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a b s t r a c t

Compact stellar systems such as Ultra-compact dwarfs (UCDs) and Globular Clusters (GCs) around
galaxies are known to be the tracers of the merger events that have been forming these galaxies.
Therefore, identifying such systems allows to study galaxies mass assembly, formation and evolution.
However, in the lack of spectroscopic information detecting UCDs/GCs using imaging data is very
uncertain. Here, we aim to train a machine learning model to separate these objects from the
foreground stars and background galaxies using the multi-wavelength imaging data of the Fornax
galaxy cluster in 6 filters, namely u, g, r, i, J and Ks. The classes of objects are highly imbalanced which
is problematic for many automatic classification techniques. Hence, we employ Synthetic Minority
Over-sampling to handle the imbalance of the training data. Then, we compare two classifiers, namely
Localized Generalized Matrix Learning Vector Quantization (LGMLVQ) and Random Forest (RF). Both
methods are able to identify UCDs/GCs with a precision and a recall of > 93% and provide relevances
that reflect the importance of each feature dimension for the classification. Both methods detect
angular sizes as important markers for this classification problem. While it is astronomical expectation
that color indices of u − i and i − Ks are the most important colors, our analysis shows that colors
such as g − r are more informative, potentially because of higher signal-to-noise ratio. Besides the
excellent performance the LGMLVQ method allows further interpretability by providing the feature
importance for each individual class, class-wise representative samples and the possibility for non-
linear visualization of the data as demonstrated in this contribution. We conclude that employing
machine learning techniques to identify UCDs/GCs can lead to promising results. Especially transparent
methods allow further investigation and analysis of importance of the measurements for the detection
problem and provide tools for non-linear visualization of the data.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Based on the current theories of galaxy formation and evo-
ution (Mo et al., 2010), galaxies are formed hierarchically from
he merger of low-mass galaxies that were formed earlier. In this
icture, the dense stellar structures such as Ultra-Compact Dwarf
UCD) galaxies and Globular Clusters (GCs), which are mostly
ound around galaxies and the core of galaxy clusters, are known
o be the tracers of such merging events (Beasley, 2020). How-
ver, extragalactic UCDs and GCs around other galaxies than the
ilky Way look like stars (point-sources), due to their distance
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and current limitations of observational equipment. Therefore
identifying them through imaging is challenging (Jordán et al.,
2009). To find these objects, it is necessary to measure their dis-
tances, which is only possible using spectroscopy and measuring
their radial velocity. The Hubble–Lemaître Law (Hubble, 1929;
Lemaître, 1931) says that more distant galaxies move faster away
from us and thus astronomers measure the distance of galaxies by
measuring their radial velocity. The latter can be measured using
Doppler shifts of the absorption lines in the spectroscopic ob-
servations. Spectroscopy of astronomical objects, however, needs
longer exposure times than imaging. In other words, spectroscopy
for all the star-like objects (point-sources) is unfortunately not
feasible in practice (Voggel et al., 2020).

The recent advances in astronomical instrumentation and ob-
servations, without doubt, have provided us with a large amount
of data to explore. Traditionally, the possible UCDs/GCs candi-
dates are identified by multi-wavelength observations in a few
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ptical filters (Cantiello et al., 2018). Once the candidates are
ound follow-up spectroscopy for selected nominees is carried
ut to measure the radial velocity and therefore the distance
o confirm the identity of the objects (Pota et al., 2018). This
mplies that a more accurate UCD/GC selection makes the obser-
ation time shorter. Recently, Muñoz et al. (2014) have shown
hat a combination of optical/near infrared filters improves the
uality of identifying UCDs/GCs. However, this approach was
ot used until very recently, mostly because deep observations
n the near-infrared are not as easy as the optical. In the case
f Fornax galaxy cluster, the second closest galaxy cluster to
s, recent observations of optical and near-infrared have been
vailable, which makes it possible to identify UCDs/GCs within
he galaxy cluster. The optical part of the data has been used
arlier to identify GCs in the cluster using various techniques
uch as Bayesian Mixture Models, Growing Neural Gas model and
-nearest neighbors (D’Abrusco et al., 2016; Prole et al., 2019;
ngora et al., 2019; Cantiello et al., 2020; Saifollahi et al., 2021).
Due to the sheer amount of astronomical data, automated

ools for analysis are highly desirable. Therefore, machine learn-
ng techniques get more and more attention among astronomers
ecently, and they have been popularly explored for astronomical
pplications. The Random Forest (RF) has been used to build
classifier for quasar identification (Carrasco et al., 2015; Gao
t al., 2009) and the Support Vector Machine (SVM) has been
mployed to estimate the redshift (Jones and Singal, 2017). Other
echniques used are k-nearest neighbor classifier for active galac-
ic nuclei (AGN) detection (Li et al., 2008), Support Vector Data
escription (SVDD) for GC detection (Mohammadi et al., 2019),
ulti Layer Perceptron (MLP) for estimating star formation rate

Delli Veneri et al., 2019), Linear Discriminant Analysis (LDA) for
dentification of galaxy mergers (Nevin et al., 2019), and Artificial
eural Networks (ANN) for galaxy morphological classification
nd AGN detection (Ball et al., 2004; Barchi et al., 2020; Xiao
t al., 2020). Thus, a plethora of machine learning methods have
een successfully applied in varying astronomical applications
ignifying a growing interest and mutually beneficial synergy.
Explainable Artificial Intelligence (XAI) generally includes

echniques which provide output that can be interpreted by a hu-
an. Two examples of XAI techniques for classification are Learn-

ng Vector Quantization (LVQ) and Random Forest (RF) (Breiman,
001). The latter bags an ensemble of decision trees (DTs) for
lassification. The trees within, are constructed from bootstrap
xamples that are sampled independently with replacement and
andom feature selection, following a common distribution while
rowing to maximum depth with no pruning until all leaves
re pure. The label for a given input is predicted according to
he most popular predicted label among all trees. The stochas-
ic ensemble strategy is robust to outliers and improves the
erformance, because of the law of large numbers from com-
ination of rather low performing/weak DT classifiers (Breiman,
001). LVQ comprises a well-known family of prototype-based
lassifiers that can efficiently distinguish potentially high dimen-
ional multi-class problems. One of the main advantages of LVQ
lassifiers is the interpretability of the adaptive parameters. The
earned prototypes, for example, can be investigated as typical
epresentatives of the classes. While the original formulations of
he LVQ family, such as Generalized learning Vector Quantization
(GLVQ) (Sato and Yamada, 1995) use the Euclidean distance, more
complex extensions, such as Generalized Matrix LVQ (GMLVQ)
and the localized version LGMLVQ (Schneider et al., 2009b,a)
employ adaptive distance metrics. The latter algorithms also
allow further insights by visualization of the decision boundaries
after training (Bunte et al., 2012; Bunte, 2011).

In this contribution, we use an ensemble of LGMLVQ and

RF to classify three astronomical structures, namely foreground

2

stars, UCDs/GCs and background galaxies, based on their opti-
cal (u, g , r , i) and near-infrared (J , Ks) measurements of the
Fornax Deep Survey, VISTA Hemisphere Survey and ESO/VISTA
archive. The LVQ and RF methods construct non-linear decision
boundaries and the former allows to evaluate the importance
of features for each class individually. One major issue often
faced in astronomical problems is the imbalance of the classes.
The total number of known UCDs and GCs in the Fornax cluster
identified in the data is just over 500, whereas the majority class
contains about 5 times more instances. To tackle this challenge
we apply over-sampling techniques, such as Synthetic Minor-
ity Oversampling (SMOTE) (Chawla et al., 2002) and Borderline
SMOTE (Han et al., 2005). In contrast to previous works we have
both optical and near-infrared filters in the dataset. We use an
ensemble of LGMLVQ and RF to detect the classes of objects in
large amounts of high dimensional astronomical data, compare
the performances and analyze the results, by detailing important
features and visualization.

The paper is organized as follows: In Section 2 we describe
the dataset followed by the explanation of classifiers in Section 3.
Afterwards, in Section 4 we describe the experiments and dis-
cuss the results. Finally we conclude in Section 5 and provide
inspirations for future work.

2. Astronomical data and preprocessing

The data used in this research is extracted from multi-
wavelength wide astronomical surveys obtained from a combina-
tion of 6 filters, i.e optical filters (u, g , r and i) and near-infrared
filters (J and Ks). The optical u, g , r , i data was obtained from
Fornax Deep Survey (FDS) using the ESO VLT survey telescope
(VST), J from VISTA Hemisphere Survey (VHS, McMahon et al.,
2013) using the VISTA telescope and Ks from the ESO/VISTA
archival data. The imaging data in u, g , r , i, J , Ks has 5σ limiting
agnitude (point-source detection with signal to noise ratio S/N
5) about 24.1, 25.4, 24.9 and 24.0, 20.7, 18.4 mag respectively.

he limiting magnitudes in optical (ugri) and near-infrared (JKs)
re expressed in AB and Vega magnitude systems. The data set
rovides photometric information in the direction of the Fornax
alaxy cluster and is described in detail in Saifollahi et al. (2021).
Here we use the catalog of the spectroscopically confirmed

bjects referred to as KNOWN catalog in Saifollahi et al. (2021),
hat consists of sources with existing radial velocity value in
he literature. After excluding larger objects likely to be galax-
es in the Fornax cluster or slightly more distant and removing
CDs/GCs that are closer than 60 arcsec to the brightest Fornax
luster galaxies, mainly NGC1399 (to avoid larger uncertainties in
olors and magnitudes), any observed object in the dataset belong
o one of the following 3 classes:

class 1: consists of 2826 background galaxies further away
than the galaxies in the Fornax cluster,

class 2: denotes the class of interest consisting of 512 UCDs
and GCs, and

class 3: contains 4399 nearby foreground stars located in our
own galaxy, the Milky Way.

n the absence of spectroscopic data, these classes are difficult
o distinguish for two main reasons: (1) the UCD and GC (class
) observations are faint and ambiguous as they are engulfed
etween the two other classes, and (2) there is only a small
umber of confirmed examples of them.
The labeled data consists of 23 features. The coordinates of

he objects in the sky are given in right ascension (RA) and
eclination (DEC) as a degree of point of observation from earth
nd illustrated in Fig. 1(c). Features FWHM∗g , FWHM∗r , FWHM∗i,
WHM∗u, FWHM∗j and FWHM∗k, also known as the Full width
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Fig. 1. The position of the objects in the sky in right ascension (RA) and declination (DEC) (panel c). PCA-projection of the data coloring the background galaxies,
UCDs/GCs and foreground stars, and its corresponding Eigenvalue profile (panel a and b), respectively.
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half maximum, are the proxies for the angular sizes of the objects
as seen from the corresponding filters. Followed by u − g , u − r ,
− i, u− J , u−Ks, g − r , g − i, g − J , g −Ks, r − i, r − J , r −Ks, i− J ,

−Ks and J−Ks, which are color indices indicating the emission of
he astronomical object in logarithmic scale, known as magnitude
nd correlated to physical properties like age and metallicity. The
WHM∗ parameter constitutes an alternative way to estimate the
ompactness of sources and consequently it is similar to the other
easures, such as the concentration index. The data used in our
nalysis consists of 7737 complete observations in total.
Fig. 1(b) shows the Eigenvalue profile of the data obtained

sing the unsupervised Principal Component Analysis (PCA). The
wo major Eigenvalues explain 88% of the data’s variance and the
orresponding two-dimensional projection is depicted in panel
a). The large areas of overlap and imbalance of the classes are
learly visible. Especially the latter states a problem for most clas-
ification techniques and thus re-sampling techniques, such as
ynthetic Minority Over-sampling (SMOTE) (Chawla et al., 2002)
nd Borderline-SMOTE (Han et al., 2005), are investigated as pre-
rocessing steps. SMOTE increases the population of the minority
lasses by generating synthetic samples as weighted convex com-
ination between random samples and its nearest neighbors.
nstead of choosing random samples Borderline-SMOTE specifi-
ally takes points near the boundaries between the classes which
re more likely to be misclassified. In this contribution we inves-
igate and compare both methods as preprocessing to balance the
lasses.

. Methods

In this section, we introduce the state-of-the-art methodol-
gy used, with focus on localized adaptive distance metrics in
earning Vector Quantization (LVQ), and corresponding inter-
retability. Moreover, we present a comparison between Random
orest (RF) (which is an ensemble of Decision Trees) and an
nsemble of the Learning Vector Quantization models.

.1. Learning Vector Quantization (LVQ)

We assume {(ξi, yi)}
n
i=1 denote the training set, where ξi ∈

N and yi ∈ {1, . . . , C} represent ith data point and its class
abel, respectively. An LVQ classifier models the distribution of
lasses via a set of labeled prototypes {(ωj, c(ωj))}mj=1, where
(ωj) is the label of the respective prototype. These prototypes
essellate the data space into smaller regions, called Voronoi cells,
nclosing data points for which the respective prototype is closer
han any other. Classification follows a nearest prototype scheme,
eaning any data point (including new ones) is assigned the class
 a

3

abel of the nearest prototype. To find prototype positions that
inimize the classification error E, Generalized learning Vector
uantization (GLVQ) (Sato and Yamada, 1995) introduced the
ollowing cost function, aiming at large margin optimization for
etter generalization:

=

n∑
i=1

Φ(µi) with µi =
d(ξi, ωJ ) − d(ξi, ωK )
d(ξi, ωJ ) + d(ξi, ωK )

, (1)

with Φ being a monotonically increasing function. We used the
identity Φ(x) = x throughout this contribution. Furthermore,
d(ξi, ωJ ) denotes the distance of the data point ξi from the closest
prototype with the same label yi = c(ωJ ) and d(ξi, ωK ) the
distance to the closest prototype with a different class label
yi ̸= c(ωK ). The value of µi ∈ [−1, 1] can be understood
as a measure of confidence for the classification of sample ξi.
The closer µi is to −1, the smaller the distance to the closest
prototype with the same label compared to the distance to the
closest prototype with a different label, i.e. d(ξi, ωJ ) ≪ d(ξi, ωK ),
the more certain the classification of ξi. More formally, one can
compute the probability of a sample ξi to belong to class j, based
on the distances to the prototypes, using the softmax:

P(j|ξi) =
exp (−d(ξi, ωj))∑C
k=1 exp (−d(ξi, ωk))

. (2)

The cost function is non-convex and typically gradient tech-
niques, such as stochastic gradient descent (Schneider et al.,
2009a; Bunte, 2011), are utilized to minimize the costs Eq. (1).

From the cost function Eq. (1) it is clear that the distance mea-
sure d plays a major role for the performance of LVQ classifiers.
While the Euclidean distance is a common choice all dimensions
contribute equally in it, which has drawbacks in capturing un-
derlying data semantics in noisy high-dimensional and heteroge-
neous data spaces (Schneider et al., 2009a). As such it is not capa-
ble to reflect if features differ in importance for the classification
task at hand. Therefore, Hammer and Villmann (2002) proposed
to incorporate a weighting factor for each feature dimension that
is adapted during training:

dΛ(ξi, ω
j) = (ξi − ωj)⊤Λ(ξi − ωj) , (3)

where the weight matrix Λ, also referred to as relevance ma-
trix, is a diagonal matrix with 0 in the off-diagonals and λi on
the diagonal with

∑
i λi = 1. These relevance weights indi-

ate the discriminative contribution of each feature dimensions,
hich could facilitate decreasing influence or pruning of redun-
ant, noisy or ambiguous feature dimensions. This concept can
e further extended to more complicated metric tensors with
daptive off-diagonal elements, namely Generalized Matrix LVQ
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GMLVQ) (Schneider et al., 2009b,a), Limited Rank Matrix LVQ
LiRaM LVQ) (Bunte et al., 2012; Bunte, 2011) and localized ver-
ions with prototype-wise or class-wise matrices called Localized
MLVQ (LGMLVQ) (Schneider et al., 2009b). All algorithms are
ade publicly available in Matlab and can be found at https:

/github.com/kbunte/LVQ_toolbox.
The overlapping class regions as shown in the PCA projection

ig. 1(a) intuitively suggest non-linear class boundaries and hence
he localized adaptive metrics are more suitable and therefore the
ocus for this paper. Local metric tensors allow to learn localized
issimilarities with respect to the specific class prototypes using
local transformation matrix Ω j thus defining the non-linear
ecision boundaries. The localized distance metric is defined as:
Λj
(ξi, ω

j) = (ξi − ωj)⊤Λj(ξi − ωj) , (4)

where Λj
= Ω j⊤Ω j using the adaptive matrix Ω j

∈ RM×N with
M ≤ N to guarantee that Λj is positive semi-definite. The cost
function therefore reads as follows:

ELGMLVQ =

n∑
i=1

Φ(µi
local) where µi

local =
dΛJ

− dΛK

dΛJ
+ dΛK (5)

here dΛJ
and dΛK

are the distances of the point ξi from the
losest correct and incorrect prototypes respectively. The update
ules are described in detail in Schneider et al. (2009a) and
unte (2011). Besides allowing non-linear decision boundaries
nd therefore learning of more complex classification problems,
he localized matrices furthermore enable the investigation of
ocalized or class-wise relevances, marked on each diagonal of
j, identifying features that are important for the classification
f each class respectively (Schneider et al., 2009b).

.2. Ensemble methods

With increasing complexity, classifiers get more powerful
howing impressive performance in practice. However, at the
ame time they often show overfitting effects in which the per-
ormance on training data is near perfect but it decreases facing
ew data samples not seen before. This decreased generalization
erformance is often tackled using ensemble methods, which
ombine several classifiers to assign a class label to a new data
nstance to overcome the limitations of a single model. In order
o see the effect of ensemble learning and to facilitate a fair
omparison with RF we explore an ensemble of LGMLVQ models.
or exact comparison with RF the ensemble of LGMLVQ models
s constructed from the same training bootstrap samples used
n each decision tree in the random forest. This will result in as
any LGMLVQ models as the number of decision trees for each
ross validation fold. The results are then aggregated through
ajority voting (Ranawana and Palade, 2006).

.3. Interpretability

For many applications it is crucial for machine learning mod-
ls to be interpretable, such that the domain expert is able to
xamine the significance of the resulting trained model and its
uitability for classification tasks. Intrinsic model interpretability
an be understood as how understandable the internals of a
odel and its output are to users (Gilpin et al., 2018). It is further-
ore suggestively explained by Backhaus and Seiffert (Backhaus
nd Seiffert, 2014) through a three-fold criteria of the model’s
1) feature selection capability, (2) ability to define class repre-
entatives, such as prototypes and (3) encoding of classification
oundary information. Interpretability for the random forest is
chieved through random permutation of a feature’s observa-
ions (Breiman, 2001; Strobl et al., 2007) for the out of bag
4

samples and estimating the corresponding decision tree’s ac-
curacy with the permuted features. Here, more discriminative
features are easily identified, since they have significant effect on
the classification error. The out of bag predictor importance un-
covers the individual impact of the features and the information
could similarly be used for feature selection and understanding
the random forest’s classification. On the other hand, the adaptive
LVQ methods satisfy all three criteria by: (1) Feature selection
by means of the diagonal of the metric tensors, Λ from GMLVQ
and the local Λj in LGMLVQ, that represents individual feature
contribution that could be used as feature pruning criteria. (2)
Prototype feature values used to classify novel observations are
learned during the model training, which subsequently become
typical representatives of their corresponding classes. (3) The
decision boundaries for classification can be extracted and visu-
alized, for example by linear projection of the data samples and
the resulting class prototypes using Ω from GMLVQ. Nonlinear
visualizations using the localized variants LiRaMLVQ and LGMLVQ
are also possible and the latter is outlined in the following.

3.4. Nonlinear visualization with charting

Visualization can be useful to get a holistic view of the data
and identify difficult instances. From the definition of Λj

=

Ω j⊤Ω j in Eq. (4), we see that the distance metric first transforms
data points using the following local linear projections:

Pj : ξ → Ω j⊤(ξ − ωj) .

For specific cases M ∈ {2, 3}, the projected data points can be
visualized, which can be used for discriminant visualization of
the data based on the space the classification takes place in.
However, since the localized metric provides several projections
for each sample, it is challenging to study the outputs directly.
In order to tackle this problem, Bunte et al. (2009) proposed
a post-processing step which combines local projections using
charting (Brand, 2003) to form a global nonlinear embedding of
the data:

ξ →

∑
j

pj(ξ)Bj(Pj(ξ)) .

ere, Bj(.) : RM
→ RM is an affine transformation and pj(ξ) is

he responsibility of local transformation ωj for the data sample
with

∑
j pj(ξ) = 1. More details about how to compute pro-

otypes’ responsibilities and affine transformations can be found
n Bunte et al. (2009) with the code made available at https://
ithub.com/kbunte/LVQ_toolbox. Using this nonlinear embedding
e can easily project data to 2 (or 3) dimensions for further

nvestigation of the overlapping regions and difficult samples.

. Experiments and discussion

This section shows the results and discussion of the exper-
ments conducted with the localized adaptive distance metric
VQ method (LGMLVQ) coupled with presence or absence of
esampling as a pre-processing step. The performance and fea-
ure importance is compared with Random Forest (RF). The cor-
esponding feature relevances are examined and discussed in
omparison with conventional astronomical expectations.

.1. Experimental setup and evaluation measures

The experiments are set up with a 10-fold cross validation
here the data observations are divided up into a 90/10 ran-
om but stratified training and test splits with each individual
lass preserving its sample frequency. For the distance based
lassifiers, such as LGMLVQ, each training set is normalized via

https://github.com/kbunte/LVQ_toolbox
https://github.com/kbunte/LVQ_toolbox
https://github.com/kbunte/LVQ_toolbox
https://github.com/kbunte/LVQ_toolbox
https://github.com/kbunte/LVQ_toolbox
https://github.com/kbunte/LVQ_toolbox
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-score transformation, i.e. zero mean and unit standard devi-
tion, with the same parameters used to transform the respec-
ive test set. Decision trees and RF are not distance based and
uild instead rules on the features directly and therefore do not
equire transformative pre-processing in general. However, the
F is very sensitive to class imbalance, which should be han-
led before training. Therefore, resampling of the training data
an be introduced to reduce or eliminate the imbalance of the
lasses. In this contribution we compare two strategies, namely
he Synthetic Minority Oversampling Technique (SMOTE) and
orderline-SMOTE, creating new feature vectors using the train-
ng samples of each minority class until their amount matches the
ize of the majority class. The created synthetic minority samples
ead to balanced classes to be used for training of the classification
odels.
The different models have different hyper-parameters. In the

xperiments we train the RF with 100 decision trees, sampling
ith replacement of 0.75 fractions of the training set and us-

ng the bagging aggregation method (Breiman, 2001). The LVQ
odels provide several hyper-parameters to control the methods
omplexity, such as the number of prototypes, number of metric
ensors and their rank determining the projection dimension sav-
ng memory and enabling visualization. Due to the non-linearity
f the problem we use the localized, most powerful version of
he LVQ family, namely LGMLVQ (Schneider et al., 2010) with
ne prototype per class and regularization of 10−5. In order to

choose the lower dimensional projection dimension we train the
method using full metric tensors constructed using Ω j

∈ RM×N

with M = N . Subsequently, an Eigenvalue decomposition of the
trained Λj

= U jΣ jU j(−1) with diagonal matrices Σ
j
ii = σ

j
i provides

information about the intrinsic dimensionality of the classifica-
tion problem by counting the Eigenvalues M = maxj

∑N
i=1[σ

j
i >

ϵ] significantly larger than zero. Subsequently, a model is then
trained with the rank M reduced to maximal number obtained
from the matrices. Since the RF is an ensemble of decision trees,
we also build an ensemble of LGMLVQ models using the same
training sets, and the resulting label for a given sample is de-
termined by majority vote among the LGMLVQ models. Model
performances are averaged across the cross-validation runs and
evaluated with focus on the class of interest, namely UCDs/GCs
Class 2.

For evaluation output statistics are generated after predic-
tion with the models, i.e. training and test errors, and their
standard deviations. Since this is a multi-class classification prob-
lem and the major interest is in Class 2 UCD/GC objects, we
extract the evaluation measures for each class and build the
macro averaged accuracies to evaluate the performance across
the different classes and eliminate bias of the majority class.
We also report binary class measures, such as Purity and Com-
pleteness (also known as Precision/Positive Predictive Value and
Recall/Sensitivity), for the class of interest versus all other classes
combined, to represent the algorithms performance in classify-
ing the unseen test data. The confusion matrix as illustrated in
Table 1 can be used to evaluate the classification performance
providing detailed information about the accuracy for each class
and the nature of misclassifications. From it one can extract the
binary measures, namely false positives (FP), true positives (TP),
false negatives (FN) and true negatives (TN) as shown in Eq. (6).
Additionally, the false positive rate and true positive rate of the
test set are plotted on a Receiver Operating Characteristic (ROC)
curve (Fawcett, 2006). This curve shows the model’s discrimina-
tive ability and the Area Under the Curve (AUC) summarizes the
overall performance for the classification of the class of interest.
5

Table 1
Three-class confusion matrix.
Actual Predicted

Class 1 Class 2 Class 3

Class 1 C11 C12 C13
Class 2 C21 C22 C23
Class 3 C31 C32 C33

Table 2
Average performance (standard deviation) for techniques {∅|B|R}T{∅|E} , i.e.
LGMVLQ (T = LM ) and Random Forest (T = RF), with no resampling, SMOTE,
Borderline-SMOTE and Ensembling (abbreviated by ∅, R, B and E).

Purity Compl. F1 score Train accur. Test accur.

L2 0.969 (.012) 0.930 (.021) 0.947 (.014) 0.985 (.001) 0.984 (.004)

RL2 0.935 (.020) 0.963 (.020) 0.948 (.016) 0.983 (.001) 0.982 (.005)

BL2 0.889 (.026) 0.950 (.027) 0.912 (.016) 0.971 (.005) 0.971 (.006)

RLE2 0.937 (.019) 0.962 (.020) 0.948 (.000) 0.983 (.001) 0.983 (.005)

RRFE 0.950 (.018) 0.964 (.018) 0.968 (.011) 0.999 (.000) 0.986 (.005)

FNb =

3∑
f=1
f ̸=b

Cbf FPb =

3∑
f=1
f ̸=b

Cfb

TNb =

3∑
f=1
f ̸=b

3∑
q=1
q̸=b

Cfqx TPb = Cbb

urity =
TPb

TPb + FPb
Compl. =

TPb
TPb + FNb

(6)

4.2. Discusssion

In this section we summarize the results of the methods on the
astronomical classification problem. The hyperparameter settings
for the techniques LGMLVQ (T = LM , with the subscript M indi-
cating the rank for the local metric tensors) and Random Forest
(T = RF) is abbreviated by {∅|B|R}T{∅|E}. Here the preprocessing
is marked by letters R and B for resampling with SMOTE or
Borderline-SMOTE or no resampling (leaving the prefix empty:
∅), and the superscript E denotes the results of an ensemble
consisting of 100 models. The performance of the LGMLVQ mod-
els averaged across the 10 cross-validation folds is excellent
already with an intrinsic dimensionality of M = 2 even with-
out resampling, as evident from the Purity and Completeness of
the minority class shown in Table 2. Resampling improves the
correct classification for the minority class as demonstrated by
3.3% increase in the Completeness. However, the Purity reduces
indicating that there are more false positives brought about by
SMOTE resampling, which is an acceptable trade-off.

Fig. 2 panel (a) and (b) show the test performance of RL2 with
only 3 false negatives for the minority class 2 of UCDs and GCs.
Contrary to our expectations Borderline-SMOTE resampling does
not perform better. This could be caused by the overlap of the
classes which increases the difficulty to define a clear boundary
and hence boundary resampling becoming ineffective. In sum-
mary the RF and LVQ models show comparable performance.
However, especially the latter is less complex and provides fur-
ther insights into the results of the classification, which will be
discussed in the following.

As mentioned before the LVQ models are intrinsically inter-
pretable and transparent in many regards. We can for example
interpret the certainty of the classification by investigating the
distance of each sample to all prototypes. To demonstrate this
we project all samples and all prototypes with the local transfor-
mations Ω j and compute the distance to each prototype in the
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Fig. 2. Panel (a) shows the test confusion matrix for the RL2 model and panel (b) shows the corresponding ROC curve of minority class 2 vs. all the other classes
nd the corresponding AUC value of 0.99387.
Fig. 3. Wrong (a) and correct (b) classification of two minority class observations. Each shows the distances of all samples projected using the local Ω j of each
rototype, highlighting the samples with corresponding label j in color. The black points exemplify the distances of a correct and misclassified sample.
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ransformed space. Fig. 3 visualizes these distances highlighting
he samples with the same respective class label j in color and of
ifferent classes in gray. We furthermore highlight in black the
istances of observations consistently misclassified in repeated
raining runs (panel a) and a correctly classified sample (panel
). The wrongly classified minority sample in (a) is within the
oundary region where the classes 2 and 3 overlap as indicated
y very similar distances to the prototypes of these classes. Panel
b), on the other hand, shows a typical example of a very cer-
ain correct classification where the sample is much closer to
rototype 2 compared to the others. A similar conclusion can be
rawn from Fig. 4. It visualizes the probabilities P(j|ξi) Eq. (2) as
tacked barplot for each minority class sample (ξi with yi = 2)
or each class j, and highlights the same samples as depicted in
lack in Fig. 3. While the classifier is certain about the label of
he correctly classified example, it is not the case for the mis-
lassified one. This transparently informs the user how sure the
GMLVQ classifier is with the assignment of a class label for each
bservation, which may also indicate samples with potentially
ontroversial current label identification given the data at hand,
arking them as candidates for further investigation.
Moreover, the local linear projections Ω j

∈ RM×N can be
sed for nonlinear visualization for M ∈ {2, 3} using manifold
harting as outlined in Section 3.4. Hence we report very good
erformance for LGMLVQ using the rank M = 2, we show the
esulting projected data of RL2 to complement the data analysis
n Fig. 5 panel a. The more distinctive separation provided by
he LGMLVQ model, especially for the minority class, explains the
fficiency and nuance of the method’s classification performance
s compared to the traditional astronomical color-color diagram
s shown in panel b. This visualization shows the difficult regions
6

nd can be used to identify difficult observations, such as the
ircled class 2 sample in panel a, in the now reduced overlapping
reas.
As mentioned before the RF and LGMLVQ models allow to

xtract the importance of the measurements for the classification
roblem. However, the Random Forest method is expensive in
erms of memory costs and shows a clear tendency to overfit as
een in the test error being higher than the training error. Panel
b) in Fig. 6 shows the dominance of the angular size features
WHM∗u, FWHM∗g , FWHM∗r , FWHM∗i, FWHM∗J and FWHM∗Ks
in importance for the Random Forest classifier. In contrast to RF
the LGMLVQ classifier extracts the feature relevances for each
prototype and hence we can discuss also the relevance of the
measurements for the classification of each class of objects in our
astronomical data.

Fig. 6(a) shows the class-wise normalized feature importance
profiles sorted by value of contribution with varying top rele-
vant features further explaining the non-linearity and motivation
for choice of local metric tensors. The top relevant features for
classifying the minority class of UCDs and GCs from this experi-
ment dominantly consist of the angular size parameters, namely
FWHM∗g , FWHM∗i, FWHM∗u and FWHM∗r and their pairwise
correlation plots are visualized in panel (c) in Fig. 6. Similarly
panel (d) provides additional information in form of a violin
plot for the 6 features most important for the classification of
class 2, showing the distributions of the measurements of each
class together with the value the class prototype exhibits after
training. To examine further the difficult misclassified UCD/GCs
example circled in Fig. 5(a), we visualize in Fig. 7(b) and (d)
the difference between the feature values of the example to the
closet correct/incorrect prototypes (i.e. ξ −ωJ and ξ −ωK ). The 6
i i
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Fig. 4. Stacked barplot of probabilities P(j|ξi) (Eq. (2)) of UCDs/GCs samples for each class. We highlight the probabilities of the same (in)correctly classified examples
as specified in Fig. 3, which are [0,1,0] ([0,0.378,0.622]).
Fig. 5. (a) Manifold charting projection of the data by LGMLVQ (RL2) with a misclassified UCD/GC sample circled in black as reference for Fig. 7. (b) conventional
color-color diagram used in photometric selection by Astronomy.
Fig. 6. Panel (a): class-wise feature relevance profiles of LGMLVQ RL2 marking the top 6 in green and their corresponding percentage of contribution to the respective
class and (b) the Random Forest (RF) feature relevance profile. Panel (c): pairwise plots of the RL2 top 6 features for the UCDs/GCs class 2 (red markers) with focus
on the area covered by that class, and (d) corresponding violin plots with prototype positions relative to the feature value distribution for minority class 2.
most important measurements for the classification are provided
by the class-specific relevance profile (a and c) on top of each
prototype deviation panel and marked in green as before. Panels
7

(b) and (d) show that the difference between features of the
example to those of the foreground stars prototype (for the class-
wise most important 6 features) is smaller, which explains the
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Fig. 7. Class-wise relevance profiles of the closest correct and incorrect pro-
totype (panel a and c) to the difficult UCD/GCs example marked in Fig. 5(a),
with the 6 most relevant features colored green. Panels (b) and (d) show the
difference between the sample and the prototypes (i.e. ξi − ωJ and ξi − ωK ).

isclassification. Such examples require more accurate measure-
ents sizes (using deeper observations) to investigate whether

he object indeed belongs to the expected class.
The angular size features are important for separating the ma-

ority of objects in class 1, whose objects are larger, from classes 2
nd 3 that have small sizes. The astronomical expectation is that
he angular size cannot discriminate classes 2 and 3 as illustrated
y the model. The reason is, that the majority of objects of class
(UCDs/GCs) have sizes smaller than 10 pc. Therefore, these

bjects at the distance of Fornax cluster (20Mpc) are expected
o appear as point-sources and exhibiting a similar FWHM∗ value
s the objects of class 3 (foreground stars). In this case, FWHM∗

ould not be an informative parameter in separating class 2 and
objects. However, in contrary to astronomical expectation, the
ngular sizes are found to be important to distinguish classes 2
nd 3 by both the LGMLVQ and RF, as shown in Fig. 6. The dis-
arity can be attributed to the measurement biases: The minority
lass 2 objects are faint (and lower in signal-to-noise ratio) and
ence angular size measurements happen to be larger than the
ctual size which could introduce a bias to the data. Therefore,
heir angular size proxies, i.e. FWHM∗g , FWHM∗i, FWHM∗u and
WHM∗r , could possess more discriminating information than
olor indices.
Based on Munoz et al. (2013), in the combined optical/near-

nfrared observations, the color indices of u − i and i − Ks are
xpected to be the most important features. In a simple view, the
− i color is more sensitive to the age of an object while i − Ks
epresents the metallicity (the amount of metals heavier than
elium) of the object. Other color indices, such as g− i, g−r , r− J
tc. could also partially carry these information but degenerate. In
ontrary, the observations in the u and Ks are harder to be carried
ut and often have a lower signal-to-noise ratio compared to the
ther filters. This makes the expected feature importance of u− i
nd i − Ks relatively uncertain. Values of g − r and g − i on the
ther hand are notably accurate.
8

. Conclusion

In this paper, we explore and compare two interpretable ma-
hine learning techniques, namely Localized General Matrix LVQ
LGMLVQ) and Random Forest (RF), for the analysis and classifica-
ion of foreground stars and background galaxies versus UCDs and
Cs. Due to the class of interest being highly underrepresented
ompared to the former objects we also investigate the influence
f Synthetic Minority Oversampling TEchnique (SMOTE) and its
orderline extension on the classification performance. Localized
istances allowing non-linear decision boundaries within the data
mproves the classification in LGMLVQ, even in this situation
here the classes largely overlap. LGMLVQ is also highly in-
erpretable in the form of prototype class representatives and
eature relevances which attach values to the contribution of a
eature to classification. Additionally, the experiments uncover
lassification patterns in terms of feature relevances, which serve
s discriminative markers for the classification.
The u− i and i−Ks colors are expected to be the most relevant

olors for classification since they carry physical information on
ges and metallicities of astronomical objects. However, higher
ignal-to-noise ratio colors such as g − i and r − J in LGMLVQ
and u − g and g − r in Random Forest are found to be more
important for the data-driven classification. The importance of
other colors compared to u− i and i−Ks, that have almost 0 rele-
vance contribution, implies that this disparity may be attributed
to astronomically expected features having uncertain measure-
ments, but also the correlation across the features, meaning that
they partially contain the same critical information. Furthermore,
angular size features FWHM∗g , FWHM∗i, FWHM∗u are identified
by both methods independently as the most important features
for the classification. We discuss that this outcome is due to a
measurements biases of the faint sources of class 2 (UCDs/GCs).

In this work we showed that existing machine learning tech-
niques can be used to identify UCDs/GCs in big astronomical
data. These methods can handle the imbalance in the data and
classify sources with a good performance. Subsequent analysis of
the transparent techniques allows further insight and can provide
valuable information for the astronomical experts to inform about
possible biases in the data set. A future deeper data set with more
accurate size and color measurements will most likely increase
the performance of the automated classification even further.
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