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Abstract
1.	 Body condition is an important concept in behaviour, evolution and conservation, 

commonly used as a proxy of an individual's performance, for example in the as-
sessment of environmental impacts. Although body condition potentially encom-
passes a wide range of health state dimensions (nutritional, immune or hormonal 
status), in practice most studies operationalize body condition using a single (uni-
variate) measure, such as fat storage. One reason for excluding additional axes of 
variation may be that multivariate descriptors of body condition impose statistical 
and analytical challenges.

2.	 Structural equation modelling (SEM) is used in many fields to study questions re-
lating multidimensional concepts, and we here explain how SEM is a useful ana-
lytical tool to describe the multivariate nature of body condition. In this ‘Research 
Methods Guide’ paper, we show how SEM can be used to resolve different chal-
lenges in analysing the multivariate nature of body condition, such as (a) variable 
reduction and conceptualization, (b) specifying the relationship of condition to 
performance metrics, (c) comparing competing causal hypothesis and (d) includ-
ing many pathways in a single model to avoid stepwise modelling approaches. 
We illustrated the use of SEM on a real-world case study and provided R-code of 
worked examples as a learning tool.

3.	 We compared the predictive power of SEM with conventional statistical ap-
proaches that integrate multiple variables into one condition variable: multiple 
regression and principal component analyses. We show that model performance 
on our dataset is higher when using SEM and led to more accurate and precise 
estimates compared to conventional approaches.

4.	 We encourage researchers to consider SEM as a flexible framework to describe 
the multivariate nature of body condition and thus understand how it affects 
biological processes, thereby improving the value of body condition proxies for 
predicting organismal performance. Finally, we highlight that it can be useful for 
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1  | INTRODUC TION

Body condition is (by definition) a key determinant of an individu-
al's fitness (Wilder et al., 2016). Understanding how best to quan-
tify body condition therefore has implications in behavioural (Kirk 
& Gosler, 1994), evolutionary (Aubry et al., 2013) and conservation 
(Stirling & Derocher, 2012) studies, but how to analyse and estimate 
body condition has remained a subject of debate for decades (Wilder 
et al., 2016). Notably, there is currently no consensus on a strict defi-
nition of body condition, although there is conceptual agreement 
that the term describes the degree to which an animal's health state 
influences its performance (e.g. reproduction; Brown, 1996; Peig & 
Green, 2009). The concept of body condition can thus encompass a 
wide range of morphological and physiological metrics that describe 
the nutritional, immune and/or hormonal state of an individual. 
Which of such metrics are most relevant will depend on the study 
system and aims, and therefore also on the performance variable of 
interest (e.g. survival, reproduction, activity; Table 1).

Despite the multidimensional nature of body condition, most 
ecological studies operationalize body condition by quantifying a 
single (univariate) measurable variable (Wilder et al., 2016). In stud-
ies in which the energy stores are thought to be important for the 
individuals performance, often it is approximated by the mass of an 
individual relative to its size, as this is assumed to reflect internal fat 
content (Durell et al., 2001; Janssen et al., 2011; Schulte-Hostedde 
et al., 2005; see van der Meer and Piersma (1994) for the distinc-
tion between energy reserves and energy stores). Well-known 
examples include the body mass index in humans (BMI, mass/
length2; Nuttall, 2015), or the residuals of body mass regressed to 
one or more variables of structural size (e.g. tarsus or head length; 
Jakob et al., 1996), which are widely used in avian studies (Peig & 
Green,  2009). However, two individuals with similar BMI may still 
differ in various other aspects of their health, quality or vigour 
(Stevenson & Woods, 2006). The BMI in humans, for instance, re-
flects different body composition in men and women (e.g. women 
have more fat and men more muscles; Jackson et  al.,  2002) and 
therefore appears to be a poor predictor of morbidity and mortal-
ity, as people with similar BMI can have different metabolic health 
(Roberson et al., 2014). In fact, it has now become clear that different 
metrics of body condition are also related to aspects other than the 
energetic state of an individual (Table 1). Such non-energetic aspects 
can be an additional or even more appropriate predictor of fitness 
(Cox & Calsbeek, 2015; McGuire et al., 2018; with fitness measuring 

the genetic contribution to future generations). For example, an ani-
mal can have high lipid content but have low reproductive success if 
it is deficient in other nutrients (e.g. protein, vitamins, minerals) that 
it needs to reproduce (Nie et al., 2014).

These examples indicate that operationalizing body condition 
via univariate descriptors of body energy stores is unsatisfactory 
for two reasons. First, the underlying assumption that there is a 
(monotonic) positive association between energy stores and organ-
ismal performance has often been falsified. This suggests that it is 
important to also consider other measures of the health state be-
yond energy stores, such as physiological measures (Table 1; note 
that here our point is to emphasize that a variety of body condition 
measures can be and are used in ecological and (veterinary) health 
research and that no ‘perfect’ metric exists, i.e. universally suitable 
for all studies, although we appreciate that in specific studies some 
condition metrics can be more relevant than other metrics for bio-
logical reasons). Second, a univariate approach to body condition is 
unlikely to fully capture what is essentially a multivariate concept, 
at the expense of lower power to predict variation in performance. 
Indeed, efforts to combine several variables into one compositional 
measure have been able to better predict fitness variation than each 
of these condition variables separately (Sousa et al., 2007; Verhulst 
et al., 2004). A solution to these two problems may be to not op-
erationalize condition as one or two major axes of variation among 
traits that are a priori assumed to be related to fitness (e.g. univariate 
metrics such as fat content), but rather operationalize condition as 
the axis of variation (i.e. a specific composite body condition metric) 
that best explains variance in individual fitness or performance. Such 
a view is quite similar to how Wilson and Nussey (2010) conceptu-
alized ‘individual quality’, though body condition is always linked to 
a specific aspect of individual quality (i.e. health state) and is a much 
more dynamic concept as it fluctuates during lifetime while individ-
ual quality is a less flexible characteristic (e.g. social dominance).

Adopting a multivariate description of body condition and iden-
tifying which condition index best explains variation in performance 
or fitness impose statistical and analytical challenges that have thus 
far not been fully addressed. Studies that aim to describe the mul-
tivariate nature of body condition have used a variety of statistical 
methods (e.g. multiple regression, principal component analyses), 
which have limited flexibility and implicitly make specific assump-
tions that are not always recognized. Principal component analy-
ses (PCA) identify axes of body condition based on the correlation 
patterns among condition variables (Abdi & Williams,  2010) while 

other multidimensional ecological concepts as well, such as immunocompetence, 
oxidative stress and environmental conditions.

K E Y W O R D S

body condition index, composite variable, fitness component, latent variable, multiple 
regression, multiple-indicator multiple-cause model, path analysis, principal component 
analysis
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the weight of a variable in an estimate of condition instead ideally 
reflects how much it contributes to explaining variation in perfor-
mance relative to other variables. Multiple regression (MR) models 
have low flexibility in that they cannot handle variables that are si-
multaneously response and explanatory variables, which is resolved 
using stepwise modelling approaches that can potentially cause 
bias in the parameter estimates (Darlington & Smulders,  2001; 
Freckleton, 2002). Thus, there is a need for an alternative analytical 
framework to integrate multiple variables in one condition estimate, 
with their relative weight depending on their power in explaining 
variation in fitness, or, more usually, fitness proxies such as survival 
or reproductive traits (e.g. lay date, egg volume, fledgling number).

To this end, we introduce structural equation modelling (SEM) 
and show how it can be used to overcome the above-mentioned 
challenges in quantifying a body condition index. SEM is a flexible 
conceptual framework, where statistical and mathematical tools, 
along with analytical principles are used to learn about a system 
(Grace, 2006; Shipley, 2016). SEM builds on path analysis, which is 
a statistical regression analysis that allows one to investigate pat-
terns of effect within a system of variables by examining the impact 
of a set of predictor variables on multiple, possibly interrelated, re-
sponse variables. Moreover, SEM extends path analysis by including 
unmeasured variables. For example, ‘latent variables’ or ‘composite 
variables’ can be used to summarize multivariate concepts, like body 
condition, that are not directly measurable themselves. SEM can be 
used to evaluate competing multivariate models of body condition, 
and thus learn more about the study system, and quantify the rel-
ative importance of different pathways. Although SEM originates 
from the social sciences (Grace et al., 2010), the capacity for evalu-
ating multivariate hypotheses has also attracted the interest of ecol-
ogists, with some aspects of SEM (e.g. latent variables, path analysis) 
being widely used in specific subfields of ecology (Grace,  2006; 
Shipley,  2016). Belovsky et  al.  (2004) suggested that the ecologi-
cal sciences can be advanced by a better integration of theory and 
empirical evidence and by studying multiple causes simultaneously, 
both of which can be addressed with SEM.

We emphasize that the SEM techniques we describe are not 
novel from a statistical perspective. Instead, our aim is to demon-
strate in a comprehensive and educational way its usefulness for the 
quantification of body condition indices as well as for testing bio-
logical hypotheses concerning condition through worked empirical 
examples on a shorebird species. Data are from a large-scale study 
in which we measured a variety of morphological and physiologi-
cal variables on Eurasian oystercatchers Haematopus ostralegus. We 
provide R-code of all analyses with annotations to facilitate its usage 
and as a learning tool for those new to SEM.

2  | INTRODUCING THE C A SE STUDY 
USED TO E XPL AIN THE CONCEPTUAL 
FR AME WORK

2.1 | The case study system

The global Eurasian oystercatcher population has declined rap-
idly which can be caused either by reduced reproduction or by 
reduced survival, and thus our aim is to identify the impact of 
potential environmental drivers in winter affecting survival. 
However, survival probabilities of individuals are not directly ob-
servable, as we have to infer them from the stochastic realiza-
tions of individuals dying or not, leading to information loss (i.e. 
even more problematic when there is imperfect detection and 
we have to rely on capture–mark–recapture analysis for infer-
ence, which also requires many years of data collection). An ad-
ditional challenge in our long-lived study species is that mortality 
events are rare, with an average annual adult survival rate of ~0.9 
(Allen et  al.,  2019), meaning that there is little variation in this 
performance metric in a single year. Both challenges limit the op-
portunity to detect associations between environmental drivers 
and survival probabilities. Creating a body condition index that 
is closely related to survival gives the opportunity to use a more 
informative fitness proxy in the future based on data that are less 

F I G U R E  1   Conceptual framework of the case study and how we will develop the model in three sections. The numbers in the top left of 
each box with interrupted lines indicate the section where the analysis of those variables is discussed. Box 1 (dotted line): Summarizing the 
multidimensional nature of body condition by variable reduction; Box 2 (long dashed line): Quantify body condition based on a fitness trait; 
Box 3 (short-dashed line): High flexibility, comparing competing hypotheses, and model performance. The grey shaded area in box 2 zooms 
in on the specific condition variables used and discussed in the oystercatcher case study (see Section 2) and the three axis of health status 
illustrated in Table 1
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time-consuming to collect in the field (compared to the long-term 
survival data).

Therefore, the overall aim of the case study is to use health 
status measurements on captured birds to derive an integrative 
body condition index that maximizes the explained variation in 
a fitness component (survival) and helps to identify how envi-
ronmental drivers (competitor density) affect body condition 
(Figure 1).

To quantify body condition, 774 oystercatchers were caught 
with nets at high-tide roosts and colour-banded in the Netherlands 
during 19 catching events spanning two winters (2016–2017: 196 
birds; 2017–2018: 578 birds; Figure S1; Table S1). Several morpho-
logical and physiological variables were measured that could po-
tentially reflect the immune, hormonal and nutritional state of an 
individual. In addition, we measured (carotenoid based) bill colour 
that may serve as a visual status signal of an individual's body con-
dition to conspecifics (Figure  1). We considered these variables 
based on previous studies that have shown that they can be as-
sociated with either body mass or survival (Text S1). Some vari-
ables that we are not primarily interested in may influence multiple 
condition variables (Norte et al., 2009), and thereby could explain 
some of the intercorrelation between various condition variables. 
Accounting for such confounding variables may clarify to what 
extent these condition variables are different axes of body condi-
tion (Figure 1). By considering effects of handling time (proportion 
of time between capture and measuring) on condition variables, 
we aim to statistically account for time-dependent mass loss and 
possible effects on other physiological variables that we are not 
interested in. Similarly, we want to consider confounding effects 
of individual characteristics such as age, sex and bill shape. The 
age of the birds was classified in 1st, 2nd, 3rd calendar year and 
adults (>3rd calendar year). We focused only on sub-adults (2nd 
and 3rd calendar year) and adults (>3rd calendar year) in the anal-
ysis because the number of sampled juveniles (1st calendar year) 
was small (n = 28; Table S1). Adult oystercatchers cannot be accu-
rately aged and therefore we do not consider any possible effect 
of senescence on body condition or survival. A long-term study 
population in the Netherlands, in which there are many known-
age individuals (e.g. marked at birth), also did not reveal any ev-
idence that survival or body condition varies systematically with 
age among adults. Bill tip height was used as a proxy for the type 
of individual's feeding specialization ranging from worm special-
ists (pointed bill characterized by a low bill tip height) to shellfish 
specialists (blunt bill characterized by a high bill tip height; van de 
Pol et al., 2009).

We relate the body condition index to survival in the year follow-
ing capture. The survival estimates (mean [SD], min, max: 0.87 [0.06], 
0.73, 0.92) used in the case study were generated from a multi-state 
live and dead recoveries model and therefore are on an area level. 
See Text S1 and Table S2 for details on data collection and capture–
mark–recapture modelling.

2.2 | The conceptual framework applied to the 
case study

In the following three sections, we describe step by step how we 
quantify body condition with SEM in the oystercatcher population. 
We first describe how to summarize the multidimensional nature 
of body condition using a variable reduction approach (box 1 in 
Figure 1). We then describe how to quantify body condition based 
on a fitness trait (box 2 in Figure 1). The last section combines the 
first two steps but also adds confounding variables to the model (box 
3 in Figure 1) to illustrate the high flexibility of SEM. For comparison, 
we start all sections by analysing the data with a conventional statis-
tical approach before demonstrating the SEM approach. In the last 
section, we compare the model performance between SEM and a 
conventional approach.

3  | SEC TION 1:  SUMMARIZING THE 
MULTIDIMENSIONAL NATURE OF BODY 
CONDITION: VARIABLE REDUC TION

In this section, we will illustrate how the multivariate concept of 
body condition can be summarized and compared to alternative 
models by considering two variables of health status, namely ‘energy 
stores’ and ‘bill colour’ (box 1 in Figure 1).

3.1 | Conventional method: Principal component 
analysis (PCA)

A conventional method that combines several measures into one 
compositional measure is PCA, a multivariate statistical technique 
that is used in most scientific disciplines (Abdi & Williams,  2010). 
PCA has also been used to create condition indices (e.g. Bearhop 
et al., 2004; Milenkaya et al., 2015; Verhulst et al., 2004). PCA sum-
marizes multiple variables using the shared correlation structure to 
derive the principal components. If the first principal component 
(PC1) explains the majority of the variation, the other principal com-
ponents can be ignored without much information loss, and variable 
reduction is achieved through using PC1 as a single new condition 
variable. The use of PCA is suitable for the (adult) bill colour and 
energy stores examples because the different (adult) bill colour and 
energy stores metrics are strongly linearly interrelated (Figure S2; 
Table S3), and such intercorrelation is a requirement for PCA.

Concerning the energy stores, we considered two alternative 
variables in our analysis that reflect some of the diversity of mea-
sures used in the ecological literature (Peig & Green, 2009): (a) the 
residuals of mass regressed against structural size measures: head 
length, tarsus length and wing length and (b) the ratio of mass to size 
(tarsus length). Both variables are assumed to be positively related 
to fitness (Stevenson & Woods, 2006) and are highly intercorrelated 
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(r  =  0.91, Figure  S2). We note that using ratios sometimes intro-
duces underlying hidden assumptions and mathematical limitations 
that may need consideration; for a full discussion see Atchley and 
Anderson (1978). PC1 explained 96.6% of the variation (residuals: 
0.98; ratio: 0.98; n = 804; Figure S3 and Table S4). We therefore can 
conclude that the PCA performs well in summarizing both correlated 
traits into a single variable.

For bill colour, we ran a PCA with the variables hue, chroma and 
luminance (components of a colour; Quesada & Senar,  2006) for 
both age classes separately, as we clearly see differences between 
the intercorrelation of the variables between adults and sub-adults 
(Table  S3; Figure  S6). The PC1 of bill colour explained 88.8% and 
69.4% of the variation for adults and sub-adults, respectively, and 
loading was approximately equal for each of the three components, 
except for hue in sub-adults (adults: hue = 0.99, chroma = −0.90, lu-
minance = 0.95, n = 599; sub-adults: hue = −0.49, chroma = 0.99, 
luminance  =  0.92, n  =  163; see Figures  S4–S6 and Tables  S5 and 
S6). For bill colour, we therefore also can conclude that the PCA 
performs well in summarizing all three correlated colour traits into 
a single variable.

3.2 | SEM method: Confirmatory factor analysis 
using latent variables

A closely related statistical approach to PCA that is available in the 
SEM framework is a confirmatory factor analysis (CFA). CFA includes 
two types of variables: observed variables and latent variables 
which are graphically represented, respectively, by boxes and circles 
(Figure 2). The ‘confirmatory’ part speaks to the knowledge one has 
of the theory behind the relationship between the latent and their 
observed variables. Latent variables are hypothetical or theoretical 

variables (constructs) that we assume to exist but for which we 
have no direct measurements, and are therefore referred to as ‘un-
measured variables’ (Grace et al., 2010). Latent variables are used in 
models to represent an underlying process while observed variables 
serve as indicators of the effects or manifestations of the latent fac-
tors (Grace & Bollen, 2008). Latent variables play an important role 
in SEM because they represent a bridge between observed data and 
theoretical generalization (Grace & Bollen, 2008), and a part of the 
concept of body condition is a prime example of a latent theoretical 
concept, as these are latent variables made up of typically corre-
lated condition measures (e.g. ratio and residual body mass or BMI). 
CFA provides a conceptual advantage: we often choose a single 
indicator as a surrogate for a latent concept (e.g. hue representing 
the more general concept ‘colour'). Including more indicators (e.g. 
chroma, luminance) helps to generalize this phenomenon by testing 
that the result is not impacted by the choice of any single indicator. 
This emphasizes that CFA/SEM is a logical choice in the context of 
the multivariate nature of body condition. The purpose of CFA is to 
statistically test the ability of a hypothesized (factor) model to repro-
duce a set of sampled data (usually through a variance–covariance 
matrix; Nusair & Hua, 2010). In a CFA, the estimated values for all 
records can be extracted and used for instance for plotting in a simi-
lar way as is done with PCA.

The use of latent variables (as a variable reduction tool) is common 
in social sciences and psychology (Bollen, 2002; Grace et al., 2010) 
and there is a growing interest in ecological research also. Latent 
variables are, for instance, used to quantify species performance 
in plant research (Grace et  al.,  2016; Travis & Grace, 2010; Visser 
et  al.,  2018), or morphometrics in birds (Araya-Ajoy et  al.,  2019; 
Cubaynes et  al.,  2012; Pugesek & Tomer,  1996) and mammals 
(MacKay et  al.,  2017; Nespolo et  al.,  2003), as well as to quantify 
environmental conditions (Guan et al., 2016; Souchay et al., 2018), 

F I G U R E  2   Path diagrams of the confirmatory factor analysis (CFA) for the latent variables: (a) energy stores (determined by mass 
corrected for size [equivalent to residuals on the mass axis] and by the ratio of mass/tarsus length) and (b) bill colour (determined by hue, 
chroma and luminance) for the two age classes. Boxes indicate measured variables; circles represent latent variables. Arrows indicate 
positive significant (solid line), negative significant (dashed line) or non-significant (dotted line) path strengths with values of standardized 
coefficients shown next to each line. Standardized coefficients are estimates expressed in equivalent units to make it possible to compare 
different path strengths in the model. Standardized coefficients (scale standardization) are estimated by multiplying the slope of the ratio of 
the standard deviation of the predictor and response variable (Lefcheck, 2019). Latent variables are described by arrows going away from 
the latent variable indicating that they are measured by the observed variables. (c) and (d) show the equations belonging to models (a) and 
(b), respectively. α, λ and ε illustrate the intercept, slope coefficients and residual error, respectively. See Codes S1 and S2 for detailed model 
results and specifications
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behaviour in mammals (Dochtermann & Jenkins,  2007), fish 
(Sprenger et al., 2012) and birds (Araya-Ajoy & Dingemanse, 2014; 
Dingemanse et al., 2010; Jablonszky et al., 2018; Krams et al., 2013; 
Moiron et al., 2019).

We created the variable ‘energy stores’ as a latent variable con-
struct in the SEM framework using CFA (Figure  2a). The variable 
energy stores was defined by both (a) the ratio of mass to tarsus 
length and (b) the residual of mass regressed to three structural size 
measurements (head length, tarsus length and wing length). Model 
results (Code S1) indicate that the ratio and residual variables are 
positively related to the latent variable energy stores (Figure 2a).

Similarly, we can create a variable ‘bill colour’ as a latent variable 
in the SEM framework (Figure 2b; Code S2), which on a more ab-
stract level can be seen as a common factor of several observed vari-
ables (hue, chroma and luminance) so that its associated biological 
consequence can be viewed to occur at the level of a bill colour fac-
tor, rather than at the level of each observed variable. Hue values in-
dicate a scale from orange to yellow, whereas luminance and chroma 
give information on the lightness and saturation of the colour (see 
Figure  S7 for colour component interpretation). Since we expect 
that the relationship among the colour variables differs between the 
two age classes, we conduct a multi-group CFA. The structural equa-
tion model (Figure 2b, Code S2) shows that in adults, the hue and lu-
minance are positively intercorrelated, whereas chroma is negatively 
intercorrelated. In accordance with the PCA results, the CFA for sub-
adults shows low intercorrelation of hue with chroma and luminance 
and hue contributes less to the estimate of ‘bill colour’ in this group.

To conclude, CFA is a technique within SEM that is conceptu-
ally related to the variable reduction technique PCA, and in our 
case study the values from the latent variable and PC1 are highly 
correlated for the energy store (r = 0.98) and the bill colour model 
(adults: r = 0.95; sub-adults: r = 0.92), showing linear relationships 
over the entire range (Figure S8). Note that at this point ‘bill colour’ 
and ‘energy stores’ are latent variables which are not yet related in 
any way to condition. This will follow in the next two sections.

4  | SEC TION 2:  QUANTIF Y BODY 
CONDITION BA SED ON A FITNESS TR AIT …

PCA and CFA identify the body condition axes of ‘bill colour’ or 
‘energy stores’ based on the correlation patterns among observed 
variables (Abdi & Williams, 2010), but not on how well the different 
observed variables explain variation in fitness. It is not unlikely that 
different body condition variables explain different parts of the vari-
ation in fitness, as they may represent different aspects (‘axes’) of 
body condition. For example, energy stores may explain variation in 
survival due to starvation while immunological measures may explain 
variation in survival due to disease. Arguably, ecologists may often 
have no clear reason to assume a priori that the shared correlation 
patterns among condition variables necessarily explain most varia-
tion in fitness. Thus, different observed variables may have differ-
ent weights in explaining variation in fitness, and rather than making 

a priori assumptions about the weights, SEM can be used to build 
a model where the weights are part of the outcome. Furthermore, 
when researchers use PCA/CFA, it is often implicitly assumed that a 
relationship between the measured condition variable (e.g. mass cor-
rected for size) and fitness prospects exists. However, the assump-
tion that there is a monotonic positive association between energy 
stores and fitness prospects has often been falsified (e.g. Barry & 
Wilder, 2013; Verhulst, 1998) and it is therefore important to check 
this key assumption.

We will illustrate the quantification of a body condition index 
based on a fitness trait with our case study, where our overall goal is 
to create a body condition index that maximizes the explained varia-
tion in annual survival (box 2 in Figure 1).

4.1 | … with a conventional method—Multiple 
regression analysis (MR)

MR estimates the relationships between a response variable (e.g. 
fitness component) and one or more predictor variables (condition 
variables; Nusair & Hua, 2010). A key characteristic of MR analysis is 
that it aims to show how variation in one variable can be explained 
by others. A limitation of MR is that they cannot handle variables 
being both response and predictor at the same time and therefore 
are limited to the examination of single process at a time. The com-
monly used work around is to take a multi-step approach of per-
forming several MR analyses sequentially (e.g. Skarpaas et al., 2011). 
In our hypothesized conceptual model (box 2 and grey shaded area 
in Figure  1), body mass is seen as a predictor variable when used 
to explain variation in the body condition index, but simultaneously 
as a response variable when regressed to different structural size 
measurements (e.g. tarsus length; Figure 4a).

We aimed to quantify a body condition index that explains vari-
ation in survival and is based on six measured condition variables 
characterizing the nutritional state, immune state and hormonal 
state (box 2 in Figure 1; Figure 4a). With an MR approach, we would 
answer this question by conducting the following four sequential 
steps. We first need to regress mass on three structural sizes (tarsus 
length, head length and wing length) to account for individual vari-
ation in structural size that we are not interested in (step 1). Next, 
we extract the residuals of this model, and regress them together 
with the five other condition variables (buffy coat) on the survival 
variable (step 2). Then, we extract the predicted values of the sur-
vival model as a body condition index (step 3). Only now, in a final 
fourth step, can we tackle our main question by regressing the body 
condition index to the environmental variable ‘competitor density’ to 
determine the effect of density on ‘condition’, and thereby answer 
how competition (e.g. for food sources) affects survival through the 
condition of an individual. Conducting multiple steps using the resid-
uals of a model as input for another model (also called residual analy-
sis) can lead to biased parameter estimates, especially if independent 
variables are not totally uncorrelated (Darlington & Smulders, 2001; 
Freckleton, 2002).
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4.2 | … with SEM method—Composite 
variable and MIMIC

The hypothesized conceptual model (box 2 in Figure 1) can be fit-
ted in a single model within the SEM framework using ‘composite 
variables’. Whereas ‘regular’ latent variables represent an unmeas-
ured variable that leads to correlation between the observed vari-
ables (Figure 3a), composite variables represent the collective effect 
of a group of observed or latent variables (Figure  3b; Grace & 
Bollen, 2008). Composite variables can be seen as a special case of 
a latent variable and are represented by a latent variable with zero 
error, which signifies that it is completely specified by its causes 
(Grace,  2006). Thus, if condition variables are strongly correlated, 
we advise to use latent variables to integrate them, whereas in com-
posite variables, the observed contributing condition variables do 
not necessarily need to be correlated, which is an important flex-
ibility of its application (Nusair & Hua, 2010).

In contrast to the use of latent variables in ecology, compos-
ite variables have been long recognized as a potentially important 
element of SEM, but have received very limited use in ecology 
among others because of a lack of theoretical consideration (Grace 
& Bollen,  2008; Hopcraft et  al.,  2012; Pugesek & Tomer,  1996). 
Composite variables come in two types. One is a fixed-weight com-
posite, in which the loadings (ϒ in Figure  3d) from the causes are 
specified a priori (Grace, 2006). An example is the ‘importance value’ 
in plant ecology, which is defined as the unweighted sum of the rel-
ative density, relative abundance and relative frequency (usually for 
a species within a community). A second type of composite is the 
unknown-weight composite (Grace & Bollen,  2008). The unknown 
weight composite is related to a multiple regression predictor, where 
some weighted combinations of causal influences maximize variance 

explanation in one or more response variables, and weights are thus 
estimated from the data. The concept of body condition (box 2 in 
Figure 1) is a prime example of an ‘unknown-weight composite’ as 
first, the six condition variables (Figure 4a) show low intercorrelation 
(Figure S2) and second, we do not know a priori how important each 
condition measure is for our fitness proxy survival.

We created a condition index making use of a composite vari-
able defined as a weighted sum of the condition variables, with the 
weights reflecting the dependency of survival on each of the con-
dition variables (Figure 4a). This step is basically the same as in an 
MR. The values of the condition index variable for each record can 
be extracted from the SEM model (Figure 4a) so that the relation-
ship between condition index and density can be plotted (Figure 4b). 
Furthermore, building a condition index as a composite variable can 
also be done by relating it to other fitness traits like reproduction 
(see Section 6), or the weights can be used to quantify the condition 
of birds captured in future studies, without the need for measuring 
their survival. We note that the six condition variables were at most 
weakly correlated (e.g. correlation between cholesterol and corti-
costerone was r = −0.02; Figure S2), and using a latent variable as 
part of a CFA approach would thus not be an alternative to the com-
posite variable approach taken here.

In an MR, it is not possible to handle mass as a response variable 
and at the same time as an explanatory variable, forcing the use of 
other solutions such as using the residuals of mass (as illustrated in 
Figure  2a). An advantage of the SEM approach is that there is no 
need to first extract the residuals (of body mass on size) and then 
summarize the variables; instead, we can include the size, mass and 
size-corrected-mass variables in the same model (Figure 2; see also 
next paragraph). In addition, in the same SEM, we specify condition 
as a function of survival probability, and in a separate equation (but 

F I G U R E  3   Graphical representation of a model using a latent (a) variable and a composite (b) variable. The path diagram shows the 
relationships between observed variables (X's in boxes) and (a) latent (L; in circle) or (b) unknown-weight composite (C; in hexagon) variable. 
Note that for the unknown-weight composite in (b), a response variable Y is required, while for defining a latent variable in (a) this is not a 
necessity, but could be added if useful. The equations for the latent and composite variable are shown in (c) and (d), respectively. (c) X is the 
result of the influence of the latent variable (L), proportional to λ (=loading), plus the error ε and the intercept α. For details on how L and λ 
are derived from data, see chapter 4 in Grace (2006); (d) composite variable C is equal to the sum of the effects of Xs plus the error which is 
fixed to 0. The response variable Y is a result of the intercept (αY), the slope coefficient γ, C and the error ε
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in the same model; Figure 4c) regress density on the condition index 
(see Code S3 for model specifications and R-code). This has the 
additional advantage that an overall model fit can be assessed, to 
quantify to what extent the hypothesized model fits the sample data 
(Musil et al., 1998) or to compare it with potential alternative models, 
which will be discussed in detail in Section 3.

Since larger individuals may have a higher body weight, we want 
to account for the size when including mass as a condition measure 
in the model. This is often done by taking the residuals of mass 
regressed on structural size variables (Jakob et  al.,  1996; Peig & 
Green, 2010). SEM avoids using residuals (as in Figure 2a) when con-
sidering mass corrected for size as a condition variable using a tech-
nique called the multiple-indicator, multiple-cause model (MIMIC). 
MIMIC incorporates covariates of interest which are modelled under 
a latent variable framework (Chang et al., 2020). Specifically, in our 
case study, we create a new latent variable (‘Size-corrected-mass’; 
Figure 4) affecting only one observed variable ‘mass’ with a default 
factor loading of 1. The structural size covariates (tarsus length, head 
length and wing length) affect the latent variable ‘Size-corrected-
mass’, rather than the observed variable mass. By incorporating the 
size variables as covariates in this way in SEM, the latent construct 
‘Size-corrected-mass’ allows for the model to estimate the relation-
ship of mass on condition while accounting for the effect of size-
variables on mass, similar to taking the residuals of mass regressed 
on size when using a stepwise MR approach. In addition, there may 
be relationships between the size variables and other condition vari-
ables (e.g. cholesterol) that could be considered in the model.

So far, we only considered linear relationships, but often relation-
ships are curvilinear in biology. To illustrate how to model nonlinear 
relationships, we run the model from Figure  4 with an additional 
variable ‘squared mass’ (Code S4). By doing so, we can investigate 
a possible nonlinear relationship of mass on condition. However, in 
this case study, squared mass does not show a significant effect on 
condition (p = 0.07, Code S4), and we henceforth ignore it for rea-
sons of simplicity.

The model results show that size-corrected mass and corti-
costerone have a negative effect on the condition index, whereas 
buffy coat, haematocrit, uric acid and cholesterol show smaller (non-
significant) effects on condition (Figure 4a). The condition has a path 
strength of 0.41 on survival, explaining 17% of the spatial variation in 
survival within the Netherlands (Code S3; Figure S9). Oystercatcher 
density shows a strong (−0.57) negative association with the body 
condition index (Figure 4b; Figure S10).

5  | SEC TION 3:  HIGH FLE XIBILIT Y, 
COMPARING COMPETING HYPOTHESES, 
AND MODEL PERFORMANCE OF SEM

In this section, we combine the two models from Sections 1 and 2 
and include confounding variables related to measurement proce-
dure (handling time) and individual characteristics (sex, feeding spe-
cialization and age class; box 3 in Figure 1). Next, we compare the 

model performance of a SEM approach and a conventional statistical 
approach.

5.1 | Model results and interpretation

To construct the full model (Figure 5), we connect the latent variable 
‘energy store’ (Figure 2a) with the composite variable body condi-
tion (Figure 4). In addition, by using MIMIC modelling, we correct for 
the effect of measurement procedure (handling time) and individual 
(sex, age)-related confounding variables to account for its effect on 
the condition variables. The correlation structure of the three colour 
parameters (hue, chroma and luminance) differs strongly between 
the two age classes. The colour parameters are only highly corre-
lated in adults and not in sub-adults (Table S3) as illustrated in the 
multi-group CFA (Figure 2b). Therefore, it is not useful to use a latent 
variable for bill colour in this example. Instead, for simplicity, we use 
only hue as a measure of bill colour (Figure 5), which we expect to 
have more variation giving information on the colour in contrast to 
luminance and chroma, which reflects lightness (Figure S7). For com-
pleteness, we illustrate alternative model structures to handle the 
different correlation structures between age classes in Figure S11.

Whereas MR assumes independence of error terms, which may 
bias the estimates (James et al., 2013), it is possible to specify non-
independence of error terms in SEM. For instance, in our example, 
we expect the error term of haematocrit and cholesterol to be cor-
related because cholesterol is quantified as a concentration in blood, 
which means that it is related to the proportion of haematocrit in the 
blood (Code S5). Similarly, in the example of modelling nonlinearity 
in mass using squared mass as additional variable, we can specify 
that the error terms of mass and its squared version are correlated.

The full model (Figure 5) shows that the latent variable energy 
stores is a result of the positive influence of mass (corrected for 
structural size variables and handling time) as well as the ratio of 
mass divided by tarsus length. We also find that individuals with 
a higher bill tip height (blunter shaped bill) show a more yellowish 
bill (standardized estimate = 0.22, p < 0.001; Code S5). In addition, 
males have a more orange than yellowish bill compared to females 
(standardized estimate = −0.25, p < 0.001; Code S5). Most impor-
tantly, we find that energy stores and corticosterone have a negative 
effect on the condition, whereas the other condition variables (buffy 
coat, haematocrit, cholesterol, uric acid and bill colour) show weaker 
(non-significant) effects on the condition index.

These aforementioned results emphasize the point made in the 
introduction that we often assume positive relationships with per-
formance or fitness (e.g. high energy stores benefit survival), but that 
those assumptions do not always hold true. We stress that the nega-
tive contribution of the latent construct ‘energy stores’ to body con-
dition results from a negative correlation between mass (corrected 
for size) and survival (Figure S12), and is thus not a result of the (SEM) 
modelling procedure itself. A possible explanation for the negative 
relationship of energy stores with condition may be that birds with 
higher condition are mainly in areas with more food and therefore 
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do not need to store that many resources, as the food source is 
more reliably available (Cuthill et  al.,  2000). Another possible rea-
son may be that the number of predatory birds (e.g. peregrine falcon 
Falco peregrinus) in the oystercatcher wintering grounds increased 
during recent decades (Sovon Vogelonderzoek Nederland,  2018) 
which may increase the survival of lighter, more agile individuals by 
allowing them to escape predation. Lastly, it is important to keep 
in mind that we here analyse site-level variation in mortality rather 
than individual-level mortality, and between and within site (popu-
lation) patterns need not be similar. Thus, the negative relationship 
between energy stores and condition does not exclude that energy 
stores in principle are important for starvation just that under condi-
tions of high food stocks or predator abundance encountered in our 
study, energy stores may potentially be unrelated to starvation and 
instead reflect other aspects, such as foraging efficiency or agility.

We a priori hypothesized a positive relationship of body mass on 
the condition index, and therefore called the latent variable ‘energy 
stores’. We can learn from the outcome of this model that our data 
are not consistent with the theoretical ideas that led us to model the 
concept of energy stores in the way we did. However, our latent vari-
able ‘energy stores’ could be consistent with interpreting this latent 

variable as the concept ‘mass-related agility’ of an individual, but this 
hypothesis would require further testing. We note that the concept 
‘mass-related agility’ could still be thought of as a condition variable, 
as it reflects an aspect of health status (responsiveness to danger) 
and predicts performance (the fitness proxy survival).

Our results also confirmed the expected negative relationship 
between corticosterone and the condition index, meaning that 
birds at sites with higher survival had lower corticosterone levels. 
Corticosterone fulfils its main functions by mobilizing stored re-
sources to facilitate upregulating metabolism for coping with in-
creased energetic challenges (Jimeno et al., 2018). Thus, birds coping 
with harsh environmental conditions may show elevated corticos-
terone secretion (Angelier et al., 2010; Jimeno et al., 2017), and our 
results are consistent with this idea.

We included bill colour as a potential variable affecting individ-
uals' condition, as we hypothesized a priori that such a carotenoid-
based trait is likely to be sensitive to nutritional state and may thus 
serve as a visual status signal of the individual condition to conspe-
cifics meaning that individuals with a more reddish bill have higher 
condition. However, on the other hand, if bill colour would be an 
‘honest’ signal for sexual selection, it may also be costly and could 

F I G U R E  4   (a) SEM model of body condition based on a fitness trait for oystercatchers. Solid and dashed lines indicate a positive and 
negative significant (p < 0.05) path, respectively. Values indicate the standardized path strength (see Figure 2 for explanation). Dotted lines 
indicate non-significant pathways (p > 0.05). (b) visualizes the relationship of density on the body condition index as estimated by the SEM. 
Dots indicate density data points and model estimate of body condition index for each individual, whereas the solid line shows fitted line 
of the model with the lower and upper 95% confidence interval as dashed lines. Note that individuals have the same density value when 
they were caught at the same location. (c) shows the equations of the SEM depicted in (a), emphasizing that oystercatcher density (dark grey 
box) does not shape the condition index, only the measured condition variables (light grey boxes) do (as can be seen from the two separate 
equations for C). The tilde-signs denote the use of multiple regression within the SEM (e.g. mass as a function of size), while the ‘equal’-signs 
denote the estimation of the composite and latent variables. The latent variable ‘size-corrected mass’ was included as part of the MIMIC 
subpart of the SEM (shaded area in a) to make sure that condition was affected by size corrected for mass and not by mass alone. For further 
explanation, see the text. For R code, see Code S3
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result in a negative relationship with survival. The pathway of bill co-
lour on condition shows no significant effect on the condition index 
and survival. We can learn from the model that bill colour is not a 
useful condition variable that predicts variation in survival perfor-
mance in this population.

Finally, we found that the body condition index shows a strong 
(−0.55) negative association with oystercatcher density, whereas 
body condition positively affected annual survival probability (0.45 
standardized path coefficient; Figure  5). This result suggests that 
that competition may affect the survival through body condition, 
and that this mediating effect of condition is quite strong: a one 
standard deviation decrease oystercatcher density at a site is asso-
ciated with a quarter standard deviation increase in annual survival 
(−0.55 × 0.45 = −0.25; rules of path tracing; e.g. Grace, 2006).

5.2 | Competing hypothesis and model 
fit comparison

Researchers may want to compare competing multivariate descrip-
tions of a conceptual model (based on a priori hypotheses), but 

formal ways to compare such models and identify whether they are 
sufficient descriptions in the first place have rarely been considered. 
In SEM, we obtain one overall model fit and can compare model fits 
between models, which makes it possible to learn about a system. 
Various metrics of model fit exist for SEM, but we focus here on the 
comparative fit index (CFI; Bentler, 1990) that is mostly reported in 
ecological studies (see Table S7 for other metrics). CFI is a chi-square 
estimate using a maximum-likelihood solution, where values ≥0.90 
and ≥0.95 indicate an acceptable and reasonably good fit, respec-
tively (Hooper et  al.,  2008; Hu & Bentler,  1999; Lefcheck,  2019). 
We constructed an alternative model to compare with the original 
one (Figure  5) to explore whether we can improve the model. In 
the original model, by design, all effects of body size go indirectly 
through condition, whereas by adding a direct pathway of a latent 
construct ‘body size’ on survival, we can learn the relative role of 
body size and body condition (which is often understood as being 
independent; Schulte-Hostedde et  al.,  2005). Both models show 
good model fit with a CFI of 0.94 (Codes S6 and S7). The alternative 
model reveals no direct effect of body size on survival, but only an 
indirect effect through mass and condition (Figure S13). Comparing 
both models with an ANOVA confirms that the alternative model 

F I G U R E  5   Full SEM model including 
latent (circles), composite (hexagon) 
and measured (squares) variables as 
well as confounding, predictor and 
response variables. Values indicate 
the standardized path strength (see 
Figure 2 for explanation). Solid and 
dashed lines indicate a positive and 
negative significant (p < 0.05) path 
and are indicated by an asterisk next 
to the standardized path strength, 
respectively. Dotted lines indicate 
non-significant pathways (p > 0.05). For 
simplicity, we only documented the path 
strength of the condition, predictor and 
response variables. The MIMIC part 
of the condition variables (buffy coat, 
haematocrit, cholesterol, uric acid and 
corticosterone) contains latent variables 
of the observed condition variables 
(indicated by an apostrophe) that are 
corrected for confounding variables (e.g. 
sex, age). ‘Bill colour’ and ‘size-corrected 
mass’ are also MIMIC parts (corrected for 
confounding variables) within the model, 
but have another biological meaningful 
name (rather than the name of the 
measured variable) and therefore are not 
noted without apostrophe
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(with an additional direct effect of body size on survival) does not 
show a significant improvement (p  =  0.4; Table  S8) compared to 
the original model. We have thus learned that effects of body size 
primarily affect survival through its effect on body condition. This 
model comparison also illustrates that if no direct arrow connects 
two variables, independence between variables is assumed (e.g. 
between size or sex and survival; Figure 5). The decision on which 
pathways to include in a model or not, should be based on prior bio-
logical knowledge and the aim of the study, and thus requires careful 
thinking about hypotheses.

5.3 | Model performance of SEM versus 
Conventional approach

In the conventional approach, we can imitate latent variables using 
PCA and composite variable using residuals from MR (Figure 6a vs. 
6b). However, using conventional methods (MR and PCA) to create 
a condition index that predicts survival requires a large number of 
steps, especially when multiple condition variables are measured 
(Figure 6b). We expected the SEM to perform better than the con-
ventional approach, as in SEM we can estimate the joint likelihood of 
all the relations simultaneously (Figure 6a), contrasting with the four 

steps in the conventional approach (Figure 6b). The conventional ap-
proach involves using the residuals from a previous model in input 
in the actual model, which may cause bias in parameter estimation 
(Darlington & Smulders, 2001; Freckleton, 2002).

We compared how well the body condition index could predict 
survival using either the SEM or the conventional method (Figure 6). 
Model performance was quantified using a measure of prediction 
error (root mean square error; lower values imply less deviations 
between model predictions and observed survival estimates) and 
a measure of explanatory power (R2; higher values indicating more 
variation explained). We applied 10-fold cross-validation to the orig-
inal dataset, with 80% of the dataset being used as training dataset 
to which the SEM (Figure  6a) and conventional model (Figure  6b) 
were fitted and 20% being used as test dataset to assess model per-
formance of both methods. This process was repeated three times, 
meaning that in total 30 different training and test sets were used 
to estimate the performance (see Codes S8 and S9). The results of 
the cross validation show that the SEM approach has higher model 
performance which is indicated by a 1% reduction of the predic-
tion error (RMSE) and an increase of the explained variation (R2) 
by 9% compared to the conventional (MR/PCA) approach (SEM: 
RMSE  =  0.438; R2  =  0.177; MR&PCA approach: RMSE = 0.442; 
R2 = 0.163; Figure 6c).

F I G U R E  6   Comparison of two analysis 
approaches using (a) structural equation 
modelling (SEM) and (b) conventional 
methods: multiple regression (MR) and 
principal component analysis (PCA). 
Arrows point from predictor to response 
variable within the model. (a) SEM to 
quantify body condition in oystercatcher 
that is positively related to survival 
including latent and composite variables 
in one step. (b) MR&PCA approach to 
quantify body condition which needs 4 
steps (compared to 1 step in SEM). (c) 
shows the root mean square error (RMSE) 
and R2 for both models as a result from 
cross validation. Note that the variable 
‘competitor density’ (from Figure 5) 
was not included in the SEM model to 
compare the model performance of both 
approaches (a and b) since the aim was 
to create a proxy of body condition that 
best explains the variation in survival and 
therefore predicts the survival well with 
a train and test dataset (cross validation). 
See Code S8 and Table S9 for model 
specifications and R code as well as the 
details of each step of the MR&PCA 
approach, respectively
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In addition, we compared the bias and precision of estimators 
from both approaches. To this end, we simulated 1,000 datasets 
with 1,000 observations each, based on the covariance patterns 
found in the case study population using the ‘simulateData’ function 
in lavaan (Rosseel, 2012). Next, we estimated the effect of each con-
dition variable on condition index using either a SEM (Figure  6a; 
Figure  S14) or conventional stepwise MR&PCA (Figure  6b; 
Figure  S15) approach. For each condition variable of both ap-
proaches, we calculated the mean bias (B̂ =

1

nsim

∑nsim

i=1
�̂i − �) and the 

average empirical standard error (Ê =

�

1

nsim − 1
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2
�

) of the 

estimate, with θ being the parameter value used to simulate the data 
(‘true value’), �̂i being the estimated parameter from the simulated 

ith repetition, 
‼

� being the mean of the estimated parameters and nsim 
being the number of simulated datasets.

Simulation results indicate that the SEM method is practically 
unbiased while the conventional method can have substantial bias 
and not consistently in the same direction (Figure 7). For condition 
variables having a ‘true’ value not close to 0, we calculated the rel-
ative bias (Morris et al., 2019) which ranged from −85% to 50% and 
0.8% to 3.5% for the conventional approach and SEM, respectively 
(Figure S16). The bias of the conventional estimators is largest in the 
variables having the strongest (significant) effect on the condition 
index (Figure 7; Figure S17), ranging from −0.16 to +0.21 absolute 
bias (Figure S18). Overall, the estimator of the SEM approach was 
also more precise (with an empirical standard error around 0.056) 
than the conventional approach estimator (with an empirical stan-
dard error around 0.087), when considering estimators that were 
unbiased in both methods (e.g. uric acid; Figures S19 and S20).

6  | DISCUSSION

We showed how to use structural equation modelling (SEM) to quan-
tify body condition, comparing it with the conventional approaches 
of multiple regression and/or principal component analysis. We il-
lustrated how latent variables can be used to summarize the multi-
dimensional nature of body condition, yielding variable reduction. 
Next, we showed that composite variables make it possible to define 
the body condition index based on associations between observed 
condition variables and a fitness trait, even if the different condition 
variables contributing to body condition are uncorrelated (poten-
tially reflecting different axes of condition). This is advantageous, 
because the direction of a relationship between a condition measure 
(e.g. body mass) and fitness is often assumed, but rarely known with 
certainty. Finally, we showed how it is possible in SEM to combine 
latent and composite variables in one model, which more realistically 
reflects complex natural situations, as it allows for summarizing both 
strongly correlated and less correlated measures of condition. A 
major advantage of SEM is that, in contrast to conventional methods, 
it can handle variables that are response and explanatory variables 
at the same time. As a consequence, SEM allows all the relationships 

to be estimated in a single model, resulting in one estimate for the 
model fit and generating the possibility to compare competing mod-
els, whereas in conventional methods several steps are required (e.g. 
extracting residuals of a model and use them as input for another 
model) that provide additional challenges (e.g. biased parameter es-
timates and carrying over the uncertainty from previous models). 
In addition, we showed how we can correct for the effect of con-
founding variables in SEM using MIMIC (multiple-indicator, multiple-
cause) modelling. Overall, the high flexibility and integration of SEM 
make it a powerful tool that might increase model predictability and 
result in unbiased and precise estimates, as illustrated by our worked 
examples on a case study, and therefore may also provide novel in-
sights in ecological processes.

While we used SEM to quantify body condition, there are nu-
merous other contexts in which it can be used to describe complex 
concepts. For example, in determining an immune response or ex-
perienced stress level of an individual, because usually multiple im-
munological, physiological or hormonal metrics are measured, which 
may also reflect different aspects of the immune or stress response, 
and it is a challenge to derive an integrated immune estimate from 
these data. Similarly, climatic conditions are highly multivariate, and 
while most studies have, for example, detailed climatic data on var-
ious weather variables, studies tend to focus on a single weather 
variable such as temperature.

6.1 | From a biological point of view: Body condition 
related to different performance metrics

A condition index based on predicting survival does not necessar-
ily mean that a high body condition of an individual indicates high 
fitness, because fitness also depends on the association between 
condition and other fitness components, such as reproductive suc-
cess. Quantifying condition based on survival data may result in a 
different condition index than when it is based on the reproductive 
success of an individual, or a fitness metric that integrates survival 
and reproduction, such as reproductive value. This difference high-
lights that definitions of condition can be context-dependent and 
may vary during the life cycle, which may be particularly relevant 
when investigating species that alternate strategies (e.g. albatrosses 
prioritizing reproduction in one year and survival in another year; 
Froy et al., 2013). Our SEM approach provides a framework for iden-
tifying how different condition measures define a successful survi-
vor or a successful breeder and how they may differ from each other.

6.2 | From a statistical point of view: Additional 
techniques, challenges and limitations

We want to emphasize that in order to compare the two approaches, 
the data used to analyse the data and generating the data had the 
same model structure. However, in reality, this will rarely be the 
case. Different research questions require different statistical 
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frameworks (model structures) and a thorough understanding of 
the definitions and components of the frameworks as well as of the 
study system is crucial for making biologically meaningful inferences 
(Benthem et al., 2017). Therefore, identifying a proper model struc-
ture (that fits the data well) and that addresses a biological question 
properly is by no means trivial and probably one of the largest chal-
lenges in the art of modelling.

We considered confounding variables (e.g. sex and age) to il-
lustrate how it can be modelled in SEM in general, but there may 
be many more confounding variables, and most will not have been 
measured (e.g. social dominance on foraging grounds). The presence 
of unmeasured confounders is a general challenge in observational 
studies (VanderWeele & Arah,  2011), but sensitivity analysis and 
bias-modelling techniques can help handling uncontrolled confound-
ing variables (Lin et al., 1998; McCandless et al., 2007).

In this paper, we used latent variables to achieve variable reduc-
tion (similar to PCA). However, latent variables can also be used to 
account for measurement errors of observed variables. Conventional 
statistical approaches like MR assume that variables are measured 
without error (Pugesek & Tomer, 1995) even though it is known that 
it is usually impossible to measure variables without error, partic-
ularly in the field (Musil et al., 1998). Ignoring measurement errors 
typically leads to downward bias in parameters because an error in 
measuring X (explanatory variable) is assigned to the error in pre-
dicting Y (response variable), implying that the true effect of X on 
Y is typically underestimated (i.e. regression dilution/attenuation). 
Pugesek and Tomer (1995) showed that SEM, by including measuring 
errors, estimated parameter coefficients more accurately and with 
less bias compared to MR. Code S10 shows an example in which 
we account for imperfect measurements (through latent variables) 

of mass regressed on body size structures (tarsus, head and wing 
length).

SEM statistical packages are under continuous development, but 
particularly frequentist statistical approaches based on maximum 
likelihood estimation still have limitations. Random effects in combi-
nation with latent variables are currently challenging to model with 
one of the most widely used r-packages, lavaan (Rosseel, 2012). In 
the r-package piecewisesem (Lefcheck, 2016), it is possible to model 
random effects when conducting SEM to identify direct and indi-
rect pathways, but it is currently impossible to model latent variables 
with this package.

For categorical predictor variables, a multi-group analysis can be 
conducted. Multi-group analysis can also be an alternative way to 
account for random factors with few levels. The question that drives 
a multi-group analysis is whether two or more groups might differ in 
terms of the relationships among parameters and the whole model is 
run for each level (Grace, 2006). To illustrate the use of categorical 
variables, we used the age effect in the example of Figure 2b as a 
category (Code S2), which means that the model calculates the rela-
tionships (Figure 2d) for each age class separately. In addition, multi-
group analysis can also be conducted to test for interactions (with a 
categorical variable). However, a multi-group analysis together with 
a binomial response variable is not supported yet in lavaan which 
raises practical challenges analysing 0/1 survival data using logistic 
regression in combination with categorical variables, such as area-
specific resighting probability which were relevant in our case study. 
An example of R-code for modelling a binomial response variable 
but without multiple levels (only one area) is presented in Code S11.

Nonlinear relationships are common in ecology and there 
are different ways to address nonlinearity. The easiest way is 

F I G U R E  7   Results from the simulation comparing biases in the estimation of the slopes of the condition variables using the SEM and 
the conventional approach. Dots and triangles indicate the mean simulated estimate for the conventional method and SEM, respectively, 
with the empirical standard error. Grey horizontal line indicates the ‘true’ values used to generate the data. Note that standard error of 
the variable ‘energy store’ is really small and error bars are therefore hardly visible. Here we illustrate effect sizes estimates for the four 
condition variables that contributed most strongly to the condition index, see Figure S17 for the bias of all seven condition variables
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through transformation, as we did in our case study, applying logit-
transformation for proportional response variables and squaring 
mass (Code S4). Multi-group analysis can also be used to address a 
certain type of nonlinear relation (Grace, 2006). Continuous nonlin-
ear relationships are a special challenge for SEM, both for observed 
but especially for latent variables (Grace, 2006). A useful introduc-
tion to this topic is chapter 12 in Kline (2011).

Bayesian approaches to SEM may offer solutions to limitations of 
frequentist software in dealing with random effects, non-Gaussian 
data and multiple-level categorical predictors, because Bayesian 
software uses more convenient numerical algorithms. Furthermore, 
a Bayesian approach allows for constraining estimates using infor-
mative priors, so as to include biological knowledge. Bayesian frame-
work has also been used to combine a mark–recapture model with 
SEM. Cubaynes et  al.  (2012) show an example of how to model a 
latent variable (‘overall body size’) that affects survival estimated 
within a mark–recapture framework (all in one model). Possible r-
packages that can be used for such Bayesian approaches are rstan 
(Stan Development Team, 2020), jagsUI (Kellner, 2019) and nimble (de 
Valpine et al., 2017).

To conclude, we show that SEM is a powerful and flexible sta-
tistical tool that can lead to models of higher predictive power 
and with more accurate as well as precise estimates compared to 
conventional approaches. Therefore, we encourage researchers to 
consider SEM as a flexible framework to describe the multivariate 
nature of body condition and thus understand how it affects biologi-
cal processes, thereby improving the value of body condition proxies 
for predicting organismal performance. We emphasize that SEM can 
also be a useful tool for other multidimensional ecological concepts 
as well, such as immunocompetence, oxidative stress and environ-
mental conditions.
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