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Abstract

For nonlinear differential-algebraic equations (DAEs), we define two kinds of equivalences, namely, the 
external and internal equivalence. Roughly speaking, the word “external” means that we consider a DAE 
(locally) everywhere and “internal” means that we consider the DAE on its (locally) maximal invariant 
submanifold (i.e., where its solutions exist) only. First, we revise the geometric reduction method in DAEs 
solution theory and formulate an implementable algorithm to realize that method. Then a procedure called 
explicitation with driving variables is proposed to connect nonlinear DAEs with nonlinear control systems 
and we show that the driving variables of an explicitation system can be reduced under some involutivity 
conditions. Finally, due to the explicitation, we use some notions from nonlinear control theory to derive 
two nonlinear generalizations of the Weierstrass form.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Consider a nonlinear differential-algebraic equation (DAE) of the form

� : E(x)ẋ = F(x), (1)

where x ∈ X is a vector of the generalized states and X is an open subset of Rn (or an n-
dimensional manifold).

T X

Rl

X

π

E

F

The maps E : T X → Rl and F : X → Rl (see the above diagram, where π : T X → X is the 
canonical projection from the tangent bundle T X onto X) are smooth and the word “smooth” will 
mean throughout this paper C∞-smooth. We will denote a DAE of the form (1) by �l,n = (E, F)

or, simply, �. Equation (1) is affine with respect to the velocity ẋ, so sometimes it is called a 
quasi-linear DAE (see e.g., [1,2]) and can be considered as an affine Pfaffian system since the 
rows Ei of E are actually differential 1-forms on X (for linear Pfaffian systems, see e.g. [3]), so 
E is an Rl-valued differential 1-form on X. A semi-explicit DAE is of the form

�SE :
{

ẋ1= F1(x1, x2),

0 = F2(x1, x2),
(2)

where x1 ∈ X1 is a vector of state variables and x2 ∈ X2 is a vector of algebraic or free variables 
(since there are no differential equations for x2) with X1 and X2 being open subsets of Rq

and Rn−q , respectively (or q- and (n − q)-dimensional manifolds, respectively), the maps F1 :
X1 × X2 → T X1 and F2 : X1 × X2 → Rl−q are smooth. A linear DAE of the form

� : Eẋ = Hx (3)

will be denoted by �l,n = (E, H) or, simply, �, where E ∈ Rl×n and H ∈Rl×n. Both the semi-
explicit DAE �SE and the linear DAE � can be seen as special cases of DAE �. The motivation 
of studying DAEs is their frequent presence in modeling of practical systems as electrical circuits 
[2,4], chemical processes [5,6], mechanical systems [7–9], etc.

There are three main results of this paper. The first result (section 2) concerns analyzing a DAE 
(locally) everywhere (i.e., externally) or considering the restriction of the DAE to a submanifold 
(i.e., internally), which corresponds to the external equivalence (see Definition 2.10) and the 
internal equivalence (see Definition 2.17), respectively. The difference between the two equiva-
lences will be illustrated by their relations with the solutions. In order to analyze the existence 
of solutions, we use a concept called locally maximal invariant submanifold (see Definition 2.2), 
which is a submanifold where the solutions of a DAE exist and can be constructed via a geo-
metric reduction method shown in section 2.1. Note that the geometric reduction method is not 
new in the theory of nonlinear DAEs, see e.g., [1,2,10–12] and the recent papers [13–15]. In the 
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present paper, we will show a practical implementation of this method via an algorithm summa-
rized in section 2.2. In our recent publication [16], the geometric reduction method was applied 
to DAE control systems, i.e., (1) with additional input variables u. Some results in section 2 can 
be seen as a special case, i.e., when the inputs u are absent, of the corresponding results in [16], 
we will address both the connections and differences between section 2 and [16] in Remark 2.22
below.

Note that considering only the restriction of a DAE means that we only care about where and 
how the solutions of that DAE evolve. However, when a nominal point is not on the maximal 
invariant submanifold (which is common for practical systems, since an initial point could be 
anywhere), there are no solutions passing through that point but we still want to steer the so-
lutions to the submanifold and thus we must follow the rules indicated by the “external” form 
of the DAE, thus considering DAEs everywhere is also important, see [17], where we use ex-
ternal equivalence to study jump solutions of nonlinear DAEs. Hence both the internal and the 
external analysis play crucial roles for DAEs and one needs to make a suitable choice among 
them depending on whether the purpose is to study C1-solutions of DAEs evolving on locally 
maximal invariant submanifolds only or to study discontinues solutions of DAEs starting from 
inadmissible initial points.

The second result of this paper (section 3) is a nonlinear counterpart of the results of [18], in 
which we have shown that one can associate a class of linear control systems to any linear DAE 
(by the procedure of explicitation for linear DAEs). In the present paper, to any nonlinear DAE, 
by introducing extra variables (called driving variables), we can attach a class of nonlinear control 
systems. Moreover, we show that the driving variables in this explicitation procedure can be fully 
reduced under some involutivity conditions which explains when a DAE � is ex-equivalent to a 
semi-explicit DAE �SE .

It is well-known (see e.g., [19], [20]) that any linear DAE � of the form (3) is ex-equivalent 
(via linear transformations) to the Kronecker canonical form KCF. In particular, if � is regular, 
i.e., the matrices E and H are square (l = n) and |sE − H | �≡ 0, ∀s ∈ C, then � is ex-equivalent 
(also via linear transformations) to the Weierstrass form WF [21] (see (19) below). The studies 
on normal forms and canonical forms of DAEs can be found in [19,21–24] for the linear case 
and in [15,25,26] for the nonlinear case. The last result of this paper (section 4) is to use such 
concepts as zero dynamics, relative degree and invariant distributions of the nonlinear control 
theory [27,28] to derive nonlinear generalizations of the WF. In the linear case, canonical forms 
as the KCF and the WF are closely related to a geometric concept named the Wong sequences 
[29] (see Remark 2.6 below). In [23], relations between the WF and the Wong sequences have 
been built and in [24], the importance of the Wong sequences for the geometric analysis of linear 
DAEs is reconfirmed. In the present paper, we propose generalizations of the Wong sequences 
for nonlinear DAEs and show their importance in analyzing structure properties.

The paper is organized as follows. In section 2.1, we discuss the existence of solutions of 
DAEs by revising the geometric reduction method. The latter method is implemented via a recur-
sive algorithm in section 2.2. In section 2.3, we compare the notions of external equivalence and 
internal equivalence. The major contributions in section 2 are Proposition 2.8, which summarizes 
the results of geometric reduction algorithm, and Theorem 2.20, which gives characterizations 
for the uniqueness of DAE solutions via two novel notions: internal equivalence and internal reg-
ularity. In section 3.1, we propose the explicitation (with driving variables) procedure to connect 
nonlinear DAEs to nonlinear control systems. In section 3.2, we show when a nonlinear DAE is 
externally equivalent to a semi-explicit one and how this problem is related to the explicitation 
procedure. The most important result in section 3 is Theorem 3.6, which relates equivalences of 
163



Y. Chen and W. Respondek Journal of Differential Equations 314 (2022) 161–200
DAEs and those of their explicitations, this result will be used throughout the paper for applying 
nonlinear control theory to nonlinear DAEs. Two nonlinear generalizations of the Weierstrass 
form are given in Theorem 4.1 and Theorem 4.5 in section 4, respectively. The form in Theo-
rem 4.1 is derived via the zero dynamics algorithm and that in Theorem 4.5 is related to relative 
degree and invariant distributions in nonlinear control theory. Section 5 contains the conclusions 
and the perspectives of the paper. The proofs of the main results are put into Appendix.

The following notations will be used throughout the paper. We use Rn×m to denote the set 
of real valued matrices with n rows and m columns, GL (n,R) to denote the group of invertible 
matrices of Rn×n and In to denote the n × n-identity matrix. For a linear map L, we denote by 
rankL, kerL and ImL, the rank, the kernel and the image of L, respectively. Denote by TxM

the tangent space of a submanifold M of Rn at x ∈ M and by Ck the class of functions which are 
k-times differentiable with continues k-th derivative. For a smooth map f : X → R, we denote 
its differential by df = ∑n

i=1
∂f
∂xi

dxi = [ ∂f
∂x1

, . . . , ∂f
∂xn

] and for a vector-valued map f : X →Rm, 

where f = [f1, . . . , fm]T , we denote its differential by Df =
⎡
⎣ df1

...
dfm

⎤
⎦. For two column vectors 

v1 ∈Rm and v2 ∈Rn, we write (v1, v2) = [vT
1 , vT

2 ]T ∈ Rm+n.

2. Solutions and equivalences of nonlinear DAEs

2.1. The geometric reduction method revisited

In this section, we revise the geometric reduction method in the DAEs solution theory, other 
formulations of this method can be consulted in section 3.4 of [2], Chapter IV of [1] and [13] for 
DAEs and [14,16] for DAE control systems. We start from the definition of a solution for a DAE.

Definition 2.1. A solution of a DAE �l,n = (E, F) is a C1-curve x : I → X defined on an open 
interval I such that for all t ∈ I , the curve x(·) satisfies E (x(t)) ẋ(t) = F (x(t)).

Throughout this paper, we will be interested only in solutions of � that are at least C1. A given 
point x0 is called consistent (or admissible) if there exists at least one solution x(·) of � satisfying 
x(t0) = x0 (i.e., E(x0)ẋ(t0) = F(x0)) for a certain t0 ∈ I ; we will denote by Sc the consistency 
set, i.e., the set of all consistent points.

Definition 2.2 (invariant and locally invariant submanifolds). Consider a DAE �l,n = (E, F)

defined on X. A smooth connected embedded submanifold M of X is called invariant if for any 
point x0 ∈ M , there exists a solution x : I → X of � such that x(t0) = x0 for a certain t0 ∈ I and 
x(t) ∈ M for all t ∈ I . Given a point xp ∈ X, we will say that a submanifold M containing xp is 
locally invariant (around xp) if there exists an open neighborhood U ⊆ X of xp such that M ∩U

is invariant.

Proposition 2.3. Consider a DAE �l,n = (E, F) and fix a point xp . Let M be a smooth con-
nected embedded submanifold containing xp. If M is a locally invariant submanifold around xp, 
then F(x) ∈ E(x)TxM for all x ∈ M around xp . Conversely, assume that there exists an open 
neighborhood U of xp such that, at all x ∈ M ∩U , we have F(x) ∈ E(x)TxM and, additionally, 
dimE(x)TxM = const., then M is a locally invariant submanifold.
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The proof is given in Appendix A.

Remark 2.4. Note that the assumption that dimE(x)TxM = const. of Proposition 2.3 is not 
a necessary condition to conclude that M is an invariant submanifold, but it excludes singular 
points of DAEs and helps to view a DAE as an ordinary differential equation (ODE) defined on 
the invariant submanifold. Take the following DAE for an example:

�1,1 : xẋ = x2,

where x ∈ X = R. Let M = X, then clearly, F(x) = x2 ∈ x · TxX, at any x ∈ M = R. We have 
dim E(x)TxM equals 1 for x �= 0 and is 0 for x = 0, so dim E(x)TxM �= const., for all x ∈ M . 
Nevertheless, for any x0 ∈ M = R, there exists a unique solution x(t) satisfying x(0) = x0, 
namely, x(t) = etx0. Therefore M = R is an invariant submanifold.

A locally invariant submanifold M∗ (around xp) is called locally maximal, if there exists a 
neighborhood U of xp such that for any other locally invariant submanifold M , we have M∩U ⊆
M∗ ∩ U . The geometric reduction method for DAEs is the following recursive procedure, which 
can be used to construct locally maximal invariant submanifold M∗.

Definition 2.5 (geometric reduction method). Consider a DAE �l,n = (E, F), fix a point xp ∈ X

and let U0 be an open connected subset of X containing xp . Set M0 = X, Mc
0 = U0. Suppose 

that there exist an open neighborhood Uk−1 of xp and a sequence of smooth connected embed-
ded submanifolds Mc

k−1 � · · · � Mc
0 of Uk−1 for a certain k ≥ 1, has been constructed. Define 

recursively

Mk := {
x ∈ Mc

k−1 : F(x) ∈ E(x)TxM
c
k−1

}
. (4)

Then either xp /∈ Mk or xp ∈ Mk , and in the latter case, assume that there exists a neighborhood 
Uk of xp such that Mc

k = Mk ∩ Uk is a smooth embedded submanifold (which can always be 
assumed connected by taking Uk sufficiently small).

Remark 2.6. For a linear DAE � = (E, H) of the form (3), define a sequence of subspaces (one 
of the Wong sequences [29]) by

V0 = Rn, Vk = H−1EVk−1, k ≥ 1.

If we apply the iterative construction of Mk by (4) to the DAE �, we get Mc
k = Vk , ∀k ≥ 0. Thus 

the sequence of submanifolds Mk can be seen as a nonlinear generalization of the sequence Vk.

The following proposition shows that the geometric reduction method above can be used to 
construct locally maximal invariant submanifold M∗ and to deduce that the consistency set Sc, 
on which the solutions exist, coincides locally with M∗.

Proposition 2.7. In the geometric reduction method of Definition 2.5, there always exists k∗ ≤ n

such that either k∗ is the smallest integer for which xp /∈ Mk∗+1 or k∗ is the smallest integer 
such that xp ∈ Mc

k∗+1 and Mc
k∗+1 ∩ Uk∗+1 = Mc

k∗ ∩ Uk∗+1. In the latter case, we assume that 
dim E(x)TxM

c∗ = const. in a neighborhood U∗ ⊆ Uk∗+1 of xp in X and then
k +1
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(i) xp is consistent and M∗ = Mc
k∗+1 is a locally maximal invariant submanifold around xp.

(ii) M∗ coincides locally with the consistency set Sc, i.e., M∗ ∩ U = Sc ∩ U∗ (take a smaller 
U∗ if necessary).

We omit the proof of Proposition 2.7 because it can be seen as a special case (i.e., the control 
input u is absent) of Proposition 2 of [16] for constructing locally controlled invariant submani-
folds of DAE control systems, the reader can consult the proof therein.

2.2. An algorithm for the geometric reduction method

Now we present an algorithm which implements in practice the geometric reduction method. 
Note that the results of Proposition 2.8 and Theorem 4.1 below will be based on the algorithm.

In what follows, we use the algorithm to show that any DAE � has isomorphic solutions 
with an “internal” DAE �∗ defined on its locally maximal invariant submanifold M∗, which is 
a practical application (via the algorithm) of Proposition 2.7. In the statement of Proposition 2.8
below, we refer to the submanifold M∗ = M∗

k+1, the neighborhood U∗ = U∗
k+1, the coordinates 

(z∗, ̄z1, . . . , ̄zk∗) on U∗, and the DAE �∗
r∗,n∗ = (E∗, F ∗) defined on M∗ by the algorithm, where 

E∗ = Ek∗+1 : M∗ → Rr∗×n∗
, F ∗ = Fk∗+1 : M∗ → Rr∗

, n∗ = nk∗ = nk∗+1, r∗ = rk∗+1 come 
from Step k∗ + 1 of the algorithm.

Proposition 2.8 (isomorphic solutions). Consider a DAE �l,n = (E, F) and fix a point xp ∈ X. 
Suppose for each Step k (1 ≤ k ≤ k∗ + 1) of the algorithm that there exists a neighborhood 
Uk ⊆ Uk−1 ⊆ X of xp such that
Assumption 1: rank Ẽk(zk−1) = const. = rk , ∀zk−1 ∈ Wk = Uk ∩ Mc

k−1;

Assumption 2: xp ∈ Mk and rank DF̃ 2
k (zk−1) = const. = nk−1 − nk for zk−1 ∈ Mk ∩ Uk .

Then Mc
k , for k = 0, . . . , k∗ + 1, given by (4), are smooth connected embedded submani-

folds and dimE(x)TxM
∗ = const. for all x ∈ M∗ ∩ U∗. Thus by Proposition 2.7, xp ∈ M∗

is a consistent point and M∗ is a locally maximal invariant submanifold around xp, given by 
M∗ = {x | z̄1(x) = 0, . . . , z̄k∗(x) = 0}. Furthermore, for the DAE �∗

r∗,n∗ = (E∗, F ∗), given on 
M∗ by

�∗ : E∗(z∗)ż∗ = F ∗(z∗), (6)

where z∗ = zk∗+1 = zk∗ are local coordinates on M∗, we have rankE∗(z∗) = r∗, ∀z∗ ∈ M∗, i.e., 
E∗(z∗) is of full row rank.

Moreover, the DAE �∗ has isomorphic solutions with �l,n, i.e., there exists a local diffeo-
morphism � : U∗ → �(U∗), �(x) = ẑ = (z∗, ̄z) = (z∗, ̄z1, . . . , ̄zk∗), transforming the set of all 
solutions of �l,n on U∗ into that of �̂

l̂,n̂
= (Ê, F̂ ) on �(U∗), where l̂ = r∗ + (n − n∗), n̂ = n, 

given by

�̂ :
{

E∗(z∗)ż∗ = F ∗(z∗),

z̄1 = 0, . . . , z̄k∗ = 0.
(7)

We omit the proof of Proposition 2.8 because it can be derived from that of Theorem 2(i) in 
[16].
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Algorithm Geometric reduction algorithm for nonlinear DAEs.
Initiatlization: Consider �l,n = (E, F), fix xp ∈ X and let U0 ⊆ X be an open connected subset contain-

ing xp . Set z0 = x, E0(z0) = E(x), F0(z0) = F(x), Mc
0 = U0, r0 = l, n0 = n, and �0 = (E0, F0). 

Below all sets Uk are open in X and Wk are open in Mc
k−1.

Step k: Suppose that we have defined at Step k − 1: an open neighborhood Uk−1 ⊆ X of xp , a smooth 
embedded connected submanifold Mc

k−1 of Uk−1 and a DAE �k−1 = (Ek−1, Fk−1) given by smooth 
matrix-valued maps

Ek−1 : Mc
k−1→Rrk−1×nk−1 , Fk−1 : Mc

k−1 →Rrk−1 ,

whose arguments are denoted zk−1 ∈ Mc
k−1.

1: Rename the maps as Ẽk = Ek−1, F̃k = Fk−1 and define �̃k := (Ẽk, F̃k).
Assumption 1: There exists an open neighborhood Uk ⊆ Uk−1 ⊆ X of xp such that rank Ẽk(zk−1) =

const. = rk , ∀zk−1 ∈ Wk = Uk ∩ Mc
k−1.

2: Find a smooth map Qk : Wk → GL(rk−1, R), such that Ẽ1
k

of QkẼk =
[

Ẽ1
k

0

]
is of full row rank and 

denote QkF̃k =
[

F̃ 1
k

F̃ 2
k

]
, where Ẽ1

k
: Wk →Rrk×nk−1 , F̃ 2

k
: Wk →Rrk−1−rk (so all the matrices depend 

on zk−1); such a map Qk exists by Dolezal’s theorem [30], see also [31].

3: Following (4), define Mk =
{
zk−1 ∈ Wk | F̃ 2

k
(zk−1) = 0

}
.

Assumption 2: xp ∈ Mk and rank DF̃ 2
k
(zk−1) = const. = nk−1 − nk for zk−1 ∈ Mk ∩ Uk .

4: By Assumption 2, Mk ∩ Uk is a smooth embedded submanifold and by taking again a smaller Uk , we 
may assume that Mc

k
= Mk ∩ Uk is connected and choose new coordinates (zk, ̄zk) = ψk(zk−1) on 

Wk , where z̄k = ϕ̄k(zk−1) = (ϕ̄1
k
(zk−1), ..., ϕ̄nk−1−nk

k
(zk−1)), with dϕ̄1

k
(zk−1), ..., dϕ̄

nk−1−nk

k
(zk−1)

being all independent rows of DF̃ 2
k
(zk−1), and zk = ϕk(zk−1) = (ϕ1

k
(zk−1), ..., ϕnk−1

k
(zk−1)) are any 

complementary coordinates such that ψk = (ϕk, ϕ̄k) is a local diffeomorphism.

5: Set Êk = QkẼk

(
∂ϕ̄k

∂zk−1

)−1
, F̂k = QkF̃k . By Definition 2.10, �̃k

ex∼ �̂k = (Êk, F̂k) via Qk and ψk , 
where

�̂k :
[
Ê1

k
(zk, z̄k) Ē1

k
(zk, z̄k)

0 0

][
żk˙̄zk

]
=

[
F̂ 1

k
(zk, z̄k)

F̂ 2
k
(zk, z̄k)

]
(5)

with Ê1
k

: Wk →Rrk×nk , F̂ 1
k

◦ ψk = F̃ 1
k

, F̂ 2
k

◦ ψk = F̃ 2
k

and [Ê1
k

◦ ψk Ē1
k

◦ ψk] = Ẽ1
k

(
∂ψk

∂zk−1

)−1
.

6: Set z̄k = 0 to define the following reduced and restricted DAE on Mc
k

= {
zk−1 ∈ Wk | z̄k = 0

}
by

�k : Ek(zk)żk = Fk(zk),

where Ek(zk) = Ê1
k
(zk, 0), Fk(zk) = F̂ 1

k
(zk, 0) are matrix-valued maps and Ek : Mc

k
→Rrk×nk , Fk :

Mc
k

→Rrk .
Repeat: Step k for k = 1, 2, 3, . . ., until nk+1 = nk , and set k∗ = k.
Result: Set n∗ = nk∗ = nk∗+1, r∗ = rk∗+1, M∗ = Mc

k∗+1, U∗ = Uk∗+1, z∗ = zk∗+1 = zk∗ and �∗ =
(E∗, F ∗) with E∗ = Ek∗+1, F ∗ = Fk∗+1.

Remark 2.9. (i) The geometric reduction algorithm is a constructive application of Proposi-
tion 2.7 but with more assumptions. Assumption 1 is made to produce the full row rank matrices 

Ẽ1
k and the zero-level set Mk =

{
zk−1 ∈ Wk | F̃ 2

k (zk−1) = 0
}

. Assumption 2 assures that Mk ∩Uk

is a smooth embedded submanifold and makes it possible to use the components of F̃ 2, with 
k
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linearly independent differentials, as a part of new local coordinates. Note that these two as-
sumptions are mild constant rank assumptions made in a neighborhood Uk of the point xp . In 
some cases (see Example 2.23 below), the neighborhood Uk can be the whole generalized state 
space Uk = X. While in other cases, we may need to take a smaller neighborhood Uk � Uk−1
such that both assumptions hold on Uk for each Step k, which may result in obtaining a small 
neighborhood U∗ = Uk∗+1 ⊆ Uk at Step k∗ + 1.

(ii) The integers rk , nk of the geometric reduction algorithm, satisfy, for each k ≥ 1,

{
l = r0 ≥ r1 ≥ ... ≥ rk ≥ ... ≥ 0, n = n0 ≥ n1 ≥ ... ≥ nk ≥ ... ≥ 0,

nk−1 ≥ rk, rk−1 − rk ≥ nk−1 − nk.

2.3. External equivalence, internal equivalence and internal regularity

Two linear DAEs Eẋ = Hx and Ẽ ˙̃x = H̃ x̃ are called externally equivalent [18] or strictly 
equivalent [20], if there exist constant invertible matrices Q and P such that QEP −1 = Ẽ and 
QHP −1 = H̃ . Analogously, we define the external equivalence of two nonlinear DAEs as fol-
lows.

Definition 2.10 (external equivalence). Two DAEs �l,n = (E, F) and �̃l,n = (Ẽ, F̃ ) defined on 
X and X̃, respectively, are called externally equivalent, shortly ex-equivalent, if there exist a 
diffeomorphism ψ : X → X̃ and a smooth map Q : X → GL(l, R) such that

ψ∗Ẽ = QE and ψ∗F̃ = QF,

where ψ∗Ẽ and ψ∗F̃ denote the pull-back [3] of the Rl-valued differential 1-form Ẽ on X̃ and 
Rl-valued function F̃ (0-form) on X̃, respectively, that is,

Ẽ(ψ(x)) = Q(x)E(x)

(
∂ψ(x)

∂x

)−1

and F̃ (ψ(x)) = Q(x)F (x). (8)

The ex-equivalence of two DAEs will be denoted by � 
ex∼ �̃. If ψ : U → Ũ is a local diffeomor-

phism between neighborhoods U of xp and Ũ of x̃p , and Q(x) is defined on U , we will speak 
about local ex-equivalence.

Note that the map Q and the diffeomorphism ψ above should be smooth maps in order to 
guarantee the smoothness of Ẽ and F̃ for the DAE �̃. The following observation relates ex-
equivalence with solutions.

Remark 2.11. The ex-equivalence preserves trajectories, i.e., for two DAEs � 
ex∼ �̃, if a C1-curve 

x(·) is a solution of � passing through x0 = x(t0), then x̃ = ψ ◦ x is a solution of �̃ passing 
through x̃0 = ψ(x0); but even if we can smoothly conjugate all trajectories of two DAEs, they are 
not necessarily ex-equivalent. For example, consider �1 = (E1, F1) and �2 = (E2, F2), where 

E1(x) =
[

0 0 1
0 0 0
0 0 0

]
, F1(x) =

[
x2

3
x1
x2

]
, E2(x) =

[
0 x1 1
0 0 0
0 0 0

]
, F2(x) =

[
x2

3
x1
x2

]
. Then for both DAEs �1

and �2, the maximal invariant submanifold is M∗ = {
(x1, x2, x3) ∈R3 |x2 = x3 = 0

}
and for 

any (x10, x20, x30) = (0, 0, x30) ∈ M∗, the unique solution of both systems is x1(t) = x2(t) = 0, 
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x3(t) = x30
1−x30t

. Nevertheless, the DAEs are not ex-equivalent since the distribution kerE1 is 
involutive but the distribution kerE2 is not (clearly, the ex-equivalence of two DAEs preserves 
the involutivity of kerE1 and kerE2 since if �1

ex∼ �2, via Q and ψ , then kerE2 = ∂ψ
∂x

kerE1).

The results of Proposition 2.8 above show clearly the reason behind Remark 2.11: if we 
assume two DAEs � and �̃ to have corresponding solutions, this assumption only gives the 
information that the two internal DAE �∗ and �̃∗, which have isomorphic solutions with � and 
�̃, respectively, are ex-equivalent when restricted to M∗ and M̃∗, respectively, i.e., via a dif-
feomorphism between the submanifolds M∗ and M̃∗ and an invertible map Q defined on the 
invariant submanifold M∗. We do not know, however, whether the diffeomorphism and the map 
Q can be extended outside the submanifold M∗. In fact, outside the manifolds M∗ and M̃∗, the 
two DAEs may have completely different behaviors or even different size of system matrices. 
This analysis gives a motivation to introduce the concept of internal equivalence of two DAEs 
(see the formal Definition 2.17), which is defined by the ex-equivalence of two internal DAEs. 
In Proposition 2.8, the internal DAE �∗ is defined with the help of the geometric reduction al-
gorithm. Now we introduce two notions: local restriction and full row rank reduction, which can 
be used to define the internal DAE �∗ of a DAE � (which we call the reduction of local M∗-
restriction of �, see Proposition 2.16) without going through the algorithm when the invariant 
submanifold M∗ is a priori given. The local restriction of a DAE to a submanifold N (invariant 
or not) is defined as follows.

Definition 2.12 (local restriction). Consider a DAE �l,n = (E, F) and a smooth connected em-
bedded submanifold N ⊆ X containing a point xp . Let ψ(x) = z = (z1, z2) be local coordinates 
on a neighborhood U of xp such that N ∩ U = {z2 = 0} and z1 are thus coordinates on N ∩ U . 
The restriction of � to N ∩ U , called local N -restriction of � and denoted �|N , is

�|N : Ẽ(z1,0)

[
ż1
0

]
= F̃ (z1,0), (9)

where Ẽ ◦ ψ = E
(

∂ψ
∂x

)−1
, F̃ ◦ ψ = F .

For any DAE �l,n = (E, F), there may exist some redundant equations (in particular, some 
trivial algebraic equations 0 = 0 and some dependent equations). In the linear case, we have 
defined the full rank reduction of a linear DAE (see Definition 6.4 of [18]). We now generalize 
this notion of reduction to nonlinear DAEs to get rid of their redundant equations.

Definition 2.13 (reduction). For a DAE �l,n = (E, F), assume rankE(x) = const. = q . Then 

there exists a smooth map Q : X → GL(l, R) such that E1 of QE =
[

E1
0

]
is of full row rank q , 

denote QF =
[

F1
F2

]
. Assume that rank DF2(x) = const. = l̂ − q ≤ l − q . Then the full row rank 

reduction, shortly reduction, of �, denoted by �red , is the DAE

�red :
[
E1(x)

0

]
ẋ =

[
F1(x)

F̂2(x)

]
,

where F̂2 : X → Rl̂−q with DF̂2 being all independent rows of DF2.
169



Y. Chen and W. Respondek Journal of Differential Equations 314 (2022) 161–200
Remark 2.14. Note that the existence of smooth map Q in Definition 2.13 is guaranteed by 
Dolezal’s theorem [30] and also its generalization [31] under the constant rank assumption of E. 
Since the choice of Q(x) is not unique, the reduction of � is not unique either. Nevertheless, 
since Q(x) preserves the solutions, each reduction �red has the same solutions as the original 
DAE �.

For a locally invariant submanifold M , we consider the local M-restriction �|M of �, and 
then we construct a reduction of �|M and denote it by �|redM . Notice that the order matters: to 
construct �|redM , we first restrict and then reduce while reducing first and then restricting will 
not give �|redM but another DAE �red |M , which may have redundant equations as seen from the 
following example.

Example 2.15. Consider the following nonlinear DAE � :
[

1 1
x 0
0 0
ey ey

][
ẋ
ẏ

]
=

⎡
⎣ x2

x3

xy

eyx2

⎤
⎦ defined on 

X = R2. Fix a point (xp, yp) = (1, 0), then it is clear that M∗ = {
(x, y) ∈R2 : x > 0, y = 0

}
is 

a locally maximal invariant submanifold around xp. Set ψ(x, y) = (z1, z2) = (x, y) as coordi-

nates on X. Then the M∗-restriction of �, by Definition 2.12, is �|M∗ :
[

1
z1
0
1

]
ż1 =

⎡
⎢⎣

z2
1

z3
1
0
z2

1

⎤
⎥⎦ and 

the reduction of �|M∗ is �|redM∗ : q(z1)ż1 = q(z1)z
2
1, where q(z1) can be any non-zero function 

(illustrating that the reduction is not unique). On the other hand, �red |M∗ is 
[

1
z1
0

]
ż1 =

[
z2

1

z3
1
0

]
, 

and clearly, has redundant equations.

Proposition 2.16. Consider a DAE �l,n = (E, F) and fix a point xp . Let M be an n̄-dimensional 
locally invariant submanifold of � around xp . Assume that dim E(x)TxM = const. = r̄ for all 
x ∈ M around xp . Then any reduction �|redM of the local M-restriction of � is a DAE of the 
form (1) and the dimensions related to �|redM are r̄ and n̄, i.e., �|redM = �̄r̄,n̄. Moreover, the 
matrix Ē of �̄r̄,n̄ = (Ē, F̄ ) is of full row rank r̄ .

Proof. We skip the proof since we have already constructed �|redM for M being an invariant 
submanifold, see (29) in the proof of Proposition 2.3; it is clear that Ē = [Ē1

1 Ē2
1 ], F̄ = F̄1 and 

rank Ē = r̄ . �
The definition of the internal equivalence of two DAEs is given as follows.

Definition 2.17. (internal equivalence) Consider two DAEs � = (E, F) and �̃ = (Ẽ, F̃ ), and fix 
two points xp ∈ X and x̃p ∈ X̃. Let M∗ and M̃∗ be two locally maximal invariant submanifolds 
of � and �̃, around xp and x̃p , respectively. Assume that dimE(x)TxM

∗ = const. for x ∈ M∗
around xp and dim Ẽ(x̃)Tx̃M̃

∗ = const. for x̃ ∈ M̃∗ around x̃p . Then, � and �̃ are called locally 
internally equivalent, shortly in-equivalent, if �|redM∗ and �̃|red

M̃∗ are ex-equivalent, locally around 

xp and x̃p , respectively. Denote the in-equivalence of two DAEs by � 
in∼ �̃.
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Remark 2.18. Note that under the assumption that dimE(x)TxM
∗ and dim Ẽ(x̃)Tx̃M̃

∗ are con-
stant, by Proposition 2.16 applied to M∗, we have �|redM∗ = �∗

r∗,n∗ and �̃|redM∗ = �̃∗
r̃∗,ñ∗ , where 

r∗ = dim E(x)TxM
∗, n∗ = dim M∗ and r̃∗ = dim Ẽ(x)Tx̃M̃

∗, ñ∗ = dim M̃∗. The dimensions 
l and n, related to �, and l̃ and ñ related to �̃ are not required to be the same. However, if �
and �̃ are in-equivalent, then by definition, �|redM∗ = �∗

r∗,n∗ and �̃|red
M̃∗ = �̃∗

r̃∗,ñ∗ are locally ex-
equivalent and thus the dimensions related to them have to be the same, i.e., r∗ = r̃∗ and n∗ = ñ∗
(and l∗ = r∗ = r̃∗ = l̃∗ since all reductions of � and �̃ are of full row rank).

Now we will study the uniqueness of solutions of DAEs with the help of the notion of internal 
equivalence (some other results of uniqueness of DAE solutions can be consulted in e.g., [11,12]). 
We will say that a solution x : I → M∗ of a DAE � satisfying x(t0) = x0, where t0 ∈ I and 
x0 ∈ M∗, is maximal if for any solution x̃ : Ĩ → M∗ such that t0 ∈ Ĩ , x̃(t0) = x0 and x(t) = x̃(t), 
∀t ∈ I ∩ Ĩ , we have Ĩ ⊆ I .

Definition 2.19. (internal regularity) Consider a DAE �l,n = (E, F) and let M∗ be a locally 
maximal invariant submanifold around a point xp ∈ M∗. Then � is called locally internally 
regular (around xp) if there exists a neighborhood U ⊆ X of xp such that for any point x0 ∈
M∗ ∩ U , there exists only one maximal solution x : I → M∗ ∩ U satisfying x(t0) = x0 for a 
certain t0 ∈ I .

Theorem 2.20. Consider a DAE �l,n = (E, F) and let M∗ be an n∗-dimensional locally maxi-
mal invariant submanifold around a point xp ∈ M∗. Assume that dim E(x)TxM

∗ = const. = r∗
for all x ∈ M∗ around xp . Then the following conditions are equivalent:

(i) � is internally regular around xp;
(ii) dim M∗ = dim E(x)TxM

∗, i.e., n∗ = r∗, for all x ∈ M∗ around xp;
(iii) � is locally internally equivalent to

ż∗ = f ∗ (
z∗) , (10)

for z∗ ∈ M∗ ∩ U , where U is a neighborhood of xp and f ∗ is a smooth vector field on 
M∗ ∩ U .

The proof is given in Appendix A.

Remark 2.21. Theorem 2.20 is a nonlinear generalization of the results on the internal regularity 
of linear DAEs in [18] (see also [32], where the internal regularity is called autonomy). As 
stated in Theorem 6.11 of [18], a linear DAE � = (E, H), given by (3), is internally regular 
if and only if the maximal invariant subspace M ∗ of � (i.e., the largest subspace such that 
HM ∗ ⊆ EM ∗) satisfies dim M ∗ = dim EM ∗. A nonlinear counterpart of the last condition is 
(ii) of Theorem 2.20 and thus M∗ is a natural nonlinear generalization of M ∗. Observe that M∗
is the limit of Mk as V ∗ is the limit of Vk , defined in Remark 2.6. Moreover, we have shown in 
[18] that the maximal invariant subspace M ∗ = V ∗, where V ∗ coincides with the limit of the 
Wong sequence Vk defined in Remark 2.6.

For a DAE control system of the form E(x)ẋ = F(x) + G(x)u, the internal regularization 
problem, i.e., to find a feedback law u = γ (x) such that the DAE E(x)ẋ = F(x) + G(x)γ (x) is 
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internally regular, was discussed in [16], via the geometric reduction method. The connections 
and differences between section 2 and [16] are summarized in the following remark.

Remark 2.22. Note that the algorithm in section 2.2, Propositions 2.7 and 2.8, Remark 2.9 of the 
present paper are the special cases of, respectively, Algorithm 1, Proposition 2, Theorem 2(i) and 
Remark 6 in [16] with inputs u been absent. There are, however, essential differences between 
results of section 2 and those of [16]. Firstly, the main contribution of section 2 is not to discuss 
geometric reduction method but is to analyze the differences between external equivalence and 
internal equivalence for DAEs, the notions of restriction �|M and reduction �|redM (essential for 
internal equivalence and formalized in Definitions 2.12 and 2.13, respectively) are novel, while 
the internal feedback equivalence of DAE control systems was not discussed in [16]. Secondly, 
Proposition 2.3 is different from the special case of Proposition 1 in [16] because the latter is a 
necessary and sufficient condition under a suitable constant rank assumption, while, as shown in 
Proposition 2.3, such constant rank assumption is actually not required for proving one direction, 
i.e., for proving that if M is locally invariant, then F(x) ∈ E(x)TxM for all x around M . Thirdly, 
Assumption 1 of algorithm, that is, rank Ẽk(·) = const., is replaced by rank [Ẽk(·), G̃k(·)] in al-
gorithm of [16]. It means that in the latter some singularities can be compensated by the control u
while algorithm of section 2.2 detects intrinsic singularities of the pair (E, F). At last, more de-
tailed explanations on the assumptions of geometric reduction method, such as the requirements 
xp ∈ Mk , the connectivity of Mk in Definition 2.5, the necessity of using Uk∗+1 rather than Uk∗
in Proposition 2.7, can be consulted in Remark 1(iii) and (iv) of [16].

Example 2.23. Consider a DAE �6,6 = (E, F) with the generalized state x = (x1, x2, x3, x4,

x5, x6) ∈ X, where X = {
x ∈ R6 : x1 �= x6, x6 > 0

}
,

⎡
⎢⎢⎢⎣

− lnx6 x6(x3+x5)
x1x5 lnx6

x1−x6
0 0 0

0 0 0 1 0 0
0 0 1 0 1− x1

x6
0

0 0 0 0 x5 −1
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(x1−x6)(x3+x5)−(x2x6−x2
6−x1) lnx6

x5−x2+x6

(1− x1
x6

)(x2
6−x6x2+x4)

x6+x5(x
2
6−x6x2+x4)
x1
x6

x3+x5

⎤
⎥⎥⎥⎥⎦ . (11)

We consider � around a point xp = (0, 1, 0, 0, 0, 1) and apply to � the algorithm given in sec-
tion 2.2.

Step 1: We have rankE(x) = r1 = 4 on U1 = X. Since E is already in the desired form, set 
Q1 = I6 to get

M1 = {x ∈ X : Q1F(x) ∈ ImQ1E(x)} =
{
x ∈ X : x1

x6
= 0, x3 + x5 = 0

}
.

It is clear that xp ∈ M1 and Mc
1 = M1 ∩ U1 = M1 is a locally smooth connected embedded sub-

manifold and n1 = dimMc
1 = 4. Then choose new coordinates z̄1 = (x̄1, x̄3) = ( x1

x6
, x3 + x5) and 

keep the remaining coordinates z1 = (x2, x4, x5, x6) unchanged. The system in new coordinates, 
denoted �̂1, takes the form
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�̂1 :

⎡
⎢⎢⎢⎣

x5x̄3 0
−x̄1x5 lnx6

x̄1−1
−x̄1 lnx6

x6
−x6 lnx6

x̄1x5 lnx6
x̄1−1

0 1 0 0 0 0
0 0 −x̄1 0 0 1
0 0 x5 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ẋ2
ẋ4
ẋ5
ẋ6
˙̄x1
˙̄x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x̄3x6(x̄1−1)−x6 lnx6(x2−x6−x̄1)
x5−x2+x6

(1−x̄1)(x
2
6−x6x2+x4)

x6+x5(x
2
6−x6x2+x4)

x̄1
x̄3

⎤
⎥⎥⎥⎦ .

By setting z̄1 = (x̄1, x̄3) = 0, we get the reduction of Mc
1-restriction of �̂1 (see Definition 2.12

and 2.13) as

�1 = �̂1|redMc
1

:
[ 0 0 0 0

0 1 0 0
0 0 0 0
0 0 x5 −1

][
ẋ2
ẋ4
ẋ5
ẋ6

]
=

⎡
⎣ −x6 lnx6(x2−x6)

x5−x2+x6

(x2
6−x6x2+x4)

x6+x5(x
2
6−x6x2+x4)

⎤
⎦ .

Step 2: Consider the DAE �1 = (E1, F1). We have dimE(x)TxM
c
1 = rankE1(z1) = r2 = 2

around xp (on W2 = Mc
1 ∩ U2 = Mc

1 , where U2 = U1 = X). Set Q1 =
[

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

]
and define 

M2 by

M2 = {z1 : Q1F1(z̄1) ∈ ImQ1E1(z1)} =
{
z1 : x2 − x6 = 0, x2

6 − x6x2 + x4 = 0
}

.

It is clear that xp ∈ M2, Mc
2 = M2 ∩ U2 = M2 and n2 = dimMc

2 = 2. Then choose new coordi-
nates z̄2 = (x̄2, x̄4) = (x2 −x6, x2

6 −x6x2 +x4) and keep the remaining coordinates z2 = (x5, x6)

unchanged. For the system in new coordinates, denoted �̂2, by a similar procedure as in Step 1, 
we can define the reduction of Mc

1-restriction of �̂2 as

�2 = �̂2|redMc
2

:
[

0 0
x5 −1

][
ẋ5
ẋ6

]
=

[
x5
x6

]
.

Step 3: For �2 = (E2, F2), we have dimE(x)TxM
c
2 = rankE2(z2) = r2 = 1 in W3 = Mc

2 . By 
definition, Mc

3 = M3 = {z2 : x5 = 0}. It can be observed that dimMc
3 = n3 = 1 and by a similar 

construction as at former steps, we have

�3 = �̄2|redMc
3

: −ẋ6 = x6.

Step 4: We have Mc
4 = Mc

3 (dimMc
4 = n4 = n3 = 1) and dimE(x)TxM

c
4 = r4 = 1, thus k∗ = 3

and the algorithm stops at Step k∗ + 1 = 4. Therefore, by Proposition 2.8,

M∗ = Mc
4 =

{
x ∈R6 : x1 = x3 = x4 = x5 = 0, x2 = x6, x6 > 0

}
=

{
x ∈R6 : x̄1 = · · · = x̄5 = 0, x̄6 > 0

}
is locally maximal invariant and xp ∈ M∗ is a consistent point. Moreover, since x6(t) = e−t x60
is the unique maximal solution of �∗ = �3 passing through x0 ∈ M∗, we have that x(t) =
�−1(x6(t), 0, 0, 0, 0, 0) = (0, e−t x60, 0, 0, 0, e−t x60) is the unique maximal solution of � pass-
ing through x0 = �−1(x60, 0, 0, 0, 0, 0) ∈ M∗, where �(x) = (x6, 

x1
x6

, x2 − x6, x3 + x5, x2
6 −

x2x6 + x4, x5) is a local diffeomorphism (actually, z∗ = x6). Hence the DAE � is internally 
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regular around xp by definition, which illustrates the results of Theorem 2.20 since dimM∗ =
n4 = dimE(x)TxM

∗ = r4 = 1, and � is in-equivalent to the ODE: ẋ6 = −x6.

3. Analysis of nonlinear DAEs via explicitation

3.1. Explicitation with driving variables of nonlinear DAEs

The explicitation (with driving variables) of a DAE � is the following procedure.

• For a DAE �l,n = (E, F), assume that rankE(x) = const. = q in a neighborhood U ⊆ X of 
a point xp ∈ X. Then by Dolezal’s theorem [30] (see also [31]), there exists a smooth map Q :
U → GL(l, R) such that Q(x)E(x) =

[
E1(x)

0

]
, where E1 : U →Rq×n, and rankE1(x) = q . 

Thus � is, locally on U , ex-equivalent via Q(x) to{
E1(x)ẋ = F1(x),

0 = F2(x),
(12)

where Q(x)F (x) =
[

F1(x)

F2(x)

]
, and where F1 : U →Rq , F2 : U → Rl−q .

• The matrix E1(x) is of full row rank q , choose its right inverse E†
1(x), i.e., E1E

†
1 = Iq and 

set f (x) = E
†
1(x)F1(x). The collection of all ẋ satisfying E1(x)ẋ = F1(x) of (12) is given 

by the differential inclusion:

ẋ ∈ f (x) + kerE1(x) = f (x) + kerE(x), (13)

where f (x) is a smooth vector field on X.
• Since kerE(x) is a distribution of constant rank n − q , choose locally m = n − q inde-

pendent vector fields g1, . . . , gm on X such that kerE(x) = span {g1, . . . , gm} (x). Then 
by introducing driving variables vi , i = 1, . . . , m, we parametrize the affine distribution 
f (x) + kerE1(x) and thus all solutions of (13) are given by all solutions (corresponding to 
all controls vi(t) ∈ R) of

ẋ = f (x) +
m∑

i=1

gi(x)vi . (14)

• Form a matrix g(x) = [g1(x), . . . , gm(x)]. Then, we rewrite equation (14) as ẋ = f (x) +
g(x)v, where v = (v1, . . . , vm), and set h(x) = F2(x). We claim, see Proposition 3.5 below, 
that all solutions of DAE (12) (and thus of the original DAE �) are in one-to-one correspon-
dence with all solutions (corresponding to all C0-controls v(t)) of{

ẋ = f (x) + g(x)v,

0 = h(x).
(15)

• To (15), we attach the control system 
 = 
n,m,p = (f, g, h), given by


 :
{

ẋ = f (x) + g(x)v,

y = h(x),
(16)
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where n = dim x, m = dim v, p = dim y. Clearly, m = n − q and p = l − q (we will use 
these dimensional relations in the following discussion). In the above way, we attach a con-
trol system 
 to a DAE � (actually, a class of control systems, see Proposition 3.2 below).

Definition 3.1. (explicitation with driving variables) Given a DAE �l,n = (E, F), fix a point 
xp ∈ X and assume that rankE(x) = const. locally around xp . Then, by a (Q, v)-explicitation 
we will call any control system 
 = 
n,m,p = (f, g, h) given by (16) with

f (x) = E
†
1F1(x), Img(x) = kerE(x), h(x) = F2(x),

where QE(x) =
[

E1(x)

0

]
, QF(x) =

[
F1(x)

F2(x)

]
. The class of all (Q, v)-explicitations will be called 

shortly the explicitation class. If a particular control system 
 belongs to the explicitation class 
of �, we will write 
 ∈ Expl(�).

Notice that a given � has many (Q, v)-explicitations since the construction of 
 ∈ Expl(�) is 
not unique: there is a freedom in choosing Q(x), E†

1(x), and g(x). As a consequence of this 
non-uniqueness of construction, the explicitation 
 of � is a system defined up to a feedback 
transformation, an output multiplication and a generalized output injection (or, equivalently, a 
class of systems).

Proposition 3.2. Assume that a control system 
n,m,p = (f, g, h) is a (Q, v)-explicitation of a 
DAE �l,n = (E, F) corresponding to a choice of invertible matrix Q(x), right inverse E†

1(x), 
and matrix g(x). Then a control system 
̃n,m,p = (f̃ , g̃, h̃) is a (Q̃, ṽ)-explicitation of �l,n cor-

responding to a choice of invertible matrix Q̃(x), right inverse Ẽ†
1(x), and matrix g̃(x) if and 

only if 
 and 
̃ are equivalent via a v-feedback transformation of the form v = α(x) + β(x)ṽ, a 
generalized output injection γ (x)y = γ (x)h(x) and an output multiplication ỹ = η(x)y, which 
map

f �→ f̃ = f + γ h + gα, g �→ g̃ = gβ, h �→ h̃ = ηh, (17)

where α, β and η are smooth matrix-valued functions of appropriate sizes, γ = (γ1, . . . , γp) is a 
p-tuple of smooth vector fields on X, and β and η are invertible.

The proof is given in Appendix B. Since the explicitation of a DAE is a class of control 
systems, we will propose now an equivalence relation for control systems. An equivalence of two 
nonlinear control systems is usually defined by state coordinates transformations and feedback 
transformations (e.g. see [27,28]), and sometimes output coordinates transformations [33]. In the 
present paper, we define a more general system equivalence of two control systems as follows.

Definition 3.3. (system equivalence) Consider two control systems 
n,m,p = (f, g, h) and 

̃n,m,p = (f̃ , g̃, h̃) defined on X and X̃, respectively. The systems 
 and 
̃ are called sys-

tem equivalent, or shortly sys-equivalent, denoted by 
 
sys∼ 
̃, if there exist a diffeomorphism 

ψ : X → X̃, matrix-valued functions α : X →Rm, β : X → GL(m, R), η : X → GL(p, R), and 
a p-tuple of vector fields γ = (γ1, . . . , γp) on X such that
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f̃ ◦ ψ = ∂ψ

∂x
(f + γ h + gα) , g̃ ◦ ψ = ∂ψ

∂x
gβ, h̃ ◦ ψ = ηh.

If ψ : U → Ũ is a local diffeomorphism between neighborhoods U of xp and Ũ of x̃p , and α, β , 
γ , η are defined locally on U , we will speak about local sys-equivalence.

Remark 3.4. The above defined sys-equivalence of two nonlinear control systems generalizes 
the Morse equivalence of two linear control systems (see [18,34]).

The following proposition shows that solutions of any DAE are in a one-to-one correspon-
dence with solutions of its (Q, v)-explicitation.

Proposition 3.5. Consider a DAE �l,n = (E, F) and let a control system 
n,m,p = (f, g, h) be 
a (Q, v)-explicitation of �, i.e., 
 ∈ Expl(�). Then a C1-curve x(·) is a solution of � if and only 
if there exists v(·) ∈ C0 such that (x(·), v(·)) is a solution of 
 respecting the output constraints 
y = 0, i.e., a solution of (15).

The proof is given in Appendix B. The following theorem is a fundamental result of the 
present paper, which shows that sys-equivalence for explicitation systems (control systems) is a 
true counterpart of the ex-equivalence for DAEs.

Theorem 3.6. Consider two DAEs �l,n = (E, F) and �̃l,n = (Ẽ, F̃ ). Assume that rankE(x)

and rank Ẽ(x̃) are constant around two points xp and x̃p , respectively. Then for any two control 
systems 
n,m,p = (f, g, h) ∈ Expl(�) and 
̃n,m,p = (f̃ , g̃, h̃) ∈ Expl(�̃), we have that locally 

� 
ex∼ �̃ if and only if 
 

sys∼ 
̃.

�


 ∈ Expl(�)

�̃


̃ ∈ Expl(�̃)

(Q,v)-explicitation

Ex-equivalence

(Q̃, ṽ)-explicitation

Sys-equivalence

Fig. 1. Ex-equivalence of DAEs and sys-equivalence of control systems.

The proof is given in Appendix B. We use Fig. 1 to illustrate the results of Theorem 3.6. In 
order to show how the explicitation can be useful in the DAEs theory, we discuss below how the 
analysis of DAEs of sections 2.1 and 2.3 is related to the notion of zero dynamics of nonlinear 
control theory. For a nonlinear control system 
n,m,p = (f, g, h) and a nominal point xp , assume 
h(xp) = 0. Recall its zero dynamics algorithm [27,28].

Step 1: set N1 = h−1(0). Step k (k > 1): assume for some neighborhood Uk−1 ⊆ X of xp , 
Nc

k−1 = Nk−1 ∩ Uk−1 is a smooth embedded and connected submanifold such that xp ∈ Nc
k−1. 

Set

Nk = {
x ∈ Nc

k−1 : f (x) ∈ TxN
c
k−1 + span{g1(x), . . . , gm(x)}} . (18)
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For a control system 
 = (f, g, h), a smooth embedded connected submanifold N containing 
a point xp is called output zeroing if (i) h(x) = 0, ∀x ∈ N ; (ii) N is locally controlled invari-
ant around xp (i.e., ∃ u : N → Rm and a neighborhood Up of xp such that f (x) + g(x)u(x) ∈
TxN, ∀x ∈ N ∩ Up). An output zeroing submanifold N∗ is locally maximal if for some neigh-
borhood U of xp , any other output zeroing submanifold N ′ satisfies N ′ ∩ U ⊆ N∗ ∩ U .

Remark 3.7. (i) It is shown in [27] that Nk is invariant under feedback transformations. Then 
consider a control system 
̃ = (f̃ , g̃, h̃), given by applying a generalized output injection and an 
output multiplication to 
, i.e., f̃ = f + γ h, g̃ = g, h̃ = ηh, where γ = (γ1, . . . , γp), γi : X →
T X and η : X → GL(p, R). By Ñ0 = h̃−1(0) = h−1(0) (since η(x) is invertible) and for

Ñk =
{
x ∈ Ñc

k−1 : f (x) + γ h(x) ∈ TxÑ
c
k−1 + span{g̃1, . . . , g̃m}(x)

}
=

{
x ∈ Ñc

k−1 : f (x) + 0 ∈ TxÑ
c
k−1 + span{g1, . . . , gm}(x)

}
,

we have Ñk = Nk for k ≥ 0, which means that Nk of the zero dynamics algorithm is invariant 
under generalized output injection and output multiplication.

(ii) The sequence of submanifolds Nc
k of the zero dynamics algorithm is well-defined for the 

class Expl(�), i.e., does not depend on the choice of 
 ∈ Expl(�). Indeed, since by Proposi-
tion 3.2 any two systems 
, 
′ ∈ Expl(�) are equivalent via a v-feedback, a generalized output 
injection, and an output multiplication, then by the argument in item (i) above, we have Ñk = Nk .

Proposition 3.8. Consider a DAE �l,n = (E, F) satisfying rankE(x) = q = const. around a 
point xp and a control system 
 = (f, g, h) ∈ Expl(�). Denote G(x) = span{g1, . . . , gm}(x), 
where the vector fields gi , 1 ≤ i ≤ m, are the columns of g. The following conditions

(A1) for �, the submanifold Mc
k of the geometric reduction method of section 2.1 is smooth, 

embedded, connected and dim E(x)TxM
c
k∗ = const. for all x ∈ Mc

k∗ around xp ,
(A2) for 
, the submanifold Nc

k of the zero dynamics algorithm above is smooth, embedded, 
connected and dimG(x) ∩ TxN

c
k∗ = const. for all x ∈ Nc

k∗ around xp (see Proposition 
6.1.1 in [27]),

are equivalent for each k ≥ 1. Assume that either (A1) or (A2) holds, then the maximal invariant 
submanifold M∗ = Mc

k∗ of � coincides with the maximal output zeroing submanifold N∗ = Nc
k∗

of 
. Moreover, � is internally regular (around xp) if and only if G(xp) ∩ TxpN∗ = 0 (equation 
(6.4) of [27]).

The proof is given in Appendix B.

Remark 3.9. By Proposition 3.8, if there exists a unique u = u(x) that renders N∗ output zeroing 
and locally maximal control invariant for a control system 
 ∈ Expl(�), then the original DAE 
� is internally regular. Since the zero dynamics do not depend on the choice of explicitation, the 
internal regularity of � corresponds to the fact that the zero output constraint y(t) = 0 of any 
control system 
 ∈ Expl(�) can be achieved by a unique control u(t) or, equivalently, the zero 
dynamics of 
 is a unique vector field on N∗.
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The explicitation can be also used to characterize solutions of DAEs which are not necessarily 
internally regular, that is, the restricted DAE �∗, given by (6), has non-unique maximal solutions 
(recall that �∗ has isomorphic solutions with the original DAE � by Proposition 2.8). We now 
apply the explicitation method to �∗ to have the following result.

Proposition 3.10. Consider a DAE � = (E, F) and fix a point xp ∈ X. Assume that the locally 
maximal invariant submanifold M∗ around xp exists and can be constructed via the algorithm 
in section 2.2. Then the reduction of local M∗-restriction of �, denoted by �|redM∗ , coincides with 
the DAE �∗ : E∗(z∗)ż∗ = F ∗(z∗) of Proposition 2.8 with E∗(z∗) being of full row rank r∗. We 
have

(i) A curve z∗ : I → M∗ is a solution of �∗ if and only if it is an integral curve of the affine 
distribution A(z∗) = f ∗(z∗) + kerE(z∗), i.e., ż∗(·) ∈ A(z∗(·)), where f ∗ = (E∗)†F ∗.

(ii) C1-solutions of �∗ are in one-to-one correspondence with those of any (Q, v)-explicitation 

∗ ∈ Expl(�∗) of the form


∗ : z∗ = f ∗(z∗) + g∗(z∗)v,

which is a control system without outputs, where Img∗ = kerE, g∗ = (g∗
1 , . . . , g∗

m∗) and 
v = (v1, . . . , vm∗), and v(t) ∈ C0.

(iii) If kerE = kerE∗ is involutive, then �∗ is ex-equivalent (that is, the original DAE � is 
in-equivalent) to a semi-explicit DAE of the form

ż∗
1 = F1(z

∗
1, z

∗
2),

which can be seen as a control system that is not affine with respect to the control z∗
2.

Proof. We omit the proof since item (i) is clear, and items (ii) and (iii) can be easily deduced 
by applying, respectively, the results of Proposition 3.5 and that of Theorem 3.13 (see below) to 
�∗. �
3.2. Driving variable reducing and semi-explicit DAEs

Now we will show by an example that sometimes we can reduce some of driving variables of 
a (Q, v)-explicitation.

Example 3.11. Consider a DAE � = (E, F), given by

[
sinx3 − cosx3 0

0 0 0

][
ẋ1
ẋ2
ẋ3

]
=

[
F1(x)

x2
1+x2

2−1

]
,

where F1 : X → R is smooth. By rankE(x) = 1, the explicitation class Expl(�) is not empty. A 
control system 
 ∈ Expl(�) is:


 :
⎧⎨
⎩

[
ẋ1
ẋ2
ẋ3

]
=

[
sinx3

− cosx3
0

]
F1(x) +

[
0 cosx3
0 − sinx3
1 0

][ v1
v2

]
,

y = x2
1 + x2

2 − 1,
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where [ sinx3 − cosx3 0 ]T is a right inverse of E1(x) = [ sinx3 − cosx3 0 ]. Now consider the last 
equation in the dynamics of 
, which is ẋ3 = v1. Observe that v1 acts on ẋ3 only, which implies 
that v1 is decoupled from the other part of the dynamics. Thus, we may get rid of v1 and regard 
x3 as a new control. Thus the dynamics of 
 become:

[
ẋ1
ẋ2

]
=

[
sinx3F1(x)

− cosx3F1(x)

]
+

[
cosx3

− sinx3

]
v2,

where x1 and x2 are new states, x3 and v2 are the new control inputs. By rectifying the vector 
field g2 = cosx3

∂
∂x1

− sinx3
∂

∂x2
, we can reduce v2 in a similar way. We are, however, not able to 

reduce v1 and v2 simultaneously.

Before giving the main result of this subsection, we formally define what we mean by “reduc-
ing” variables of a control system 
.

Definition 3.12 (driving variable reduction). For a control system 
n,m,p = (f, g, h), let Gred

be an involutive sub-distribution of constant rank k of the distribution G = span {g1, . . . , gm}. 
There exists a feedback transformation and a coordinates change such that, locally, Gred =
span

{
∂

∂x1
2
, . . . , ∂

∂xk
2

}
and 
 takes the form

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = f1 (x1, x2) +
m−k∑
i=1

gi
1 (x1, x2)v

i
1,

ẋ2 = v2,

y = h(x1, x2) ,

where v2 = (v1
2, . . . , vk

2). We will say that 
 can be Gred -reduced to the following control system

⎧⎨
⎩ ẋ1 = f1 (x1, x2) +

m−k∑
i=1

gi
1 (x1, x2)v

i
1,

y = h(x1, x2) ,

where x2 is a new control and the reduced state x1 is of dimension n − k. We say that 
 can be 
fully reduced if Gred = G.

Now we connect reducing of control systems with semi-explicit DAEs.

Theorem 3.13. For a DAE �l,n = (E, F), the following statements are equivalent around a point 
xp ∈ X:

(i) rankE(x) = const. and the distribution kerE(x) is involutive.

(ii) � is locally ex-equivalent to a semi-explicit DAE �SE :
{

ẋ1 = F1(x1, x2),

0 = F2(x1, x2).

(iii) Any control system 
 = (f, g, h) ∈ Expl(�) can be fully reduced.

The proof is given in Appendix B.
179



Y. Chen and W. Respondek Journal of Differential Equations 314 (2022) 161–200
Remark 3.14. (i) Observe that if � is ex-equivalent to �SE , then by rewriting x2 = w and choos-
ing the output y = F2(x1, w), we get the following control system 
w with an input w,


w :
{

ẋ1 = F1 (x1,w) ,

y = F2 (x1,w) .

The above system 
w has the same number of variables as �. Thus 
w is an explicitation 
without driving variables of �. So there are two kinds of explicitation for nonlinear DAEs, 
namely, explicitation with, or without, driving variables (the latter is possible if and only if kerE
is involutive).

(ii) A linear DAE � = (E, H), given by (3), has always two kinds of explicitations, since the 
rank of E is always constant and the distribution G = kerE is always involutive. The relations 
and differences of the two explicitations for linear DAEs are discussed in [35] and Chapter 3 of 
[36] (note that the explicitation without driving variables for linear DAEs is called the (Q, P)-
explicitation there).

4. Nonlinear generalizations of the Weierstrass form

In this subsection, we will use the explicitation (with driving variables) procedure to trans-
form an internally regular DAE �l,n = (E, F) with l = n, into normal forms under the external 
equivalence. A linear regular DAE is always ex-equivalent (via linear transformations) to the 
Weierstrass form WF [21], given by

WF :
[
N 0
0 I

][
ż

ż∗
]

=
[
I 0
0 A

][
z

z∗
]

, (19)

where N = diag (N1, . . . ,Nm), with Ni , i = 1, . . . , m being nilpotent matrices of index ρi , i.e., 
N

j
i �= 0 for all j = 1, . . . , ρi − 1 and Nρi

i = 0. The following theorem generalizes that result 
and shows that any internally regular nonlinear DAE (under the assumption that some ranks are 
constant) is always ex-equivalent to a nonlinear Weierstrass form NWF1 (see (20) below). Note 
that φ̄k in the algorithm in section 2.2, defined on Wk ⊆ Mc

k , can be considered as maps on 

U0 ⊆ X by taking �̄k = ϕ̄k ◦ ϕk−1 ◦ · · · ◦ ϕ1(x). Then for k ≥ 1, set Hk = [
�̄1 . . . �̄k

]T
and 

H0 is empty. Assumption 2 of the algorithm of section 2.2 says that rank DF̃ 2
k (zk−1) = const. for 

zk−1 ∈ Mk ∩ Uk . In (A2) below, we replace it by a stronger rank assumption on a neighborhood 
U ⊆ X of xp .

Theorem 4.1. Consider a DAE �l,n = (E, F), assume that rankE(x) = const. = q around a 
point xp . Also assume in the geometric reduction algorithm in section 2.2 that

(A1) dimE(x)TxM
c
k = const. for x ∈ Mc

k around xp , 1 ≤ k ≤ k∗;

(A2) rank
[

DHk−1

DF̃ 2
k

]
(x) = const. for 1 ≤ k ≤ k∗ (H0 is absent) and for all x around xp;

(A3) l = n and dimM∗ = dimE(x)TxM
∗, i.e., r∗ = n∗, for all x ∈ M∗ around xp .

Then � is internally regular and there exists a neighborhood U of xp such that � is locally on 
U ex-equivalent to the DAE (20), represented by the nonlinear Weierstrass form
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NWF1 :

⎡
⎢⎢⎢⎢⎢⎢⎣

Nρ1 0 · · · 0

0 Nρ2

. . .
...

...
. . .

. . . 0
0 · · · 0 Nρm

0

G(z, z∗) I

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ż1
ż2
...

żm

ż∗

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

z1
z2
...

zm

f ∗ (z, z∗)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

a1 + b1ż
ρ

a2 + b2ż
ρ

...

am + bmżρ

0

⎤
⎥⎥⎥⎥⎥⎦ , (20)

where zi = (z1
i , . . . , z

ρi

i ), z = (z1, . . . , zm), and (z, z∗) are new coordinates, and żρ = (ż
ρ1
1 , ̇zρ2

2 ,

. . . , ̇zρm
m ), with m = n − q . The indices ρi , 1 ≤ i ≤ m, satisfy ρ1 ≤ ρ2 ≤ . . . ≤ ρm.

More specifically, for 1 ≤ i ≤ m, the ρi × ρi nilpotent matrices Nρi
and the ρi -dimensional 

vector-valued functions ai + bi ż
ρ are of the following form

Nρi
=

⎡
⎢⎢⎣

0
1 0

. . .
. . .

1 0

⎤
⎥⎥⎦ , ai + bi ż

ρ =

⎡
⎢⎢⎢⎢⎣

0

a1
i
+

m∑
s=1

b1
i,s

ż
ρs
s

.

.

.

a
ρi−1
i

+
m∑

s=1
b
ρi−1
i,s

ż
ρs
s

⎤
⎥⎥⎥⎥⎦ ,

where the functions ak
i , b

k
i,s satisfy ak

i |Mc
k
= bk

i,s |Mc
k
= 0, for 1 ≤ k ≤ ρi − 1.

The proof of Theorem 4.1 is given in Appendix C. This proof is closely related to the zero 
dynamics algorithm for nonlinear control systems shown in [27] and the construction procedure 
of the above normal form is not difficult but quite tedious, so in order to avoid reproducing the 
zero dynamics algorithm, we will use some results directly from [27] with small modifications.

Remark 4.2. (i) Assumption (A1) of Theorem 4.1 is equivalent to Assumption 1 of the geo-
metric reduction algorithm in section 2.2. By Theorem 2.20, we know that (A3) of Theorem 4.1
implies that � is internally regular around xp.

(ii) A component-wise expression of the above NWF1 is

NWF1 :

⎧⎪⎪⎨
⎪⎪⎩

0 = z1
i , 1 ≤ i ≤ m,

żk
i = zk+1

i + ak
i +

m∑
s=1

bk
i,s ż

ρs
s , 1 ≤ k ≤ ρi − 1,

ż∗ = f ∗ − Gż,

where ak
i , b

k
i,s , f

∗ and G depend on (z, z∗).
(iii) The submanifolds Mc

k , k ≥ 1, of the algorithm are given by

Mc
k =

{
(z, z∗) : zj

i = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k
}

,

and the maximal invariant submanifold M∗ is given by

M∗ = {(z, z∗) : zj
i = 0, 1 ≤ i ≤ m,1 ≤ j ≤ ρi}.

Therefore, an equivalent condition for ak
i |Mc

k
= bk

i,s |Mc
k

= 0 is that ak
i , b

k
i,s ∈ Ik , where Ik is the 

ideal generated by zj , 1 ≤ i ≤ m, 1 ≤ j ≤ k in the ring of smooth functions of za and z∗.
i b c
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(iv) We see that all maximal solutions (z(·), z∗(·)) are unique and of the form (0, z∗(·)), where 
z∗(·) are maximal solutions of the ODE ż∗ = f ∗(0, z∗) on M∗, which agrees with the result of 
Theorem 2.20(iii).

Example 4.3 (continuation of Example 2.23). Consider the DAE �6,6 = (E, F) of (11) around 
the point xp = (0, 1, 0, 0, 0, 1). A control system 
6,2,2 ∈ Expl(�) is


 :

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x6(x2−x6)−x1
x1
x6

−1

0
x5−x2+x6

x4−x6(x2−x6)
−x6

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

x6(x3+x5)
x1x5
x6

lnx6 0
0

x1
x6

−1

0 0
0 1
0 x5

⎤
⎥⎥⎥⎥⎦

[ v1
v2

]
,

[
y1
y2

]
=

[ x1
x6

x3+x5

]
.

It can be observed from Example 2.23 that the assumptions (A1)-(A3) of Theorem 4.1
are satisfied. Now via the following local change of coordinates defined on U = X =
{x ∈ X : x6 > 0, x1 �= x6}:

z1
1 = x1

x6
, z2

1 = x2 − x6, z1
2 = x3 + x5, z2

2 = x4 − x2x6 + x2
6 , z3

2 = x5, z∗ = x6,

we can bring 
 into the system 
′ below, which is of the zero dynamics form (40),


′ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = z1
1

ż1
1 = z2

1 + z1
2v1

ż2
1 = z1

1 + ln z∗ · v1 − z3
2v2

y2 = z1
2

ż1
2 = z2

2 + z1
1v2

ż2
2 = z3

2 + z∗(z1
1 + ln z∗ · v1 − z3

2v2) − z2
1z

3
2v2

ż3
2 = z2

2 + v2

ż∗ = −z∗ + z3
2v2,

⇒ 
′′ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = z1
1

ż1
1 = z2

1 − z1
1z1

2
ln z∗ + z1

2
ln z∗ ṽ1 + z1

2z3
2

ln z∗ ṽ2

ż2
1 = ṽ1

y2 = z1
2

ż1
2 = z2

2 − z1
1z

2
2 + z1

1ṽ2

ż2
2 = z3

2 + z∗ṽ1 + z2
1z

2
2z

3
2 − z2

1z
3
2ṽ2

ż3
2 = ṽ2

ż∗ = −z∗ − z2
2z

3
2 + z3

2ṽ2,

where the feedback transformation

[
ṽ1
ṽ2

]
=

[ x1
x6

x4−x2x6+x2
6

]
+

[
lnx6 −x5

0 1

] [ v1
v2

]
,

brings the system 
′ into the system 
′′ above. In order to eliminate z∗ṽ1 in ż2
2 = z3

2 + z∗ṽ1 +
z2

1z
2
2z

3
2 − z2

1z
3
2ṽ2 of 
′′, we define the change of coordinates

z̃1
1 = z1

1, z̃2
1 = z2

1, z̃1
2 = z1

2 − z∗z1
1, z̃2

2 = z2
2 − z∗z2

1, z̃3
2 = z3

2,

and the output multiplication 
[

ỹ1
]

=
[

1 0
∗

][
y1
y

]
. Then the system 
′′ becomes
ỹ2 z 1 2
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̃ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ỹ1 = z̃1
1

˙̃z1
1 = z̃2

1 − z̃1
1(z̃1

2+z̃1
1z∗)

ln z∗ + (z̃1
2+z̃1

1z∗)
ln z∗ ṽ1 + (z̃1

2+z̃1
1z∗)z̃3

2
ln z∗ ṽ2

˙̃z2
1 = ṽ1

ỹ2 = z̃1
2

˙̃z1
2 = z̃2

2 + z̃1
1(z̃

2
2 + z̃2

1z
∗)(z̃3

2 − 1) + z̃1
1 z̃1

2z∗
ln z∗ − (z̃1

2+z̃1
1z∗)z∗

ln z∗ ṽ1 − (z̃1
1z̃

3
2 + (z̃1

2+z̃1
1z∗)z̃3

2z∗
ln z∗ )ṽ2

˙̃z2
2 = z̃3

2 + z̃2
1z

∗
˙̃z3
2 = ṽ2

ż∗ = −z∗ − z̃3
2(z̃

2
2 + z̃2

1z
∗) + z̃3

2ṽ2.

Now we drop all the tildes in the system 
̃ for ease of notation. By setting y1 = y2 = 0, replacing 
v1 = ż2

1, v2 = z3
2, and deleting the equations ż2

1 = v1, z3
2 = v2, we get the following DAE �̃ from 


̃,

�̃ :

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 z3

2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ż1
1

ż2
1

ż1
2

ż2
2

ż3
2

ż∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
1

z2
1

z1
2

z2
2

z3
2

−z∗ − z3
2(z

2
2 + z2

1z
∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

a1
1 + b1

11ż
2
1 + b1

12ż
3
2

0

a1
2 + b1

21ż
2
1 + b1

22ż
3
2

a2
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

where a1
1 = − z1

1(z1
2+z1

1z∗)
ln z∗ , b1

11 = (z1
2+z1

1z∗)
ln z∗ , b1

12 = (z1
2+z1

1z∗)z3
2

ln z∗ , a1
2 = z1

1(z
2
2 + z2

1z
∗)(z3

2 −1) + z1
1z1

2z∗
ln z∗ , 

b1
21 = − (z1

2+z1
1z∗)z∗

ln z∗ , b1
22 = z1

1z
3
2 + (z1

2+z1
1z∗)z3

2z∗
ln z∗ , a2

2 = z2
1z

∗. It is clear that 
̃ ∈ Expl(�̃), thus we 

have � 
ex∼ �̃ since 
 ∈ Expl(�) and 
 

sys∼ 
̃ (see Theorem 3.6). The above DAE �̃ is in the
NWF1 of (20) and the sequence of submanifolds Mc

k of the geometric reduction algorithm can 
be expressed as Mc

1 = {
(z, z∗) : z1

1 = z1
2 = 0

}
, Mc

2 = {
(z, z∗) ∈ Mc

1 : z1
2 = z2

2 = 0
}

and

M∗ = Mc
3 =

{
(z, z∗) ∈ Mc

2 : z3
2 = 0

}
.

The functions a1
1, b1

11, b
1
12, a

1
2, b1

21, b
1
22 ∈ I1 vanish on Mc

1 , and the function a2
2 ∈ I2 vanishes on 

Mc
2 .

The form NWF1 of Theorem 4.1 is related to the zero dynamics of nonlinear control systems. 
In the remaining part of this section, we will use the notions of (vector) relative degree and 
invariant distributions of nonlinear control theory to study when a DAE � is ex-equivalent to a 
simpler form

NWF2 :
[
N 0
0 I

][
ż

ż∗
]

=
[

z

f ∗(z∗)

]
, (22)

where N = diag (N1, . . . ,Nm), with Ni ∈Rρi×ρi , i = 1, . . . , m, being nilpotent matrices of index 
ρi . The NWF2 is a perfect nonlinear counterpart of the linear WF because the nonlinear terms 
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G, ai and bj of NWF1 are absent in NWF2 and f ∗ depends on z∗-variables only. We now recall 
the definitions of (vector) relative degree and (conditional) invariant distributions for nonlinear 
control systems.

Definition 4.4 (relative degree [27]). A square control system 
n,m,m = (f, g, h) has a (vector) 
relative degree ρ = (ρ1, . . . , ρm) at a point xp if (i) Lgj

Lk
f hi(x) = 0 for all 1 ≤ j ≤ m, k <

ρi − 1, for all 1 ≤ i ≤ m, and for all x in a neighborhood of xp; (ii) the m ×m decoupling matrix 
D(x) = (Lgj

L
ρi−1
f hi(x)), 1 ≤ i, j ≤ m, is invertible around xp.

For a nonlinear control system 
n,m,p = (f, g, h), define a sequence of distributions Si by

⎧⎪⎨
⎪⎩

S1 := G = span {g1, . . . , gm} ,

Si+1 := Si + [f,Si ∩ ker dh] + [G, Si ∩ ker dh],
S∗ := ∑

i≥1
Si,

(23)

where [f, v] stands for the Lie bracket of vector fields f and v, and [f, V ] = {[f, v] : v ∈ V }.

Theorem 4.5. For a nonlinear DAE �n,n = (E, F) (i.e., l = n), assume that rankE(x) = const.

around a point xp ∈ X. Then � is locally ex-equivalent to the NWF2, given by (22), around xp

if and only if there exists a control system 
 = 
n,m,m = (f, g, h) ∈ Expl(�) such that

(i) the system 
 has a well-defined relative degree ρ = (ρ1, . . . , ρm) at x = xp;
(ii) the distributions Si of 
, defined by (23), are involutive for all 1 ≤ i ≤ n − 1.

We omit the proof the Theorem 4.5 since it is a consequence of Theorem 3.6 and some results 
from nonlinear control theory, see Remark 4.6(i) below.

Remark 4.6. (i) Note that, under conditions (i) and (ii) of Theorem 4.5, using the results of [33], 
we can transform the system 
 into the following form (called the input-output special form in 
[33]) via suitable coordinates transformations and feedback transformations,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż∗ = f̄ ∗(z∗, y),

ż
j
i = z

j+1
i , 1 ≤ j ≤ ρi − 1, 1 ≤ i ≤ m,

ż
ρi

i = vi,

yi = zi .

(24)

Rewrite f̄ ∗(z∗, y) = f̄ ∗(z∗, 0) + γ (z∗, y)y for some smooth function γ , then we can always get 
rid of the y-variables in f̄ ∗(z∗, y) by an output injection f̄ ∗ �→ f̄ ∗ − γy = f ∗, where f ∗ =
f ∗(z∗). Thus the system 
 is always sys-equivalent to the system 
̃ below



sys∼ 
̃ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż∗ = f ∗(z∗),
ż
j
i = z

j+1
i , 1 ≤ j ≤ ρi − 1,

ż
ρi

i = vi, 1 ≤ i ≤ m,

y = z .

Thm. 3.6⇐⇒ �
ex∼ �̃ :

⎧⎨
⎩

ż∗ = f ∗(z∗),
0 = zi, 1 ≤ i ≤ m,

ż
j
i = z

j+1
i , 1 ≤ j ≤ ρi − 1.
i i
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So by Theorem 3.6, the DAE � is ex-equivalent to �̃ represented in the NWF2 since 
̃ ∈
Expl(�̃).

(ii) The linear counterparts of the distributions Si , given by (23), for linear control systems of 

the form � :
{

ẋ=Ax+Bv
y=Cv

is W1 = ImB , Wi+1 = A(Wi ∩kerC) + ImB , and are called the condi-

tional invariant subspaces. We have shown in [35] that for a linear DAE � = (E, H), if a control 
system � ∈ Expl(�), then for all i ≥ 1, the subspaces Wi coincide with the Wong sequences Wi

of �, given by W1 = kerE, Wi+1 = E−1HWi . Therefore, the sequences of distributions Si can 
be seen as a nonlinear generalization of the Wong sequence subspaces Wi .

(iii) Although conditions (i) and (ii) of Theorem 4.5 are necessary and sufficient for � being 
locally ex-equivalent to NWF2, it is, in general, not easy to check them because the relative 
degree and the involutivity of distributions Si are not invariant under output multiplications and 
output injections (the two properties are invariant under coordinates changes and feedback). From 
Proposition 3.2, we know that a control system 
 ∈ Expl(�) is defined up to a feedback trans-
formation, an output multiplication and a generalized output injection. So it is possible that for 
one system in Expl(�), conditions (i) and (ii) hold while for another explicitation system the two 
conditions (or one of them) are not satisfied. The problem of finding easily checkable conditions 
for a DAE being ex-equivalent to the NWF2 remains open and, in view of the above analysis, is 
challenging.

Example 4.7. Consider a classical pendulum system shown in Fig. 2, which is a hanging rigid 
wire with a ball attached to its end (see also [7,12,13]).

x

y l

θ

τ

τ cos θ

τ sin θ

mg

Fig. 2. A hanging wire with a ball attached at the end.

In this system, m is the mass of the ball, τ is the tension force of the wire, θ is the angle 
between the wire and the y-axis. The system can be modeled by Newton’s law:

mẍ = −τ sin θ = −τx

l
, mÿ = −τ cos θ − mg = −τy

l
− mg, (25)

under the following constraint

x2 + y2 = l2. (26)

Denote x1 = x, x2 = ẋ, x3 = y, x4 = ẏ, x5 = τ
ml

, then (25) and (26) result in a nonlinear DAE 
�5,5 = (E, F), given by
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� :
⎡
⎣ 1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎦

⎡
⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎤
⎥⎦ =

⎡
⎢⎣

x2
−x5x1

x4
−x5x3−g

x2
1+x2

3−l2

⎤
⎥⎦ . (27)

A control system 
5,1,1 = (f, g, h) ∈ Expl(�) can be chosen as


 :
⎡
⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎤
⎥⎦ =

⎡
⎣

x2
−x5x1

x4
−x5x3−g

0

⎤
⎦ +

⎡
⎣ 0

0
0
0
1

⎤
⎦v, y = x2

1 + x2
3 − l2.

We consider a nominal point xp, given by

xp = (x1p, x2p, x3p, x4p, x5p) = (0,0, l,0,−g

l
).

Clearly, the relative degree of 
 is ρ = 3 at xp because Lgh(x) = LgLf h(x) ≡ 0 and 
LgL

2
f h(xp) �= 0. By (23), we have

S1 = span {g} , S2 = span
{
g,adf g

}
, S3 = span

{
g,adf g, ad2

f g
}

, S∗ = S4 = S3,

where g = ∂
∂x5

, adf g = −x1
∂

∂x2
− x3

∂
∂x4

, ad2
f g = x1

∂
∂x1

− x2
∂

∂x2
+ x3

∂
∂x3

− x4
∂

∂x4
. It can be 

deduced that the distributions Si , i = 1, 2, 3, are all involutive around xp. Thus conditions (i) and 
(ii) of Theorem 4.5 are satisfied. Then via the following local coordinates transformation

x̃1 = −x1/x3, x̃2 = x1x4 − x2x3, x̃3 = x2
1 + x2

3 − l2,

x̃4 = x1x2 + x3x4, x̃5 = −x5(x
2
1 + x2

3) + x2
2 + x2

4 − gx3,
(28)

and a suitable feedback transformation, the system 
 can be transformed into its input-output 
special form (see (24)), given by

⎡
⎢⎢⎣

˙̃x1
˙̃x2
˙̃x3
˙̃x4
˙̃x5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

x̃2(1+x̃2
1 )

l2+x̃3

−gx̃1

(
l2+x̃3
1+x̃2

1

)1/2

x̃4
x̃5
0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎣ 0

0
0
0
1

⎤
⎦ ṽ, y = x̃3.

Notice that we can alway write 
x̃2(1+x̃2

1 )

l2+x̃3
= x̃2(1+x̃2

1 )

l2
+ x̃3a(x̃1, x̃2, x̃3) and −gx̃1

(
l2+x̃3
1+x̃2

1

)1/2

=
− glx̃1√

1+x̃2
1

+ x̃3b(x̃1, x̃2, x̃3) for some smooth functions a and b. After using an output injection to 

get rid of the terms x̃3a(x̃1, x̃2, x̃3) and x̃3b(x̃1, x̃2, x̃3), we can see that 
 is locally sys-equivalent 
to the system 
̃ below.
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sys∼ 
̃ :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1 = x̃2(1+x̃2
1 )

l2
,

˙̃x2 = − glx̃1√
1+x̃2

1

,

˙̃x3 = x̃4,

˙̃x4 = x̃5,

˙̃x5 = ṽ,

y = x̃3.

Thm. 3.6⇐⇒ �
ex∼ �̃ :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̃x1 = x̃2(1+x̃2
1 )

l2
,

˙̃x2 = − glx̃1√
1+x̃2

1

,

˙̃x3 = x̃4,

˙̃x4 = x̃5,

0 = x̃3.

Hence the original DAE � is locally ex-equivalent to �̃, represented in the NWF2, via Q =⎡
⎣ 1 0 0 0 −a

0 1 0 0 −b
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎦ and the coordinates transformations given by (28).

5. Conclusions and perspectives

In this paper, we first revise the geometric reduction method for the existence of solutions 
of nonlinear DAEs, then we define the notions of internal and external equivalence and their 
differences are discussed by analyzing their relations with solutions. We show that the internal 
regularity (existence and uniqueness of solutions) of a DAE is equivalent to the fact that the DAE 
is internally equivalent to an ODE (without free variables) on its maximal invariant submanifold. 
A procedure named explicitation with driving variables is proposed to connect nonlinear DAEs 
with nonlinear control systems. We show that the external equivalence for two DAEs is the same 
as the system equivalence for their explicitation systems. Moreover, we show that � is externally 
equivalent to a semi-explicit DAE if and only if the distribution defined by kerE(x) is of constant 
rank and involutive. If so, the driving variables of a control system 
 ∈ Expl(�) can be fully 
reduced. Finally, two nonlinear generalizations of the Weierstrass form WF are proposed based 
on the explicitation method and the notions of nonlinear control theory, such as zero dynamics, 
relative degree and invariant distributions.

Several results of the paper can be used for further studies on nonlinear DAE systems. The ge-
ometric reduction algorithm and internal equivalence can be used for the stability analysis since 
DAEs has isomorphic solutions with an ODE (with free variables) by Propositions 2.8 and 3.10, 
the stability of the ODE clearly indicates that of the original DAE. The explicitation method 
shown in section 3, in particular, the results of Theorem 3.6, are fundamental tools for applying 
nonlinear geometric control theory to solve problems like exact linearization, disturbance decou-
pling, controllability and observability analysis for DAEs systems (possibly with extra controls 
or disturbances). Finally, as the Weierstrass form is useful for linear DAEs, the two nonlinear 
Weierstrass form can be applied to study e.g., index analysis, jump solutions, impulse-freeness, 
of nonlinear DAEs.
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Appendix A. Proofs of Proposition 2.3 and Theorem 2.20

Proof of Proposition 2.3. Suppose that M is a locally invariant submanifold around xp. By Def-
inition 2.2, there exists a neighborhood U of xp such that for any point x0 ∈ M ∩ U , there 
exists a solution x : I → M ∩ U satisfying x(t0) = x0 for a certain t0 ∈ I . Then we have 
F(x(t)) = E(x(t))ẋ(t) ∈ E(x(t))Tx(t)M , ∀t ∈ I . It follows that F(x0) ∈ E(x0)Tx0M by taking 
t = t0. Hence F(x) ∈ E(x)TxM for all x ∈ M ∩ U .

Conversely, suppose that dimE(x)TxM = const. = r̄ and F(x) ∈ E(x)TxM locally for all 
x ∈ M ∩ U . Notice that M is a smooth connected embedded submanifold, thus there exists 
a smaller neighborhood U1 of xp and local coordinates ψ(x) = z = (z1, z2) on U1 such that 
M ∩ U1 = {z2 = 0}, where z1 are any complementary coordinates, with dimz1 = n̄, dim z2 =
n − n̄ and n̄ = dimM . In the local z-coordinates, the DAE � has the following form

E(x)

(
∂ψ(x)

∂x

)−1 (
∂ψ(x)

∂x

)
ẋ = F(x) ⇒ [

Ẽ1(z) Ẽ2(z)
][ ż1

ż2

]
= F̃ (z),

where Ẽ1 : U1 → Rl×n̄, Ẽ2 : U1 → Rl×(n−n̄), 
[
Ẽ1 ◦ ψ Ẽ2 ◦ ψ

] = E
(

∂ψ
∂x

)−1
and F̃ ◦ ψ = F . 

By setting z2 = 0, we consider the following DAE defined locally on M (denoted by �|M and 
called the local M-restriction of �, see Definition 2.12):

�|M : Ẽ1(z1,0)ż1 = F̃ (z1,0).

Then by dim E(x)TxM = const. = r̄ for all x ∈ M around xp , there exists a neighborhood U2 ⊆
U1 of xp such that rank Ẽ1(z1, 0) = r̄ , ∀z1 ∈ M ∩ U2. So by Dolezal’s theorem, see also [31], 
there exists a smooth map [30] Q : M ∩ U2 → GL (l,R) such that Ē1(z1) of Q(z1)Ẽ1(z1, 0) =[

Ē1(z1)

0

]
is of full row rank r̄ . Rewrite Ē1(z1)ż1 = [

Ē1
1 (z1) Ē2

1 (z1)
][ ż1

1

ż2
1

]
, where z1 = (z1

1, z
2
1), Ē

1
1 :

M ∩ U2 → Rr̄×r̄ and Ē2
1 : M ∩ U2 → Rr̄×(n̄−r̄) and denote Q(z1)F̃ (z1, 0) =

[
F̄1(z1)

F̄2(z1)

]
. Without 

loss of generality, we assume that Ē1
1(z1) is invertible (if not, we permute the components of z1

such that the first r̄ columns of Ē1(z1) are independent). Now by the assumption that F(x) ∈
E(x)TxM for all x ∈ M around xp , there exists a neighborhood U3 ⊆ U2 such that F̃ (z) ∈
Ẽ(z)TzM for all z ∈ M ∩ U3, i.e.,

[
F̄1(z1)

F̄2(z1)

]
∈ Im

[
Ē1

1(z1) Ē2
1(z1)

0 0

]
.

It follows that F̄2(z1) ≡ 0 for all z1 ∈ M ∩ U3. Then consider the following DAE (which is 
actually a reduction of �|M , denoted by �red

M , see Definition 2.13)

�|redM : [Ē1
1(z1) Ē2

1(z1)
][ ż1

1

ż2
1

]
= F̄1 (z1) . (29)

Note that a C1-curve z1 : I → M ∩ U3 is a solution of (29) passing through z10 = (z1
10, z

2
10) if 

and only if x(·) = ψ−1(z1(·), 0) is a solution of � passing through x0 = ψ−1(z10, 0). Observe 
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that for any initial point z10 ∈ M ∩ U3, there always exists a solution z1(·) of (29) such that 
z1(t0) = z10 for a certain t0 ∈ I and z1(t) ∈ M ∩ U3, ∀t ∈ I . Indeed, rewrite DAE (29) as the 
following ODE (recall that Ē1

1(z1) is invertible):

ż1
1 =

(
Ē1

1(z1)
)−1 (

F̄1 (z1) − Ē2
1(z1)ż

2
1

)
. (30)

It is always possible to parameterize solutions z1(·) = (z1
1(·), z2

1(·)) of (30) as follows. Denote 
ż2

1 = v, f (z1) = (E1
1)−1F̃1(z1) and g(z1) = (E1

1)−1E2
1(z1), then (30) can be expressed as

{
ż1

1 = f (z1) + g (z1) v,

ż2
1 = v,

(31)

(called a (Q, v)-explicitation of (29), see Definition 3.1), and for any solution (z1(·), v(·)) of (31), 
with v ∈ C0, the curve z1(·) is a C1-solution of (29) satisfying z1(t0) = z10 (see Proposition 3.5). 
It follows that for any point x0 = ψ−1(z10, 0) ∈ M ∩ U3, there always exists a solution x(·) =
ψ−1(z1(·), 0) of � such that x(t0) = x0 for a certain t0 ∈ I and that x(t) ∈ M ∩ U3 for all t ∈ I , 
so M is a locally invariant submanifold of � around xp by definition. �
Proof of Theorem 2.20. Since M∗ is locally invariant around xp, via a similar construction to 
that shown in the proof of Proposition 2.3, we can get a DAE �|redM∗ of the form (29) (if the 
maximal invariant submanifold M∗ is constructed via the algorithm in section 2.2, then �|redM∗
coincides with the DAE �∗ of (6) from the results of that algorithm). Note that �|redM∗ can be 
seen as an ODE possibly with free variables (see (30) and (31), where z2

1 are free variables), and 
that �|redM∗ has isomorphic solutions with � (see Proposition 2.8). Thus � is internally regular 
around xp , i.e., there exists only one maximal solution passing through any x0 ∈ M∗ around xp

if and only if no free variables are present in �∗ = �|redM∗ , i.e., [Ē1
1 , Ē2

1] of (29) is invertible or, 
equivalently, n∗ = dimM∗ = dimE(x)TxM

∗ = r∗ for all x ∈ M∗ around xp (i.e., E∗ of (6) is 
invertible). Moreover, it is clear that [Ē1

1, Ē2
1] is invertible if and only if �|redM∗ of (29) (or �∗, 

given by (6)) is ex-equivalent to an ODE (10) without free variables, where f ∗ = [Ē1
1 , Ē2

1]−1F̄1

(or f ∗ = (E∗)−1F ∗), that is, � is internally equivalent to (10) around xp . �
Appendix B. Proofs of Proposition 3.2, Proposition 3.5, Theorem 3.6, Proposition 3.8 and 
Theorem 3.13

Proof of Proposition 3.2. If. Throughout the proof below, we may drop the argument x for the 
maps f (x), g(x), h(x), . . ., for ease of notation. Suppose that 
 and 
̃ are equivalent via trans-
formations given by (17). First, Im g̃ = Imgβ = kerE1 = kerE implies that g̃ is another choice 
such that Im g̃ = kerE. Moreover, we have


̃ :
{

ẋ = f̃ + g̃ṽ = f + gα + γ h + gβv = E
†
1F1 + gα + γF2 + gβv,

ỹ = h̃ = ηh.

Pre-multiplying the differential part ẋ = E
†
1F1 + gα + γF2 + gβv of 
̃ by E1, we get (note that 

Img = kerE1)
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{
E1ẋ = F1 + E1γF2,

ỹ = ηh.

Thus 
̃ is an (I, ṽ)-explicitation of the following DAE:

[
E1
0

]
ẋ =

[
F1 + E1γF2

ηF2

]
.

Since the above DAE can be obtained from � via Q̃ = Q′Q, where Q′ =
[

Iq E1γ

0 η

]
, it proves 

that 
̃ is a (Q̃, ṽ)-explicitation of � corresponding to the choice of invertible matrix Q̃ = Q′Q. 
Finally, by E1f̃ = F1 + E1γF2, we get f̃ = Ẽ

†
1(F1 + γF2) for the above choice of right inverse 

Ẽ
†
1 of E1.

Only if. Suppose that 
̃ ∈ Expl(�) via Q̃, Ẽ†
1 and g̃. First, by Im g̃ = kerE = Img, there 

exists an invertible matrix β such that g̃ = gβ . Moreover, since E†
1 is a right inverse of E1 if and 

only if any solution ẋ of E1ẋ = w is given by E†
1w, we have E1E

†
1F1 = F1 and E1Ẽ

†
1F1 = F1. 

It follows that E1(Ẽ
†
1 − E

†
1)F1 = 0, so (Ẽ†

1 − E
†
1)F1 ∈ kerE1. Since kerE1 = Img, it follows 

that (Ẽ†
1 − E

†
1)F1 = gα for a suitable α. Furthermore, since Q is such that E1 of QE =

[
E1
0

]
is of full row rank, any other Q̃, such that Ẽ1 of Q̃E =

[
Ẽ1
0

]
is of full row rank, must be of the 

form Q̃ = Q′Q, where Q′ =
[

Q1 Q2
0 Q4

]
. Thus via Q̃, � is ex-equivalent to

Q′
[
E1
0

]
ẋ = Q′

[
F1
F2

]
⇒

[
Q1E1

0

]
ẋ =

[
Q1F1 + Q2F2

Q4F2

]
.

The equation on the right-hand side of the above can be expressed (using Ẽ†
1 and g̃) as:

{
ẋ = Ẽ

†
1F1 + Ẽ

†
1Q−1

1 Q2F2 + g̃v = E
†
1F1 + gα + E

†
1Q−1

1 Q2h + gβṽ,

0 = Q4F2 = Q4h.

Thus the explicitation of � via Q̃, Ẽ†
1 and g̃ is


̃ :
{

ẋ = E
†
1F1 + gα + γ h + gβṽ = f + γ h + g(α + βṽ) = f̃ + g̃ṽ,

ỹ = ηh = h̃,

where γ = E
†
1Q−1

1 Q2, η = Q4. Therefore, we can see that 
 and 
̃ are equivalent via the 
transformations of the form (17). �
Proof of Proposition 3.5. Consider the DAE (12) of the (Q, v)-explicitation procedure. Since 
Q-transformations preserve solutions of �, system (12) resulting from a Q-transformation of 
� has the same solutions as �. Thus we need to prove that (12) and (15) have corresponding 
solutions for any choices of E†

1 and g. Moreover, the second equation 0 = F2(x) of (12) coincides 
with 0 = h(x) of (15). So we only need to prove that x(t) ∈ C1 is a solution of E1(x)ẋ = F1(x)

if and only if there exists v(t) ∈ C0 such that (x(t), v(t)) is a solution of ẋ = f (x) + g(x)v
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independently of the choice of E†
1 , defining f (x) = E

†
1(x)F1(x), and of the choice of g satisfying 

Img(x) = kerE1(x).
If. Suppose that (x(t), v(t)) is a solution of ẋ = f (x) +g(x)v. Then we have ẋ(t) = f (x(t)) +

g(x(t))v(t). Pre-multiplying the latter equation by E1(x(t)), we get that

E1(x(t))ẋ(t) = E1(x(t))f (x(t)) = E1(x(t))E
†
1(x(t))F1(x(t)) = F1(x(t)),

which proves that x(t) is a solution of E1(x)ẋ = F1(x).
Only if. Suppose that x(t) is a solution of E1(x)ẋ = F1(x). Rewrite E1(x)ẋ as 

[
E1

1 (x) E2
1 (x)

]×[
ẋ1
ẋ2

]
, where E1

1 : U →Rq×q is smooth and x = (x1, x2). Then, by taking a smaller neighborhood 

U , if necessary, we assume that E1
1(x) is invertible locally around xp (if not, we permute the 

components of x such that the first q columns of E1(x) are independent). Thus a choice of right 

inverse of E1 is E†
1 =

[
(E1

1 )−1

0

]
. So the maps f and g can be defined as f := E

†
1F1 =

[
(E1

1 )−1F1

0

]
, 

g :=
[−(E1

1 )−1E2

Im

]
. Set v(t) = ẋ2(t), then v ∈ C0 and it is clear that if x(t) = ((x1(t), x2(t))) is a 

solution of E1(x)ẋ = F1(x), then (x(t), v(t)) solves ẋ = f (x) + g(x)v since

[
E1

1(x(t)) E2
1(x(t))

][ ẋ1(t)

ẋ2(t)

]
= F1(x(t)) ⇒ ẋ1(t) = (E1

1)−1F1(x(t)) − (E1
1)−1E2

1(x(t))ẋ2(t).

Notice that if we choose another right inverse Ẽ†
1 of E1 and another matrix g̃ such that Im g̃ =

kerE1, then by Proposition 3.2, we have

ẋ = f̃ (x) + g̃(x)ṽ ⇔ ẋ = f (x) + g(x)(α(x) + β(x)v).

We thus conclude that there exists ṽ(t) = α(x(t)) + β(x(t))v(t) = α(x(t)) + β(x(t))ẋ2(t) such 
that (x(t), ṽ(t)) solves ẋ = f̃ (x) + g̃(x)ṽ. Therefore, � has corresponding solutions with any 
(Q, v)-explicitation 
 independently of the choice of Q, E†

1 and g. �
Proof of Theorem 3.6. By the assumptions that rankE(x) = const. = q and rank Ẽ(x̃) =
const. = q̃ around xp and x̃p , respectively, we have that � and �̃ are locally ex-equivalent 
to

�′ :
[
E1(x)

0

]
ẋ =

[
F1(x)

F2(x)

]
and �̃′ :

[
Ẽ1 (x̃)

0

]
˙̃x =

[
F̃1 (x̃)

F̃2 (x̃)

]
,

respectively, where E1(x) and Ẽ1 (x̃) are full row rank matrices and their ranks are q and q̃ , 
respectively. By Definition 3.1, we have

f (x) = E
†
1(x)F1(x), Img(x) = kerE1(x), h(x) = F2(x),

f̃ (x̃) = Ẽ
†
1(x̃)F̃1(x̃), Im g̃(x̃) = ker Ẽ1(x̃), h̃(x̃) = F̃2(x̃).

(32)

Note that explicitation systems are defined up to a feedback, an output multiplication and a 
generalized output injection. Any two control systems belonging to Expl(�) are sys-equivalent 
to each other and so are any two control systems belonging to Expl(�̃). Thus the choice of 
an explicitation system makes no difference for the proof of sys-equivalence. Without loss of 
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generality, we will use f (x), g(x), h(x) and f̃ (x), g̃(x), h̃(x) given in (32) for the remaining 
part of this proof.

If. Suppose 
 
sys∼ 
̃ in a neighborhood U of xp . By Definition 3.3, there exists a diffeomor-

phism x̃ = ψ(x) and β : U → GL(m, R) such that g̃ ◦ ψ = ∂ψ
∂x

gβ , which implies

ker(Ẽ ◦ ψ) = span{g̃1, ..., g̃m} ◦ ψ = span

{
∂ψ

∂x
g1, ...,

∂ψ

∂x
gm

}
= ∂ψ

∂x
kerE

and q = q̃ (since dim ker Ẽ = m̃ = m = dim Ẽ). We can deduce from the above equation that 
there exists Q1 : U → GL(q, R) such that

Ẽ1 ◦ ψ = Q1E1

(
∂ψ

∂x

)−1

. (33)

Subsequently, by f̃ ◦ ψ = ∂ψ
∂x

(f + γ h + gα) of Definition 3.3, we have

(Ẽ
†
1 ◦ ψ)(F̃1 ◦ ψ) = ∂ψ

∂x
(E

†
1F1 + γF2 + gα).

Pre-multiply the above equation by Ẽ1 ◦ ψ = Q1E1

(
∂ψ
∂x

)−1
, to obtain

F̃1 ◦ ψ = Q1F1 + Q1E1γF2. (34)

Then by h̃ ◦ ψ = ηh of Definition 3.3, we immediately get

F̃2 ◦ ψ = ηF2. (35)

Now combining (33), (34) and (35), we conclude that �′ and �̃′ are ex-equivalent via x̃ = ψ(x)

and Q =
[

Q1 Q1E1γ

0 η

]
, which implies that � 

ex∼ �̃ (since � 
ex∼�′ and �̃

ex∼ �̃′).

Only if. Suppose that locally � 
ex∼ �̃ around xp . It follows that locally �′ ex∼ �̃′ around xp , 

which implies that q = q̃ . Assume that they are ex-equivalent via Q : U → GL(l, R) and 

x̃ = ψ(x) defined on a neighborhood U of xp . Let Q =
[

Q1 Q2
Q3 Q4

]
, where Q1, Q2, Q3 and Q4

are matrix-valued functions of sizes q × q , q × m, p × q and p × p, respectively. Then by [
Q1 Q2
Q3 Q4

][
E1
0

]
=

[
Ẽ1◦ψ

0

]
∂ψ
∂x

, we can deduce that Q3 = 0 and Q1, Q4 are invertible matrices. 
Then we have[

Q1 Q2
0 Q4

][
E1
0

]
=

[
Ẽ1 ◦ ψ

0

]
∂ψ

∂x
,

[
Q1 Q2
0 Q4

][
F1
F2

]
=

[
F̃1 ◦ ψ

F̃2 ◦ ψ

]
,

which implies

Ẽ1 ◦ ψ = Q1E1

(
∂ψ

∂x

)−1

, F̃1 ◦ ψ = Q1F1 + Q2F2, F̃2 ◦ ψ = Q4F2. (36)
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Thus by Img(x) = kerE(x) = kerE1(x) and Im g̃(x) = ker Ẽ(x̃) = ker Ẽ1(x̃), and using (36), 
we have

g̃ ◦ ψ = ∂ψ

∂x
gβ (37)

for some β : U → GL(m, R). Moreover, there exists α : U → Rm such that

f̃ ◦ ψ = Ẽ
†
1 ◦ ψF̃1 ◦ ψ

(36)= ∂ψ

∂x
E

†
1Q−1

1 Q1F1 + Q2F2

= ∂ψ

∂x
E

†
1Q−1

1 (Q1F1 + Q2F2 + Q1E1gα)

= ∂ψ

∂x

(
f + E

†
1Q−1

1 Q2y + gα
)

. (38)

In addition, we have

h̃ ◦ ψ = F̃2 ◦ ψ
(36)= Q4F2 = Q4h. (39)

Finally, it can be seen from (37), (38), and (39) that 
 
sys∼ 
̃ via x̃ = ψ(x), α, β , γ = E

†
1Q−1

1 Q2
and η = Q4. �
Proof of Proposition 3.8. We first show that the sequence of submanifolds Mc

k of the geometric 
reduction method of the DAE � and the sequence Nc

k of the zero dynamics algorithm of any 
control system 
 = (f, g, h) ∈ Expl(�) locally coincide. Suppose that rankE(x) = const. = q

in a neighborhood U1 of xp . Then there always exists an invertible matrix Q(x) defined on U1

such that E1(x) of Q(x)E(x) =
[

E1(x)

0

]
is of full row rank q for all x ∈ U1, denote Q(x)F (x) =[

F1(x)

F2(x)

]
. Recall, see Remark 3.7, that Nk of the zero dynamics algorithm are well-defined for 

any 
 ∈ Expl(�) and that Nk are the same for all control systems belonging to Expl(�). So the 
choice of an explicitation system makes no difference for Nk . We may choose a control system 

 = (f, g, h) ∈ Expl(�), given by f (x) = E

†
1(x)F1(x), Img(x) = kerE(x), h(x) = F2(x). By 

the definition of M1 (see (4)) and N1 = h−1(0), we have

Mc
1 = M1 ∩ U1 = {x ∈ U1 : Q(x)F (x) ∈ ImQ(x)E(x)} =

{
x ∈ U1 :

(
F1(x)

F2(x)

)
∈ Im

[
E1(x)

0

]}
= {x ∈ U1 : F2(x) = 0} = {x ∈ U1 : h(x) = 0} = N1 ∩ U1 = Nc

1 .

For k > 1, suppose Mc
k−1 = Nc

k−1. Then by (4) and (18), we have

Mk = {
x ∈ Mc

k−1 : Q(x)F (x) ∈ Q(x)E(x)TxM
c
k−1

} =
{
x ∈ Mc

k−1 :
(

F1(x)

F2(x)

)
∈

[
E1(x)

0

]
TxM

c
k−1

}
= {

x ∈ Mc
k−1 : F1(x) ∈ E1(x)TxM

c
k−1

}
= {

x ∈ Mc
k−1 : f (x) + kerE1(x) ⊆ TxM

c
k−1 + kerE1(x)

}
= {

x ∈ Nc : f (x) ∈ TxN
c + G(x)

} = Nk,
k−1 k−1
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and thus Mc
k = Nc

k . If either one among (A1) and (A2) is satisfied, then by Nc
k = Mc

k , we can 
easily deduce the other one and thus (A1) and (A2) are equivalent. Then by Proposition 2.7, 
M∗ = Mc

k∗ is a locally maximal invariant submanifold and by Proposition 6.1.1 of [27], N∗ =
Nc

k∗ is a local maximal output zeroing submanifold. Moreover, we have locally M∗ = N∗ (since 
locally Mc

k = Nc
k ). Now under the assumption that dim E(x)TxM

∗ = const. for all x ∈ M∗
around xp , by Theorem 2.20, � is internally regular if and only if dim M∗ = dim E(x)TxM

∗, 
i.e., kerE(x) ∩TxM

∗ = 0, locally ∀x ∈ M∗ around xp . Thus by N∗ = M∗ and kerE(x) = G(x), 
we have that � is internally regular (around xp) if and only if G(xp) ∩ TxpN∗ = 0. �
Proof of Theorem 3.13. (i) ⇒ (ii): Suppose in a neighborhood U of xp that rankE(x) = q

and G(x) = kerE(x) = span{g1(x), . . . , gm(x)} is involutive, where g1, . . . , gm are indepen-
dent vector fields on U and m = n − q . Then by the involutivity of G, there exist local co-
ordinates x̃ = (x̃1, x̃2) = ψ(x), where x̃1 = (x̃1

1 , . . . , x̃q
1 ) and x̃2 = (x̃1

2 , . . . , x̃n−q
2 ), such that 

span
{
dx̃1

1 , . . . ,dx̃
q

1

} = span {dx̃1} = G⊥ (Frobenius theorem [3]), where G⊥ denotes the co-
distribution which annihilates G. Note that in the x̃-coordinates, the distribution

ker Ẽ(x̃) = ker

(
E(x)

(
∂ψ(x)

∂x

)−1
)

= ∂ψ(x)

∂x
G(x) = span{g̃1(x̃), ..., g̃m(x̃)},

where g̃i ◦ ψ = ∂ψ
∂x

gi , i = 1, ..., m. Now let g̃ be a matrix whose columns consist of g̃i , for 
i = 1, ..., m. It follows that rank g̃(x̃) = m around x̃0 = ψ(x0). By span {dx̃1} = G⊥, we have 

〈dx̃1, g̃i〉 = 0, for i = 1, . . . , m. Thus g̃(x̃) is of the form g̃(x̃) =
[

0
g̃2(x̃)

]
, where g̃2 : ψ(U) →

Rm×m. Since rank g̃(x̃) = m, it can be seen that g̃2(x̃) is an invertible matrix, which implies by 
Im g̃(x̃) = ker Ẽ(x̃) that Ẽ(x̃) has to be of the form Ẽ(x̃) = [ Ẽ1(x̃) 0 ], where Ẽ1 : ψ(U) → Rl×m. 
Thus in the x̃-coordinates, �̃ = (Ẽ, F̃ ) admits the following form:

[
Ẽ1(x̃) 0

][ ˙̃x1˙̃x2

]
= F̃ (x̃) ,

where F̃ ◦ ψ = F . Now by rankE(x) = q , we get rank
[
Ẽ1 (x̃) 0

] = rankE(x) = q (the 
coordinate transformation preserves the rank). Thus by Dolezal’s theorem [30], see also [31], 
there exists a smooth map Q : ψ(U) → GL(l, R) such that Q(x̃)Ẽ(x̃) = Q(x̃) 

[
Ẽ1 (x̃) 0

] =[
Ẽ1

1 (x̃) 0
0 0

]
, where Ẽ1

1 : ψ(U) → Rq×q . Since Q(x̃) preserves the rank of Ẽ(x̃), we have 

rank Ẽ1
1 (x̃) = q . Therefore, Ẽ1

1 (x̃) is an invertible matrix. Now let Q′(x̃) =
[(

Ẽ1
1 (x̃)

)−1
0

0 Im

]
Q(x̃)

and denote Q′(x̃)F̃ (x̃) =
[

F1(x̃)

F2(x̃)

]
. It is seen that, via x̃ = ψ(x) and Q′, the system � is locally 

ex-equivalent to �̃ = (Q′Ẽ, Q′F̃ ), where Q′Ẽ ◦ψ = Q′E(
∂ψ
∂x

)−1 =
[

Iq 0
0 0

]
. Clearly, �̃ is a semi-

explicit DAE.
(ii) ⇒ (iii): Suppose that � is locally ex-equivalent to �SE of the form (2) around xp . 

Then, any control system 
 ∈ Expl(�) is locally sys-equivalent to 
′ ∈ Expl(�SE) below (by 
Theorem 2.20):
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′ :
{ [

ẋ1
ẋ2

]
=

[
F1(x1,x2)

0

]
+

[
0
Im

]
v,

y = F2(x1, x2).

Suppose that 
 
sys∼ 
′ via z = (z1, z2) = ψ(x), α, β and γ = [ γ1

γ2

]
, then


 :
⎧⎨
⎩

[
ż1
ż2

]
= ∂ψ(x)

∂x

([
F1(x)

0

]
+

[
γ1(x)

γ2(x)

]
y +

[
0
Im

]
(α(x) + β(x)ṽ)

)
,

ỹ = η(x)F2(x),

where x = ψ−1(z). By Definition 3.12, 
 can always be fully reduced to (by a coordinates 
change and a feedback transformation)

{
ẋ1 = F1(x1, x2) + γ1(x1, x2)F2(x1, x2),

y = η(x1, x2)F2(x1, x2),

where x2 is the new control.
(iii) ⇒ (i): Suppose (iii) holds. Then Expl(�) is not empty implies that E(x) has constant 

rank around xp . By Definition 3.12, if a control system 
 ∈ Expl(�) can be fully reduced, then 
G = kerE(x) = span {g1, ..., gm} is involutive. �
Appendix C. Proof of Theorem 4.1

Claim. If assumptions (A1)-(A3) of Theorem 4.1 are satisfied, then the point xp is a regular point 
of the zero dynamics algorithm (rank conditions (i), (ii), (iii) of Proposition 6.1.3 of [27] are 
satisfied) for any control system 
 ∈ Expl(�). If so, we use Proposition 6.1.5 of [27] with a small 
modification: there exist local coordinates (z, z∗) = (z1, . . . , zm, z∗), where zi = (z1

i , . . . , z
ρi

i ), 
such that 
 is the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = z1
1

ż1
1 = z2

1 + σ 1
1 v

· · ·
ż
ρ1−1
1 = z

ρ1
1 + σ

ρ1−1
1 v

ż
ρ1
1 = α1 + β1v

y2 = z1
2

ż1
2 = z2

2 + δ1
2,1 (α1 + β1v) + σ 1

2 v

· · ·
ż
ρ2−1
2 = z

ρ2
1 + δ

ρ2−1
2,1 (α1 + β1v) + σ

ρ2−1
2 v

ż
ρ2
1 = α2 + β2v

yi = z1
i , for 3 ≤ i ≤ m

ż1
i = z2

i +
i−1∑
s=1

δ1
i,s (αs + βsv) + σ 1

i v

· · ·
ż
ρi−1
i = z

ρi

i +
i−1∑
s=1

δ
ρi−1
i,s (αs + βsv) + σ

ρi−1
i v

ż
ρi

i = αi + βiv

ż∗ = f ∗(z, z∗) + g∗(z, z∗)v,

(40)

where δj ≡ 0 for 1 ≤ j < ρs , 1 ≤ s ≤ i − 1.
i,s
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(i) Note that in (40), ρ1 ≤ ρ2 ≤ . . . ≤ ρm and the matrix β = (β1, . . . , βm) is invertible at xp . 
The functions σk satisfy σk|Nk

= 0 for k = 1, . . . , ρi − 1, where

Nk = {(z, z∗) : zj
i = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k}.

(ii) There are two differences between system (40) and the zero dynamics form of Proposition 
6.1.3 of [27], where the functions σ 1

1 , . . . , σρ1−1
1 are not present and all the functions δj

i,s

can be nonzero. However, in (40), σ 1
1 , . . . , σρ1−1

1 vanish on N1, . . . , Nρ1−1, respectively, but 

may not outside, and δj
i,s ≡ 0 for 1 ≤ j < ρs , 1 ≤ s ≤ i − 1.

Proof of the Claim. We will prove that assumptions (A1), (A2), (A3) of Theorem 4.1 corre-
spond to the rank conditions (i), (ii), (iii) of Proposition 6.1.3 in [27]. By the assumption of 
Theorem 4.1 that rankE(x) = const. around xp , we have Expl(�) is not empty. Now, in order 
to compare the two algorithms (the geometric reduction algorithm in section 2.2 for � and the 
zero dynamics algorithm in [27] for 
 ∈ Expl(�)), we use the same notations as in the algorithm 
of section 2.2.

Then for a control system 
 = (f, g, h) ∈ Expl(�), we have f (x) = (Ẽ1
1)†F̃ 1

1 (x), Img(x) =
kerE(x) = ker Ẽ1

1(x), h(x) = F̃ 2
1 (x). The zero dynamics algorithm for 
 can be implemented 

in the following way:
Step 1: by (A2) of Theorem 4.1, we get Dh(x) = DF̃ 2

1 (x) has constant rank n −n1 around xp

(condition (i) of Proposition 6.1.3 in [27]). Thus h−1(0) can be locally expressed as Nc
1 = {x :

H1(x) = 0}, where H1 = ψ1(x) = (ψ1
1 , ..., ψn−n1

1 ).
Step k (k > 1): By the proof of Proposition 3.8, we have Nc

k−1 = Mc
k−1, which is

Nc
k−1 = Mc

k−1 = {x : Hk−1(x) = 0},
where Hk−1 = (ψ0, . . . , ψk−1). By the zero dynamic algorithms, Nk consists of all x ∈ Nc

k−1
such that

Lf Hk−1(x) + LgHk−1(x)u = 0.

Then by assumption (A1) of Theorem 4.1, we can deduce that

dim (kerE ∩ kerdHk−1)(x) = dim (span{g1, . . . , gm} ∩ kerdHk−1)(x) = const., (41)

for all x ∈ Mc
k−1 around xp . Now by dim kerE(x) = const. around xp (implied by rankE(x) =

const.), we get

dim span{g1, . . . , gm}(x) = const. (42)

locally around xp . By (41) and (42), we get rankLgHk−1(x) = const. for all x ∈ Mc
k−1 around 

xp (condition (ii) of Proposition 6.1.3 in [27]).
Since rankLgHk−1(x) = const., there exists a basis matrix Rk−1(x) of the annihilator of the 

image of LgHk−1(x), that is Rk−1(x)LgHk−1(x) = 0. Thus Nc
k can be defined by

Nc = {x ∈ Uk : Hk−1(x) = 0, Rk−1(x)Lf Hk−1(x) = 0}.
k
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Notice that by the geometric reduction algorithm, we have

Mc
k = {x ∈ Uk : Hk−1(x) = 0, F̃ 2

k (x) = 0}.

By Nc
k = Mc

k and the fact that the rank of the differential of (Hk−1(x), F̃ 2
k (x)) is constant 

around xp (assumption (A2) of Theorem 4.1), it follows that the rank of the differential of [
Hk−1(x)

Rk−1(x)Lf Hk−1(x)

]
is constant around xp (condition (i) of Proposition 6.1.3 in [27]).

Assumption (A3) of Theorem 4.1 that dim E(x)TxM
∗ = dim M∗, locally around xp , implies

span
{
g1(xp), . . . , gm(xp)

} ∩ TxpN∗ = 0.

Finally, by N∗ = {x : Hk∗(x) = 0}, it follows that the matrix LgHk∗(xp) has rank m (condition 
(iii) of Proposition 6.1.3 in [27]). �
Proof of Theorem 4.1. Observe that by assumption (A3) and Theorem 2.20(iii), we have that 
� is internally regular. Then by Claim, we have that xp is a regular point of the zero dynamics 
algorithm for any control system 
 ∈ Expl(�). Thus there exist local coordinates (z, z∗) such 
that 
 is in the form (40) around xp . Notice that the matrix β = (β1, . . . , βm) is invertible at xp

and the functions σk
i |Nc

k
= 0, for 1 ≤ i ≤ m, 1 ≤ k ≤ ρi − 1, which implies σk

i ∈ Ik , where Ik is 

the ideal generated by zj
i , 1 ≤ i ≤ m, 1 ≤ j ≤ k in the ring of smooth functions of za

b and z∗
c . 

Then for system (40), using the feedback transformation ṽ = α + βv, where α = (α1, . . . , αm), 
we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi = z1
i , i = 1, . . . ,m,

ż1
i = z2

i +
i−1∑
s=1

δ1
i,s ṽs + a1

i + b1
i ṽ,

· · ·
ż
ρi−1
i = z

ρi

i +
i−1∑
s=1

δ
ρi−1
i,s ṽs + a

ρi−1
i + b

ρi−1
i ṽ,

ż
ρi

i = ṽi ,

ż∗ = f̃ ∗(z, z∗) + G̃∗(z, z∗)ṽ,

(43)

where f̃ ∗ = f ∗ − ḡβ−1α, G̃∗ = g∗β−1, and where ak
i = −σk

i β−1α, bk
i = σk

i β−1, for 1 ≤ i ≤ m, 
1 ≤ k ≤ ρi − 1 and by σk

i ∈ Ik , we have ak
i , b

k
i,s ∈ Ik .

Recall from (40) that the functions δj
i,s ≡ 0 for 1 ≤ j < ρs , 1 ≤ s ≤ i − 1. Then if the function 

δ
j
i,s̄ �= 0, j = ρs̄ + k, for a certain 1 ≤ s̄ ≤ i − 1 and a certain 0 ≤ k ≤ ρi − 1 − ρs̄ , we show that, 

via suitable changes of coordinates and output multiplications, the nonzero function δk+ρs̄

i,s̄ can be 
eliminated. Namely, define the new coordinates (and keep the remaining coordinates unchanged):

z̃k+1
i = zk+1

i − δ
ρs̄+k
i,s̄ z1

s̄ , z̃k+2
i = zk+2

i − δ
ρs̄+k
i,s̄ z2

s̄ , . . . , z̃
k+ρs̄

i = z
k+ρs̄

i − δ
ρs̄+k
i,s̄ zρs̄ ,

we have (notice that below δ1 ≡ 0 for 1 ≤ s ≤ s̄ − 1)
s̄,s
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˙̃zk+1
i = zk+2

i +
i−1∑
s=1

δk+1
i,s ṽs + ak+1

i + bk+1
i ṽ − (δ

ρs̄+k
i,s̄ )′z1

s̄ − δ
ρs+k
i,s (z2

s̄ + a1
s̄ + b1

s̄ ṽ +
s̄−1∑
s=1

δ1
s̄,s ṽs)

= (zk+2
i − δ

ρs̄+k
i,s̄ z2

s̄ ) + (ak+1
i − (δ

ρs̄+k
i,s̄ )′z1

s̄ − δ
ρs+k
i,s a1

s̄ ) + (bk+1
i − δ

ρs+k
i,s b1

s̄ )ṽ +
i−1∑
s=1

δk+1
i,s ṽs

= z̃k+2
i + ãk+1

i + b̃k+1
i ṽ +

i−1∑
s=1

δk+1
i,s ṽs ,

where (δρs̄+k
i,s̄ )′ denotes the derivative of δρs̄+k

i,s̄ (x(t)) with respect to t , and ãk+1
i = ak+1

i −
(δ

ρs̄+k
i,s̄ )′z1

s̄ − δ
ρs+k
i,s a1

s̄ , b̃k+1
i = bk+1

i − δ
ρs+k
i,s b1

s̄ , and it is clear that ãk+1
i , b̃k+1

i,l ∈ Ik+1. Then via 
similar calculations, we have

˙̃zk+j
i = z̃

k+j+1
i + ã

k+j
i + b̃

k+j
i ṽ +

i−1∑
s=1

δ
k+j
i,s ṽs , 2 ≤ j ≤ ρs̄ − 1,

for some ãk+j , b̃k+j
i,l ∈ Ik+j . Moreover, we have

˙̃zk+ρs̄

i = z
k+ρs̄+1
i +

i−1∑
s=1

δ
k+ρs̄

i,s ṽs + a
k+ρs̄

i + b
k+ρs̄

i ṽ − (δ
ρs̄+k
i,s̄ )′zρs̄

s̄ − δ
ρs̄+k
i,s̄ ṽs̄

= z
k+ρs̄+1
i + (a

k+ρs̄

i − (δ
ρs̄+k
i,s̄ )′zρs̄

s̄ ) + bk+1
i ṽ +

i−1∑
s=1

δ
k+ρs̄

i,s ṽs − δ
k+ρs̄

i,s̄ ṽs̄

= z
k+ρs̄+1
i + ã

k+ρs̄

i + b̃
k+ρs̄

i ṽ +
s̄−1∑
s=1

δ
k+ρs̄

i,s ṽs +
i−1∑

s=s̄+1

δ
k+ρs̄

i,s̄ ṽs ,

where the functions ãk+ρs̄ , b̃k+ρs̄

i,l ∈ Ik+ρs̄ . Thus in the above formula, the nonzero function δk+ρs̄

i,s̄

is eliminated. Note that if k = 0, then the change of coordinate z̃1
i = z1

i − δ
ρs̄

i,s̄z
1
s̄ transforms the 

first equation yi = z1
i of (43) into yi = z̃1

i + δ
ρs̄

i,s̄z
1
s̄ . We define a new output ỹi = yi − δ

ρs̄

i,s̄z
1
s̄ =

yi − δ
ρs̄

i,s̄ys̄ (which is actually an output multiplication of the form ỹi = ηiy) such that the first 
equation of (43) becomes ỹi = z̃1

i .

Repeat the above construction to eliminate all nonzero functions δj
i,s for j ≥ ρs , 1 ≤ s ≤ i −1. 

Then system (43) becomes the following control system


̃ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ỹi = z̃1
i , i = 1, . . . ,m,

˙̃z1
i = z̃2

i + ã1
i + b̃1

i ṽ,

· · ·
˙̃zρi−1
i = z̃

ρi

i + ã
ρi−1
i + b̃

ρi−1
i ṽ,

˙̃zρi

i = ṽi ,

ż∗ = f̃ ∗(z, z∗) + G̃∗(z, z∗)ṽ,
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where ak
i , b

k
i,s ∈ Ik for 1 ≤ k ≤ ρi − 1. It is clear that 
 

sys∼ 
̃ (we used coordinates changes, 

feedback transformations and output multiplications to transform 
 into 
̃). Then consider the 
last row of every subsystem of 
̃, which is żρi

i = ṽi . By deleting this equation in every subsystem 
and setting yi = 0 for i = 1, . . . , m, and replacing the vector ṽ by żρ , we transform 
̃ into a DAE 
�̃ below. It is straightforward to see that 
̃ ∈ Expl(�̃), where

�̃ :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

˙̃z1
i˙̃z2
i

...

˙̃zρi

i

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

z̃1
i

z̃2
i

...

z̃
ρi

i

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
ã1
i + b̃1

i
˙̃zρ

...

ã
ρi−1
i + b̃

ρi−1
i

˙̃zρ

⎤
⎥⎥⎥⎦ , i = 1, . . . ,m,

−G̃∗ (z̃, z∗) ˙̃zρ + ż∗ = f̃ ∗ (z̃, z∗) .

Finally, by Theorem 3.6 and 
 
sys∼ 
̃, we have that � 

ex∼ �̃ and that �̃ is in the NWF1, given by 
(20). �
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