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ORIGINAL RESEARCH
HEAD & NECK

Microstructural Visual Pathway White Matter Alterations in
Primary Open-Angle Glaucoma: A Neurite Orientation

Dispersion and Density Imaging Study
S. Haykal, A. Invernizzi, J. Carvalho, N.M. Jansonius, and F.W. Cornelissen

ABSTRACT

BACKGROUND AND PURPOSE: DTI studies of patients with primary open-angle glaucoma have demonstrated that glaucomatous
degeneration is not confined to the retina but involves the entire visual pathway. Due to the lack of direct biologic interpretation
of DTI parameters, the structural nature of this degeneration is still poorly understood. We used neurite orientation dispersion and
density imaging (NODDI) to characterize the microstructural changes in the pregeniculate optic tracts and the postgeniculate optic
radiations of patients with primary open-angle glaucoma, to better understand the mechanisms underlying these changes.

MATERIALS AND METHODS: T1- and multishell diffusion-weighted scans were obtained from 23 patients with primary open-angle
glaucoma and 29 controls. NODDI parametric maps were produced from the diffusion-weighted scans, and probabilistic tractogra-
phy was used to track the optic tracts and optic radiations. NODDI parameters were computed for the tracked pathways, and the
measures were compared between both groups. The retinal nerve fiber layer thickness and visual field loss were assessed for the
patients with glaucoma.

RESULTS: The optic tracts of the patients with glaucoma showed a higher orientation dispersion index and a lower neurite density
index compared with the controls (P, .001 and P = .001, respectively), while their optic radiations showed a higher orientation dis-
persion index only (P = .003).

CONCLUSIONS: The pregeniculate visual pathways of the patients with primary open-angle glaucoma exhibited a loss of both axo-
nal coherence and density, while the postgeniculate pathways exhibited a loss of axonal coherence only. Further longitudinal stud-
ies are needed to assess the progression of NODDI alterations in the visual pathways of patients with primary open-angle
glaucoma across time.

ABBREVIATIONS: AUC ¼ area under the curve; FA ¼ fractional anisotropy; FISO ¼ fraction of isotropic diffusion; LGN ¼ lateral geniculate nucleus; MD ¼
mean diffusivity; NDI ¼ neurite density index; NODDI ¼ neurite orientation dispersion and density imaging; ODI ¼ orientation dispersion index; OR ¼ optic
radiation; OT ¼ optic tract; POAG ¼ primary open-angle glaucoma; RNFL ¼ retinal nerve fiber layer; ROC ¼ receiver operating characteristic; V1 ¼ primary
visual cortex; VFMD ¼ visual field mean deviation

Primary open-angle glaucoma (POAG) is a leading cause of ir-
reversible blindness worldwide.1 It is characterized by the

death of retinal ganglion cells, which leads to progressive visual
field loss and structural degeneration of the retina.2 While clinical
assessment of POAG remains focused on examining the eye, MR
imaging studies of patients with POAG have demonstrated that

glaucomatous degeneration spreads downstream from the prege-
niculate retinal ganglion cells to the postgeniculate visual path-
ways through anterograde transsynaptic degeneration, eventually
reaching the visual cortex.3 Specifically, DWI studies have shown
evidence of WM degeneration throughout the visual pathways,
including the optic tracts (OTs) and optic radiations (ORs).4-18

However, the underlying pathophysiology of this degeneration is
yet to be determined.Received April 26, 2021; accepted after revision February 26, 2022.
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Most DWI studies of visual pathway WM degeneration in
POAG have relied on the DTI approach to data analysis. DTI
uses a tensor to model water diffusion within every voxel, pro-
ducing parameters such as fractional anisotropy (FA) and mean
diffusivity (MD). A decrease of FA and an increase of MD are
generally interpreted as an indication of WM structural integrity
loss. However, these DTI parameters are nonspecific because
they reflect a wide range of WM structural changes, including
changes in axonal density, myelination, axonal orientation, and
membrane permeability.19 Higher order biophysical models of
DWI have been recently developed to provide more specific and
biologically interpretable measures of WM degeneration to
address this issue. Neurite orientation dispersion and density
imaging (NODDI) is such a higher order biophysical model.20

NODDI models water diffusion in the different biologic tissue
compartments. It models restricted diffusion in the intranuerite
space, hindered diffusion in the extraneurite space, and isotropic
diffusion in the CSF.20 By doing so, NODDI produces 3 parame-
ters: the neurite density index (NDI), the orientation dispersion
index (ODI), and the fraction of isotropic diffusion (FISO). NDI
indicates the volume fraction occupied by the intraneurite space
and thus represents the density of neurites (axons and dendrites)
within a voxel. A low NDI is generally associated with a loss of
neurites and hence neurodegeneration. ODI indicates the varia-
tion of axonal orientation in the extraneurite space and, hence,
represents how well-aligned and coherent axons are in a voxel. A
high ODI indicates axonal dispersion, while a low ODI indicates
axonal coherency. Last, FISO is the volume fraction occupied by
CSF in a voxel. A multicompartment model such as NODDI can
provide new insights into WM changes occurring in degenerative
disorders previously studied exclusively using DTI.

In this study, we present the first application of NODDI to
investigate WM changes in POAG, specifically in the pregenicu-
late OTs and the postgeniculate ORs. By doing so, we aim to
characterize the structural nature of these glaucomatous WM
changes in terms of axonal density and coherence, to better
understand their underlying pathophysiology. Additionally, we
assess the diagnostic performance of the NODDI measures of
glaucomatous WM degeneration. Finally, for comparison, we use
the conventional DTI approach for DWI data analysis.

MATERIALS AND METHODS
Ethics Approval
This study was approved by the Medical Ethical Committee of
the University Medical Center Groningen. The study adhered to
the tenets of the Declaration of Helsinki. All participants granted
written informed consent before participation.

Participants
This study included 2 groups: patients with POAG and healthy
controls. Patients with POAGwere diagnosed on the basis of hav-
ing reproducible visual field loss and optic neuropathy consistent
with glaucoma in at least 1 eye, accompanied by open angles on
gonioscopy. All included patients with POAG were under medi-
cal treatment to keep their intraocular pressure within the normal
range (#21mm Hg). Inclusion criteria for the controls were hav-
ing intact visual fields, a decimal visual acuity score of 0.8 or

higher, and an intraocular pressure of #21mm Hg bilaterally.
Exclusion criteria for both groups included having an ophthalmic
disorder (other than glaucoma in the POAG group), a history of
neurologic or psychiatric disorders, a history of brain surgery,
and having an MR imaging contraindication. In total, 23 patients
with POAG and 29 controls were included in this study.

Ophthalmic Tests
Visual acuity was tested using a Snellen chart with optimal correc-
tion for the viewing distance. Intraocular pressure was measured
using a Tonoref Noncontact Tonometer (Nidek). Optical coher-
ence tomography was used to measure the average peripapillary
retinal nerve fiber layer (RNFL) thickness using an OCT-HS100
device (Canon Medical Systems). For patients with POAG, visual
fields were assessed using a Humphrey Field Analyzer (Carl Zeiss
Meditec). A 24-2 test grid was used for 11 patients and a 30-2 grid
was used for 12 patients, and the results were expressed as visual
field mean deviation (VFMD). For the controls, visual fields were
screened for defects using a Humphrey FDT perimeter (Carl Zeiss
Meditec) with a C20-1 screening mode (no reproducibly abnormal
test locations allowed at P, .01).

MR Imaging Data Acquisition
MR imaging data were acquired on a Magnetom Prisma 3T MR
imaging scanner (Siemens) with a 64-channel head coil. High-re-
solution 3D T1-weighted MPRAGE scans were performed using
the following parameters: TR= 2300ms, TE= 2.98ms, TI =
900ms, flip angle = 9°, bandwidth = 240Hz, FOV= 240 � 256
mm2, voxel size= 1� 1� 1mm, slices per slab= 176. DWI scans
were performed using the following parameters: TR= 5500ms,
TE= 85ms, bandwidth = 2404Hz, FOV= 210 � 210 mm2, voxel
size = 2.0 � 2.0 � 2.0mm, number of slices = 66, acceleration
factor= 2. DWI data were acquired using a bipolar diffusion
scheme at b=1000 s/mm2 and b=2500 s/mm2 in 64 noncollinear
directions for each shell in an anterior-posterior phase-encoding
direction, and 3 images were acquired at b=0 s/mm2 in both ante-
rior-posterior and posterior-anterior directions to allow correc-
tion of susceptibility-induced image artifacts. The acquisition
time was around 10minutes for the T1-weighted scan and
14minutes for the DWI scan.

MR Imaging Data Preprocessing and Coregistration
DWI data were first denoised using MRtrix3 (www.mrtrix.
org).21,22 Then, the b=0 s/mm2 images acquired in the anterior-
posterior and posterior-anterior phase-encoding directions were
used to estimate the susceptibility-induced distortions using
the “topup” function of the FMRIB Software Library (FSL v5.0
11, https://fsl.fmrib.ox.ac.uk/fsl). Subsequently, the “eddy” func-
tion of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) was used
to correct for motion, susceptibility,23 and eddy current–
induced24 distortions. Finally, rigid body transformation was
used to coregister the T1-weighted scan of each participant to the
preprocessed DWI scan using the FMRIB Linear Image
Registration Tool (FLIRT; http://www.fmrib.ox.ac.uk/fslwiki/
FLIRT).25
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Visual Pathway Tractography
Unless stated otherwise, all tractography steps were performed
using MRtrix3. First, a 5TT image was produced from the core-
gistered T1-weighted images using FSL commands invoked
through MRtrix3.26,27 5TT images comprise 5 volumes corre-
sponding to different brain tissues, namely WM, cortical gray
matter, subcortical gray matter, CSF, and pathologic tissue. Fiber
orientation distributions were then computed from the DWI data
for each tissue type using multishell multitissue constrained
spherical deconvolution.28 The produced WM fiber orientation
distribution maps were subsequently used for tracking the OTs
and the ORs.

The OR fibers were tracked between the lateral geniculate
nucleus (LGN) and the primary visual cortex (V1; Fig 1). The
LGN was identified manually, and a spherical ROI with a 4-
mm radius was used to circumscribe it. The T1-weighted
images were automatically segmented and parcellated using
FreesSurfer (https://surfer.nmr.mgh.harvard.edu)29 to produce
V1 masks. Probabilistic anatomically constrained tractogra-
phy27 was then used to produce a total of 5000 streamlines
between the LGN ROI and the V1 mask to delineate the ORs
using the following parameters for all subjects: maximum
length = 120mm, minimum length = 70mm, maximum angle
between successive steps = 22.5°, fiber orientation distribution
amplitude cutoff value = 0.05.

The OTs were tracked between the LGN and the optic
chiasm (Fig 1). The optic chiasm was identified manually, and
a rectangular ROI covering its coronal cross-section was cre-
ated. Due to the small size of the OTs, it was not possible to
use anatomically constrained tractography. Instead, we
adapted a method originally described for OR tracking to
remove anatomically improbable streamlines.30 First, proba-
bilistic tractography was used to track a total of 50,000 stream-
lines between the LGN and optic chiasm ROIs using the
following parameters for all subjects: maximum length =
50mm, minimum length = none set, maximum angle between
successive steps = 45°, fiber orientation distribution amplitude
cutoff value = 0.05. A track density image based on the number

of streamlines passing through each voxel was then produced
from the streamlines. Subsequently, a threshold was set at the
99th percentile of the intensity distribution of the track density
image to exclude voxels containing anatomically improbable
streamlines, and a binarized mask was then created from the
resulting image. Finally, 500 streamlines were tracked between
the LGN and the optic chiasm ROIs using the same parameters
described for initially tracking the OTs, while using the thresh-
olded track density image mask to constrain the fiber tracking.
All tracked OTs were visually inspected to ensure their ana-
tomic plausibility.

Estimation of NODDI and DTI Parameters
The NODDI model was fitted to the DWI data on a voxel-by-
voxel basis using the NODDI Matlab Toolbox (http://mig.cs.ucl.
ac.uk/index.php?n=Tutorial.NODDImatlab), producing NDI,
ODI, and FISO parameter maps. For comparison, standard DTI
parameter maps for FA and MD were computed from the b =
1000 s/mm2 shell in MRtrix3. Finally, average measures of the
NODDI and DTI parameters were computed for the tracked OTs
and ORs of each subject.

Statistical Analysis
Demographics and clinical characteristics of patients with
POAG and controls were compared using an independent
samples t test for parametric continuous variables, a Mann-
Whitney U test for nonparametric continuous variables, and a
x 2 test for categoric variables. NODDI and DTI measures of
the visual pathways were averaged over both hemispheres and
then compared using ANCOVA, including sex and age as nui-
sance covariates. The results of the clinical eye examinations
were averaged over both eyes, and their correlation with
NODDI and DTI measures was tested using the Pearson corre-
lation coefficient. Receiver operating characteristic (ROC)
curve analysis was used to assess the diagnostic performance
of NODDI and DTI measures in discriminating between
healthy and glaucomatous visual pathway WM. All statistical
analyses were performed using SPSS (Version 25; IBM), and
statistical significance was reported at P, .05.

FIG 1. A representative example of visual pathway tractography. A,
ROI placement overlaid on an axial section of a T1-weighted image.
Yellow indicates V1 masks; red, representation of the LGN spherical
ROI; blue, the optic chiasm. B, Probabilistic OT and OR fiber tracts.
Red indicates transverse fibers; green, anterior-posterior fibers; blue,
craniocaudal fibers.

Table 1: Demographics and clinical characteristics of
participantsa

POAG (n = 23) Controls (n = 29) P Value
Age (yr) 69.0 (8.5) 66.7 (6.7) .277
Males 12 (52.2%) 18 (62.1%) .473
IOP (mm Hg)
Right eye 13.1 (2.6) 13.0 (2.9) .947
Left eye 13.1 (3.7) 13.5 (3.3) .444
Mean 13.1 (2.8) 13.2 (3.0) .825

RNFL thickness (mm)
Right eye 69.4 (11.3) 96.9 (8.6) ,.001
Left eye 67.2 (11.5) 97.3 (8.7) ,.001
Mean 68.3 (9.3) 97.1 (7.9) ,.001

VFMD (dB)
Better eye –4.0 (5.2)
Worse eye –13.0 (9.3)
Mean –8.5 (6.0)

Note:—IOP indicates intraocular pressure.
a Values are presented as mean (SD) or number (%).
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RESULTS
Demographics and Clinical Characteristics
Patients with POAG and the controls did not differ significantly
in age, sex, or intraocular pressure. The average RNFL thickness
was significantly lower in patients with POAG compared with
controls. Details are provided in Table 1.

Differences in NODDI and DTI Parameters between
Groups
The OTs of the patients with POAG exhibited lower NDI and FA
values and higher ODI and MD values compared with the con-
trols, while the FISO did not differ between the groups. The ORs
of the patients with POAG had a higher ODI and FA, while the
NDI, FISO, and MD did not differ between the groups. Statistical
details and boxplots of the comparisons can be found in Table 2
and Fig 2, respectively.

Correlations with Ophthalmic Measures of Glaucoma
Severity
The NDI and FA of the OTs showed a significant positive correla-
tion with VFMD (r=0.60, P , .005 and r = 0.42, P, .05, respec-
tively), while only the FA showed a significant correlation with
RNFL thickness (r = 0.42, P, .05). The ODI, MD, and FISO of
the OTs and all tested parameters of the ORs showed no significant
correlation with VFMD or RNFL thickness (Online Supplemental
Data).

ROC Curve Analysis
`For the OTs, all tested parameters except FISO were able to dis-
criminate between healthy and glaucomatous WM (P, .05), with
FA having the largest area under the curve (AUC = 0.90). For the
ORs, only the ODI and FA were able to discriminate between
healthy and glaucomatous WM. ROC curves are shown in Fig 3,
and AUC results are listed in Table 3.

Table 2: Comparison of NODDI and DTI measures between patients with POAG and controlsa

Visual Tract/Parameter POAG Controls Partial g2 P Value
OT
NDI 0.64 (0.07) 0.70 (0.07) 0.12 .001
ODI 0.21 (0.03) 0.18 (0.02) 0.26 ,.001
FISO 0.51 (0.06) 0.49 (0.07) 0.02 .375
FA 0.32 (0.04) 0.39 (0.03) 0.50 ,.001
MD 1.55 (0.10) 1.45 (0.11) 0.18 .002

OR
NDI 0.55 (0.04) 0.57 (0.03) 0.02 .301
ODI 0.17 (0.01) 0.16 (0.01) 0.17 .003
FISO 0.1 3 (0.02) 0.13 (0.02) 0.00 .800
FA 0.51 (0.02) 0.53 (0.02) 0.20 .001
MD 0.8 7 (0.04) 0.85 (0.04) 0.01 .447

a Values are presented as mean (SD).

FIG 2. Boxplots showing the distribution of NODDI and DTI measures of the OTs and ORs of patients with POAG and the control group.
Asterisks indicate a statistically significant difference between groups. The asterisk indicates P, .01; double asterisks, P, .001).
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DISCUSSION
In this cross-sectional study, we present the first application of
NODDI to investigate visual pathway WM degeneration in
POAG. We found a disruption of axonal coherence in both the
pre- and postgeniculate visual pathways and a loss of axonal den-
sity in the pregeniculate pathways only. These findings and their
possible interpretations are discussed within the context of cur-
rent NODDI and transsynaptic degeneration literature.

Pattern of Axonal Density and Coherence Changes in the
Visual Pathways of Patients with POAG
The OTs of patients with POAG had a lower NDI and a higher
ODI compared with those of controls, implying a loss of both
axonal density and coherence. The ORs, on the other hand,
showed a higher ODI only, implying a loss of axonal coherence
with a preserved axonal density.

The axonal loss found in the OTs is expected because glau-
coma causes the death of retinal ganglion cells, the axons of
which form the OTs. Evidence of OT axonal loss has also been

previously reported in both animal models of glaucoma and
patients with POAG.17,31 However, the lack of OR axonal loss is
surprising because previous evidence of LGN32-35 and visual cor-
tex36-38 volume loss implies the death of the neurons of the ORs.
Because glaucomatous degeneration starts in the pregeniculate
pathways and then spreads to the postgeniculate ones, there is a
time lag between the degeneration occurring in the OTs and ORs
of patients with POAG.39 This time lag could possibly explain the
discrepancy in axonal density changes of the OTs and ORs in our
group of patients with POAG.

The loss of OR axonal coherence (as indicated by an increased
ODI) in the presence of preserved OR axonal density suggests
that disruption of axonal coherence precedes axonal loss in post-
geniculate glaucomatous WM degeneration. Indeed, a longitudi-
nal study of anterograde degeneration in an animal model of
optic nerve injury found a loss of the “highly coherent appear-
ance” of OR WM preceding axonal loss.40 Furthermore, a longi-
tudinal NODDI study of patients with stroke found an increase
of ODI and no alteration in the NDI in the WM tracts down-
stream of the stroke lesions at the subacute stage, followed by a
decrease in the NDI and a persistently high ODI later at the
chronic stage.41 These findings support the notion that the loss of
axonal coherence in the ORs of our patients with POAG is an
early sign of postgeniculate WM degeneration.

ODI as a Potential Proxy Marker of Postgeniculate Visual
Pathway Demyelination
A study of anterograde transsynaptic degeneration in the visual
pathways of both patients with POAG and a glaucoma animal
model demonstrated that demyelination of the postgeniculate vis-
ual pathways precedes axonal loss.40 The increase of the ODI and
the absence of NDI changes in the ORs of our patients with
POAG could potentially be a reflection of the described

Table 3: AUC for NODDI and DTI measures
Visual Tract/Parameter AUC 95% CI P Value
OT
NDI 0.73 0.59–0.90 .005
ODI 0.79 0.65–0.93 ,.001
FISO 0.57 0.42–0.73 .372
FA 0.90 0.80–1.00 ,.001
MD 0.75 0.62–0.88 .002

OR
NDI 0.63 0.47–0.78 .124
ODI 0.73 0.58–0.87 .005
FISO 0.53 0.37–0.69 .713
FA 0.76 0.62–0.90 .001
MD 0.59 0.44–0.75 .250

FIG 3. ROC curves assessing the ability of NODDI and DTI measures to discriminate between healthy and glaucomatous visual pathway WM.
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postgeniculate demyelination preceding axonal loss. This inter-
pretation is based on the findings of recent NODDI studies of
MS. First, a NODDI study of patients with MS found a marked
increase of the ODI in active MS lesions in comparison with inac-
tive lesions and normal-appearing WM, suggesting that an
increased ODI is a sign of active demyelination.42 Furthermore, a
longitudinal NODDI study of a de- and remyelinating MS animal
model reported an increase in ODI during the peak of the demye-
lination phase, followed by a drop in the ODI during the remyeli-
nation phase.43 Whether the reported increase of the ODI is a
direct result of demyelination or a result of other histopathologic
changes associated with demyelination is unclear. Nonetheless,
the association between active demyelination and increased ODI
together with the evidence of demyelination preceding axonal
loss in transsynaptic degeneration of the visual pathways suggests
that ODI could potentially be a proxy marker of early postgenicu-
late demyelination.

Comparison to DTI Studies of POAG
We found a loss of FA in both the OTs and ORs of patients with
POAG, which is congruent with previous DTI studies of visual
pathway WM changes in POAG.4-16 These findings give the
impression that both pre- and postgeniculate visual pathways ex-
hibit the same form of WM degenerative changes, whereas our
NODDI findings show that the OTs experience a loss in axonal
density and coherence, while the ORs experience a loss in axonal
coherence only. Our findings challenge the interpretations of pre-
vious DTI studies of POAG and highlight the importance of
using biophysical models such as NODDI for studying WM
microstructural changes.

Correlations with Ophthalmic Tests of Glaucoma Severity
and Diagnostic Performance of NODDI Parameters
Glaucoma severity is commonly assessed over 2 domains: struc-
tural and functional. To assess retinal structural glaucomatous
degeneration, we measured RNFL thickness using optical coher-
ence tomography, and to assess functional glaucomatous changes,
we measured VFMD using a Humphrey Field Analyzer. No cor-
relation was found between the RNFL thickness and any of the
tested NODDI parameters. This is surprising because the RNFL
is formed of the same retinal ganglion cell axons as the OTs, so a
correlation between the NDI of the OTs and the RNFL thickness
was expected. Yet, a positive correlation was found between
VFMD and the NDI of the OTs. The FA of the OTs showed a
significant correlation with both the RNFL thickness and
the VFMD, which is in line with findings in previous DTI
studies.11,16

For the OTs, ROC curve analysis revealed that FA is the best
discriminator (AUC= 0.90) of glaucomatous and healthy WM,
followed by ODI, MD, and NDI. FA likely surpasses the ODI and
NDI in diagnostic ability because the aspects of WM degenera-
tion assessed separately by the ODI and NDI contribute to FA
values collectively, producing a larger FA effect size in compari-
son. This idea is also supported by the results of the ROC curve
analysis of the ORs, in which the NDI could not discriminate
between glaucomatous and healthy WM, resulting in the FA and
ODI AUC values being more comparable (0.76 and 0.73,

respectively). While this result makes FA a better binary classifier
of glaucomatous WM degeneration, it lacks the biologic inter-
pretability of NODDI parameters. If our suggestion of increased
ODI as an early sign of transsynaptic degeneration is accurate,
NODDI measures would be more useful in discriminating
between healthy WM and different stages of glaucomatous WM
degeneration in comparison with DTI measures.

Clinical Implications
Our current findings contribute to the fundamental understand-
ing of the underlying mechanisms of POAG visual pathway
degeneration and may also have implications for future glaucoma
diagnostics and therapeutics. More specifically, our suggestion of
ODI as a marker of early postgeniculate WM degeneration could
prove to be useful for early detection of transsynaptic spread of
glaucomatous degeneration. Such a marker could play an impor-
tant role in the development of new glaucoma therapies such as
retinal ganglion cell transplantation and neuroprotection, for
which assessing the state of the postgeniculate visual pathway
would be crucial.

Limitations and Future Directions
A main limitation of this study is the relatively moderate group
sizes, which may have contributed to the lack of detectable axonal
loss that we found in the ORs of patients with POAG.
Furthermore, the inherent limitations of the NODDI approach,
specifically its inability to individually assess different crossing
fibers within the same voxel, may have influenced our findings.
The presence of crossing fibers in the ORs and their absence in
the OTs may be partially responsible for the discrepancy in NDI
changes that we found between the ORs and the OTs. Future lon-
gitudinal NODDI studies of patients with early-stage POAG or a
glaucoma animal model are needed to confirm our findings.

CONCLUSIONS
We found that the pregeniculate visual pathways of patients with
POAG exhibit a loss of axonal density and coherence, while the
postgeniculate pathways exhibit a loss of axonal coherence and a
preserved axonal density. Further longitudinal studies are needed
to assess the progression of NODDI alterations in the visual path-
ways of patients with POAG across time.
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