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a b s t r a c t

Humans learn to recognize and manipulate new objects in lifelong settings without forgetting the
previously gained knowledge under non-stationary and sequential conditions. In autonomous systems,
the agents also need to mitigate similar behaviour to continually learn the new object categories
and adapt to new environments. In most conventional deep neural networks, this is not possible
due to the problem of catastrophic forgetting, where the newly gained knowledge overwrites existing
representations. Furthermore, most state-of-the-art models excel either in recognizing the objects or
in grasp prediction, while both tasks use visual input. The combined architecture to tackle both tasks is
very limited. In this paper, we proposed a hybrid model architecture consists of a dynamically growing
dual-memory recurrent neural network (GDM) and an autoencoder to tackle object recognition and
grasping simultaneously. The autoencoder network is responsible to extract a compact representation
for a given object, which serves as input for the GDM learning, and is responsible to predict pixel-wise
antipodal grasp configurations. The GDM part is designed to recognize the object in both instances
and categories levels. We address the problem of catastrophic forgetting using the intrinsic memory
replay, where the episodic memory periodically replays the neural activation trajectories in the
absence of external sensory information. To extensively evaluate the proposed model in a lifelong
setting, we generate a synthetic dataset due to lack of sequential 3D objects dataset. Experiment
results demonstrated that the proposed model can learn both object representation and grasping
simultaneously in continual learning scenarios.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Robots need to learn a set of perceptual and manipulation
kills to perform complex tasks in dynamic environments. As an
xample, consider cleaning a table task. A robot needs to know
hich objects exist in the collection, where they are, and how to
rasp and manipulate various objects. In such scenarios, a robot
ay also face never-seen-before objects. Therefore, such robots
eed to learn new information’s overtime as it is not possible
o pre-program everything in advance. The ability to learn new
nowledge in the environment while retaining the previously
cquired knowledge is referred to as continual or lifelong learning.
In the deep learning era, most robots use deep learning models

o learn perceptual and manipulation skills. The conventional
eep learning models are trained on the fixed batches of the large
atasets, which is not suitable for continual learning. In continual
earning settings, training data become progressively available
ver time. Therefore, the model developed for continual learning
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ttps://doi.org/10.1016/j.neunet.2022.02.027
893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
tasks should need to adapt to the newly introduced categories.
One of the major problems that needs to be addressed in such
settings is catastrophic forgetting which is caused due to periodic
decrease of stability–plasticity dilemma (Mermillod, Bugaiska,
& BONIN, 2013). When a conventional deep learning model is
trained on sequential tasks, the performance of the network on
previously learned tasks is reduced (Kemker, McClure, Abitino,
Hayes, & Kanan, 2018; Maltoni & Lomonaco, 2019), and retraining
from scratch needs to happen. Such a retraining procedure is
computationally expensive and required large memory for storing
all the encountered data. Furthermore, in most lifelong learning
scenarios, the direct access to the previous experiences is re-
stricted (Thrun & Mitchell, 1995). Therefore, conventional deep
learning methods are not applicable in lifelong robot learning
applications, as they need to learn the new object categories
on-site and fast without forgetting the previously learned tasks.

The complementary learning systems (CLS) theory is the most
likely path to break these barriers. In particular, CLS provides the
computational framework basics for modelling memory consoli-
dation and retrieval (McClelland, McNaughton, & O’Reilly, 1995).

The CLS system holds two interdependent operations, namely

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Overall system architecture for continuous object recognition and grasping. RGB-D data representing the 3D object in the environment is fed to generative
autoencoder to obtain, (i) the object representation for object recognition using GDM networks and (ii) grasp configuration for object grasping. If the new object
ategory or instance is introduced to the robot, based on the teacher input the system automatically collect the samples from the environment and its associated
abel information to continually learn and adapt to the new sensory information.
ecollecting the separate episodic events and learning the sta-
istical structure, which are mediated by the interplay provid-
ng means for episodic memory and semantic memory (Kumaran,
assabis, & McClelland, 2016; McClelland et al., 1995).
In this paper, we propose a hybrid continual learning model

or object recognition and grasp synthesis (see Fig. 1). To the
est of our knowledge, our work is the first effort to address
bject recognition and grasping simultaneously using dual mem-
ry recurrent self-organization networks in continual learning
ashions. The proposed architecture consists of Growing Dual-
emory (GDM) recurrent self-organization networks (Parisi, Tani,
eber, & Wermter, 2018). The underlying reason for selecting the
DM network over other possible architectures is that the GDM
etwork consists of a dual memory structure (episodic memory
nd semantic memory) that dynamically adapts the number of
eurons and synapses. This structure makes it possible to not only
earn the spatiotemporal relations from the input data (episodic
emory) but also to learn high-level compact representations

rom the learned temporal representations (semantic memory).
dditionally, the associative matrix labelling in the GDM net-
ork enables the model to perform instance and category level
lassification in an unsupervised fashion. Furthermore, the GDM
etworks are able to handle the number of missing labels to a
reat extent without catastrophic forgetting. More specifically,
o learn the representation of the sensory input, the episodic
emory learns in an unsupervised fashion to dynamically adapt

he obtained object representation at the instances level, whereas
emantic memory is responsible to learn a compact represen-
ation of the statistical regularities embedded in the episodic
emory at the category level. In our approach, the neural activity
attern embedded in episodic memory is periodically replayed to
he episodic and semantic memory, using pseudo-rehearsal or in-
rinsic memory replay (Robins, 1995), to mitigate the catastrophic
orgetting. Fig. 1 shows an overview of the proposed approach.

In summary, the key contributions of this paper are: (i) a new
ybrid end-to-end system which is capable of continual learning
f object categories and grasp synthesis; (ii) we modified the

GDM network to be suited for lifelong 3D object recognition and
also the GR-ConvNet model to improve object grasping perfor-

mance; (iii) we conducted extensive sets of experiments in batch
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learning and the incremental learning scenarios; (iv) we also
evaluate the proposed 3D object recognition and grasping in a
simulation robotic settings.

The remainder of this paper is organized as follows: In Sec-
tion 2, the related works are reviewed. The detailed methodology
of our approach is explained in Section 3. Experimental results
are then discussed in Section 4. Finally, the conclusion and the
possible future direction are explained in Section 5.

2. Related work

Although an in-depth review is beyond the scope of this work,
we discuss a few recent efforts in continual learning, object
recognition, and grasping.

Several works have been published to address continual learn-
ing using different techniques, such as complementary learning
systems (CLS) (McClelland et al., 1995), regularization methods
(Fernando et al., 2017; Kirkpatrick et al., 2017; Zenke, Poole, &
Ganguli, 2017), dynamical architectures (Gepperth & Karaoguz,
2016; Marsland, Shapiro, & Nehmzow, 2002; Parisi, Tani, Weber,
& Wermter, 2017; Part & Lemon, 2016; Yoon, Yang, Lee, & Hwang,
2017), and memory replay techniques (Delange et al., 2021). We
refer the reader to a brief review on continual learning in deep
network by Parisi, Kemker, Part, Kanan, and Wermter (2019). It
provides a good insight into the continual learning using different
approaches.

In general, the problem of continual learning is usually ad-
dressed by several regularization methods. The elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017) addresses continual
learning in supervised and reinforcement learning (RL) scenarios
by mitigating the catastrophic forgetting. Zenke et al. (2017)
proposed an approach to alleviate the catastrophic forgetting by
allowing the individual synapses in the learning model to esti-
mate their importance in the learned task. An ensemble method,
named PathNet (Fernando et al., 2017), uses a genetic algorithm
to find the optimal path through a neural network of fixed size to
find which parts of the neural network can be reused for learning
new task while freezing task-relevant parts is developed to avoid
catastrophic forgetting. Although such regularization methods

provide a way to alleviate the problem of catastrophic forgetting,
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hey are limited by the number of neural resources for learning
ew tasks over time which may lead to the performance trade-off
etween the old task and the new task.
To address the limitation of neural representations in the reg-

larization methods, several dynamical architectures were pro-
osed. For instance, Dynamically Expanding Network (DEN) (Yoon
t al., 2017) increases the trainable parameters while learning
he new task using network expansion and selective retraining
y sparse regularization in a supervised learning paradigm. Such
etworks learn the representation of new tasks by dynamically
ncreasing the network size. This way, the problem of limited
eural resource is addressed. Recently, Jain and Kasaei (2021)
eported state-of-the-art results in open-ended 3D object recog-
ition using pre-trained convolutional neural network (CNN) and
EN. Similar to DEN, the combination of the self-organizing
ncremental neural network and a pre-trained CNN, proposed by
art and Lemon (2016, 2017), allows the network to grow in a
ontinuous object recognition scenarios. Although the dynami-
ally expandable networks adapt to learn a new task, it needs
o have access to the entire dataset while learning the new task
hich increases the storage complexity.
The continual learning models for robotics application have

o address the problem of complex data storage. Towards this
oal, Marsland et al. (2002) proposed a neural network, which
rows when required (GWR) based on the synaptic neural activity
riggered by the input data distribution to the best matching sim-
larity nodes in the network, and it also deals with the dynamic
ata distributions. An extended version of the GWR model, called
amma-GWR (Parisi et al., 2017), embeds the gamma mem-
ry (Principe, Kuo, & Celebi, 1994) during the neuron growth for
earning the short-term temporal relation representations of the
nput data distribution in the absence of external sensor informa-
ion. This extended version of GWR network addresses the prob-
em of data storage in continual learning by learning the short-
erm temporal relation. Using Gamma-GWR, Parisi et al. (2017)
howed the state-of-the-art results in batch learning scenarios
ith missing and corrupted sample labels.
Apart from the above-mentioned methods, the concept of

ual-memory systems was developed to address short-term and
ong-term memory consolidation. The system in which each
ynaptic connection has two weights: the plastic weights (to
reserve long-term knowledge) and the fast-changing weights
which holds the temporal short-term knowledge). One of such
ual-memory system was proposed by Gepperth and Karaoguz
2016), using modified self-organizing maps (SOM) and SOM
xtended with short-term memory (STM) to address the incre-
ental learning task by alleviating the catastrophic forgetting.

n their work, they used STM to store the previously learned
nowledge and replayed back while learning the new task. Even
hough SOM + STM address continual learning it also has certain
imitations. Since the STM has the limited capacity it overwrites
he old task while learning a new task and it also requires storing
he entire dataset during incremental training.

The above-mentioned methods were designed for the classi-
ication of the static data representations in supervise learning
aradigm. In more natural settings, the data representations are
equential, where the underlying spatio-temporal relations are
ncrementally available over time (i.e. objects information with
ifferent features representations). For the continual learning, a
equential dataset with temporal meaningful relations needs to
e used.
The growing dual-memory (GDM) network architecture (Parisi

t al., 2018) is better at representing the spatio-temporal relation
f the input data in the lifelong settings with reduced storage
nd computational complexity. Furthermore, the GDM network

chieved state-of-the-art result in continuous object recognition
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scenarios. The GDM network consists of deep transfer learning-
based pre-trained CNN, followed by the two different recurrent
self-organizing gamma grow when required networks (Gamma-
GWR), named episodic memory (learns the sensory experience)
and the semantic memory (learns the task-relevant signals). The
GDM memories can dynamically adapt the number of neurons
and synapses based on the input data distribution. Using the in-
trinsic memory replay or pseudo-rehearsal the problem of catas-
trophic forgetting is alleviated, in which the previous memories
are revisited without storing all the data samples by the pe-
riod replay of the previously learned temporal synapses (during
training) (Robins, 1995). In our approach, we utilized the GDM
networks to continually learn the objects categories in an open-
ended scenario and, at the same time, we enhanced its prediction
performance by introducing the regulated neuron removal based
on the neuron activity and its knowledge about the input data.
Moreover, we employed different similarity measures to obtain
the optimal performance with the input data to estimate the best
matching unit (BMU) in the GDM networks.

Several deep learning based algorithms have been proposed
for object grasping recently. For examples, Morrison et al. pro-
posed a generative grasping convolutional neural network (GG-
CNN) (Morrison, Corke, & Leitner, 2018) that can predict pixel-
wise grasp configuration for never-seen-before objects. Another
approach, named Res-U-Net (Li, Schomaker, & Kasaei, 2020), used
encoder–decoder based CNN architecture to predict objects’ grasp
affordances first, and then used a search policy to find the best
path to approach and grasp the target object. In another work,
Kasaei and Kasaei (2021) proposed a method to address multi-
view 3D object grasping based on convolutional auto-encoder.
Kumra, Joshi, and Sahin (2021) developed a generative residual
convolutional neural network (GR-CovNet) which generates the
antipodal grasp for the given n-channel input. All the above re-
viewed methods are good at predicting the grasp synthesis for the
given 3D objects but they are not able to recognize the object cat-
egory label simultaneously. To address the simultaneous object
category recognition and grasping, Asif, Bennamoun, and Sohel
(2017) considered object grasping and recognition as two inde-
pendent tasks. In particular, they formulated object recognition
as a batch learning task and object grasping as a heuristic (hand-
crafted) approach. More specifically, they assumed that all the
categories are known in advance and the robot is trained based
on hierarchical cascaded forests. Therefore, the knowledge of the
robot is fixed after the training phase and, robot re-programming
is needed by any changes in the environment. These types of
approaches work well in factory-like domains, where everything
is predefined, but they are too fragile to be used in a dynamic
environment, where the number of categories is not known in
advance and the training instances should be extracted from
online/onsite experiments. Towards addressing this limitation,
Kasaei, Luo, Sasso, and Kasaei (2021) coupled a generative mixed
auto-encoder with a probabilistic 3D object recognition approach
to simultaneously predict the pixel-wise grasp configuration and
recognize the objects in open-ended domains. The model receives
the input from multiple views of the given 3D object, and then,
simultaneously predicts the pixel-wise grasp synthesis and a
compact representation for an active object recognition task. In
particular, the authors proposed an active learning strategy to
teach, ask, or correct the prediction of the model while learn-
ing the object categories in an open-ended scenario. Unlike our
work, these approaches followed a single-shot prediction and
completely discard the spatio-temporal information.

3. Methods

Our approach to lifelong learning of object recognition and
grasp synthesis comprises two main components: (i) an autoen-
coder model is developed to extract a compact feature vector
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Fig. 2. Proposed model architecture: for continual object recognition and grasp synthesis learning using mixed auto-encoder, and growing dual-memory network
GDM). The sequential point cloud samples from the input 3D object are initially generated and converted to an RGB-D image, then fed to the network to obtain
nstance and category level object representation and pixel-wise grasp configuration. For object recognition, all the sequential samples are being used and for the
rasping, the object view with maximum entropy is used.
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256 dimensions) that is used for object recognition purposes as
ell as pixel-wise grasp prediction (see Fig. 3); (ii) a recurrent
DM network, consisting of episodic and semantic memory, to
redict the instance and category level. Fig. 2 shows the overall
rchitecture of the proposed model.
Initially, the system receives the multi-view representation of

he sequential 3D point cloud data for the object at different
ime frames t. The obtained point cloud is then converted into
he depth image serves as an input of the network, xit ∈ RW×H ,
here W and H represent the width and the height of the

mage respectively. In our approach, the RGB-D data with time-
ependent sequential input is passed to the encoder to get the
56 dimensional feature vector. The Gamma-GWR uses distance
easures as a metric to compute best matching units (BMUs).
o eliminate the discrimination caused by high dimensional and
pare data representation, we performed a convolution operation
o reduce the dimension of the feature vector to 256. The ob-
ained representation is then used as an input to the growing
ual memory recurrent self-organizing networks to classify the
bject categories. In parallel to the object category prediction, the
equential RGB-D data is then fed to an entropy-based optimal
iew selection function. At the time t = 1, the optimal view will
e equal to the input data.
The best view is then passed to the network to generate a

ixel-wise antipodal grasp configuration map, G, in the form of
uality, (q ∈ RW×H ), angle (φ ∈ RW×H ), and width d ∈ RW×H

aps. The point with the highest grasp quality is then selected
nd converted to robot coordinate to be executed by the robot,
.e., (u, v)← g∗ = argmaxq G.

Note that our approach differs from imitation learning, where
he model or agent mimics the state and actions of an external
ser or agent. In our approach, the model learns by exploring
he sensory information (i.e., images and point cloud data) and
ot by mimicking the external agent or user. The role of user in
ur approach is to regulate the learning by either correcting the
isclassifications, or by introducing new instances or categories.
he GDM network grows and learns in unsupervised learning
ashion which is similar to exploration and exploitation dilemma.

.1. Object representation and grasping

We select the generative residual convolutional model (GR-
onvNet) (Kumra et al., 2021) as the backbone of our architecture,
ince GR-ConvNet showed the state-of-the-art results in object
rasping. In particular, we modified the architecture of the GR-
onvNet to be used for both object recognition as well as object
170
grasping. Fig. 3 shows the overall architecture of the proposed
autoencoder architecture.

The output of second convolution layer in the encoder part
of the network is used as an object representation. It should
be noted that we reduce the dimension of the obtained rep-
resentation from 401408 (56 × 56 × 128) bins to 256 bins
using 2D average pooling layers followed by the flatten layer.
More specifically, the network receives an n-channel input RGB-D
image (224 × 224 pixels) and by passing the image through the
encoder part of the network, a features matrix of 56 × 56 × 128
dimensions is generated. The obtained representation is then fed
to two convolution layers having 31×31, 64 filters and 15×15, 32
ilters with batch normalization and rectifier linear unit (ReLU)
s an activation function, respectively. The second convolution
ayer has two identical branches as outputs: one is used for the
rowing dual-memory (GDM) learning, and the other is used for
enerating grasp maps. The features output from the second 2D
onvolution layer are further passed to three residual blocks, in
hich each block has two 2D convolution layers having 15 ×

15, 32 filters with batch normalization. The residual block also
uses ReLU as an activation function.

For the GDM learning, we pass the output of the second convo-
lution layer in encoder to the 2D average pooling layer followed
by the flatten layer to obtain a feature vector. For the grasp syn-
thesis, the output of encoder is passed to the decoder to generate
a grasp map for the given object. It should be noted that the
decoder architecture consists of two deconvolution (transpose-
convolution) layers of size 15×15, 32 filters and 31×31, 64 filters
ith batch normalization and ReLU activation function, followed
y the GR-ConvNet decoder. The output the GR-ConvNet decoder
s three images of 224 × 224 dimensions to represent pixel-wise
grasp quality, angle (cos + sin), and width. To train the network,
we use smooth L1 loss function and RMSprop optimizer. The
learning rate for RMSprop optimizer has been set to 0.001 during
training.

The episodic memory of the dual-memory network receives
the input feature vector, xi(t) ∈ R256, to learn the similarities
between feature vectors in an unsupervised fashion. The dis-
crepancy between the sequential input and neural representation
is minimized by creating new neurons or updating the existing
neurons based on the activation threshold, habituation rate of the
neurons, and other hyper-parameters (explained in Section 3.2).
The learned weights from the episodic memory W EM

b (based on
the total number of neurons) are then passed to the semantic
memory to learn the task-specific knowledge. Thereby episodic
memory results in the prediction of instance-level information
and the semantic memory with the category level prediction.
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Fig. 3. Proposed autoencoder architecture: (i) to extract feature vector for object recognition learning, and (ii) to predict the quality, angle, and width images (which
then used to estimate the grasp points), for the given n-dimensional RGB-D image input.
3.2. Dual-memory recurrent self-organization network

Both the episodic and semantic memories use the Gamma-
GWR (Parisi et al., 2017) network, which dynamically grows or
shrinks based on the input data distribution. The neural network
structure of the Gamma-GWR is recurrent, where the connection
between the input data distribution and the best matching unit
(BMUs) is determined based on the similarity measures (e.g. Eu-
clidean distance). Neurons may also have more than one neigh-
bouring relation based on the similarity between the sensory in-
formation. Furthermore, the gamma memory in the Gamma-GWR
holds the temporal relation of the neural activation trajectories
during learning which gets dynamically changed relative to the
input data distribution. This temporal memory is used during
pseudo-rehearsal or intrinsic replay to alleviate the catastrophic
forgetting in the incremental learning task. The networks are
initialized with two neurons and it dynamically grows by holding
the spatio-temporal relation while iterating over the input data
samples. Each neurons A, in the network consist of weight vectors
wj ∈ Rn and K context descriptors Ck,j ∈ Rn. For each given input
xi(t) ∈ Rn the Best Matching Unit, BMU (b), is calculated based on
the Manhattan metrics (given in Eqs. (1)–(3)). It should be noted
that Parisi et al. (2018) used euclidean distance as a similarity
measure, while we analysed the performance of the prediction
using different distance measure (Euclidean distance, Squared
Euclidean distance, Manhattan distance, Minkowski distance with
power of 3, Mahalanobis distance, and cosine similarity measure),
based on experimental results we found that Manhattan distance
metric suits best for our input data distribution. In particular,
we calculate the dissimilarity and the best matching unit as
follows:

dj = α0|xi(t)− wj| +

K∑
k=1

αk|Ck(t)− cj,k| (1)

Ck(t) = β.wt−1
b + (1− β).ct−1b,k−1 (2)

b = arg min
j∈A

(dj) (3)

where α and β are two constants that regulate the temporal
context influences, wt−1

b is the weight vector of the BMU at time
t−1, Ck ∈ Rn is the global context descriptors with Ck(t0) = 0, and
ct−1b,k−1, the context descriptor of the BMU and k− 1 descriptor at
t−1. The neurons in each network are either created, or existing
neurons are updated based on the activity of the neuron, a(t) and
its habituation counter hj, regulated by the insertion threshold
(aT ) and habituation threshold hT . The activity of neuron a(t) is
determined based on the distance relationship between the input
and BMU (b) which is computed as follows:

a(t) = exp(−d ) (4)
b
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when the neuron with its respective BMU predicts the input
sequence correctly, results in the highest activation value of 1.
The habituation counter (hj ∈ [0, 1]) expresses the frequency of
the neuron firing in the training process. The habituation values of
the BMU (b) and it neighbour (n) decrease as the frequency of the
neuron firing increase. Compared to other conventional unsuper-
vised learning algorithms, where the winner takes all the credits,
in GWR not only the winner but also its associated neighbouring
neurons are updated. The habituation rule (Marsland et al., 2002)
for a neuron i is given by:

∆hi = τi.κ.(1− hi)− τi (5)

where τi and κ are two constants that control the monotonically
decreasing behaviour of the habituation counter, the habituation
counter of BMU (b) decreases faster than neighbouring neurons
(n). The weight vectors and the context descriptors are get up-
dated wherever the new neurons are created and existing nodes
are updated, when new neurons are created its weights are
computed as the average weights of BMU and input. The weight
and context descriptor update for the neuron i is given as:

∆wi = ϵi.hi(x(t)− wi) (6)

∆ci,k = ϵi.hi(Ck(t)− ci,k) (7)

where ϵi is a learning rate, the learning rate of BMU (b) will
be higher than the neuron (n). The connection between the two
neurons (BMU and second BMU) is created when two neurons fire
together. Each neuron that exists in the network has a certain age,
when those ages reached a certain threshold it will be removed
from the network. The ages between the first BMU and second
BMU rest to zero, whereas other neighbouring ages are increased
by the value of 1. At the end of training epochs, the neurons with
an age higher than the threshold and the neurons which do not
have neighbours are removed from the network.

Episodic memory: In episodic memory (G-EM), the neuron’s
growth is unsupervised. Based on the insertion threshold, aT ,
and the habituation threshold, hT , the network learns a fine-
grained representation of the input data since new neurons will
be created when the activity of the BMU falls below the insertion
threshold. The temporal connection of the neural activation tra-
jectories is learned during episodic memory training by sequence
selective synaptic links (Parisi et al., 2018). When two neurons
are activated continuously their temporal synaptic link, p(i, j),
is increased by ∆p(i,j) = 1. For each neuron i ∈ A, the next
neuron v of a prototype vector can be retrieved by selecting v =
argmax p(i, j), where i and j represent the neurons at time t − 1
and t . The temporal representation learned in episodic memory
is used during memory replay in the absence of external sensory
input. During the learning phase, the neurons in G-EM learn the
instance-level label (lI ) representation. The associative matrix,
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(j, lI , lC ) (Parisi et al., 2018) stores the label information for each
neuron j. Therefore, using the associative label representation, the
unsupervised Gamma-GWR can be used for classification tasks
without the pre-determined number of labels.

Semantic memory: Similar to episodic memory, semantic mem-
ory (G-SM) is also associated with the Gamma-GWR network.
Instead of receiving the direct sensory information as input, G-
SM received the episodic weights wEM

b as input, based on the
umber of neurons in the G-EM and the associative matrix con-
aining the label information, lC . Unlike G-EM, G-SM creates new
eurons only when the labels predicted by the BMU in G-SM
re miss-classified with the ground truth labels. Since G-SM uses
ategory-level signals to regulate the network growth, the same
eurons may be activated for the different instances of the object
hich belongs to the same category. In this way, G-SM develops
compact representation from the episodic experience (Parisi
t al., 2018).

emory replay: We use memory reply techniques to handle
atastrophic forgetting by reactivating the past neural activation
seudo-patterns. The pseudo-patterns are learned during the G-
M training and are represented as temporally ordered neural
ctivation trajectories. These trajectories are then replayed using
seudo-rehearsal or intrinsic replay (Robins, 1995). Recursively
eactivate neural activity trajectories (RNATs) (Parisi et al., 2018)
sing temporal synapses in G-EM, the neural trajectories are
omputed to each neuron in the episodic memory for the fixed
emporal window and replayed back to the G-EM and G-SM after
ach learning episode. RNATs computation does not explicitly
eed storing the temporal relation and the labels of the previously
een samples to remember the past knowledge since it generates
he sequence-selective prototype sequence during each learning
teration which will be periodically replayed back to G-EM and
-SM networks.

ontrolled neuron connections removal: In the work by Parisi
t al. (2018), at the end of each epoch the connection between the
eighbouring neurons is removed when the age of a particular
ode reached its maximum. Therefore, at the end of the training,
he neurons without neighbours are also removed. When neurons
re removed from the network the information gained about
he input data is also completely removed, regardless of that
eurons knowledge level. Such types of removal is not vital. For
xample, consider a scenario that at the beginning of learning
rocess a neuron learns useful information for a particular object
ategory, and the neuron has only one neighbour connection
nd is not triggered further. The age of the neuron increases as
he training process continues, and consequently, at the end of
raining the neuron will be removed due to the high age despite
ts knowledge about the input data. We address this problem by
sing the regulated neuron connection removal. The connection
etween the neighbouring neurons is removed when its habit-
ation value (which holds the knowledge level of the neuron) is
reater than the certain threshold value. If the neuron habituation
alue is greater than a threshold value and its age is higher
han a maximum age, the ages and connection of its associated
eighbours are set to 0. If the habituation value of the neuron is
ess than a threshold and its age is greater than a threshold, the
onnection between its neighbours is retained only their ages are
est to 0. In this way, we can retain the neurons which have a
etter understanding of the input data. From the experimental
bservations, we observed that the controlled neuron removal
elps to significantly improve the performance in instance- and
ategory-level accuracy (see Section 4.3.3).
 m
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Fig. 4. Dataset generation environment setup, Kinect camera with sample
objects from 10 categories.

4. Experimental results

We evaluated the performance of the proposed system in
three rounds of experiments: (i) the performance of the au-
toencoder model is evaluated using the Cornell dataset (Jiang,
Moseson, & Saxena, 2011), (ii) we then assessed the performance
of the GDM learning on batch, incremental, and continuous object
recognition scenarios, and (iii) finally, the overall system (see
Fig. 1) is tested on the simulated robot environment.1

4.1. Dataset generation

We generated a large-scaled synthetic sequential point cloud
dataset for continuous object recognition task. To generate the
dataset, we used objects from the ShapeNet dataset (Chang et al.,
2015) and Gazebo repository. The dataset comprises of 50 objects
instances from 10 categories in the form of sequential point cloud
samples. Fig. 4 shows our environmental setup in Gazebo envi-
ronment, and 10 sample object categories. In this work, we apply
15 augmentation techniques, such as a change in translation and
position of the object, adding Gaussian noise with a different
standard deviation, down-sampling with different resolutions,
and adding occlusions, to enhance the size of the dataset.2 Two
sets of augmented point clouds for Airplane and Guitar objects,
generated using the different techniques, are shown in Fig. 5.
By visualizing the obtained augmented objects, we can observe
that the overall structure of the object is retained. At the end
of dataset generation processes, we created 15 collections of
data, where each collection contains sequential data for all 10
object categories, i.e., generated at the rate of 2.5 fps, that only
one augmentation technique applied to the objects. In total, we
generated 75000 samples, which required 1.7 GB data storage.
This dataset is used to train and evaluate the GDM model in
our work. In particular, from the 15 generated collections, we
used 12 collections for training, and three collections are used for
testing.

4.2. Grasp network

The proposed model is developed over PyTorch library. We
trained the model on the NVIDIA RTX-2070 Max-Q GPU, and the
training procedure took around five hours for 50 epochs.

The network receives a 4-channel 224 × 224 RGB-D images
as an input, which are sampled from the input point cloud data.

1 Code and supplementary material are available at: https://github.com/
rishkribo/3D_GDM-RSON.
2 The complete dataset generation pipeline, the techniques and the pa-

ameters used to generate the dataset are explained in the supplementary
aterial.

https://github.com/krishkribo/3D_GDM-RSON
https://github.com/krishkribo/3D_GDM-RSON
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Fig. 5. Data augmentation: airplane (top-row), and guitar (bottom-row) in the Gazebo environment followed by their point clouds. For augmenting the data, we have
applied: (i) Gaussian noise, (ii) down-sampling, and (iii) Gaussian noise plus down-sampling to the point cloud of the object.
Table 1
Result of autoencoder network on the Cornell dataset (Jiang et al., 2011).
Approach Input data IoU (%)

GG-CNN (Morrison et al., 2018) Depth image 73.00
GG-CNN2 (Morrison, Corke, & Leitner, 2020)a Depth image 75.20
GraspNet (Asif, Tang, & Harrer, 2018) RGB-D 90.20
GR-ConvNet (Kumra et al., 2021)a RGB-D 96.00
Our approach RGB-D 97.75

aRetrained.

The network is trained using Cornell grasping dataset (Jiang et al.,
2011). We augmented the Cornell dataset with random rotation
and random zoom to increase the sample size, and used 90%
of the data for training and 10% for testing. Root Mean Square
propagation (RMSprop) is used for training the model for 50
epochs with the batch size of 8. To handle the exploding gra-
dients, a smooth L1 loss function is used. The model is then
valuated based on the Intersection over Union (IoU) score. A
redicted grasp configuration is considered as correct when the
verlap of the ground-truth grasp rectangle and predicted grasp
ectangle is more than 25%, and the grasp orientation offset
etween ground-truth and the predicted grasp rectangle is less
han 30 degree (Jiang et al., 2011). Fig. 6 shows the pixel-wise
utputs of the network in terms of grasp quality, grasp angle,
nd grasp width for a given hammer object. The two best grasp
onfigurations are highlighted in the right-most image.
Table 1 shows the comparison result of our approach with

our state-of-the-art grasping methods: GG-CNN (Morrison et al.,
018), GG-CNN2 (Morrison et al., 2020), GraspNet (Asif et al.,
018), and GR-ConvNet (Kumra et al., 2021) (retrained). By com-
aring all the obtained results, it is visible that our approach
btained the best overall IoU accuracy of 97.75%. In particular,
he proposed method worked 24.75, 22.55, 7.55 percentage point
p.p) better than GG-CNN (Morrison et al., 2018), GG-CNN2 (Mor-
ison et al., 2020), and GraspNet (Asif et al., 2018) respectively.
ince the difference in IoU metric between our approach and
he GR-ConvNet model was small, we retained the GR-ConvNet
odel to provide a fair comparison. Based on our experiments,
e noticed that our approach shows 1.75 p.p improvement in
erformance compared to GR-ConvNet model. This improvement
an be correlated to the size of the network, as our model has
2.3M (million) trainable parameters whereas the GR-ConvNet
odel has ∼ 1.9M parameters. More specifically, our custom
etwork has around 400 K more trainable parameters than the
R-ConvNet model. As shown in Fig. 3, the learned latent repre-
entation of the network is then used as an input to the episodic
emory.
173
4.3. GDM learning

We performed series of experiments to evaluate the perfor-
mance of the GDM networks in batch and incremental learning
scenarios. The model is trained and tested with our generated
sequential dataset for instance- and category-level prediction.
We also tested the network learning based on the temporal
context and intrinsic memory replay (Parisi et al., 2018). Fur-
thermore, a set of experiments has been carried out to evalu-
ate the continual learning task in the incremental learning sce-
nario. The evaluation scenario includes testing new instances
(NI) of already known category, testing never-seen-before ob-
ject categories (NC) during the training processes, and testing
new instance and new category (NIC) which are progressively
introduced during learning.

4.3.1. Batch learning
In batch learning, the dataset consists of all the objects from

all the collections that are used for training. The performance of
the model is evaluated on the test dataset on an instance and
category-level object recognition.

We experimented the batch learning under three different
conditions GDM with TC, GDM without TC during testing (by
setting context descriptor K = 0), and GDM without TC. In our
experiments, the number of context descriptors is set to two
for both G-EM and G-SM (K EM , K SM ) networks. Based on the
selection of context descriptors, the memories in GDM activate
for the temporal window of number of context descriptors [K+1].
In our experiments, the G-EM has 2 context descriptors, hence
it activates for the temporal window of 3 input frames [(K EM

=

2)+1]. Since G-SM receives input as neurons from G-EM, it codes
for the temporal window of 5 frames [(K EM

= 2)+(K SM
= 2)+1].

The number of context descriptors is determined based on
different experimental observations. For batch learning, we syn-
thesized 120 samples from each object category to train the GDM
model (i.e., 3000 samples in total). The obtained results of the
batch learning on category-level are reported in Table 2. It should
be noted, the results are obtained after 35 epochs, which are
averaged across five learning trials by randomly shuffling the
bathes from different collections.

GDM with temporal context gives the best accuracy compared
to the other two approaches. We obtained average accuracy of
86.97% (instance-level) and 93.35% (category-level). When tested
on the never-seen-before objects, we obtained an average accu-
racy of 88.53%. When compared with the results of GDM training
without temporal context, the instance-level accuracy shows an
improvement over 5.1% and the category-level accuracy shows
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Fig. 6. Input RGB and depth images are shown in the first two left images. The three images in middle show the pixel-wise outputs of the proposed autoencoder for
hammer object. The top-two grasp configurations for the hammer object are shown in the right-most image. The coloured circles indicate the grasp point which

s located at the rectangle centre. The blue rectangle represents the grasp’s orientation and width for the first grasp point while the green one shows for the grasp
onfiguration for the second best point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Batch learning: (a) Number of neurons in episodic and semantic memory as a function of number of epochs, (b) Accuracy of G-EM and G-SM on instance-and
category-level, (c) Quantization error, and (d) accuracy on the test dataset. Results are averaged over five trials, and the shaded areas show the standard deviation.
2.83% improvement. Based on these results, it is clear that learn-
ing the temporal relation of the input plays important role in
increasing the performance of the model. We also observed that
the performance of the model slightly dropped in both training
and testing phases if the model does not use temporal context.

From the results, we can conclude that model not only per-
orms better at training data but it also shows good generalization
esults on the test data. Fig. 7 shows the number of neurons,
ccuracy, average quantization error, and category-level accuracy
n the test collections through 35 epochs and averaged across
ive learning trials. Fig. 7(a) shows that the growth of the neu-
ons is stabilized after 15 epochs for both episodic and semantic
emory. This indicates that the neurons are habituated for the
iven input data. It can be observed that the number of neurons
n episodic memory is higher than semantic memory. This is
xpected since the G-SM network grows only when the predicted
MU label is misclassified with the input data label, whereas G-
M growth is unregulated, and it can grow when a new data
s given. As the number of neurons increased and habituated to
he input data, we can see that the average quantization error in
ig. 7(c) is significantly reduced and the accuracy over the epochs
lso getting stabilized (Fig. 7b). From the result of individual
bject category accuracy on the test collection (see Fig. 7d), it
an be seen that most of the objects are classified with a higher
ccuracy.

.3.2. Incremental learning
In this round of experiments, the training samples are pro-

ressively available in the form of mini-batches. Each mini-batch
ontains samples from all training collections based on the dif-
erent object instances and categories. In this experiment, we
efined the number of epochs equal to the number of categories,
nd in each epoch we use objects from a certain category to train
he model. This way, instances of previously learned categories
re not shown again while learning new categories.
The behaviour of the network in alleviating the catastrophic
orgetting is evaluated by using the recursive reactivate neural

174
Table 2
Classification accuracy of batch learning on category-level for different
approaches.
Approach Accuracy (%) Accuracy (%)

(Training) (Testing)

GDM with TC 93.35± 0.09 88.53± 0.04
GDM* without TCa 92.98± 0.09 87.23± 0.05
GDM without TC 90.52± 0.07 87.35± 0.06

aGDM* model trained without TC during testing.

Table 3
Classification performance of incremental learning at category-level during
training and testing.
Approach Accuracy (%) Accuracy (%)

(Training) (Testing)

GDM with replay 73.80± 0.11 70.01± 0.12
GDM without replay 56.75± 0.19 58.70± 0.26

activation trajectories (RNAT’s) and intrinsic memory replay. We
then assessed and compared the models trained with and without
memory replay.

After introducing each object category, the accuracy of the
model is evaluated using never-seen-before-samples from all
known categories to check if the model has learned all cate-
gories accurately. For example, if the network is training on
the third object category (i.e. at third epoch), the performance
of the model is evaluated using data samples from all learned
categories (i.e., test samples are the first, the second, and the
third categories). This way, the performance of the model can
be estimated to check whether the model learned new object
categories without forgetting the previously learned ones.

We trained the network for 10 epochs, as the dataset has
10 categories, and repeated the experiments for five times to
have statistical significance of the results. The obtained results
of incremental learning with and without memory replay are
summarized in Table 3. As reported in Table 3, GDMwith intrinsic
memory replay (MR) obtained the best overall average accuracy,
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Fig. 8. Incremental learning results: (a) Number of neurons in episodic and semantic memory, (b) Accuracy of G-EM and G-SM on instance and category level, (c)
Quantization error, and (d) Accuracy on the test dataset. Results are averaged for five learning trials, the shaded area shows the standard deviation.
Fig. 9. Comparison results of incremental learning with and without memory replay: (a) Number of neurons in episodic memory, (b) Number of neurons in semantic
memory, (c) Episodic memory accuracy, and (d) Semantic memory accuracy. The results are averaged across five learning trials.
which has 57.27% accuracy at the instance-level, 73.80% at the
category-level on the validation set, and 70.01% accuracy on the
test samples. By comparing the results of the GDM model trained
with and without memory replay, we observed 2.74% reduc-
tion in instance-level accuracy while the category-level accuracy
increased by 17.05%. This increase in category-level is also ob-
served when both models tested on never-seen-before samples.
In particular, we observed that the model with MR gives 11.31%
accuracy improvement over the model without MR.

Fig. 8 shows the number of neurons required to learn a certain
et of object categories, accuracy as a function of number of
earned categories, and the quantization error of the incremental
earning scenario over epochs, averaged across five learning trials.

In batch learning experiments, we observed that the num-
er of required neurons grows exponentially in initial epochs
Fig. 7(a)), which indicates high neural activity for the input data
istributions. In incremental learning, we observed that the num-
er of required neuron grows (Fig. 8(a)) progressively over time
n both the networks when a new object category is introduced
o the model. We also observed a monotonically increase and
ecrease in quantization error (Fig. 8(c)) in both the networks
hen a new object category is taught. By increasing the number
f categories, the classification task becomes more and more diffi-
ult. Therefore, it is expected the overall accuracy in both instance
nd category decreases as new object categories are introduced.
e observed the sudden drop in instance and category accuracy
hen the Staple object (2nd category) is introduced after the
odel is trained with the Airplane category. This may be due

o that the airplane object has high-level features compared to the
taple object, but after learning the staple object we observed the
ncrease in category accuracy. This clearly shows that the order
f object categories has higher sensitivity towards the model per-
ormance. Fig. 9 shows the comparison between the model with
175
and without memory replay in episodic and semantic memory.
By comparing the neuron growth between the models, (Fig. 9(a)
and (b)) the memory replay influences the neuron growth in
both episodic and semantic memory. In contrast to the batch
learning and the model without memory replay, the number of
neurons in semantic memory is higher than episodic memory in
the model with memory replay. This change in behaviour with
memory replay is due to the addition of external noise in the
dataset. Sometimes adding external noise to the point cloud may
change the structure of the object, which results in a completely
different shape. Such data samples result in high neuron activity
in the GDM networks and during the memory replay phase, and
as a consequence, new nodes are added.

Since there is no periodic reply in the model without MR
less neuron growth is observed. When comparing the accuracy
results (Fig. 9(c), and (d)), the instance accuracy of both models
remains more or less the same, whereas the memory replay
model shows a significant improvement in category accuracy for
all the object categories. Based on our experimental results, it
can be concluded that the intrinsic memory replay helps to im-
prove the model performance in incremental learning scenarios.
In particular, we observed that the periodic replay of tempo-
ral trajectories (RNATs), learned from G-EM, could mitigate the
problem of catastrophic forgetting.

Continuous object recognition: We evaluate the incremental
learning model with the three continuous object recognition sce-
narios, proposed by Lomonaco et al. recently (Lomonaco & Mal-
toni, 2017a). The learning tasks include new instances (NI), new
categories (NC), and new instances and categories (NIC). In NI
settings, the model is initially trained with data of known cat-
egories, then, new instances that belong to the known object
categories from different acquisition collections are becoming
gradually available over time. Hence, the model must be dealt
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Table 4
Performance of object recognition on the incremental learning scenario.
Approach Accuracy (%)

NI - GDM with replay 71.64± 0.13
NI - GDM without replay 66.00± 0.21
Cumulative (Lomonaco & Maltoni, 2017a) 65.15± 0.66
LwF (Li & Hoiem, 2017) 59.42± 2.71
EWC (Kirkpatrick et al., 2017) 57.40± 3.80

NC - GDM with replay 74.07± 0.14
NC - GDM without replay 56.69± 0.23
Cumulative 64.65± 1.04
LwF 27.60± 1.70
EWC 26.22± 1.18

NIC - GDM with replay 72.41± 0.12
NIC - GDM without replay 65.86± 0.14
Cumulative 64.13± 0.88
LwF 28.94± 4.30
EWC 28.31± 4.30

with learning new instances of already known object categories
and making correct predictions.

For the NI scenario, the model is initially trained with the first
raining collection and then, incrementally trained with the re-
aining 11 collections. In NC, new classes belong to the different
bject categories are progressively available over time. Therefore,
he model must be dealt with learning new object categories
hile retaining the knowledge about previously learned cate-
ories. For the NC scenario, the model is trained with four training
ini-batches. In the first batch, 4 object categories from all the

raining collections are included and the remaining three batches
nclude 2 object categories each. In the NIC setting, samples
elong to new instances and categories became available over
ime, requiring the model to learn new ones while retaining
he previously learned ones. NIC training consists of 48 mini-
atches, created from 12 collections and 10 object categories.
he first batch contains 4 classes to maximize the categorical
epresentation and the remaining batches include objects from
classes with only one training sequence per class is included.
The classification accuracy of continuous batch learning on

he test samples is summarized in Table 4. The test set sample
ontains the samples from all the categories to keep consistency
cross all three different learning scenarios. Similar to the incre-
ental learning results (shown in Table 3), in the NI scenario,
C scenario, and NIC scenario, the model with memory replay
chieved a better classification accuracy than the model with-
ut memory replay. Comparison with other continual learning
ethods, i.e., Kirkpatrick et al. (2017), Li and Hoiem (2017),
omonaco and Maltoni (2017b), are summarized in Table 4. By
omparing all approaches, it is visible that GDM with memory
eplay obtained the best results across all the continuous object
ecognition scenarios.

We performed another round of experiment to measure the
odel size and inference time of GDM models in three settings:

i) batch learning, (ii) incremental learning without memory re-
ly, and (iii) incremental learning without memory reply. The
ize of networks is averaged across five learning trials with 10
andomly selected object categories. To measure the average
nference time, we randomly select 50 images and pass them
hrough the network to calculate the time of feed-forward. Then,
e average the time difference results. Note that as the inference
imes are on a millisecond (ms) scale, we just reported the av-
rage time. The obtained results are summarized in Table 5. By
omparing all approaches, it is clear that size of episodic (G-EM)
nd semantic (G-SM) memories in batch learning are significantly
arger than that of the incremental learning settings. The under-
ying reason is that in batch learning setting, samples from all
ategories are shown to model at each learning epoch, therefore,
176
the number of neural growth increases rapidly (see Fig. 7a). This
behaviour results in relatively larger models and longer inference
time as compared to incremental learning settings.

4.3.3. Controlling connections removal
As we discussed earlier, we observed that at the end of an ex-

periment, neurons with good habituation value (i.e., the neurons
which represent good knowledge about particular object cate-
gory) is being removed due to its maximum age criteria and no
neighbouring connections. As a consequence, the accuracy of the
model dropped in both episodic and semantic memory predic-
tions, which was more severe in episodic memory. This is because
the semantic memory neuron growth is regulated (i.e., G-SM adds
new neurons only when the BMU label prediction is misclassified
with the ground truth data) whereas in the episodic memory, it is
unregulated (i.e., the neuron grows whenever new input activity
is observed). This results in more number of neurons are get-
ting removed in episodic memory than semantic memory at the
end of learning procedure. As an example, Fig. 10(a) shows the
network representation of episodic memory with neighbouring
connections removed at the end of 10th epoch. From this figure,
we can see that most of the neurons representing the classes c2,
and c3 are left unconnected due to their maximum age despite
their knowledge level in the network. To solve this issue, we
proposed the controlled edges (connections) removal technique
(see Section 3.2). Fig. 10(b) shows the result of the proposed
approach. By comparing the obtained results, we can observe
the influence of neuron connection removal threshold (NT ). In
articular, most of unconnected c2’s, and c3’s neurons, shown
n Fig. 10(a), are retained and adapted well to the input data
istribution over time by finding their neighbours and moving
lose to their associated neighbours (see Fig. 10(b)).
We performed a set of experiments to evaluate the effect of

T ∈ {0.0, 0.1, . . . , 0.6} on the accuracy and number of required
eurons in episodic memory and semantic memory. The obtained
esults are shown in Fig. 11.

The dotted lines in Fig. 11 indicate the result obtained with
arying NT , while the pink line indicates the result of NT = 1
NO_NT). The best result was obtained with NT = 0.2 (shown
y dotted line with triangle indicates). By comparing the effect of
T in the semantic memory (Fig. 11(c) and (d)), the NO_NT model
pink line) shows the low category-level prediction accuracy and
igh neurons growth, whereas the NT helps to improve the pre-
iction accuracy overall for all the different values. Regrading the
emantic memory (Fig. 11(c) and (d)), NT = 0.2 shows the best
verall category-level accuracies when comparing with other NT
alues.
In contrast to the semantic memory, NT = 0.3 gives the high

nstance-level accuracy when compared with the models trained
ith other NT values. Which is 2.27% higher than the NT = 0.2,
his is due to that NT = 0.3 holds more neurons than the NT =

.2. But when comparing the performance of NT = 0.3 and NT =

.2 at the category-level (i.e., at semantic memory), the model
ith NT = 0.3 shows 4.09% less accuracy performance than the
odel with NT = 0.2. This clearly shows that neurons in model
ith NT = 0.2 represent the best knowledge about the input data
istribution. When comparing the overall performance in both
emantic and episodic, even though the model with NT = 0.3
xcels at performance on episodic memory, the model with NT
alue of 0.2 achieved the overall best performance at semantic
emory and holds good performance at episodic memory. Hence,
e used NT value of 0.2 for training the GDM model on all the
atch and incremental learning scenarios. It should be noted that
he results shown in Fig. 11 are obtained using the GDM model
rained on batch learning with no temporal context, as it trains
aster compared to other models.
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Table 5
Size of trained models and inference time of the proposed approach.
Approach Size (MB) Inference time (ms)

G-EM G-SM

GDM with Batch Learning 34.78 18.52 97.4
GDM with Incremental Learning (without MR) 06.80 03.52 25.7
GDM with Incremental Learning (with MR) 14.86 18.74 72.3
Fig. 10. The plot of episodic memory with and without controlled connection removal policy: (a) without controlled connections removal, and (b) with controlled
onnections removal. These plots show the network representation for 10 categories (c0–c9). The scatter plots are the 2D representation of network weights, where
he dimension of network weights (i.e., 256 dimension) is reduced using principal component analysis.
Fig. 11. The effect of controlled edges (connections) removal on different NT threshold values on: (a) episodic memory accuracy, (b) neurons growth in episodic
emory, (c) semantic memory accuracy, and (d) neurons growth in semantic memory over different learning epochs. The dashed plot with triangles (NT = 0.2)

shows the best overall performance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
a

Fig. 12. Our experimental setup consists of a table, two baskets, a URe5 robotic
arm, and objects from YCB dataset (Calli et al., 2017). The green line indicates
the camera line of sight.
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4.4. Robot experiments

We evaluated the performance of the proposed approach in a
simulated robot environment. Our experimental setup is shown
in Fig. 12. We used the UR5e robotic arm as a manipulator and
an RGB-D camera to perceive the environment. We imported 15
simulated objects from the YCB dataset (Calli et al., 2017) to test
the proposed approach.

In this round of evaluation, we considered two tasks: (i) pick
nd place in the context of clear the table, and (ii) a packing

scenario, where the robot should organize objects in specific
baskets. In all the experiments, several objects will be randomly
placed in front of the robot. To segment the objects from each
other, we developed a contours-based bounding box detection to
detect the object boundaries. The performance of the experiments
is assessed by calculating the success rate, i.e. number of success .
total number of attempts
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Fig. 13. Sequence of snapshots of simulated robot experiments: (top-row) in a pick and place scenario, each object on the table needs to be grasped and placed
n left basket; (bottom-row) in a packing scenario, a set of objects (i.e., mustard_bottle, and tomato_soup_can) needs to be placed in the right basket and the
emaining objects needs to be placed in left basket. To accomplish this task, the robot needs to recognize all objects first and then put them into the desired baskets.
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or the packed scenario, in addition to the success rate, we report
he average percentage of objects removed from the workspace.
n experiment is continued until either all objects get removed
rom the workspace, or three failures occurred consecutively.
ote, the experiments will be counted as a success only when the
arget objects are placed inside the desire baskets. We compared
ur approach with two state-of-the-art grasping approaches, in-
luding GGCNN (Morrison et al., 2020) and GR-ConvNet (Kumra
t al., 2021).

ick and place experiments: This set of experiments is set up
n a way that the robot needs to learn and recognize the object
irst before grasping and manipulating it to the basket. If the
iven test object is unknown to the robot, it has to learn the
bject category first, based on the teacher input (see Fig. 1). In
articular, we included a recognition task in this experiment to
nsure that the GDM model can learn new object categories in
lifelong setting and can recognize them without catastrophic

orgetting. If the model cannot recognize the object correctly,
imulate teacher provides corrective feedback to the GDM model
s shown in Fig. 1.
In each experiment, we randomly placed five test objects on

he table, and tested each simulated object 50 times. A sequence
f snapshots of a sample experiment is shown in Fig. 13 (top-
ow). We achieved 80.27% success rate (i.e. 602 success out of 750
ttempts). In pick and place experiment, the most failure cases
ere due to object slipped from the gripper, poor grasp quality
core at specific object pose, and inaccurate calibration of camera
ose relative to the arm leading to collision between the gripper
nd the target object.

acking experiments: In these experiments, two baskets (named
ight_basket, and left_basket) are placed in the environment,
here the instances of the selected categories (based on the
ser input e.g., Scissors and Mug) needs to be packed in the
ight_basket and the remaining objects should be placed in the
eft_basket. If none of the object categories are selected all the
bjects need to be placed in the left_basket. At the beginning of
ach experiment, we have randomly shuffled object categories,
nd five objects are randomly selected and placed on top of the
able. Fig. 13 (bottom-row) shows a sequence of snapshots for
packing scenario, where the robot needs to place the target
bject (i.e., mustard bottle, and tomato_soup_can) to the
ight_basket and the remaining objects to the left_basket.
 d
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Fig. 14. Comparison of the proposed approach with GGCNN and GR-ConvNet.

The success will be counted only when the objects are placed
in the desire baskets. We conducted the packing experiment for
50 times. Since the experiment was aborted after three consec-
utive unsuccessful grasps, or when the robot was unable to find
high quality grasp points, not always all objects were cleared from
the workspace (WS). The obtained results are depicted in Fig. 14.

We achieved the grasp success rate of 59.20% (i.e., 148 success
out of 250 attempts). By comparing the obtained results, it is clear
the proposed approach clearly outperformed both GGCNN and
GR-ConNet. More specifically, in the case of manipulation success
rate, our approach achieved 59.2% success rate which was 9.2%
nd 22.5% better than GGCNN, and GR-ConvNet, respectively. In
erms of the average percentage of objects removed from the
orkspace, the proposed method achieved 80%, whereas GGCNN
nd GR-ConvNet achieved 20% and 60% respectively.
A possible explanation for the performance differences is due

o the different input modalities. Whereas GG-CNN relies on
epth only information, GR-ConvNet and our approach use RGB
nd depth data that can help to distinguish objects from each
ther and also from the table. More specifically, we observed
hat it was hard for the robot to perceive small flat objects
e.g., scissors) when only relying on depth data. Furthermore, the

ifference in performance between our approach, GR-ConvNet
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nd GG-CNN could be explained by the extra residual layers in
etween the encoder and decoder part in our approach and in
R-ConvNet’s architecture. Such architectures assist the network
o learn representative features from the input data.

We observed that, for some of the experiments, even though
he model predicts the correct object labels, the robot could not
lace the object to target basket due to an inaccurate bounding
ox detection. In packing scenarios, we observed that most of the
ailures happened due to (i) the object attached to the gripper
et slipped while reaching the basket, (ii) misclassification of

the target object, (iii) the collision between the object and the
robot gripper, and (iv) incorrect bounding box estimations. A
video of these experiments is available online at: https://youtu.
be/AaWppzGeh9E.

5. Conclusion

In this paper, we presented a model using a growing dual-
memory network (GDM) and autoencoder to simultaneously han-
dle object recognition and grasping tasks. The experimental re-
sults by GDM on the batch and incremental learning showed
that the GDM model was able to learn about new objects in
both instance- and category-level over time. We also addressed
the problem of catastrophic forgetting by the intrinsic memory
reply using RNAT’s based on the learned temporal knowledge.
To demonstrate the performance of the model in handling object
recognition and grasping tasks simultaneously, we performed a
set of robot experiments in the context of pick and place and
packing scenarios. Results showed that the model was able to
recognize the target objects accurately, and predict pixel-wise
grasp configuration for performing manipulation task.

In this paper, all training and testing samples are synthesized
from the simulated 3D object. Therefore, as a future work, we
would like to fine-tune and test the proposed approach using
real-data to investigate the possibility of sim2real transfer learn-
ing in the context of lifelong learning. As another direction, we
would like to investigate the possibility of improving the perfor-
mance by utilizing networks that directly use three-dimensional
data instead of images (e.g., Res-U-net Li et al., 2020).
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Appendix. GDM hyperparameter selection

A.1. Batch learning

The hyper-parameters used during the batch learning are sum-
marized in Table A.6.

A.2. Incremental learning

The hyper-parameter settings that lead to the best perfor-

mance for the incremental learning are shown in Table A.7.
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Table A.6
Hyper-parameter settings for G-EM and G-SM networks in batch learning.
Hyperparameter Values

Insertion thresholds aEMT = 0.7, aSMT = 0.8
Global context β = 0.5
Learning rates ϵb = 0.3, ϵn = 0.003, ϵc = 0.001
Habituation threshold hT = 0.1
Habituation function τb = 0.3, τi = 0.1, κ = 1.05
Neuron removal threshold NT = 0.2
Labelling δ+ = 1, δ− = 0.1
Context descriptors α1 = 0.63, α2 = 0.234, α3 = 0.086

Table A.7
Hyper-parameter settings for G-EM and G-SM networks in incremental learning
Hyperparameter Values

Insertion thresholds aEMT = 0.5, aSMT = 0.7
Global context β = 0.4
Learning rates ϵb = 0.5, ϵn = 0.005, ϵc = 0.001
Habituation threshold hT = 0.1
Habituation function τb = 0.3, τi = 0.1, κ = 1.05
Neuron removal threshold NT = 0.2
Labelling δ+ = 1, δ− = 0.1
Context descriptors α1 = 0.63, α2 = 0.234, α3 = 0.086
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