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1 Introduction 
 
The rise of object-oriented (OO) programming in conjunction with relational databases as 
a persistent storage mechanism has led to a great deal of interest in Object-Relational 
Mappers (ORMs) that automate queries on behalf of OO systems. ORMs are subject to a 
number of problems that arise when attempts are made to map OO data to conceptually 
distinct relational databases. These mapping problems are broadly grouped together 
under the term “object-relational impedance mismatch” [1]. 
 
Many problems result from the distinctions in semantics and paradigms between OO and 
relational models. For example, OO encapsulation makes little sense in principle and 
cannot easily be achieved in practice in relational databases. Similarly, the arbitrary use 
of polymorphism and inheritance in OO programs is difficult to map to relational tables 
which must remain distinct from each other. Additionally, subtle data type distinctions 
such as limits on string length (which is usually explicitly bound in relational DBs but is 
bound only by memory size in OO programs) may be difficult to map except by manual 
runtime checks [2]. 
 
Previous research into solving the “object-relational impedance mismatch” has focused 
largely on how to eliminate the mismatch itself. Often such research focuses on flaws in 
one or the other type system, suggesting that one ought be eliminated or made to conform 
more to the other. Database advocates may argue that concurrency problems make OO 
languages a poor candidate for maintaining persistent data. OO advocates point to the 
advantages of OO programming and the limitations of relational DBs, and many have 
conducted research into creating object-oriented database systems that more closely 
mirror the structure of OO data itself [2]. 
 
Whatever the root cause may be, what is hardly disputable is that no dominant framework 
for automating queries for an OO system has emerged from such research. As noted by 
Bob Walker in a 2006 panel on the subject, “Current techniques for decomposing 
complex multidimensional object graphs into storage mechanisms designed for an 
entirely different purpose are fundamentally flawed. All have advantages and 
disadvantages; none supply a complete, simple and elegant solution.” [3]  
 
The cases in which OO and relational DB systems are mismatched are indeed a serious 
concern for ORM developers. But perhaps a more immediate and pervasive problem for 
most OO developers is not the case of mismatch but the numerous cases of overmatch, in 
which OO operations can so clearly and regularly be transformed into relational queries 
that there is a great deal of similarity between queries, and hence a great deal of repeated 
work by the programmer. Because relational query languages such as SQL are designed 
to support a much more diverse set of operations than are typically employed in OO 
operations, much of the complexity of SQL becomes redundant in queries made on behalf 
of OO systems. 
 
While previous research has dealt extensively with the mismatch between OO and 
relational DB type systems, attempting to reduce the distance between them, the 
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importance of the query itself as a means of communicating between the systems has 
been overlooked. In fact, queries offer distinct advantages over both the OO systems and 
the underlying relational schemas that they mediate between. For example, an ORM may 
allow some object A to transparently persist some linked set of objects as an attribute 
A.B. But the programmer may need only a subset of A.B. It is straightforward to specify 
the appropriate additional WHERE constraint in a literal query, but when using an ORM, 
the programmer typically must declare an entire new set and corresponding attribute of A. 
Some research has been conducted into using static analysis to automatically determine 
such subsets, but this work lacks the accuracy and simplicity of simply allowing the 
programmer to easily specify such a subset [4][5]. And so the effort to engineer schemes 
for full transparent persistence of OO data into databases may in fact obscure certain 
advantages of literal queries. 
 
This paper proceeds from the claim that the query is a rich locus of access to a relational 
database, but that the method of expressing a query need not be limited to the literal 
strings that are sent to the database. Rather than making queries transparent, we aim to 
preserve the full power of queries and instead to minimize the amount of repeated effort 
required by OO programmers in writing queries. To that end, we focus on the problem of 
more efficiently expressing the types of queries used in an OO program. Additionally, we 
explore a means of reusing and modularizing such query expressions. We propose a 
framework called ModFetch that provides these features. 
 
 

2 Background 
 
In order to explore query automation, we will work with a hypothetical OO program and 
relational database that manage a university course system. Initially, we define a School 
and Department class, with a one-to-many relationship. A Department in turn has many 
Courses. A Course, a Term and a Prof together constitute a Section. 
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Figure 1: Example course-related database schema 
 

2.1 Problems with literal query strings 
 
SQL queries corresponding to OO operations must use a semantics that is more complex 
than the semantics of the OO operations that they represent. Consider the basic operation 
in which a School is to be retrieved by its primary key of value n from the database. The 
SQL query will look like: 

SELECT schools.* FROM schools WHERE schools.id=n 

A rough English translation of this query might read: “Lookup the schools table; then 
find only rows such that the id column of the schools table has a value equal to n; then 
return all of the columns in the selected rows of the schools table.” But this operation 
might be represented in OO style by a semantically simpler piece of code such as: 

DBHandle.retrieveByPrimaryKey(“schools”, n) 

 
The redundancy of SQL semantics becomes clearer when considering join operations. 
Consider a scenario in which we have some Department dept with primary key value n, 
and we wish to retrieve its School. The SQL query will look like: 

SELECT schools.* 
FROM departments 
INNER JOIN schools ON schools.id=departments.schoolid 
WHERE departments.id=n 

The rough English translation of this query is: “Lookup the departments table; then 
lookup the schools table; for each row in the departments table, match it to every 

Term 
(id, date) 

Prof 
(id, name) 

School 
(id, name) 

Department 
(id, title, schoolid) 

Course 
(id, title, deptid) 

Section 
(id, unique, courseid, 

profid, termid) 
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row in the schools table where the schools row’s id field is equal to the 
departments row’s schoolid field…”, and so forth. The query necessitates the 
repeated use of table names, primary key names, and foreign key names, and the 
programmer’s need to analyze how these values are matched both when creating the 
query and later, when reading it. What would more useful both for writing and 
maintaining queries is a means of expressing the simpler OO-style semantics being 
represented—in this case, something like: “Get the Department with primary key n, then 
get its School.” 
 
We also observe that literal query strings are not easily amenable to reuse. For example, 
suppose we have a SQL query representing the OO operation, “Get the Section with 
primary key n, then get its Course, then get the Course’s Department.” Later we may 
want to extend the chain one more step and fetch the Department’s School. If we want to 
save effort by reusing the query we have already written, we must divide the original 
query into several separate strings—one for the SELECT clause, one for the tables clause 
(containing FROM and JOIN statements), one for the WHERE clause, and in other 
instances, one for the ORDER BY clause. Even so, only the tables clause could be 
usefully reused by appending the new JOIN statement to it. 
 
Furthermore, literal query strings are not easily amenable to parameterization of tables 
themselves. For example, suppose that other objects in our schema link to the schools 
table; there is no easy way to write a function that takes some object x as a parameter and 
returns its School. And the example may be impossible when joining across sets instead 
of single objects. For example, consider a function that takes as a parameter some 
arbitrary set s of Section objects and executes a single efficient query to return the 
Course for each Section in s. This problem cannot be solved without using reification or 
extending the query language itself [6]. 
 

2.2 Previous work 
 
The Reification Object-Oriented Framework (ROOF) offers a solution to most of the 
problems outlined in the previous section [7]. The framework presents a general solution 
to the problem of polylingual interoperable applications, offering a method for one 
application to seamlessly access and manipulate data in a foreign type system. ROOF 
first uses type reification to convert foreign type systems into first-class host language 
objects that can be accessed and manipulated. It then claims that because all type systems 
can be represented as graph schemas, operations on foreign type systems can be 
represented as path expressions through such graphs. 
 
ROOF defines a class called ReificationOperator that encapsulates reified foreign types 
and provides for basic operations on them: 

class ReificationOperator { 
 public ReificationOperator getObject(string t); 
 public Object[] fetch(); 
} 
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Suppose we have a ReificationOperator R that is a handle to some object r in a foreign 
type system. The getObject method returns a handle to r’s attribute named t, which 
must be some other object, not a primitive. The resulting ReificationOperator can then be 
used to return a handle to object attributes of r.t. 
 
If we were working natively in our foreign type system (that is, from the host system 
rather than from some program that is accessing it), we might specify some path through 
object attributes such as: 

r.a.b.c 

With ROOF, we can access this path from another program by specifying the same path 
expression through ReificationOperators. In this case, we are given a ReificationOperator 
R that is a handle to r, so the path can be expressed as: 

R.getObject(“a”).getObject(“b”).getObject(“c”) 

 
Then we can call fetch() on this ReificationOperator. It will generate a low-level API 
call to the foreign type system corresponding to the expression r.a.b.c, retrieve the 
results, and assemble it into some native object that can be manipulated by the 
programmer. ROOF’s approach of using path expressions and elevating foreign type 
systems to first-class objects will be integral to our solution. 
 
 

3 Our solution: ModFetch 
 
How might ROOF look when we apply it to our database problem? Let us return to a 
previous scenario, in which we have some Department dept with primary key value n, 
and we wish to retrieve its School. Given a ReificationOperator Rd that is a handle to 
dept, we may easily retrieve a handle to its School: 

Rd.getObject(“schoolid”) 

This expression specifies a handle to the School object pointed to by dept.schoolid. 
We can then use the handle to retrieve the data for the object itself, and in turn use the 
data to construct and populate a new School object: 

School s = new School(Rd.getObject(“schoolid”).fetch()); 

 
This approach is simpler than the previous use of a multi-line literal query. By reifying 
the type system of our relational database, we are able to construct first-class objects that 
represent queries, and manipulate those objects directly. Furthermore, ROOF’s use of 
path expressions closely corresponds with the suggested semantics of OO expressions 
such as “Get the Section with primary key n, then get its Course, then get the Course’s 
Department.” 
 

3.1 Query reuse 
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In Section 2.1, we noted that literal queries cannot easily be reused. Consider the 
following example: we have a ReificationOperator Rsec for a Section s, and we wish to 
fetch the Department for s. With ModFetch, this is straightforward: 

ReificationOperator Rdept = 
   Rsec.getObject(“courseid”).getObject(“deptid”); 
Department d = (Department) Rdept.fetch(); 

Now suppose that later we also want to fetch the School for s. It is simple to reuse the 
previous expression and extend it, without having to redeclare it: 

School s = (School) Rdept.getObject(“schoolid”).fetch(); 

 
This feature is particularly useful for longer paths. But its true power may become clear 
when considering a slightly different example. Suppose that our database administrator 
notices that it is inefficient to always have to traverse the Courses table when moving 
from Section to Department. S/he thus decides to add a link from Section to Department: 
 

 
Figure 2: Updated portion of database schema 

 
Were we still using literal queries, we would have to update each and every query string 
written in our program. But for this example, it is as simple as updating the single 
ReificationOperator that expresses the path from Section to Department: 

ReificationOperator Rdept = Rsec.getObject(“deptid”); 

 

3.2 Modular Queries 
 
The preceding example hints at the possibilities that ModFetch opens up for modularizing 
queries. Consider the following scenario. We wish to create a module that will print 
information about an arbitrary set of Sections, such as the unique number of each Section. 
We can achieve this through a parameterized function using ModFetch: 

Department 
(id, title, schoolid) 

Course 
(id, title, deptid) 

Section 
(id, unique, courseid, 

profid, termid, deptid) 
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public void printSections(ReificationOperator sectionPath) { 
   Section[] sections = (Section[]) sectionPath.fetch(); 
   for (Section s : sections) { 
      // print data 
      ... 
   } 
} 

 
Note that the function takes as a parameter a ReificationOperator that specifies a path to 
any set of Sections. So we can abstract away the implementation of our module, and 
simply pass to it a path expression. We have not yet described the full range of possible 
path expressions, but we can imagine their rough English descriptions, and how they 
might work with our module: “Print information about all of the Sections offered by 
some Department d”, “Print information about all of the Sections in Course c that have 
been taught by Prof p”, and so on. 
 
This feature might seem to have only limited advantages; for even with literal query 
strings, we could create a function that takes a query string that selects some arbitrary set 
of Sections—or, for that matter, we could create a function that takes the set of Sections 
themselves as the parameter. However, suppose that at some later date we decide that we 
also want our function to print the Term for each Section. With ModFetch, this can be 
easily be accomplished by updating only our module. Again, we have not yet specified 
the full semantics of ModFetch necessary to support this operation, but its rough English 
translation would read: “Given the set of Sections represented by sectionPath, fetch 
those Sections along with the Term for each Section”. 
 
Note that the programmer need not decide at the time that printSections is invoked 
what additional objects will need to be fetched for each Section—only which Sections 
will be fetched. If all of the desired objects are to be retrieved in a single fetch, this 
cannot be accomplished by parameterizing a literal query string or a set of objects. The 
ability to abstract these decisions is the essence of the modularity feature in ModFetch. 
 
ROOF, as noted, leaves incomplete a number of operations that will be necessary for our 
framework, including the operations necessary to exercise the full power of the 
printSections module outlined here. We turn now to describing these operations that 
ModFetch provides. 
 
 

4. Completing query semantics 
 

4.1 Reifying Queries 
 
As noted in the previous section, ROOF provides a simple framework that satisfies the 
basic requirements for the querying system we wish to build. But some details of how 
this system would be applied in practice need to be specified. 
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First, note that to reify the path expressions of queries, two structures in fact must be 
reified. Since such expressions specify paths across type schema graphs, they must 
include information about both the nodes and the edges of the graph that is traversed. 
Nodes are database tables, while edges are the predicates used to join them. Both nodes 
and edges must be reified in some data structure. 
 
In the database schema graph, a node is a table. But since we are reifying queries, we are 
interested not only in which table to select, but which subset of the table’s rows we 
should select, and which of the table’s fields should be retrieved. A ReificationOperator 
thus must store these three pieces of data, and offer a corresponding constructor: 

class ReificationOperator { 
 private String tableName; 
 private String selectClause; 
 private String whereClause; 
 public ReificationOperator(String t, String s, String w); 
 ... 
} 

 
This constructor can be used to create the root ReificationOperators from which we 
construct path expressions. But it is particularly important to be able to easily move from 
an individual object to its ReificationOperator, since we are typically dealing with queries 
that correspond to OO operations on objects. Given some object obj and its table name, 
it turns out to be straightforward to construct a ReificationOperator that corresponds to 
obj. Using the table name, we can query the database and determine the primary key 
name, and then extract the primary key value from obj. This provides sufficient 
information to assemble the table name, SELECT clause, and WHERE clause that 
represent a fetch of this single object, and so we can construct a ReificationOperator for 
obj. If the programmer chooses to specify a class’s corresponding table within the 
program, then an object’s ReificationOperator could be generated through an instance 
method: 

ReificationOperator RO = obj.getRO(); 

 
Finally, a simple data structure named ReificationNodeLink will store the join predicate, 
which is an edge in the query graph. The class links to a parent and a child 
ReificationOperator that specify which tables are being joined together. It also specifies 
the names of the column from each table that will joined. Typically one column is a 
primary key while the other is a foreign key. The parent-child relationship refers to the 
order in which the nodes are fetched—and, correspondingly, the order in which the 
ReificationNodes are linked together. 
 
The graph structure is stored by maintaining a handle to a single ReificationOperator, 
representing one node in the query graph. This node can store two edges, which join the 
node to a parent and child node. With this structure we can store a query path expression. 
 

4.2 Holes in ROOF 
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Although we have demonstrated how ReificationOperators for single objects can be 
generated, a number of OO operations and query features still need to be supported. 
 

4.2.1 Retrieving sets 
 
It is already clear how we may specify one-to-one paths from one object to another, but 
we need to have a means for specifying one-to-many paths. For example, given a 
Department dept, we can call dept.getRO().getObject(“schoolid”) to retrieve 
the School that dept links to. But in the opposite direction, when we have a School s, 
there is no method for retrieving the set of Departments that are in s. 
 
This case can be handled by adding a new method to ReificationOperator that takes as a 
parameter the name of the foreign table: 

public ReificationOperator getSet(String foreignTableName); 

Then the scenario in which we want to fetch the Departments for some School s will look 
like: 

s.getRO().getSet(“departments”) 

The declaration of foreign keys or references in the database structure is used to 
determine which column in the departments table links back to schools. 
 

4.2.2 Outer joins 
 
Our system thus far has no way to express outer joins, which are an important feature of 
relational DB queries. The parent-child semantics in the ReificationNodeLink class can 
be used to enforce the directionality of outer joins. All we need to add to the 
ReificationOperator class is a Boolean indicating whether the join is outer or inner. 
 
We also need to add methods to the ReificationOperator class to support specifying outer 
joins. This can be accomplished by adding a Boolean parameter to our existing 
getObject and getSet methods, which for the sake of convenience can default to 
specifying an inner join. In order to reduce the number of parameters, we might also add 
methods getObjectOuter and getSetOuter, which are semantically identical to their 
counterparts but specify an outer join. Note that paths are directional, so the existing node 
is always fetched before the new node generated by a method call. That is, 
a.getObjectOuter(“b”) means “a left join b”, which is distinct from 
b.getObjectOuter(“a”). 
 

4.2.3 Retrieving multiple sets 
 
Another shortcoming of the system thus far is that we can only retrieve objects from a 
single table at a time. For example, suppose that we have some Section s, and we want to 
fetch its Course, Department, and School. Currently, this must be accomplished through 
three separate operations, and three separate database queries: 
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s.getRO().getObject(“courseid”) 
s.getRO().getObject(“courseid”).getObject(“deptid”) 
s.getRO().getObject(“courseid”).getObject(“deptid”). 
  getObject(“schoolid”) 

Obviously, this method requires redundant work. We should be able to retrieve all three 
objects in a single fetch, and specify this fetch in a single expression. 
 
In the ROOF system, the getObject operator uses reification to move from a handle on 
one object to a handle on another object. But in ModFetch, our goal is to automatically 
generate a single query that will accomplish all of our work. Consequently, when a new 
object handle is created as in the expression R.getObject(“foo”), the old handle R is 
linked to the new handle instead of just being released to the garbage collector. We are, in 
other words, collecting a reified structure for the entire path through the graph—not 
simply using the graph to move from one reified node to another node. When the objects 
are finally fetched, the entire reified path must be visited in order to construct the 
corresponding query. 
 
Therefore we just need a means of specifying that particular nodes be included in the 
final retrieval. Again, we simply need to add a Boolean attribute to the 
ReificationOperator class that specifies whether the node should be selected. And we can 
add a parameter to our getObject and getSet accordingly. Additionally, it may be 
convenient to define methods retrieveObject and retrieveSet that call 
getObject and getSet, respectively, with this parameter set to true. Our original 
example will then look like: 

s.getRO().retrieveObject(“courseid”).retrieveObject(“deptid”). 
  retrieveObject(“schoolid”) 

In ModFetch semantics, the lowest node will always be retrieved, so the final method call 
can equivalently be either retrieveObject or getObject. 
 

4.2.4 Retrieving node children 
 
Now consider a case in which we have a set of Sections represented by a 
ReificationOperator Rs, and we want to retrieve the Term and Prof for each Section in a 
single operation. It is straightforward to do either of these operations, but not both in the 
same query: 

Rs.getObject(“profid”) 
Rs.getObject(“termid”) 

 
All we need, then, is a method that will add a new node onto the graph, but return a 
handle to the old ReificationOperator instead of the new one. This method we will call 
addChildObject. It is semantically identical to getObject except for which 
ReificationOperator it returns. 
 
Now we can express our operation. First, we call: 

Rs.addChildObject(“profid”) 
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This adds a join from Section to Prof, but returns a handle to the Section node. 
Consequently, we can invoke another operation on the Section node: 

Rs.addChildObject(“profid”).addChildObject(“termid”) 

This expression specifies a single query that retrieves both the Prof and the Term for each 
Section in Rs. 
 

4.2.5 Specifying parents 
 
Consider the following scenario. We have some Prof p and we wish to fetch the Sections 
taught by p during some Term t. Fetching all of the Sections taught by p is 
straightforward: 

p.getRO().getSet(“sections”) 

But there is no way to constrain those Sections to only the ones offered during t. 
 
So, we must introduce a new method to ReificationOperator that permits the addition of 
join constraints to a node: 

public ReificationOperator addParent(ReificationOperator p); 

Now we can specify our path expression as: 
p.getRO().getSet(“sections”).addParent(t.getRO()) 

Like addChildObject, the addParent method returns a handle to the current rather 
than the new node, so we could extend the above expressions to include child paths off of 
the Section node. 
 
Since a node can now have multiple parents and children, we must modify 
ReificationOperator to be able to point to an arbitrary-length list of 
ReificationNodeLinks. The ReificationNodeLinks themselves store the necessary 
information about whether a node is the parent or the child in a link. 
 

4.2.6 Cyclic queries 
 
Consider the following addition to our database schema from Figure 1: 
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Figure 3: Student-Review type schema 
 
Here we extend our schema to handle Student objects. Students can also write Reviews 
for particular Sections. The Student-Section relationship is many-many, so we also 
require an association table, StudentSection. 
 
Now suppose we have some Student st, and we want to fetch all of the Sections that st 
has taken, along with any Review that the Student may have written for that Section. But 
we want to return all Sections, regardless of whether the Student has written any Reviews 
for them—which means an outer join will be required. The following expression might 
seem to work: 

st.getRO().getSet(“student_sections”). 
 retrieveObject(“sectionid”).getSetOuter(“reviews”) 

However, this expression would retrieve all of the Reviews written by any Student for 
each Section, not just those written by st. 
 
What we need is a way to specify that our ReificationOperator st.getRO() is a parent 
of both the StudentSection node and the Review node. Our existing semantics in fact 
implicitly supports this: 

ReificationOperator st_ro = st.getRO(); 
Review[] reviews = (Review[]) st_ro 
  .getSet(“student_sections”) 
  .retrieveObject(“sectionid”) 
  .getSetOuter(“reviews”) 
  .addParent(st_ro).fetch(); 

Review 
(id, text, studentid, 

sectionid) 

StudentSection 
(id, sectionid, studentid) 

Student 
(id, name) 

Section 
(id, unique, courseid, 

profid, termid) 
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The semantics allow us to specify all four of the necessary links between nodes. When 
addParent(st_ro) is called on the Reviews node, no new node is added to the graph. 
Instead, an edge is added between the existing Review and Student nodes. 
 
However, recall that every method, in modifying the graph, in fact copies the graph and 
performs modifications on the new copy. Therefore the existing graph will contain a copy 
of st_ro, not the instance st_ro itself. But the addParent method must be able to 
determine whether its parameter already exists in the graph. The solution is for each 
ReificationOperator to store a pointer to the original ReificationOperator that it is a copy 
of (if it is indeed a copy). 
 
In our example, the call to st_ro.getSet first creates a copy of st_ro, then sets the 
copy’s originalRO attribute to point to st_ro. This pointer is maintained when the 
graph is later copied again by subsequent method calls. Finally, when 
addParent(st_ro) is called, it first creates a copy of the graph. Then it checks the 
originalRO attribute of each ReificationOperator in the graph. If any matches st_ro, 
then the method adds an edge between the graph’s copy of st_ro and the node upon 
which addParent was invoked. Otherwise it creates a copy of st_ro and adds it into 
the graph, along with the appropriate edge. 
 

4.2.7 Specifying arbitrary subsets 
 
Finally, we want ensure that we do not obscure the ability we have with normal queries to 
perform searches or simply to constrain our result sets to only the rows that we need. For 
example, suppose that we have some School s and want to print out a list of its 
Departments, but only intend to show Departments starting with a particular letter at a 
time. Fetching the entire Department set is simple enough, but we want to avoid the need 
to fetch the entire set and filter it later. Consequently, we need simply permit the 
programmer to specify arbitrary WHERE constraints as a parameter: 

public ReificationOperator getSet 
  (String foreign, String whereClause); 

The additional parameter will of course default to the empty string. 
 
Now we can easily handle our example: 

s.getRO().getSet(“departments”, “departments.name LIKE ‘A%’”) 

 
 

5 Fully modular queries 
 
We can now show the implementation of the hypothetical module described in Section 
3.2. Recall that we wished to create a module that will print information about an 
arbitrary set of Sections, such as the unique number of each Section. We can now show a 
couple examples of what some calls to that function will look like. For instance, we can 
print all of the Sections offered by some Department d: 
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printSections(d.getRO().getSet(“courses”).getSet(“sections”)); 

Or all of the Sections in Course c that have been taught by Prof p: 
printSections( 
  c.getRO().getSet(“sections”).addParent(p.getRO())); 

 
Consider now the example in which we decide at some later date that we also want our 
function to print the Term for each Section. With ModFetch, this can be accomplished by 
updating only our module. For the sake of brevity, we will assume that our 
Section.fetch method stores in each Section any additional objects that are fetched 
(which can trivially be accomplished). Our updated module will look like: 

public void printSections(ReificationOperator sectionPath) { 
   Section[] sections = (Section[]) 
      sectionPath.addChildSet(“termid”).fetch(); 
   for (Section s : sections) { 
      Term t = s.getStoredObject(“Term”); 
      // print data 
      ... 
   } 
} 

 
Again, note the advantage provided by the fact that the programmer need not know at the 
time that printSections is invoked what additional objects must be fetched for each 
Section. ModFetch provides the ability to institute these abstractions. One example 
application of the ability to encapsulate paths through the database is the ease of 
enforcing user permissions. The programmer can declare a global variable specifying the 
path expression to a set of users with permission to access particular types of resources, 
and link this variable together with arbitrary nodes relating to those resources. If the 
permissions or the scheme for specifying them in the database later changes, only the 
global variable needs to be updated in the program, instead of each and every expression 
that relies on those permission specifications. There are many potential additional 
applications for this type of modularity. 
 
 

6 Querying and retrieving the data 
 
With a rich semantics for specifying query graphs outlined, we now turn briefly to the 
implementation details. The basic outline for generating a query is to traverse the reified 
graph, collecting SELECT and WHERE clauses, and assembling table names and join 
predicates into a tables clause. The clauses can then be joined together to form the final 
query. 
 
The query is then sent to the database. The results can be returned to the programmer as 
some simple data type. However, the programmer can easily wrap the fetch method in 
an automated helper method that converts the result sets into some more convenient data 
structure such as OO objects. 
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A note must be made about the order of the graph traversal. Because ModFetch semantics 
supports multiple parents and children for each node, multiple traversal orders are 
possible. But the notions of parents and children themselves imply constraints on the 
fetch order (this constraint is particularly important for outer joins). Consequently, we 
must satisfy the condition that every parent node be visited before its child nodes. This 
ordering is known as a topological sort [8]. There are several known algorithms for 
determining such an order that are linear in the time of the number of edges plus the 
number of nodes [9][10]. These algorithms have the additional benefit of detecting any 
cyclic dependencies. 
 
Once a topological sort is obtained, the algorithm for generating the tables clause is 
straightforward: 

For each ReificationOperator ro, do: 

1. Add ro’s table name to the tables clause. 

2. For each of the join links in ro for which ro is the child, add the join 
predicate to the ON clause. If there are multiple predicates, they are joined 
together with ANDs; and if there are no predicates, no ON clause is included. 

Note that the first node is not dependent on any other node—that is, it has no parents. 
Consequently, in Step 1, its table name will be added to the tables clause using the FROM 
declaration, and it will not have any ON predicate in Step 2. For every other node, in Step 
1 the table name will be appended along with a LEFT JOIN or INNER JOIN declaration. 
LEFT JOIN will be used if any of the links added to the join predicate in Step 2 are outer 
joins. 
 
 

7 Related Work 
 
A popular Object-Relational Mapper for the Java language is Hibernate [11]. Hibernate is 
somewhat similar to ROOF and ModFetch in that it permits the transparent use of linked 
objects and sets. For example, in our School class, we might add to it a Set<Department> 
attribute called depts, which can be transparently persisted to a database using 
Hibernate. However, Hibernate is designed to provide a one-to-one mapping between 
Java classes and database tables. In order to achieve this mapping, every attribute and set 
must be explicitly declared in an XML mapping file. This introduces additional 
complexity and overhead in initially establishing the mapping. 
 
The ROOF approach offers the advantage that it is does not attempt to map two distinct 
type systems to one another, but simply provides a framework for manipulating one type 
system from another. Similarly, ModFetch aims not to provide a means to obscure the 
distinction between program and database, but rather to remove the hassle of accessing 
the database by reifying its interface, the query. What this means in practice is that we are 
freed from the need to explicitly declare all of the queries we might want to use in some 
external file. We can within the program decide whether we want to fetch all of the 
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Departments for some School, or just a subset of them, just as we would when using 
string queries. Moreover, we can dynamically declare path expressions across multiple 
nodes, and within those expressions declare which of the nodes we want to fetch. 
 
These problems with Hibernate have been the focus of research that performs static 
analysis of code in order to automatically determine the query that most efficiently avoids 
lazy loading and the selection of rows that are not used in the program [4][5]. This 
approach offers significant advantages in transparency, in that the programmer 
theoretically is relieved of the task of specifying an efficient query. However, the 
approach introduces substantial added complexity to the persistence framework through 
the use of static code analysis. 
 
ModFetch instead offers the programmer the ability to make the decisions about precisely 
what data should be fetched, as is normally the case when writing literal queries. The 
advantage ModFetch offers is that the programmer retains the same power that s/he has 
when writing literal queries, but is able to exercise these powers more easily. 
Additionally, it allows for the modular division that is impossible in literal queries, so 
that a query path can be specified at one point in a program and later passed to another 
part of the program that can decide to extend that path. 
 
 

8 Further Work and Conclusions 
 
We believe that ModFetch provides a powerful framework for expressing queries to 
databases designed to persist OO data. ModFetch has been deployed in a test 
environment similar to the example course system, and been found to substantially 
reduce code size and increase the ease of writing queries and OO modules, with minimal 
overhead. However, the framework remains to be tested and evaluated by programmers 
not involved in its development. If such testing demonstrates the viability of its approach, 
several tasks will remain to be completed before ModFetch can provide the full 
functionality of a database interface. 
 
As outlined, ModFetch only provides means for reading from databases, not writing to 
them. Additionally, the means of specifying WHERE constraints is somewhat awkward, 
still relying on manually specifying the literal portion of the SQL query. Table names 
must be redundantly used, and no means are provided for parameterizing these 
constraints. These and other similar features can be added, perhaps by adapting the 
semantics of high-level query frameworks such as Microsoft’s LINQ [12]. 
 
Additionally, aggregate operations (both grouping and SQL functions such as sum and 
average) are not yet supported. The approach employed by our framework indicates that 
supporting these features will be a relatively straightforward task—something as simple 
as adding to the ReificationOperator class a method groupBy that returns a new 
ReificationOperator. We leave the details of the semantics and implementation of this 
feature for later work. 
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When this work is completed, ModFetch may reduce the hassle of using databases as a 
persistent storage mechanism. While existing schemes for automating persistent database 
storage focus on solving the “object-relational impedance mismatch”, ModFetch instead 
respects OOP and relational DBs as distinct systems. It focuses on reifying the query 
itself, which has traditionally been a powerful interface to the database, and can be made 
more powerful if it is less time-consuming to deal with. 
 
Additionally, ModFetch’s focus on the query leads to a system that is simple in its 
semantics and implementation. It requires no scheme for gluing together two type 
systems through complicated mechanisms such as extensive configuration files or native 
language features. It offers the programmer a framework that they can use with minimal 
setup, minimal overhead, and minimal learning curve. Finally, ModFetch’s introduction 
of modularity to queries may grant the programmer new powers, regardless of hassle, that 
are not available when using literal string queries.  
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