % 6.96E-02 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02 6.93E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05 9.12E+06 8.04E+03 8.04E+03	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05 1.58E+06 1.54E+03 1.54E+03	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04 1.07E+05 1.05E+02 1.05E+02	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07 1.34E+08 1.18E+05 1.18E+05	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05 9.14E+06 8.04E+03 8.04E+03	activation thermal 1.16E-13 1.16E-13 1.18E-13 1.18E-13 1.10E-13 1.75E-18 1.75E-18	probablity error % 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02 6.93E-02 6.93E-02	per atom error 8.07E-15 8.07E-15 8.53E-15 8.50E-15 7.54E-15 1.21E-19 1.21E-19	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15 1.31E-15 2.32E-20 2.32E-20	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17 8.88E-17 1.58E-21 1.58E-21	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13 1.11E-13 1.11E-13 1.77E-18 1.77E-18	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15 7.55E-15 1.21E-19 1.21E-19
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01% 0.10%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07 1.33E+08 D 1.16E+05 1.16E+05 1.18E+05	ate error % 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02 6.93E-02 7.20E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05 9.12E+06 8.04E+03 8.04E+03 8.49E+03	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05 1.58E+06 1.54E+03 1.54E+03 1.57E+03	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04 1.07E+05 1.05E+02 1.05E+02 1.12E+02	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07 1.34E+08 1.18E+05 1.18E+05 1.19E+05	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05 9.14E+06 8.04E+03 8.04E+03 8.49E+03	activation thermal 1.16E-13 1.18E-13 1.18E-13 1.18E-13 1.10E-13 1.75E-18 1.75E-18 1.78E-18	probablity error % 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02 6.93E-02 7.20E-02	error 8.07E-15 8.07E-15 8.53E-15 8.50E-15 7.54E-15 1.21E-19 1.21E-19 1.28E-19	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15 1.31E-15 2.32E-20 2.32E-20 2.37E-20	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17 8.88E-17 1.58E-21 1.58E-21 1.69E-21	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13 1.11E-13 1.77E-18 1.77E-18 1.80E-18	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 6.84E-02 7.11E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15 7.55E-15 1.21E-19 1.21E-19 1.28E-19
H. W. 1.00E-05 0.01% 0.10% 1% 10% 1.00E-05 0.01% 0.10% 1%	activation ra thermal Cl 1.32E+04 1.32E+05 1.34E+06 1.34E+07 1.33E+08 D 1.16E+05 1.16E+05 1.16E+05	ate error % 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02 6.93E-02 7.20E-02 7.20E-02	error 9.19E+02 9.19E+03 9.72E+04 9.68E+05 9.12E+06 8.04E+03 8.04E+03 8.49E+03 8.37E+03	epi 1.70E+02 1.70E+03 1.50E+04 1.48E+05 1.58E+06 1.54E+03 1.57E+03 1.57E+03	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02 7.11E-02	error 1.17E+01 1.18E+02 1.07E+03 1.06E+04 1.07E+05 1.05E+02 1.05E+02 1.12E+02 1.12E+02 1.12E+02	total 1.34E+04 1.34E+05 1.36E+06 1.35E+07 1.34E+08 1.18E+05 1.18E+05 1.19E+05 1.18E+05	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02 7.11E-02	error 9.21E+02 9.31E+03 9.73E+04 9.69E+05 9.14E+06 8.04E+03 8.04E+03 8.49E+03 8.37E+03	activation thermal 1.16E-13 1.18E-13 1.18E-13 1.18E-13 1.10E-13 1.75E-18 1.75E-18 1.78E-18 1.77E-18	probablity error % 6.96E-02 7.23E-02 7.23E-02 6.87E-02 6.93E-02 7.20E-02 7.20E-02 7.20E-02	error 8.07E-15 8.07E-15 8.53E-15 8.50E-15 7.54E-15 1.21E-19 1.28E-19 1.27E-19	epi 1.49E-15 1.49E-15 1.32E-15 1.30E-15 1.31E-15 2.32E-20 2.32E-20 2.37E-20 2.35E-20	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02 7.11E-02	error 1.03E-16 1.04E-16 9.43E-17 9.30E-17 8.88E-17 1.58E-21 1.58E-21 1.69E-21 1.67E-21	total 1.17E-13 1.17E-13 1.19E-13 1.19E-13 1.11E-13 1.77E-18 1.80E-18 1.79E-18	error % 6.89E-02 6.96E-02 7.16E-02 7.16E-02 6.80E-02 6.84E-02 6.84E-02 7.11E-02 7.11E-02	error 8.09E-15 8.17E-15 8.54E-15 8.51E-15 7.55E-15 1.21E-19 1.21E-19 1.28E-19 1.27E-19

Short Code with Surface Source

surface source С ----c Tube cell for my test (Alex Zhou 2009) С -----9001 9924 -1.17 -9001 \$ solution inside container 9002 99 -.93 -9002 +9001 \$ container of polyethylene 9101 9990 -8.65 -9101 +9002 \$ Cd foil 9012 1 -1 -111 +121 -9010 +9101 \$ cell of surface source С С ----c Outside world с -----2999 0 +111: -121: +9010 c surface card С ----c upper and lower bounds С -----111 pz +3.3 \$ Upper cap of surface source 121 PZ -1.7 \$ Lower cap of surface source С С ----c Tube surface for my test (Alex Zhou 2009) С -----

9001 rcc +19.59102 +11.31062 0.05 0 0 1.5 0.5 \$sample space inside container 9002 rcc +19.59102 +11.31062 0 0 0 1.6 0.55 \$container of polyethylene 9101 rcc +19.59102 +11.31062 -.01 0 0 1.62 0.56 \$Cd foil 9010 c/z +19.59102 +11.31062 1.5 \$ surface source bound

c data card

С -----

c Tube material for my test (Alex Zhou 2009)

- С -----
- m1 1001 0.66667

8016 0.33333

m99 1001 2

6012 1

MT99 POLY.60t \$ CH2, polyethylene

m9920 1002 -.20000 \$.001% NaBr heavy water solution

8016 -.79999

11023 -2.24E-6

35081 -3.88E-6

35079 - 3.88E-6

m9921 1002 -.2000 \$.01% NaBr heavy water solution

8016 -.7999

11023 -2.24E-5

35081 -3.88E-5

35079 - 3.88E-5

m9922 1002 -.200 \$.1% NaBr heavy water solution

8016 -.799

11023 -2.24E-4

35081 -3.88E-4

35079 - 3.88E-4

m9923 1002 -.20 \$ 1% NaBr heavy water solution

8016 -.79

11023 -2.24E-3

35081 -3.88E-3

35079 -3.88E-3

m9924 1002 -.2 \$.001% NaBr heavy water solution

8016 -.7

11023 -2.24E-2

35081 -3.88E-2

35079 - 3.88E-2

m9992 2001 .667 \$ water

8016 .333

m9990 48000 1 \$ cd

MT9992 hwtr.60c

m9993 11023 1 \$ Na

m9994 17000 1 \$ Cl

m9999 35079 .5069 \$ Br

35081.4931

m9995 1001 1 \$ H

m9996 1002 1 \$ D2 heavey water

MT9 POLY.60t

С

mode n p

c phys:p 100 0 0 0 1 -102 \$ -102, Analog sampling, models only, multigroup + line emission

imp:n 1 3r 0

imp:p 1 3r 0 c energy band: thermal, epithermal, and fast ssr old -9010 -111 121 E4 1E-6 1e-3 1 F4:n 9001 FM4 (2.98e+11 9999 -2) (2.76e+13 9996 -2) FC4 print

(The long code with TRIGA deck takes 67 pages; to save paper, I will submit the electronic version of the code upon request)

Long Code with TRIGA Deck

c------UT TRIGA -Core Model -07/12/2007 ------С С ----c Beginning of Cell Card Specification С -----С ----c Core region с -----1099 1 -1.0 -202 +206 -231 +232 -233 +234 -235 +236 -241 +242 -243 +244 -245 +246 +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5112 +5113 +5114 +5117 +5118 +5119 +5120

```
+1963 +1964 +1965 +1966 $ Mapping experiment
```

- +5101
- +1940 \$ 6L

```
+5047 +5073 +5074 $ Elements in 3L
```

+2000 +2001 +2002 +2003 +2004 +2005 +2006

- c +5111 +5115
- c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L
- c +961\$3L
- c +5118 \$ PNT
- С

```
520 0 -201 +207 -1963 fill=101 (10) $ Flux mapping water cells
```

```
521 0 -201 +207 -1964 fill=101 (11)
```

```
522 0 -201 +207 -1965 fill=101 (12)
```

```
523 0 -201 +207 -1966 fill=101 (13)
```

```
С
```

```
600 0 -110 +120 -5000 fill=82 (100) $ A1 Fuel & graphite elements
```

```
601 0 -110 +120 -5001 fill=8 (101) $ B1 Control rods
```

- 602 0 -110 +120 -5002 fill=8 (102) \$ B2
- 603 0 -110 +120 -5003 fill=8 (103) \$ B3
- 604 0 -110 +120 -5004 fill=8 (104) \$ B4
- 605 0 -110 +120 -5005 fill=8 (105) \$ B5
- 606 0 -110 +120 -5006 fill=8 (106) \$ B6
- 607 0 -110 +120 -5007 fill=7 (107) \$ C1 -CR(T)
- 608 0 -110 +120 -5008 fill=8 (108) \$ C2
- 609 0 -110 +120 -5009 fill=8 (109) \$ C3
- 610 0 -110 +120 -5010 fill=8 (110) \$ C4
- 611 0 -110 +120 -5011 fill=8 (111) \$ C5

612 0 -110 +120 -5012 fill=8 (112) \$ C6

613 0 -110 +120 -5013 fill=9 (113) \$ C7 -CR(R)

- 614 0 -110 +120 -5014 fill=8 (114) \$ C8
- 615 0 -110 +120 -5015 fill=8 (115) \$ C9
- 616 0 -110 +120 -5016 fill=8 (116) \$ C10
- 617 0 -110 +120 -5017 fill=8 (117) \$ C11
- 618 0 -110 +120 -5018 fill=8 (118) \$ C12
- 619 0 -110 +120 -5019 fill=8 (119) \$ D1
- 620 0 -110 +120 -5020 fill=8 (120) \$ D2
- 621 0 -110 +120 -5021 fill=8 (121) \$ D3
- 622 0 -110 +120 -5022 fill=8 (122) \$ D4
- 623 0 -110 +120 -5023 fill=8 (123) \$ D5
- 624 0 -110 +120 -5024 fill=9 (124) \$ D6 -CR(S)
- 625 0 -110 +120 -5025 fill=8 (125) \$ D7
- 626 0 -110 +120 -5026 fill=8 (126) \$ D8
- 627 0 -110 +120 -5027 fill=8 (127) \$ D9
- 628 0 -110 +120 -5028 fill=8 (128) \$ D10
- 629 0 -110 +120 -5029 fill=8 (129) \$ D11
- 630 0 -110 +120 -5030 fill=8 (130) \$ D12
- 631 0 -110 +120 -5031 fill=8 (131) \$ D13
- 632 0 -110 +120 -5032 fill=9 (132) \$ D14 -CR(S)
- 633 0 -110 +120 -5033 fill=8 (133) \$ D15
- 634 0 -110 +120 -5034 fill=8 (134) \$ D16
- 635 0 -110 +120 -5035 fill=8 (135) \$ D17
- 636 0 -110 +120 -5036 fill=8 (136) \$ D18
- 637 0 -110 +120 -5037 fill=8 (137) \$ E1
- 638 0 -110 +120 -5038 fill=8 (138) \$ E2

c 639 0 -110 +120 -5039 fill=8 (139) \$ E3 c 640 0 -110 +120 -5040 fill=8 (140) \$ E4 641 0 -110 +120 -5041 fill=8 (141) \$ E5 642 0 -110 +120 -5042 fill=8 (142) \$ E6 643 0 -110 +120 -5043 fill=8 (143) \$ E7 644 0 -110 +120 -5044 fill=8 (144) \$ E8 645 0 -110 +120 -5045 fill=8 (145) \$ E9 646 0 -110 +120 -5046 fill=8 (146) \$ E10 647 0 -110 +120 -5047 fill=8 (147) \$ E11 648 0 -110 +120 -5048 fill=8 (148) \$ E12 649 0 -110 +120 -5049 fill=8 (149) \$ E13 650 0 -110 +120 -5050 fill=8 (150) \$ E14 651 0 -110 +120 -5051 fill=8 (151) \$ E15 652 0 -110 +120 -5052 fill=8 (152) \$ E16 653 0 -110 +120 -5053 fill=8 (153) \$ E17 654 0 -110 +120 -5054 fill=8 (154) \$ E18 655 0 -110 +120 -5055 fill=8 (155) \$ E19 656 0 -110 +120 -5056 fill=8 (156) \$ E20 657 0 -110 +120 -5057 fill=8 (157) \$ E21 658 0 -110 +120 -5058 fill=8 (158) \$ E22 659 0 -110 +120 -5059 fill=8 (159) \$ E23 660 0 -110 +120 -5060 fill=8 (160) \$ E24 661 0 -110 +120 -5061 fill=8 (161) \$ F1 662 0 -110 +120 -5062 fill=8 (162) \$ F2 c 663 0 -110 +120 -5063 fill=8 (163) \$ F3 c 664 0 -110 +120 -5064 fill=8 (164) \$ F4 c 665 0 -110 +120 -5065 fill=8 (165) \$ F5
666 0 -110 +120 -5066 fill=8 (166) \$ F6 667 0 -110 +120 -5067 fill=8 (167) \$ F7 668 0 -110 +120 -5068 fill=8 (168) \$ F8 669 0 -110 +120 -5069 fill=8 (169) \$ F9 670 0 -110 +120 -5070 fill=8 (170) \$ F10 671 0 -110 +120 -5071 fill=8 (171) \$ F11 672 0 -110 +120 -5072 fill=8 (172) \$ F12 673 0 -110 +120 -5073 fill=8 (173) \$ F13 674 0 -110 +120 -5074 fill=8 (174) \$ F14 675 0 -110 +120 -5075 fill=8 (175) \$ F15 676 0 -110 +120 -5076 fill=8 (176) \$ F16 677 0 -110 +120 -5077 fill=8 (177) \$ F17 678 0 -110 +120 -5078 fill=8 (178) \$ F18 679 0 -110 +120 -5079 fill=8 (179) \$ F19 680 0 -110 +120 -5080 fill=8 (180) \$ F20 681 0 -110 +120 -5081 fill=8 (181) \$ F21 682 0 -110 +120 -5082 fill=8 (182) \$ F22 683 0 -110 +120 -5083 fill=8 (183) \$ F23 684 0 -110 +120 -5084 fill=8 (184) \$ F24 685 0 -110 +120 -5085 fill=8 (185) \$ F25 686 0 -110 +120 -5086 fill=8 (186) \$ F26 687 0 -110 +120 -5087 fill=8 (187) \$ F27 688 0 -110 +120 -5088 fill=8 (188) \$ F28 689 0 -110 +120 -5089 fill=8 (189) \$ F29 690 0 -110 +120 -5090 fill=8 (190) \$ F30 691 0 -110 +120 -5091 fill=6 (191) \$ G2 692 0 -110 +120 -5092 fill=8 (192) \$ G3

c 693 0 -110 +120 -5093 fill=8 (193) \$ G4 c 694 0 -110 +120 -5094 fill=8 (194) \$ G5 695 0 -110 +120 -5095 fill=8 (195) \$ G6 696 0 -110 +120 -5096 fill=8 (196) \$ G8 697 0 -110 +120 -5097 fill=8 (197) \$ G9 698 0 -110 +120 -5098 fill=8 (198) \$ G10 699 0 -110 +120 -5099 fill=8 (199) \$ G11 700 0 -110 +120 -5100 fill=8 (200) \$ G12 701 0 -110 +120 -5101 fill=8 (201) \$ G14 702 0 -110 +120 -5102 fill=8 (202) \$ G15 703 0 -110 +120 -5103 fill=6 (203) \$ G16 704 0 -110 +120 -5104 fill=8 (204) \$ G17 705 0 -110 +120 -5105 fill=8 (205) \$ G18 706 0 -110 +120 -5106 fill=6 (206) \$ G20 707 0 -110 +120 -5107 fill=8 (207) \$ G21 708 0 -110 +120 -5108 fill=8 (208) \$ G22 709 0 -110 +120 -5109 fill=8 (209) \$ G23 710 0 -110 +120 -5110 fill=6 (210) \$ G24 c 711 0 -110 +120 -5111 fill=8 (211) \$ G26 712 0 -110 +120 -5112 fill=8 (212) \$ G27 713 0 -110 +120 -5113 fill=8 (213) \$ G28 714 0 -110 +120 -5114 fill=8 (214) \$ G29 c 715 0 -110 +120 -5115 fill=8 (215) \$ G30 c 716 0 -110 +120 -5116 fill=8 (216) \$ G32 \$ Location of source 717 0 -110 +120 -5117 fill=6 (217) \$ G33 \$ Graphite c 718 0 -110 +120 -5118 fill=8 (218) \$ G34 \$ Location of PNT 719 0 -110 +120 -5119 fill=6 (219) \$ G35 \$ Graphite

```
720 0 -110 +120 -5120 fill=6 (220) $ G36
С
750 0 -110 +120 -1940 fill=96 (50) $ Sleeve irradiator
С
c 751 0 -110 +120 -961 fill=40 (20) $ 3L(Pb) irradiator
С
c 751 0 -110 +120 -961 fill=45 (20) $ 3L(Cd) irradiator
С
c 752 0 -110 +120 -5118 fill=30 (218) $ tPNT irradiator
С
c 752 0 -110 +120 -5118 fill=35 (218) $ ePNT irradiator
С
С -----
c Lower grid plate region
С -----
1 2 - 2.7 - 206 + 207
   -211 +212 -213 +214 -215 +216
   -221 +222 -223 +224 -225 +226
   +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009
   +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019
   +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029
   +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038
    +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049
   +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059
   +5060 +5061 +5062 +5066 +5067 +5068 +5069
   +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079
   +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089
```

+5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099

+5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109

+5110 +5112 +5113 +5114 +5117 +5118 +5119

+5120

+5101

+1963 +1964 +1965 +1966 \$ Mapping experiment

+1940 \$ 6L

+5047 +5073 +5074 \$ Elements in 3L

c +5111 +5115

c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L

c +961 \$ 3L

c +5118 \$ PNT

С

С -----

c Upper grid plate region

С -----

2 2 -2.7 -203 -201 +202

+5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109

```
+5110 +5112 +5113 +5114 +5117 +5118 +5119
```

+5120

+5101

```
+1963 +1964 +1965 +1966 $ Mapping experiment
```

+1940 \$ 6L

+5047 +5073 +5074 \$ Elements in 3L

- c +5111 +5115
- c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L
- c +961 \$ 3L
- c +5118 \$ PNT
- С

```
С -----
```

```
c Reactor core structure
```

С -----

```
c Inner core shroud
```

```
С -----
```

10 2 -2.7 -300 +302 -303 +202 \$ Alignment ring

- 11 2 -2.7 -300 -202 +352 \$ Alignment ring
 - (+231: -232: +241: -242:
 - +233: -234: +243: -244:
 - +235: -236: +245: -246)
- 12 2 -2.7 +305 -306 +307 \$ Shroud load ring
 - (-311 +312 -321 +322
 - -313 +314 -323 +324
 - -315 +316 -325 +326)
- 13 2 -2.7 -301 -352 +304 \$ Alignment ring

(+331: -332: +341: -342:

+333: -334: +343: -344:

+335: -336: +345: -346)

- 14 2 -2.7 +231 -331 -233 +236 \$ Reflector plate -352 +306
- 15 2 -2.7 -232 +332 +234 -235 \$ Reflector plate -352 +306
- 16 2 -2.7 +241 -341 -343 -345 \$ Reflector, bp3 -352 +306 +363
- 17 2 -2.7 -242 +342 +344 +346 \$ Reflector plate -352 +306
- 18 2 -2.7 +233 -333 -331 -343 \$ Reflector plate -352 +306
- 19 2 -2.7 -234 +334 +332 +344 \$ Reflector plate -352 +306
- 20 2 -2.7 +235 -335 +332 -345 \$ Reflector plate -352 +306
- 21 2 -2.7 -236 +336 -331 +346 \$ Reflector plate -352 +306
- 22 2 -2.7 +243 -343 -241 -233 \$ Reflector plate -352 +306
- 23 2 -2.7 -244 +344 +242 +234 \$ Reflector plate -352 +306
- 24 2 -2.7 +245 -345 -241 -235 \$ Reflector plate -352 +306
- 25 2 -2.7 -246 +346 +242 +236 \$ Reflector plate

-352 +306

26 2 -2.7 +241 -363 +364 -360 \$ Reflector BP3

27 2 -2.7 -361 +362 -100 \$ Reflector BP1&5

С

C -----

c Reflector outer shroud structure

C -----

30 2 -2.7 -355 +361 \$ Reflector cylin

-350 +351 -352 +353

31 2 -2.7 +355 +363 \$ Reflector cylin

-350 +351 -352 +353

32 2 -2.7 -370 +371 -372 +373 \$ Cylinder, top

33 2 -2.7 -374 -375 +376 \$ Cylinder, bot

(+331: -332: +341: -342:

+333: -334: +343: -344:

+335: -336: +345: -346)

34 2 -2.7 -370 +374 -375 +377 \$ Reflector edge ring

35 2 -2.7 -352 -371 +380 +381 \$ Reflector RSR unit

36 2 -2.7 -380 +300 +381 -382 \$ Reflector RSR unit

37 2 -2.7 -352 +301 -300 +381 \$ Reflector RSR unit

38 1 -1.0 +370 -351 -377 +120 \$ Edge ring error

С

С -----

c Reflector graphite moderator

С -----

40 4 -1.60 -400 +401 -402 +403 \$ Reflector graphite

41 4 -1.60 -400 -403 +375 -404 +361

(+411: -412: +421: -422:

+413: -414: +423: -424:

+415: -416: +425: -426)

- #(-361 +405) \$ Graphite, bp1&5
- 42 4 -1.60 (-400 -403 +375 +404 +363

(+411: -412: +421: -422:

+413: -414: +423: -424:

+415: -416: +425: -426))

#(-406 +408) #(-407 +409) \$ Graphite, bp3

43 8 -1.15e-3 (+371 -351 -373 +403) #40 \$ Graphite void?????

44 8 -1.15e-3 (-351 -403 +375 -404 +361

(+331: -332: +341: -342:

+333: -334: +343: -344:

+335: -336: +345: -346)) #41 \$ graphite void

45 8 -1.15e-3 (-351 -403 +375 +404 +363

(+331: -332: +341: -342:

+333: -334: +343: -344:

+335: -336: +345: -346)) #42 \$ graphite void

46 8 -1.15e-3 -304 +403 -301

(+331: -332: +341: -342:

+333: -334: +343: -344:

+335: -336: +345: -346) \$ graphite void

47 8 -1.15e-3 +301 -371 +403 -381 \$ graphite void

С

С -----

c Pool coolant water

C -----

50 1 -1.0 -203 +201 -110 \$ Above upper grid plate

 $\begin{array}{r} +5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 \\ +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 \\ +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029 \\ +5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 \\ +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 \\ +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 \\ +5060 +5061 +5062 +5066 +5067 +5068 +5069 \\ +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 \\ +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 \\ +5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099 \\ +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 \\ +5110 +5112 +5113 +5114 +5117 +5118 +5119 \\ +5120 \end{array}$

+5101

+1940 \$ 6L

+5047 +5073 +5074 \$ Elements in 3L

- c +5111 +5115
- c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L
- c +961 \$ 3L

С

51 1 -1.0 +203 -302 +202 -110 \$ Upper gridplate

- 52 1 -1.0 +302 -300 +303 -110 \$ Upper gridplate
- 53 1 -1.0 -305 -306 +307 \$ Lower gridplate

+5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009 +5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019 +5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029

c +5118 \$ PNT

+5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038 +5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049 +5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059 +5060 +5061 +5062 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5112 +5113 +5114 +5117 +5118 +5119 +5120 +5101

+1940 \$ 6L

+5047 +5073 +5074 \$ Elements in 3L

- c +5111 +5115
- c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L
- c +961 \$ 3L
- c +5118 \$ PNT
- С

54 1 -1.0 -307 +120 \$ Lower gridplate

(-311 +312 -321 +322

-313 +314 -323 +324

-315 +316 -325 +326)

+5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009

+5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019

+5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029

+5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038

+5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049

+5060 +5061 +5062 +5066 +5067 +5068 +5069 +5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5112 +5113 +5114 +5117 +5118 +5119 +5120

+5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059

+5101

+1940 \$ 6L

+5047 +5073 +5074 \$ Elements in 3L

c +5111 +5115

- c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L
- c +961 \$ 3L
- c +5118 \$ PNT
- С

55 1 -1.0 -207 +306 \$ Lower gridplate

(-231 +232 -241 +242

-233 +234 -243 +244

-235 +236 -245 +246)

+5000 +5001 +5002 +5003 +5004 +5005 +5006 +5007 +5008 +5009

+5010 +5011 +5012 +5013 +5014 +5015 +5016 +5017 +5018 +5019

+5020 +5021 +5022 +5023 +5024 +5025 +5026 +5027 +5028 +5029

+5030 +5031 +5032 +5033 +5034 +5035 +5036 +5037 +5038

+5041 +5042 +5043 +5044 +5045 +5046 +5048 +5049

+5050 +5051 +5052 +5053 +5054 +5055 +5056 +5057 +5058 +5059

+5060 +5061 +5062 +5066 +5067 +5068 +5069

+5070 +5071 +5072 +5075 +5076 +5077 +5078 +5079 +5080 +5081 +5082 +5083 +5084 +5085 +5086 +5087 +5088 +5089 +5090 +5091 +5092 +5095 +5096 +5097 +5098 +5099 +5100 +5102 +5103 +5104 +5105 +5106 +5107 +5108 +5109 +5110 +5112 +5113 +5114 +5117 +5118 +5119 +5120

- +5101
- +1940 \$ 6L

+5047 +5073 +5074 \$ Elements in 3L

- c +5111 +5115
- c +5039 +5040 +5063 +5064 +5065 +5093 +5094 \$ Elements in 6L
- c +961 \$ 3L
- c +5118 \$ PNT
- С
- 56 1 -1.0 -206 +207 \$ Lower gridplate
 - (+211: -212: +221: -222:
 - +213: -214: +223: -224:
 - +215: -216: +225: -226)
 - (-231 +232 -241 +242
 - -233 +234 -243 +244
 - -235 +236 -245 +246)
- 57 1 -1.0 -351 +371 +372 -110 \$ Upper reflector
- 58 1 -1.0 -374 -376 +120 \$ Lower reflector
 - (+311: -312: +321: -322:
 - +313: -314: +323: -324:
 - +315: -316: +325: -326)
- 59 1 -1.0 +306 -376 \$ Lower reflector

(+331: -332: +341: -342: +333: -334: +343: -344: +335: -336: +345: -346) (-311 +312 -321 +322 -313 +314 -323 +324 -315 +316 -325 +326)

```
С
```

```
С -----
```

- c Pool coolant water
- С -----

950 8 -1.15e-3 -150 +160 -165

*TRCL (-60.00 00.00 00.00 00 90 90 90 00 90) \$NP

951 8 -1.15e-3 -150 +160 -165

*TRCL (57.96 -15.53 00.00 00 90 90 90 00 90) \$NPP

952 8 -1.15e-3 -150 +160 -165

*TRCL (42.43 42.43 00.00 00 90 90 90 00 90) \$FC

- 60 1 -1.0 +350 -355 +361
 - (-100 -110 +120) #950 #951 \$ Beam ports 1&5
- 61 1 -1.0 +350 +355 +363
 - (-100 -110 +120) #950 #952
 - #(-406 +408) #(-407 +409) \$ Beam ports 2&4
- 62 1 -1.0 -363 +364 +360 -100 \$ Reflector BP3
- 63 1 -1.0 -350 +351 +352 -110 \$ Reflector cylinder
- 64 1 -1.0 -350 +351 -353 +120 \$ Reflector cylinder
- 65 1 -1.0 -370 +374 -377 +120 \$ Reflector edgering
- 66 1 -1.0 +300 -371 +303 -110 \$ RSR removal
- 67 2 -2.7 +370 -351 -375 +377 \$ edge ring error

68 2 -2.7 -351 +370 -372 +373 \$ edge ring error

С -----

c BP2, BP4 structure

С -----

71 2 -2.7 (-406 +430) +350 +355 -100 \$ Reflector BP2

72 2 -2.7 (-407 +440) +350 +355 -100 \$ Reflector BP4

С

С -----

c BP3 structure

С -----

73 2 -2.7 +461 -462 -464 \$ Reflector BP3

74 2 -2.7 -463 +464 +461 -100 \$ Reflector BP3

75 1 -1.0 +241 -364 -461 \$ Reflector BP3

76 1 -1.0 +463 -364 +461 -100 \$ Reflector BP3

С

С -----

c BP1, BP3, BP5 cavity

С -----

77 8 -1.15e-3 +450 -362 -451 \$ Reflector BP1

78 8 -1.15e-3 +462 -464 -453 \$ Reflector BP3

798-1.15e-3-450-362+455

С

С -----

c BP1, BP2, BP3, BP4, BP5 cavity

С -----

81 8 -1.15e-3 +451 -362 -100 #95 VOL=1 \$ Reflector BP1

82 8 -1.15e-3 (-430 +408) +350 -100 #96 VOL=1 \$ Reflector BP2

```
83 8 -1.15e-3 +453 -464 -100 #97 VOL=1 $ Reflector BP3
84 8 -1.15e-3 (-440 +409) +350 -100 #98 VOL=1 $ Reflector BP4
85 8 -1.15e-3 -455 -362 -100 #99 VOL=1 $ Reflector BP5
С
958-1.15e-3-171
96 8 -1.15e-3 -172
97 8 -1.15e-3 -173
98 8 -1.15e-3 -174
998-1.15e-3-175
С
С -----
c Rotary specimen rack (RSR) unit
С -----
90 8 -1.15e-3 +300 -303 +352 -371 $ RSR unit
91 8 -1.15e-3 +300 +304 -352 -380 $ RSR unit
92 8 -1.15e-3 +300 -304 -380 +382 $ RSR unit
С
С -----
c Fill universe for reactor core grid
С -----
c Graphite reflector elements, U=6
С -----
100 1 -1.0 #101 #102 #103
    #104 #105 #106 u=6
101 2 -2.7 -623 -609 +206 u=6 $ lower fitting
102 2 -2.7 -605 -620 +621 u=6 $ end closure
103 4 -1.60 -605 -621 +622 u=6 $ graphite
```

104 2 -2.7 -605 -622 +623 u=6 \$ end closure 105 2 -2.7 +620 -609 -201 u=6 \$ upper fitting 106 2 -2.7 +605 -607 -620 +623 u=6 \$ element clad c

```
C -----
```

c Transient control rod, U=7

С -----

110 1 -1.0 #111 #112 #113 #114

#115 #116 #117 u=7

111 2 -2.7 -500 -510 +511 u=7 \$ end plug

112 2 -2.7 -500 -511 +512 u=7 \$ spacer plug

113 6 -2.52 -500 -512 +513 u=7 \$ absorber

114 2 -2.7 -500 -513 +514 u=7 \$ spacer plug

115 8 -1.15e-3 -500 -514 +515 u=7 \$ air follower

116 3 -7.8 -500 -515 +516 u=7 \$ end plug

117 3 -7.8 +500 -502 -510 +516 u=7 \$ element clad

С

С -----

c Standard triga fuel element, U=8

С -----

c Temperature in fuel rod assumed 300 C at full power

120 1 -1.0 #121 #122 #123

#124 #125 #126

#127 #128 #129 u=8 \$ element clad

121 3 -7.8 -615 -603 +206 u=8 \$ lower fitting

122 3 -7.8 -600 -610 +611 u=8 \$ end closure

123 4 -1.60 -600 -611 +612 u=8 \$ graphite

124 5 -6.05 -600 -612 +613 +650 u=8 \$ TMP1=4.939E-8 \$ fuel 125 7 -6.49 -650 -612 +613 u=8 \$ Zr rod 126 4 -1.60 -600 -613 +614 u=8 \$ graphite 127 3 -7.8 -600 -614 +615 u=8 \$ end closure 128 3 -7.8 +610 -603 -201 u=8 \$ upper fitting 129 3 -7.8 +600 -602 -610 +615 u=8 \$ element clad С С ----c Fuel follower control rods (reg, shim1, shim2), U=9 С ----c Temperature assumed 300 C at full power 130 1 -1.0 #131 #132 #133 #134 #135 #136 #137 #138 #139 #140 #141 #142 #143 u=9 131 3 -7.8 -505 -520 +521 u=9 \$ end plug 132 8 -1.15e-3 -505 -521 +522 u=9 \$ top space 133 2 -2.7 -505 -522 +523 u=9 \$ spacer plug 134 8 -1.15e-3 -505 -523 +524 u=9 \$ void gap 135 6 -2.52 -505 -524 +525 u=9 \$ absorber, inside 505,524; outside 525, 136 2 -2.7 -505 -525 +526 u=9 \$ spacer plug 137 8 -1.15e-3 -505 -526 +527 u=9 \$ void gap 138 5 -6.05 -505 -527 +528 +550 u=9 \$ TMP1=4.939E-8 \$ fuel follower 139 7 -6.49 -550 -527 +528 u=9 \$ Zr rod 140 2 -2.7 -505 -528 +529 u=9 \$ spacer plug 141 8 -1.15e-3 -505 -529 +530 u=9 \$ bot space 142 3 -7.8 -505 -530 +531 u=9 \$ end plug 143 3 -7.8 +505 -507 -520 +531 u=9 \$ element clad

с -----

c Modifications and experiment components

С -----

c Pneumatic transfer system (PTS) without Cd, U=30 -JDB -4/13/2007

с -----

300 1 -1.0 #301 #302 #303

#304 #305 #306

#307 #308 U=30 \$ Water surrounding PTS

301 2 -2.7 -910 +911 +933 U=30 \$ AI transport tube

302 8 -1.15e-3 -911 +912 +933 U=30 \$ Air gap

303 2 -2.7 -912 +913 +915 U=30 \$ AI sample tube

304 8 -1.15e-3 -913 +915 #308 U=30 \$ Sample location

305 2 -2.7 -910 +934 -933 U=30 \$ AI transport tube bottom

306 2 -2.7 -912 +931 -915 U=30 \$ AI sample tube bottom

307 8 -1.15e-3 +933 -931 -912 U=30 \$ Air gap beneath sample tube

308 8 -1.15e-3 -908 +909 -907 U=30 \$ Sample location for tally

С

с -----

c Pneumatic transfer system (PTS) with Cd, U=35 -JDB -4/13/2007

С -----

350 1 -1.0 #351 #352 #353

#354 #355 #356

#357 #358 #359 #360 U=35 \$ Water surrounding PTS

351 2 -2.7 -910 +911 +933 U=35 \$ AI transport tube

352 8 -1.15e-3 -911 +914 +933 U=35 \$ Air gap

353 10 -8.65 -914 +912 +931 U=35 \$ Cd liner

С

354 2 -2.7 -912 +913 +915 U=35 \$ AI sample tube 355 8 -1.15e-3 -913 +915 #360 U=35 \$ Sample location 356 2 -2.7 -910 +934 -933 U=35 \$ AI transport tube bottom 357 2 -2.7 -912 +931 -915 U=35 \$ AI sample tube bottom 358 10 -8.65 -914 -931 +932 U=35 \$ Cd liner beneath sample 359 8 -1.15e-3 +933 -932 -914 U=35 \$ Air gap beneath sample tube 360 8 -1.15e-3 -908 +909 -907 U=35 \$ Sample location for tally

С

С -----

c 3-element irradiator with Pb, U=40

C -----

400 1 -1.0 #401 #402 #403 #404

#405 #406 #407 #408

#409 #410 u=40 \$ Water

401 2 -2.7 -920 +921 -958 +959 u=40 \$ Al outer

402 8 -1.15e-3 -921 +924 -958 +959 u=40 \$ Air gap

403 11 -11.4 -924 +922 -958 +959 u=40 \$ Pb liner

404 2 -2.7 -922 +923 -958 +959 u=40 \$ AI liner

405 8 -1.15e-3 -923 -963 +965 u=40 \$ Air in sample location

406 8 -1.15e-3 -923 -958 +963 u=40 \$ Air above sample location

```
407 2 -2.7 -962 -957 +958 u=40 $ Upper end cap
```

408 2 -2.7 -920 -959 +960 u=40 \$ Lower end cap

409 2 -2.7 -923 -965 +966 u=40

410 11 -11.4 -923 -966 +959 u=40

С

C -----

c 3-element irradiator with Cd, U=45

```
C -----
```

450 1 -1.0 #451 #452 #453 #454

#455 #456 #457 #458

#459 #460 U=45 \$ Water

451 2 -2.7 -920 +921 -958 +959 U=45 \$ Al outer 452 2 -2.7 -922 +923 -958 +959 U=45 \$ Al liner

453 10 -8.65 +922 -924 -958 +959 U=45 \$ Cd liner

454 8 -1.15e-3 -921 +924 -958 +959 U=45 \$ Air gap

455 8 -1.15e-3 -923 -963 +965 U=45 \$ Air in sample location

456 8 -1.15e-3 -923 -958 +963 u=45 \$ Air above sample location

457 2 -2.7 -962 -957 +958 u=45 \$ Upper end cap

458 2 -2.7 -920 -959 +960 u=45 \$ Lower end cap

459 2 -2.7 -923 -965 +966 u=45

460 10 -8.65 -923 -966 +959 u=45

С

С -----

```
c 3-element irradiator (unlined), U=50
```

C -----

```
490 8 -1.15e-3 #491 #492 #493 #494 U=50 $
```

491 2 -2.7 -922 +923 -950 +955 U=50 \$ T3 can cylinder

492 2 -2.7 +922 -924 -950 +955 U=50 \$ T3 can liner

493 2 -2.7 -923 +950 -951 U=50 \$ T3 can upper

494 2 -2.7 -923 -955 +956 U=50 \$ T3 can lower

С

C -----

c Water cells for mapping experiment, u=101

C -----

515 1 -1.0 #516 u=101

516 1 -1.0 -754 +782 -750 u=101

С

С -----

c Large irradiator with cadmium sleeve, u=96

С -----

811 1 -1.0 #812 #813 #814 #815

#816 #817 #818 #819

#820 #821 #822 u=96 \$ Water outside of 7L

С

812 2 -2.7 -1941 +1942 +1959 -1960 u=96 \$ Al clad outer, sleeve 813 11 -11.4 -1942 +1943 +1959 -1960 u=96 \$ Pb liner, sleeve 814 2 -2.7 -1943 +1944 +1959 -1960 u=96 \$ Al clad inner, sleeve c

```
815 2 -2.7 -1945 +1946 -957 +965 u=96 $ Al clad, can
```

```
816 21 -2.7 -1946 +1947 -957 +965 u=96 $ Al-B liner, can
```

```
817 8 -1.15e-3 -1947 -963 +965 u=96 $ Air in sample location, can
```

818 8 -1.15e-3 -1947 -958 +963 u=96 \$ Air above sample, can

С

```
819 2 -2.7 -1941 +1944 -1961 +1960 u=96 $ Upper end fitting, sleeve
820 2 -2.7 -1941 +1944 -1959 +1956 u=96 $ Lower end fitting, sleeve
c
```

821 2 -2.7 -1945 -957 +958 u=96 \$ Upper end fitting, can 822 2 -2.7 -1945 -965 +1956 u=96 \$ Lower end fitting, can

С

С -----

c 1-inch detector

```
С -----
```

1740 1 -1.0 #1741 #1742 U=81 \$ element clad 1741 8 -1.15e-3 -638 -639 +640 #1742 U=81 1742 8 -1.15e-3 -638 -641 +642 U=81 \$ flux tally for 1" dia FC С С ----c Central thimble (CT), u=82 -JDB С -----1750 1 -1.0 #1751 #1752 u=82 1751 2 -2.7 -442 +443 +207 u=82 1752 1 -1.0 -446 +447 -445 u=82 С С ----c Photon Radial Profile Holes С -----1800 1 -1.0 -2000 1801 1 -1.0 -2001 1802 1 -1.0 -2002 1803 1 -1.0 -2003 1804 1 -1.0 -2004 1805 1 -1.0 -2005 1806 1 -1.0 -2006 С ----c Tube cell for my test (Alex Zhou 2009) С -----\$ solution inside container 9001 9910 -1 -9001

9002 99 -.93 -9002 +9001 \$ container of polyethylene

```
c 9012 1 -1 -111 +121 -9010 +9002 $ cell of surface source
9003 1 -1 -110 +120 -9003 +9002 $ outside container, inside surface 602,
water in between
9004 2 -2.7 -110 +120 -9004 +9003 $ shell
9005 1 -1 -110 +120 -5118 +9004 $ out shell
С
С -----
c Outside world
С -----
2999 0 +100: +110: -120
С
С
c below are a few references of surfaces used for the cell
C -----
c 718 0 -110 +120 -5118 fill=8 (218) $ G34 $ Location of PNT
c tr218 +19.59102 +11.31062 0.0 $ G34
c 5118 c/z +19.59102 +11.31062 +1.91135 $ Upper grid plate hole, G34
С
c 9001 rcc +19.59102 +11.31062 0.05 0 0 1.5 0.5 $ sample space inside
container
c 9002 rcc +19.59102 +11.31062 0 0 0 1.6 0.55 $ container of polyethylene
c 9003 c/z +19.59102 +11.31062 +1.816 $ assembly for G34
c 9004 c/z +19.59102 +11.31062 +1.867 $ out shell
c 9010 c/z +19.59102 +11.31062 +1.5 $ surface source bound
С -----
c End of Cell Card Specification
```

С -----

C -----

c Beginning of Surface Card Specification

с -----

c Hexagonal cell lattice surfaces

С -----

101 PX +2.17678 \$ Fuel lattice hex-prism 102 PX -2.17678 \$ Fuel lattice hex-prism 103 P +1 1.73205 0 +4.35356 \$ Fuel lattice hex-prism 104 P +1 1.73205 0 -4.35356 \$ Fuel lattice hex-prism 105 P -1 1.73205 0 +4.35356 \$ Fuel lattice hex-prism 106 P -1 1.73205 0 -4.35356 \$ Fuel lattice hex-prism 107 CZ +2.51353 \$ Maximum lattice diagonal radius С 108 py 5.65531 109 py -5.65531 С С ----c Axial and radial domain С -----100 CZ +75 110 PZ +75 \$ Upper bound 111 pz +3.3 \$ Upper cap of surface source 120 PZ -75 \$ Lower bound 121 PZ -1.7 \$ Lower cap of surface source 150 CZ +5.08 \$ Detector Cylinder 160 PZ +10 \$ Detector Lower

165 PZ +30 \$ Detector Upper

С

171 s 60.000 -36.000 -6.985 2.5 \$ bp1 172 s 60.000 36.000 -6.985 2.5 \$ bp2 173 s 0.000 70.000 -6.985 2.5 \$ bp3 174 s -60.000 36.000 -6.985 2.5 \$ bp4 175 s -60.000 -36.000 -6.985 2.5 \$ bp5 С С ----c Reactor core grid plate surfaces С -----200 CZ 1.91135 \$ Grid plate element holes 201 PZ +32.3850 \$ Upper grid plate region 202 PZ +30.7975 \$ Upper grid plate region 203 CZ 27.6225 \$ Upper grid plate diameter -effective core diameter 205 CZ 1.5875 \$ Grid plate coolant holes 206 PZ -33.17875 \$ Lower grid plate region 207 PZ -36.35375 \$ Lower grid plate region 211 PX +26.1216 \$ Lower grid plate edge 212 PX -26.1216 \$ Lower grid plate edge 213 P +1 0.57735 0 +29.0240 \$ Lower grid plate edge 214 P +1 0.57735 0 -29.0240 \$ Lower grid plate edge 215 P -1 0.57735 0 +29.0240 \$ Lower grid plate edge 216 P -1 0.57735 0 -29.0240 \$ Lower grid plate edge 221 PY +25.1360 \$ Lower grid plate edge 222 PY -25.1360 \$ Lower grid plate edge 223 P +1 1.73205 0 +52.2432 \$ Lower grid plate edge 224 P +1 1.73205 0 -52.2432 \$ Lower grid plate edge

225 P -1 1.73205 0 +52.2432 \$ Lower grid plate edge 226 P -1 1.73205 0 -52.2432 \$ Lower grid plate edge 231 PX +26.6700 \$ Core shroud inside surface 232 PX -26.6700 \$ Core shroud inside surface 233 P +1 0.57735 0 +29.2100 \$ Core shroud inside surface 234 P +1 0.57735 0 -29.2100 \$ Core shroud inside surface 235 P -1 0.57735 0 +29.2100 \$ Core shroud inside surface 236 P -1 0.57735 0 -29.2100 \$ Core shroud inside surface 236 P -1 0.57735 0 -29.2100 \$ Core shroud inside surface 241 PY +25.4000 \$ Core shroud inside surface 242 PY -25.4000 \$ Core shroud inside surface 243 P +1 1.73205 0 +54.9275 \$ Core shroud inside surface 244 P +1 1.73205 0 -54.9275 \$ Core shroud inside surface 245 P -1 1.73205 0 +54.9275 \$ Core shroud inside surface 246 P -1 1.73205 0 -54.9275 \$ Core shroud inside surface

С -----

c Core structure surfaces

С -----

c Reflector inner shroud

С -----

300 CZ 30.083125 \$ Grid plate alignment ring 301 CZ 29.765625 \$ Grid plate alignment ring 302 CZ 27.9400 \$ Grid plate alignment ring 303 PZ +33.9725 \$ Grid plate alignment ring 304 PZ +26.3525 \$ Grid plate alignment ring

С

С -----

c Shroud load ring

С -----

305 CZ 27.9400 \$ Reflector shroud load ring \$ 24.7650 306 PZ -37.30625 \$ Reflector shroud load ring 307 PZ -39.52875 \$ Reflector shroud load ring c

311 PX +29.2100 \$ Reflector shroud support 312 PX -29.2100 \$ Reflector shroud support 313 P +1 0.57735 0 +32.385 \$ Reflector shroud support 314 P +1 0.57735 0 -32.385 \$ Reflector shroud support 315 P -1 0.57735 0 +32.385 \$ Reflector shroud support 316 P -1 0.57735 0 -32.385 \$ Reflector shroud support 321 PY +27.9400 \$ Reflector shroud support 322 PY -27.9400 \$ Reflector shroud support 323 P +1 1.73205 0 +59.3725 \$ Reflector shroud support 324 P +1 1.73205 0 -59.3725 \$ Reflector shroud support 325 P -1 1.73205 0 +59.3725 \$ Reflector shroud support 326 P -1 1.73205 0 -59.3725 \$ Reflector shroud support

331 PX +27.3050 \$ Core shroud plate exterior
332 PX -27.3050 \$ Core shroud plate exterior
333 P +1 0.57735 0 +29.8450 \$ Core shroud plate exterior
334 P +1 0.57735 0 -29.8450 \$ Core shroud plate exterior
335 P -1 0.57735 0 +29.8450 \$ Core shroud plate exterior
336 P -1 0.57735 0 -29.8450 \$ Core shroud plate exterior
341 PY +26.0350 \$ Core shroud plate exterior
342 PY -26.0350 \$ Core shroud plate exterior

343 P +1 1.73205 0 +56.5150 \$ Core shroud plate exterior
344 P +1 1.73205 0 -56.5150 \$ Core shroud plate exterior
345 P -1 1.73205 0 +56.5150 \$ Core shroud plate exterior
346 P -1 1.73205 0 -56.5150 \$ Core shroud plate exterior

С

C -----

c Reflector outer shroud

C -----

350 CZ +54.76875 \$ Reflector outer shroud 351 CZ +53.49875 \$ Reflector outer shroud 352 PZ +28.8925 \$ Outer shroud upper edge 353 PZ -32.0675 \$ Outer shroud lower edge 355 PY 0.0 \$ Core shroud section plane

С

С -----

c Reflector beam ports

C -----

360 PY +55.5625 \$ Radial penetrating beam port 361 C/X -35.2552 -6.985 7.62 \$ Tangential thru beam port 362 C/X -35.2552 -6.985 6.9088 \$ Tangential thru beam port 363 C/Y 0.0 -6.985 10.160 \$ Radial penetrating beam port 364 C/Y 0.0 -6.985 9.525 \$ Radial penetrating beam port c

370 CZ 53.3400 \$ Reflector top shroud

371 CZ 37.4650 \$ Reflector top shroud

372 PZ +29.5275 \$ Reflector top shroud

373 PZ +28.2575 \$ Reflector top shroud

374 CZ 52.0700 \$ Reflector inner shroud base
375 PZ -27.9400 \$ Reflector inner shroud base
376 PZ -29.5275 \$ Reflector inner shroud base
377 PZ -36.8300 \$ Reflector shroud edge ring

С

С -----

c RSR experiment system

С -----

380 CZ +37.1475 \$ RSR cavity outer ring

381 PZ +6.9850 \$ RSR cavity base

382 PZ +7.3025 \$ RSR cavity base

С

С -----

c Graphite reflector surfaces

С -----

400 CZ 53.0225 \$ Graphite reflector outer radius

401 CZ 37.7825 \$ Graphite reflector inner radius

402 PZ 27.6225 \$ Graphite reflector upper section

403 PZ 6.3500 \$ Graphite reflector section plane

404 PY -20.32 \$ Graphite reflector section plane

405 PY -35.2552 \$ Beam port penetration

c C/Y 0.0 -6.985 10.160 \$ Radial penetrating beam port, bp3

c C/X -35.2552 -6.985 7.62 \$ Tangential thru beam port, bp1&5

406 2 CY 7.62 \$ Tangential beam port, bp2

407 4 CY 7.62 \$ Radial beam port, bp4

408 2 PY 0.0 \$ Tangential beam port, bp2

409 4 PY 0.0 \$ Radial beam port, bp4

```
411 PX +27.78125 $ Graphite inner surface
412 PX -27.78125 $ Graphite inner surface
413 P +1 0.57735 0 +31.00875 $ Graphite inner surface +1
414 P +1 0.57735 0 -31.00875 $ Graphite inner surface +1
415 P -1 0.57735 0 +31.00875 $ Graphite inner surface +1
416 P -1 0.57735 0 -31.00875 $ Graphite inner surface +1
421 PY +26.431875 $ Graphite inner surface
422 PY -26.431875 $ Graphite inner surface
423 P +1 1.73205 0 +57.30875 $ Graphite inner surface +1
424 P +1 1.73205 0 +57.30875 $ Graphite inner surface +1
425 P -1 1.73205 0 +57.30875 $ Graphite inner surface +1
426 P -1 1.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
426 P -1 0.73205 0 -57.30875 $ Graphite inner surface +1
```

```
450 PX 0.0 $ BP1&5 origin
```

```
С
```

с -----

```
c Central thimble -JLP
```

С -----

442 CZ 1.50 \$ Central thimble guide rod OD
443 CZ 1.415 \$ Central thimble guid rod ID
444 CZ 1.25 \$ Central thimble sample holder OD
445 CZ 1.185 \$ Central thimble sample holder ID
446 PZ 2.5 \$ Central thimble upper sample holder
447 PZ -2.5 \$ Central thibmle lower sample holder
c beam port tally surfaces bp1&5 and bp3

451 PX +10.16 \$ BP1

453 PY +40.90 \$ BP3

455 PX -10.16 \$ BP5

c pool structure pipe, bp3

461 PY +25.600 \$ Radial penetrating beam port, bp3

462 PY +26.235 \$ Radial penetrating beam port, bp3

463 C/Y 0.0 -6.985 7.62 \$ Radial penetrating beam port, bp3

464 C/Y 0.0 -6.985 6.9088 \$ Radial penetrating beam port, bp3

С

С -----

c Control element surfaces

С -----

c data for transient rod

500 CZ 1.5113 \$ Control element -absorber surface, radius 502 CZ 1.5875 \$ Control element -clad outer surface 505 CZ 1.6637 \$ Control element -absorber surface, radius 507 CZ 1.7145 \$ Control element -clad outer surface c 510 7 PZ +24.765 \$ Control element -element plug, end

511 7 PZ +24.13 \$ Control element -magneform plug, upper
512 7 PZ +19.05 \$ Control element -absorber surface,length/2
513 7 PZ -19.05 \$ Control element -absorber surface,length/2
514 7 PZ -21.59 \$ Control element -magneform plug, lower
515 7 PZ -70.8025 \$ Control element -air follower section
516 7 PZ -72.7075 \$ Control element -element plug, end

С

c data for shim 1, 2 & regulating rod

С c 517 pz +75 \$ c 518 pz -75 \$ c 519 cz 1.5875 \$ repeat of 502 c 532 cz 1.7145 \$ repeat of 507 С c lower control rod by 10 unit to reach keff=1 С 520 7 PZ +24.925 \$ Control element -element plug, end 521 7 PZ +21.115 \$ Control element -void gap 522 7 PZ +10.6375 \$ Control element -magneform plug, upper 523 7 PZ +9.3675 \$ Control element -void gap 524 7 PZ +9.05 \$ Control element -absorber surface, length/2 525 7 PZ -29.05 \$ Control element -absorber surface, length/2 526 7 PZ -30.32 \$ Control element -magneform plug, lower 527 7 PZ -30.955 \$ Control element -void gap 528 7 PZ -69.055 \$ Control element -fuel follower section 529 7 PZ -71.595 \$ Control element -void gap 530 7 PZ -84.93 \$ Control element -magneform plug, bottom 531 7 PZ -84.99 \$ Control element -element plug, end С 550 CZ 0.28575 \$ Zirconium rod С С ----c Fuel and moderator element surfaces С -----

600 CZ 1.816 \$ Fuel element -fuel region surface, radius

602 CZ 1.867 \$ Fuel element -clad outer surface 603 CZ 1.5306 \$ Fuel -adapter effective radius, lower 604 CZ 1.9426 \$ Fuel -adapter effective radius, upper 605 CZ 1.816 \$ Graphite element -element surface, radius 606 CZ 1.867 \$ Graphite element -clad outer surface 607 CZ 1.867 \$ Graphite element -clad outer surface 608 CZ 1.9426 \$ Graphite -adapter effective radius, upper 609 CZ 1.5306 \$ Graphite -adapter effective radius, lower c

610 PZ +28.5877 \$ Fuel element -element end region, upper 611 PZ +27.7368 \$ Fuel element -graphite end region, upper 612 PZ +19.05 \$ Fuel element -fuel surface, length/2 613 PZ -19.05 \$ Fuel element -fuel surface, length/2 614 PZ -27.7368 \$ Fuel element -graphite end region, lower 615 PZ -28.5877 \$ Fuel element -element end region, lower c

620 PZ +28.5877 \$ Graphite element -element end, upper 621 PZ +27.7368 \$ Graphite element -graphite end, upper 622 PZ -27.7368 \$ Graphite element -graphite end, lower 623 PZ -28.5877 \$ Graphite element -element end, lower

С

635 PZ 15.24 \$ Flux Tally

636 PZ -15.24 \$ Flux Tally

637 CZ 0.4 \$ Flux Tally hole for the KSU detector

638 CZ 1.27

639 PZ 7.7851

640 PZ -7.7851

641 PZ 6.35

642 PZ -6.35

С

650 CZ 0.28575 \$ Zirconium rod

С

660 CZ 1.5306 \$ Element adapter effective radius

661 CZ 1.867 \$ Element clad outer surface

662 PZ +32.3850 \$ Upper grid plate, top

663 PZ +28.5877 \$ Element end region, upper

664 PZ -28.5877 \$ Element end region, lower

665 PZ -33.17875 \$ Lower grid plate, top

666 cz 1.91135 \$ Upper grid plate holes

С

C -----

c Boundaries for large irradiator

С -----

701 PX +8.70712

703 PX +10.8839

708 PX +19.59102

710 PX 21.7678

712 PX 19.59102

717 PX 10.8839

702 P -1 1.73205 0 -26.12136

704 P -1 1.73205 0 -21.7678

705 P 1 1.73205 0 4.35356

706 P -1 1.73205 0 -26.12136

707 P 1 1.73205 0 8.70712

709 P 1 1.73205 0 4.35356

711 P -1 1.73205 0 -43.5356

713 P -1 1.73205 0 -47.88916

714 P 1 1.73205 0 -13.06068

715 P -1 1.73205 0 -43.5356

716 P 1 1.73205 0 -17.41424

718 P 1 1.73205 0 -13.06068

С

С -----

c Reactor core modifications

С -----

c Center tube irradiations

С -----

900 CZ 1.905 \$ Center tube outer radius

901 CZ 1.69418 \$ Center tube inner radius

905 CZ 1.5 \$ Sample radius

907 PZ +0.5 \$ Sample length

908 CZ 0.5 \$ Sample radius (PTS)

909 PZ -0.5 \$ Sample length

С

С -----

c PNT tube dimensions

С -----

910 CZ +1.74625 \$ AI transport tube outer radius

911 CZ +1.53543 \$ AI transport tube inner radius

912 CZ +1.11125 \$ AI sample tube outer radius

913 CZ +0.86995 \$ AI sample tube inner radius

- 914 CZ +1.16205 \$ Cd two layer liner
- 915 PZ -2.07645 \$ PTS sample stop
- 916 PZ -18.89125 \$ Cd absorber end
- 917 PZ -21.1264591 \$ Cd absorber disk, upper edge
- 918 PZ -21.17725 \$ Cd absorber disk, lower edge
- 919 PZ -30.32125 \$ PTS bottom section
- 931 PZ -2.94775 \$ AI sample tube bottom
- 932 PZ -2.99855 \$ Bottom of Cd liner
- 933 PZ -3.37193 \$ Top of AI transport tube
- 934 PZ -3.58275 \$ Bottom of AI transport tube

С

C -----

c 3-element irradiator with Cd or Pb

С -----

c Reference to lower grid plate -33.17875

920 CZ +2.38125 \$ AI can outer radius

921 CZ +2.23393 \$ AI can inner radius

922 CZ +2.06375 \$ AI sleeve outer radius

923 CZ +1.93929 \$ Al sleeve inner radius

924 CZ +2.16535 \$ Cd liner outer radius

c 930 CZ +0.47625 \$ AI structure rod

c 940 PZ -30.xxxx \$ AI bearing section

- 950 PZ +2.54 \$ Al upper end cap
- 951 PZ +2.5908 \$ Al upper end cap
- 955 PZ -2.54 \$ Al lower end cap
- 956 PZ -2.5908 \$ AI lower end cap
957 pz +99.82125 \$ Al upper end cap, top 958 pz +96.82125 \$ Al upper end cap, bottom 963 pz +30.7975 \$ Bottom of upper grid plate 959 pz -26.19375 \$ Al lower end cap, top 960 pz -31.27385 \$ AI lower end cap, bottom 962 cz +3.00000 С 961 c/z -15.23746 -8.79856 +3.0099 С 965 pz -25.55875 \$ Top of AI in AI sleeve 966 pz -26.09215 \$ Top of Cd liner in sleeve 967 pz -26.19375 \$ Top of lower end cap С С ----c Large irradiator surfaces С -----1920 cz +4.35385 \$ AI can outer radius 1921 cz +4.19510 \$ AI can inner radius 1922 cz +4.03635 \$ Al sleeve outer radius 1923 cz +3.91189 \$ Al sleeve inner radius 1924 cz +4.13795 \$ Cd liner outer radius 1925 cz +5.08254 С 1950 pz +32.3850 \$ Al upper end cap

1951 pz +32.22625 \$ Al upper end cap 1955 pz -33.02 \$ Al lower end cap 1956 pz -33.17875 \$ Al lower end cap С

1957 pz +58.26125 1958 pz +58.89625 1959 pz -30.63875 1960 pz +60.80125 1961 pz +63.34125 С С ----c Large irradiator surfaces with cadmium sleeve С -----1940 c/z 15.23746 -11.31062 5.27939 \$ Center of irradiator С 1941 cz 4.91998 1942 cz 4.60248 1943 cz 3.81 1944 cz 3.4925 1945 cz 3.175 1946 cz 2.8575 1947 cz 2.6575 С С ----c Surfaces for flux mapping with Ni wire -JDB С -----1963 c/z 2.17678 -1.2573 +0.16 \$ A 1964 c/z 15.23746 -1.2573 +0.16 \$ K 1965 c/z 19.59102 -1.2573 +0.16 \$ L 1966 c/z 23.94458 -1.2573 +0.16 \$ M

С

750 cz 0.15875 \$ Keep! 7/12/2006 751 cz 0.16 \$ Keep! 7/12/2006 754 pz 32.385 \$ Keep! 7/12/2006 782 pz -36.35375 \$ Keep! 7/12/2006 c

С -----

c Photon Radial Profile Holes

С -----

2000 s +0.0 +2.51353 +0.0 0.3175 2001 s +0.0 +5.020706 +0.0 0.3175 2002 s +0.0 +10.05412 +0.0 0.3175 2003 s +0.0 +12.56765 +0.0 0.3175 2004 s +0.0 +17.59470 +0.0 0.3175 2005 s +0.0 +20.10823 +0.0 0.3175 2006 s +0.0 +25.0 +0.0 0.3175

```
С
```

C -----

c Upper grid plate holes

С -----

5000 c/z +0.00000 +0.00000 +1.91135 \$ Upper grid plate hole, A1 5001 c/z +4.35356 +0.00000 +1.91135 \$ Upper grid plate hole, B1 5002 c/z +2.17678 -3.76936 +1.91135 \$ Upper grid plate hole, B2 5003 c/z -2.17678 -3.76936 +1.91135 \$ Upper grid plate hole, B3 5004 c/z -4.35356 +0.00000 +1.91135 \$ Upper grid plate hole, B4 5005 c/z -2.17678 +3.76936 +1.91135 \$ Upper grid plate hole, B5 5006 c/z +2.17678 +3.76936 +1.91135 \$ Upper grid plate hole, B5

5007 c/z +8.70712 +0.00000 +1.91135 \$ Upper grid plate hole, C1 5008 c/z +6.53034 -3.76936 +1.91135 \$ Upper grid plate hole, C2 5009 c/z +4.35356 -7.54126 +1.91135 \$ Upper grid plate hole, C3 5010 c/z -0.00000 -7.54126 +1.91135 \$ Upper grid plate hole, C4 5011 c/z -4.35356 -7.54126 +1.91135 \$ Upper grid plate hole, C5 5012 c/z -6.53034 -3.76936 +1.91135 \$ Upper grid plate hole, C6 5013 c/z -8.70712 +0.00000 +1.91135 \$ Upper grid plate hole, C7 5014 c/z -6.53034 +3.76936 +1.91135 \$ Upper grid plate hole, C8 5015 c/z -4.35356 +7.54126 +1.91135 \$ Upper grid plate hole, C9 5016 c/z -0.00000 +7.54126 +1.91135 \$ Upper grid plate hole, C10 5017 c/z +4.35356 +7.54126 +1.91135 \$ Upper grid plate hole, C11 5018 c/z +6.53034 +3.76936 +1.91135 \$ Upper grid plate hole, C12 5019 c/z +13.06068 +0.00000 +1.91135 \$ Upper grid plate hole, D1 5020 c/z +10.88390 -3.76936 +1.91135 \$ Upper grid plate hole, D2 5021 c/z +8.70712 -7.54126 +1.91135 \$ Upper grid plate hole, D3 5022 c/z +6.53034 -11.31062 +1.91135 \$ Upper grid plate hole, D4 5023 c/z +2.17678 -11.31062 +1.91135 \$ Upper grid plate hole, D5 5024 c/z -2.17678 -11.31062 +1.91135 \$ Upper grid plate hole, D6 5025 c/z -6.53034 -11.31062 +1.91135 \$ Upper grid plate hole, D7 5026 c/z -8.70712 -7.54126 +1.91135 \$ Upper grid plate hole, D8 5027 c/z -10.88390 -3.76936 +1.91135 \$ Upper grid plate hole, D9 5028 c/z -13.06068 +0.00000 +1.91135 \$ Upper grid plate hole, D10 5029 c/z -10.88390 +3.76936 +1.91135 \$ Upper grid plate hole, D11 5030 c/z -8.70712 +7.54126 +1.91135 \$ Upper grid plate hole, D12 5031 c/z -6.53034 +11.31062 +1.91135 \$ Upper grid plate hole, D13 5032 c/z -2.17678 +11.31062 +1.91135 \$ Upper grid plate hole, D14 5033 c/z +2.17678 +11.31062 +1.91135 \$ Upper grid plate hole, D15 5034 c/z +6.53034 +11.31062 +1.91135 \$ Upper grid plate hole, D16 5035 c/z +8.70712 +7.54126 +1.91135 \$ Upper grid plate hole, D17 5036 c/z +10.88390 +3.76936 +1.91135 \$ Upper grid plate hole, D18 5037 c/z +17.41424 +0.00000 +1.91135 \$ Upper grid plate hole, E1 5038 c/z +15.23746 -3.76936 +1.91135 \$ Upper grid plate hole, E2 5039 c/z +13.06068 -7.54126 +1.91135 \$ Upper grid plate hole, E3 5040 c/z +10.88390 -11.31062 +1.91135 \$ Upper grid plate hole, E4 5041 c/z +8.70712 -15.08252 +1.91135 \$ Upper grid plate hole, E5 5042 c/z +4.35356 -15.08252 +1.91135 \$ Upper grid plate hole, E6 5043 c/z -0.00000 -15.08252 +1.91135 \$ Upper grid plate hole, E7 5044 c/z -4.35356 -15.08252 +1.91135 \$ Upper grid plate hole, E8 5045 c/z -8.70712 -15.08252 +1.91135 \$ Upper grid plate hole, E9 5046 c/z -10.88390 -11.31062 +1.91135 \$ Upper grid plate hole, E10 5047 c/z -13.06068 -7.54126 +1.91135 \$ Upper grid plate hole, E11 5048 c/z -15.23746 -3.76936 +1.91135 \$ Upper grid plate hole, E12 5049 c/z -17.41424 +0.00000 +1.91135 \$ Upper grid plate hole, E13 5050 c/z -15.23746 +3.76936 +1.91135 \$ Upper grid plate hole, E14 5051 c/z -13.06068 +7.54126 +1.91135 \$ Upper grid plate hole, E15 5052 c/z -10.88390 +11.31062 +1.91135 \$ Upper grid plate hole, E16 5053 c/z -8.70712 +15.08252 +1.91135 \$ Upper grid plate hole, E17 5054 c/z -4.35356 +15.08252 +1.91135 \$ Upper grid plate hole, E18 5055 c/z -0.00000 +15.08252 +1.91135 \$ Upper grid plate hole, E19 5056 c/z +4.35356 +15.08252 +1.91135 \$ Upper grid plate hole, E20 5057 c/z +8.70712 +15.08252 +1.91135 \$ Upper grid plate hole, E21 5058 c/z +10.88390 +11.31062 +1.91135 \$ Upper grid plate hole, E22 5059 c/z +13.06068 +7.54126 +1.91135 \$ Upper grid plate hole, E23 5060 c/z +15.23746 +3.76936 +1.91135 \$ Upper grid plate hole, E24

5061 c/z +21.76780 +0.00000 +1.91135 \$ Upper grid plate hole, F1 5062 c/z +19.59102 -3.76936 +1.91135 \$ Upper grid plate hole, F2 5063 c/z +17.41424 -7.54126 +1.91135 \$ Upper grid plate hole, F3 5064 c/z +15.23746 -11.31062 +1.91135 \$ Upper grid plate hole, F4 5065 c/z +13.06068 -15.08252 +1.91135 \$ Upper grid plate hole, F5 5066 c/z +10.88390 -18.85188 +1.91135 \$ Upper grid plate hole, F6 5067 c/z +6.53034 -18.85188 +1.91135 \$ Upper grid plate hole, F7 5068 c/z +2.17678 -18.85188 +1.91135 \$ Upper grid plate hole, F8 5069 c/z -2.17678 -18.85188 +1.91135 \$ Upper grid plate hole, F9 5070 c/z -6.53034 -18.85188 +1.91135 \$ Upper grid plate hole, F10 5071 c/z -10.88390 -18.85188 +1.91135 \$ Upper grid plate hole, F11 5072 c/z -13.06068 -15.08252 +1.91135 \$ Upper grid plate hole, F12 5073 c/z -15.23746 -11.31062 +1.91135 \$ Upper grid plate hole, F13 5074 c/z -17.41424 -7.54126 +1.91135 \$ Upper grid plate hole, F14 5075 c/z -19.59102 -3.76936 +1.91135 \$ Upper grid plate hole, F15 5076 c/z -21.76780 +0.00000 +1.91135 \$ Upper grid plate hole, F16 5077 c/z -19.59102 +3.76936 +1.91135 \$ Upper grid plate hole, F17 5078 c/z -17.41424 +7.54126 +1.91135 \$ Upper grid plate hole, F18 5079 c/z -15.23746 +11.31062 +1.91135 \$ Upper grid plate hole, F19 5080 c/z -13.06068 +15.08252 +1.91135 \$ Upper grid plate hole, F20 5081 c/z -10.88390 +18.85188 +1.91135 \$ Upper grid plate hole, F21 5082 c/z -6.53034 +18.85188 +1.91135 \$ Upper grid plate hole, F22 5083 c/z -2.17678 +18.85188 +1.91135 \$ Upper grid plate hole, F23 5084 c/z +2.17678 +18.85188 +1.91135 \$ Upper grid plate hole, F24 5085 c/z +6.53034 +18.85188 +1.91135 \$ Upper grid plate hole, F25 5086 c/z +10.88390 +18.85188 +1.91135 \$ Upper grid plate hole, F26 5087 c/z +13.06068 +15.08252 +1.91135 \$ Upper grid plate hole, F27 5088 c/z +15.23746 +11.31062 +1.91135 \$ Upper grid plate hole, F28 5089 c/z +17.41424 +7.54126 +1.91135 \$ Upper grid plate hole, F29 5090 c/z +19.59102 +3.76936 +1.91135 \$ Upper grid plate hole, F30 5091 c/z +23.94458 -3.76936 +1.91135 \$ Upper grid plate hole, G2 5092 c/z +21.76780 -7.54126 +1.91135 \$ Upper grid plate hole, G3 5093 c/z +19.59102 -11.31062 +1.91135 \$ Upper grid plate hole, G4 5094 c/z +17.41424 -15.08252 +1.91135 \$ Upper grid plate hole, G5 5095 c/z +15.23746 -18.85188 +1.91135 \$ Upper grid plate hole, G6 5096 c/z +8.70712 -22.62124 +1.91135 \$ Upper grid plate hole, G8 5097 c/z +4.35356 -22.62124 +1.91135 \$ Upper grid plate hole, G9 5098 c/z -0.00000 -22.62124 +1.91135 \$ Upper grid plate hole, G10 5099 c/z -4.35356 -22.62124 +1.91135 \$ Upper grid plate hole, G11 5100 c/z -8.70712 -22.62124 +1.91135 \$ Upper grid plate hole, G12 5101 c/z -15.23746 -18.85188 +1.91135 \$ Upper grid plate hole, G14 5102 c/z -17.41424 -15.08252 +1.91135 \$ Upper grid plate hole, G15 5103 c/z -19.59102 -11.31062 +1.91135 \$ Upper grid plate hole, G16 5104 c/z -21.76780 -7.54126 +1.91135 \$ Upper grid plate hole, G17 5105 c/z -23.94458 -3.76936 +1.91135 \$ Upper grid plate hole, G18 5106 c/z -23.94458 +3.76936 +1.91135 \$ Upper grid plate hole, G20 5107 c/z -21.76780 +7.54126 +1.91135 \$ Upper grid plate hole, G21 5108 c/z -19.59102 +11.31062 +1.91135 \$ Upper grid plate hole, G22 5109 c/z -17.41424 +15.08252 +1.91135 \$ Upper grid plate hole, G23 5110 c/z -15.23746 +18.85188 +1.91135 \$ Upper grid plate hole, G24 5111 c/z -8.70712 +22.62124 +1.91135 \$ Upper grid plate hole, G26 5112 c/z -4.35356 +22.62124 +1.91135 \$ Upper grid plate hole, G27 5113 c/z +4.35356 +22.62124 +1.91135 \$ Upper grid plate hole, G29 5114 c/z -0.00000 +22.62124 +1.91135 \$ Upper grid plate hole, G28

5115 c/z +8.70712 +22.62124 +1.91135 \$ Upper grid plate hole, G30 5116 c/z +15.23746 +18.85188 +1.91135 \$ Upper grid plate hole, G32 5117 c/z +17.41424 +15.08252 +1.91135 \$ Upper grid plate hole, G33 5118 c/z +19.59102 +11.31062 +1.91135 \$ Upper grid plate hole, G34 5119 c/z +21.76780 +7.54126 +1.91135 \$ Upper grid plate hole, G35 5120 c/z +23.94458 +3.76936 +1.91135 \$ Upper grid plate hole, G36 С -----

c Cut planes for tallies

С -----6000 pz +32 6001 pz +31 6002 pz +30 6003 pz +29 6004 pz +28 6005 pz +27 6006 pz +26 6007 pz +25 6008 pz +24 6009 pz +23 6010 pz +22 6011 pz +21 6012 pz +20 6013 pz +19 6014 pz +18 6015 pz +17 6016 pz +16 6017 pz +15

6018 pz +14 6019 pz +13 6020 pz +12 6021 pz +11 6022 pz +10 6023 pz +9 6024 pz +8 6025 pz +7 6026 pz +6 6027 pz +5 6028 pz +4 6029 pz +3 6030 pz +2 6031 pz +1 6032 pz +0 6033 pz -1 6034 pz -2 6035 pz -3 6036 pz -4 6037 pz -5 6038 pz -6 6039 pz -7 6040 pz -8 6041 pz -9 6042 pz -10 6043 pz -11 6044 pz -12

6045 pz -13 6046 pz -14 6047 pz -15 6048 pz -16 6049 pz -17 6050 pz -18 6051 pz -19 6052 pz -20 6053 pz -21 6054 pz -22 6055 pz -23 6056 pz -24 6057 pz -25 6058 pz -26 6059 pz -27 6060 pz -28 6061 pz -29 6062 pz -30 6063 pz -31 6064 pz -32 6065 pz -33 6066 pz -34 6067 pz -35 6068 pz -36 7000 pz +30.861 7001 pz +27.305 7002 pz +25.781

- 7003 pz +22.225
- 7004 pz +20.701
- 7005 pz +17.145
- 7006 pz +15.621
- 7007 pz +12.065
- 7008 pz +10.541
- 7009 pz +6.985
- 7010 pz +5.461
- 7011 pz +1.905
- 7012 pz +0.381
- 7013 pz -3.175
- 7014 pz -4.699
- 7015 pz -8.255
- 7016 pz -9.779
- 7017 pz -13.335
- 7018 pz -14.859
- 7019 pz -18.415
- 7020 pz -19.939
- 7021 pz -23.495
- 7022 pz -25.019
- 7023 pz -28.575
- 7024 pz -30.099
- 7025 pz -33.655
- 7026 pz -35.179

С

8000 pz +30.7975 \$ Bottom of upper grid plate region 8001 pz +27.7368 \$ Top of graphite region

```
8002 pz +19.05 $ Top of fuel region
```

8003 pz -19.05 \$ Bottom of fuel region

8004 pz -27.7368 \$ Bottom of graphite region

8005 pz -33.17875 \$ Top of lower grid plate region

С

```
С -----
```

c Tube surface for my test (Alex Zhou 2009)

C -----

```
9001 rcc +19.59102 +11.31062 0.05 0 0 1.5 0.5 $sample space inside container
```

9002 rcc +19.59102 +11.31062 0 0 0 1.6 0.55 \$container of polyethylene

9003 c/z +19.59102 +11.31062 +1.816 \$ assembly for G34

9004 c/z +19.59102 +11.31062 +1.867 \$ out shell

c 9010 rcc +19.59102 +11.31062 -1.7 0 0 5 1.5 \$ surface source bound

С

С -----

c End of Surface Card Specification

С -----

С -----

c Beginning of Material Card Specification

C -----

С -----

c Beam tube transformations

C -----

c tr1: Through port, small, BP1

c tr2: Tangential port, small, BP2

c tr3: Radial port, large, BP3

```
c tr4: Radial port, small, BP4
c tr5: Through port, large, BP5
С
*tr1 0.0 -35.255 -6.985 00 90 90 90 00 90
*tr2 +35.255 -06.222 -6.985 30 120 90 60 30 90
*tr3 0.0 +25.600 -6.985 00 90 90 90 00 90
*tr4 -22.871 +13.216 -6.985 60 30 90 150 60 90
*tr5 0.0 -35.255 -6.985 00 90 90 90 00 90
С
c the '*' just makes the transformation in degrees
С
С -----
c Control rod transformations
С -----
c Shutdown condition -000 units
c Low power critical -525 units
c Design high power -700 units
c Full out condition -960 units
С
tr6 0 0 00.00 1 0 0 0 1 0
tr7 0 0 23.40 1 0 0 0 1 0 $ Formerly 19.05, 8.33, 12.37
tr80027.78 100010
tr90038.10 100010
С
С -----
c Mapping experiment transformations
С -----
```

```
tr10 +2.17678 -1.2573 0.0
tr11 +15.23746 -1.2573 0.0
tr12 +19.59102 -1.2573 0.0
tr13 +23.94458 -1.2573 0.0
С
С -----
c Irradiation facility transformations
С -----
tr20 -15.23746 -8.79856 0.0 $ Center of 3L irradiator
tr50 +15.23746 -11.31062 0.0 $ Center of 6L irradiator
С
С -----
c Grid plate hole transformations
С -----
tr100 -0.00000 +0.00000 0.0 $ A1
tr101 +4.35356 +0.00000 0.0 $ B1
tr102 +2.17678 -3.76936 0.0 $ B2
tr103 -2.17678 -3.76936 0.0 $ B3
tr104 -4.35356 +0.00000 0.0 $ B4
tr105 -2.17678 +3.76936 0.0 $ B5
tr106 +2.17678 +3.76936 0.0 $ B6
tr107 +8.70712 +0.00000 0.0 $ C1
tr108 +6.53034 -3.76936 0.0 $ C2
tr109 +4.35356 -7.54126 0.0 $ C3
tr110 -0.00000 -7.54126 0.0 $ C4
tr111 -4.35356 -7.54126 0.0 $ C5
```

```
tr112 -6.53034 -3.76936 0.0 $ C6
```

tr113 -8.70712 +0.00000 0.0 \$ C7 tr114 -6.53034 +3.76936 0.0 \$ C8 tr115 -4.35356 +7.54126 0.0 \$ C9 tr116 -0.00000 +7.54126 0.0 \$ C10 tr117 +4.35356 +7.54126 0.0 \$ C11 tr118 +6.53034 +3.76936 0.0 \$ C12 tr119 +13.06068 +0.00000 0.0 \$ D1 tr120 +10.88390 -3.76936 0.0 \$ D2 tr121 +8.70712 -7.54126 0.0 \$ D3 tr122 +6.53034 -11.31062 0.0 \$ D4 tr123 +2.17678 -11.31062 0.0 \$ D5 tr124 -2.17678 -11.31062 0.0 \$ D6 tr125 -6.53034 -11.31062 0.0 \$ D7 tr126 -8.70712 -7.54126 0.0 \$ D8 tr127 -10.88390 -3.76936 0.0 \$ D9 tr128 -13.06068 +0.00000 0.0 \$ D10 tr129 -10.88390 +3.76936 0.0 \$ D11 tr130 -8.70712 +7.54126 0.0 \$ D12 tr131 -6.53034 +11.31062 0.0 \$ D13 tr132 -2.17678 +11.31062 0.0 \$ D14 tr133 +2.17678 +11.31062 0.0 \$ D15 tr134 +6.53034 +11.31062 0.0 \$ D16 tr135 +8.70712 +7.54126 0.0 \$ D17 tr136 +10.88390 +3.76936 0.0 \$ D18 tr137 +17.41424 +0.00000 0.0 \$ E1 tr138 +15.23746 -3.76936 0.0 \$ E2 tr139 +13.06068 -7.54126 0.0 \$ E3

tr140 +10.88390 -11.31062 0.0 \$ E4 tr141 +8.70712 -15.08252 0.0 \$ E5 tr142 +4.35356 -15.08252 0.0 \$ E6 tr143 -0.00000 -15.08252 0.0 \$ E7 tr144 -4.35356 -15.08252 0.0 \$ E8 tr145 -8.70712 -15.08252 0.0 \$ E9 tr146 -10.88390 -11.31062 0.0 \$ E10 tr147 -13.06068 -7.54126 0.0 \$ E11 tr148 -15.23746 -3.76936 0.0 \$ E12 tr149 -17.41424 +0.00000 0.0 \$ E13 tr150 -15.23746 +3.76936 0.0 \$ E14 tr151 -13.06068 +7.54126 0.0 \$ E15 tr152 -10.88390 +11.31062 0.0 \$ E16 tr153 -8.70712 +15.08252 0.0 \$ E17 tr154 -4.35356 +15.08252 0.0 \$ E18 tr155 -0.00000 +15.08252 0.0 \$ E19 tr156 +4.35356 +15.08252 0.0 \$ E20 tr157 +8.70712 +15.08252 0.0 \$ E21 tr158 +10.88390 +11.31062 0.0 \$ E22 tr159 +13.06068 +7.54126 0.0 \$ E23 tr160 +15.23746 +3.76936 0.0 \$ E24 tr161 +21.76780 +0.00000 0.0 \$ F1 tr162 +19.59102 -3.76936 0.0 \$ F2 tr163 +17.41424 -7.54126 0.0 \$ F3 tr164 +15.23746 -11.31062 0.0 \$ F4 tr165 +13.06068 -15.08252 0.0 \$ F5 tr166 +10.88390 -18.85188 0.0 \$ F6

tr167 +6.53034 -18.85188 0.0 \$ F7 tr168 +2.17678 -18.85188 0.0 \$ F8 tr169 -2.17678 -18.85188 0.0 \$ F9 tr170 -6.53034 -18.85188 0.0 \$ F10 tr171 -10.88390 -18.85188 0.0 \$ F11 tr172 -13.06068 -15.08252 0.0 \$ F12 tr173 -15.23746 -11.31062 0.0 \$ F13 tr174 -17.41424 -7.54126 0.0 \$ F14 tr175 -19.59102 -3.76936 0.0 \$ F15 tr176 -21.76780 +0.00000 0.0 \$ F16 tr177 -19.59102 +3.76936 0.0 \$ F17 tr178 -17.41424 +7.54126 0.0 \$ F18 tr179 -15.23746 +11.31062 0.0 \$ F19 tr180 -13.06068 +15.08252 0.0 \$ F20 tr181 -10.88390 +18.85188 0.0 \$ F21 tr182 -6.53034 +18.85188 0.0 \$ F22 tr183 -2.17678 +18.85188 0.0 \$ F23 tr184 +2.17678 +18.85188 0.0 \$ F24 tr185 +6.53034 +18.85188 0.0 \$ F25 tr186 +10.88390 +18.85188 0.0 \$ F26 tr187 +13.06068 +15.08252 0.0 \$ F27 tr188 +15.23746 +11.31062 0.0 \$ F28 tr189 +17.41424 +7.54126 0.0 \$ F29 tr190 +19.59102 +3.76936 0.0 \$ F30 tr191 +23.94458 -3.76936 0.0 \$ G2 tr192 +21.76780 -7.54126 0.0 \$ G3 tr193 +19.59102 -11.31062 0.0 \$ G4

tr194 +17.41424 -15.08252 0.0 \$ G5 tr195 +15.23746 -18.85188 0.0 \$ G6 tr196 +8.70712 -22.62124 0.0 \$ G8 tr197 +4.35356 -22.62124 0.0 \$ G9 tr198 -0.00000 -22.62124 0.0 \$ G10 tr199 -4.35356 -22.62124 0.0 \$ G11 tr200 -8.70712 -22.62124 0.0 \$ G12 tr201 -15.23746 -18.85188 0.0 \$ G14 tr202 -17.41424 -15.08252 0.0 \$ G15 tr203 -19.59102 -11.31062 0.0 \$ G16 tr204 -21.76780 -7.54126 0.0 \$ G17 tr205 -23.94458 -3.76936 0.0 \$ G18 tr206 -23.94458 +3.76936 0.0 \$ G20 tr207 -21.76780 +7.54126 0.0 \$ G21 tr208 -19.59102 +11.31062 0.0 \$ G22 tr209 -17.41424 +15.08252 0.0 \$ G23 tr210 -15.23746 +18.85188 0.0 \$ G24 tr211 -8.70712 +22.62124 0.0 \$ G26 tr212 -4.35356 +22.62124 0.0 \$ G27 tr213 +4.35356 +22.62124 0.0 \$ G29 tr214 -0.00000 +22.62124 0.0 \$ G28 tr215 +8.70712 +22.62124 0.0 \$ G30 tr216 +15.23746 +18.85188 0.0 \$ G32 tr217 +17.41424 +15.08252 0.0 \$ G33 c tr218 +19.59102 +11.31062 0.0 \$ G34 tr219 +21.76780 +7.54126 0.0 \$ G35 tr220 +23.94458 +3.76936 0.0 \$ G36

С С ----c Reactor component materials С ----c m1 -water c m2 -aluminum (structural) type 6061 c m3 -stainless steel (structural) type 304 c m4 -graphite (carbon) c m5 -fresh U-ZrH fuel c m6 -B4C (boron carbide) c m7 -zirconium (rod) c m8 -air c m10 -cadmium (neutron absorber liner) c m11 -lead (neutron absorber liner) С m1 1001 0.66667 8016 0.33333 mt1 lwtr.60t c mpn1 0 0 m2 13027 -0.9685 26000.50c -0.0070 29000.50c -0.0025 14000.60c -0.0060 12000.66c -0.0110 24000.50c -0.0035 25055 -0.0015

С

c mpn2 0 0 0 0 0 0 0 0

m3 26000.50c -0.6785

6000 -0.0080

14000.60c -0.0100

24000.50c -0.1800

28000.50c -0.0980

25055 -0.0180

15031 -0.0045

16000.66c -0.0030

С

c mpn3 0 0 0 0 0 0 0 0 0

С

m4 6000 1.0

mt4 grph.60t \$ 300K

c mpn4 0

С

m5 40090 -0.462589265 40091 -0.100879525 40092 -0.154196422 40094 -0.156264362 40096 -0.025174926 1001 -0.0158955 92238 -0.068170 92235 -0.016830 c

c mpn5 0 0 82208 82208 mt5 zr/h.60t h/zr.60t

```
С
```

m6 5010 0.1584

5011 0.6416

6000 0.2

С

c mpn6 0 0 0 m7 40090 51.45

1117 -0000 01.40

40091 11.22 40092 17.15

40094 17.38

40096 2.8

С

c mpn7 0 m8 8016 -0.23 7014 -0.77 c mpn8 0 0 m10 48000.42c 1.0 c mpn10 0 m11 82000.42c -1.0 c c mpn11 0 m12 28058 1 \$ nickel (n,p) a/o 68.0 m13 28064 1 \$ nickel (n,g) a/o 0.9 m14 79197 1 \$ gold (n,g) a/o 100.0 m15 29063 1 \$ copper (n,g) a/o 69.1 m16 26058 1 \$ iron (n,g) a/o 0.2

```
m17 26054 1 $ iron (n,p) a/o 5.8
```

m18 42098 1 \$ molybdenum (n,g) a/o 24.1

```
m19 27059 1 $ cobalt (n,g) a/o 100.0
```

m20 13027 1 \$ aluminum (n,g) a/o 100.0

m21 14000.60c -0.005 \$ 1100 borated aluminum alloy

26000.50c -0.005

29000.50c -0.001

25055 -0.005

30000.42c -0.0001

5010 -0.04275

5011 -0.00225

13027 -0.9389

С

m22 26056 1 \$ Iron (n,p) a/o 91.754 m23 57139 1 \$ Lanthanum (n,g) a/o 99.9098 m24 73181 1 \$ Tantalum (n,g) a/o 99.988 m25 22047 1 \$ Titanium (n,p) a/o 7.44 m26 22048 1 \$ Titanium (n,p) a/o 73.72 m27 14030 1 \$ Silicon (n,x) a/o 3.1 m28 24050 1 \$ Chromium (n,x) a/o 4.345 m29 29065 1 \$ Copper (n,x) a/o 30.83 m30 50112 1 \$ Tin (n,x) a/o 0.97 m31 50116 1 \$ Tin (n,x) a/o 14.54 m32 50118 1 \$ Tin (n,x) a/o 24.22 m33 50122 1 \$ Tin (n,x) a/o 4.63 m34 50124 1 \$ Tin (n,x) a/o 5.79 m35 82204 1 \$ Lead (n,x) a/o 1.4

m36 82206 1 \$ Lead (n,x) a/o 24.1 m37 18040 1 \$ Argon (n,g) a/o 99.6003 m38 24052 1 \$ Chromium (n,p) a/o 83.789 m39 22050 1 \$ Titanium (n,g) a/o 5.18 m40 42100 1 \$ Molybdenum (n,g) a/o 9.63 m41 16032 1 \$ Sulfur-32 (n,p) a/o 95.02 С С ----c Tube material for my test (Alex Zhou 2009) С ----m99 1001 2 6012 1 MT99 POLY.60t \$ CH2, polyethylene m9910 1001 -.11111 \$.001% NaCl solution 8016 -.88888 11023 - 3.93E-6 17000 -6.07E-6 m9911 1001 -.1111 \$.01% NaCl solution 8016 -.8888 11023 - 3.93E-5 17000 -6.07E-5 m9912 1001 -.111 \$.1% NaCl solution 8016 -.888 11023 - 3.93E-4 17000 -6.07E-4 m9913 1001 -.11 \$ 1% NaCl solution 8016 -.88

11023 - 3.93E-3 17000 -6.07E-3 m9914 1001 -.1 \$ 10% NaCl solution 8016 -.8 11023 - 3.93E-2 17000 -6.07E-2 m9992 2001 .667 8016.333 MT9992 hwtr.60c m9993 11023 1 \$ Na m9994 17000 1 \$ Cl m9995 1001 1 \$ H m9996 1002 1 \$ D С С ----c Criticality calculation С ----c 10000 n/cycle, 1.000 as initial guess, skip 30, total of 60 keff cycles, c automatic plotting of three combined keff tally С kcode 10000 1.000 30 60 4500 0 6500 1 mplot freq 10 kcode 16 scales 2 ksrc -4.5 21.8 13 0 21.8 13 4.5 21.8 13 -11 18 13 -6.5 18.0 13 -2 18.0 13 2.0 18 13 6.5 18 13 11 18 13 -17.5 14.3 13 -13 14.3 13 -9 14.3 13 -4.5 14.3 13 0 14.3 13 4.5 14.3 13 9 14.3 13 13 14.3 13 -19.5 10.5 13 -15.5 10.5 13 -11 10.5 13

-6.5 10.5 13 2 10.5 13 6.5 10.5 13 11 10.5 13 15.5 10.5 13 19.5 10.5 13 -22 6.8 13 -17.5 6.8 13 -13 6.8 13 -9 6.8 13 -4.5 6.8 13 0 6.8 13 4.5 6.8 13 9 6.8 13 13 6.8 13 17.5 6.8 13 -19.5 2.8 13 -15.5 2.8 13 -11 2.8 13 -6.5 2.8 13 -2 2.8 13 2 2.8 13 6.5 2.8 13 11 2.8 13 15.5 2.8 13 19.5 2.8 13 -22 -0.8 13 -17.5 -0.8 13 -13 -0.8 13 -4.5 -0.8 13 4.5 -0.8 13 13 -0.8 13 17.5 -0.8 13 22 -0.8 13 -24 -4.6 13 -19.5 -4.6 13 -15.5 -4.6 13 -11 -4.6 13 -6.5 -4.6 13 -2 -4.6 13 2 -4.6 13 6.5 -4.6 13 11 -4.6 13 15.5 -4.6 13 19.5 - 4.6 13 - 22 - 8.3 13 - 9 - 8.3 13 - 4.5 - 8.3 13 0 -8.3 13 4.5 -8.3 13 9 -8.3 13 13 -8.3 13 17.5 -8.3 13 22 -8.3 13 -11 -12 13 -6.5 -12 13 2 -12 13 6.5 -12 13 11 -12 13 15.5 -12 13 19.5 - 12 13 - 17.5 - 15.9 13 - 13 - 15.9 13 - 9 - 15.9 13 -4.5 -15.9 13 0 -15.9 13 4.5 -15.9 13 9 -15.9 13 13 -15.9 13 17.5 -15.9 13 -15.5 -19.7 13 -11 -19.7 13 -6.5 -19.7 13 -2 -19.7 13 2 -19.7 13 6.5 -19.7 13 11 -19.7 13 -4.5 -23.5 13 0 -23.5 13 4.5 -23.5 13

С

thtme 0 \$ time in shakes (1e-8 sec) at which thermal temperatures...

mode n p

c phys:p 100 0 0 0 1 -102 \$ -102, Analog sampling, models only, multigroup + line emission

imp:n 1 314r 0

imp:p 1 314r 0

c F4:n 124

c energy band: thermal, epithermal, and fast c ssW -9010 -111 121 E4 1E-6 1E-3 1 F7:n 124 F4:n 9001 FM4 (4.97e+7 9993 -1) (4.97e+7 9994 -1) (2.91e13 9995 -1) FC4 print