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Abstract—The graph complex acts on the spaces of Poisson bi-vectors  by infinitesimal symmetries. We
prove that whenever a Poisson structure is homogeneous, i.e.  w.r.t. the Lie derivative along some
vector field , but not quadratic (the coefficients of  are not degree-two homogeneous polynomials), and
whenever its velocity bi-vector , also homogeneous w.r.t.  by  whenever

 is obtained using the orientation morphism  from a graph cocycle  on  vertices and

 edges, then the -vector  is a Poisson cocycle. Its construction is uniform for
all Poisson bi-vectors  satisfying the above assumptions, on all finite-dimensional affine manifolds .

Still, if the bi-vector  is exact in the respective Poisson cohomology, so there exists a vector field  such

that , then the universal cocycle  does not belong to the coset of  mod . We
illustrate the construction using two examples of cubic-coefficient Poisson brackets associated with the

-matrices for the Lie algebra .

DOI: 10.1134/S1547477120050088

1. INTRODUCTION

Bi-vector cocycles 
are obtained by Kontsevich’s graph orientation mor-
phism  from graph cocycles  on  vertices and

 edges in a way which is uniform for all finite-
dimensional affine Poisson manifolds , . The
(non)triviality of cocycles  in the second Poisson
cohomology w.r.t. the differential  remains
an open problem, twenty-five years after the discovery
of the graph complex and orientation morphism (see
[11]). In all the Poisson geometries probed so far, the
known infinitesimal symmetries  of the

Jacobi identity  are -exact: there always

exists a vector field  such that . The
evolution  of the tensor  then
amounts to its reparametrisations under the diffeo-
morphisms of Poisson manifold which are induced by
the shifts along the integral trajectories of the vector
field . This is why, instead of producing new Poisson
brackets from a given one, the Kontsevich graph f lows
on the spaces of Poisson bi-vectors induce (non)linear
diffeomorphisms of the base manifold , although no
more than its affine structure was the initial assump-
tion and no possibility of smooth coordinate reparam-
etrizations was presumed.

For a much used class of (scaling-)homogeneous
Poisson bi-vectors , we obtain an explicit

formula, , of a -vector cocycle
 which is built from the graph

cocycles  uniformly for all homogeneous Poisson bi-
vectors  on affine manifolds . The cocycle  is
however not necessarily a -vector representative of
the coset  mod  which would trivi-
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708 BURING, KISELEV
alise the value  of Kontsevich’s symme-
tries at homogeneous Poisson structures. Indeed, the
Poisson cocycle  can be, we show, a nonzero bi-
vector on , whereas the bi-vector  is identi-

cally zero on  by construction. We contrast the for-
mulas of universal cocycles  and trivialising
vector fields  for nonzero symmetries 
by two examples, namely, using cubic-coefficient Pois-
son brackets associated with the -matrices for .

This paper is organized as follows. In §1 we recall
elements of Poisson cohomology theory in the context
of Kontsevich’s universal deformations of bi-vectors
by using the unoriented graph cocycles. In §2 we
phrase the notion of structures which are homoge-
neous w.r.t. a -vector field, and we prove the main
theorem. Finally, we illustrate the result (cf. [10]).

1. POISSON COHOMOLOGY 
AND THE GRAPH COMPLEX

A Poisson bracket  on a real manifold  is a
bi-linear skew-symmetric bi-derivation which takes

 and satisfies the Jacobi

identity  for any

. The fact that both the arguments
 and their bracket  are scalars dictates the

tensor transformation law of the components  of a

bi-vector  = 

 = whenever the

structure is referred to a system of coordinates
 and  is a shorthand notation.

The calculus on the space of multivectors
 is simplified if one uses the

parity-odd coordinates  along the directions  in
the fibres of the cotangent bundle  over points

 (which are parametrized by ). The symbol 
thus corresponds to  dual to , and bi-vectors

are , so that 

; here, both the coef-

ficients  and derivatives  are evaluated at the
point  as in the left-hand side4.

4 The dot  denotes the coupling of iterated variations of the
objects , , and  with respect to the canonically conjugate

variables  and , see [9] and references therein.
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The space  multivectors is endowed with the par-
ity-odd Poisson bracket  (the Schouten bracket, or
antibracket) of own degree . For arbitrary multivec-
tors , the formula is 

; in particular,  is the

usual commutator of vector fields  on . The
Schouten bracket  is shifted-graded skew-sym-

metric:  for  and 
grading-homogeneous. This is why, unlike the tautol-
ogy , the equation  is a nontrivial
restriction for bi-vectors , containing the tri-vector

in the l.-h.s. of the Jacobi identity 

for the bracket . The Schouten
bracket itself satisfies the graded Jacobi identity

with  and  grading-homogeneous. This identity
implies that for Poisson bi-vectors , their adjoint
action by  is a differential of degree  on
the space of multivectors on . The Poisson differen-
tial  gives rise to the Poisson cohomology  of
the manifold M (see [13])5.

If a bi-vector  is a trivial Poisson cocy-
cle, then it certainly is an infinitesimal symmetry of

the Jacobi identity . But the infinitesimal

change  of the tensor  then amounts to its rep-
arametrisation under the infinitesimal change of coor-
dinates  along the integral trajectories of
the vector field  on the manifold . The following
fact is true for all multivectors (regardless of the con-
cept of Poisson cohomology).

Proposition 1. Let  be a point of an -dimen-
sional manifold and  be a vector field on it.
For every  such that there is the integral tra-
jectory bringing  to  by the -

5 The group  spans the Casimirs, i.e. the functions which

Poisson-commute with any ; the group 
consists of vector fields which preserve the Poisson structure but
do not amount to the Hamiltonian vector fields ;

the second group  contains infinitesimal symme-
tries  of Poisson bi-vectors, whereas the

next group  stores the obstructions to formal integration

 of infinitesimal symmetries
 to Poisson bi-vector formal power series satisfying

.
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UNIVERSAL COCYCLES AND THE GRAPH COMPLEX ACTION 709
shift, and for any choice of the -tuple  of
local coordinates in a chart  around  (and for

 small enough for the points  to not yet run out of
the chart ), introduce a new parametrization6 for the
point  by using the new -tuple . By definition, put

. Let  be any multi-vector field near 
on . Under the reparametrization , the speed at
which the components of  at the point  change in , as

, equals . In particular,

a -vector field  near  would change at  as fast as
its commutator with the vector field :

.

The geography of the set of Poisson structures near
a given bracket  on a given manifold  is, gener-
ally speaking, unknown. All the more it was a priori
unclear whether Poisson bi-vectors , irrespective of
the dimension , topology of , etc., can be infin-
itesimally shifted by Poisson -cocycles , the con-
struction of which would be universal for all . The dis-
covery of the graph complex in 1993–1994 allowed
Kontsevich to state (in [11]) the affirmative answer to the
above question. Namely, the graph orientation mor-
phism  takes
graph cocycles on  vertices and  edges in each
term (e.g., the tetrahedron, cf. [1, 3, 5, 6]) to Poisson
cocycles whenever the bi-vector  itself is Poisson.
Willwacher [15] revealed that the generators of Drin-
feld’s Grothendieck–Teichmüller Lie algebra  are
source of at least countably many such cocycles in the
vertex-edge bi-grading ; these cocycles are
marked by the -wheel graphs (e.g., see [6, 7]).
Brown proved in [2] that, under the Willwacher iso-
morphism  these graph cocycles with
wheels generate a free Lie subalgebra in , which
means effectively that the iterated commutators of
already known cocycles—under the bracket in the dif-
ferential graded Lie algebra  of graphs—would
never vanish. The commutator of two cocycles is a
cocycle by the Jacobi identity. All of them again being
of the bi-grading , these graph cocycles
determine countably many infinitesimal symmetries
of a given Poisson bi-vector ; the construction is
uniform for all the geometries .

Lemma 2. For a given Poisson bi-vector , the
graph orientation mapping 

6 Actually, this is a way to construct new coordinates for all points
of  near  in , i.e. not only those which lie on a piece of the
integral trajectory of  passing through .
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PHYSICS OF PARTICLES AND NUCLEI LETTERS  Vol
 is a Lie algebra morphism that takes
the bracket of two cocycles in bi-grading  to

the commutator  of two symmetries

7.

By construction, the components of universal sym-
metry bi-vectors  are differential polynomials
w.r.t. the components  of the Poisson bi-vector 
that evolves. It can of course be that a graph f low

 vanishes identically over the manifold
 whenever  is evaluated at a particular class of

Poisson structures 8. Nevertheless, there is no
mechanism which would force a given Kontsevich’s
graph flow to vanish at all Poisson structures on all
manifolds of all dimensions9. Independently, it
remains an open problem (cf. [10]) whether there is a
Poisson manifold  and a graph cocycle  such
that the Poisson cohomology class of

 would be nontrivial in . In
other words, for all the shifts  and all Pois-
son bi-vectors tried so far, the Poisson coboundary
equation  did have vector field solu-

tions  on the manifolds .
Remark 1. Obtained from the graphs , the

symmetries  are inde-

pendent of a choice of local coordinates  (hence )
on a chart if, the Kontsevich construction requires, the
manifold  is endowed with an affine structure: all

7 By Brown [2], the commutator does in general not vanish for
Willwacher’s odd-sided wheel cocycles.

8 Example. So it is for the Kontsevich tetrahedral f low ([11] and
[1]) evaluated at the Kirillov–Kostant linear Poisson brackets
on the duals  of Lie algebras because in every term within the
cocycle  under study, at least one copy is  is differenti-
ated at least twice with respect to the global coordinates on .

9 Example. The Poisson bi-vectors

 of Nambu type with arbitrary

Casimirs  and an arbitrary density in the
volume element can have polynomial components

 of degrees as high as need be w.r.t. the

global Cartesian coordinates  on the vector space . The
universal symmetries  obtained from Kontsevich’s
graph cocycles deform the symplectic foliation (which is given in

 by the intersections of the level sets for the Casimirs

) in a regular way on an open dense subset of , so
that the symmetries  preserve this Nambu class of
Poisson brackets: the f lows force the evolution of the Casimirs
and the volume density. Its integrability is an open problem; by
Lemma 2 and [2], the evolutions induced by different graph
cocycles do not commute.
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710 BURING, KISELEV
the coordinate transformations amount to 
with a constant (over the intersection of charts) Jaco-
bian matrix . The parity-odd fibre variables are
transformed using the inverse Jacobian matrix,

, making sense of the couplings 
which decorate the oriented edges of Kontsevich’s
graphs after the morphism  works (see [3, 11]). The
problem of Poisson cohomology class (non)triviality
for the Kontsevich infinitesimal symmetries

 thus acquires two diametrally
opposite interpretations:

1 (as in [11]). The Poisson manifold  is
equipped with both the smooth and affine struc-
tures10. By definition, two Poisson bi-vectors are
equivalent, , if they are related by a diffeo-
morphism of the manifold : using its smooth struc-
ture, the diffeomorphism identifies points in two cop-
ies of , then relating the Poisson tensors by local
coordinate reparametrizations near the respective
points. The affine structure on  is now used to run
the Kontsevich f lows in two initial value problems

, . The Poisson trivi-
ality  would relate either of bi-
vectors  back to the Cauchy datum  by diffeo-
morphisms (as long as  is small enough). Conse-
quently, the Poisson bi-vectors  do not
run out of the old equivalence class. In conclusion, the
goal is to produce essentially new Poisson brackets by
using a nontrivial cocycle , two given structures on
the manifold , and its diffeomorphism. No exam-
ples of nontrivial action, so that 
at , have ever been produced since 1996 (see
[7, 11]).

2 (as in [10]). The Poisson manifold  is
equipped only with an affine structure. The countably
many -related graph cocycles on  vertices and

 edges in every term (the tetrahedron, the penta-
gon-wheel cocycle, etc., see [6, 15]) generate a non-
commutative Lie algebra of infinitesimal symmetries

 for a given Poisson structure .
Consider the extreme case when all the cocycles

 are exact in the cohomology group

 w.r.t. the Poisson differential . This
assumption gives rise to the countable set of vector
fields  on  such that . (Some

10On the circle , the affine coordinate ‘angle’ is obvious
whereas the smooth structure is used in the realm of Poincaré

topology. A smooth atlas is always available for the spheres ,
but not for all  would the -dimensional sphere admit an
affine structure.
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of these vector fields can be identically zero over .) But
if at least one such vector field is not constant w.r.t. the
affine structure on , then the shifts along its integral
trajectories are nonlinear diffeomorphisms of . The
evolution of bi-vector  is  or sim-

ilarly,  for any multi-vector  on  (see
Proposition 1); this evolution is now seen as mutlivec-
tors’ response to the diffeomorphism whose construc-
tion refers only to the simple, affine local portrait of

. Summarizing, the store of f lows  from
the -related graph cocycles  could be enough to
approximate arbitrary smooth vector fields on ,
that is, imitate its smooth structure. Whether this the-
oretical possibility is actually realised in relevant Pois-
son models is an open problem.

The Kontsevich symmetry construction is, there-
fore, either a generator of new Poisson brackets or the
mechanism that provides diffeomorphisms of the
underlying manifold.

2. HOMOGENEOUS POISSON STRUCTURES

By definition, a bi-vector  on a manifold  is
called homogeneous (of scale ) with respect to a vector
field  on  if .

Example 1. Let  be a vector space (only lin-
ear reparametrizations  are allowed, so that
the polynomial degrees of monomials in the ring

 is well defined). Introduce the Euler vec-
tor field , and let all the components

 of a bi-vector  be homogeneous polynomials of
degree  in the variables . Then we have that

, which means that  is homoge-

neous of scale  w.r.t. the Euler vector field . In
particular, if  (i.e. if the coefficients of bi-vector

 are not quadratic), then we set 
and from the equality  we obtain that the
same bi-vector  has homogeneity scale  w.r.t.
the multiple  of the Euler vector field  on .

Example 2. Under the same assumptions, suppose
further that  is a graph cocycle with  vertices
and  edges in every term  (e.g., take the tetrahe-
dron). Orient the ordered (by First  Last) edges in
every  using the edge decoration operators

. By

placing a copy of bi-vector  in each

vertex  of  and taking the sum (over the graph
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index ) of products of the content of vertices in γa

after all the edge operators  work, we obtain11 the
bi-vector . Then the coefficients of
the bi-vector  are homogeneous polynomials of
degree  with respect to , , , so that

. In particular, if ,

then , whereas quadratic-coeffi-
cient bi-vectors (with ) are deformed within
their subspace by the quadratic bi-vectors  which
are obtained from the Kontsevich graph cocycles.

Lemma 3. If a Poisson bi-vector  is

homogeneous and  is built from a
graph cocycle  on  vertices, now containing a copy of 
in each vertex, then the bi-vector  is also homoge-
neous: , so that its scale is 12.

Remark 2 ([14, Rem. 4.9]). Consider a Nambu-type
Poisson bi-vector  on  with Cartesian
coordinates ; here  is a weight-homo-
geneous polynomial with an isolated singularity at the
origin13, so that  +

. Then a vector field  with
polynomial components satisfying the first-order
PDE  exists if and only if 14 the weight
degree  of the polynomial  is not equal to the sum

 of weight degrees for the variables
15.

11We refer to the original paper [11] and to [3] for illustrations and
discussion how the graph orientation morphism works in prac-
tice.

12The proof amounts to the Leibniz rule: let us inspect how fast
the bi-vector , which by construction is a homogeneous
differential polynomial of degree  in , evolves along the vec-
tor field .

13The Milnor number is the dimension
 – here,  by assump-

tion.
14This means that not all Nambu-type Poisson bi-vectors

 are homogeneous w.r.t. a vector field  with
polynomial components; the PDE  with polyno-

mial coefficients and unknown  can in principle admit non-
polynomial solutions.

15Example. If the weights of  are  and

 is cubic-homogeneous, then the compo-

nents of Poisson bi-vector  are quadratic and (by the above
and also by [12]) not of the form  for any polyno-

mial-coefficient vector field . The non-existence of a solu-
tion  with smooth non-polynomial coefficients is a separate
problem.
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Summarizing, the homogeneity assumption about
bi-vectors  is restrictive; it is not always satisfied in
Poisson models.

Theorem 4. Let  be an affine finite-dimen-
sional real Poisson manifold with  homoge-

neous. Let  be a graph cocycle consisting of
unoriented graphs  over  vertices and  edges
(with a fixed ordering of edges in each ). Then the -vec-

tor , which is obtained
by representing each edge  with the operator  and
by (graded-)symmetrizing over all the ways  to

send the -tuple  into the  vertices in each ,
is a Poisson cocycle: 16.

The vector field  is defined up to adding arbitrary
Poisson -cocycles .

Proof. The expansion  for
 goes along the lines of [11] and [3, 7, 8], but the

-tuple of multivectors now contains one -vector
and only  copies of the Poisson bi-vector . By assump-
tion,  GRA; recall that 

. This zero l.-h.s.

equates 
17.

The appointment of graded (multi)vectors into the
vertices of  (hence, into the argument slots of the endo-
morphism ) is achieved by the graded symmetri-

zation using . Fortu-
nately, the field  is the only parity-odd object, so its
transpositions with the parity-even bi-vectors  pro-
duce no sign factor: these  are all . Likewise, the 
permutations of  indistinguishable copies of  leave
only  from  in the denominator; to get rid
of it, let us multiply by  both sides of the equality

. The symmetrization thus
amounts, by the linearity of , to its evaluation at the

16Open problem (for  homogeneous and Poisson). Is the univer-
sal -vector field  Hamiltonian, i.e.

 for  or at least,  for a maybe
not exact -form  on ?

17Here,  is the graded-symmetric Schouten bracket (so

), the graph insertion  into vertices is
now the endomorphism insertion into argument slots,

, and  is the even number of edges in ,
hence minus the even number of  in the edge operators

 making .
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sum of arguments, ,
in which the ordering of (multi)vectors now matches
an arbitrary fixed enumeration of the vertices.

The rest of the proof is standard18. There remains
0 =  +
… +  +

 + … + .

By the homogeneity assumption, 
, and by construction, 

, whence the minuend equals . By
Lemma 3, the graph f low is also homogeneous:

 with the vertex count . We
obtain the equality

We conclude that the -vector

 lies in 19.

Example 3. Take the Lie algebra  with its
four-dimensional vector space structure; denote by ,

, ,  the Cartesian coordinates. Consider the -matrix

 known from [12]; the standard con-

struction then yields the Poisson bi-vector in the algebra
of coordinate functions,  = 

 +  +

. This bracket
has cubic-nonlinear homogeneous polynomial coeffi-

18We have  +

 +

 +

 +

 (the Schouten bracket πS passes

 +   +

 +

 +

.
For  Poisson, , so we exclude all such terms [4].
The remaining graded-symmetric Schouten brackets  contain
a bi-vector as one of the arguments, hence those can be swapped
at no sign factor; all doubles, so let us divide by .

19Exercise. Extend the proof to the case , ,
 (so that the l.-h.s. was nonzero).
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cients, hence . The vector field 
is the (multiple of the) Euler vector field on . As the
graph cocycle , we take the tetrahedron (see [1, 11]);
then the symmetry f low is 

 + 
 + 

 – 
 – 

 + 
 +

 + 
. We detect that this bi-vector is a

coboundary,  with the vector

 –
 +

mod . The vector field 

cannot be Poisson-exact (clearly, ), hence 
does not mark the Poisson cocycle of zero -vector.20

But the universal vector field  is
identically zero on . Indeed, the Euler field 
is linear, yet it is readily seen from the figures in [1]

20Likewise, by using another -matrix for , namely

 also from [12], we obtain the Poisson bi-vec-

tor  +

 on 
with Cartesian coordinates , , , . The tetrahedral f low then

equals  

 +

 +

 ×

 –

 –

 +

 +

 . It is

Poisson-trivial:  with a representative

 –

 +

. These explicit examples of
Poisson-exact bi-vector f lows  will be useful

in the future study of the mechanism  of their
observed -triviality.
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that in every orgraph from the -vector

, the vertex with  is differentiated
at least twice (and at most thrice), so .

Proposition 5. The flow 
preserves the Nambu class of Poisson brackets,

 with arbi-
trary  and global Casimir  on : the flow forces the
nonlinear evolution ,  with differential-polynomial
r.-h.s.

 This flow  is not Poisson-exact in terms of
any vector field  with differential-polynomial coeffi-
cients (cubic in both  and , of total differential order
eight).

The cocycle equation at hand, 

, is a first-order PDE with differential-
polynomial coefficients (their skew-symmetry under per-
mutations of , ,  is inherited from the property of the
Jacobian determinant and from the transformation law
for the density  in ). Whether this equation  does not
admit any non-polynomial solutions  is an
open problem.
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