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Abstract
In this article, we study feedback linearization problems for nonlinear
differential-algebraic control systems (DACSs). We consider two kinds of feed-
back equivalences, namely, external feedback equivalence, which is defined
(locally) on the whole generalized state space, and internal feedback equiva-
lence, which is defined on the locally maximal controlled invariant submanifold
(i.e., on the set where solutions exist). We define a notion called explicitation
with driving variables, which is a class of ordinary differential equation control
systems (ODECSs) attaching to a given DACS. Then we give necessary and suffi-
cient conditions for both internal and external feedback linearization problems
of the DACS. We show that the feedback linearizability of the DACS is closely
related to the involutivity of the linearizability distributions of the explicitation
systems. Finally, we illustrate the results of the by an academic example and a
constrained mechanical system.

K E Y W O R D S

controlled invariant submanifolds, constrained mechanical system, differential-algebraic control
systems, explicitation, external and internal feedback equivalence, feedback linearization

1 INTRODUCTION

Consider a nonlinear differential-algebraic control system (DACS) of the form

Ξu ∶ E(x)ẋ = F(x) + G(x)u, (1)

where x ∈ X is called the generalized state and (x, ẋ) ∈ TX , where TX is the tangent bundle of an open subset X in Rn

(or, more general, of an n-dimensional smooth manifold X), and u ∈ Rm is the vector of inputs, and where E ∶ TX → Rl,
F ∶ X → Rl and G ∶ X → Rl×m are smooth maps. The word “smooth” will always mean∞-smooth throughout the article.
We denote a DACS of the form (1) by Ξu

l,n,m = (E,F,G) or, simply, Ξu. A linear DACS is of the form

Δu ∶ Eẋ = Hx + Lu, (2)

where E,H ∈ Rl×n and L ∈ Rl×m. Denote a linear DACS by Δu
l,n,m = (E,H,L) or, simply, Δu. Linear DACSs have

been studied for decades, there is a rich literature devoted to them (see, e.g., the surveys1,2 and textbook3).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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In the context of this article, we will need results about canonical forms,4-6 controllability,7-9 and geometric
subspaces.10,11 The motivation of studying linear and nonlinear DACSs is their frequent presence in mathemat-
ical models of practical systems as constrained mechanics,12 chemical processes,13 electrical circuits,14 and so
forth.

Early efforts of studying solutions of nonlinear DAEs are the works of Rheinboldt15 and Reich,16 which regard a non-
linear DAE as an implicit description of a vector field on a manifold. In References 16 and 17, the concept of regularity
in the linear DAE case was generalized for nonlinear DAEs to characterize the existence and uniqueness of DAE solu-
tions. All the papers on nonlinear DAE solutions as12,14,17-20 lead to a geometrical reduction method (see Definition 3
below). The use of such a reduction method in the control context can be consulted in References 21-24 in order to
get a state space representation of a given DACS. The map E of a DACS (1) can be nonsquare (i.e., l ≠ n) and nonin-
vertible. As a consequence, some free variables and constrained variables can be implicitly present in the generalized
state x (and also some constrained control variables can exist in the input u). We have proposed two normal forms to
distinguish the different roles of variables for nonlinear DACSs in Reference 20. It was noted that although the free vari-
ables of x may perform like an input, we will distinguish them from the real active control variables u. In this article,
we will study feedback linearizable problems by considering the differences of the two kinds of inputs of DACSs (see
Remark 3 below).

In the case of E(x) = In, the DACS (1) becomes an ordinary differential equation control system (ODECS)

ẋ = f (x) +
m∑

i=1
gi(x)ui, (3)

where f = F and gi, 1 ≤ i ≤ m, being the columns of G, become vector fields on X . The feedback linearization problem
of nonlinear ODECSs (i.e., when there exist a local change of coordinates in the state space and a feedback transforma-
tion such that the transformed system has a linear form in the new coordinates) has drawn the attention of researchers
for decades (e.g., see survey papers25,26 and books27,28). The solution of the feedback linearization problem of ODECSs
was first given in Brockett’s paper29 and developed by Jakubczyk and Respondek,30 Su,31 Hunt et Su.32 Compared to
the ODECSs, fewer results on the linearization problems of DACSs can be found. Xiaoping33 transformed a nonlinear
DACS into a linear one by state space transformations, Kawaji34 gave sufficient conditions for the feedback lineariza-
tion of a special class of DACSs, Wang and Chen35 considered a semiexplicit differential-algebraic equation (DAE) and
linearized the differential part of the DAE. The linearization of semiexplicit DAEs under equivalence of different lev-
els is studies in Reference 36. The feedback linearization technique was also applied for stabilization37 and tracking21

problems of semiexplicit nonlinear DACS. The authors of Reference 38 gave a comprehensive review for feedback lin-
earization problems of DACSs and proposed a feedback linearized normal form using the notions of M derivative
and M bracket, such a normal form can be used for studying adaptive control problems for semiexplicit nonlinear
DACS.

In this article, our purpose is to find when a given DACS of the form (1) is locally feedback equivalent to a lin-
ear completely controllable one (see the definition of the complete controllability of linear DACSs in Reference 7 or
see Definition 9 below). In particular, we will consider two kinds of equivalence relations, namely, the external feed-
back equivalence given in Definition 5 and the internal feedback equivalence given in Definition 6. Note that the
words “external” and “internal”, appearing throughout this article, basically mean that we consider the DACS on
an open neighborhood of the generalized state space X and on the locally maximal controlled invariant submanifold
M∗ (see Definition 2), respectively. We have discussed in detail the differences and relations of the two equivalence
relations for linear DAEs,6 and for semiexplicit DAEs.36 We will use a notion called the explicitation with driving
variables (see Definition 7, firstly proposed in Reference 39 for linear DACSs) to connect nonlinear DACSs with non-
linear ODECSs. Via the explicitation with driving variables, we can interpret the linearizability of a DACS under
internal or external feedback equivalence as that of an explicitation system under system feedback equivalence (see
Definition 8).

The article is organized as follows: In Section 2, we define the external and the internal feedback equivalences
and discuss their relations with solutions. In Section 3, we use the notion of explicitation with driving variables to
connect DACSs with ODECSs. Necessary and sufficient conditions for both the external and the internal feedback lin-
earization problems of DACSs are given in Section 4. We illustrate the results of Section 4 by the two examples in
Section 5. The conclusions and perspectives of this article are given in Section 6 and a technical proof is given in
Appendix.
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2 EXTERNAL AND INTERNAL FEEDBACK EQUIVALENCE

We use the following notations in this article: We denote by TxM ∈ Rn the tangent space at x ∈ M of a differentiable
submanifold M of Rn. We use k to denote the class of k-times differentiable functions and GL(n,R) to denote the group of
nonsingular matrices of Rn×n. For a smooth map f ∶ X → R, we denote its differential by df =

∑n
i=1

𝜕f
𝜕xi

dxi = [ 𝜕f
𝜕x1
,… ,

𝜕f
𝜕xn

].
For a map A ∶ X → Rm×n, ker A(x), Im A(x) and rank A(x) are the kernel, the image and the rank of A at x, respectively. For
a full row rank map R ∶ X → Rr×n, we denote by R† ∶ X → Rn×r the right inverse of R, that is, RR† = Ir. For two column
vectors v1 ∈ Rm and v2 ∈ Rn, we write (v1, v2) = [vT

1 , v
T
2 ]

T ∈ Rm+n. We assume the reader is familiar with basic notions of
differential geometry such as smooth embedded submanifolds, involutive distributions and refer the reader for example,
to the book40 for the formal definitions of such notions.

Definition 1 (solutions and admissible set). For a DACS Ξu
l,n,m = (E,F,G), a curve (x,u) ∶ I → X × Rm defined on an

open interval I ⊆ R with x(⋅) ∈ 1 and u(⋅) ∈ 0, is called a solution of Ξu if for all t ∈ I, E(x(t))ẋ(t) = F(x(t)) + G(x(t))u(t).
We call a point xa ∈ X admissible if there exists at least one solution (x(⋅),u(⋅)) such that x(ta) = xa for a certain ta ∈ I. The
set of all admissible points will be called the admissible set (or the consistency set) of Ξu and denoted by Sa.

A smooth connected embedded submanifold M is called controlled invariant if for any point x0 ∈ M, there exists
a solution (x,u) ∶ I → M × Rm such that x(t0) = x0 for a certain t0 ∈ I and x(t) ∈ M, ∀ t ∈ I. Fix an admissible point
xa ∈ X , a smooth connected embedded submanifold M containing xa is called locally controlled invariant if there exists a
neighborhood U of xa such that M ∩ U is controlled invariant.

Definition 2 (locally maximal controlled invariant submanifold). A locally controlled invariant submanifold M∗,
around an admissible point xa, is called maximal if there exists a neighborhood U of xa such that for any other locally
controlled invariant submanifold M, we have M ∩ U ⊆ M∗ ∩ U.

The locally maximal controlled invariant submanifold M∗ of a DACS can be constructed via the following geometric
reduction method:

Definition 3 (geometric reduction method19,20). For a DACS Ξu
l,n,m = (E,F,G), fix a point xp ∈ X . Let U0 be a connected

subset of X containing xp. Step 0: Set M0 = X and Mc
0 = U0. Step k (k > 0): Suppose that a sequence of smooth connected

embedded submanifolds Mc
k−1 ⊊ · · · ⊊ Mc

0 of Uk−1 for a certain k − 1, have been constructed. Define recursively

Mk ∶=
{

x ∈ Mc
k−1 | F(x) ∈ E(x)TxMc

k−1 + Im G(x)
}
.

As long as xp ∈ Mk, let Mc
k = Mk ∩ Uk be a smooth embedded connected submanifold for some neighborhood Uk ⊆

Uk−1 of xp.

Proposition 1 (20). In the above geometric reduction method, there always exists a smallest k∗ such that either k∗ is the
smallest integer for which xp ∉ Mk∗+1 or k∗ is the smallest integer such that xp ∈ Mc

k∗+1 and Mc
k∗+1 ∩ Uk∗+1 = Mc

k∗ ∩ Uk∗+1.
In the latter case, denote M∗ = Mc

k∗+1 and assume that there exists an open neighborhood U∗ ⊆ Uk∗+1 of xp such that
dim E(x)TxM∗ = const. and E(x)TxM∗ + Im G(x) = const. for all x ∈ M∗ ∩ U∗, then

(i) xp is an admissible point, that is, xp = xa and M∗ is the locally maximal controlled invariant submanifold around xp;
(ii) M∗ coincides locally with the admissible set Sa, that is, M∗ ∩ U∗ = Sa ∩ U∗.

By item (ii) of Proposition 1, the admissible set Sa locally coincides with M∗ on the neighborhood U∗ of xp. So
any point x0 ∈ U∗ ⧵ M∗ is not admissible and there exist no solutions passing through x0. Thus to study solutions
of a DACS, it is convenient to consider only the restriction of the DACS to its locally maximal controlled invariant
submanifold M∗. We have shown how to restrict a DACS to the submanifold M∗ in Remark 3.4(iv) and Theorem
4.4(i) of Reference 20 with the help of normal forms, now we define formally the notion of local restriction as
follows.

Consider a DACS Ξu
l,n,m = (E,F,G) and fix an admissible point xa ∈ X . Let M∗ be the n∗-dimensional maximal con-

trolled invariant submanifold of Ξu around xa. Assume that there exists a neighborhood U of xa such that for all
x ∈ M∗ ∩ U,

(CR) dim E(x)TxM∗ = const. = r∗ and E(x)TxM∗ + Im G(x) = const. = r∗ + (m − m∗).
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Let 𝜓 ∶ U → Rn be a local diffeomorphism and z = 𝜓(x) = (z1, z2) be local coordinates on U such that M∗ ∩ U =
{z2 = 0}, thus z1 are local coordinates on M∗ ∩ U. Then in the new z-coordinates, the DACS Ξu becomes a system Ξ̃u

l,n,m =
(Ẽ, F̃, G̃), given by

[
Ẽ1(z1, z2) Ẽ2(z1, z2)

] [ż1

ż2

]
= F̃(z1, z2) + G̃(z1, z2)u,

where Ẽ1 ∶ U → Rl×n∗ , Ẽ2 ∶ U → Rl×(n−n∗), Ẽ◦𝜓 =
[
Ẽ1◦𝜓 Ẽ2◦𝜓

]
= E ⋅

(
𝜕𝜓

𝜕x

)−1
, F̃◦𝜓 = F and G̃◦𝜓 = G. Set z2 = 0 to

have the following system (which is defined on M∗)

[
Ẽ1(z1, 0) Ẽ2(z1, 0)

] [ż1

0

]
= F̃(z1, 0) + G̃(z1, 0)u. (4)

By (CR), there exist a neighborhood U1 ⊆ U of xa and Q ∶ M∗ ∩ U1 → GL(l,R) such that Ẽ1
1(z1) and G̃2(z1) below are of

full row rank,

Q(z1)
[
Ẽ1(z1, 0) F̃(z1, 0) G̃(z1, 0)

]
=
⎡⎢⎢⎢⎣
Ẽ1

1(z1) F̃1(z1) G̃1(z1)
0 F̃2(z1) G̃2(z1)
0 F̃3(z1) 0

⎤⎥⎥⎥⎦ ,
where Ẽ1

1, G̃2 are smooth functions defined on M∗ ∩ U1 with values in Rr∗×n∗ and R(m−m∗)×m, respectively, and F̃1, F̃2,
F̃3 and G̃1 are matrix-valued functions of appropriate sizes. Since G̃2(z1) is of full row rank, we can always assume[

G̃1(z1)
G̃2(z1)

]
=
[

G̃1
1(z1) G̃2

1(z1)
G̃1

2(z1) G̃2
2(z1)

]
with G̃2

2 ∶ M∗ ∩ U1 → GL(m − m∗,R) (if not, we permute the components of u such that

G̃2
2(z1) is invertible), where G̃1

1, G̃2
1 and G̃1

2 are of appropriate sizes. Thus, via Q and the following feedback transformation
(note that au, bu are defined on M∗ and bu(z1) is invertible),

[
u1

u2

]
= au(z1) + bu(z1)u =

[
0

F̃2(z1)

]
+

[
Im∗ 0

G̃1
2(z1) G̃2

2(z1)

]
u,

the DACS (4) is transformed into

⎡⎢⎢⎢⎣
Ē1

1(z1)
0
0

⎤⎥⎥⎥⎦ ż1 =
⎡⎢⎢⎢⎣
F1(z1)

0
F3(z1)

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
G

1
1(z1) G

2
1(z1)

0 Im−m∗

0 0

⎤⎥⎥⎥⎦
[

u1

u2

]
, (5)

where Ē1
1 = Ẽ1

1, F3 = F̃3, F1 = F̃1 − G̃2
1(G̃

2
2)−1F̃2, G

1
1 = G̃1

1 − G̃2
1(G̃

2
2)−1G̃1

2 and G
2
1 = G̃2

1(G̃
2
2)−1.

Definition 4 (restriction). Consider a DACS Ξu = (E,F,G) with an n∗-dimensional maximal controlled invariant sub-
manifold around an admissible point xa. Assume that condition (CR) holds for all x ∈ M∗ around xa. Then the local
M∗-restriction of Ξu, denoted by Ξu|M∗ , is given by

Ξu|M∗ = Ξu∗ ∶ E∗(z∗)ż∗ = F∗(z∗) + G∗(z∗)u∗. (6)

where z∗ = z1, u∗ = u1, E∗ = Ē1
1 ∶ M∗ → Rr∗×n∗ , F∗ = F1 ∶ M∗ → Rr∗ and G∗ = G

1
1 ∶ M∗ → Rr∗×m∗ come from (5), and

where the map E∗ is of full row rank r∗.

Remark 1. The restriction Ξu|M∗ is a DACS of the form (1) with associated dimensions r∗,n∗,m∗, that is, Ξu|M∗ = Ξu∗

r∗,n∗,m∗ .
It is important to know that Ξu and Ξu|M∗ has isomorphic solutions (see Theorem 4.4(i) of20). More specifically, a curve
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(x(⋅),u(⋅)) is a solution ofΞu passing through a point x0 ∈ X if and only if (z∗(⋅),u∗(⋅)) is a solution ofΞu|M∗ passing through
z∗0 ∈ M∗, where (z∗(⋅), 0) = 𝜓(x(⋅)), (z∗0 , 0) = 𝜓(x0) and (u∗(⋅), 0) = au(z∗(⋅)) + bu(z∗(⋅))u(⋅).

Now we define the external and the internal feedback equivalences for nonlinear DACSs and compare them by
discussing their relations with solutions.

Definition 5 (external feedback equivalence). Two DACSs Ξu
l,n,m = (E,F,G) and Ξ̃ũ

l,n,m = (Ẽ, F̃, G̃) defined on X and X̃ ,
respectively, are called externally feedback equivalent, shortly ex-fb-equivalent, if there exist a diffeomorphism𝜓 ∶ X → X̃
and smooth functions Q ∶ X → GL(l,R), 𝛼u ∶ X → Rm, 𝛽u ∶ X → GL(m,R) such that

Ẽ(𝜓(x)) = Q(x)E(x)
(
𝜕𝜓(x)
𝜕x

)−1
, F̃(𝜓(x)) = Q(x) (F(x) + G(x)𝛼u(x)) , G̃(𝜓(x)) = Q(x)G(x)𝛽u(x). (7)

The ex-fb-equivalence of two DACSs Ξu and Ξ̃ũ is denoted by Ξuex−fb∼ Ξ̃ũ. If 𝜓 ∶ U → Ũ is a local diffeomorphism
between neighborhoods U of a point xp and Ũ of a point x̃p = 𝜓(xp), and Q(x), 𝛼u(x), 𝛽u(x) are defined on U, we will talk
about local ex-fb-equivalence.

Definition 6 (internal feedback equivalence). Consider two DACSs Ξu = (E,F,G) and Ξ̃ũ = (Ẽ, F̃, G̃) defined on X and
X̃ , respectively. Fix two admissible points xa ∈ X and x̃a ∈ X̃ . Assume that

(A1) M∗ and M̃∗ are locally maximal controlled invariant submanifolds ofΞu around xa and of Ξ̃ũ around x̃a, respectively.
(A2) M∗ and M̃∗ satisfy the constant rank condition (CR) around xa and x̃a, respectively.

Then, Ξu and Ξ̃ũ are called locally internally feedback equivalent, shortly locally in-fb-equivalent, if their restrictions
Ξu|M∗ and Ξ̃ũ|M̃∗ are ex-fb-equivalent. We will denote the locally in-fb-equivalence of two DACSs by Ξuin−fb∼ Ξ̃ũ.

Remark 2. The dimensions of two locally in-fb-equivalent DACSs Ξu and Ξ̃ũ are not necessarily the same. However, since
Ξu|M∗ = Ξu∗

l∗,n∗,m∗ and Ξ̃ũ|M̃∗ = Ξ̃ũ∗

l̃∗,ñ∗,m̃∗ are required to be external feedback equivalent, their dimensions have to be the
same, that is, r∗ = r̃∗, n∗ = ñ∗ and m∗ = m̃∗.

Both the ex-fb-equivalence and the in-fb-equivalence preserve solutions of DACSs. Indeed, consider two
ex-fb-equivalent DACSs Ξu and Ξ̃ũ, the diffeomorphism x̃ = 𝜓(x) and the feedback transformation u = 𝛼u(x) + 𝛽u(x)ũ
(defined on X) establish a one to one correspondence between solutions (x,u) of Ξu and solutions (x̃, ũ) of Ξ̃ũ, that is,
x̃ = 𝜓(x) and u = 𝛼u(x) + 𝛽u(x)ũ. For two locally in-fb-equivalent DACSs Ξu and Ξ̃ũ, by Ξu|M∗

ex−fb∼ Ξ̃ũ|M̃∗ , there exist a
diffeomorphism z̃∗ = 𝜓∗(z∗) between M∗ and M̃∗, and a feedback transformation u∗ = 𝛼u∗ (z∗) + 𝛽u∗ (z∗)ũ∗ defined on M∗

mapping solutions (z∗,u∗) of Ξu|M∗ into solutions (z̃∗, ũ∗) of Ξ̃ũ|M̃∗ . Recall from Remark 1 that the DACSs Ξu and Ξ̃ũ have
isomorphic solutions with their restrictions Ξu|M∗ and Ξ̃ũ, respectively. So solutions (x,u) of Ξu are also in a one-to-one
correspondence with solutions (x̃, ũ) of Ξ̃ũ if Ξu in−fb∼ Ξ̃ũ.

Conversely, if solutions of two DACSs Ξu and Ξ̃ũ are in a one-to-one correspondence via a diffeomorphism and a
feedback transformation, then the two DACSs are in-fb-equivalent, however, they are not necessarily ex-fb-equivalence.
The reason is that solutions of DACSs exist on maximal controlled invariant submanifolds only, by assuming two DACSs
have corresponding solutions, we only have the information that the two restrictions Ξu|M∗ and Ξ̃ũ|M̃∗ can be transformed
into each other via a Q-transformation and a feedback transformation defined on M∗, together with a diffeomorphism
between M∗ and M̃∗, we do not know, however, if those transformations can be extended outside the submanifolds M∗

and M̃∗.

Example 1. Consider two DACSs Ξu
3,3,1 = (E,F,G) defined on X = R3 and Ξ̃ũ

3,3,1 = (Ẽ, F̃, G̃) defined on X̃ = R3, where

E(x) =
⎡⎢⎢⎢⎣
1 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎦ , F(x) =
⎡⎢⎢⎢⎣
(x1)2

ex1 x2

x3

⎤⎥⎥⎥⎦ , G(x) =
⎡⎢⎢⎢⎣
ex2

0
0

⎤⎥⎥⎥⎦ , Ẽ(x̃) =
⎡⎢⎢⎢⎣
1 x̃2 0
0 0 0
0 1 0

⎤⎥⎥⎥⎦ , F̃(x̃) =
⎡⎢⎢⎢⎣

x̃2

ex̃1 x̃2

x̃3

⎤⎥⎥⎥⎦ , G̃(x̃) =
⎡⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎦ .
It is seen that M∗ = {(x1, x2, x3) ∈ R3 | x2 = x3 = 0} and M̃∗ = {(x̃1, x̃2, x̃3) ∈ R3 | x̃2 = x̃3 = 0}. The restrictions Ξu|M∗ ∶
ẋ1 = (x1)2 + u and Ξ̃ũ|M̃∗ ∶ ̇̃x1 = ũ are ex-fb-equivalent via Q(x1) = 1, x̃1 = 𝜓(x1) = x1 and ũ = (x1)2 + u. Thus we have
Ξu in−fb∼ Ξ̃ũ. It is clear that solutions ((x1, 0, 0),u) of Ξu and solutions ((x̃1, 0, 0), ũ) of Ξ̃ũ have a one-to-one correspondence.
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However, the two DACSs are not ex-fb-equivalent since rank E(x) ≠ rank Ẽ(x̃) (the matrix-valued functions E(x) and Ẽ(x̃)
of two ex-fb-equivalent DACSs should have the same rank).

Both the external and the internal feedback equivalences play an important role for DACSs. The internal feedback
equivalence is convenient when we are only interested in solutions passing through an admissible point and evolving on
M∗. The ex-fb-equivalence is useful when the initial point x0 ∉ M∗, that is, x0 is not admissible, then there are no solutions
passing through x0 but there may still exist a jump from the inadmissible point x0 to an admissible one on M∗, see our
recent publication,41 where we use external equivalence to study jump solutions of nonlinear DAEs. Note that if the
initial state x0 is not admissible, the jump of x0 at t = t0 will cause a distributional term, that is, the Dirac impulse 𝛿 in the
derivatives ẋ. For linear DAEs/DACSs, such impulsive terms can be explained by the distributional solution (generalized
function) theory. However, for a nonlinear DACS being feedback equivalent to a linear one with distributional solutions,
the interpretations of the impulsive solutions in the nonlinear coordinates are still unclear and out of the scope of this
article. The distributional solution theory may not be a suitable setting for nonlinear systems because the image of a
nonlinear map on the Dirac impulse 𝛿 is in general not well-defined.

3 EXPLICITATION OF NONLINEAR DIFFERENTIAL-ALGEBRAIC
CONTROL SYSTEMS

We have proposed the notion of explicitation (with driving variables) for linear DACS in Reference 39 (or see Chapter 3
of Reference 42), we now extend this notion to nonlinear DACSs.

Definition 7 (explicitation with driving variables). Given a DACS Ξu
l,n,m = (E,F,G), fix a point xp ∈ X . Assume that

rank E(x) = const. = r around xp. Then locally there exists Q ∶ X → GL(l,R) such that E1 of Q(x)E(x) =
[

E1(x)
0

]
is of full

row rank r, denote

Q(x)F(x) =

[
F1(x)
F2(x)

]
, Q(x)G(x) =

[
G1(x)
G2(x)

]
.

Define locally the maps f ∶ X → Rn, gu ∶ X → Rn×m, gv ∶ X → Rn×s, h ∶ X → Rp, lu ∶ X → Rp×m, where s = n − r and
p = l − r, such that

f (x) = E†
1(x)F1(x), gu(x) = E†

1(x)G1(x), Im gv(x) = ker E1(x), h(x) = F2(x), lu(x) = G2(x),

where E†
1 is a right inverse of E1. By a (Q, v)-explicitation, we will call any ODECS

Σuv ∶

{
ẋ = f (x) + gu(x)u + gv(x)v,
y = h(x) + lu(x)u,

(8)

where v ∈ Rs×n is called the vector of driving variables. System (8) is denoted by Σuv
n,m,s,p = (f , gu, gv, h, lu) or,

simply, Σuv.

Clearly, in the above definition, the choices of the invertible map Q, the right inverse E†
1 and the map gv satisfying

Im gv = ker E1 = ker E, are not unique. The following proposition shows that a (Q, v)-explicitation of a given DACS Ξu is
an ODECS defined up to a feedback transformation, an output multiplication and a generalized output injection, that is,
a class of control systems. Throughout the class of all (Q, v)-explicitations of Ξu will be called the explicitation class. For
a particular ODECS Σuv belonging to the explicitation class Expl(Ξu) of Ξu, we will write Σuv ∈ Expl(Ξu).

Proposition 2. Assume that an ODECS Σuv
n,m,s,p = (f , gu, gv, h, lu) is a (Q, v)-explicitation of a DACS Ξu = (E,F,G) corre-

sponding to the choice of invertible matrix Q(x), right inverse E†
1(x) and matrix gv(x). We have that an ODECS Σ̃u,ṽ

n,m,p =
(f̃ , g̃u, g̃ṽ, h̃, l̃u) is a (Q̃, ṽ) -explicitation of Ξu corresponding to the choice of invertible matrix Q̃(x), right inverse Ẽ†

1(x) and
matrix g̃ṽ(x) if and only if Σuv and Σ̃u,ṽ are equivalent via a v-feedback transformation of the form v = 𝛼v(x) + 𝜆(x)u + 𝛽v(x)ṽ,
a generalized output injection 𝛾(x)y = 𝛾(x)(h(x) + lu(x)u) and an output multiplication ỹ = 𝜂(x)y, which map
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f → f̃ = f + 𝛾h + gv𝛼v, gu → g̃u = gu + 𝛾lu + gv𝜆, gv → g̃ṽ = gv𝛽v, h → h̃ = 𝜂h, lu → l̃u = 𝜂lu.

where 𝛼v(x), 𝛽v(x), 𝛾(x), 𝜆(x), 𝜂(x) are smooth matrix-valued functions, and 𝛽v(x) and 𝜂(x) are invertible.

We omit the proof of Proposition 2 since it follows the same line as that of Proposition 2.3 in Reference 39. Now we
will define an equivalence relation for two ODECSs of the form (8).

Definition 8 (system feedback equivalence). Two ODECSs Σuv
n,m,s,p = (f , gu, gv, h, lu) and Σ̃ũṽ

n,m,s,p = (f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ) defined
on X and X̃ , respectively, are called system feedback equivalent, or shortly sys-fb-equivalent, if there exist a diffeo-
morphism 𝜓 ∶ X → X̃ , smooth functions 𝛼u(x), 𝛼v(x), 𝜆(x) and 𝛾(x) with values in Rm, Rs, Rs×m and Rn×p, respectively,
and invertible smooth matrix-valued functions 𝛽u(x), 𝛽v(x) and 𝜂(x) with values in GL(m,R), GL(s,R) and GL(p,R),
respectively, such that

[
f̃◦𝜓 g̃ũ◦𝜓 g̃ṽ◦𝜓

h̃◦𝜓 l̃ũ
◦𝜓 0

]
=

[
𝜕𝜓

𝜕x
𝜕𝜓

𝜕x
𝛾

0 𝜂

][
f gu gv

h lu 0

]⎡⎢⎢⎢⎣
1 0 0
𝛼u 𝛽u 0

𝛼v + 𝜆𝛼u 𝜆𝛽u 𝛽v

⎤⎥⎥⎥⎦ . (9)

The sys-fb-equivalence of two control systems will be denoted by Σuvsys−fb∼ Σ̃ũṽ. If 𝜓 ∶ U → Ũ is a local diffeomorphism
between neighborhoods U of a point xp and Ũ of a point x̃p = 𝜓(xp), and 𝛼u, 𝛼v, 𝜆, 𝛾 , 𝛽u, 𝛽v, 𝜂 are defined on U, we will
speak about local sys-fb-equivalence.

The two ODECSsΣuv and Σ̃uṽ of Proposition 2 are, by definition, system feedback equivalent with𝜓 being identity, 𝛼u =
0 and 𝛽u = Im. The following observation is crucial and will play an important role for studying the feedback linearization
problems of DACSs in Section 4, which points out that the feedback transformations of explicitation systems of DACSs
have a triangular form which are different from those of classical (ODE) control systems.

Remark 3. Observe that, in (9), there are two kinds of feedback transformations. Namely,

u = 𝛼u(x) + 𝛽u(x)ũ and v = 𝛼v(x) + 𝜆(x)u + 𝛽v(x)ṽ,

which can be written together as a feedback transformation of (u, v) with a (lower) triangular form:[
u
v

]
=

[
𝛼u(x)
𝛼v(x)

]
+

[
𝛽u(x) 0
𝜆(x) 𝛽v(x)

][
ũ
ṽ

]
. (10)

It implies that there are two kinds of inputs in the ODECSs of the form (8), one input (the driving variable v) is
more “powerful” than the other input (the original control variable u), since when transforming v, we can use both
u and x, but when transforming u, we are not allowed to use v. Another difference between u and v is that the input
u is injected into the output y via luu, but the driving variable v is not directly injected into the output y. In a prac-
tical system, the variables u are predefined control inputs, such as external forces, which can be changed actively in
order to act on the system. The driving variables v are, roughly speaking, the derivatives of the free variables in the
generalized state x, such free variables may come from unknown constraint forces or some redundancies of mathe-
matical modeling. It can be seen from Example 3 below that u = (Fx,Fy) are the translation force generated by some
actuators as electrical motors, the driving variable v = Ḟf , where Ff is a friction force which is an unknown constraint
force.

The following theorem connects ex-fb-equivalence of two DACSs with sys-fb-equivalence of two ODECSs (explicita-
tions). Note that the results of Theorem 1 is a general framework to use classic nonlinear control theory to study nonlinear
DACSs, we will use it for the feedback linearization problems discussed in Section 4.

Theorem 1. Consider two DACSs Ξu
l,n,m = (E,F,G) and Ξ̃ũ

l,n,m = (Ẽ, F̃, G̃) defined on X and X̃, respectively. Assume that
rank E(x) = const. = r in a neighborhood U of a point xp ∈ X and rank Ẽ(x̃) = r in a neighborhood Ũ of a point x̃p ∈ X̃.
Then, given any ODECSs Σuv

n,m,s,p = (f , gu, gv, h, lu) ∈ Expl(Ξu) and Σ̃ũṽ
n,m,s,p = (f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ) ∈ Expl(Ξ̃ũ), we have that locally

Ξuex−fb∼ Ξ̃ũ if and only if Σuvsys−fb∼ Σ̃ũṽ.



1886 CHEN

Proof. By the assumptions that rank E(x) and rank Ẽ(x) are constant and equal to r around xp and x̃p, respectively, there
exist invertible matrix-valued functions Q ∶ U → GL(l,R) and Q̃ ∶ Ũ → GL(l,R), defined on neighborhoods U of xp and Ũ

of x̃p, respectively, such that E′(x) = Q(x)E(x) =
[

E1(x)
0

]
and Ẽ′(x̃) = Q̃(x̃)Ẽ(x̃) =

[
Ẽ1(x̃)

0

]
, where E1 ∶ U → Rr×n and Ẽ1 ∶

Ũ → Rr×n are of full row rank. We have Ξuex−fb∼ Ξu′ = (E′,F′,G′) and Ξ̃ũex−fb∼ Ξ̃ũ′
= (Ẽ′

, F̃′
, G̃′) via Q(x) and Q̃(x̃), respectively,

where

F′(x) = QF(x) =

[
F1(x)
F2(x)

]
, G′(x) = QG(x) =

[
G1(x)
G2(x)

]
, F̃′(x̃) = Q̃F̃(x̃) =

[
F̃1(x̃)
F̃2(x̃)

]
, G̃′(x̃) = Q̃G̃(x̃) =

[
G̃1(x̃)
G̃2(x̃)

]
.

In this proof, without loss of generality, we will assume thatΞu = Ξu′ and Ξ̃ũ = Ξ̃ũ′
, sinceΞuex−fb∼ Ξ̃ũ if and only ifΞu′ex−fb∼ Ξ̃ũ′.

Moreover, choose maps f , gu, gv, h, lu and f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ such that

f (x) = E†
1(x)F1(x), gu(x) = E†

1(x)G1(x), Im gv(x) = ker E1(x), h(x) = F2(x), lu(x) = G2(x),

f̃ (x̃) = Ẽ†
1(x̃)F̃1(x̃), g̃ũ(x̃) = Ẽ†

1(x̃)G̃1(x̃), Im g̃ṽ(x̃) = ker Ẽ1(x̃), h̃(x̃) = F̃2(x̃), l̃ũ(x̃) = G̃2(x̃), (11)

where E†
1(x) and Ẽ†

1(x̃) are right inverses of E1(x) and Ẽ1(x̃), respectively. Then by Definition 7,

Σuv = (f , gu, gv, h, lu) ∈ Expl(Ξu), Σ̃ũṽ = (f̃ , g̃ũ, g̃ṽ, h̃, l̃ũ) ∈ Expl(Ξ̃ũ).

It is seen from Proposition 2 that any control system in Expl(Ξu) is sys-fb-equivalent to Σuv and that any control system in
Expl(Ξ̃ũ) is sys-fb-equivalent to Σ̃ũṽ. Without loss of generality, in the remaining part of the proof, we use Σuv and Σ̃ũṽ with
system matrices given by (11) to represent two ODECSs in Expl(Ξu) and Expl(Ξ̃ũ), respectively. Throughout the proof
below, we may drop the argument x for the functions E(x), F(x), G(x),…, for ease of notation.

If. Suppose that locally Σuvsys−fb∼ Σ̃ũṽ. Then there exist a local diffeomorphism x̃ = 𝜓(x) and matrix-valued functions 𝛼u,
𝛼v, 𝜆, 𝛾 , 𝛽u, 𝛽v, 𝜂 defined on a neighborhood U of xp such that the system matrices satisfy relations (9) of Definition 8.

First, consider g̃ṽ◦𝜓 = 𝜕𝜓

𝜕x
gv𝛽v. By Im gv = ker E1, Im g̃ṽ = ker Ẽ1, we have ker Ẽ1◦𝜓 = 𝜕𝜓

𝜕x
ker E1. Thus there exists Q1 ∶

U → GL(r,R) such that

Ẽ1◦𝜓 = Q1E1

(
𝜕𝜓

𝜕x

)−1

. (12)

Then, by (9), the following relation holds:

[
f̃◦𝜓 g̃ũ◦𝜓

h̃◦𝜓 l̃ũ
◦𝜓

]
=

[
𝜕𝜓

𝜕x
𝜕𝜓

𝜕x
𝛾

0 𝜂

][
f gu gv

h lu 0

] ⎡⎢⎢⎢⎣
1 0
𝛼u 𝛽u

𝛼v + 𝜆𝛼u 𝜆𝛽u

⎤⎥⎥⎥⎦ .
Substituting (11) into the above equation, we get

[
Ẽ†

1◦𝜓 ⋅ F̃1◦𝜓 Ẽ†
1◦𝜓 ⋅ G̃1◦𝜓

F̃2◦𝜓 G̃2◦𝜓

]
=

[
𝜕𝜓

𝜕x
𝜕𝜓

𝜕x
𝛾

0 𝜂

][
E†

1F1 E†
1G1 gv

F2 G2 0

]⎡⎢⎢⎢⎣
1 0
𝛼u 𝛽u

𝛼v + 𝜆𝛼u 𝜆𝛽u

⎤⎥⎥⎥⎦ .
Premultiply the above equation by

[
Ẽ1◦𝜓 0

0 Ip

]
=
⎡⎢⎢⎣
Q1E1

(
𝜕𝜓

𝜕x

)−1
0

0 Ip

⎤⎥⎥⎦
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to get [
F̃1◦𝜓 G̃1◦𝜓

F̃2◦𝜓 G̃2◦𝜓

]
=

[
Q1 Q1E1𝛾

0 𝜂

][
F1 G1

F2 G2

][
1 0
𝛼u 𝛽u

]
. (13)

Now from Equations (12), (13) and Definition 5, it can be seen that Ξuex−fb∼ Ξ̃ũ via the transformations defined by

x̃ = 𝜓(x), Q =
[

Q1 Q1E1𝛾
0 𝜂

]
, 𝛼u and 𝛽u.

Only if. Suppose that Ξuex−fb∼ Ξ̃ũ (in a neighborhood U of xp). Assume that Ξu and Ξ̃u are ex-fb-equivalent via an invert-

ible matrix-valued function Q =
[

Q1 Q2
Q3 Q4

]
, x̃ = 𝜓(x), 𝛼u, 𝛽u, where Q1 ∶ U → Rr×r and Q2, Q3, Q4 are matrix-valued

functions of appropriate sizes. Then by

QE = Ẽ◦𝜓 𝜕𝜓
𝜕x

⇒

[
Q1 Q2

Q3 Q4

][
E1

0

]
=

[
Ẽ1◦𝜓

0

]
𝜕𝜓

𝜕x
,

we can deduce that

Ẽ1◦𝜓 = Q1E1

(
𝜕𝜓

𝜕x

)−1

. (14)

Moreover, we have Q3 = 0 and Q1 is invertible (since both E1 and Ẽ1 are of full row rank), which implies that Q4 is
invertible as well (since Q is invertible). Subsequently, by

F̃◦𝜓 = Q(F + G𝛼u) ⇒

[
F̃1◦𝜓

F̃2◦𝜓

]
=

[
Q1 Q2

0 Q4

]([
F1

F2

]
+

[
G1

G2

]
𝛼u

)
,

we have

F̃1◦𝜓 = Q1(F1 + G1𝛼
u) + Q2(F2 + G2𝛼

u) (15)

and

F̃2◦𝜓 = Q4(F2 + G2𝛼
u). (16)

Moreover, by

G̃◦𝜓 = QG𝛽u ⇒

[
G̃1◦𝜓

G̃2◦𝜓

]
=

[
Q1 Q2

0 Q4

][
G1

G2

]
𝛽u,

we have

G̃1◦𝜓 = Q1G1𝛽
u + Q2G2𝛽

u (17)

and

G̃2◦𝜓 = Q4G2𝛽
u. (18)

Recall the system matrices given in (11). First, from Im gv = ker E1, Im g̃ṽ◦𝜓 = ker Ẽ1◦𝜓 , and Equation (14), it is seen
that there exists 𝛽v ∶ U → GL(s,R) such that
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g̃ṽ◦𝜓 = 𝜕𝜓

𝜕x
gv𝛽v. (19)

Secondly, by Equations (14) and (15), we have

f̃◦𝜓 = Ẽ†
1◦𝜓 F̃1◦𝜓 = 𝜕𝜓

𝜕x
E†

1Q−1
1
[
Q1 Q2

] [F1 + G1𝛼
u

F2 + G2𝛼
u

]
= 𝜕𝜓

𝜕x
E†

1Q−1
1
[
Q1 Q2

] [F1 + G1𝛼
u + E1gv (𝜆𝛼u + 𝛼v)
F2 + G2𝛼

u

]
= 𝜕𝜓

𝜕x
(

f + gu𝛼u + gv (𝜆𝛼u + 𝛼v) + 𝛾 (h + lu𝛼u)
)
, (20)

where 𝛾 = E†
1Q−1

1 Q2, and 𝛼v and 𝜆 are matrix-valued functions of appropriate sizes. Thirdly, by Equation (17), we have

g̃ũ◦𝜓 = Ẽ†
1◦𝜓G̃1◦𝜓 = 𝜕𝜓

𝜕x
E†

1Q−1
1
[
Q1 Q2

] [G1𝛽
u

G2𝛽
u

]
= 𝜕𝜓

𝜕x
E†

1Q−1
1
[
Q1 Q2

] [G1𝛽
u + E1gv𝜆

G2𝛽
u

]
= 𝜕𝜓

𝜕x
(

gu𝛽u + gv𝜆 + 𝛾lu𝛽u) .
(21)

Note that we use the equations E1gv (𝜆𝛼u + 𝛼v) = 0 and E1gv𝜆 = 0 to deduce (20) and (21). At last, by Equations (16)
and (18) we have

h̃◦𝜓 = F̃2◦𝜓 = Q4(F2 + G2𝛼
u) = Q4 (h + lu𝛼u) (22)

and

l̃ũ
◦𝜓 = G̃2◦𝜓 = Q4G2𝛽

u = Q4lu𝛽u. (23)

Finally, it can be seen from (20), (21), (22), and (23), that Σuvsys−fb∼ Σ̃ũṽ via x̃ = 𝜓(x), 𝛼v, 𝛽v, 𝛼u, 𝛽u, 𝜆, 𝛾 = E†
1Q−1

1 Q2 and
𝜂 = Q4. ▪

4 EXTERNAL AND INTERNAL FEEDBACK LINEARIZATION

In this section, we discuss the problem that when a nonlinear DACS of the form (1) is locally externally or internally
feedback equivalent to a linear DACS of the form (2) with complete controllability. First, we review some definitions
and criteria for the complete controllability of linear DACSs. We denote by A−1ℬ, the preimage of a space ℬ under a
linear map A. The augmented Wong sequences (see e.g., References 2,7,39) of a linear DACS Δu

l,n,m = (E,H,L), given
by (2), are

𝒱0 ∶= R
n, 𝒱i+1 ∶= H−1(E𝒱i + Im L), i ≥ 0; (24)

𝒲0 ∶= 0, 𝒲i+1 ∶= E−1(H𝒲i + Im L), i ≥ 0. (25)

Additionally, recall the following sequence of subspaces (see e.g., Reference 2):

�̂�1 ∶= ker E, �̂�i+1 ∶= E−1(H�̂�i + Im L), i ≥ 1. (26)

For simplicity of notation, we denote K𝛽 = diag{K𝛽1 ,… ,K𝛽k} ∈ R(|𝛽|−k)×|𝛽|, L𝛽 = diag{L𝛽1 ,… ,L𝛽k} ∈ R(|𝛽|−k)×|𝛽|, 𝛽 =
diag{e𝛽1 ,… , e𝛽k} ∈ R|𝛽|×k, N𝛽 = diag{N𝛽1 ,… ,N𝛽k} ∈ R|𝛽|×|𝛽|, where 𝛽 is a multi-index 𝛽 = (𝛽1,… , 𝛽k) and |𝛽| = ∑k

i=1𝛽i,
and where

K𝛽i =
[
0 I𝛽i−1

]
∈ R(𝛽i−1)×𝛽i , e𝛽i =

[
0
1

]
∈ R𝛽i , L𝛽i =

[
I𝛽i−1 0

]
∈ R(𝛽i−1)×𝛽i , N𝛽i =

[
0 0

I𝛽i−1 0

]
∈ R𝛽i×𝛽i .
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Definition 5 applied to linear systems says that two linear DACSs Δu
l,n,m = (E,H,L) and Δ̃ũ

l,n,m = (Ẽ, H̃, L̃) are
ex-fb-equivalent if there exist constant invertible matrices Q, P, S and a matrix R such that Ẽ = QEP−1, H̃ = Q(H + LR)P−1,
L̃ = QLS.

Definition 9 (complete controllability in Reference 7). A linear DACS Δu
l,n,m = (E,H,L) is completely controllable if for

any x0, x1 ∈ Rn, there exist a solution (x,u) of Δu and t ∈ R+ such that x(0) = x0 and x(t) = x1.

Lemma 1 (7). For a linear DACS Δu
l,n,m = (E,H,L), the following statements are equivalent:

(i) Δu is completely controllable.
(ii) Im E + Im H + Im L = Im E + Im L and Im CE + Im CH + Im CL = Im C(𝜆E − H) + Im CL, ∀𝜆 ∈ C.

(iii) 𝒱∗ ∩ 𝒲 ∗ = Rn, where 𝒱∗ and 𝒲∗ are the limits of the augmented Wong sequences (24) and (25), respectively;
(iv) Δu is ex-fb-equivalent (under linear transformations) to

⎡⎢⎢⎢⎢⎢⎣

I|𝜌| 0
0 L𝜌
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
[
�̇�1

�̇�2

]
=

⎡⎢⎢⎢⎢⎢⎣

NT
𝜌 0

0 K𝜌

0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
[
𝜉1

𝜉2

]
+

⎡⎢⎢⎢⎢⎢⎣

𝜌 0
0 0
0 Im−m∗

0 0

⎤⎥⎥⎥⎥⎥⎦
[

u1

u2

]
,

where 𝜌 = (𝜌1,… , 𝜌m∗ ) and 𝜌 = (𝜌1,… , 𝜌s∗ ) are multi-indices, and s∗ = n − rank E.

We define (locally) internal and (locally) external feedback linearizability of nonlinear DACSs as follows.

Definition 10. Consider a DACS Ξu
l,n,m = (E,F,G) and fix an admissible point xa ∈ X . Then Ξu is called locally internally

(resp. externally) feedback linearizable around xa if Ξu is locally in-fb-equivalent (resp. ex-fb-equivalent) to a linear DACS
with complete controllability around xa.

We consider an ODECS Σuv
n,m,s,p = (f , gu, gv, h, lu), given by (8). If Σuv has no outputs, we denote it by Σuv

n,m,s = (f , gu, gv).
Then for Σuv

n,m,s = (f , gu, gv), define the following two sequences of distributions i and ̂i, called the linearizability
distributions of Σuv,

⎧⎪⎨⎪⎩
0 ∶= {0},
1 ∶= span

{
gu

1 ,… , gu
m, gv

1,… , gv
s
}
,

i+1 ∶= i + [f ,i], i = 1, 2,… ,

{ ̂1 ∶= span
{

gv
1,… , gv

s
}
,

̂i+1 ∶= i + [f , ̂i], i = 1, 2,… .
(27)

Remark 4. Consider a linear DACS Δu = (E,H,L), denote 𝒲i(Δu) and �̂�i(Δu) as the subspaces 𝒲i, given by (25), and �̂�i,
given by (26), of Δu, respectively. For a linear ODECS Λuv = (A,Bu,Bv,C,Du) (of the form (8) but with constant system
matrices), define the following two sequences of subspaces

0 ∶= {0}, i+1 ∶=
[
A Bw]([ i

Rm+s

]
∩ ker

[
C Dw]) , i ≥ 0,

and

̂1 ∶= Im Bv, ̂ i+1 ∶=
[
A Bw]([ ̂ i

Rm+s

]
∩ ker

[
C Dw]) , i ≥ 1,

where w = (u, v), Bw = [Bu,Bv] and Dw = [Du, 0]. We have proved in Proposition 2.10 of Reference 39 that if Λuv ∈
Expl(Δu), then

𝒲i(Δu) = i(Λuv), ∀i ≥ 0, �̂�i(Δu) = ̂ i(Λuv), ∀i ≥ 1.

Apparently, i and ̂ i are linear counterparts of i and ̂i, respectively, but they are for linear systems with outputs.
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Theorem 2 (internal feedback linearization). Consider a DACS Ξu
l,n,m = (E,F,G), fix an admissible point xa ∈ X. Let M∗

be the n∗-dimensional locally maximal controlled invariant submanifold of Ξu around xa. Assume that the constant rank
assumption (CR) is satisfied for x ∈ M∗ around xa. Then Ξu|M∗ is a DACS Ξu∗

r∗,n∗,m∗ = (E∗,F∗,G∗) of the form (6) and its
explicitation Expl(Ξu|M∗ ) is a class of ODECSs without outputs. The DACS Ξu is locally internally feedback linearizable if
and only if for one (and thus any) ODECS Σu∗v∗ = (f ∗, gu∗

, gv∗ ) ∈ Expl(Ξu|M∗ ), the linearizability distributions i and ̂i of
Σu∗v∗ satisfy the following conditions on M∗ around xa∶

(FL1) i and ̂i are of constant rank for 1 ≤ i ≤ n∗.
(FL2) n∗ = ̂n∗ = TM∗.
(FL3) i and ̂i are involutive for 1 ≤ i ≤ n∗ − 1.

Proof. Since Ξu satisfies condition (CR) around xa, its M∗-restriction Ξu|M∗ by Definition 4 is a DACS Ξu|M∗ = Ξu∗

r∗,n∗,m∗ =
(E∗,F∗,G∗) of the form (6) with E∗ being of full row rank r∗. It follows by the full row rankness of E∗ that the maps h = F2
and lu∗ = G2 are absent in the explicitation systems of Ξu∗ , which means that the output y = h(x) + lu∗ (x)u∗ is absent as
well (see Definition 7). Thus an ODECS Σu∗v∗

n∗,m∗,s∗ = (f ∗, gu∗
, gv∗ ) ∈ Expl(Ξu|M∗ ) is a control system without outputs, which

is in the form

Σw∗ ∶ ż∗ = f ∗(z∗) + gu∗ (z∗)u∗ + gv∗ (z∗)v∗,

where w∗ = (u∗, v∗), f ∗ = (E∗)†F∗, gu∗ = (E∗)†G∗, Im gv∗ = ker E∗ and s∗ = n∗ − r∗.
Only if. Suppose that Ξu is locally internally feedback linearizable, which means that its M∗-restriction Ξu|M∗ , given

by (6), is locally ex-fb-equivalent to a completely controllable linear DACS

Δũ∗ ∶ E∗ ̇̃z∗ = H∗z̃∗ + L∗ũ∗,

where E∗, H∗, L∗ are constant matrices of appropriate sizes. Then a linear ODECS Λw̃∗ = (A∗,Bũ∗
,Bṽ∗ ) ∈ Expl(Δũ∗), where

w̃∗ = (ũ∗, ṽ∗), is of the form

Λw̃∗ ∶ ̇̃z∗ = A∗z̃∗ + Bũ∗ ũ∗ + Bṽ∗ ṽ∗.

where A∗ = (E∗)†H∗, Bũ∗ = (E∗)†L∗ and Im Bṽ∗ = ker E∗. By Lemma 1, the complete controllability of Δũ∗ implies
�̂�n∗ (Δũ∗ ) = 𝒲n∗ (Δũ∗ ) = Rn∗ . By Proposition 2.10 of Reference 39 (see also Remark 4(ii)), we get

̂n∗ (Λw̃∗ ) = n∗ (Λw̃∗ ) = �̂�n∗ (Δũ∗ ) = 𝒲n∗ (Δũ∗ ) = R
n∗
.

Since Λw̃∗ is a linear control system without outputs, we have ̂n∗ (Λw̃∗ ) = ̂n∗ (Λw̃∗ ), n∗ (Λw̃∗ ) = n∗ (Λw̃∗ ). Hence,
̂n∗ (Λw̃∗ ) = n∗ (Λw̃∗ ) = Rn∗ . Thus Λw̃∗ satisfies (FL2). Moreover, since Λw̃∗ is a linear control system, it satisfies (FL1)
and (FL3) in an obvious way. Notice that the nonlinear system Σw∗ is locally sys-fb-equivalent to Λw̃∗ by Theorem 1
because Σw∗ ∈ Expl(Ξu|M∗ ), Δw̃∗ ∈ Expl(Δũ∗ ) and Ξu|M∗

ex−fb∼ Δũ∗ . Since Σw∗ and Λw̃∗ are control systems without outputs,
sys-fb-equivalence reduces to feedback equivalence. Thus Σw∗ and Λw̃∗ are locally feedback equivalent (via z̃∗ = 𝜓(z∗)
and two kinds of feedback transformations defined by 𝛼u∗

, 𝛼v∗ , 𝛽u∗
, 𝛽v∗ , 𝜆, see Remark 3). It is easy to verify by a direct

calculation that if ̂i and i are involutive, then the two distribution sequences are invariant for the two feedback equiv-
alent control systems Σw∗ and Λw̃∗ , that is, 𝜕𝜓

𝜕z∗
̂i(Σw∗ ) = ̂i(Δw̃∗ )◦𝜓 and 𝜕𝜓

𝜕z∗
i(Σw∗ ) = i(Δw̃∗ )◦𝜓 . So the system Σw∗ being

feedback equivalent to Λw̃∗ satisfies conditions (FL1)–(FL3) as well. It is seen from Proposition 2 that any other ODECS
Σ̂ŵ∗

∈ Expl(Ξu|M∗ ) is sys-fb-equivalent toΣw∗ , which meansΣw∗ is feedback equivalent (via two kinds of feedback transfor-
mations) to Σ̂ŵ∗

as any explicitation system in Expl(Ξu|M∗ ) has no outputs. So any other explicitation system Σ̂ŵ∗

satisfies
(FL1)-(FL3) of Theorem 2 as well.

If . Suppose that an ODECS Σu∗v∗ ∈ Expl(Ξu|M∗ ) satisfies (FL1)–(FL3) around xa. Then the following lemma
holds.

Lemma 2. The ODECS Σw∗ = Σu∗v∗
n∗,m∗,s∗ = (f ∗, gu∗

, gv∗ ) is locally feedback equivalent, via two kinds of feedback transforma-
tions (see Remark 3), to the Brunovský canonical form Reference 43 around xa, which is given by
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Σw̃∗

Br = Σũ∗ ṽ∗
Br ∶

{
�̇�1 = NT

𝜌 𝜉1 + 𝜌ũ∗,

�̇�2 = NT
𝜌
𝜉2 + 𝜌ṽ∗,

(28)

where w̃∗ = (ũ∗, ṽ∗), and 𝜌 = (𝜌1,… , 𝜌a) and 𝜌 = (𝜌1,… , 𝜌b) are multi-indices.

The proof of Lemma 2 is technical and is put into Appendix. Now we will prove that the M∗-restriction Ξu|M∗ , given
by (6), is locally ex-fb-equivalent to a linear DACS

Δũ∗ ∶

[
I|𝜌| 0
0 L𝜌

][
�̇�1

�̇�2

]
=

[
NT
𝜌 0

0 K𝜌

][
𝜉1

𝜉2

]
+

[𝜌
0

]
ũ∗. (29)

Notice that by Lemma 1, the linear DACS Δũ∗ is completely controllable. We have Σw̃∗

Br ∈ Expl(Δũ∗ ) because the
𝜉1-subsystems of Σw̃∗

Br and Δũ∗ coincide, NT
𝜌
= L†

𝜌
K𝜌 and ker L𝜌 = Im 𝜌. Recall that Σw∗ is locally sys-fb-equivalent to Σw̃∗

Br

(by Lemma 2) and Σw∗ ∈ Expl(Ξu|M∗ ), it is seen that Ξu|M∗ is locally ex-fb-equivalent to Δũ∗ around xa by Theorem 1.
Hence Ξu is locally in-fb-equivalent to the complete controllable linear DACS Δũ∗ , that is, Ξu is locally internally feedback
linearizable. ▪

Theorem 3 (external feedback linearization). Consider a DACS Ξu
l,n,m = (E,F,G), fix an admissible point xa ∈ X. Then

Ξu is locally externally feedback linearizable around xa if and only if there exists a neighborhood U ⊆ X of xa in which the
following conditions are satisfied.

(EFL1) rank E(x) and rank [E(x),G(x)] are constant.
(EFL2) F(x) ∈ Im E(x) + Im G(x) or, equivalently, the locally maximal invariant submanifold M∗ = Mc

0 = U.
(EFL3) For one (and thus any) control system Σuv ∈ Expl(Ξu|M∗ ), which is a system with no outputs on M∗ = U, the

linearizability distributions i and ̂i satisfy (FL1)–(FL3) of Theorem 2.

Proof. Only if. Suppose that Ξu is locally externally feedback linearizable. By definition, the DACS Ξu is locally
ex-fb-equivalent to a linear completely controllable DACS (via Q(x), z = 𝜓(x) and u = 𝛼u(x) + 𝛽u(x)ũ)

Δũ ∶ Ẽż = H̃z + L̃ũ. (30)

Thus by Definition 5, we have

Q(x)E(x) = Ẽ ⋅
𝜕𝜓(x)
𝜕x

, Q(x)(F(x) + G(x)𝛼u(x)) = H̃ ⋅ 𝜓(x), Q(x)G(x)𝛽u(x) = L̃. (31)

It is clear that Δũ satisfies (EFL1). So the system Ξu satisfies (EFL1) as well because the ranks of E(x) and [E(x),G(x)]
are invariant under ex-fb-equivalence. The complete controllability of Δũ implies H̃z ∈ Im Ẽ + Im L̃ (see Lemma 1(ii)).
By substituting (31), we get

Q(F + G𝛼u)(x) ∈ Im QE
(
𝜕𝜓

𝜕x

)−1

(x) + Im QG𝛽u(x) ⇒ F(x) + G(x)𝛼u(x) ∈ Im E(x) + Im G(x)

⇒ F(x) ∈ Im E(x) + Im G(x).

Thus Ξu satisfies (EFL2). Notice that by (EFL2), we have that the locally maximal controlled invariant submanifold
M∗ around xa coincides with the neighborhood U. Observe that the restriction Δũ|M∗ = Δũ|U , whose canonical form is
given by [

I|𝜌| 0
0 L𝜌

][
�̇�1

�̇�2

]
=

[
NT
𝜌 0

0 K𝜌

][
𝜉1

𝜉2

]
+

[𝜌
0

]
u∗,

is also a linear completely controllable DACS as Δũ. This means that Ξu is locally internally feedback linearizable. Thus
by Theorem 2, the DACS Ξu satisfies (EFL3) on M∗ = U.
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If. Suppose that in a neighborhood U of xa, the DACS Ξu satisfies (EFL1)–(EFL3). Denote rank E(x) = r,
rank [E(x),G(x)] = r + m̃∗ and m∗ = m − m̃∗. Then, by (EFL1), there exist an invertible Q(x) defined on U and a partition
of u = (u1,u2) such that

Q(x)E(x)ẋ = Q(x)F(x) + Q(x)G(x)u ⇒

⎡⎢⎢⎢⎣
E1(x)

0
0

⎤⎥⎥⎥⎦ ẋ =
⎡⎢⎢⎢⎣
F1(x)
F2(x)
F3(x)

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
G1

1(x) G2
1(x)

G1
2(x) G2

2(x)
0 0

⎤⎥⎥⎥⎦
[

u1

u2

]
,

where E1(x) is of full row rank r and G2
2(x) is a m̃∗ × m̃∗ invertible matrix-valued function defined on U. Moreover, by

(EFL2), we have F3(x) = 0 for x ∈ U. Now we use the feedback transformation[
ũ1

ũ2

]
=

[
0

F2(x)

]
+

[
Im∗ 0

G1
2(x) G2

2(x)

][
u1

u2

]
,

and the system becomes

⎡⎢⎢⎢⎣
E1(x)

0
0

⎤⎥⎥⎥⎦ ẋ =
⎡⎢⎢⎢⎣
F̃1(x)

0
0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
G̃1

1(x) G̃2
1(x)

0 Im̃∗

0 0

⎤⎥⎥⎥⎦
[

ũ1

ũ2

]
,

where F̃1 = F1 − G2
1(G

2
2)

−1F2, G̃1
1 = G1

1 − G2
1(G

2
2)

−1G1
2 and G̃2

1 = G2
1(G

2
2)

−1.

Premultiply the above equation by
⎡⎢⎢⎣
Ir −G̃2

1(x) 0
0 Im̃∗ 0
0 0 Il−r−m̃∗

⎤⎥⎥⎦ to get

⎡⎢⎢⎢⎣
E∗(x)

0
0

⎤⎥⎥⎥⎦ ẋ =
⎡⎢⎢⎢⎣
F∗(x)

0
0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
G∗(x) 0

0 Im̃∗

0 0

⎤⎥⎥⎥⎦
[

u∗

ũ∗

]
, (32)

where E∗ = E1, F∗ = F̃1, G∗ = G̃1
1, u∗ = ũ1 and ũ∗ = ũ2. Then by Definition 4, we have that Ξu|M∗ = Ξu|U is the following

system:

Ξu|M∗ ∶ E∗(x)ẋ = F∗(x) + G∗(x)u∗.

By Theorem 2 and condition (EFL3), Ξu|M∗ is locally ex-fb-equivalent (on M∗ = U) to a linear DACS Δũ∗ of the form
(29). It follows from (32) that Ξu is locally on U ex-fb-equivalent to

⎡⎢⎢⎢⎢⎢⎣

I|𝜌| 0
0 L𝜌
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
[
�̇�1

�̇�2

]
=

⎡⎢⎢⎢⎢⎢⎣

NT
𝜌 0

0 K𝜌

0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
[
𝜉1

𝜉2

]
+

⎡⎢⎢⎢⎢⎢⎣

𝜌 0
0 0
0 Im̃∗

0 0

⎤⎥⎥⎥⎥⎥⎦
[

u∗

ũ∗

]
,

which is completely controllable by Lemma 1. Therefore, Ξu is locally externally feedback linearizable by
Definition 10. ▪

Remark 5. (i) By conditions (EFL1) and (EFL2), the locally maximal controlled invariant submanifold M∗ around xa is
a neighborhood U of xa. So condition (EFL3) is actually, satisfied if and only if conditions (FL1)–(FL3) are satisfied on
M∗ = U, that is, locally around xa.

(ii) Note that when applying the geometric reduction method of Definition 3 to a linear DACS Δu = (E,H,L), we
get a sequence of subspaces 𝒱i = Mi, which is actually the augmented Wong sequence 𝒱i defined by (24). Thus the
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locally maximal controlled invariant submanifold M∗ is a nonlinear generalization of the limit 𝒱∗ of 𝒱i. So condition
(EFL2) together with condition ̂n∗ = n∗ = TM∗ of (FL2) are the nonlinear counterparts of condition 𝒱∗ ∩𝒲∗ = Rn of
Lemma 1, which assures that the linearized DACS is completely controllable. The sequences of distributions i and ̂i
can thus be seen as nonlinear generalizations of the augmented Wong sequence 𝒲i of (25) and the sequence �̂�i of (26),
respectively.

(iii) If E(x) = In, a DACS Ξu = (E,F,G) becomes an ODECS of the form (3). Suppose that G(x) =
[
g1(x) … gm(x)

]
is of constant rank. We have that conditions (EFL1)–(EFL2) of Theorem 3 are clearly satisfied and that condition (EFL3)
reduces to the feedback linearizability conditions in the classical sense. Indeed, we have Ξu ∈ Expl(Ξu|M∗ ) = Expl(Ξu)
because Ξu with E(x) = In is already an ODECS. Thus the vector of driving variables v is absent and the two linearizability
distributionsi and ̂i satisfy ̂i+1 = i for i ≥ 1. Hence conditions (FL1)–(FL3) become (FL1)’i are of constant rank for
1 ≤ i ≤ n; (FL2)’ dimn = n; (FL3)’ i are involutive for 1 ≤ i ≤ n − 1, which are the feedback linearizability conditions
for classical nonlinear (ODE) control systems, see for example, References 27,28,30,44.

5 EXAMPLES

Example 2. Consider the following academic example borrowed from Reference 45. For a DACS Ξu, defined on X = R3,
given by

⎡⎢⎢⎢⎣
x2 x1 0
0 0 0
1 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0
0

(x2)2 − (x1)3 + x3

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
1 −1
1 1
0 0

⎤⎥⎥⎥⎦
[

u1

u2

]
, (33)

where u = (u1,u2), we fix an admissible point xa = (x1a, x2a, x3a) = (1, 0, 0) ∈ X . Clearly, there exists a neighborhood U
(x1 ≠ 0 for all x ∈ U) of xa such that conditions (EFL1) and (EFL2) of Theorem 3 are satisfied. Subsequently, via Q =[1 1 0

0 0 1
0 1 0

]
and

[
u1
u2

]
=
[

1 0
−1 1

] [
ũ1
ũ2

]
, the DACS Ξu is ex-fb-equivalent to

⎡⎢⎢⎢⎣
x2 x1 0
1 0 1
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0
(x2)2 − (x1)3 + x3

0

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
2 0
0 0
0 1

⎤⎥⎥⎥⎦
[

ũ1

ũ2

]
.

Observe that the locally maximal invariant submanifold M∗ = U and

Ξu|M∗ = Ξu|U ∶

[
x2 x1 0
1 0 1

] ⎡⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤⎥⎥⎥⎦ =
[

0
(x2)2 − (x1)3 + x3

]
+

[
2
0

]
u∗,

where u∗ = ũ1. Now an ODECS Σu∗v ∈ Expl(Ξu|M∗ ) can be taken as

Σu∗v ∶
⎡⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

0
0

(x2)2 − (x1)3 + x3

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0
2∕x1

0

⎤⎥⎥⎥⎦ u∗ +
⎡⎢⎢⎢⎣

x1

−x2

−x1

⎤⎥⎥⎥⎦ v,

where v is a driving variable. We calculate the distributions i and ̂i for the system Σu∗v to get

̂1 = span
{

gv} , 1 = span
{

gu∗
, gv} , 2 = ̂2 = span

{
gu∗
, gv, adf gv} ,

where
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gv =
⎡⎢⎢⎢⎣

x1

−x2

−x1

⎤⎥⎥⎥⎦ , gu∗ =
⎡⎢⎢⎢⎣

0
2∕x1

0

⎤⎥⎥⎥⎦ , adf gv =
⎡⎢⎢⎢⎣

0
0

3(x1)3 + 2(x2)2 + x1

⎤⎥⎥⎥⎦ .
Clearly, the distributions above are of constant rank and 2 = ̂2 = TxU for all x ∈ U. Additionally, [gu∗

, gv] = 0 ∈ 1
and ̂1 is of rank one, so the distributions ̂1, 1, ̂2 are all involutive. Thus, condition (EFL3) of Theorem 3 is satisfied.
Therefore, system Ξu is externally feedback linearizable.

In fact, we can choose 𝜑u∗ (x) and 𝜑v(x) such that

span
{

d𝜑v} = ⟂
1 , span

{
d𝜑v, d𝜑u∗} = ̂⟂

1 .

Furthermore, use the following coordinates change and feedback transformation (note that the feedback transforma-
tion below has a triangular form as we discussed in Remark 3)

𝜉 = 𝜑u∗ (x) = x1x2, z1 = 𝜑v(x) = x1 + x3, z2 = Lf𝜑
v(x) = −(x1)3 + (x2)2 + x3,[

ũ∗

ṽ

]
=
⎡⎢⎢⎣

2 0
4x2
x1

−3(x1)3 − x1 − 2(x2)2

⎤⎥⎥⎦
[

u∗

v

]
+

[
0

(x2)2 − (x1)3 + x3

]
,

the system Σuv becomes

Λũ∗ ṽ ∶ �̇� = ũ∗, ż1 = z2, ż2 = ṽ.

Now by Theorem 1, Ξu|M∗ is ex-fb-equivalent to the following linear DACS

Δũ∗ ∶

[
1 0 0
0 1 0

] ⎡⎢⎢⎢⎣
�̇�

ż1

ż2

⎤⎥⎥⎥⎦ =
[

0 0 0
0 0 1

]⎡⎢⎢⎢⎣
𝜉

z1

z2

⎤⎥⎥⎥⎦ +
[

1
0

]
ũ∗,

since Σu∗v ∈ Expl(Ξu|M∗ ), Λũ∗ ṽ ∈ Expl(Δũ∗ ), and Σu∗vsys−fb∼ Λũ∗ ṽ. Therefore, the original DACS Ξu is ex-fb-equivalent to the
following completely controllable linear DACS:

⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
�̇�

ż1

ż2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜉

z1

z2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
1 0
0 0
0 1

⎤⎥⎥⎥⎦
[

ũ∗

ũ2

]

via

Q =
⎡⎢⎢⎢⎣
1 1 0
0 0 1
0 1 0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
𝜉

z1

z2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

x1x2

x1 + x3

−(x1)3 + (x2)2 + x3

⎤⎥⎥⎥⎦ ,
[

u1

u2

]
=

[
1∕2 0
−1 1

][
ũ∗

ũ2

]
.

Example 3. Consider the model of a 3-link manipulator46 with active joints 1 and 2, and a passive joint 3 (see Figure 1
below), the same model was used in Reference 20 to illustrate an applicable algorithm for the geometric reduction method,
we will use it for the internal feedback linearization of DACSs in this article.

The dynamic equations of the manipulator are given by:

⎧⎪⎨⎪⎩
mẍ − ml sin 𝜃�̈� − ml�̇�2 cos 𝜃 = Fx,

mÿ + ml cos 𝜃�̈� − ml�̇�2 sin 𝜃 = Fy,

−ml sin 𝜃ẍ + ml cos 𝜃ÿ + ml2�̈� = 𝜏𝜃 + Ff ,

(34)
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where the mass m and the half length of the free-link l are constants, x and y are the position variables of the free joint,
and 𝜃 is the angle between the base frame and the link frame, Fx and Fy are the translation force at the free joint in the
direction of x and y, respectively, and 𝜏𝜃 is the torque applied to the free joint (we take 𝜏𝜃 = 0 implying that joint 3 is
free). We additionally consider the friction force Ff caused by the rotation of the free link. We regard (Fx,Fy) as the active
control inputs to the system. The friction force Ff is a generalized state variable rather than an active control input since
we cannot change it arbitrarily.

We consider system (34) subjected to the following constraint:

x − y = 0. (35)

We combine (34) together with (35) as a DACS Ξu
7,7,2 = (E,F,G) of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 m 0 0 0 −ml sin 𝜃1 0
0 0 1 0 0 0 0
0 0 0 m 0 ml cos 𝜃1 0
0 0 0 0 1 0 0
0 −sin𝜃1 0 cos 𝜃1 0 l 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2

ml𝜃2
2 cos 𝜃1

y2

ml𝜃2
2 sin 𝜃1

𝜃2
Ff

ml
x1 − y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Fx

Fy

]
.

For the DACS Ξu, the generalized states 𝜉 = (x1, x2, y1, y2, 𝜃1, 𝜃2,Ff ) ∈ X = R6 × S and the vector of control inputs is
(Fx,Fy). ConsiderΞu around a point 𝜉p = (x1p, x2p, y1p, y2p, 𝜃1p, 𝜃2p,Ffp) = 0. The systemΞu is not locally externally feedback
linearizable since condition (EF2) of Theorem 3 is not satisfied around 𝜉p. Now we apply the geometric reduction method
of Definition 3 to get

Mc
0 = (−𝜋

2
,
𝜋

2
) × R

6, Mc
1 =

{
𝜉 ∈ Mc

0 | x1 − y1 = 0
}
, Mc

2 =
{
𝜉 ∈ Mc

1 | x2 − y2 = 0
}
, Mc

3 = Mc
2.

Thus by Proposition 1, M∗ = Mc
3 = Mc

2 is the locally maximal controlled invariant submanifold around xp ∈ M∗

(so xp is admissible). Choose new coordinates 𝜉2 = (x̃1, x̃2) = (x1 − y1, x2 − y2) and keep the remaining coordinates 𝜉1 =
(y1, y2, 𝜃1, 𝜃2,Ff ) unchanged, the system represented in the new coordinates is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0
0 m 0 −ml sin 𝜃1 0 0 m
1 0 0 0 0 0 0
0 m 0 ml cos 𝜃1 0 0 0
0 0 1 0 0 0 0
0 cos 𝜃1 − sin 𝜃1 0 l 0 0 − sin 𝜃1

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

̇̃x1

̇̃x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃2 + y2

ml𝜃2
2 cos 𝜃1

y2

ml𝜃2
2 sin 𝜃1

𝜃2
Ff

ml
x̃1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Fx

Fy

]
.

F I G U R E 1 A 3-link manipulator with a free joint
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Set 𝜉2 = (x̃1, x̃2) = 0 to get a DACS of the form (4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 m 0 −ml sin 𝜃1 0
1 0 0 0 0
0 m 0 ml cos 𝜃1 0
0 0 1 0 0
0 cos 𝜃1 − sin𝜃1 0 l 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2

ml𝜃2
2 cos 𝜃1

y2

ml𝜃2
2 sin 𝜃1

𝜃2
Ff

ml

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
Fx

Fy

]
.

By using Q(𝜉1) and the feedback transformations defined on M∗ as

Q(𝜉1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 sin 𝜃1 0 − cos 𝜃1 0 m
1 0 −1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[
u1

u2

]
=

[
0

Ff∕l

]
+

[
1 0

sin 𝜃1 − cos 𝜃1

][
Fx

Fy

]
,

we bring the system into

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 m 0 ml cos 𝜃1 0
0 0 1 0 0
0 m 0 −ml sin 𝜃1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y2

ml𝜃2
2 sin 𝜃1 +

Ff

l
sec 𝜃1

𝜃2

ml𝜃2
2 cos 𝜃1

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
tan 𝜃1 − sec 𝜃1

0 0
1 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
u1

u2

]
.

The local M∗-restriction Ξu|M∗ = (E∗,F∗,G∗) by Definition 4 (compare Example 5.1 of Reference 20) is

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 m 0 ml cos 𝜃1 0
0 0 1 0 0
0 m 0 −ml sin 𝜃1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

y2
Ff

l
sec 𝜃1 + ml𝜃2

2 sin 𝜃1

𝜃2

ml𝜃2
2 cos 𝜃1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
tan 𝜃1

0
1

⎤⎥⎥⎥⎥⎥⎦
u1. (36)

An explicitation system Σu1v ∈ Expl(Ξu|M∗ ) can be chosen as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y2
Ff tan 𝜃1+ml2𝜃2

2

ml(cos 𝜃1+sin 𝜃1)

𝜃2
Ff sec 𝜃1+ml2𝜃2

2 (sin 𝜃1−cos 𝜃1)
ml2(cos 𝜃1+sin 𝜃1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
sec 𝜃1

m(cos 𝜃1+sin 𝜃1)

0
tan 𝜃1−1

ml(cos 𝜃1+sin 𝜃1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
v.

Define a new control
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u∗ ∶=
Ff tan 𝜃1 + ml2𝜃2

2

ml(cos 𝜃1 + sin 𝜃1)
+ sec 𝜃1

m(cos 𝜃1 + sin 𝜃1)
u1.

Then the system Σu1v under the new control is Σu∗v = (f , gu∗
, gv):

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1

ẏ2

�̇�1

�̇�2

Ḟf

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y2

0
𝜃2
Ff

ml2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

1
l
(sin 𝜃1 − cos 𝜃1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u∗ +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
v.

Now calculate the distributions i and ̂i for the system Σu∗v to get ̂1 = span {gv}, 1 = span
{

gu∗
, gv}, ̂2 =

span
{

gu∗
, gv, adf gv}, 2 = span

{
gv, gu∗

, adf gv, adf gu∗}, 3 = ̂2 = TM∗. where

gv = 𝜕

𝜕Ff
, adf gv = − 1

ml2
𝜕

𝜕𝜃2
, gu∗ = 𝜕

𝜕y2
+ 1

l
(sin 𝜃1 − cos 𝜃1)

𝜕

𝜕𝜃2
,

adf gu∗ = − 𝜕

𝜕y1
− 1

l
(sin 𝜃1 − cos 𝜃1)

𝜕

𝜕𝜃1
+ 1

l
(sin 𝜃1 + cos 𝜃1)𝜃2

𝜕

𝜕𝜃2
.

Clearly, the distributions above are of constant rank and are all involutive around 𝜉p. Thus, conditions (FL1)-(FL3) of
Theorem 2 are satisfied. Therefore, system Ξu is locally internally feedback linearizable around 𝜉p. Indeed, choose 𝜑u∗ (x)
and 𝜑v(x) such that

span
{

d𝜑v} = ⟂
2 , span

{
d𝜑v, d𝜑u∗} = ̂⟂

2 .

Then define the following coordinates change and feedback transformation (which has a triangular form as desired):

ỹ1 = 𝜑v(𝜉1) = y1 − l∫ a(𝜃1)d𝜃1, ỹ2 = Lf𝜑
v(𝜉1) = y2 − la(𝜃1)𝜃2, F̃f = L2

f𝜑
v(𝜉1) = −a(𝜃1)Ff − a′(𝜃1)l𝜃2

2 ,

𝜃1 = 𝜑u∗ (𝜉1) = 𝜃1, 𝜃2 = Lf𝜑
u∗ (𝜉1)𝜃2,[

ũ∗

ṽ

]
=

[
1
l
(sin 𝜃1 − cos 𝜃1) 0

−2a′(𝜃1)(sin 𝜃1 − cos 𝜃1)𝜃2 −a(𝜃1)

][
u∗

v

]
+

[ Ff

ml2

−3a′(𝜃1)𝜃2Ff − a′′(𝜃1)𝜃3
2 l

]
,

where a(𝜃1) = 1
sin 𝜃1−cos 𝜃1

, a′(𝜃1) =
da(𝜃1)

d𝜃1
, a′′(𝜃1) =

d2a(𝜃1)
d𝜃2

1
. We transform Σu∗v into a linear control system in the Brunovský

form

Λũ∗ ṽ ∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇̃y1 = ỹ2,

̇̃y2 = F̃f ,

̇̃Ff = ṽ,
̇̃𝜃1 = 𝜃2,

̇̃𝜃2 = ũ∗.

Thus by Theorem 1, the restrictionΞu|M∗ , given by (36), is locally ex-fb-equivalent to the following completely controllable
linear DACS Δũ∗ ,

Δũ∗ ∶

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

̇̃y1

̇̃y2
̇̃Ff
̇̃𝜃1
̇̃𝜃2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ỹ1

ỹ2

F̃f

𝜃1

𝜃2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ũ∗.
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because Σu∗v sys−fb∼ Σu1v ∈ Expl(Ξu|M∗ ), Λũ∗ ṽ ∈ Expl(Δũ) and Σu∗vsys−fb∼ Λũ∗ ṽ. Hence the DACS Ξu is locally in-fb-equivalent
to the linear DACS Δũ∗ , that is, Ξu is locally internally feedback linearizable.

6 CONCLUSIONS AND PERSPECTIVES

In this article, we give necessary and sufficient conditions for the problem that when a nonlinear DACS is locally internally
or locally externally feedback equivalent to a completely controllable linear DACS. The conditions are based on an ODECS
constructed by the explicitation with driving variables. Two examples are given to illustrate how to externally or internally
feedback linearize a nonlinear DACS.

A natural problem for future works is that of when a nonlinear DACS is ex-fb-equivalent to a linear one which is
not necessarily completely controllable. Actually, this problem is more involved than the problem of external feedback
linearization with complete controllability. Indeed, since in Theorem 3, the maximal controlled invariant submanifold
M∗ on U is M∗ = U, it follows that the algebraic constraints are directly governed by some variables of u. Thus the
in-fb-equivalence is very close to the ex-fb-equivalence. However, if M∗ ≠ U, then the algebraic constraints may affect
the generalized state. Moreover, since the explicitation is defined up to a generalized output injection, it may happen that
one system of the explicitation is feedback linearizable but another is not. The general feedback linearizability problem
remains open and, in view of the above points, is challenging.

Some further problems of nonlinear DACSs can be investigated based on the results of this article. For an external
feedback linearizable DACS, besides discussing classical control problems as stabilization and tracking of solutions from
admissible points, we can study how to design control laws to steer inadmissible initial values to the maximal controlled
invariant submanifold. Moreover, the explicitation method used in this article can also be applied to dynamic feedback
linearization problems, which are well-studied for nonlinear ODECS (see e.g., References 27 and 28 but not for DACSs.
The two kinds of inputs (see Remark 3) u and v of the (Q, v)-explicitation of DACSs may be a key difference between the
definition of dynamic feedback equivalence for ODECSs and that of DACSs. Furthermore, connections between DACSs
and infinite-dimensional differential geometry (or, differential flatness) are also interesting further topics.
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APPENDIX

Proof of Lemma 2. For ease of notation, we drop the index “∗” for z∗, u∗, v∗ and f ∗ of the system Σu∗v∗
n∗,m∗,s∗ , that is, Σu∗v∗

becomes

Σuv ∶ ż = f (z) + gu(z)u + gv(z)v.

The admissible point xa in the z-coordinates will be denoted by za. We will only show the proof for the case that

m∗ = s∗ = 1, rank [gv(za) gu(za)] = 2.

The proof for the general case (i.e., for any m∗ ≥ 1 and s∗ ≥ 1, and for rank [gv(za) gu(za)] = m∗ + s∗) can be done in
a similar fashion as that on page 233–238 of Reference 28 for the feedback linearization of nonlinear multi-inputs
multi-outputs control systems. We now describe a procedure to construct a change of coordinates 𝜉 = 𝜓(z) and a feedback
transformation: [

u
v

]
=

[
𝛼u(z)
𝛼v(z)

]
+

[
𝛽u(z) 0
𝜆(z) 𝛽v(z)

][
ũ
ṽ

]
(A1)

to transform Σuv into its Brunovský canonical form, where 𝛽u, 𝛽v, 𝛼u, 𝜆, 𝛼v are scalar functions, and 𝛽u(z) and 𝛽v(z) are
nonzero around za, notice that the designed feedback transformation (A1) has a triangular form as in (10). Note that
constructing (A1) is equivalent to finding the inverse feedback transformation[

ũ
ṽ

]
=

[
au(z)
av(z)

]
+

[
bu(z) 0
�̃�(z) bv(z)

][
u
v

]
. (A2)

where

au = −(𝛽u)−1𝛼u, av = (𝛽v)−1𝜆(𝛽u)−1𝛼u − (𝛽v)−1𝛼v bu = (𝛽u)−1, bv = (𝛽u)−1, �̃� = −(𝛽v)−1𝜆(𝛽u)−1.

Below we will search for functions au, av, �̃�, and nonzero functions bu, bv to construct (A2).
Consider the two sequences of distributions i and ̂i for Σuv, given by (27), and define

𝜌 ∶= max
{

i ∈ N
+ | ̂i ≠ i

}
, 𝜌 ∶= max

{
i ∈ N

+ | i−1 ≠ ̂i
}
.

By m∗ = s∗ = 1, it is seen that, for each i ≥ 1,

dim i − dim ̂i =

{
0, if i = ̂i

1, if i ≠ ̂i
, dim ̂i − dim i−1 =

{
0, if ̂i = i−1

1, if ̂i ≠ i−1
. (A3)

It follows that 𝜌 + 𝜌 = n∗. Then only two cases are possible: either 𝜌 ≥ 𝜌 or 𝜌 < 𝜌.
Case 1: If 𝜌 ≥ 𝜌, then we have

0 ⊊ ̂1 ⊊… ⊊ 𝜌−1 ⊊ ̂𝜌 ⊊ 𝜌 = ̂𝜌+1 ⊊ 𝜌+1 = … ⊊ 𝜌−1 = ̂𝜌 ⊊ 𝜌 = ̂𝜌+j = 𝜌+j, j > 0.

It follows that 𝜌 = n∗ = ̂n∗ Then by (FL2) of Theorem 2, we have 𝜌 = TM∗ and thus dim𝜌 = n∗. By ̂𝜌 ⊊ 𝜌 and
(A3), we have dim ̂𝜌 = n∗ − 1. Now by the involutivity of ̂𝜌 (condition (FL3)), we can choose a scalar function hu(z)
such that

span {dhu} = ̂⟂
𝜌 ,

where ̂⟂
𝜌 denotes the annihilator of the distribution ̂𝜌. It follows that for all z around za,
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⟨
dhu(z), adi

f gu(z)
⟩
= 0, 0 ≤ i ≤ 𝜌 − 2,

⟨
dhu(z), ad𝜌−1

f gu(z)
⟩ ≠ 0;

⟨
dhu(z), adi

f gv(z)
⟩
= 0, 0 ≤ i ≤ 𝜌 − 1. (A4)

Recall the following result:27,28

⟨
dh(z), adi

f g(z)
⟩
= 0, 0 ≤ i ≤ l − 2 ⇒

⟨
dh(z), adl−1

f g(z)
⟩
= (−1)i

⟨
dLi

f h(z), adl−1−i
f g(z)

⟩
, 0 ≤ i ≤ l − 1, (A5)

where h(z) is a scalar function, f (z) and g(z) are vector fields.
It can be deduced from (A4) and (A5) that for all z around za,⟨

dLi
f hu(z), adj

f gu(z)
⟩
= 0, 0 ≤ i ≤ 𝜌 − 2, 0 ≤ j ≤ 𝜌 − i − 2,

⟨
dLi

f hu(z), ad𝜌−i−1
f gu(z)

⟩ ≠ 0, 0 ≤ i ≤ 𝜌 − 2;⟨
dLi

f hu(z), adj
f gv(z)

⟩
= 0, 0 ≤ i ≤ 𝜌 − 1, 0 ≤ j ≤ 𝜌 − i − 1. (A6)

By using (A6), we have the following table for the expressions of
⟨

dLi
f hu, adj

f gu
⟩

, 0 ≤ i ≤ 𝜌 − 𝜌, 𝜌 − 1 ≤ j ≤ 𝜌 − 1:

ad𝜌−1
f gu ad𝜌f gu · · · ad𝜌−1

f gu

dhu 0 0 · · ·
⟨

dhu, ad𝜌−1
f gu

⟩
· · · · · · · · · ∗

dL𝜌−𝜌−1
f hu 0

⟨
dL𝜌−𝜌−1

f hu, ad𝜌f gu
⟩

dL𝜌−𝜌f hu
⟨

dL𝜌−𝜌f hu, ad𝜌−1
f gu

⟩
?

.

Notice that all the antidiagonal elements of the above table are nonzero by (A6). It follows that the co-distribution

Ω1 = span
{

dLi
f hu, 0 ≤ i ≤ 𝜌 − 𝜌

}
is of dimension 𝜌 − 𝜌 + 1 around za. We have Ω1 ⊆ ⟂

𝜌−1 because

⟨
dLi

f hu(z), adj
f gu(z)

⟩ (A6)
= 0, 0 ≤ i ≤ 𝜌 − 𝜌, 0 ≤ j ≤ 𝜌 − 2,⟨

dLi
f hu(z), adj

f gv(z)
⟩ (A6)

= 0, 0 ≤ i ≤ 𝜌 − 𝜌, 0 ≤ j ≤ 𝜌 − 2.

It is seen that dim⟂
𝜌−1 − dimΩ1 = (n∗ − (2𝜌 − 2)) − (𝜌 − 𝜌 + 1) = 1 and Ω1 ⊊ ⟂

𝜌−1. Then by the involutivity of 𝜌−1
(condition (FL3)), we can choose a scalar function hv(z) such that

span {dhv} + Ω1 = ⟂
𝜌−1,

which implies that for all z around za,⟨
dhv(z), adi

f gu(z)
⟩
= 0, 0 ≤ i ≤ 𝜌 − 2;

⟨
dhv(z), adi

f gv(z)
⟩
= 0, 0 ≤ i ≤ 𝜌 − 2,

⟨
dhv(z), ad𝜌−1

f gv(z)
⟩ ≠ 0. (A7)

It can be deduced by (A7) and (A5) that for all z around za,

⟨
dLi

f hv(z), adj
f gu(z)

⟩
= 0, 0 ≤ i ≤ 𝜌 − 2, 0 ≤ j ≤ 𝜌 − i − 2;⟨

dLi
f hv(z), adj

f gv(z)
⟩
= 0, 0 ≤ i ≤ 𝜌 − 2, 0 ≤ j ≤ 𝜌 − i − 2,

⟨
dLi

f hv(z), ad𝜌−i−1
f gv(z)

⟩ ≠ 0, 0 ≤ i ≤ 𝜌 − 2. (A8)

By using (A6) and (A8), we can construct the following table:
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gv gu · · · · · · ad𝜌−1
f gv ad𝜌−1

f gu ad𝜌f gu · · · ad𝜌−1
f gu

dhu 0 0 · · · · · · 0 0 0 · · ·
⟨

dhu, ad𝜌−1
f gu

⟩
· · · · · · · · · · · · · · · · · · · · · · · · ∗

dL𝜌−𝜌−1
f hu 0 0 · · · · · · 0 0

⟨
dL𝜌−𝜌−1

f hu, ad𝜌f gu
⟩

dL𝜌−𝜌f hu 0 0 · · · · · · 0
⟨

dL𝜌−𝜌f hu, ad𝜌−1
f gu

⟩
?

dhv 0 0 · · · · · ·
⟨

dhv, ad𝜌−1
f gv

⟩
?

· · · 0 0 · · · ∗
· · · 0 0 ∗ ?

dL𝜌−1
f hu 0 Lgu L𝜌−1

f hu

dL𝜌−1
f hv Lgv L𝜌−1

f hv ? ? ?

.

(A9)

Notice that all the antidiagonal elements of table (A9) are nonzero. It follows that the (𝜌 + 𝜌) × (𝜌 + 𝜌) = n∗ × n∗ matrix

𝜕𝜓

𝜕z
(z)

[
gv gu · · · · · · ad𝜌−1

f gv ad𝜌−1
f gu ad𝜌f gu · · · ad𝜌−1

f gu
]
(z)

is invertible around za, where

𝜓 = (hu,… ,L𝜌−1
f hu, hv,… ,L𝜌−1

f hv). (A10)

Thus the Jacobian matrix 𝜕𝜓(z)
𝜕z

is invertible around za and 𝜓 is a local diffeomorphism. Then set

au(z) = L𝜌f hu(z), bu(z) = Lgu L𝜌−1
f hu(z), av(z) = L𝜌f hv(z), bv(z) = Lgv L𝜌−1

f hv(z), �̃�(z) = Lgu L𝜌−1
f hv(z). (A11)

Note that bu(z) and bv(z) are nonzero at zp. It is seen thatΣu∗v∗ is mapped, via the coordinates transformations 𝜉 = (𝜉1, 𝜉2) =
𝜓(z) and the feedback transformation (A2), into the Brunovský form Σw

Br = Σw∗

Br of (28) with indices 𝜌 and 𝜌.
Case 2: If 𝜌 < 𝜌, then we have0 ⊊ ̂1 ⊊… ⊊ ̂𝜌 ⊊ 𝜌 ⊊ ̂𝜌+1 = 𝜌+1 ⊊… = 𝜌−1 ⊊ ̂𝜌 = 𝜌 = ̂𝜌+j = 𝜌+j, j > 0.

It follows that ̂𝜌 = 𝜌 = ̂n∗ = n∗ . Then by (FL2) of Theorem 2, we have ̂𝜌 = TM∗ and thus dim ̂𝜌 = n∗. By 𝜌−1 ⊊̂𝜌 and (A3), we have dim𝜌−1 = n∗ − 1. Now by the involutivity of 𝜌 (condition (FL1)), we can choose a scalar function
hv(z) such that

span
{

dhv} = ⟂
𝜌−1.

Then following a similar proof as in Case 1, we can show that the distribution

Ω2 = span
{

dLi
f hv, 0 ≤ i ≤ 𝜌 − 𝜌 − 1

}
is of dimension 𝜌 − 𝜌 around za and Ω2 ⊊ ̂⟂

𝜌 . Notice that dim ̂⟂
𝜌 = n∗ − (2𝜌 − 1) = 𝜌 − 𝜌 + 1, we have dim ̂⟂

𝜌 −
dimΩ2 = 1. Thus by the involutivity of ̂𝜌 (condition (FL2)), we can choose a scalar function hu(z) such that

span {dhu} + Ω2 = ̂⟂
𝜌 .

Then, similarly as in Case 1, we construct the following table:

gv gu · · · · · · ad𝜌−1
f gv ad𝜌−1

f gu ad𝜌f gv · · · ad𝜌−1
f gv

dhv 0 0 · · · · · · 0 0 0 · · ·
⟨

dhv, ad𝜌−1
f gv

⟩
· · · · · · · · · · · · · · · · · · · · · · · · ∗ ?

dL𝜌−𝜌−1
f hv 0 0 · · · · · · 0 0

⟨
dL𝜌−𝜌−1

f hv, ad𝜌f gv
⟩

dhu 0 0 · · · · · · 0
⟨

dhu, ad𝜌−1
f gu

⟩
dL𝜌−𝜌f hv 0 0 · · · · · ·

⟨
dL𝜌−𝜌f hv, ad𝜌−1

f gv
⟩

? ?

· · · 0 0 · · · ∗
· · · 0 0 ∗

dL𝜌−1
f hu 0 Lgu L𝜌−1

f hu

dL𝜌−1
f hv Lgv L𝜌−1

f hv ? ? ? ?
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and show that all the antidiagonal elements of the table are nonzero around za. Finally, we define a diffeomorphism 𝜓

and functions au, bu, av, bv, �̃� in the same form as (A10) and (A11) of Case 1. It is seen that Σuv can also be transformed
into the Brunovský form Σw

Br = Σw∗

Br of (28) with indices 𝜌 and 𝜌 via the change of coordinates 𝜉 = 𝜓(z) and the feedback
transformation (A2). ▪


