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Abstract
Architectural smells (AS) are notorious for their long-term impact on the Maintainability
and Evolvability of software systems. The majority of research work has investigated this
topic by mining software repositories of open source Java systems, making it hard to gener-
alise and apply them to an industrial context and other programming languages. To address
this research gap, we conducted an embedded multiple-case case study, in collaboration with
a large industry partner, to study how AS evolve in industrial embedded systems. We detect
and track AS in 9 C/C++ projects with over 30 releases for each project that span over two
years of development, with over 20 millions lines of code in the last release only. In addi-
tion to these quantitative results, we also interview 12 among the developers and architects
working on these projects, collecting over six hours of qualitative data about the usefulness
of AS analysis and the issues they experienced while maintaining and evolving artefacts
affected by AS. Our quantitative findings show how individual smell instances evolve over
time, how long they typically survive within the system, how they overlap with instances of
other smell types, and finally what the introduction order of smell types is when they over-
lap. Our qualitative findings, instead, provide insights on the effects of AS on the long-term
maintainability and evolvability of the system, supported by several excerpts from our inter-
views. Practitioners also mention what parts of the AS analysis actually provide actionable
insights that they can use to plan refactoring activities.

Keywords Architectural smells · Empirical study · Industrial context · Software repository
mining · Qualitative study · C/C++
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1 Introduction

Architectural decisions have been established as one of the most important factors affecting
long-term maintenance and evolution of software systems (Ernst et al. 2015). Architec-
tural smells (AS) are a specific type of such decisions; they are defined by Garcia et al. as
“commonly-used (although not always intentional) architectural decisions that negatively
impact system quality” (Garcia et al. 2009). There are several research works that define
the different types of architectural smells (e.g. god components or cycles between compo-
nents) and discuss their impact on maintainability and other qualities (Lippert and Roock
2006; Arcelli Fontana et al. 2017b; Mo et al. 2015; Le et al. 2016; Garcia et al. 2009). This
impact usually depends on the type of smell, but generally, an architectural smell can impact
maintenance activities of all kinds (corrective, perfective, etc.) by violating software design
principles (Azadi et al. 2019). For example, AS can hinder the adaptation of a system to
new requirements by increasing the coupling and breaking the modularity of certain parts
of the system (Azadi et al. 2019).

Despite the significant corpus of research available on the topic (Verdecchia et al. 2018),
most studies have a limited scope as they perform mainly source code analyses on open
source systems written in Java. While these studies certainly provide a valid and substan-
tial contribution to the literature, there is insufficient work on real-world industrial systems.
Particularly, to the best of our knowledge, there is no work on the impact of AS on maintain-
ability in the embedded systems (ES) industry, where languages like C, C++, and Python
are used much more than Java (TIOBE 2021).1

To address this shortcoming, this study investigates AS in an industrial setting by
analysing C/C++ projects and eliciting the opinion of software engineers and architects. In
particular, we worked with an industrial partner, ASML,2 and studied how AS evolve and
impact Maintenance and Evolution (van Vliet 2008) in two steps. First, we studied the evo-
lution of AS in one of ASML’s main software product lines, comprised of several millions
of lines of code, by examining: how architectural smell instances evolve in terms of their
characteristics (e.g. number of affected elements, number of dependency edges among the
affected elements, etc.), how long they persist in the system, and how they overlap. Second,
we showed the architects, designers, and developers the results of our analysis and inter-
viewed them about the issues they experience while maintaining the artefacts affected by
architectural smells. This study design allowed us to cover the viewpoints of both the system
(quantitative) and the engineers (qualitative).

The major findings of this study show that smells tend to grow larger over time, affecting
more and more artefacts, and that different smell types exhibit largely different survival
rates, allowing practitioners to do a coarse-grained prioritisation of the smells instances
to refactor. Moreover, the results show that some artefacts are affected by more than one
smell at a time, increasing the effort required to maintain them. Practitioners, on the other
hand, recognise that the presence of smells correlates with frequently changed components,
increased change propagation, the presence of severe bugs, the decay of the architecture,
and general maintenance issues.

The architectural smells considered in this study are Cyclic Dependency (CD), Hub-Like
Dependency (HL), Unstable Dependency (UD), and God Component (GC) (Arcelli Fontana
et al. 2017b; Lippert and Roock 2006; Sas et al. 2019). We opted to study these smells as

1See our replication package for the version at the moment of writing.
2Visit www.asml.com for more info.

www.asml.com
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they are some of the most prominent architecture smells, and there already exists tools that
support their automatic detection (Arcelli Fontana et al. 2017a, b).

The rest of the paper is organised as follows: Section 2 provides a brief overview on the
architectural smells subject of this study as well as their characteristics and the tool used
to detect them; Section 3 discusses related work and compares it with this study; Section 4
provides a detailed description of the study design; Sections 5, 6, 7, and 8 describe the
data analysis methodology and results for each research question; Section 9 provides a
discussion on the findings presented in the previous sections; Section 10 summarises the
implications of our findings for practitioners; Section 11 summarises the identified threats
to the validity and our mitigation strategy; finally, Section 12 concludes the paper and lists
some possibilities of future work. Appendix A reports the interview guide we used during
the interviews.

2 Background

2.1 Architectural Smells: Definitions and Implications

This section lists the architectural smells (AS) considered by this study. The definition of
these smells is provided by Arcelli Fontana et al. (2017b) and briefly reported here.

Unstable Dependency (UD) This smell represents a component that depends upon a sig-
nificant number of components that are less stable than itself. The stability of a component
is measured using Martin’s instability metric (Martin 1994), which measures the degree to
which a component (e.g. a package) is susceptible to change based on the classes it depends
upon and on the classes depending on it. The smell thus arises when a component has a sig-
nificant number of components—the tool ARCAN uses a 30% threshold (Arcelli Fontana
et al. 2017a)—it depends upon with an instability value higher than its own. A UD smell
is detectable on Java package-like elements only (i.e. containers of classes, files, etc.). A
simplified example of UD is shown in Fig. 1c.

The main problem caused by UD is that the probability to change the main component
grows higher as the number of unstable components it depends upon grows accordingly.
This increases the likelihood that the components that depend upon it (not shown in Fig. 1c
for simplicity) change as well when it is changed (ripple effect), thus inflating future
maintenance efforts.

Hublike Dependency (HL) This smell represents a component where the number of ingo-
ing and outgoing dependencies is higher than the median in the system and the absolute
difference between these ingoing and outgoing dependencies is less than a quarter of the
total number of dependencies of the component (Arcelli Fontana et al. 2017b). A hublike
dependency can be detected both at the package and at the class level.

The implications of this smell for development activities are once again concerning the
probability of change and the ease of maintenance. Consider, for example, the case repre-
sented in Fig. 1b. Making a change to any of the components that A depends upon may
be very hard (Martin 1994), even though there is only one component depending on them.
Additionally, the central component is also overloaded with responsibility and has a high
coupling. This structure is thus not desirable, as it increases the potential effort necessary to
make changes to all of the elements involved in the smell.
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Fig. 1 Illustration of the four architectural smell types considered in this work

Cyclic Dependency (CD) This smell represents a cycle among a number of components;
there are several software design principles that suggest avoiding creating such cycles (Lip-
pert and Roock 2006; Parnas 1979; Stevens et al. 1974; Martin 2000). Cycles may have
different topological shapes. Al-Mutawa et al. (2014) have identified 7 of them; the ones
detected by ARCAN are shown in Fig. 9b (Arcelli Fontana et al. 2017a). Usually, the cir-
cle shape is intuitively perceived as the typical CD (i.e. see Fig. 1a), but it is certainly not
the only possible type of CD. In fact, there is empirical evidence (Al-Mutawa et al. 2014)
that tiny and multi-hub shapes (two stars attached together that are missing some edges) are
more common than one expects. More complex shapes mean that the cycle has lower lev-
els of coupling and higher levels of cohesion among the elements creating the cycle. For
example, a clique-shaped cycle has the maximum amount of coupling possible with the
components taking part in the cycle, drastically reducing the maintainability of the affected
part of the system.

Besides affecting complexity, their presence also has an impact on compiling (causing
the recompilation of big parts of the system), testing (forcing to execute unrelated parts of
the system, increasing testing complexity), or deploying (forcing developers to re-deploy
unchanged components) (Lippert and Roock 2006).

God Component (GC) This smell represents a component (or package, in Java) that is con-
siderably larger in size (i.e. lines of code) than other components in the system (Lippert and
Roock 2006) (see Fig. 1d). Originally, GC was defined using a fixed threshold on the lines
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of code, ARCAN however uses a variable threshold-detection approach based on the fre-
quencies of the number of lines of code of the other packages in the system (Arcelli Fontana
et al. 2015).

God components aggregate too many concerns together in a single artefact and they
are generally a sign that there is a missing opportunity for splitting up the component into
multiple sub-components. God components tend to become such over time, as a result of
several little incremental changes that contribute to the massive scale of the component,
which ends up effectively implementing a lot of the overall functionality of the system. Over
time, the understandability of the component deteriorates along with the reusability of the
individual parts of the component, because nobody wants to use a piece of software that is
difficult to understand (Lippert and Roock 2006).

2.2 Architectural Smell Characteristics

An architectural smell characteristic is a property or attribute of an architectural smell
instance (Sas et al. 2019). An architectural smell instance is a concrete occurrence of a
type of architectural smell. Smell instances can span over multiple consecutive versions; in
that case we refer to them as temporal instances. For each architectural smell type, one can
measure different characteristics. Some characteristics can be measured for every type of
smell; we refer to them as smell-generic. Other characteristics can only be measured for cer-
tain types of smells; we refer to those as smell-specific characteristics. The characteristics
considered in this work are reported in Table 1.

We opted to focus our analysis on this set of smell characteristics because they provide
further insights about the extent that a smell affects the system; this can inform developers
on how to prioritise refactoring. Additionally, some of the selected characteristics were
developed, studied or discussed by other authors in previous studies, as denoted in Table 1.

The smell-generic characteristics Centrality, Size, and Number of edges are of interest
because they are all conceptually related to the complexity caused by an instance of a smell
in the system. Intuitively, smells that affect parts of the system that are more central (central-
ity) in the dependency network of the system are likely to also affect parts that are critical
and complex, and therefore harder to refactor and maintain. Centrality is measured using
PageRank (Page et al. 1999), an algorithm that measures the relative importance of a node
in a given network based on the connections among the nodes themselves. The more nodes
point to a node, and the more important those nodes are, the more importance is assigned
to that node. PageRank was used on software dependency networks in a previous study
(Roveda et al. 2018).

Smells that affect more elements (i.e. larger Size) have a greater impact on the system’s
maintainability and are more complex to comprehend. Likewise, smells that affect elements
that are highly connected among them (number of edges), are more complex (because they
correspond to higher coupling) and therefore have higher impact on maintainability.

The Age of a smell instance keeps track of the number of consecutive versions the smell
was present in. Architects and developers can decide to prioritise refactoring based on the
age of a smell instance. For example, one might want to focus on the newly introduced
smells to ensure the new code added to the system is more maintainable.

The CD smell-specific characteristics Shape and Affected design level are of interest
because they are directly related to the complexity of the smell. The more complex the
shape, and the more edges there are between the affected components, the harder the smell is
to refactor because more effort is required. Similarly, the affected design level is important
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Table 1 The architectural smell characteristics analysed in this study

Name Description

Smell-generic

Age The number of versions the smell is present in.

Size The number of artefacts affected by the smell.

Centrality The importance of the artefacts affected by the smell within the

dependency network of the system. Measured using PageRank

(from on Roveda et al. 2018).

Number of edges The number of dependency edges among the affected artefacts.

CD smell-specific

Shape The shape of the cycle: tiny, circle, chain, star, clique (from

Al-Mutawa et al. 2014).

Affected design level Whether the cycle is present only among files or components or

at both levels (from Al-Mutawa et al. 2014).

UD smell-specific

Strength The ratio between the number of dependencies that point to

less stable components and the total number of dependencies

of the class (from Arcelli Fontana et al. 2017b).

Instability gap Is the difference between the instability of the main component

and the average instability of the dependencies less stable than

the component itself (from Arcelli Fontana et al. 2017b).

HL smell-specific

Affected ratio The ratio between the number of files creating the central

component’s incoming and outgoing dependencies and the

total number of files in the central component (based on

Abdeen et al. 2011).

Afferent ratio The ratio between the number of files within the central

component with incoming dependencies from external

components and the total number of files within the central

component (based on Abdeen et al. 2011).

Efferent ratio The ratio between the number files within the central component

with outgoing dependencies to external components and the

total number of components the central component (based on

Abdeen et al. 2011).

GC smell-specific

LOC Density The total number of lines of code present in this component

divided by the number of files in the component (i.e. its Size).

because the cycles present at both component/package and file/class level have an impact
on two different abstraction levels at once.

The UD smell-specific characteristics Instability gap and Strength are of interest because
they are used for the detection of the smell and thus can effectively measure its criticality.
The higher the Instability gap, the higher the chance the component affected by the smell
is changed due to ripple effects (Martin 1994). Likewise, the higher the strength, the higher
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the chance (because there are more possible components that are prone to a change) that a
change will occur and propagate to the affected component.

The HL smell-specific characteristic Affected ratio is of interest because it quantifies the
involvement of the files that belong to the affected component. The higher the affected ratio,
the stronger the connection between afferent and efferent components and the higher the
coupling. The Afferent ratio and Efferent ratio divide this concept by only counting the files
with incoming or outgoing dependencies from/to external components in the central com-
ponent, respectively. Thus, they help to understand whether the central component provides
more or less services than it uses itself. These two characteristics are basically a breakdown
of the affected ratio.

The only GC smell-specific characteristic that we study in this work is the density of the
lines of code. The denser the GC, the more code the files in the component have, meaning
that those files are harder to maintain due to a larger size in terms of lines of code (Nuñez-
Varela et al. 2017).

2.3 The ARCAN Tool

To detect AS, we extended ARCAN to support the proprietary C/C++ used by the company
participating in this study. ARCAN’s results were validated by previous studies and obtained
a precision ranging from 70% to 100% (Arcelli Fontana et al. 2017a, 2020).

ARCAN parses Java, C, and C++ source code files to create a dependency graph where
files, components, classes and packages are all represented using different nodes with dif-
ferent labels. Dependencies, and other relationships between nodes, are represented using
edges that connect the dependant to its dependencies with an outgoing, labelled edge (e.g.
if artefact A depends on artefact B, then the dependency graph contains a directed edge con-
necting A to B.). The project’s structural information contained in the dependency graph
is then used to calculate several software metrics (e.g. fan-in, fan-out, instability (Mar-
tin 1994), etc.) and then detect architectural smells by recognising their structure in the
dependency graph.

Compared to other tools, ARCAN uses only software metrics and structural dependencies
in order to detect architectural smells. This makes ARCAN different from tools such as DV8
(Mo et al. 2015) (a tool used by related work) which also requires the use of change met-
rics. While this type of metrics definitely provide important insights into the maintenance
hotspots of the system, they also come with the requirement of needing historical data in
order to be used. This aspect is of particular importance in our case as the version control
system adopted by the company we worked with, did not provide such information.

Despite the different approaches to detect architectural smells, the two tools, ARCAN and
DV8, have some overlap in the detected smells. Both tools detect cycles among files and
components and both detect hub structures (called Crossing by DV8 and Hublike Depen-
dency by ARCAN), but DV8 also incorporates historical information for the detection of the
latter type of smell.

2.4 Similarities and Differences Between Code and Architectural Smells

Distinguishing between code smells (CS) and AS may not always be easy as different
authors have a different understanding of what constitutes one or the other. In this section,
we try to provide a brief explanation about both and clarify the differences between these
two concepts.
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Code smell is a term first popularised by Kent Beck in the late 1990s3 and then further
defined by Martin Fowler and Kent Beck himself in the early 2000s (Fowler and Beck 2002).
A CS is a sign that the piece of code under inspection requires some changes (i.e. a refac-
toring) in order to be considered of good quality (Fowler and Beck 2002). In other words,
code smells are symptoms of poor design and implementation choices (Tufano et al. 2015).

The term architectural amell was first adopted by Lippert and Roock (2006) in 2006
to describe a part of the system that required significant refactorings at the architecture
level in order to meet the desired quality standards. To be more specific, Lippert mentions
that architectural smells, contrary to code smells, require large refactorings in order to be
removed from the part of the system they affect and require longer than a day to be applied
(Lippert and Roock 2006).

Both AS and CS manifest themselves in different forms that are commonly referred to as
different types. Some examples of CS types are Duplicated Code, Long Method, and Large
Class (Fowler and Beck 2002).

Finally, it is important to mention that previous work provides empirical evidence that the
AS considered in this study and the most well-known code smells are independent entities
and that there is no correlation between the presence of AS and CS (Arcelli Fontana et al.
2019).

3 RelatedWork

This section summarises similar studies from the literature regarding architecture smells
and (to a lesser extent) code smells.

In our previous study (Sas et al. 2019), we investigated the evolution of AS in open
source Java systems by adopting two techniques from other domains (that were previously
applied in software engineering): Dynamic Time Warping and Survival Analysis. Specifi-
cally, we examined how a set of AS characteristics evolve and how long AS survive within
the system. Our findings showed that Cyclic dependencies have a low survival rate (just
a few weeks for more than 50% of instances), and Hublike Dependencies are much more
complex than cycles. In general, this means that Hublike Dependencies are a much better
option for refactoring than cycles. The present study is different from our previous work
because it focuses on industrial C/C++ embedded systems and it investigates the opinions
of the architects and developers working on the analysed projects.

Martini et al. (2018) studied the relationship between AS and Architectural Technical
Debt (ATD) within an industrial partner. They used questionnaires and focus groups to
collect the opinion of practitioners concerning a selected set of architectural smells detected
in four Java projects. Their findings showed that practitioners were not aware of half of the
smells detected in their systems. Furthermore, those practitioners ranked AS in terms of
their cost to refactor, placing Cycles first, followed by Hublike Dependencies, and then by
Unstable Dependencies. Our study differs from Martini et al.’s study because we analyse
C/C++ projects from an embedded systems company and use individual interviews to collect
qualitative data. Additionally, we focus on analysing the evolution of architectural smell
instances, collect the experiences of architects and developers dealing with those smells, and
their opinion on the results. Martini et al., instead, perform a qualitative analysis aimed at

3Read https://wiki.c2.com/?CodeSmell for more info.

https://wiki.c2.com/?CodeSmell
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prioritising the refactoring of the smells detected and try to understand architectural smells’
impact on ATD.

Arcelli Fontana et al. (2020) performed a similar study to Martini et al. but in a dif-
ferent industrial setting and extended the study to 8 different types of smells (instead of
only 3). Their findings highlight that practitioners recognise the impact of AS on Maintain-
ability, but were not aware of the definition of many of the 8 types of smells investigated.
Similarly to Martini et al., practitioners recognised Hublike Dependency as a primary candi-
date for refactoring, and mentioned that some smell types (Feature Concentration, Scattered
Functionality and Insufficient Package Cohesion) are only useful to consider in a layered
architecture. This work differs from our study because we analyse C/C++ projects and used
individual interviews rather than a survey to collect the developers’ opinion. Moreover, we
also combine quantitative and qualitative data instead of focusing only on the latter. For
example, Arcelli et al. focus on how architectural smells refactoring is approached by prac-
titioners, and while we partially cover this topic too in our interviews, we also show our
subjects smell instances detected in their system on which they can base their answer on.
Finally, our study puts a strong emphasis on the maintenance and evolution issues related
to architectural smells as experienced by practitioners, while Arcelli et al.’s focuses on how
practitioners perceive architectural smells in general.

Mo et al. (2018) performed an industrial study to measure the maintainability of the
architecture using two metrics and the architectural “hotspots” that incur high maintenance
costs within 8 C/C++ and C# projects from a large software company. The authors also
complemented their analyses with interviews with 6 subjects working for the company they
collaborated with. Their findings confirm that the tool suite they used is instrumental for
architects to pinpoint, visualise, and quantify “hotspots” in the architecture of the system.
Similar to results in other studies (Arcelli Fontana et al. 2020), the development teams
mentioned that they were mostly aware of the key problems affecting their system, but it was
usually hard for them to specify or quantify those problems. In terms of the research method,
the study of Mo et al. is similar to ours, as both studies feature a collaboration with a large
software company where a tool was used to create a report and present it to practitioners
in order to collect their feedback. Our work differs from the one of Mo et al. in two key
aspects: (1) our study is more specific and focuses on a different set of architectural smells
while Mo et al. combine three different types of analyses, two of which do not concern
architectural smells; and (2) we focus specifically in studying the evolution of architectural
smells in industrial systems, while Mo et al. focus on the overall experience of applying an
automated tool suite in an industrial context.

De Andrade et al. (2014) investigate the architectural smells defined by Garcia et al.
(2009) in an open source software product line (SPL) written in Java. Their study is mostly
exploratory in nature and focuses on how architectural smells affect SPLs by performing a
manual detection of architectural smells using a reverse-engineered component model of the
SPL. Their findings mostly provide insights about the SPL under analysis and the specific
instances affecting it. Our study differs from De Andrade et al. because we look at the
evolution of smell instances over time rather that at the implications created by architectural
smells at a single point in time.

Nayebi et al. (2019) performed a longitudinal study on how the architectural smells
detected in an industrial Java system changed after a comprehensive refactoring of the sys-
tem. The authors analysed the system in question 6 months before and 6 months after the
refactoring took place. Their findings show that the average time needed to close issues was
reduced by 72% as well as the number of lines of code needed to do so. The authors also
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performed two interviews to collect qualitative data from two key actors of the company.
Their findings show that the reports describing the amount of architecture debt present in
the system were crucial to convey to the top management the necessity of performing refac-
toring. Our work differs in both its scope and goals. The scope of our paper was a large
multinational company that mostly adopts C/C++, whereas Nayebi et al. collaborated with
a start-up company that operates worldwide and works with Java. The goal of our study is
to understand how individual instances of smells evolve over time in industrial systems and
how their effects are perceived by architects and developers, whereas Nayebi et al. aimed at
studying the effects of refactoring on architectural technical debt (using architectural smells
as proxy).

Feng et al. (2019) studied how three change propagation patterns, identified by the
authors, affect the components involved in the architectural smells detected by the DV8 tool.
Their findings show that there exist only a few dominating active hotspots in the evolution
timelines of the 21 Java OSS projects they considered. Our study differs from their work
because we focus on the evolution of the individual instances rather than on the change pat-
terns generated by these. Moreover, we also collect qualitative data concerning the perceived
effect of architectural smells by C/C++ industrial practitioners.

Xiao et al. (2016) studied how an architectural technical debt index can be modeled using
architectural smells and statistical models. Their findings show that the top 5 architectural
smells (or architectural debts, using the terminology of the authors) consume a large amount
of the total project effort spent on maintenance. Our study differs from their work in terms of
focus and scope. The focus of our study is understanding how architectural smell instances
evolve in the scope of industrial C/C++ projects, whereas Xiao et al. focused on the relation
between architectural smells and historical changes to the files affected; they also modelled
this relation and summarised it as an index. Moreover, they also focus on a different set of
architectural smells and work with open source projects.

Other similar studies from the literature focus on CS, rather than on AS. However, CS are
different entities than AS, as empirically verified in a previous study on the matter (Arcelli
Fontana et al. 2019). Thus, we only briefly summarise two of them here because of the
similarity in the data analysis methodologies.

Palomba et al. (2018) investigated the co-occurrence and introduction order of code
smells in open source Java systems, finding that more than 50% of smelly classes are
affected by more than one smell and that method-level smells may not be the root cause
of the introduction of class-level smells. We used similar techniques to Palomba et al. to
analyse the introduction order and co-occurrence of architectural smells.

Finally, Vaucher et al. (2009) tracked a design smell (God Class) in order to understand
whether the smell originated with the class (i.e. it is by design), or occurred by accident
(i.e. it is considered bad code). The findings show that the God Classes that are by design
are less likely to be changed from version to version, contrary to classes that become God
Classes over time. Our approach to classify the trend of smell characteristics over time is
inspired from the approach of Vaucher et al. to track God Classes.

4 Case Study Design

4.1 Goal and Research Questions

The research goal of this study is to improve the current knowledge on architectural smells
evolution within a system and understand how practitioners perceive their presence in terms
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of consequences on Maintainability and Evolution. Using the Goal-Question-Metric (van
Solingen et al. 2002) approach, the goal can be formulated as:

Analyse architectural smell instances throughout a system’s history for the purpose of
understanding how they evolve and are perceived by practitioners with respect to their
characteristics, lifespan, co-occurrence, and introduction order from the point of view
of software architects and engineers in the context of industrial software systems.

The goal is further refined into five research questions. For each research question we
explain its purpose and how it helps to advance the state of the art.

RQ1 How do architectural smells evolve in industrial software systems?

RQ1.1 How do their characteristics evolve over time?
RQ1.2 How long do different smell types persist within the system?

This question is answered by answering the two sub-research questions. The first sub-
research question aims at investigating the changes that occur in the individual instances
of architectural smells in terms of the smell characteristics (e.g. their size, their centrality,
etc.—see Section 2.2). This will allow us to understand what aspects of a smell change over
time, and more generally, how the changing structure of a smell affects the system over time.
The second sub-research question focuses on understanding the survival rate of different
smell types within the system as it evolves. This will allow us to understand in depth what
smell types influence Maintainability the most on the long-term by simply having more
time to influence the system. Subsequently, this can help to define new or refine existing
prioritisation techniques for architectural smell refactoring.

RQ2 What pairs of architectural smell types co-occur more often?

This question investigates the co-occurrence of different smell types in the same software
component (e.g. class, or package; file, or folder). The answer to this research question can
provide insights on what pairs of smells tend to appear together often. Such insights can
subsequently help in reducing the number of smells introduced by alerting developers in
advance of the possibility of performing some preemptive refactoring.

RQ3 What architectural smell types are more likely to precede or succeed other smells in
co-occurrences?

This research question is a follow-up to the previous one. It focuses on uncovering what
smell types temporally precede or succeed other smell types. Such information can be used
to notify developers that the presence of a certain instance is likely to lead to the introduction
of more smells of a different type, therefore allowing them to take appropriate measures.
Spending some effort to remove an architectural smell, can yield a great return of invest-
ment, if it prevents extra maintenance and rework due to multiple other smells appearing in
the future.

RQ4 How does information about architectural smell evolution help practitioners?

The goal of this research question is to find out if and how information about AS helps
practitioners in identifying and understanding problems in their architecture, whether they
are aware of these problems in the first place, and what aspects of the analysis are the
most helpful (e.g. historical data, smell characteristics, summary of the analysis, etc.). We
ask this RQ to examine how useful the information on architectural smell evolution is in
practice for reducing maintenance effort. This also entails understanding what parts of the
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analysis provide the most interesting and actionable insights to practitioners. Additionally,
this RQ might uncover if there is any key information missing from what is reported to the
developers.

RQ5 How do architectural smells impact a system’s Maintainability and Evolvability?

This research question investigates the effects of AS on maintenance and evolution as per-
ceived by software practitioners. More specifically, the RQ studies the aspects that decrease
the Maintainability level of the affected parts, the long-term development of new features
(i.e. Evolvability), the possible quality-improvement strategies practitioners might consider,
and what information would help them implement those strategies best. Ultimately, this
information can be of great importance in improving the quality of the output offered by
tools that automatically detect and analyse AS. The difference between RQ4 and RQ5, is
that the former deals with the problems in the architecture (smells per sé), while the latter
deals with the consequences of those problems (on maintenance and evolution) as well as
how to solve them.

To facilitate reproducibility, we provide a replication package for this study4 containing
the study protocol, the R scripts used for data analysis, and many other resources.

4.2 The Necessity of Studying AS in an Industrial Setting

To the best of our knowledge, the vast majority of studies on this topic have a limited scope
and only focus on open source systems that are mostly written in Java, or focus on a differ-
ent set of AS. This limits our understanding of how architectural smells actually impact the
work of practitioners in real world scenarios. Moreover, this only allows a narrow perspec-
tive based on quantitative results thus overlooking the (usually more nuanced) qualitative
data. More specifically, it is of interest to understand how developers and architects are
affected by the presence of architectural smells, whether they are aware of the problems in
the first place, and if so, what decisions they make in order to remedy such problems.

Furthermore, Java systems are characterised by several different types of dependencies
(e.g. call, inheritance, use, etc. (Pruijt et al. 2017)) and provide constructs such as polymor-
phism that offer programmers several ways to interconnect classes and interfaces and create
dependencies among them. Procedural languages such as C, on the other hand, have a lim-
ited set of built-in features and do not encourage the creation of dependencies as much as
their OO counterparts. Moreover, as we will explain over the next sections, the company we
collaborate with has developed proprietary mechanisms for defining dependencies between
components which might alter the way we interpret dependencies and thus all architectural
smells, the detection of which is based on dependencies (CD, UD, and HL).

4.3 ResearchMethod

To achieve the aforementioned goal and answer the five stated research questions, we collab-
orated with a large technology industrial partner, ASML,5 to analyse a few of their projects
and interview some of the engineers working on these projects.

More precisely, the company showed interest in analysing one massive software product
line (of 20 million LOC) that is composed of multiple projects. The projects are primarily

4Visit https://doi.org/10.6084/m9.figshare.16884739.v1.
5Visit www.asml.com for more info.

https://doi.org/10.6084/m9.figshare.16884739.v1
www.asml.com
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written in C/C++ and compiled using a proprietary compiler and auxiliary tools. The main
business of the company is manufacturing industrial machinery for the mass production of
microchips. Therefore, all the projects considered in this study belong to this domain. In
terms of our case study, the projects are designated as the cases, and the units of analysis are
the architectural smells detected in each project. Figure 2 illustrates the case study design.

The five stated research questions require different types of data in order to be answered.
RQ1, RQ2, and RQ3 necessitate quantitative data about architectural smells extracted from
multiple versions of the source code of each project. RQ4 and RQ5, instead, require quali-
tative data collected from software architects and engineers working on the studied projects.
The remainder of this section explains how the data collection for these two groups of
research questions was performed.

4.3.1 Quantitative Data Collection

Projects and Architecture The first step of performing quantitative analysis is selecting
the cases to analyse. The selection of the projects was done in consultation with an architect
from the company. We requested that the list of projects would differ as much as possible
in terms of total number of lines of code (LOC), to maximise the diversity in our sample.
The selection was also influenced based on the interest of the architects responsible for
each project in obtaining information regarding the presence of architectural smells in their
systems. The final list of projects is shown in Table 2. The projects differ greatly in total
number of lines of code analysed, from a few thousands to a few million. Each project is
also responsible for a single step in the manufacturing process of the microchip. One project
(P09) is relatively new compared to the rest, and thus smaller both in terms of LOC and
number of versions. We also note that, over time, the company has split projects in two
or more parts to better manage them, causing both a steep decrease in the LOC of some
projects, and other projects starting with a high number of lines of code.

It is important to mention a few details about the architectural style of the projects
selected. The company adopts a layered architectural style with each project (ideally) only
communicating with projects from layers below them or from the same layer. Each project is
divided into multiple clusters of components that handle a specific functionality provided by
that project. Larger projects may be divided into multiple teams, each maintaining their own
cluster of components. Projects situated in higher layers provide functionality that allow
the user to command the machine and configure it. In contrast, projects located in lower
layers are responsible to govern the hardware, orchestrate other components, and provide

Unit of Analysis 1.1
(Arch. Smell)Unit of Analysis 1.1

(Arch. Smell)

Unit of Analysis 1.1
(Arch. Smell)Unit of Analysis 1.1

(Arch. Smell)

Context 1 (Lithography machines)

Case 1 (Project)

Unit of Analysis 1.1
(Arch. Smell)

Case 2 (Project)

Unit of Analysis 2.1
(Arch. Smell)

Fig. 2 The case study design using Runeson et al.’s representation (Runeson et al. 2012)
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Table 2 The list of projects analysed in this study. MLOC = Million Lines Of Code

ID Description Versions analysed MLOC last version

P01 Reticle handling 31 4.88

P02 Waterflow control 37 3.92

P03 Dose control 37 1.58

P04 Light control 37 2.22

P05 Immersion control 37 0.86

P06 Device & Data subsystems 37 6.45

P07 Machining control 37 2.56

P08 Input data manager 18 2.31

P09 Alignment & Diagnostics 9 0.011

abstraction layers to allow the deployment of the code on different kinds of hardware.
Finally, we note that all projects contain both C and C++ files, with the former type being
the most popular one.

Architectural Smells Detection The analysis of the projects included the following phases:
detection of architectural smells, the tracking of architectural smells over time, and the
calculation of the software metrics necessary for the data analysis. The detection-tracking
process is repeated for every version available and the results are merged at the end of the
whole process.

The detection of smells is carried out using ARCAN, which generates a dependency graph
(DG) given the source files of a C/C++ or Java project. The DGs of these two languages,
however, present several differences that influence the architectural smell detection process.
For example, DGs for C/C++ projects have nodes and edges that respectively represent and
connect header files, which are obviously not present in DGs of Java projects. Moreover, the
package structure of Java projects is a tree structure that requires dependencies to propagate
from the leaves (i.e. the classes) to their parents (i.e. the packages containing those classes,
the packages containing those packages, and so on). In ASML, however, there is no such
concept and there are no child components. The different structures of these two languages
(or, more technically, the different graph schemas) imply that dependencies are constructed
differently: in the case of this study, the detection of architectural smells was tailored based
on the guidance of ASML engineers. In particular, components were treated as packages and
header files as Java interfaces, but only for the purpose of mining dependencies (i.e. headers
were not considered for smell detection). All the dependencies detected in the header files
were carried over to the exact files implementing, or using, those dependencies.

Note that, in order to extract the dependency graph, we had to write specific code that
would account for all the proprietary changes the company implemented to their compiler,
and consequently to the syntax of the code. Additionally, since some of the files were auto-
matically generated at compile time, we were also required to compile the projects in order
to pick up as many dependencies as possible. These files contained dependencies between
internal components that were manually declared by the engineers in a proprietary file for-
mat, and missing these dependencies would have eventually resulted in incomplete results.
These two tasks turned out to be very time-consuming, and packed with arduous technical
challenges.
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Fig. 3 Quantitative data collection process

The tracking of the smells is then done using ASTRACKER (Sas et al. 2019), which
matches smell instances from two adjacent versions that correspond to the same smell (i.e.
they affect the same files but in adjacent versions). Usually, this process is susceptible to
file renamings; however, the file naming policies of the company prevented the introduction
of noise in this part of the analysis, as file renamings are not an encouraged practice.

The versions we analysed were all the snapshots of the projects that the company tagged
as releases in their version control system (VCS). The time period taken into consideration
is 3-years long (from 2017 to 2020) and each release took place, on average, 35 days after
the previous. Note that the we stopped at 3 years because the VCS used by the company at
the moment was adopted 3 years before the start of this research.

A detailed representation of the whole data collection process is shown in Fig. 3. For
each version in the VCS, we compiled the source code to obtain the automatically generated
files (omitted from Fig. 3), then we ran ARCAN on each project to obtain the dependency
graph of that version. At the end of the analysis, we ran ASTRACKER to synthesise the
information contained in the dependency graphs into CSV files of raw data. These files were
then processed to create the datasets for each individual research question.

4.3.2 Qualitative Data Collection

While RQ1, RQ2 and RQ3 required the quantitative data described in the previous sub-
section, RQ4 and RQ5 required qualitative data to be fully answered. To this end, we
planned a series of interviews with the engineers and architects working on the projects we
analysed.

The process for selecting the participants to our interviews started with a presentation
of our analysis in one of the monthly meetings between all the architects of the company.
Architects that showed interest were contacted and their projects were analysed. Afterwards,
we prepared an interactive report6 specific to each project analysed and sent it to the corre-
sponding architect. Each architect was then asked to pick a handful (3-5) of engineers that
we could interview; they were also asked whether they would like to take part in the inter-
view themselves. Each participant received a consent information letter, informing them of
their rights as participants, and a copy of the report with the results of the analysis. The

6An anonymised version is available in the replication package of this study.
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Table 3 Background information
on the interviewee and their
respective projects

ID Project Official position Years of exp.

Curr. role In total

I0 P05 Product Architect 4 8

I1 P03 Design Engineer 3 4

I2 P03 Software Architect 8 14

I3 P03 Design Engineer 4 15

I4 P03 Design Engineer 2 8

I5 P08 Design Engineer 4 10

I6 P08 Software Architect 6 15

I7 P07 Software Architect 7 25

I8 P07 Software Architect 8 22

I9 P07 Software Architect 6 23

I10 P02 Design Engineer 3 3

I11 P02 Lead Design Engineer 5 20

Average 5 13.9

report also contained a quick guide to allow them to understand the results. The participants
were asked to inspect the report before taking part in the interview.

The interviews lasted 30 to 40 min each and were performed remotely by the first author
using video-conferencing, individually with each participant listed in Table 3. Interviews
followed a semi-structured format (Runeson et al. 2012) as depicted in Fig. 4 and further
detailed in Fig. 5. As it can be noted, the actual questioning session (Phase 2, in Fig. 4) was
preceded by an introduction to the study, some demographic questions, and an explanation
of the key theoretical concepts necessary to understand the questions in Phase 2. The ques-
tions asked in Phase 2, were grouped by topic and map to either RQ4 or RQ5, as shown in
Fig. 5. Given the semi-structured format, the interviewers also asked follow-up questions
and may have not followed the predefined list of questions if an interesting point, worth of
further investigation, was touched during the session. The full interview guide is available
in Appendix A.

5 RQ1—Architectural Smells Evolution

5.1 RQ1.1—Evolution of Smell Characteristics

5.1.1 Data Analysis Methodology: Dynamic TimeWarping

To understand how smell characteristics evolve over time, we adopt the same technique we
used in our previous work (Sas et al. 2019; Vaucher et al. 2009): signal classification with
Dynamic Time Warping7 (DTW) (Kruskal and Liberman 1983). This approach considers
every series of values of every characteristic of every smell instance as a signal (or time
series) and then compares each signal to a series of predefined signals (templates), each one

7The implementation used for this analysis was provided by the R package dtw.
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Phase 2 (Execution)Phase 1 (Preparation)

Introduction Demographic
questions

Detailed explanation
of AS and results

Questions to answer
RQ4 and RQ5 (plus

generic ones)
Conclusion

Fig. 4 The phases and structure of the interviews

with a corresponding label. Depending on the template that is the mathematically closest to
the signal, a label is assigned to it.

Formally, we can model the problem as follows: for every smell characteristic Ck of a
certain smell k we consider the different values Ck

i as a signal S. We then compute the
following variables: h = max S; l = min S; and m = (h + l)/2. These three values are
then used to build the seven templates, named from a to g, shown in Fig. 6. For example,
template (c) is defined as c = (l, l, h, h). The values l, m, h are re-calculated for each signal
classified. Finally, the signal is classified by comparing the distance of the signal from each
template, and selecting as a label the name of the closest template.

Even though the selected templates offer a good variety of possible signal shapes, there
exist some cases that may not be well approximated by the current selection. One example
is a signal that varies between two integer values (e.g. 6–7) multiple times, which would be
classified by the model as a constant signal (i.e. template (a)). Nonetheless, we deem that
the approximation offered by the model when classifying such unusual signals, is sufficient
for the purpose of this paper for the following reasons:

– the templates selected represent simple and general cases, thus they simplify interpre-
tation and analysis;

– a signal is classified based on the distance DTW calculates between the points from the
template and points from the signal, thus the classified signal has at least an internal
component that resembles the assigned template.

5.1.2 Results

The results shown in this section concern smells that affected the system for at least 3
releases, in order to avoid spurious outcomes and focus on long-lived smells. Note that in
this section, unless specified, or the context implies otherwise, when we refer to an AS

Feedback

RQ4 RQ5

Impact of smells on
Maintainability

Impact of smells on
Evolvability

Possible remediation
strategies

General

General insights
emerging from the

analysis

General feedback on
the results

Importance of smell
types and

characteristics

Perceived and actual
quality of the system

Fig. 5 The structure of the first step of phase two, focusing on RQ4 and RQ5



   86 Page 18 of 45 Empir Software Eng           (2022) 27:86 

(c) Sharp

increase

(b) Gradual

increase
(a) Constant

(d) Temporary

increase

(e) Temporary

decrease
–h

m–

l –

(g) Gradual

decrease
(f) Sharp

decrease

Fig. 6 Trend evolution classification templates. Figure adapted from the work of Vaucher et al. (2009)

instance we usually mean a smell that was detected in multiple versions and was identified
as the same smell.

Finally, we use the following terminology: version and release are used interchangeably,
component refers to a group of files defined as such by the architects of the system, artefact
refers to both files and components, and the terms co-occurrence and overlap (among AS)
are used interchangeably.

Cyclic Dependencies (CD) As Fig. 7 shows, most of the 15578 CD instances (see Table 4)
exhibit either an increase in the number of artefacts affected (i.e. size) or they remain steady
over time. More specifically, 43% increase in size in some way, 36% stay constant, and
only 21% of them decrease. As expected, a similar pattern also emerges when looking at the
number of edges among the affected artefacts (since they are correlated (Sas et al. 2019)).

Fig. 7 The classification of AS’s instances trend for various characteristics grouped by smell type. The
classification is in percentage of the total number of instances with at least an age of 3. The classification
(represented by the colour) for each characteristic is grouped by the overall trend (constant, represented as
a black block; increasing, represented as an up-pointing triangle; and decreasing, represented by a down-
pointing triangle)
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Table 4 The number of unique
temporal AS instances that have
an age of at least 3

Smell type File-level Component-level Total

Cyclic Dependencies 14637 941 15578

Hublike Dependencies 151 40 191

Unstable Dependencies – 273 273

God Component – 190 190

The PageRank of the cycles8 is decreasing in 70% of the instances, contrary to what we
found in a previous study on open source Java systems (Sas et al. 2019). The remaining
21% of instances increase in PageRank, and only 9% stay constant.

Typically, a file can have two types of dependencies (internal to the system), the first is to
another file in the same component, and the second is to a file in another component. Depen-
dencies that cross the border of the component can also create cycles among components,
either a) directly as a result of two or more files from the affected components creating a
cycle among them; or b) indirectly, as a result of files that depend on files in another com-
ponent but do not create a cycle among them, yet they create the dependencies among the
components that in turn create the cycle (see Fig. 8). We call this characteristic ‘Affected
design level’ (see Table 1), and we used this characteristic to study how many cycles cross
this border. In the systems we analysed, 98% of cycles are only among files, whereas the
remaining 2% are at the component level. This means that, the vast majority of cycles is
fully enclosed within the component their files belong to (i.e. they do not cross the compo-
nent’s border), which is a good sign of encapsulation but also means that components are
quite entangled internally. This could probably be because of the specific architecture of the
system, which is divided in components that hide all the functionality under an interface.

Concerning the shape of the cycles, 73% of the instances exhibit no change in shape over
time, whereas the remaining ones (4206 instances) mutate as illustrated in Fig. 9a. The chord
diagram depicts the proportion of the cycle shapes that changed into another shape. Each
sector of the diagram corresponds to a specific shape with outgoing edges that represent the
proportion of the population of that shape that transforms into another shape. For example,
only a tiny percentage of circle instances change shape, and therefore the corresponding
sector of the circle shape is rather small, despite constituting the majority of the population
of cycles (86%). As it can be noted, some shapes (i.e. chain and star) are more prone to
changes than others, i.e. they have a greater percentage of their population changing. There
is also a certain balance across all shapes in the number of instances changing into a shape
and changing from a shape. By looking more closely at the data, we notice that this was
due to the fact that most instances bounce back and forth from one shape to the other. The
circle is a special case: despite only 5% of circle instances being involved in changes, due
to the sheer number of circle instances, the majority of changes involve circle shapes. Thus,
circles are more likely to transform into any other shape, unlike stars for instance, which are
more likely to change into chain or circle only.

Unstable Dependencies (UD) For this smell type, as shown in Fig. 7, 49% of the 273
instances tend to remain constant in size over time, in 37% of the cases UD increase in some

8Calculated as the maximum PageRank of the affected artefacts and normalized by the number of artefacts
in a version.
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Fig. 8 Example of two cycles among components: one among C1 and C2 that is also present among the
files contained in them; and one among C1, C2 and C3 that is only present among the components. Figure
adapted from Al-Mutawa et al. (2014)

way and the remaining 14% of the times they experience a decrease of some sort. A similar
behaviour is observed for the number of edges as well.

The PageRank of UD differs quite a lot from the other smell types, as we observe that
11% of instances stay constant, 42% have an increase of some sort, and 46% experience a
mostly gradual decrease. For other smell types, PageRank is mainly decreasing, whereas for
unstable dependencies, a significant amount of instances exhibit an increase, meaning that
they move towards more central parts of the system. This means that components that are
prone to change move towards more inner parts of the system. This is not an ideal scenario,
as Martin (2017) states that it is preferred to have dependencies that point toward more
stable components in order to reduce change propagation.

Moreover, the gap in instability between the affected component and its dependencies is
showing an increase in 38% of instances, a decrease in 39% of instances, while the remain-
ing 22% exhibit a constant trend. This means that there is no clear trend of instances that

Fig. 9 The cycle shapes considered in this study and how they change over time. The total population of
cycles is as follows: Circle 86%, Clique 7%, Tiny 4%, Chain 1.5%, Star 0.5%). Only instances that persists
for at least 3 releases are considered
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exhibit a clear increase, or decrease, in the instability measured in the central component
and in its less stable dependencies (see Fig. 1c for more context).

The ratio of dependencies of an UD-affected component that are less stable than the
affected component (i.e. the strength characteristic) was found to increase or decrease in
equal percentages (28% each), and stay constant in the remaining of cases (42%).

Hublike Dependency (HL) Hubs tend to either stay constant in size (49% of instances) or
increase (40% of instances), with the remaining 11% decreases. Therefore, over time, hubs
involve more and more artefacts.

By looking at the number of files within the central component that provide function-
ality to external components (incoming dependencies, i.e afferent ratio9) and at the ratio
of files within the central component that use external components (outgoing dependen-
cies, i.e. efferent ratio9) we note the following: the afferent ratio is increasing in 46% of
instances and decreasing in 11% of instances only (remaining 43% are constant); the effer-
ent ratio on the other hand, exhibits an increase in 32% of instances and a decrease in 36%
of instances (remaining 32% are constant). This means that at least some HL instances tend
to provide more functionality over time themselves rather than depending on their outgoing
dependencies to provide such functionality. This phenomenon is not optimal for the over-
all architecture of the system as it means that hubs, over time, replace the functionality of
their dependants: instead of having other dedicated components to provide that function-
ality, hubs take their place (i.e. they accumulate features). The final result of this process
is that hubs drift away from their initial purpose and become aggregators of functionality,
weakening the separation of concerns originally intended by the architects.

Finally, we observe the trend of the affected ratio,9 i.e. the number of files within a
hublike component that create the incoming and outgoing dependencies, thus creating the
smell. This is increasing in 46% of the cases, decreasing in 29% of cases, and the remaining
25% are constant. Thus, as aforementioned, hubs grow to become more complex over time
and more connected to their incoming and outgoing dependants.

God Component (GC) The number of elements in the components affected by GC (i.e.
size) increases in 53% of the cases, stays constant in 40% of the cases and decreases in 6%
of the cases. Similarly, also the lines of code density increases 46% of times, decreases in
34%, and stays constant in the remaining 20%. We can therefore conclude that GC tend to
grow in size over time, possibly aggregating more concerns and growing in complexity.

The PageRank of GCs follows a similar pattern as for the other smells, with 65% of
instances exhibiting a steady decrease, 24% of them an increase, and the rest of them (11%)
stay constant. This is a rather unexpected result as GCs, being large components by defini-
tion, are expected to also have an increase in their centrality over time. This result however
hints that the new functionality added in other parts of the system is ultimately less and
less connected to the functionality offered by GCs given the decreasing PageRank of the
majority of GC-affected components. Such a pattern however is only observed globally in
the whole dependency network of the system; locally, GCs still experience a growth in the
number of files within the component and number of dependencies among those files (as
mentioned above).

9This is a ratio characteristic, however, for this analysis, it was weighted with the number of elements in
the central artefact in the respective version to ensure we detected the absolute variations inside the internal
artefact.
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Summary of RQ1.1 Results The general trend that we notice across the evolution of the
smell characteristics is that each characteristic fits one of two patterns: it either (1) exhibits
a dominant constant trend followed by either an increasing or decreasing trend; or (2) it
exhibits a dominant increasing or decreasing trend. The first case entails that those smell
characteristics are mostly unaffected by the evolution of the smell. Examples of this case
are CD Size, UD Size and CD Number of Edges. In the second case, the opposite is true and
the evolution of smell characteristics has a clear direction over time. Example of this case
are PageRank for all smell types or GC Size. This information can be exploited by using
the smell characteristics of the second type as predictors for the evolution of an instance
to establish the severity of a smell. Instances with smell characteristics that have a clear
trend and are bound to reach certain thresholds could be brought to the attention of devel-
opers before they become problematic and pose a greater threat to the maintainability and
evolvability of the system.

5.2 RQ1.2—Persistence of Architectural Smells in the System

5.2.1 Data Analysis Methodology: Survival Analysis

Different architectural smell types were found to have drastically different persistence rates
within Java Open Source Systems (Sas et al. 2019). To establish the persistence rates in
our case (embedded systems written in C/C++), we employed the same technique used in
our previous work (Sas et al. 2019): the Kaplan-Meier estimator, or survival analysis. This
technique is typically used in the biomedical sciences and in product reliability assessment;
in addition, prior to our previous work (Sas et al. 2019), it was also employed in software
engineering to analyse code smell persistence (Chatzigeorgiou and Manakos 2014).

Unlike simple descriptive statistics, such as mean or density functions, survival analysis
also takes into consideration the possibility that a smell continues to affect the system even
after the last version included in the analysis. In the biomedical domain, this event is associ-
ated with the patient surviving past the period of the analysis. More technically, this type of
data is said to be right-censored, because the outcome of the treatment cannot be measured,
due to the conclusion of the study.

The survival analysis is performed using the Kaplan-Meier estimator (Kaplan and Meier
1958), a non-parametric statistic that estimates the survival probability of a type of smell as
the system evolves (new versions are released). The statistic gives the probability p that an
individual patient (i.e. smell in our case), will survive past a particular time t . At t = 0, the
Kaplan-Meier estimator is equal to 1, and as t goes to infinity, the estimator goes to 0. Also,
the probability of surviving past a certain point t is equal to the product of the observed
survival rates until t .

5.2.2 Results

The results of this analysis are presented in Fig. 10. The figure shows the survival rate for
both smell types and cycle shapes. Figure 10a differentiates between smells at file and com-
ponent level for cycles and hubs: the appearance and disappearance rates of dependencies
among files and dependencies among components may be different, thus we study them
separately. Given their definitions, UDs and GCs cannot be detected at file level; therefore,
we only considered them at component level.
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Fig. 10 A visualisation of the Kaplan-Meier estimators. The plot reads as follows: after a certain time t (on
the x axis), smell type s has a probability p (on the y axis) to survive. Dashed vertical lines represent the
value t when p = .5

Smell Types By looking at Fig. 10a, one can note that the smell type with the lowest sur-
vival rate are cyclic dependencies among components, which tend to disappear from the
system rather quickly: they exhibit a 50% probability of surviving more than 6 versions.
Cycles at file level instead manage to affect the system for a little bit longer, reaching
50% probability of surviving after 9 versions. This makes sense as it is much more likely
for developers (in the company subject to this study) to eliminate unwanted dependencies
towards files in external components, rather than towards internal files. Hubs show a simi-
lar survival rate and reach the 50% probability of surviving at 8 versions, at file level, and
16 versions at component level, before converging later on. God components and Unstable
dependencies reach it at 19 and 24 versions, respectively. God components, however, main-
tain a flatter curve and stay close to the 50% threshold for longer. Another interesting fact
that can be derived from Fig. 10a is that the curves stabilise eventually (see the right-most
part of the plot) and do not go below a certain probability (excluding cycles at component
level). This is probably due to the fact that the parts of the system affected by smells for a
long time tend to become legacy code that is either very hard to change or has no reason to
be changed. Our interviews have provided some insights into this phenomenon, which we
will explore in more depth in the discussion section (Section 9).

Cycle Shapes In Fig. 10b, we focus on the survival rates of cyclic dependencies, regardless
of the type of artefact they affect, and distinguish between different shapes. Circles are the
ones that are more likely to disappear from the system (50% chance of surviving for one
version), however, they are also the most common type of shape and much easier to form,
especially in comparison with chain, clique and star. Cliques, despite being a much more
complex type of shape, have a similar survival rate to the one we observed for circles. This is
probably due to the fact that cliques are less common, harder to appear, and can be “broken”
just by removing one edge from their structure. Moving to stars, despite being relatively
complex (and thus relatively easy to break down), they manage to survive within the system
for a much longer time, reaching 50% of survival probability only after 17 versions. Finally,
chain and tiny shapes are the ones that exhibit the longer survival rate while also having a
relatively stable curve. This is probably because: a) these shapes are very similar; b) cycles
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between fewer elements are less likely to be perceived as problematic—in fact, they could
be intentional.

6 RQ2—Architectural Smells Co-occurrence

6.1 Data Analysis Methodology

To find out what pairs of architectural smells co-occur more often, we used a simple
approach: we calculated the co-occurrence matrix for each type of architectural smell
detected by ARCAN. This resulted in a 6×6 matrix, where the rows and columns are labelled
with the names of the smells. However, for the sake of readability, we report the results in
two matrices, one 4×4 matrix for component-level smells and one 2×2 matrix for file-level
smells. The value in each cell of these two matrices is calculated as follows:

cooci,j = # of instances of type i overlapping one of type j

# of total instances of type i
× 100 (1)

with i �= j . By ‘overlapping’ we mean that the two smell instances must affect at least one
artefact in common in the same version. However, some architectural smells involve various
artefacts which play different roles; thus we also distinguish between the different parts of
the smell that may overlap:

– for Hublike Dependencies we distinguished between the incoming dependencies (arte-
facts C1-3 in Fig. 1b), outgoing dependencies (artefacts B1-3 in Fig. 1b), and the central
component, or the hub (artefact A in Fig. 1b);

– for Unstable Dependencies we distinguished between the central component (compo-
nent A in Fig. 1c) and its outgoing dependencies that are less stable (components B1-3
in Fig. 1c);

– for Cyclic Dependencies we did not make any distinction, as every component of the
cycle plays a similar role in the smell;

– for God Component we did not make any distinction as the smell constitutes a single
element.

Note that for this analysis, we counted every smell detected individually, without linking
it to its corresponding instances in adjacent versions. This way, we capture not only the
overlaps that take place in multiple versions but also those that happen in one version; thus
we represent a more precise picture of the overlaps of smells. Moreover, this approach is
very similar to what was done in a previous study on code smells (Palomba et al. 2018).

6.2 Results

The results obtained for this research question are reported in Table 5, for component-level
smells, and in Table 6 for file-level smells. The values in the table represent the percentage
of the total number of instances of the smell in the corresponding row that overlap with the
smell in the corresponding column (hence the table is not symmetrical).

Component-Level Smells With a first glance at Table 5, one can note that the architectural
smells in the analysed systems have a very high overlap, which is reasonable given the
definition of some smells (i.e. they involve numerous components).
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Table 5 Co-occurrence (or overlap) of component-level architectural smell types. Percentages refer to the
total number of instances, shown in the right-most column. Key values are underlined and in bold face

Smell type CD UD HL GC Total instances

Less stable Centre Incoming Centre outgoing

CD – 99% 97% 91% 76% 94% 86% 12135

UD Less stable 92% – 83% 61% 42% 83% 59% 5121

Centre 52% 50% – 49% 8% 32% 29%

HL Incoming 89% 93% 94% – 55% 77% 74% 587

Centre 77% 82% 74% 53% – 55% 59%

Outgoing 95% 100% 90% 79% 53% – 78%

GC 58% 60% 46% 41% 10% 42% – 3165

CD: Cyclic Dep. HL: Hublike Dep.; UD: Unstable Dep.; GC: God Comp.

Looking at the CDs in Table 5, we note that given their abundant presence in the system,
they overlap with the other smell types in high percentages (from 76% to 99%, as seen in
the first row). This is most likely due to the fact that cycles affect multiple elements, and
its easier for an instance to overlap with another instance of a different type. Nonetheless,
it is interesting to note a discrepancy between how many CD instances overlap with a GC
(86%), and how many GC instances overlap with a CD (58%). This is because several god
components take part in multiple cycles: a significant number of cycles (86% of 12135)
overlap with a GC but there are only 3165 instances of GC, which means that multiple
cycles must be affecting the same GC instances.

Concerning HL instances, it is interesting to note that 74% of hubs (centres) are also
unstable, meaning that the risk of changes propagating to their dependants is increased. We
also note that hubs can be intentional design choices that expose low-level functionality to
components with a high level of abstraction under a single interface (as mentioned by some
interviewees). Nonetheless, this could be a double-edged sword: while hubs might serve
the purpose of abstracting low-level functionality, they might also increase the likelihood
of changes propagating from low-level components to unrelated high-level components. In
addition, as Martin mentions (see the Stable Dependencies Principle (Martin 2017)) this
could also mean that they become harder to change, because there is a lot of high-level
functionality that might depend on it but it is hidden to developers by the central hub.

Table 6 Co-occurrences (or overlap) of file-level architectural smell types. Percentages refer to the total
number of instances, shown in the right-most column. Key values are underlined and in bold face

Smell type CD HL Total instances

Incoming Centre Outgoing

CD – 27% 14% 44% 203646

HL Incoming 97% – 54% 88% 1345

Centre 94% 55% – 54%

Outgoing 99% 91% 55% –

CD: Cyclic Dep. HL: Hublike Dep.
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God Component, compared to the other smell types, exhibits fewer overlaps. This low
interaction rate is particularly notable with hubs, as only 10% of GCs are also hubs (centres
of HL). This highlights how the two smell types centralise logic differently: GCs aggregate
implementation, and therefore they grow in number of lines of code, whereas HLs aggregate
abstractions and delegation, and therefore they grow in number of incoming and outgoing
dependencies. Furthermore, we observe that 46% of GC instances are also UD instances
whereas we see only 29% in the opposite case. This means that 46% of the GC instances,
which aggregate functionality and thus increase in size and complexity, are more likely to
change due to changes in neighbouring components.

Unstable Dependencies were mostly covered when discussing the other smell types, but
it is still noteworthy to mention that 52% of them have their centre taking part in a cycle
and 97% of all cycles go through an unstable dependency centre. This increases the chance
of changes propagating to other components and ripple through the elements affected by
the cycle. Moreover, we note that only 8% of UDs are hubs, which makes sense as the
definition of UD is not based on the number of incoming/outgoing dependencies (unlike
HL); this means that it can be detected in more parts of the system, thus explaining the small
percentage of overlaps.

File-Level Smells Looking at Table 6 we note that the number of cycles among files and the
number of hubs among files differ by two orders of magnitude. However, we still observe
that a lot of cycles (14%) have an overlap with hubs at file level, which means that one
or more cycles go through a hub. Likewise, 94% of hubs, 97% of incoming and 99% of
outgoing dependencies are also involved in cycles.

The high number of cycles and their overlap with hubs suggests that the dependencies
internal to the components are tightly coupled. This makes changes hard to implement,
because it may not be clear how responsibilities are shared between files and how a change
will impact other files. This means that hubs at file-level are a very likely to be a mainte-
nance hotspot, as they not only accumulate responsibilities, but they are also a sign of high
coupling among the hub, the files depending on it, and the files it depends upon caused by
the cycles among those very files. We caution, however, that these may only be specific to
the projects analysed and not applicable in a different context.

7 RQ3—Architectural Smells Precedence

7.1 Methodology

Similarly to the previous RQ, to calculate the number of times a smell type is introduced
before another smell type, we used a matrix. For each architectural smell type i and j (with
i �= j ):

intrk
i,j = # of times an instance of type i preceded one of type j

# times AS instance of types i and j overlap within k versions
× 100 (2)

To obtain more insight, we look into how many versions it usually takes for a smell of
a different type to be introduced. To this end, we repeated the calculation by counting the
times that a smell type i was introduced before another smell type j if and only if j was
introduced at max k versions after i, with 1 ≤ k ≤ 37. In total, we ended up with 37
matrices, one matrix for each value of k. Note that 37 was chosen because it is the maximum
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number of versions we analysed. This setting allows us to understand how the precedence
values vary when looking farther in time (i.e. larger values of k).

7.2 Results

The results for this research question are presented in Fig. 11. The figure shows the val-
ues assumed by intri,j for different values of k. Each quadrant shows the percentages
of instances where the smell type i is the predecessor of an instance of smell type j in
percentage of the number of times instances of type i and j overlapped within k versions.

CD instances tend to precede the other smell instances by one release (k = 1) in 60% to
80% of the cases, depending on the smell. For small values of k, file-level cycles precede
hubs in more than 50% of cases; whereas for k = 37, this is less likely to happen as cycles
have rather short lifespans (see RQ1.2 results), so the percentages plunge down to 30%.
Component-level cycles, instead, precede the introduction of other smell types rather com-
monly, reaching up to 75% for k = 1, meaning that as soon a cycle appears it is very likely
that another smell will affect one of the components in the cycle. Similarly to file-level
cycles, component-level cycles also have a short lifespan, so the percentages of precedence
follow the same pattern.

For small values of k, UD instances are likely to precede HL instances in the same com-
ponent (60% of the cases), with GC and CD being a bit less likely. Since CD instances are
much more common, when using higher values of k, they are much more likely to succeed
UD instances (75%). These results hint that the frequent changes affecting UD instances
are very likely to result in UD instances will overlap with a CD, GC, or HL down the road,
possibly due to the higher instability of their dependencies that force them to change more
often and develop other smells.

Fig. 11 The percentage of instances for each smell type that precede the other smell types, measured for dif-
ferent values of k. Each quadrant represent the predecessor smell type. Percentages are weighted by number
of occurrences in each project for a given value of k
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GC instances seem to have the highest variability, with 75% of instances preceding HLs,
55% preceding UDs, and 30% preceding CDs. This means that the complexity of a GC is
very likely to introduce other smell instances such as a HL and/or a UD. Only when k is
larger, a CD instance is eventually introduced.

HL instances at the component-level, on the other hand, are much less likely to precede
another instance, especially on the short term (k ≤ 3). UD instances are the most likely at
35%, followed by CD at 25% and GC at 23%. File-level HL instances are likely to precede
CD (almost 50% of HLs do so) because CD are ubiquitous. However, what is most inter-
esting, is when we consider how HL ranked in the results of other smell types. We note that
HL are usually more likely to appear after other smell types, in fact they are always the most
likely smell type to appear after a smell of another type was introduced.

8 RQ4 and RQ5—Practitioners and Architectural Smells

8.1 Data Analysis Methodology

The qualitative analysis adopted the Constant Comparative Method (CCM) (Glaser and
Strauss 2017; Boeije 2002), part of Grounded Theory (Glaser et al. 1968), to deduct valuable
insights from the interviews. Grounded Theory (GT) is one of the most important methods in
the field of qualitative data analysis. It has been used extensively within both social sciences
and software engineering and provides a structured approach to process and analyse the data
collected from multiple sources. GT increases the theoretical sensitivity of the researcher
as the data analysis progresses and eventually allows to formulate hypotheses and theory
(Glaser et al. 1968).

As mentioned above, we have used CCM, an inductive data coding and categoriza-
tion process that allows a unit of data (e.g., interview transcript, observation, document)
to be analyzed and broken into codes based on emerging themes and concepts; these are
then organized into categories that reflect an analytic understanding of the coded entities
(Mathison 2005).

The qualitative data analysis process is presented in Fig. 12. During the first phase (Phase
A), the collected material (i.e. interview recordings) was studied and a code map was created
to organise the codes used to tag the data. After completing this phase, the coding process
started (Phase B), which also involved updating and re-organising the codes based on the
new understanding of the data. As new interviews were recorded, transcribed, and coded,
the data was also gradually analysed and notes were taken with the aid of the codes in the
data (Phase C). To aid with the organisation of the codes, we created a network of codes,10

where each code was linked to other codes based on their relationship. In total, two rounds
of coding where done, the first one as interviews were transcribed, and the second one after
the transcribing process was completed, to ensure that the codes added along the way were
present in all the data. Additionally, coded quotations from the interviews that referred to the
same topic (e.g. two participants referring to the same event) were linked together to help
navigate the quotations during data analysis. This process included both intra- and inter-
document quotations, where documents refer to interview transcripts. The whole process
was performed by the first author of the paper, while the second author reviewed the codes
and coding schemes as they were developed to reduce the risk of biases (e.g. confirmation

10See replication package.
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Phase CPhase BPhase A

Study the material

Define codes

Read and code the
material

Reformulate, split and
categorize codes

Code analysis

Take notes of findings

Fig. 12 The phases of the qualitative data analysis process

and information bias). To automate the data analysis as much as possible, we relied on
Atlas.ti,11 a dedicated qualitative data analysis tool.

8.2 Results

8.2.1 RQ4—Support to Practitioners

Overall Considerations Most of the interviewed participants stated that the reported results
resembled what their intuition and expectations were prior to seeing the report.

It was more like a confirmation, because yeah, since I was busy with this project for
five years, I had a feeling where the “bottlenecks” were and which components were
changed the most.

Many practitioners also reported that the results correlate with the parts of the system they
experienced issues (either currently or in the past). The most unexpected result for some
participants was the number of Cyclic Dependencies affecting the files within a certain
component; they mostly underestimated it, particularly for components that are relatively
new.

Something that I didn’t knew is that Component X and Component Y are also not
doing good while they are relatively new components.

This begs the question whether the architectural smells analysis actually helps architects
and developers, since they already know where the issues are. Participants mentioned that
the report provides them with the following benefits: (a) a “good view” of where cyclic
dependencies are so they do not have to “grope in the dark”, (b) a way to prioritise the
future improvements based on where exactly the current smells are, (c) a good idea of how
complex and extended a specific change (e.g. add/modify a requirement) could be, (d) a
way to track the issues, making them visible to the rest of the team, (e) a clear approach to
determine when an issue has been fixed, and (f) a way to find out if the problem reappears
in the future.

11See https://atlasti.com/.

https://atlasti.com/
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A common point among all these benefits is that they all contribute, in one way or
another, to sharing the knowledge of the problems present in the project with all team mem-
bers in a way that would otherwise be tacit. One participant also highlighted the usefulness
of the information provided for new team members:

[...] this will be very useful, for example, to any person coming to the team or a new
architect of a team. Graphs like this will then provide years of experience in one go.

Transferring and tracking knowledge as a team can be rather cumbersome (Rus and
Lindvall 2002), so automating this task with a tool, is an added value that several practition-
ers appreciated, and expressed a desire to integrate into their workflow in order to receive
periodical reports.

Finally, the fact that the reported issues are already known to practitioners, is considered
as a positive outcome of our study. It indicates that the AS we were able to identify are true
hotspots within the system (though quantifying this using the Precision and Recall metrics
was out of the scope of this study). It is also worth noting that in some cases, the problematic
components highlighted in the results were already part of the quality improvement roadmap
that one designer proposed to the architect responsible for their project.

Specific Feedback After having established that the analysis actually provides an added
value to the practitioners, we now describe which details provided them with the most
insights.

In terms of the information contained in the report that the participants marked as useful,
or referenced while explaining something, or implied that it allowed them to plan future
activities accordingly, we have the following:

– the dependency graph of components, as it provided an overview of the current state of
the system’s architecture;

– the heatmap showing what components were affected by most smells (and what type
these smells were), as it allowed to identify the hotspots of the systems quickly, and
plan accordingly;

– the total number of smells (divided by type) over time, as it showed the trend of the
quality of the system;

– the histogram with the number of incoming and outgoing dependencies for each com-
ponent in the current version, as it shows an overview of the system like the dependency
graph but allows for an easier comparison between the components;

– the number of components involved in a smell (i.e. the Size characteristic), and other
characteristics (like shape of a cycle), as it provided a quick summary about the smell
and its possible effect on the system in a glance;

The fact that all this information could be generated automatically, with very little configu-
ration by the user, and on-demand, was greatly valued.

Missing Information The participants also provided their opinion on what information is
missing from the report. A common feedback that we received is the lack of ability to dive
into the details of a specific smell, and visualise the relationship between the affected com-
ponents, how they interact with their neighbours, and other contextual information useful to
fix that smell. However, it is fair to note that this was also not the purpose of the report to
begin with; rather, it was designed to provide a general overview of the architectural smells
present in the system.
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8.2.2 RQ5—Impact on Maintainability and Evolvability

During the interviews, practitioners shared several experiences concerning the maintainabil-
ity and evolvability of components that were affected by smells. Although the majority of
these anecdotes referred to different events and projects, most of them had enough similari-
ties to allow us to identify a few patterns in the types of issues faced when trying to maintain
or evolve the system.

Ripple Effects The most common type of problem is related to the ripple effects of changes.
Making any kind of change to components affected by smells, is a troublesome process
that required additional effort to carry out. This additional effort was mostly due to changes
that would propagate to parts of the system that were partially, or totally, unrelated to the
original change.

When I consider our changes in the past, these components are almost always touched.
Depending on whether we can keep a change internal to a component or not, it may
be that the change propagates to interface of this component. If it does, then we get
this domino effect.

Change propagation (or change ripple effects) is problematic, as changing a component
might propagate to different components belonging to different teams. This often means
that a simple change could impact multiple teams, thus requiring further synchronisation
between the teams to get it done; ultimately, the change becomes much costlier. The same
participant that gave the previous quote, provided an example of this phenomenon after
being asked whether he/she noticed a correlation between changes and the components
affected by smells:

Two years ago I made some changes in Component X that propagated to 56 compo-
nents only because we changed the interface of that component. The changes we made
were big and not backwards compatible and we had to change almost 60 different
components in 5–6 teams, and it took a year to get everything done.

In this case, Component X was affected by both God Component and Unstable Dependency,
and the subject also mentioned Unstable Dependency as the most critical type of smell
before providing this example. We cannot claim of course, that the presence of the two
smells are directly the cause of the ripple effects of these changes in other components.
However, the answers provided by the subjects directly link the presence of smells with
an increased change propagation and change-proneness in the affected and neighbouring
components.

On a similar note, another practitioner mentioned an example where changes in the code
belonging to low-layer components that control the hardware, propagated to components
in higher layers, even though that was not supposed to happen. The low-level components
were responsible for controlling some underlying sensors and hardware with the goal to
support the hardware of a new machine. The changes to these components triggered changes
that rippled upward in the hierarchy of layers and the amount of work required to complete
the update process was initially underestimated. The subject linked this particular case to
both Hublike Dependency and Unstable Dependency: the low-level hardware components
were controlled by a middle-level component, which was both unstable and a hub, and the
high-level components depended on it.

Finally, ripple effects were also commonly associated with god components and their
inherent internal complexity as well as with the fact that they usually contained a lot of
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legacy code. Making changes to complex god components was considered a risk, because
every change could affect multiple files and change the behaviour in unknown parts of the
system or component (as pointed out by one of the practitioners this is also due to the
inadequacy of their tests to test for regression). Some god components contained files that
were so tangled (i.e. affected by cycles) that even a simple change would have impacted
several other files.

Architecture Erosion In addition to changes rippling to external components, participants
also provided examples that the presence of smells is a sign of architectural erosion (Perry and
Wolf 1992): the gap between the original, intended architecture and the actually implemented
architecture, that happens due to the continuous maintenance and evolution activities.

One of the interviewed architects explains their struggle with implementing the paralleli-
sation of two tasks in order to speed up the production throughput of the whole machine. The
tasks were both implemented by a certain Component Y, which, over time, became so com-
plex and intricate (and also contained legacy code) that made it too difficult to proceed with
the implementation of the desired feature (i.e. parallelisation) before actually refactoring the
code.12

In your results Component Y is both a god component and a hublike dependency. [...]
We do have maintenance issues in that component, so we want to split it to smaller
functions because it has a lot of functionality and is quite a drawback to scale the
functionality [...]. The road map that we had for improving it is to split the component
to allow us to do the two things in parallel. To make that first step it was very painful
in the short term, but once we got the hang of it it’s been improving a little bit.

This example reflects how an important evolution of the system that would provide a tan-
gible improvement for the customer, is hindered by: a) the centralisation of functionality
in a single component (i.e. the two tasks), which is typical of hubs; and b) the aggregation
of implementation (and legacy code), which is typical of god components. This component
was originally not meant to be so large and complex, but erosion happened over time.

Cyclic dependencies among components were also mentioned by multiple architects
as a sign of architecture erosion. One architect mentioned an interesting example of how
cycles were creating, over time, various problems that confused the team about what
responsibilities were implemented by what component.

We also had a famous cyclic dependency between Components Z, U, and V, which
had all kind of interesting things. Over time, sometime one controlled the other and
sometimes the other controlled the first. That always gave us problems. So we are
now actively redesigning that part to get rid of that cycle.

This is a textbook example of the detrimental effects of cyclic dependencies among com-
ponents on the maintainability of the system. Since the original architecture is eroded,
developers first have to reverse engineer the responsibilities of the components at that point
in time before applying the desired change to the system.

Moreover, another architect provided a very interesting anecdote about trying to refactor
one cyclic dependency, showing how hidden dependencies, and the resulting complexity
can ultimately have a direct impact on the company’s business.

12Note that the refactored version of the code was implemented in another component, which, when it is
ready, it will supersede Component Y.
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Last year we tried to remove a cyclic dependency by introducing a pattern to remove
part of the cycle. However, we were not aware of all the legacy functionality within
that component, and while removing the cycle, we missed some of the dependencies.
This led to a lot of escalation in the field and we had to fly over to our customer
to explain why this happened. It was actually a combination of god component and
cyclic dependency. It was a real pain and the whole team had to work for two or three
months to get it solved.

In conclusion, all the examples mentioned in this section highlight how certain smell
types (i.e. god components, hubs, and cycles), in one way or another, hinder the evolution—
and even the refactoring—of the system and reflect its architecture erosion, further
preventing developers to deliver new functionality to the customer.

Bugs and Errors Practitioners also shared stories on how certain smell types affect the
correct functioning of the system.

Cyclic dependencies, for instance, were mentioned several times (by multiple subjects)
as a type of smell that causes errors at runtime, such as deadlocks, synchronisation issues
of two or more tasks working together, or reduced throughput.

For example, if we look at the cyclic dependencies in the report. And look at the first
one you see, this is basically the interaction between dose control peripherals. Those
[components] are basically sensors, and these peripherals should only talk to [a master
component] without talking between each other. [...] when you have time-critical data
coming in, this can lead to some timing errors in the field and sometimes deadlock.

God components were also mentioned when discussing bugs and errors, though cycles
among components were more dreaded because they had a direct impact on the observed
behaviour of the system by the customer.

Communication Finally, practitioners also reported communication-related issues during
maintenance and evolution that they associated with the presence of smells.

In this company, every component has a component owner, who is responsible of tracking
changes, reviewing changes, handling questions from other owners or developers, as well
as other organisational tasks. This causes owners of components that are essentially god
components to be overwhelmed with requests because their components implement a lot of
functionality, have a lot of responsibilities and a lot of other components depend on them.

Another problem in this category are code reviews of smelly components that contain a
lot of files that change. When the designers and architects meet to discuss and approve the
changes in the code reviews, several discussions and arguments arise about the impact of
each change, how to interpret the changes, and even what customers might be affected by
certain changes thus creating confusion and ultimately delaying the development process.

9 Discussion

In this section we discuss the results obtained in this study and compare them to related
work. Each subsection focuses on a significant aspect of the results we obtained from each
research question.
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9.1 Entanglement of Dependencies

An interesting observation stemming from the results obtained from RQ1 is that most of
the cycles at file-level pose (in themselves) little threat to the maintainability level of the
system as they (a) were not associated with bugs by our practitioners (unless they crossed
the component border) and (b) only half of them survive for more than a year. However, we
noticed that when multiple cycles co-exist within the same component they create an entan-
glement of dependencies that ultimately affects the clarity, testability, reusability, and the
ability to anticipate the effects of changes of the parts affected by the cycles. In fact, Lip-
pert and Roock (2006) hinted (back in 2006) at the possibility that cycles among files (or
classes) may affect those aspects of Maintainability; the results presented in this paper cor-
roborate his heuristics with empirical evidence. Our results also align with those of Mo et al.
that supported such heuristics in their industrial study (Mo et al. 2018). More specifically,
they found that clique-shaped cycles among files generated a considerable amount of main-
tenance activities in the affected components. The high coupling created by the presence of
several cycles among the same group of files (such as cliques, or quasi-cliques) increases
the maintenance effort required to maintain them.

On a similar note, Lippert had also mentioned that, while spaghetti code (i.e. goto state-
ments) is thought to be a thing of the past, modern software code still presents similar
structures; but, instead of occurring at function or statement level, it involves files and
components. In other words, we never really got rid of spaghetti code’s negative effects
(confusion, difficulty applying changes, intertwined logic etc.); we just solved the most
explicit part of the problem, the one showing up in the code (i.e. the goto statements). Now
we are facing the part of the problem that affects the way we organise code (files and com-
ponents), where the negative effects can potentially have a larger impact. The findings of
this study show exactly this particular aspect, highlighting how practitioners struggle with
maintaining entangled files and components and need assistance to manage the intricate
structures that arise in their codebase. Therefore, we advise researchers, to focus more on
building tools and frameworks that reduce the burden of dealing with this particular type
of issues, as well as on making these means more accessible and usable by the indus-
try. While tools like ARCAN are a first step towards this goal, the findings of this paper
can guide research activities in this direction too. One example stems from our results on
the introduction order of architectural smells. A machine learning tool that precisely pre-
dicts the introduction of new architectural smells in a component could be of great value to
practitioners.

9.2 Persistence of Smells

The results of RQ1.2 show that 50% of Cyclic Dependencies do not survive more than 10
versions after their appearance. Bavota et al. (2015) studied the relationship between refac-
torings and code smells, and, surprisingly, their findings show that only 7% of code smells
are removed because of intentional and specific refactoring activities. Should this finding be
valid for architectural smells too, it would mean that only a small percentage of architectural
smells are intentionally removed by applying refactorings. The remainder of architectural
smells may be therefore removed as part of the development activities related to the evolu-
tion of the system. In our previous study, we also found that architectural smells’ density
over time is mostly constant in the long-term, meaning that as AS are removed from the
system, they are also eventually replaced by others. Cedrim et al.’s study (2017) report a
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similar percentage of code smells (i.e. 9.7%) removed by refactorings, and, more interest-
ingly, 33.3% of refactorings actually resulted in the introduction of new code smells (most
of which were never removed from the code). Given our results, we could hypothesize that
the same phenomenon may also occur for architectural smells: targeted refactorings poten-
tially account for the minority of the architectural smells removed over time in a system. A
possible explanation is that given the fact that architectural smells are not easy to visualise
without proper tooling, then it is hard for developers and architects to realize what problem
they are facing and thus act accordingly.

9.3 Comparison with Java OSS

Comparing the results obtained in RQ1 of this study with the results obtained in our previous
study on Java OSS (Sas et al. 2019), we note both similarities and differences.

Evolution of Smells In both cases, we found that the size of the smells either stays con-
stant in size or increases over time while the smell density of the system remains constant.
Specifically, the size of the analysed systems (both C/C++ and Java) grows over time which
entails that AS grow both in number and in size over time; this holds for both industrial
C/C++ and Java OSS. This is an expected result because software systems are expected to:
(1) continue to grow over time (more lines of code are added every day); and (2) increase in
complexity over time (more smells are added every day and existing smells may increase in
size) (Lehman 1980).

One difference we observed was that for OSS projects, UD had a dominant decreasing
trend for its PageRank characteristic (Sas et al. 2019); this was not the case for C/C++
systems. It is hard to objectively interpret this disparity given the different programming
languages. However, we conjecture that the open source community is more successful
in driving the more unstable components away from the centre of the system, where the
maximally stable, core abstract components should reside (Martin 2017) and away from
the implementation provided by the external ones. It is important to note that the majority
of Java OSS projects present in our previous study (Sas et al. 2019) were Apache projects,
which are known to follow high software quality standards.

Survivability of Smells We noticed several similarities between Java OSS and the industrial
C/C++ projects we analysed. Both exhibit a trend where UD smells are the most persistent
type of smell across the projects analysed. HL smells follow UD in second place, which
in turn are followed by CD smells (GC smells were not included in our original study).
Additionally, HL smells among components are more persistent than HL smells among files
and cycles among components were less persistent than cycles among files in both types of
systems. Given these similarities, we can conclude that different architectural smell types
exhibit the same pattern of persistence regardless of the type of system they are detected in.

However, we also noticed one important difference between the smells detected in Java
OSS and C/C++ industrial systems: all smell types exhibit longer lifespans in the industrial
systems. This aligns with the feedback collected from our interviews with ASML engineers
(see Section 8.2): making changes is hard, they require a lot of coordination between teams,
certifications, code reviews, and a lot of effort in general. The way ASML defines dependen-
cies among components may also have had an impact on the survivability of smells. ASML
components use a custom mechanism to expose their interface to other components. Thus, if
a component communicates with another component through that interface, it is very likely
that the dependency between those two components is there by design and not accidental
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or involuntary. This implies that it is less likely for that dependency to be removed in the
future, and thus all smells relying on that dependency (e.g. like a cycle) will keep exist-
ing. Ultimately, this custom mechanism, and the rigorous engineering processes between
and within teams translate into an increased amount of time necessary to make a complete
change to the system, which is also reflected in our data.

Finally, cycle shapes also exhibit the same patterns identified for Java OSS systems. We
especially observed that tiny cycles are outliving all other shapes in both types of systems,
showing how this shape is very likely to be intentional and/or less harmful than the other
types of cycle shape.

9.4 Overlaps

The results obtained from RQ2 show that, except for a few outliers, all smell types are likely
to overlap, amplifying their impact on maintainability and evolvability and giving compo-
nents more than one reason to change, thus breaking the Single Responsibility Principle
(SRP) (Martin 2017).

Our conversations with practitioners from RQ5 provide evidence to support this very
claim, as they mentioned multiple examples where they associated two or more smells with
the maintenance issues they were experiencing. These results emphasise the importance
of handling overlaps between architectural smells and, more importantly, preventing their
introduction in the first place.

From our quantitative analysis emerged that cycles are pervasive in the system and they
tend to appear as precursors to other smell instances, as they exhibit a high precedence rate
(with k = 1). This could mean that the presence of cycles in the system is likely to ease the
introduction of other smells. As a result, other smell types tend to have a high overlap rate
(from 52% to 77% of instances, depending on the smell type) with cycles. On the other hand,
HL instances exhibit the opposite behaviour and have a low precedence rate but a rather
high overlap with other smell instances (59% to 77% of HL instances). This gives us an
insight about the interplay between architectural smell instances of different types. Cycles
act as catalysts for more complex structures, such as HL, to arise and negatively affect the
maintenance of the affected components and files. There were plenty of occasions were
we observed star-shaped (see Fig. 9b) cycle instances of which central element was also
affected by a HL instance. Indeed, in our RQ3 results, one of the drawbacks of a Hublike
Dependency smell is that it aggregates responsibilities that it either delegates or implements
itself. Which just by itself breaks the SRP principle and impacts negatively maintainabil-
ity. For UD instances, on the other hand, tightly coupled structures such as cycles have an
inherently high instability (Martin 1994), which in turn reflects to the component depend-
ing on them, thus creating an UD instance. Understanding how and why CD instances are
precursors to other smell instances is an interesting opportunity for future work.

9.5 Feedback from Practitioners

From the results of RQ4, we found that AS analysis is quite useful to practitioners, espe-
cially for monitoring purposes, rather than identification: practitioners are mostly aware
of the hotspots in their systems but they do need assistance in tracking and quantifying
their presence deterministically. Interestingly, these findings match what Mo et al. (2018)
encountered but partially contrast the findings of Martini et al. (2018), as in their case,
practitioners were mostly unaware of the architectural smells in their system but found the
information provided by smells still useful.
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A possible explanation for this discrepancy is the fact that most of our participants have
a long experience working for the company: they worked as developers for a long time in a
project before becoming architects (or senior developers) of the same project. This means
that they have a much more in-depth understanding of the problems in their system, so
the information provided by a tool can mostly confirm this understanding. We can only
conclude that the level of awareness of developers of the smells in their system varies from
subject to subject. In fact, a recent study on the topic (Arcelli Fontana et al. 2020) showed
that developers’ awareness of smells ranges from 26% of all the smells detected in the
system up to 78%, depending on the participant. This has a clear implication for researchers:
if they are able to show the same information that a senior developer (or architect) is already
familiar with, to all members of the team, regardless of their experience, then architectural
smell analysis does provide an added value to the team.

Another common finding with Mo et al.’s work (2018) is the feedback of practitioners
concerning the created reports. Similarly to our study, Mo et al. also prepared reports that
summarized the results to the developers and architects of the system. These were very
much appreciated by the developers and engineers in the companies of the two studies, and
as a result, both companies showed interest in creating an integration with their own CI/CD
to automate the analyses and provide daily (or weekly) reports.

One finding that was not reported by the subjects interviewed by Mo et al. is that our
practitioners also highlighted the usefulness of our reports to new team members, and how
they allow an easy transfer of knowledge to the less experienced members.

9.6 Applying Changes to the Codebase

The results of RQ5 show that practitioners struggle to maintain the components affected by
architectural smells in a sustainable way. The main reasons include change propagation and
the effects of a change in unknown parts of the codebase, during both typical maintenance
(i.e. bug fixing, adaptations to new technologies) and evolution (addition of new features)
tasks. Previous studies from the literature corroborate these findings with data extracted
by mining software repositories. Le et al. (2018) found evidence that in open source Java
systems the presence of architectural smells correlates with change-prone artefacts. Similar
findings were also reported by Oyetoyan et al. (2015) on circular dependencies specifically.

The study of Vaucher et al. (2009) looked at the change proneness of God Classes, and
showed that some God Classes are significantly less change-prone because they exist by
design. While their findings refer to a different type of artefact (i.e. a code smell that is
similar to GC but not exactly the same), they offer an insight on why some of the subjects
we interviewed dismissed God Components as less detrimental (than other GCs). Specifi-
cally, God Components that are made by design are more easily understood by practitioners,
because they understand their design and are thus better able to handle their complexity.

We can thus conclude that change-prone artefacts and architectural smells are highly
correlated as this relation has been identified both quantitatively and qualitatively as well as
independently by different studies. This strengthens the evidence about the increased effort
required to maintain artefacts affected by architectural smells and highlights the importance
for practitioners to manage architectural smells.

Mo et al. also report about the experiences of developers when dealing with ripple effects
(Mo et al. 2018). For instance, Mo et al. report on how developers consider the risk of
performing a change to a file and that sometimes this is underestimated. This is corroborated
by our findings. However, we also provide extra information about the ramifications caused
by changes both at a company level (impacting several other teams) but also about the
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shortcuts that developers take in order to avoid the risks imposed by those changes. As an
example for the latter case, some developers admitted to intentionally duplicating entire
files in order to avoid impacting other files with their changes.

10 Implications for Practitioners

Our results can help software engineers and architects to become aware of the side-effects
associated with the presence of architectural smells within a large embedded systems com-
pany such as ASML. Particularly, a few key points that practitioners should consider are the
following:

– the importance of continuously monitoring the presence of cycles among compo-
nents/packages, as stated by the Acyclic Dependencies Principle (Lippert and Roock
2006). Practitioners should especially oversee the components (or packages) that
exhibit an excessive amount of internal cycles, as these may severely degrade the over-
all maintainability of the component. On top of that, we also found that cycles are
catalysts for other smells to arise;

– the appearance of a Hublike Dependency may be a clear signal that the affected part
requires some refactorings, given that, as we found, this type of smell is likely to
appear after other smells already affect a component. Cedrim et al. (2017) found that
the most effective refactorings are the ones that target aggregator-like smells (such as
Hublike Dependency and God Component), therefore this is a clear actionable point for
practitioners;

– the experiences shared by ASML engineers can provide insightful details to other
practitioners to avoid incurring similar issues such as change ripple effects, architec-
ture erosion, and communication bottlenecks. To this end, practitioners should stick to
architectural principles (Martin 2017) and guidelines and avoid the presence of severe
architectural smell instances;

– the integration of historical change-related information of the components into
decision-making processes through dashboards and reports. Our findings show that
recurring changes are often associated with the presence of an architectural smell.
Repairing artefacts that are commonly subject to maintenance work may ease the extra
burden required to implement new features or fix bugs on the long-term.

11 Threats to Validity

We identified the potential threats to validity for this study and categorised them using
the classification proposed by Runeson et al. (2012): construct validity, external validity,
and reliability. Internal validity was not considered as we did not examine causal relations
(Runeson et al. 2012).

Construct Validity This aspect of validity reflects to what extent this study measures what
it is claiming to be measuring (Runeson et al. 2012). To ensure we measure how AS evolve
and how practitioners experience AS, we developed a case study using a well-known pro-
tocol template (Brereton et al. 2008) that was reviewed by the first two authors and an
external researcher in several iterations to ensure that the data to be collected would indeed
be relevant to the research questions.
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A possible threat to construct validity is the correctness of the parsing algorithm for the
proprietary parts of the C/C++ compiler adopted by the company of this study. To mitigate
this threat, we manually validated the parsing algorithm with a list of well-known files and
components that had dependencies defined by proprietary constructs in the code. The whole
process was also supervised by one of the architects taking part in the study.

Another threat concerns the detection of the smells considered in this project, which
depend on the implementation offered by ARCAN. Lefever et al. (2021) have shown that
different tools for technical debt measurement (including DV8, CAST, and SonarQube, but
not ARCAN) have divergent, if not conflicting, results regarding which files are problematic
in a system. This is due to the fact that different tools make different assumptions, use dif-
ferent definitions of a smell, and have different implementations of how to detect a smell
(Lefever et al. 2021). Therefore, we can only state that our quantitative results obtained
through ARCAN may not be fully comparable with the results obtained by other tools. How-
ever, this would be the case even if we used any other tool, as shown by Lefever et al. (2021).
Having said that, this threat can be considered partially mitigated, as the definitions of each
architectural smell used by ARCAN are based on independent, previous work. In particu-
lar, CD is based on the Acyclic Dependencies Principles (Martin 2017; Lippert and Roock
2006), HL and UD on the definitions provided by Samarthyam et al. (2016) and Martin
(1994), and GC on Lippert’s definition (Lippert and Roock 2006) (further improved upon
by the authors of ARCAN). This cannot be said for other tools available, as many of them
are based on previous work of the very authors of the tools, and therefore may potentially
be biased. Moreover, to guarantee that the results obtained by the ARCAN tool are indeed
in line with the definitions provided by previous work, the tool was used and evaluated in a
number of studies (Arcelli Fontana et al. 2017b; Biaggi et al. 2018; Sas et al. 2019).

Yet another threat concerns the methodology we used to select the subjects for the
interviews. Instead of using a probabilistic approach (i.e. random sampling) to sample our
subjects, we sampled them based on convenience and circumstance. This was mainly due to
two factors. First, it was up to the architects of each team to approve the interviews with their
engineers. Second, we could not interview subjects from all of the projects we analysed, as
not all project architects were willing to provide participants. Nonetheless, we managed to
interview a good number of subjects, with more than one person per project in almost all
cases, different levels of seniority and a balance in roles. Therefore, we consider this threat
as, at least partially, mitigated.

External Validity This aspect of validity reflects to what extent the results obtained by this
study are generalisable to similar contexts.

External validity is limited by the fact that we only analysed the projects belonging to a
single company with its primary business focused on a single domain. The threat is partially
mitigated by the fact that our quantitative results corroborate previous findings from open
source systems: even though we only studied architectural smells in one, specific context,
the findings have good chances to be applicable to other contexts as well. Our qualita-
tive results, on the other hand, can be applicable to large companies that employ a similar
development process such as the company subject of this study.

Another threat to the generalisation of our results is the fact that the studied projects
are part of a software product line composed of several products (machines). This poses
the risk of limiting the applicability of our results to the specific context of companies that
develop software product lines. The risk arises because architects and engineers must take
into account the reuse of their code in different products with different hardware config-
urations, which may not be the case for many other companies. To mitigate this risk, we
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focused our attention on issues that can occur independently of the practices adopted to
develop and manage the software assets of the company. For instance, during our interviews,
we obtained a few data points mentioning reusability-specific issues encountered by engi-
neers, however, we opted to only include in our results those that are potentially applicable
to other contexts in order to not limit external validity.

Reliability Reliability is the aspect of validity focusing on the degree to which the data
collection and analysis depend on the researchers performing them.

While we cannot share our dataset for confidentiality reasons, we do, however, provide
a replication package13 containing a complete version of the study design of this study and
a sample of the report we sent to our practitioners to allow researchers to reuse similar data
visualisations in their future work. Moreover, the tools used in this study are freely available
online14 to allow other researchers to assess the rigour of the study or replicate the results
using a different set of projects.

Another threat to reliability is the bias towards the data introduced by the researcher
performing the coding. This threat was mitigated by having a second researcher inspect
both the codes and the coding maps extracted during each round of coding. All the feedback
received was then integrated and the subsequent coding sessions adopted the updated codes.
The analysis was also performed using well-established techniques already used in previous
work on the same topic as well as also in different fields (e.g. survival analysis, in the
biomedical sciences field). Therefore, we consider this threat mitigated.

12 Conclusion and FutureWork

In this paper, we presented the results of an empirical embedded multiple-case case study
performed using both quantitative and qualitative data. The data was collected by stat-
ically analysing 280 releases (spanning almost 3 years) across 9 industrial projects and
by interviewing 12 subjects responsible for developing and architecting the projects under
consideration.

To collect the quantitative data, we used a tool called ARCAN to mine architectural smells
(and their characteristics) from the over 20 millions lines of code available to us. We then
used different techniques to study the evolution of the architectural smells and understand
how they evolve over time, how long they persist within the system depending on their type,
and how they overlap with each other. The findings show that smells grow over time in size,
and that most of the detected instances do not persist for more than 2–3 releases. Moreover,
most smell types were found to have high percentages of overlap with other smell types,
meaning that it is not uncommon for components to be susceptible to problems caused by
multiple types of smells, as also highlighted by our subjects during the interviews.

Indeed, practitioners found that our results aligned with their intuitions of where the
issues were located and commented that tooling that helps them manage AS could be quite
useful to them. During the interviews, practitioners also mentioned rather interesting expe-
riences where they struggled maintaining components affected by architectural smells, thus
providing evidence of the negative effects of AS on Maintainability.

13Visit https://doi.org/10.6084/m9.figshare.16884739.v1.
14See https://github.com/darius-sas/astracker and https://gitlab.com/essere.lab.public/arcan.

https://doi.org/10.6084/m9.figshare.16884739.v1
https://github.com/darius-sas/astracker
https://gitlab.com/essere.lab.public/arcan
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In conclusion, this paper provides a much clearer, and backed by empirical evidence,
view on the issues experienced by practitioners in the presence of AS. Our future work, we
will further study how individual smell instances affect the work of developers and what
aspects make an instance more severe than another.

Appendix A: Interview Guide

A.1 Questions

This section lists the questions for the steps listed in the outline. Total duration of the
interview: 35 min max.

Introduction (3 min)

1. Introduce yourself, your job, and your goal.
2. Briefly mention what this interview is for and disclaimer on how their responses are

used.
3. Feel free to expand on any topic or anecdote.

Background Information (2 min)

4. What is your current official position?
5. What is your role in this project? (day-to-day tasks example)
6. How many years of experience do you have in the current position and in total?

Results Presentation (8 min)

7. Share screen.
8. Explanation of Architectural Smells and negative effects on maintenance activities

(concise and stick to literature)
9. Explanation in detail of each section of the report by going through each table and plot.

General (2 min)

10. General insights emerging from the analysis

(a) What are one negative and one positive aspects about the FC that emerged after
inspecting the architecture analysis results?

RQ4 (10 min)

11. Importance of smell types and characteristics

(a) What type of smell do you think is the most important in your case? Why?
(b) For each smell type we calculate specific metrics (called smell characteristics),

which one, for each smell type, is of most interest for you? Why?

12. Perceived and actual quality of the system

(a) Did your perception of the quality of the components change after inspecting the
results? How/Why not? If yes, can you make an example?

(b) Does the presence of smells confirm what you already knew?
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(c) Do the smells affect parts of the system that you were expecting to have issues
with? Why/How come?

(d) Are there any missing parts in our analysis?

RQ5 (10 min)

13. Impact of smells on Maintainability

(a) What types of smell do you deem to be more detrimental for the Maintainability
of the system?

(b) Can you give an example of an issue you experienced while maintaining a
component affected by a smell?

(c) Do you think it was related with the presence of a smell?
(d) Would it be hard to fix these issues? What aspects of the smell make it hard to do

so (size, affected elements, overlaps)?

14. Impact of smells on Evolvability (e.g. how easy it is to implement new features)

(a) How have these issues affected the Evolvability (implementation of new function-
ality) of the affected parts?

(b) (If not answered before) Do you remember any issue hindering the addition of
new features to any of the components affected by smells?

(c) Have you been discussing specific obstacles for the implementation of new
features?

15. Possible remediation strategies

(a) What would be a possible quality-improvement plan that you could implement
based on the information acquired from this report? And what would help you
implement it?

(b) Do the results help you prioritising the issues to fix? If yes, how/why? If no, what
could help?

Feedback (2 min)

1. General Feedback on the results

(a) What view provided you with the most valuable insights (Smell characteristics,
Dependency graph, DSM)? Why?
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