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ABSTRACT 
Background 
Esophageal adenocarcinoma (EAC) is one of the main causes of cancer-related 

deaths worldwide and its incidence is rising. Barrett’s esophagus (BE) can develop 

low- and high-grade dysplasia which can progress to EAC overtime. The golden 

standard to detect dysplastic Barrett’s esophagus (DBE) or EAC is surveillance with 

high-definition white-light endoscopy (HD-WLE) and random biopsies according to the 

Seattle protocol. However, this method is time-consuming and associated with a 

remarkable miss rate. Therefore, there is great need for the development of novel 

reliable techniques to optimize surveillance strategies and improve detection rates. 

 

Summary 
Optical chromoendoscopy (OC) techniques like Narrow band imaging (NBI) have 

shown improved detection of DBE and EAC compared to HD-WLE and random 

biopsies. Most recent OC techniques, including iScan Optical Enhancement system 

and linked color imaging, showed improved characterization of DBE and EAC 

retrospectively. Fluorescence molecular endoscopy (FME) presented promising 

results to highlight DBE and EAC. Moreover, with the establishment of well-performing 

delineation computer aided diagnosis (CAD) algorithms and the first real-time CAD 

system for EAC, we expect clinical application of CAD in the near future. 

 

Key messages 
Despite impressive progress made in the development of advanced endoscopic 

techniques, combined HD-WLE/OC followed by random biopsies remains the golden 

standard for BE surveillance. Surveillance depends on appropriate mucosal cleansing, 

sufficient inspection time, and competence of the performing gastroenterologist to 

improve detection of EAC. In addition, to facilitate the clinical implementation of 

advanced endoscopic techniques, multi-center prospective clinical studies are 

demanded for OC and FME. Meanwhile, further optimization of CAD algorithms, the 

education of gastroenterologists, and analysis of the interaction between the clinician 

and the computer should be performed.  
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INTRODUCTION 
Esophageal cancer is the sixth leading cause of cancer-related mortality worldwide 

while rising in terms of incidence [1]. Esophageal adenocarcinoma (EAC) follows a 

devastating prognosis with an estimated five-year survival between 15 – 20% [2]. 

Barrett’s esophagus (BE) predisposes EAC. Screening and surveillance endoscopy is 

the golden standard to detect dysplastic BE (DBE) and early stage EAC to improve 

patient outcomes [3]. This is momentarily achieved with high-definition white-light 

endoscopy (HD-WLE) and collecting biopsies according to the Seattle protocol. This 

protocol is costly and time-consuming while risking a potential high miss rate of 9% - 

35% [4,5]. Meanwhile, poor adherence to surveillance guidelines is observed in clinical 

practice resulting in variable sensitivity and specificity of the current standards [6]. 

Optical chromoendoscopy (OC) has been implemented in many medical centers, 

however inconsistent results compared to HD-WLE are reported for detection of DBE 

and EAC [4,7,8]. Therefore, there remains a great need for novel reliable imaging 

techniques to improve surveillance protocols and thereby improving detection rates of 

DBE and early stage EAC. In this review several promising novel techniques are 

discussed and evaluated.  

 

Chromoendoscopy 
Chromoendoscopy includes dye-based chromoendoscopy and OC. After being 

sprayed onto the surface mucosa, the dye methylene blue, acetic acid or indigo 

carmine enhances visualization of esophagus mucosal patterns to improve distinction 

of dysplasia and cancer [9,10]. Dye-based chromoendoscopy has been available 

since the late 1980s, however large and recent validation studies on BE surveillance 

remain nonexistent [10]. A meta-analysis on methylene blue-based chromoendoscopy 

reported no significant improvement in the diagnostic yield of DBE compared to HD-

WLE and random biopsies [11]. Limitations such as additional costs and procedure 

time as well as poor surface coating are reported consistently [11, 12]. Different from 

dye-based chromoendoscopy, optical chromoendoscopy often focuses mainly on 

lesion characterization more than improving detection of lesions. However, a meta-

analysis showed 34% increase of detecting DBE and EAC compared to HD-WLE and 

random biopsies, consequently decreasing the risk of missing dysplasia which 

signifies its role in BE surveillance [13]. 
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OC includes narrow-band imaging (NBI), flexible spectral imaging color enhancement 

(FICE), I-SCAN, blue light imaging (BLI) (Fujifilm, Japan) and linked color imaging 

(LCI). All major manufacturers incorporate OC within the standard endoscope, 

explaining its widespread use [14]. NBI (Olympus, Japan) uses an optical filter to 

highlight microvascular structures of the esophageal mucosa. This technique is 

associated with an improved sensitivity of 80% and specificity of 88% in predicting the 

absence or presence of dysplasia and EAC after the new NBI classification system 

was introduced [15]. Unlike NBI, FICE (Fujifilm, Japan) and I-SCAN (Pentax, Japan) 

enhance mucosal and microvascular patterns by modifying the spectrum of collected 

white-light images. In a prospective pilot study, a sensitivity of 92% for detection of 

DBE by FICE was reported compared to the dysplastic lesions found by acetic acid 

chromoendoscopy and FICE together [10]. A recent retrospective study applied the 

updated I-SCAN system, namely iSCAN Optical Enhancement system. This showed 

an improved sensitivity and specificity of 78% and 81% for I-SCAN compared to 69% 

and 70% for HD-WLE concerning the detection of dysplasia [16]. Prospective clinical 

results with regard to the surveillance of BE lesions with either FICE or I-SCAN remain 

rather limited. The latest BLI platform integrated linked color imaging (LCI), enabling 

both narrow spectrum illumination and computational image modification. Although 

improved visualization on DBE was shown with this platform, results on diagnostic 

sensitivity and specificity are still lacking [17]. An overview of the different systems and 

manufactures is given in Table 1.  

 

Table 1. Overview of the different optical chromoendoscopy systems, their geographic 

distribution and manufactures [14]. 
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Endomicroscopy 
Confocal laser endomicroscopy (CLE) provides endoscopists with real-time in vivo 

visualization of superficial mucosal layers at high magnification which results in a real-

time microscopy image. Endoscope-based CLE (eCLE, Pentax, Tokyo, Japan) 

provides a wider field of view, higher resolution images and better performance 

compared to probe-based CLE (pCLE, Mauna Kea Technologies, Paris, France). 

However, eCLE is not commercially available anymore. Targeted biopsies guided by 

pCLE showed a pooled sensitivity of 90% and specificity of 77% [18]. The reported 

sensitivity and specificity of real-time pCLE optical biopsy was 67% and 98%, 

respectively [19]. Therefore, in accordance with the Preservation and Incorporation of 

Valuable endoscopic innovations (PIVI) [20], neither pCLE real-time optical biopsy nor 

targeted biopsy could replace random biopsies following the Seattle protocol at this 

moment. However, pCLE can add value, like OC, in providing histological information 

of suspected lesions detected by HD-WLE to assist in differentiating between DBE 

and non-dysplastic BE (NDBE) [21]. 

 

Volumetric laser endomicroscopy 
Unlike the narrow-field magnified imaging of pCLE, volumetric laser endomicroscopy 

(VLE) provides wide-field magnified imaging at high speed. VLE incorporates optical 

Technique Company Name Geographic 
distribution 

Narrow band imaging (NBI) Olympus Lucera Spectrum/ 
Lucera Elite 

Japan, UK 

  Exera II/ Exera III Rest of the world 
Flexible spectral imaging color 
enhancement (FICE) (also 
Fujinon Intelligent Chromo 
Endoscopy) 

Fujifilm EXP-4400 system Worldwide 

i-Scan digital contrast (I-SCAN) Pentax EPK-i Worldwide 

Blue light imaging (BLI) Fujifilm Lasereo Japan, China, South 
America, Asian-
Pacific, Europe 

Texture and color enhancement 
imaging (TXI) 

Olympus EVIS X1 Worldwide 
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frequency domain imaging technology and provides in vivo cross-sectional structural 

information at real-time, shown in Figure 1. After inserting the balloon-centered probe 

through the working channel, the inflated balloon circumferentially scans 6 centimeters 

of the esophagus in 90 seconds, to a depth of around 3 millimeters [22]. Histologically 

correlated VLE results showed a sensitivity of 83-86% and a specificity of 71-88% [23, 

24]. Larger clinical trials are warranted to validate these preliminary results. However, 

the company NinePoint Medical filed for bankruptcy in 2020, consequently making 

VLE currently unavailable. 
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Figure 1. Representative results of fluorescence molecular endoscopy, volumetric 

laser endomicroscopy and computer-aided detection.  
(A) Examples of the systemic tracer based and the topical tracer results, summarizing that all 

lesions could be visualized with real-time VEGFA-targeted NIR-FME, including one EAC area 

which was not visible during HD inspection (displayed in first row, right panel). Reprinted with 

permission from Nagengast et al. [29] (B) Additionally identified dysplastic areas during real-time 

VEGFA-targeted NIR-FME, which were missed during HD-NBI inspection. All fluorescence signals 

presented here are uncorrected; overlay images display the high intensities only. Reprinted with 

permission from Nagengast et al. [29] (C) Five examples of complex glands seen on VLE with the 

corresponding laser marks and histology. The top row is the endoscopic images with laser marks 

(yellow arrows). The middle row is the VLE images that correspond to the above endoscopy image. 

The bottom row is the H&E-stained histology images that correlate to the VLE images above them. 

Red arrows refer to complex glands. Columns 1, 2, 4, and 5 are from the endoscopic mucosal 

resection images. Column 3 is from a biopsy. Reprinted with permission from Trindade et al. [44] 

(D) Example of 2 neoplastic lesions with the heatmap visualization by the CAD system (the top 

row), and its corresponding delineation and biopsy site indicator (the middle row). Ground truth is 

established by expert delineations (the bottom row). Reprinted with permission from de Groof et 

al. [31]. CAD, computer-aided detection; EAC, esophageal adenocarcinoma; HD, high-definition; 

HGD, high-grade dysplasia; LGD, low-grade dysplasia; NIR-FME, near-infrared fluorescence 

molecular endoscopy; NBI, narrow-band imaging; VEGFA, antibody against vascular endothelial 

growth factor; VLE, volumetric laser endomicroscopy. 

 

Fluorescence molecular endoscopy 
Molecular imaging could potentially improve the sensitivity and specificity compared 

to HD-WLE by targeting disease-specific molecules to highlight neoplastic changes at 

molecular level even before macroscopic morphological changes occur, hereby 

providing additional information compared to HD-WLE [25].  

 

Initially, ex vivo fluorescence imaging using lectins in the visible spectrum was 

performed which identified lower fluorescence signals in DBE due to reduced cell-

surface glycans [26]. One of the first in vivo studies evaluating fluorescence molecular 

endoscopy (FME) in BE was with topical administration of ASY - fluorescein 

isothiocyanate (FITC) which operated in the visible spectrum (400 - 700 nm). With this, 

a sensitivity of 76% and a specificity of 94% in detecting high grade dysplasia and 

EAC was reported [27]. 
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Compared to the visible spectrum, the near infrared (NIR) spectrum (700 - 1700 nm) 

shows deeper tissue penetration and lower background noise signals due to less 

tissue absorption, autofluorescence and scattering [28]. Near-infrared FME (NIR-FME) 

could highlight specific targets at real-time in vivo and minimizes noise signal. A 

phase-I trial with NIR-FME targeting vascular endothelial growth factor A (VEGF-A) 

showed a promising 33% improved detection of early EAC through topical application 

of bevacizumab-800CW when compared to HD-WLE and NBI [29]. Different lesion 

types in this study visualized with FME in combination with the tracer bevacizumab 

are shown in Figure 1. The phase-II trial is ongoing (NCT03877601) to assess 

sensitivity and specificity of NIR-FME targeting VEGF-A for detection of early EAC 

within 60 patients.  

 

One of the advantages of fluorescence imaging is that multiple fluorophores exciting 

light at different wavelengths could be potentially used, and thus multiple targets of 

dysplasia can be highlighted. A multispectral FME system that enables concurrent 

targeting of multiple molecules was recently developed and seems promising for 

molecular imaging to improve the sensitivity and specificity [30]. A phase I trial 

confirmed the feasibility of multispectral imaging to detect early EAC by targeting two 

different molecules [30]. However, the tissue optical properties, scattering and 

absorption, were not corrected for within this trial. Integrating fluorescence imaging 

into standard endoscopes as well as further validation with larger sample sizes are 

examples of technical improvements that are needed to translate multispectral FME 

into clinical practice. 

 

Computed aided detection 
Advanced endoscopic techniques generate a myriad of detailed images that are 

overwhelming to endoscopists for real-time interpretation. Computer aided detection 

(CAD) enables automatic characterization and classification of millions of endoscopic 

images which are impossible for the human brain to process. CAD could also capture 

subtle or invisible variation which might be missed by the human eyes.  

 

A newly developed CAD system of deep residual learning performs better at EAC 

detection than general endoscopists do with HD-WLE images, resulting in a sensitivity 
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of 93% versus 72% and a specificity of 83% versus 74%. This CAD system also 

delineates EAC comparable to BE experts [31]. Another CAD algorithm showed 

improvement to a sensitivity of 96% and a specificity of 94%, with the potential for real-

time diagnosis. The system localizes EAC with annotated boxes, thereby not providing 

information about the delineation of lesions, but is sufficient for lesion detection [32]. 

The first real-time CAD system to differentiate EAC from NDBE was built in 2020. The 

cancerous probability is shown as the spatial distribution of color density overlapped 

on HD-WLE images. However, the image sets of BE and EAC which are applied to 

fine-tune the algorithm are still rather small. The promising 83% sensitivity and 100% 

specificity are based on validation within a small cohort with elevated BE lesions [33]. 

CAD assessment of HD-WLE images compared to expert assessment is shown in 

Figure 1.  

 

DISCUSSION 

OC outclasses dye-based chromoendoscopy as it avoids uneven distribution of dyes 

and is less dependent on operator experience [11]. Dye-based chromoendoscopy 

uses non-targeted dyes and merely visualizes the mucosal pattern of the esophagus. 

In contrast, OC visualizes the mucosal patterns and enables detailed microvascular 

characterization when adjusted to the magnified mode [14]. NBI and BLI differ from 

computational post-processing of white-light images in I-SCAN and FICE. The 

spectrum of I-SCAN and FICE images are flexible, in contrast with the fixed spectrum 

of NBI and BLI images [14]. NBI is the most frequently studied OC method. However 

generalized analysis of NBI-based studies on BE is hampered by the variations of 

classification criteria [34]. Another limitation is that the majority of studies on OC are 

based on retrospectively collected data with mostly still images [15,16]. Nevertheless, 

a large meta-analysis showed improved detection of OC compared to HD-WLE [13]. 

In addition, consistent results indicate that OC can assist in characterization of BE 

lesions [18].  

 

Recently, texture and color enhancement imaging (TXI) was embedded into HD-WLE). 

TXI aims to increase brightness in dark areas, improve color contrast, and enhance 

subtle tissue morphology differences [35]. Despite lack of TXI research in BE 

surveillance, superior visibility compared to HD-WLE was shown in serrated colorectal 
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polyps [36]. TXI combined with dye-based chromoendoscopy or OC might be able to 

improve detailed visualization and BE lesion detection [37].  

In contrast to chromoendoscopy and endomicroscopy techniques, which are limited to 

morphology changes in lesions, FME could target underlying biological processes of 

dysplasia or specific tumor subtypes and serve as a wide-field “red-flag” technique for 

endoscopists. To transform FME systems widely into clinical practice, the major 

hurdles are integration of fluorescence imaging in standard endoscopes, correction of 

noise signals at video rate, interpretation of signals by for instance artificial intelligence 

and real-time semi-quantification of fluorescence intensities to prevent operator 

dependent interpretation [38].        

 

Regardless of imaging techniques used, it has been shown that BE expert centers 

achieve a significantly higher detection rate of DBE and EAC compared to community 

hospitals, 87% vs 60% respectively [39]. As the performance of CAD could reach the 

level of BE experts in image interpretation, the implementation of CAD in community 

hospitals could bridge the gap with BE expert centers [31]. HD-WLE images and NBI 

images were assessed with the same CAD algorithm. It was found that the NBI-based 

CAD system outperformed the HD-WLE-based CAD system regarding binary 

classification between DBE and NDBE, showing sensitivity and specificity per image 

of 92% versus 99% and 99% versus 89%, respectively [32]. The algorithm trained on 

HD-WLE images with improved image sharpness displayed better performance in 

DBE and NDBE classification, with a specificity of 98% versus 90% [32]. Therefore, 

besides optimization of artificial intelligence algorithms, development of endoscopes 

that show better image quality with improved visualization of cancerous tissue seems 

promising. Current CAD systems of BE feasible for real-time application still need to 

be validated in prospective multi-center large cohort studies and evaluated by different 

manufacturers for implementation. To facilitate clinical implementation of CAD, 

education of clinicians on artificial intelligence and further research on interaction 

between clinicians and CAD systems are of vital importance [40].     

 

Despite many advances that have been made in current endoscopic imaging and 

upcoming promising techniques, several parameters always need to be considered to 

reach optimal surveillance of BE. The clear visibility of esophageal mucosa is often 

impaired by bubbles and mucus on the surface of the esophagus. Pre-endoscopy 
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cleansing with defoaming and mucolytic solution improved the mucosal visibility 

necessary for optimal assessment of the mucosa [41]. In addition, longer endoscopic 

inspection time was associated with higher detection rates of DBE. Inspecting over 

one minute per centimeter of BE segment was suggested to improve the surveillance 

quality [42]. Frequent cardiac peristalsis increases the difficulty of endoscopic 

visualization. HD-WLE biopsies assisted by a transparent cap improved the detection 

accuracy of BE by suctioning and stabilizing the mucosa compared to non-cap 

assisted biopsies [43].  

 

CONCLUSION 

Implementation of novel imaging techniques is promising and might result in a 

multimodality strategy for BE surveillance. Currently, HD-WLE combined with OC and 

random biopsies is still the standard in BE surveillance. OC techniques are improving, 

such as I-SCAN and LCI, showing enhanced capability for detailed characterization of 

BE lesions. In addition, HD-WLE and OC might be combined in the future with FME to 

improve wide-field surveillance. These techniques assisted by artificial intelligence 

show potential to improve detection rates of DBE and to make the Seattle protocol 

redundant. However, until well-designed clinical trials show clear improvements in 

performance, BE surveillance outcomes depend on appropriate mucosal cleansing, 

sufficient inspection time and subsequent random biopsies.    
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