

 University of Groningen

Architectural design decisions that incur technical debt — An industrial case study
Soliman, Mohamed; Avgeriou, Paris; Li, Yikun

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2021.106669

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Soliman, M., Avgeriou, P., & Li, Y. (2021). Architectural design decisions that incur technical debt — An
industrial case study. Information and Software Technology, 139, [106669].
https://doi.org/10.1016/j.infsof.2021.106669

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-06-2022

https://doi.org/10.1016/j.infsof.2021.106669
https://research.rug.nl/en/publications/56b9e26b-a1f8-4b30-a7bb-238e112604ea
https://doi.org/10.1016/j.infsof.2021.106669

Information and Software Technology 139 (2021) 106669

A
0

A
s
M
B

A

K
T
A
A
A

1

t
i
a
p
(
r

r
p
a
c
f
c

n
c

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

rchitectural design decisions that incur technical debt — An industrial case
tudy
ohamed Soliman ∗, Paris Avgeriou ∗, Yikun Li

ernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands

R T I C L E I N F O

eywords:
echnical debt
rchitectural design decisions
rchitectural knowledge
rchitectural technical debt

A B S T R A C T

Context: During software development, some architectural design decisions incur technical debt, either
deliberately or inadvertently. These have serious impact on the quality of a software system, and can cost
significant time and effort to be changed. While current research efforts have explored general concepts of
architectural design decisions and technical debt separately, debt-incurring architectural design decisions have
not been specifically explored in practice.
Objective: In this case study, we explore debt-incurring architectural design decisions (DADDs) in practice.
Specifically, we explore the main types of DADDs, why and how they are incurred in a software system, and
how practitioners deal with these types of design decisions.
Method: We performed interviews and a focus group with practitioners working in embedded and enterprise
software companies, discussing their concrete experience with such architectural design decisions.
Results: We provide the following contributions: 1) A categorization for the types of DADDs, which extend a
current ontology on architectural design decisions. 2) A process on how deliberate DADDs are made in practice.
3) A conceptual model which shows the relationships between the causes and triggers of inadvertent DADDs.
4) The main factors that influence the way of dealing with DADDs.
Conclusion: The results can support the development of new approaches and tools for Architecture Technical
Debt management from the perspective of Design Decisions. Moreover, they support future research to capture
architecture knowledge related to DADDs.
. Introduction

Architectural design decisions (ADDs) have the biggest impact on
he quality of a software system, and they are hard to change after their
mplementation [1]. Some ADDs incur technical debt, i.e. they ‘‘set up

technical context that can make future changes more costly or im-
ossible’’ [2]. We call these Debt-incurring Architectural Design Decisions
DADDs), and their impact is well recognized by both practitioners and
esearchers [3,4]. DADDs can be either deliberate or inadvertent [5].

Deliberate DADDs are taken because of time pressure or lack of
esources: a solution is chosen that is quicker and cheaper but com-
romises maintainability and evolvability. For example, instead of
dhering to the layered structure of the architecture, shortcuts are
reated that bypass layers. This results in implementing the required
eatures quicker, but those shortcuts create ripple effects when making
hanges.

Inadvertent DADDs, are decisions that, when taken, do not bear any
egative consequences on the system maintainability. However, in the
ourse of time, the decisions cause the development team to spend extra

∗ Corresponding authors.
E-mail addresses: m.a.m.soliman@rug.nl (M. Soliman), p.avgeriou@rug.nl (P. Avgeriou), yikun.li@rug.nl (Y. Li).

effort on maintenance, thus becoming technical debt items. A typical
example of inadvertent DADDs, is when a technology is selected that
becomes obsolete after a few years [6]. That technology may have been
an optimal decision in the past, but it now causes a lot of workarounds
and unnecessary complexity.

Related research work on architectural technical debt (ATD) [7] has
empirically explored different types of ATD items (e.g. dependency vio-
lations) [8], their causes, trends [9] and effects [8]. Moreover, methods
were proposed to identify ATD (e.g. through capturing architectural
bad smells from existing systems) [10]. Nevertheless, current studies
have not examined ATD from the perspective of the Architecture Design
Decisions (ADDs) that incur it either deliberately or inadvertently. This
perspective is of paramount importance to inform the development of
approaches to manage ATD, as well as tools to support the decision
making process.

In this paper, we aim at exploring the current state of practice in
industry regarding DADDs: we determine types of DADDs, we study the
decision making process behind deliberate DADDs, we explore how and
vailable online 14 June 2021
950-5849/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2021.106669
eceived 2 September 2020; Received in revised form 4 June 2021; Accepted 5 Ju
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ne 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:m.a.m.soliman@rug.nl
mailto:p.avgeriou@rug.nl
mailto:yikun.li@rug.nl
https://doi.org/10.1016/j.infsof.2021.106669
https://doi.org/10.1016/j.infsof.2021.106669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106669&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 139 (2021) 106669M. Soliman et al.

o
t
w
a
o
t

2

2

r

T
s
u
a
a

2

[
o
i
s
o
o
t
e
p
a
d

n
p
l
s
e
e
c
i
t
i
b
p
u
c
a

2

c
p
r
i
o
e
g
s
p
t
i

why inadvertent DADDs are formed, and finally we investigate how to
deal with DADDs after their implementation. To achieve this goal, we
performed a case study with multiple high-tech companies working in
both embedded systems and enterprise applications, enquiring eleven
experienced practitioners in depth, through individual interviews and
a joint focus group. We asked practitioners about their concrete ex-
periences with DADDs in their involved projects, and discussed their
opinions. In the case study, we limit the scope of technical debt
to the internal quality of software systems, as defined by Avgeriou
et al. [2]; in other words, we are concerned with the impact of DAADs
on maintainability and evolvability.

The case study has resulted in four concrete contributions:

• We extend current ADDs classifications [11] with specialized
types of decisions that correspond to DADDs.

• We propose a practice-oriented decision making process that archi-
tects can follow to make deliberate DADDs.

• We identify the main triggers that release the occurrence of inad-
vertent DADDs, as well as their root causes.

• We pinpoint the implications of implemented DADDs and the
factors to decide on how to deal with them.

The rest of the paper is structured as follows. Section 2 elaborates
n the study design. Sections 3, 4, 5, and 6 present the results on the
ypes of DADDs, deliberate DADDs, inadvertent DADDs and deadling
ith implemented DADDs respectively. Section 7 discusses the results
nd their implications. Section 8 reports on the threats to the validity of
ur study. Section 9 presents related work, while Section 10 concludes
he paper and outlines the directions of future work.

. Study design

.1. Research questions

To meet the research goal stated in Section 1, we ask the following
esearch questions:

• (RQ1) What are common types of DADDs? Researchers have
proposed different classifications of ADDs (e.g. [11,12]). Each
type of ADD involves selecting an architectural solution; for ex-
ample ‘‘Existence decisions’’ [11] make concrete changes in the
component design. However, DADDs, that bring in a new decision
factor (i.e. technical debt) have not been considered by existing
classifications of ADDs. Therefore, we ask RQ1 to better under-
stand DADDs, and their relationships to existing classifications
of ADDs. Understanding and specifying types of DADDs could
support extending current approaches and tools of architectural
knowledge management [13] with additional ways to manage
DADDs. Consequently, a better way to manage DADDs, could help
improving current technical debt management approaches [14].

• (RQ2) How do practitioners take deliberate DADDs? Architec-
tural decision making involves stating a design problem, analysing
a number of design alternatives, evaluating those alternatives
based on specific criteria (e.g. quality attributes) and selecting
one alternative with an explicit rationale [15]. Moreover, ADDs
are commonly taken based on an agreement between a group of
stakeholders; this agreement is quite challenging to reach [7]. De-
liberate DADDs represent a special type of ADDs with previously
known risks and negative implications on the maintainability and
evolvability of a software system. We ask RQ2 to determine how
exactly the decision making process of deliberate DADDs takes
place. This can help to provide support to software architects and
engineers, specifically for making DADDs.

• (RQ3) Why and how do architecture design decisions become
inadvertent DADDs? Inadvertent DADDs are discovered only
after their implementation, and after the developers start paying
2

technical debt. We ask RQ3 to determine the reasons that cause
the occurrence of inadvertent DADDs, as well as the factors that
trigger them. This might include deficiencies in existing practices
of architectural decision making or changes in context. This is
useful for practitioners to consider in order to minimize the
occurrence of inadvertent DADDs, as well as to monitor their
triggers.

• (RQ4) How are implemented DADDs dealt with? Knowing
that DADDs (deliberate or inadvertent) exist in a software system
requires to take action managing these decisions as well as related
decisions in further iterations. On the one hand, keeping track and
documenting ADDs (and specially their rationale) is a well-known
challenge in literature [16]. On the other hand, DADDs present
a contingent risk on the quality of the software system. We ask
this question to determine best practices for dealing with DADDs
in an existing system.

o answer these research questions, we conducted an exploratory case
tudy with multiple practitioners in several organizations. The case and
nits of analysis are explained in Section 2.2. Data collection and data
nalysis are described in Sections 2.3 and 2.4 respectively. Fig. 1 shows
n overview of data collection and data analysis.

.2. Cases and units of analysis

The case study in this paper is an embedded, multiple-case study
17], i.e. we study a number of cases, each containing multiple units
f analysis. Our cases are high-tech companies, which are specialized
n the development of either embedded software or enterprise software
ystems. The units of analysis are practitioners that have a long, hands-
n experience in dealing with DADDs, both deliberate and inadvertent
nes. Table 1 shows background information of the practitioners, and
he companies where they work; in total, we collected data from eleven
xperienced practitioners, who work in seven different companies. All
ractitioners are suitable for the study, in the sense that they take
rchitectural design decisions, and deal with technical debt in their
aily work.

To increase the external validity of this study, we consider compa-
ies and practitioners in two domains: embedded software and enter-
rise applications. The two domains face different architectural prob-
ems and use different architectural solutions. For instance, embedded
oftware is more interdisciplinary than enterprise applications, while
nterprise applications have more technological options compared to
mbedded software. Thus, selecting practitioners from both domains
an minimize conceptual gaps and validate discovered concepts dur-
ng data analysis (for more details, see the application of grounded
heory in see Section 2.4). This aligns with other empirical studies
n the field of software architecture (e.g. [18]) that show differences
etween embedded software and enterprise applications regarding their
ractices and tools. Similarly to those studies, we selected practitioners
sing convenience sampling; in fact we followed different ways of
onvenience sampling to identify practitioners from the two domains,
s explained in the following sub-sections.

.2.1. Subjects from embedded software
We identified five practitioners in a large company, which is spe-

ialized in the production of embedded systems. Using a sample of
ractitioners from a single organization allowed us to answer our
esearch questions in a high level of detail and understanding. This
s especially useful in the embedded domain, because the production
f embedded software requires strong collaboration among different
ngineering departments (e.g. mechanical, chemical, and software en-
ineering). Thus, selecting practitioners from the same organization
upported our purpose to have more and richer information about the
roduction of embedded systems within the organization. Details about
he practitioners’ background and the company information are listed
n the first five rows of Table 1.

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Fig. 1. Data collection and data analysis.
The development of embedded systems in the company is interdisci-
plinary. Software development in this company also follows agile prac-
tices (e.g. a backlog is maintained for new requirements). Moreover,
they have systematic methods to apply architectural rules among soft-
ware engineers in the whole organization. The architectural rules are
documented in a reference architecture. Software team members within
the organization have specific roles: technical leader, software archi-
tect, and software engineer. Technical leaders and software architects
are the main design decision makers within the software team.

We selected the practitioners through an agreement with the man-
agers of the company, who facilitated our meetings with the practition-
ers.

2.2.2. Subjects from enterprise applications
We identified six practitioners, who work in six different companies.

Selecting practitioners from multiple organizations allowed us to an-
swer our RQs based on different experiences from multiple companies
and in different technological settings. This is especially useful due to
the big architectural variety (e.g. using different architectural styles and
technologies) between different enterprise applications.

Details about the practitioners’ background and their company in-
formation are listed in the last six rows from Table 1. All companies are
specialized in developing enterprise applications. The identified practi-
tioners work as software architects or technical leaders. Moreover, the
six identified interviewees are experienced with dealing with technical
debt in their work. We verified this before interviewing them by
checking their blog articles on technical debt within their professional
LinkedIn1 profile (4 out of 6 subjects had blog posts related to technical
debt). In addition, we validated their experience with technical debt by
asking them directly before the interviews.

2.3. Data collection

Our data collection process followed three main steps (left part of
Fig. 1) as advised by Seidmann et al. [19]. The steps are explained in
the following sub-sections.

1 www.linkedin.com.
3

2.3.1. 1st step: Background knowledge
In this step, we asked practitioners to answer questions about their

experience, and especially architectural experience. We conducted this
step, one week before meeting the practitioners, which allowed us to
ensure their suitability for our study. A summary of the practition-
ers’ experiences is presented in Table 1. In addition to background
questions, we provided them with a document with basic concepts
on software architecture and technical debt to prepare them for the
following two steps.

2.3.2. 2nd step: Individual interviews to discuss architectural design scenar-
ios

In this step, we interviewed the eleven practitioners individually
and asked them about design scenarios in which debt-incurring ADDs
have been taken, both deliberate and inadvertent ones. Interviews
provide the best means to capture the experiences of software engineers
and the insights they obtained from these experiences [19]. Each
individual interview had two main phases:

• Introductory questions: We started each interview with some intro-
ductory questions (e.g. What are examples of architectural design
decisions? How do you ensure the maintainability of an existing soft-
ware system?). The purpose of the introductory questions was to
motivate interviewees to speak about their concrete experiences
with architectural design decisions and technical debt.

• Main questions: In this phase, we asked the interviewees to specif-
ically elaborate on design scenarios about DADDs in detail. We
covered both types of design scenarios for DADDs: deliberate and
inadvertent. Before asking our questions regarding DADDs, we
explained to the interviewees our interest in DADDs, and asked
them to focus solely on DADDs and disregard other types of de-
sign decisions. For each DADD, we asked the interviewees about
their decision making steps (e.g. thinking about design issue and
alternative solutions), monitoring, implementation, impact and
resolution. Table 2 shows our questions for each DADD.

During the interviews, we allowed the interviewees to speak their mind
freely without restricting their answers. We asked also several follow-
up questions to steer the conversation when they revealed something
of interest to the study. Each interview took on average 45 min. The
interviews with the first five practitioners (see Table 1) were conducted

http://www.linkedin.com

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Table 1
Interview participants.

ID Years of experience Current role Location Company information

IT Architecture ID Size Domain

1 20 15 Technical leader Netherlands 1 >100,000 Embedded
2 18 12 Software architect Netherlands 1 >100,000 Embedded
3 30 10 Technical leader Netherlands 1 >100,000 Embedded
4 16 10 Software architect Netherlands 1 >100,000 Embedded
5 15 3 Software engineer Netherlands 1 >100,000 Embedded
6 15 8 Technical leader USA 2 >100,000 Enterprise
7 20 7 Software architect Ireland 3 >500 Enterprise
8 28 20 Software architect USA 4 <50 Enterprise
9 16 8 CIO USA 5 <50 Enterprise
10 13 7 Software engineer Belgium 6 <50 Enterprise
11 13 5 Software architect UAE 7 >100,000 Enterprise
Table 2
Individual interview questions for DADDs.

Concept Question

Design issue Which design issues did the decision tackle?
Requirements Which requirements affect the decision?
Solutions What were the alternative solutions?
Rationale Why did you decide on the selected solution?

Group decision ∙ Was the decision taken in a group?
∙ How did you agree on the solution?
∙ Did software developers agree on this decision?

Implementation What was the implementation of the solution?

Cause of technical debt (for inadvertent) Why does this design decision incur technical debt?
(This question is needed for deliberate decisions)

Monitoring, tracking ∙ How did you deal with the debt incurring decision during performing changes in further iterations?
∙ Did you document or keep track of the decision?

Awareness After the implementation of a debt incurring decision, who was aware of it?
Impact How did the occurrence of the implemented debt-incurring design decision affect the work of software developers in further

iterations?
Resolution Did you succeed to improve or change the debt-incurring design decision? Why?
face-to-face in a single day. During the first three interviews, both the
first and the second authors interviewed practitioners together. This
supported an effective interview format with rich follow-up questions
and useful answers. The 4th and 5th interviews were conducted in
parallel from the 1st and 2nd author separately, but using the same
questioning protocol. The rest of the interviews (from the 6th to the
11th interviews) were conducted by the 1st author using the same ques-
tioning protocol, and using video conference software. All interviews
were recorded and transcribed to be analysed in the next phase (see
Section 2.4).

2.3.3. 3rd step: Reflection on meaning
After interviewing each practitioner individually, we communicated

with the practitioners again to reflect on our understanding of the
design scenarios and ask about their opinions directly (as opposed to
asking them about their experiences from the design scenarios during
the interviews). The questions were thus different from the individual
interview questions. Table 3 shows the questions posed in this step. We
communicated with the practitioners using two methods: conducting
a focus group and asking follow-up questions, as explained in the
following two paragraphs.

Focus group. we met with the first five practitioners (see Table 1)
in a plenary session for a focus group. Our main goal from the fo-
cus group was to use group dynamics to support exchanging direct
opinions between the practitioners. We allowed practitioners to speak
and exchange their opinions freely without interruptions. The focus
group took 1 h, and was conducted by the first and second authors
together. The focus group followed a ‘‘dual moderator’’ format, where
the first author ensured that all topics are covered, while the second
author ensured that the session progresses smoothly. We recorded and
4

Table 3
Questions for reflection on meaning.

ID Question

1 What are challenges of making deliberate DADDs?
2 How are stakeholders usually convinced to take DADDs?
3 Do software developers tend to agree on DADDs?
4 How could we better plan DADDs?
5 How could we better deal with DADDs after their implementation?
6 Do you need a process or tool to manage DADDs?
7 Who should be aware about implemented DADDs?
8 What are the reasons of inadvertent DADDs?

transcribed the discussion within the focus group to facilitate our data
analysis (see Section 2.4).

Follow-up questions. Since the subjects from the enterprise application
domain (practitioners 6 to 11 in Table 1) were distributed in different
locations and time zones, it was not possible to conduct a virtual
focus group between them. Therefore, to get answers for this step (see
Table 3) from these subjects, we sent our questions to them directly.
Sending the questions directly made it feasible to get answers from
five of the practitioners. We did not get an answer from the 10th
practitioner, so for this participant we only included the data from
the interview in our data collection. All answers are added to our
transcripts for data analysis (see Section 2.4).

2.4. Data analysis

The data analysis process consisted of two main phases, as shown
in Fig. 1 and elaborated in the following sub-sections.

Information and Software Technology 139 (2021) 106669M. Soliman et al.

W
a
o
i
t
a
s
a

t
a
t
m
i
D
a
a

3

c
c
n
f
t
c
m
a
p
w
t
i
s

3

c
a
a
(
n
f
e

E
a

2.4.1. Applying grounded theory qualitative analysis
To analyse the transcripts of the interviews, focus group and an-

swers to the follow-up questions, we followed an iterative qualita-
tive data analysis process based on the classical/Glaserian variant of
‘‘Grounded Theory’’ [20–22]. The analysis consists of three steps:

• Open coding : We annotated selected statements within the tran-
scripts with new emerging codes (i.e. labels that present certain
concepts). Giving the freedom to researchers to decide on new
codes during annotations is important in this step to capture new
concepts. Beside annotating sentences, we wrote interesting obser-
vations (i.e. memos) about the codes and their relations. Memos
were documented using diagrams to support elaborating codes
and identifying gaps. Specifically, we have created two diagrams:
one for the deliberate DADDs scenarios and the other for the
inadvertent DADDs scenarios. The created memos are available
in the replication package.2

• Selective coding : After annotating all statements with new codes,
we constantly compared codes and their annotations with each
other to merge similar codes together and group related codes
into clusters of codes. We did this for both the deliberate and
inadvertent DADDs scenarios with the help of the created memos.
For example, we annotated a sentence as ‘‘time constraint’’, and
another as ‘‘availability of resources’’; subsequently both codes
were assigned to the same group: ‘‘deliberate DADDs factors’’.
The replication package2 contains co-occurrence matrices, which
show relationships between the initial codes (after open coding),
and the final codes.

• Theoretical coding : Groups of codes and their relations were mod-
elled to provide a high-level overview on captured concepts and
their relationships. When establishing relationships between con-
cepts, we ensured that these relationships apply to all annotated
statements. For example, to answer RQ3, we proposed a model in
Fig. 4, which clarifies the relationships between the root causes
of inadvertent DADDs and their triggers. These relationships have
been applied to all inadvertent DADDs, which are mentioned
by the interviewees. The temporal relationships between con-
cepts (e.g. process steps in Fig. 3) have been decided based on
the provided timeline of each architectural design scenario, as
mentioned by the interviewees. The timeline of each scenario
has been captured using temporal words and phrases such as
‘‘initial’’, ‘‘then’’, ‘‘first’’, ‘‘a month behind’’, ‘‘later’’, ‘‘in the short
term’’. For example, one interviewee said ‘‘first come up with the
proper solution’’. This indicated that the first step is to identify a
maintainable solution, rather than a debt-incurring solution.

e performed the three grounded theory analysis steps iteratively
cross the transcripts of the interviews, the focus group, and answers
f follow-up questions; the analysis of each transcript (pertaining to an
nterview or the focus group or follow-up questions) presents an itera-
ion. Within each iteration, the first author (an experienced researcher)
pplied the three grounded theory analysis steps. The industrial and re-
earch experience of the first author supported better conceptualization
nd establishment of relationships between concepts (i.e. theoretical
sensitivity), as well as developing cohesive categories (i.e. cohesive
theory).

By the end of each iteration, we identified conceptual gaps, which
are not sufficiently covered from the gathered data, and consequently
collected more data until reaching theoretical saturation. When col-
lecting new data, we applied theoretical sampling. In other words, we
decided to further interview practitioners (either from the embedded or
enterprise domain, as explained in Section 2.3) based on the conceptual
gaps in results. For instance, interviewees from the embedded domain
provided more concepts regarding deliberate DADDs (see Section 4),

2 https://github.com/m-a-m-s/DADDs.
5

but less concepts regarding inadvertent DADDs (see Section 5). This
has been compensated by the interviewees from the enterprise domain,
who provided more concepts regarding inadvertent DADDs.

The result of this phase is an initial list of concepts and their
relationships. We used the Atlas.ti3 qualitative analysis tool to facili-
tate coding. Moreover, we provide our initial and final codes in the
replication package2.

2.4.2. Ensuring agreement on annotations
In research methods involving qualitative content analysis, reliabil-

ity of the analysis is critical. To strengthen reliability, the first and third
authors conducted two iterations of reliability tests: The third author
independently annotated selected sentences (that were also coded by
the first author) and compared it to the original annotations of the first
author; disagreement was discussed and the groups of annotations were
modified until consensus was reached.

3. RQ1 - Types of DADDs

In this section, we classify all the identified DADDs into specific
ypes, based on a well recognized taxonomy of design decisions [11],
nd taking into account the reasons for incurring technical debt. The
ypes of DADDs have been derived by analysing the design scenarios
entioned by the practitioners during the interviews as explained

n Section 2. In the following sub-sections, we explain the types of
ADDs, and support them with examples. The examples are structured
ccording to the following annotated parts: [Design issue], [Solution
lternatives], [ADD rationale] and [Extra effort].

.1. Existence DADDs

Existence decisions are concerned with adding new elements (e.g.
omponents or dependencies) to an architecture. Existence decisions
ould be structural or behavioural. Structural decisions add compo-
ents or dependencies to one of the views of the architecture [11];
or example, a system should have an API component to accept cus-
omer requests. Behavioural decisions add new interactions between
omponents to implement the functional and non-functional require-
ents [11]. Existence decisions are well known to practitioners, and

re considered to be the most commonly made design decisions in
ractice [23]. According to the scenarios provided from practitioners,
e found that existence DADDs incur either requirements or archi-

ectural debt. Both could be incurred deliberately (see Section 4) or
nadvertently (see Section 5). We explain both cases in the following
ub-sections.

.1.1. Existence ADDs which incur requirements debt
These are existence design decisions, which only partially achieve

urrent or upcoming architecturally significant requirements (ASRs) of
software system. The non-fulfilled requirements could be functional

s well as non-functional requirements. As a result, system evolution
implementing new features) becomes cumbersome, and requires sig-
ificant efforts to refactor or rewrite existing system architecture to
ulfil missing requirements. In the following paragraph, we provide an
xample from one of the practitioners:

xample. An existence ADD, which partially fulfils security and us-
bility requirements

3 https://atlasti.com/.

https://github.com/m-a-m-s/DADDs
https://atlasti.com/

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Fig. 2. Example of a maintainable and a debt-incurring solution.

A system requires to implement a publish–subscribe mechanism,
where customers can subscribe to certain events, and receive notifica-
tions [design issue]. Two architectural solutions have been proposed
(see Fig. 2): a maintainable and a debt-incurring solution [alternative
solutions]. Both solutions satisfy the functional requirements. How-
ever, the debt-incurring solution depends on using a cloud notification
service, which imposes limitations regarding security and usability.
For example, the cloud notification service supports only anonymous
authentication and provides no ability to store specific authorization
rules for each user. Moreover, users must follow complex steps to
deal directly with the cloud notification service. On the other hand,
the maintainable architectural solution provides a customized solution,
which contains an authentication mechanism and a dedicated user
interface with better usability. Nevertheless, the debt-incurring solution
has been selected, because it could be implemented in a shorter time
period, even though it does not satisfy the security and usability
requirements [ADD rationale]. As a consequence of this decision, it
would not be possible to fully satisfy security or usability require-
ments (e.g. re-playing events per user, which depends on the user
security profile) without re-engineering the debt-incurring solution to
the maintainable solution [Extra effort].

3.1.2. Existence ADDs which incur architectural debt
These are existence ADDs, which do not follow certain architectural

principles; this consequently deteriorates the software architecture. The
practitioners mentioned scenarios about breaking four architectural
principles: separation of concerns, conceptual integrity, components
dependencies, and components abstraction (for a description of these
principles, see [12]). This type of DADD has a direct influence on
the maintainability of the system, such that the costs of adding extra
features to the system, and the costs of refactoring DADDs would
gradually increases by time [8,24].

Example. An existence ADD, which break the separation of concerns
between components

A software system is divided into multiple components, where sepa-
rate teams are responsible for each component. For some features, you
need to change multiple components, and different teams must adapt
to new interfaces [Design issue]. Two architectural solutions were
proposed: A debt-incurring solution to implement all functionalities in
a single component (rather than in their relevant components), and a
maintainable solution to implement each functionality inside its rele-
vant architectural component (potentially by different teams) [Solution
alternatives]. The debt-incurring solution has been selected, because
6

one of the teams was busy implementing other functionalities, and this
would have delayed the delivery of the software [ADD rationale]. As a
consequence, the understandability and maintainability of components
will degrade, and will require re-engineering these functionalities to
move them later to their responsible components. [Extra effort]

3.2. Technology DADDs

Technology ADDs are choices regarding the adoption of certain
technologies, tools and products [25]. Technology decisions can be
either made by software engineers or enforced from the business en-
vironment (the latter is termed executive technology ADDs in [11]).
Selecting the wrong technology solution could lead to incurring tech-
nical debt. Based on analysing the scenarios from the practitioners,
we determined two types of technology DADDs: executive technology
DADDs, and build-versus-reuse technology DADDs. We explain both
types in the following sub-sections.

3.2.1. Executive technology DADDs
Selecting an optimal technology solution requires comparing tech-

nologies regarding their benefits and drawbacks [25]. However, due to
business reasons, a company or client might force software engineers
to select certain technology solutions without comparing it with other
solution alternatives. The enforced technology solution might not be
the most optimal solution, and might involve significant drawbacks,
which could lead to the following consequences:

• Due to technology drawbacks, new software features cannot be
implemented without replacing the selected technology with an-
other. This is a significant change in a system, and requires extra
effort to implement new features.

• To overcome the drawbacks of a technology, sub-optimal
workarounds must be implemented. This has a direct impact on
the maintainability of a software system, because such
workarounds are usually bug-prone.

According to the scenarios provided from practitioners, we found that
executive technology DADDs could be incurred both deliberately (see
Section 4) or inadvertently (see Section 5). If executive technology
DADDs are made deliberately, then the technical team is aware of
the drawbacks of this technology. However, they could not convince
business managers to select another technology. To clarify executive
DADDs, we provide an example from our interviews for an execu-
tive DADD that requires implementing workarounds to overcome its
limitations.

Example. An executive technology ADD, which requires implementing
workarounds to overcome its limitations

A system requires storing files in the cloud. The system needs to
retrieve the files efficiently for customers based on their profile [design
issue]. There were two options, (1) use an in-house content manage-
ment technology, which lacks features to store meta-data, and lacks an
efficient searching mechanism, or (2) use third party content delivery
network technologies to store files in a distributed and efficient way
[solution alternatives]. It has been decided to use the in-house content
management technology, because this aligns with the company policy
to use in-house software, and minimize using 3rd party software [ADD
rationale]. As a consequence, using the content management system
required developing workarounds to overcome the lack of features. This
became a source of bugs in future releases of the system [extra effort].

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Fig. 3. Deliberate DADDs decision making process.
3.2.2. Build-versus-reuse technology DADDs
Re-using an existing technology solution (e.g. a library or a frame-

work) saves a considerable amount of time and effort to develop
a software system. Therefore, it is common that software engineers
decide on re-using existing technologies, which are created by other
teams within the same company or by external technology vendors.
However, before deciding to re-use an existing technology, software
engineers might consider building the functionality themselves instead
of re-using (or buying [26]) it. This might be due to high costs of tech-
nology solutions, or due to existing technical drawbacks of technologies
(e.g. lack of features or performance problems), or due to delays in the
release for certain versions of a technology.

Deciding between building or re-using a technology is a critical
decision, which might incur technical debt. On the one hand, software
engineers might prefer to build a technology themselves (instead of
re-using an existing one), which causes significant extra effort to re-
develop and maintain a separate version of an existing technology with
a good quality. On the other hand, selecting a technology solution
with a drawback can negatively affect the evolvability of a system (as
explained in Section 3.2.1). In other words, it can incur significant costs
to replace or even re-build a technology due to its drawbacks.

According to the scenarios provided from practitioners, we found
that build-versus-reuse technology DADDs happen mostly inadvertently
(see Section 5). This might be due to the complexity of this type of
decisions (i.e. build-versus-reuse), which make it harder to foresee
their consequences. To clarify build-versus-reuse technology DADDs,
we provide an example from one of the practitioners in the following
paragraph.

Example. Build a technology instead of re-using it from another team
in the same company

A business application should communicate with an external service
7

using a certain protocol [design issue]. A library is required to perform
the communication with the service. Two main options were proposed.
The first is to use a library provided by another team in the same
company; however, this library was still missing important features
to comply with company regulations. The second was to develop an
own version of the communication library [solution alternatives]. The
team decided to develop their own communication library, because it
is faster to deliver the software [ADD rationale]. As a consequence, the
team maintained this communication library duplicating the mainte-
nance effort, as both them and the other team had to resolve similar
problems. Moreover, it would require re-engineering to switch later to
the original communication library from the other team [extra effort].

4. RQ2 - Making deliberate DADDs

Based on the gathered data from the interviewees, we derived a de-
cision making process comprised of five main steps to make deliberate
DADDs. Fig. 3 shows these steps and their dependencies. We note that
the application of these five steps is subjective, as it depends on the
knowledge, experience, expertise and skills of software engineers; of
course this is the case for any kind of architecture decision making [27].
We explain each of these steps in the following sub-sections.

4.1. Step 1: Determine maintainable architectural solution

In this step, software engineers propose an architectural solution
for a design issue, which satisfies the maintainability requirements of
a software system (i.e. it does not incur technical debt). Of course,
the solution also fulfils other relevant functional and non-functional
requirements. Moreover, determining a maintainable architectural so-
lution might require making trade-offs between the different non-
functional requirements. An example of a design issue mentioned by
interviewee 1: ‘‘we develop software in multiple components and teams. In

case software solution has an impact on multiple teams, then things become

Information and Software Technology 139 (2021) 106669M. Soliman et al.

4

p
e
i 4

s

s
t
s
d
I
d

4

p
A
d
m
d

more complex to implement...this will cost more effort than when they are
just in one simple team...because you need to change the interfaces and
both teams can adapt to these new interfaces.’’. For this design issue,
a well maintainable architectural solution is to follow the separation
of concerns and implement each functionality inside the relevant ar-
chitectural component (potentially by a different team). This solution
requires higher effort as the different teams need to synchronize when
implementing their own part, but it does not incur debt.

In this step, software engineers strive to propose an architectural
solution that does not deliberately incur technical debt. However, they
might select an architectural solution that incurs inadvertent technical
debt. This has several root causes such as lack of architectural skills
or lack of alternatives. In Section 5, we elaborate more on inadvertent
DADDs, their root causes and triggers.

4.2. Step 2: Determine debt-incurring architectural solution

If the effort required to implement the maintainable architectural
solution (from step 1) does not align with the time constrains of the
project (e.g. time to market), then the team proposes a debt-incurring
architectural solution, which could be implemented in a shorter time
period. However, a debt-incurring architectural solution has a negative
impact on the maintainability of a software system on the long term.
An example of a debt-incurring architectural solution for the design
issue mentioned in step 1 is to implement all functionalities in a single
component (rather than in their relevant components). This will allow
faster delivery of functionality (as only one team is involved) but will
deteriorate maintainability (as one component becomes overly complex
and has many dependencies with other components).

When working on this debt-incurring architectural solution, soft-
ware engineers strive to achieve two main goals:

1. Fulfil customer visible requirements: It is expected that the debt-
incurring solution fulfils all visible customer requirements (i.e.
functional requirements, and run-time quality attributes).

2. Localize incurred technical debt : The architectural solution that
incurs technical debt should be encapsulated in a limited number
of components. This would facilitate the re-engineering to a
maintainable solution in a future release.

.3. Step 3: Analyse and tentatively select an architectural solution

In the previous two steps, two architectural solutions have been pro-
osed: a maintainable and a debt-incurring one. In this step, software
ngineers select tentatively one of these two solutions. This selection is
nfluenced by several factors:

• Strictness of time constraints: Software engineers tend to prefer
the debt-incurring architectural solution (from step 2) over the
maintainable architectural solution (from step 1), if the time
constraints are firm and critical to the company. For example, a
fixed date for market introduction before competitors can be a
strict deadline.

• Availability of resources: If some software developers are busy with
other tasks, it may not be feasible to select the maintainable solu-
tion. For example, in the design issue mentioned in step 1, if one
of the teams is busy developing other functionality, and cannot
participate in developing the proposed maintainable architectural
solution (from step 1), then the debt-incurring solution would be
preferred (from step 2).

• Complexity and quality aspects of the proposed architectural solu-
tions: The difference in complexity and quality (and consequently
the effort) between the maintainable and the debt-incurring ar-
chitectural solutions play a big role. For example, a localized
debt-incurring architectural solution is more acceptable, because
it could be easily changed in further iterations. On the other hand,
a maintainable solution that is too complex to implement may not
8

be easily agreed upon.
• Level of technical debt in existing system: The diffusion of technical
debt items (e.g. code smells) in the whole system could be a factor
to prefer the maintainable architectural solution (from step 1)
over a debt-incurring architectural solution (from step 2), esp.
if maintainability is already widely compromised. For example,
one interviewee explains the factor to decide on a maintainable
architectural solution ‘‘we saw much legacy code and redundant
obsolete code...we took the decision to build a new architecture’’.

• Upcoming dependent requirements: In case new requirements in the
next iterations are meant to build upon the currently decided ar-
chitectural solution, then the maintainable architectural solution
would be preferred over the debt-incurring architectural solution;
the reason is that the maintainable solution can facilitate the
implementation of those requirements.

• Re-usability of architectural solution: The intention to re-use the
developed software components in other products would require
developing a stable and maintainable architecture for the product,
rather than a fragile and hard to maintain architecture.

• Development phase: In an early iteration of a project, software
development teams strive to achieve customer satisfaction by
efficiently delivering implemented requirements; thus they prefer
a debt-incurring solution over a maintainable one. On the other
hand, in later iterations of the project, when the size and com-
plexity of the software have expanded, extra care is required for
the maintainability of the software.

• Priority of other disciplines over software: In the development of
embedded software, the quality of software could play a sec-
ondary role in the development of software compared to other
engineering disciplines. For example, innovations in chemical
engineering has a higher priority over software in some embedded
systems. As a result, software development tries to support other
disciplines in their experiments using quick solutions rather than
developing well-maintained and long-term solutions.

• Loyalty to company’s products: Software engineers could be biased
or forced to choose their company’s own products, even though
the selected products might not be the optimal solutions for the
issue at hand. One interviewee explained the reasons for this: ‘‘It
was because of the company direction, and policy, and to work as one
team...we do not want to introduce security issues’’. Consequently,
software engineers try to adapt and customize these products to
overcome their limitations. This causes several workarounds and
shortcuts.

.4. Step 4: Agree and decide upon architectural design decision with
takeholders

ADDs are taken in a group, and require agreement among different
takeholders [28,29]. In this step, decision makers try to agree on the
entatively selected architectural solution (from step 3) with pertinent
takeholders. The interviewees mentioned two main stakeholders to
iscuss with and reach agreement: software developers and managers.
n the following sub-sections, we explain the agreement with software
evelopers and managers on DADDs.

.4.1. Agreement with software developers on DADDs
Ensuring the agreement with software developers on an ADD is im-

ortant for the seamless implementation of ADDs [29]. Debt-incurring
DDs are challenging to agree upon with software developers, as
evelopers prefer to maintain the good quality of their system. Decision
akers use two strategies to achieve an agreement with software
evelopers on a debt-incurring ADD:

• Sharing the rationale of debt-incurring ADD: By understanding the
rationale behind the decision, software developers can realize the
problem from the perspective of decision makers. Moreover, shar-

ing the rationale of ADDs gives software developers a motivation

Information and Software Technology 139 (2021) 106669M. Soliman et al.
to implement the taken ADD and achieves a successful delivery
for the product. One interviewee mentioned ‘‘It is important to
share the rationale behind the decision...it makes it easier to accept
and share the approach later to get rid of it. If you share that it
makes easier to accept...if you are open of the rationale and why of
the decision. You have a big step to get everybody on board’’.

• Planning a re-engineering to the maintainable architectural solution:
promising software developers to pay back the technical debt in
a following iteration supports the agreement further. Decision
makers make a plan with software developers to first implement
the debt-incurring architectural solution and change it at a given
point of time to the maintainable architectural solution. One
interviewee mentioned ‘‘We must explain to designers, we are not
taking the right decision but you must understand that we have
to deliver and comply to planning...they accept that based on the
intention that we make the proper solution later ’’.

4.4.2. Agreement with managers on DADDs
Aligning with the plan of the project and policies of the organization

is the main concern of business and project managers. Agreement
with managers is crucial when deciding on an important architectural
decision, which has a significant impact on the product and customers.
However, it is quite challenging for software engineers to communicate
with managers and persuade them for an ADD, which could impact
either the plan of the project or the standards of the organization. An
interviewee spoke about convincing managers to agree on a maintain-
able solution ‘‘we need to run in the politics of the organisation to explain
that we need to invest much development time’’. Another interviewee said
‘‘You need to find your way in the organisation’’.

Software engineers consider the following concerns when agreeing
with managers:

• Breaking architectural rules of the organization: when deciding on a
debt-incurring ADD, it might be required to break one of the main
architectural rules in the organization. For example, one intervie-
wee mentioned ‘‘on the department level, they want to have good
quality and the design and reference architecture...if you make big
shortcuts on that, you need to have deal on the department managers.
If you overtake the reference architecture regarding hardware, these
are big changes, then you need to convince your department ’’.

• Planning a transition from the debt-incurring to the maintainable
ADD: To mitigate the risk of paying interest for technical debt
in future development iterations, software engineers agree with
managers on a future plan to re-engineer the debt-incurring so-
lution (from step 2) into the maintainable solution (from step
1). This requires agreement on further costs and resources in the
next development iterations. Practitioners discussed this problem
during the focus group:
‘‘Interviewee 1: we make deal with the manager, we make this
shortcut for the project now but we need more people and more time
to do it in a better way later.
Interviewee 2: We had the same discussion, we took technical debt
to create product...and in next iteration plan, we will resolve this
technical debt ’’

• Making risks explicit : Managers might not be aware about the
consequences of DADDs on the quality of a software. On the
one hand, the maintainability of the product will degrade, when
making a debt-incurring ADD. This might impact the speed of
development in following iterations due to paying technical debt
interest. On the other hand, a debt-incurring ADD might be a
cause for bugs in future releases, which would impact the external
quality of the product. It is the responsibility of software engi-
neers to make the risks of DADDs, as well as their consequences
as explicit as possible to managers.
9

• Considering technical background of managers: The technical back-
ground of managers plays an important role to persuade them
for accepting or preventing DADDs. One interviewee mentioned
‘‘Everyone can see short term cost. Long term costs are really difficult
for them to see. You cannot cost (i.e. calculate) technical debt accu-
rately...This is a big problem with technical debt, and the real hard
architectural debt is very hard to cost. Thus, the people who controls
the budget should have a good technical understanding... They will
know then the risk they will take’’.

4.5. Step 5: Document and plan maintainable architectural solution

When deciding on a debt-incurring ADD, software engineers also
document the maintainable architectural solution (from step 1) to be
considered in a future debt remediation. For example, interviewee 1
mentioned ‘‘when we do a short term solution, I always add additional re-
engineering work items in the backlog to reduce it...I tag them with technical
debt ’’. The usage of issue tracking systems is convenient for software
engineers to track and plan tasks for paying back technical debt items.
However, software engineers also mentioned that they do not document
the rationale behind taking a debt-incurring ADD. The realization of a
remediation plan depends on several factors, which are discussed in
Section 6.

5. RQ3: Understanding the manifestation of inadvertent DADDs

An inadvertent DADD is a design decision, which had no foreseen
negative consequences on system maintainability at the time it was
made. However, technical debt manifested later due to the occurrence,
first of certain root causes, and subsequently of unforeseen triggers,
which release the technical debt (the DADD becomes activated). Fig. 4
shows the root causes and triggers of inadvertent DADDs that we found
in our study, and illustrates how inadvertent DADDs occur. We note that
all inadvertent DADDs scenarios provided from the practitioners show
to have a single trigger but one or more root causes. However, we have
generalized the concept in Fig. 4 to consider the case of having multiple
triggers. Moreover, we note that triggers could activate DADDs that
were previously unknown. Finally, we note that multiple co-occurring
root causes could contingently lead to a single inadvertent DADD.

Both the root causes and triggers must occur in order to incur
technical debt. In some cases, triggers release technical debt directly
or shortly after the occurrence of root causes. For example, when a
technology solution with drawbacks is selected due to lack of archi-
tectural skills; the technology drawbacks can directly cause extra costs
during the development phase. In other cases, triggers release technical
debt long after the occurrence of root causes. For example, when a
technology solution is selected carefully, but the technology provider
cancels support for this technology a few years later. In this case,
technical debt is released once the lack of support hinders making
changes to the system.

In the following sub-sections, we explain the main concepts (root
causes and triggers) of inadvertent DADDs, and provide three examples
from the practitioners that illustrate how root causes and triggers are
combined.

5.1. Root causes of inadvertent DADDs

Root causes of inadvertent DADDs do not directly cause techni-
cal debt items. However, they are reasons for making certain (sub-
optimal) ADDs, which later (once certain triggers occur) become debt-
incurring. To answer why inadvertent DADDs occur, we have identified
eight root causes of inadvertent DADDs, as explained in the following

sub-sections.

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Fig. 4. Inadvertent DADDs manifestation model.
5.1.1. Root cause - Wrong assumptions
When deciding on an architectural solution, software engineers

might make assumptions, i.e. they deal with unknowns through as-
suming facts without proof [30]. Developing software in an interdisci-
plinary environment increases the risk of making the wrong assump-
tions, thus missing important ASRs. This is due to the difference in
knowledge and way of communication (e.g. using terms with differ-
ent meanings) between different disciplines, which makes software
engineers misunderstand or mis-communicate information from other
disciplines. For example, interviewees discussed challenges of software
engineers in the embedded domain:
‘‘Interviewee 1: you think you know how the machine works and which
parts are connected to each other, based on that you make the decom-
position. Later on we discover an electrical interaction which we miss...in
multidisciplinary environment, people have different language.
Interviewee 2: It is more about the assumption, about the expected be-
haviour for the system you are developing. You have certain assumptions,
this is how it should work. And these assumptions are not always right, and
based on the assumptions, you make certain decisions.
Interviewee 3: Sometimes lack of communication with different domains...
Not knowing exactly from each other which information to share’’.

5.1.2. Root cause - Shallow architectural analysis due to agile and experi-
mental approaches

Market analysis and product development might follow an experi-
mental and iterative approach. First, requirements are gathered from
customers in a short time period (e.g. few months for market analysis).
Second, a product is developed based on the gathered requirements.
Third, customers use the product and provide feedback on their experi-
ence with the product and possible new requirements. Finally, customer
experiences are considered and the product is modified.

While an agile approach is efficient for product development and
effective for selling products, it increases the risk of missing ASRs,
and consequently introduces debt-incurring architectural solutions in
following iterations. One interviewee gave an example about the impact
of the product development process on the quality of the product ‘‘You
learn something from customers. The machine is in a completely new market
we do not know our customers. We do not know how they use that machine.
Sometimes we learn from them. They do that I never thought about it... As
a result, they got all kinds of issues which we did not foresee upfront...we
need to change many things which are not in the design...we are still solving
10

many issues because of this change’’.
5.1.3. Root cause - Lack of architectural skills
The skills of a software architect are many and diverse and include

both technical, as well as soft skills [1]. The lack of architectural skills
could be a reason for making sub-optimal ADDs, and consequently
incurring technical debt inadvertently, when inadvertent DADD triggers
occur. One interviewee mentioned ‘‘One huge problem, in term of the
architectural process, you always have options, and within your options, you
have pros and cons for every single option, and you got to get people at that
stage. That requires skills, experience and discipline. Not many architects
have all three...but going through all the pros and cons is difficult. There
are few people who can do that at a high standard’’

5.1.4. Root cause - Lack of suitable technology alternatives
To decide on a technology solution (e.g. library or framework),

software engineers compare technologies with each other to deter-
mine their benefits and drawbacks [25]. Due to the lack of suitable
technology alternatives, software engineers are sometimes forced to
decide on a solution with potential drawbacks, which can threaten
the maintainability of a system in future changes, and incur technical
debt. One interviewee mentioned ‘‘I thought that this was the best solution
because I had compared other communications mechanisms...but you had to
select a solution, because this is the one available’’.

5.1.5. Root cause - Software trends and sales over-claims
Software engineers might decide on a certain architectural solution,

because it is the current trend at that time, or because it has been
advertised for being a prime solution. However, once the solution
is implemented and the software starts to evolve, the drawbacks of
the solution surface, and technical debt is incurred. An interviewee
provided an example and said ‘‘A technology vendor invented their own
business rules engine...the calculation engine was happening in a proprietary
language. This was terrible and nightmare language, and it never worked.
It was a great sell pitch...they could never change business rules as easy as
they claim. This is massive inadvertent technical debt ’’.

5.1.6. Root cause - Lack of support from technology providers
When technology providers decide to stop evolving and supporting

certain technology solutions, technology solutions which are used in
many existing software systems become obsolete. This is a well-known
root cause for incurring inadvertent technical debt [6].

At a given point in time, software engineers discover an unsolvable
drawback (e.g. a security threat) in an obsolete technology. It is then
required to cope with technological changes by replacing this obsolete
technology with an up-to-date one. One interviewee recommended
monitoring the evolution of technologies ‘‘Certain 3rd party libraries can
become out of date and need to be refreshed, due to open source security

stuff, you need to monitor and we need to track that somehow’’.

Information and Software Technology 139 (2021) 106669M. Soliman et al.
5.1.7. Root cause - Lack of documentation about design decision rationale
When changes happen in the software development team, new team

members are not aware of the rationale behind existing ADDs. One
interviewee spoke about the loss of architectural knowledge of ADDs:
‘‘if you switched the team, they will miss a lot of information. There is
lot of rationale, which we do not document ’’. By losing the rationale
behind existing ADDs, it becomes harder for new developers to un-
derstand existing ADDs within the system (e.g. why they were made
and what were the alternative solutions). This renders new developers
unprepared and uninformed for making changes to existing ADDs. This
subsequently results in making changes, which unintentionally deviate
from the intended purpose of the architecture, and make future changes
harder to implement.

We note that this problem also appears with deliberate DADDs (see
Section 4), which have been implemented, but they have not yet been
removed from the system. In this case, new developers will not be
aware about the plan to re-engineer existing deliberate DADDs. This
often results in building further upon existing DADDs, and incurring
extra technical debt in future changes.

5.1.8. Root cause - Not considering knowledge and skills of other software
engineers regarding architectural solutions

Software engineers might tend to decide on architectural solutions,
which solely fit their own knowledge, skills and perspective. However,
when the team changes, it becomes challenging for new team members
to understand and maintain the existing design of a system, because the
new team members are not familiar with the implemented architectural
solutions. One interviewee mentioned an example from his experience
‘‘if you’re familiar with the Scala programming language...it has so many
features that interact in such strange ways that you can look at a piece of
code and have absolutely no idea how that works and I think that there
are certain developers who...will use the features to the extent they can...I
was working on building a Pipeline and the structure of the pipeline was
such that everything could be reduced into three Lambdas...when I built it
it was completely understandable...but I have heard from the people...that
it over-abstracted the problem...now everybody who has to touch that piece
of code...you have to understand the indirect Lambda layers...I think I’m
coming to the point where that causes a lot of technical debt those sorts
of decisions, not recognizing that the code has to be handed off to other
people’’.

5.2. Triggers of inadvertent DADDs

Triggers of inadvertent DADDs are unforeseen events that lead to
incurring technical debt, due to certain root causes. We have identified
three types of triggers, which create technical debt items, as elaborated
in the following sub-sections.

5.2.1. Trigger - Introducing unexpected architecture-significant require-
ments

Software engineers try to design a sustainable architecture, which
supports effective and efficient changes to the system without degrad-
ing the internal quality of the system, i.e. without incurring technical
debt. For example, one interviewee said ‘‘From the development team, it
is never a choice to take a technical debt...we don’t want this technical debt.
we want to have the correct solution’’.

This requires to determine upfront, all potential future architectural
significant requirements (ASRs), in order to design a flexible system,
which can adapt to changes. However, this is not feasible and even-
tually unexpected ASRs will occur. In these cases, software engineers
may need to perform significant changes to the system architecture to
accommodate such ASRs. One interviewee spoke about building a new
architecture because of new requirements ‘‘we made a new design for
this feature...this was a new requirement, which we did not know when we
11

started the project...you can not make a complete design which suitable for
many years because you will always get new requirements which we did not
take into account ’’.

Unexpected ASRs are not only functional requirements (e.g. adding
a new feature to the product) but also quality attributes, which did
not have sufficient priority during the initial design of the software
architecture. For example, one interviewee explained a scenario about
an unexpected re-usability requirement: ‘‘a component was designed to
use local services...we have colleagues, who also make products in another
location, and they can use the same component... At the beginning it
was easy without their re-use, now we have...technical debt, to share a
component with somebody else’’.

5.2.2. Trigger - Discovering technology drawbacks, which hinder fulfilling
ASRs

The decision on software technologies depends on evaluating tech-
nologies according to their potential to fulfil architecture significant
requirements (ASRs). To do this, software engineers compare alterna-
tive technologies according to their benefits and drawbacks, and then
choose a technology solution that optimizes benefits vs. drawbacks,
regarding the fulfilment of ASRs [25]. However, it is challenging for
software engineers to determine all benefits and drawbacks of a tech-
nology solution upfront (i.e. during making the design decision). Thus,
software engineers might discover technology drawbacks after selecting
and implementing a technology solution. If the discovered technology
drawbacks prevent fulfilling ASRs, then software engineers might need
to implement complex workarounds to overcome these drawbacks, or
in the worst case replace the whole technology with another. These are
extra maintenance efforts to maintain and evolve the system.

5.2.3. Trigger - Changes in development team
A common phenomenon in software development is the continuous

turnover of software developers. For example, software developers
who participate in the initial development of a software project often
leave the team during its maintenance phase. Losing experienced team
members from a project entails also losing their knowledge about archi-
tectural design decisions within the system, and specially the rationale
behind making these decisions, which are rarely documented [16].

5.3. Examples of inadvertent DADDs

In this section, we present three examples of inadvertent DADDs, as
provided by the interviewees. For each example, we pinpoint the root
causes and triggers of the inadvertent DADDs. Moreover, we support
each example with quotes from the practitioners to further illustrate the
manifestation model of inadvertent DADDs as presented in Fig. 4. The
quotes are structured by using the annotations [Root cause], [Trigger],
and [Inadvertent DADDs], right after the corresponding parts.

• 1st Example: In this example, the root cause ‘‘Shallow architec-
tural analysis due to agile and experimental approaches’’ is combined
with the trigger ‘‘unexpected architecture significant requirements
(ASRs)’’ to create inadvertent DADDs.
‘‘The reason is that you make a design at the moment when you know
a number of requirement but probably you miss one...We also we
don’t know how they use that machine [Root cause]...we did not sell
a double machine, but customer see that it is possible technically. This
is a nice feature [Trigger]......but if we have to redo that we need to
change number of things which are not in the design, and we did not
put them in the design because we didn’t sell the machine as double
machine [Inadvertent DADDs]...we will learn from customer much
quicker and know what to improve. So try to make those cycles very
short. Agile way of working [Root cause]’’

Information and Software Technology 139 (2021) 106669M. Soliman et al.
• 2nd Example: In this example, the root cause ‘‘lack of suitable
technology alternatives’’ forces software engineers to select a tech-
nology solution with potential drawbacks. Once the ‘‘technology
drawbacks are discovered’’ (trigger), the inadvertent DADDs are
released and manifested.
‘‘what they did was to make a fork from a GitHub project, and made
the changes and use the fork [Inadvertent DADDs], but they never
push the changes back or kept up to sync with the original open-source
library...it’s actually a library that is implements a certain standard,
so if something is added to a standard and the original author puts it in
his library, we don’t automatically have it, so we need to invest time to
add the standard to our modified library [Trigger]...Q: At that point
of time there was no other alternative, this was the only alternative
which existed? A: As far as I know in the stack and the language we
are using, yes [Root cause]’’

• 3rd Example: In this example, the root cause ‘‘Not consider-
ing knowledge and skills of other software engineers regarding ar-
chitectural solutions’’ is combined with the trigger ‘‘Changes in
development team’’.
‘‘when I built it it was completely understandable, and cut out hun-
dreds of lines of boilerplate, this was in Java [Inadvertent DADDs]...I
think that’s an example of trying to be clever trying to boil a problem
down to a very abstract form that adds technical debt [Root cause],
because now everybody who has to touch that piece of code... it’s the
core of the application, if you extend it adding another transformation,
you have to understand how that table is structured [Trigger]...I have
had to apologize for that code’’.

6. RQ4 - Dealing with DADDs

According to the study subjects, DADDs have two main implications:

1. Increase in effort of making changes to the system. For example, it
is harder to add new functionalities, as Interviewee 4 pointed
out: ‘‘the more technical debt you add to the system, the slower the
next feature addition will be. In the end...We need to do something
or our progress will completely stand still’’.

2. Appearance of bugs in production. Interviewee 1 explained the im-
pact of DADDs on user functionality ‘‘we get...bug reports...which
has a relation to this technical debt...then we remember. We did make
a quick fix on that ’’. Bugs appear due to the different types of
DADDs (see Section 3). For example, Interviewee 1 spoke about
missing scenarios when analysing user requirements: ‘‘You have
a quick fix... But...issues will be introduced in that way. So you miss
interactions’’. In this scenario, the increase of bugs happens when
implementing existence ADDs, which incur requirements debt.

The subjects distinguish between the implications of deliberate vs.
inadvertent DADDs. On the one hand, deliberate DADDs can be well
planned, localized (as explained in Section 4), and consequently better
tested. This mitigates the risk of having significant bugs in production.
One interviewee mentioned ‘‘This kinds of issues I haven’t seen them come
from technical debt which we deliberately introduced...I think that short term
solutions are never that bad that we have critical bugs in the field’’. On the
other hand, inadvertent DADDs cannot be planned or expected. Thus,
their implications are usually more serious than deliberate DADDs.
For example, one interviewee speaks about the impact of inadvertent
DADDs due to an unexpected ASR: ‘‘sometimes customers face problems
which we did not see...that we cannot solve quickly ’’.

Dealing with DADDs happens either pro-actively or re-actively. The
proactive approach applies to deliberate DADDs, by planning upfront
to re-engineer the implementation of DADDs to a maintainable solution
as explained in Section 4. On the other hand, the reactive approach
is initiated when software development faces maintainability issues or
bugs, which significantly impact the quality of software. Interviewee 1
discussed the reactive approach: ‘‘At a certain moment in time...technical
12

debt slowly grows...you need to take measures to get back to a descent level’’.
When dealing with DADDs, the development team needs to decide
between either maintaining or re-engineering the implementation of
the DADDs. The decision on which of these two approaches to follow is
taken in a group (similarly with ADDs). Interviewee 2 mentioned how
they decided to maintain DADDs in a software project ‘‘There was an
educated guess, we did it with knowledgeable developers in that area. To see
the pros and cons in development time and impact of regression’’. Several
factors influence the decision between maintaining or re-engineering
the implementation of DADDs:

• Availability of skilled resources: The availability of time and re-
sources are important decision factors (as explained in Section 4).
In addition, re-engineering is a challenging task, which requires
knowledgeable and skilled resources. Interviewee 1 mentioned
‘‘The teams have been decreased...no specialist knowledge anymore
within the teams and people are eager to choose a quick fix more
often...it is about not having the right knowledge to take the good
decisions anymore’’.

• Project phase: The possibility to conduct a re-engineering activity
differs between project phases:

– At an early phase, the team is keen on developing new
features rather than re-engineering existing ones.

– After further iterations of software development, software
engineers are more keen to conduct re-engineering activities
in order to facilitate future iterations.

– During maintenance phase, lack of sufficient and knowl-
edgeable resources prevents making significant changes to
existing functionality; so re-engineering is again avoided.

Interviewee 1 mentioned ‘‘it really depends on the timing of the
project. In a first stage of the project. First market introduction, then
pressure is high...after that you have a stable platform... From a
software point of view. We have time to fix technical debt or update
the design of the current status of the engine and the expected changes
in the near future’’

• Age of DADDs: Recently taken DADDs have higher chances of
being re-engineered than those taken earlier, as the latter might
be harder or less important to change. Thus, software engineers
try to re-engineer DADDs as fast as possible, otherwise it becomes
harder to change them later. For example, interviewee 3 men-
tioned ‘‘That’s the risk of postponing proper design in the future. In
future, team could change’’.

• Importance of the project : An important software product with
future plans deserves investment in its quality than a product with
potentially minimum future changes.

• Risk of existing technical debt : The impact of DADDs on maintain-
ability and indirectly the occurrence of bugs plays an important
role on investing to conduct a re-engineering activity. Interviewee
2 said ‘‘It depends on the impact of the technical debt but I always
try to get the most risky stuff as soon as possible’’.

• Company policy : The company policy provides the motivation
and support to deal with technical debt. On one hand, some
companies have a specific process and budget for resolving tech-
nical debt. On the other hand, other companies (e.g. consulting
companies) might profit from the availability of technical debt,
because customers might pay extra costs for maintaining their
systems.

• Complexity to identify and agree upon technical debt : It is very
challenging for software engineers to identify problems in the ar-
chitecture of an existing system, because architectural debt might
not be directly visible and might reside on different abstraction
levels (e.g the conceptual level of an architecture). Moreover, it
could be challenging for software engineers to agree upon the
problem causing the technical debt.

Information and Software Technology 139 (2021) 106669M. Soliman et al.

7

r
t
c
o
c
i
r

7

t
S
e
p

7. Discussion

In this section, we discuss our results regarding their implication,
both for researchers and practitioners. We argue that our results could
support researchers and practitioners to achieve two goals: capturing
architectural knowledge and making DADDs. We discuss these two
goals in the following sub-sections.

7.1. Capturing architectural knowledge

7.1.1. Implications for researchers
On the one hand, capturing relevant architectural knowledge (AK)

from an existing system through documenting its ADDs [31], supports
maintaining and involving this system by modifying the ADDs or
making new ones. On the other hand, capturing AK supports the re-
use of AK (e.g. from developer communities [32] or issue tracking
systems [33]) to design new systems.

To capture AK, researchers proposed taxonomies of ADDs (e.g. [11])
and AK models (e.g. [34]), which provide the foundation for AK
capturing approaches. Our results extend this foundation with addi-
tional concepts regarding DADDs. Such concepts include the types of
DADDs (see Section 3), decision factors for making deliberate DADDs,
and concerns considered when working on agreements for deliberate
DADDs with stakeholders (see Section 4). Specifically, our contributions
support extending current AK capturing approaches in the following
ways:

• Documenting DADDs: Current ADDs documentation approaches
(e.g. [31]) could be extended to document DADDs. This extension
should distinguish the types of DADDs from each other (see
Section 3). Moreover, it should allow documenting both debt-
incurring and maintainable solutions, as well as re-engineering
plans to the maintainable architectural solution (see Section 4).

• Automated tooling : Current approaches automatically capture
ADDs (e.g. [33,35]). These approaches could be extended to
support capturing DADDs. This requires extending current AK
ontologies (e.g. [36]) with new concepts and terms regarding
DADDs (e.g. ontology classes regarding DADDs’ decision factors
as explained in Section 4). Furthermore, automatic classification
approaches (e.g. [35]) could be extended to capture the types of
DADDs (as presented in Section 3).

.1.2. Implications for practitioners
The detection of DADDs can allow re-using the knowledge (i.e. the

ationale) behind making DADDs, and re-engineering the implemen-
ation of DADDs to maintainable architectural solutions. Moreover,
apturing AK behind DADDs would also complement current methods
f technical debt identification (e.g. capturing architectural techni-
al debt [10]) by determining the rationale behind technical debt
tems. This would support software engineers to better prioritize and
e-engineer technical debt items.

.2. Making DADDs

Our empirical study shows that software engineers follow a sys-
ematic decision making process to decide on deliberate DADDs (see
ection 4). Moreover, the results clarify the differences between delib-
rate and inadvertent DADDs (see Section 5), especially regarding their
rocess, reasons and their impact on system quality (see Section 6).
13
7.2.1. Implications for practitioners
The results provide the first empirically-grounded decision mak-

ing process for software engineers to make deliberate DADDs (see
Section 4). The proposed decision making process is rather compre-
hensive, considering different factors as an integral part of design
reasoning: project factors (e.g. project phase and resources), quality
factors (e.g. level of technical debt) and human factors (e.g. stake-
holder agreement) are considered to decide on deliberate DADDs (see
Section 4). This process could be adopted by practitioners and organi-
zations to ensure a systematic and reliable method for decision making
on deliberate DADDs. Of course, it would need to be tailored to the
needs of individual organizations, team and engineers.

The identified incidents and root causes of inadvertent DADDs in
Section 5 could support companies to better manage technical debt
caused by inadvertent DADDs. This could specifically impact the way
companies gather requirements, as well as considerations to take when
developing project and risk management plans.

7.2.2. Implications for researchers
The identified decision making process and decision factors can

support the extension of current ADD management approaches and
tools with additional concepts regarding DADDs. For example, Lytra
and Zdun [37] proposed an ADD support framework and tools to guide
software engineers during decision making. The approach provides a
sequence of dependent questions and options. Based on the answers,
the system recommends suitable architectural solutions. This approach
could be extended with additional questions and options to consider
decision factors to support making DADDs and re-engineering them.
Moreover, the tool should allow selecting between maintainable and
debt-incurring architectural solutions. This requires explicitly estimat-
ing the negative impact of a debt-incurring architectural solution, in
terms of both the technical debt principal and interest [38].

8. Limitations and threats to validity

8.1. External validity

This aspect of validity is concerned with the generalizability of
the results. One threat to the external validity comes from the fact
that we did not select interviewees randomly, but contacted certain
experts directly. This imposes limitations to how our results can be
generalized to the various types of architects in different companies.
Another limitation is the number of interviews conducted to obtain
practitioner perspectives and viewpoints, which cannot guarantee sta-
tistical generalization. However, we followed two approaches to achieve
analytical generalization [39]:

1. We selected practitioners coming from different contexts: We se-
lected practitioners working in two different domains (i.e. em-
bedded systems and enterprise applications). Moreover, we con-
sidered practitioners working in the same company, as well
as practitioners working in different companies. Furthermore,
practitioners work in companies with different sizes. This variety
supported our analysis to determine most important concepts for
DADDs.

2. We achieved data saturation: We did manage to achieve data
saturation at the 9th interview. The last two interview confirmed
previously identified concepts (in the other nine interviews, the
focus group, and the follow-up questions), but did not lead to
new concepts. This gave us confidence that we identified the
most important concepts for DADDs.

Information and Software Technology 139 (2021) 106669M. Soliman et al.
8.2. Construct validity

This aspect of validity is concerned with the operational measures
that were applied to answer the research questions (does the study
investigates what it claims to be investigating?). One threat to the con-
struct validity is related to the interview questions and their sensitivity,
when asking about DADDs. For instance, some interviewees might not
be willing to admit that they made wrong ADDs, or they may not want
to expose issues created by others in the organization. To overcome
this problem, we asked practitioners to provide anonymous scenarios
(i.e. without mentioning the decision makers).

Moreover, in both the individual interviews and the focus groups,
practitioners were asked to speak freely, and express their opinion
without the researchers interrupting them. To support this, we fol-
lowed common guidelines (e.g. [40]) for conducting interviews with
practitioners.

Another threat to validity is the different implementation of the
third step of data collection: having a focus group for the practitioners
from the embedded domain versus sending follow-up questions to the
practitioners from the enterprise domain. The difference resides in the
ability of focus groups to initiate discussions between participants. We
have partially mitigated this threat by having the same set of questions
in both cases. Furthermore, combining the data from three different
data collection methods (interviews, focus group, and follow-up ques-
tions), allowed for data triangulation, as we were able to confirm and
refine the codes during data analysis. However, this threat cannot be
fully mitigated.

8.3. Reliability

Reliability is concerned with the replicability of the study inde-
pendently from the researchers, who conducted the study. One main
threat to reliability is the bias of researchers and their expectations
from the interviewees. To mitigate this threat, all authors have agreed
upon a specific protocol for the interviews, as well as specific questions
for the focus group and the follow-up questions. This ensured equal
conditions among the different interviewees. We note that the follow-
up questions were sent uniformly through email to the six practitioners
from the enterprise domain; thus they could not be biased by individual
researchers. Moreover, the interviews have been conducted by different
researchers. For example, three of the interviews and the focus group
were conducted by two authors of the paper, which have enriched the
discussion with different questions and prevented steering the interview
in a single direction.

To support replication of the study, as well as further future work,
we make our interview questions available. During the data analysis of
the interview transcripts, we evaluated the reliability of the identified
concepts through reliability tests to ensure consensus and to support
replication (see Section 2).

9. Related work

This section elaborates on related work on Technical Debt and
Architectural Design Decisions in the following two sub-sections.

9.1. Technical debt

9.1.1. Evidence-based studies on technical debt
In the past decade, substantial research work on technical debt has

been conducted. To highlight our contributions, we compare our results
with those studies that are relevant to our work. We note that we
only consider studies published in scientific literature and not grey
literature (e.g. blog posts or white papers); as our work is evidence-
based, we can only compare it with other evidence-based studies.
Table 4 shows the intersection between our results and those studies.
In the following paragraphs, we explain this intersection, organized per
14

research question.
RQ1 - Types of DADDs. Our results in Section 3 extend the ontology of
design decisions by Kruchten [11] with additional types of decisions,
which incur technical debt. This new set of ADD types that are specific
to technical debt, has not been previously reported in the literature.
However, the fact that some design decisions produce certain types of
architectural technical debt items, has been previously reported in the
literature [8,24,42]. Nevertheless, these studies focus on the technical
debt items, and do not define types of decisions.

RQ2 - Making deliberate DADDs. Our results in Section 4 provide the
steps for making deliberate DADDs, based on empirical evidence from
practitioners. These steps for making deliberate DADDs have not been
previously reported in literature. However, some of the decision factors
(from step 3) have been considered as causes of technical debt in
current empirical studies (see Table 4). For instance, time constraints
have been identified in several empirical studies as a cause of technical
debt. Other decision factors on DADDs (e.g. priority of other disciplines
over software or loyalty to company’s products) have not been previ-
ously reported as causes of technical debt. Moreover, the agreement
with developers and managers on DADDs (from step 4) have not been
reported in current empirical studies on technical debt.

RQ3 - Triggers and root causes of inadvertent DADDs. Our results in
Section 5 provide the first conceptual model (see Fig. 4), which clarifies
how and why inadvertent DADDs happen. Several of the identified
root causes and triggers of inadvertent DADDs have been previously
reported as causes of technical debt (see Table 4). However, in addition
to the conceptual model (Fig. 4), the relationships between root causes
and triggers of inadvertent DADDs, have not been previously reported
in the literature.

RQ4 - Dealing with DADDs. Our results in Section 6 explain how
practitioners deal with existing DADDs, and which factors they consider
to refactor DADDs. The current empirical studies on technical debt,
have almost zero intersection with our results; most of the existing
studies that study how to deal with technical debt (e.g. [44]) focus on
proposing solutions (e.g. cost estimation techniques). In these solutions,
the main decision factors are the characteristics of existing technical
debt (e.g. principle and interest of technical debt). On the other hand,
our results capture system, process and human factors, which influence
the decision-making on dealing with DADDs.

9.1.2. Architectural technical debt
There has been some work on the nature and types of architectural

debt. Martini and Bosch [8] identified 5 categories of architectural
debt items based on an empirical study. Moreover, they determined
their significant impact on the maintenance of the system. In another
study [45], researchers investigated different architectural technical
debt issues, which occur within a microservice architecture. In addi-
tion, they analysed their negative impact (i.e. interest) and possible
solutions (i.e. principal). However, neither of these studies investigates
the design reasoning behind the occurrence of architectural technical
debt.

Several approaches identify architectural debt items by assessing
system quality aspects. For example, Cai et al. [46] proposed a model
and method to identify ‘architectural roots’, which are considered
the main causes for maintainability issues. The method depends on
capturing bug-prone files as a sign of critical architectural problems.
Similarly, Fontana et al. [47] developed an approach to identify ar-
chitectural technical debt through detecting architectural smells based
on structural dependencies in source code. Xiao et al. [48] proposed
an approach to identify architectural technical debt through capturing
patterns of history changes and commits in a source code repository.

Li, Liang, and Avgeriou [49] proposed a process to capture architec-
tural technical debt during architectural design; this allows preventing
or tracking ATD before it is implemented in source code. Martini and

Bosch [50] proposed a method to decide on refactoring architectural

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Table 4
Relations between the results of this study and other empirical studies on technical debt.

[8,24] [9,41] [42] [43] [3]

RQ1 — Types of DADDs
Existence ADDs which incur requirements debt X
Existence ADDs which incur architectural debt X X
Executive technology DADDs
Build-versus-reuse technology DADDs X

RQ2 — Making deliberate DADDs
Step 1: Determine maintainable architectural solution
Step 2: Determine debt-incurring architectural solution
Step 3: Analyse and tentatively select an architectural solution
Decision factor - Time constraints X X X X X
Decision factor - Availability of resources X
Decision factor - Complexity and quality aspects of the proposed architectural solutions X X
Decision factor - Level of technical debt in existing system X
Decision factor - Upcoming dependent requirements
Decision factor - Re-usability of architectural solution X
Decision factor - Development phase
Decision factor - Priority of other disciplines over software
Decision factor - Loyalty to company’s products
Step 4: Agree and decide upon architectural design decision with stakeholders
Agreement with software developers on DADDs
Agreement with managers on DADDs
Step 5: Document and plan maintainable architectural solution

RQ3 — Triggers and root causes of inadvertent DADDs
Inadvertent DADDs manifestation model (Fig. 4)
Relationships between root causes and triggers of inadvertent DADDs
Trigger - Introducing unexpected architecture-significant requirements X X X
Root cause - Wrong assumptions
Root cause - Shallow architectural analysis due to agile and experimental approaches X X
Root cause - Lack of architectural skills X X X X
Trigger - Discovering technology drawbacks, which hinder fulfilling ASRs X
Root cause - Lack of suitable technology alternatives
Root cause - Software trends and sales over-claims
Root cause - Lack of support from technology providers X X X X
Trigger - Changes in development team X
Root cause - Lack of documentation about design decision rationale X X X X
Root cause - Not considering knowledge and skills of other software engineers regarding architectural solutions X

RQ4 — Dealing with DADDs
Availability of skilled resources
Project phase X
Age of DADDs
Importance of the project
Risk of existing technical debt X
Company policy
Complexity to identify and agree upon technical debt
technical debt items. The method supports identifying factors involved
in the growth of technical debt interest, and provides indicators for
stakeholders to decide on technical debt refactoring. While these ap-
proaches propose useful tools for practitioners to identify architectural
technical debt, they do not consider the reasoning of debt-incurring
ADDs.

9.2. Requirements debt

Requirements debt was defined and discussed by Ernst [51] as the
‘‘distance between the optimal solution to a requirements problem
and the actual solution, with respect to some decision space’’. We
are not aware of any studies, which determine relationships between
architectural design decisions and requirements debt, similarly to our
classification in Section 3. However, current studies on requirements
debt try to further define (e.g. [52]) and quantify requirements debt.
For example, Abad and Ruhe [53] proposed a method to manage the
uncertainty of requirements decisions using the previous history of a
project.

9.3. Architectural design decisions

There is significant research work on architectural design reasoning
15

and decision making [54]. However, currently there are no studies
on the reasoning of debt-incurring ADDs in practice. In this section,
we discuss relevant work on architectural design decisions and design
reasoning.

Researchers proposed domain specific models and catalogues to
guide software engineers, when taking ADDs in that domain. For ex-
ample, Elmalki and Zdun [55] analysed common types of ADDs to
guide decision making in service mesh based microservice architec-
tures. Their results provide a model to guide software engineers during
design space exploration. Malakuti et al. [56] proposed a catalogue
for the types of ADDs when designing industrial IOT system. ADDs are
associated with their decision factors from quality attributes as well as
possible architectural solutions in the industrial IOT domain.

Design reasoning is a challenging physiological operation with
many influences. For example, Zalewski et al. [57] identified twelve
types of cognitive biases during architectural decision making. Tang
et al. [58] proposed an approach to support software engineers with
reasoning reminder card. The approach has been validated through ex-
periments with practitioners and students. The result of the experiment
shows that the reminder cards support software engineers to reason
more on their decisions.

10. Conclusion and future work

Our study is motivated by the need to explore debt-incurring archi-
tectural design decisions in practice, either deliberate or inadvertent.

Information and Software Technology 139 (2021) 106669M. Soliman et al.
Specifically, we aimed at better understanding these types of design
decisions, in order to extend current methods of architectural design
decision making, and technical debt identification. To achieve this goal,
we performed a case study, collecting data through user interviews and
a focus group to allow for an in-depth investigation of practitioners’
concrete experiences with DADDs.

Our results show that practitioners are very aware about the impact
of debt-incurring ADDs. They have a process in place to decide between
selecting a maintainable solution vs. a solution with technical debt. The
decision is based on certain factors, and deliberations with a number of
stakeholders. Moreover, practitioners deal with debt-incurring design
decisions after implementation either pro-actively or re-actively.

We found differences in the impact and occurrence of deliberate
and inadvertent debt-incurring ADDs. On the one hand, deliberate debt-
incurring ADDs could be well planned and re-engineered later. On the
other hand, inadvertent debt-incurring ADDs present a threat on the
quality and architecture of a software system.

As future work, we plan to extend this study through interviewing
and surveying additional practitioners regarding debt-incurring ADDs.
For example, to generalize our results on other domains, we can inves-
tigate, if practitioners working in different domains reason similarly on
DADDs. Moreover, we aim at extending current approaches of architec-
tural knowledge capturing to detect debt-incurring ADDs. This would
support two activities: capturing, sharing and re-using architectural
knowledge; and assessing the quality of existing software systems.

CRediT authorship contribution statement

Mohamed Soliman: Conceptualization, Methodology, Validation,
Investigation, Resources, Data curation, Writing - original draft, Writing
- review & editing, Project administration. Paris Avgeriou: Fund-
ing acquisition, Conceptualization, Methodology, Investigation, Writing
- review & editing, Project administration, Supervision. Yikun Li:
Investigation, Data curation, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We would like to thank ITEA3, The Netherlands and RV, The
Netherlands for their support under grant agreement No. 17038 VIS-
DOM (https://visdom-project.github.io/website). Moreover, we would
like to thank the practitioners who volunteered to participate in our
study.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed.,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[2] P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Managing Technical Debt in
Software Engineering (Dagstuhl Seminar 16162), Technical Report 4, 2016,
http://dx.doi.org/10.4230/DagRep.6.4.110, URL: http://drops.dagstuhl.de/opus/
volltexte/2016/6693http://www.dagstuhl.de/16162.

[3] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord, I. Gorton, Measure it? Manage it?
Ignore it? Software practitioners and technical debt, in: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ACM, New York,
NY, USA, 2015, pp. 50–60, http://dx.doi.org/10.1145/2786805.2786848, URL:
http://doi.acm.org/10.1145/2786805.2786848.

[4] R. Kazman, Y. Cai, R. Mo, Q. Feng, L. Xiao, S. Haziyev, V. Fedak, A. Shapochka, A
case study in locating the architectural roots of technical debt, in: Proceeding of
International Conference on Software Engineering (ICSE), Vol. 2, IEEE Computer
Society, 2015, pp. 179–188, http://dx.doi.org/10.1109/ICSE.2015.146.

[5] P. Avgeriou, N.A. Ernst, R.L. Nord, P. Kruchten, Technical debt: Broadening
perspectives report on the seventh workshop on managing technical debt (MTD
2015), SIGSOFT Softw. Eng. Notes 41 (2) (2016) 38–41, http://dx.doi.org/10.
1145/2894784.2894800, URL: http://doi.acm.org/10.1145/2894784.2894800.
16
[6] P. Kruchten, R.L. Nord, I. Ozkaya, Technical debt: From metaphor to theory and
practice, 2012, http://dx.doi.org/10.1109/MS.2012.167.

[7] T. Besker, A. Martini, J. Bosch, Managing architectural technical debt: A
unified model and systematic literature review, J. Syst. Softw. 135 (2018) 1–
16, http://dx.doi.org/10.1016/j.jss.2017.09.025, URL: http://www.sciencedirect.
com/science/article/pii/S0164121217302121.

[8] A. Martini, J. Bosch, The danger of architectural technical debt: Contagious debt
and vicious circles, in: 2015 12th Working IEEE/IFIP Conference on Software
Architecture, 2015, pp. 1–10, http://dx.doi.org/10.1109/WICSA.2015.31.

[9] A. Martini, J. Bosch, M. Chaudron, Architecture technical debt: Understanding
causes and a qualitative model, in: Proceedings - 40th Euromicro Conference
Series on Software Engineering and Advanced Applications, SEAA 2014, Institute
of Electrical and Electronics Engineers Inc., 2014, pp. 85–92, http://dx.doi.org/
10.1109/SEAA.2014.65.

[10] R. Verdecchia, I. Malavolta, P. Lago, Architectural technical debt identification:
The research landscape, in: Proceedings - International Conference on Software
Engineering, IEEE Computer Society, 2018, pp. 11–20, http://dx.doi.org/10.
1145/3194164.3194176.

[11] P. Kruchten, P. Lago, H. Vliet, Building up and reasoning about architectural
knowledge, in: C. Hofmeister, I. Crnkovic, R. Reussner (Eds.), Quality of Software
Architectures, in: Lecture Notes in Computer Science, vol. 4214, Springer Berlin
Heidelberg, 2006, pp. 43–58, http://dx.doi.org/10.1007/11921998{_}8.

[12] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, third ed.,
Addison-Wesley Professional, 2012.

[13] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, M.A. Babar, 10 years of software
architecture knowledge management, J. Syst. Softw. 116 (C) (2016) 191–205,
http://dx.doi.org/10.1016/j.jss.2015.08.054.

[14] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical debt and
its management, J. Syst. Softw. 101 (2015) 193–220, http://dx.doi.org/10.1016/
j.jss.2014.12.027.

[15] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali Babar, A comparative
study of architecture knowledge management tools, J. Syst. Softw.
83 (3) (2010) 352–370, http://dx.doi.org/10.1016/j.jss.2009.08.032,
URL: http://www.sciencedirect.com/science/article/B6V0N-4X4GHP5-
1/2/84a45c0d6dda12f7f563273ff85be120.

[16] C. Manteuffel, P. Avgeriou, R. Hamberg, An exploratory case study on reusing
architecture decisions in software-intensive system projects, J. Syst. Softw. 144
(2018) 60–83, http://dx.doi.org/10.1016/j.jss.2018.05.064.

[17] P. Runeson, Case Study Research in Software Engineering : Guidelines and
Examples, Wiley, 2012, p. 237.

[18] S. Schröder, M. Soliman, M. Riebisch, Architecture enforcement concerns and
activities - an expert study, J. Syst. Softw. 145 (2018) 79–97, http://dx.doi.org/
10.1016/j.jss.2018.08.025.

[19] I. Seidman, Interviewing As Qualitative Research: A Guide for Researchers in
Education and the Social Sciences, Teachers College Press, 2006.

[20] A. Strauss, J.M. Corbin, Basics of Qualitative Research: Grounded Theory
Procedures and Techniques., Sage Publications, Inc, Thousand Oaks, CA, US,
1990, p. 270.

[21] J.C. Van Niekerk, J.D. Roode, Glaserian and straussian grounded theory: Similar
or completely different?, in: ACM International Conference Proceeding Series,
2009, pp. 96–103, http://dx.doi.org/10.1145/1632149.1632163.

[22] K.J. Stol, P. Ralph, B. Fitzgerald, Grounded theory in software engineering
research: A critical review and guidelines, in: Proceedings - International Con-
ference on Software Engineering, Vol. 14-22-May-2016, IEEE Computer Society,
2016, pp. 120–131, http://dx.doi.org/10.1145/2884781.2884833.

[23] C. Miesbauer, R. Weinreich, Classification of design decisions: An expert survey
in practice, in: Proceedings of ECSA 2013, Springer, 2013, pp. 130–145, http:
//dx.doi.org/10.1007/978-3-642-39031-9{_}12.

[24] A. Martini, J. Bosch, On the interest of architectural technical debt: Un-
covering the contagious debt phenomenon, J. Softw.: Evol. Process. 29 (10)
(2017) e1877, http://dx.doi.org/10.1002/smr.1877, URL: http://doi.wiley.com/
10.1002/smr.1877.

[25] M. Soliman, M. Riebisch, U. Zdun, Enriching architecture knowledge with
technology design decisions, in: WICSA, 2015, pp. 135–144, http://dx.doi.org/
10.1109/WICSA.2015.14.

[26] F. Daneshgar, G.C. Low, L. Worasinchai, An investigation of ’build vs. buy’
decision for software acquisition by small to medium enterprises, Inf. Softw.
Technol. 55 (10) (2013) 1741–1750, http://dx.doi.org/10.1016/j.infsof.2013.03.
009.

[27] A. Manjunath, M. Bhat, K. Shumaiev, A. Biesdorf, F. Matthes, Decision making
and cognitive biases in designing software architectures, in: Proceedings - 2018
IEEE 15th International Conference on Software Architecture Companion, ICSA-
C 2018, Institute of Electrical and Electronics Engineers Inc., 2018, pp. 52–55,
http://dx.doi.org/10.1109/ICSA-C.2018.00022.

[28] V.S. Rekhav, H. Muccini, A study on group decision-making in software architec-
ture, in: WICSA 2014 IEEE/IFIP, 2014, pp. 185–194, http://dx.doi.org/10.1109/
WICSA.2014.15.

[29] D. Tofan, M. Galster, I. Lytra, P. Avgeriou, U. Zdun, M.A. Fouche, R. De Boer,
F. Solms, Empirical evaluation of a process to increase consensus in group
architectural decision making, Inf. Softw. Technol. 72 (2016) 31–47, http://dx.
doi.org/10.1016/j.infsof.2015.12.002.

https://visdom-project.github.io/website
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb1
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb1
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb1
http://dx.doi.org/10.4230/DagRep.6.4.110
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://www.dagstuhl.de/16162
http://dx.doi.org/10.1145/2786805.2786848
http://doi.acm.org/10.1145/2786805.2786848
http://dx.doi.org/10.1109/ICSE.2015.146
http://dx.doi.org/10.1145/2894784.2894800
http://dx.doi.org/10.1145/2894784.2894800
http://dx.doi.org/10.1145/2894784.2894800
http://doi.acm.org/10.1145/2894784.2894800
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1016/j.jss.2017.09.025
http://www.sciencedirect.com/science/article/pii/S0164121217302121
http://www.sciencedirect.com/science/article/pii/S0164121217302121
http://www.sciencedirect.com/science/article/pii/S0164121217302121
http://dx.doi.org/10.1109/WICSA.2015.31
http://dx.doi.org/10.1109/SEAA.2014.65
http://dx.doi.org/10.1109/SEAA.2014.65
http://dx.doi.org/10.1109/SEAA.2014.65
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1007/11921998{_}8
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb12
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2009.08.032
http://www.sciencedirect.com/science/article/B6V0N-4X4GHP5-1/2/84a45c0d6dda12f7f563273ff85be120
http://www.sciencedirect.com/science/article/B6V0N-4X4GHP5-1/2/84a45c0d6dda12f7f563273ff85be120
http://www.sciencedirect.com/science/article/B6V0N-4X4GHP5-1/2/84a45c0d6dda12f7f563273ff85be120
http://dx.doi.org/10.1016/j.jss.2018.05.064
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb17
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb17
http://dx.doi.org/10.1016/j.jss.2018.08.025
http://dx.doi.org/10.1016/j.jss.2018.08.025
http://dx.doi.org/10.1016/j.jss.2018.08.025
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00128-2/sb20
http://dx.doi.org/10.1145/1632149.1632163
http://dx.doi.org/10.1145/2884781.2884833
http://dx.doi.org/10.1007/978-3-642-39031-9{_}12
http://dx.doi.org/10.1007/978-3-642-39031-9{_}12
http://dx.doi.org/10.1007/978-3-642-39031-9{_}12
http://dx.doi.org/10.1002/smr.1877
http://doi.wiley.com/10.1002/smr.1877
http://doi.wiley.com/10.1002/smr.1877
http://doi.wiley.com/10.1002/smr.1877
http://dx.doi.org/10.1109/WICSA.2015.14
http://dx.doi.org/10.1109/WICSA.2015.14
http://dx.doi.org/10.1109/WICSA.2015.14
http://dx.doi.org/10.1016/j.infsof.2013.03.009
http://dx.doi.org/10.1016/j.infsof.2013.03.009
http://dx.doi.org/10.1016/j.infsof.2013.03.009
http://dx.doi.org/10.1109/ICSA-C.2018.00022
http://dx.doi.org/10.1109/WICSA.2014.15
http://dx.doi.org/10.1109/WICSA.2014.15
http://dx.doi.org/10.1109/WICSA.2014.15
http://dx.doi.org/10.1016/j.infsof.2015.12.002
http://dx.doi.org/10.1016/j.infsof.2015.12.002
http://dx.doi.org/10.1016/j.infsof.2015.12.002

Information and Software Technology 139 (2021) 106669M. Soliman et al.
[30] C. Yang, P. Liang, P. Avgeriou, U. Eliasson, R. Heldal, P. Pelliccione, T. Bi, An
industrial case study on an architectural assumption documentation framework,
J. Syst. Softw. 134 (2017) 190–210, http://dx.doi.org/10.1016/j.jss.2017.09.007.

[31] U. van Heesch, P. Avgeriou, R. Hilliard, A documentation framework for
architecture decisions., J. Syst. Softw. 85 (4) (2012) 795–820, http://dx.doi.org/
10.1016/j.jss.2011.10.017.

[32] M. Soliman, M. Galster, A.R. Salama, M. Riebisch, Architectural knowledge
for technology decisions in developer communities: An exploratory study with
stackoverflow, in: IEEE/IFIP WICSA 2016, 2016, pp. 128–133, http://dx.doi.org/
10.1109/WICSA.2016.13.

[33] A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, N. Medvidovic, Recovering architec-
tural design decisions, in: Proceedings - 2018 IEEE 15th International Conference
on Software Architecture, ICSA 2018, Institute of Electrical and Electronics
Engineers Inc., 2018, pp. 95–104, http://dx.doi.org/10.1109/ICSA.2018.00019.

[34] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, N. Schuster, Managing
architectural decision models with dependency relations, integrity constraints,
and production rules, J. Syst. Softw. 82 (8) (2009) 1249–1267, http://dx.doi.
org/10.1016/j.jss.2009.01.039.

[35] M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, F. Matthes, Automatic
extraction of design decisions from issue management systems: A machine
learning based approach, in: Lecture Notes in Computer Science, in: (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), Springer Verlag, 2017, pp. 138–154, http://dx.doi.org/10.1007/978-3-
319-65831-5{_}10.

[36] M. Soliman, M. Galster, M. Riebisch, Developing an ontology for architecture
knowledge from developer communities, in: IEEE/IFIP ICSA 2017, 2017, pp.
89–92, http://dx.doi.org/10.1109/ICSA.2017.31.

[37] I. Lytra, H. Tran, U. Zdun, Supporting consistency between architectural design
decisions and component models through reusable architectural knowledge
transformations, in: Software Architecture - 7th European Conference, ECSA
2013, Montpellier, France, July 1-5, 2013. Proceedings, in: Lecture Notes in
Computer Science, vol.7957, Springer, 2013, pp. 224–239, http://dx.doi.org/10.
1007/978-3-642-39031-9{_}20.

[38] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, The financial
aspect of managing technical debt: A systematic literature review, in: Information
and Software Technology, Vol. 64, Elsevier, 2015, pp. 52–73, http://dx.doi.org/
10.1016/j.infsof.2015.04.001.

[39] W.A. Firestone, Alternative arguments for generalizing from data as applied
to qualitative research, Educ. Res. 22 (4) (1993) 16–23, http://dx.doi.org/
10.3102/0013189X022004016, URL: http://journals.sagepub.com/doi/10.3102/
0013189X022004016.

[40] S.E. Hove, B. Anda, Experiences from conducting semi-structured interviews
in empirical software engineering research, in: Software Metrics, 2005. 11th
IEEE International Symposium, 2005, pp. 10 pp.–23, http://dx.doi.org/10.1109/
METRICS.2005.24.

[41] A. Martini, J. Bosch, M. Chaudron, Investigating architectural technical debt
accumulation and refactoring over time: A multiple-case study, in: Information
and Software Technology, Vol. 67, Elsevier, 2015, pp. 237–253, http://dx.doi.
org/10.1016/j.infsof.2015.07.005.

[42] R. Verdecchia, P. Kruchten, P. Lago, Architectural technical debt: A grounded
theory, in: Lecture Notes in Computer Science, in: (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer
Science and Business Media Deutschland GmbH, 2020, pp. 202–219, http:
//dx.doi.org/10.1007/978-3-030-58923-3{_}14, URL: https://link.springer.com/
chapter/10.1007/978-3-030-58923-3_14.

[43] N. Rios, R.O. Spinola, M.G. De Mendonça Neto, C. Seaman, Supporting analysis
of technical debt causes and effects with cross-company probabilistic cause-
effect diagrams, in: Proceedings - 2019 IEEE/ACM International Conference on
Technical Debt, TechDebt 2019, Institute of Electrical and Electronics Engineers
Inc., 2019, pp. 3–12, http://dx.doi.org/10.1109/TechDebt.2019.00009, URL:
https://ieeexplore.ieee.org/document/8785063/.
17
[44] C. Fernandez-Sanchez, J. Garbajosa, A. Yague, A framework to aid in deci-
sion making for technical debt management, in: 2015 IEEE 7th International
Workshop on Managing Technical Debt, MTD 2015 - Proceedings, Institute of
Electrical and Electronics Engineers Inc., 2015, pp. 69–76, http://dx.doi.org/10.
1109/MTD.2015.7332628.

[45] S.S. De Toledo, A. Martini, A. Przybyszewska, D.I. Sjoberg, Architectural technical
debt in microservices: A case study in a large company, in: Proceedings - 2019
IEEE/ACM International Conference on Technical Debt, TechDebt 2019, 2019,
pp. 78–87, http://dx.doi.org/10.1109/TechDebt.2019.00026.

[46] Y. Cai, L. Xiao, R. Kazman, R. Mo, Q. Feng, Design rule spaces: A new model
for representing and analyzing software architecture, IEEE Trans. Softw. Eng. 45
(7) (2019) 657–682, http://dx.doi.org/10.1109/TSE.2018.2797899.

[47] F.A. Fontana, I. Pigazzini, R. Roveda, M. Zanoni, Automatic detection of insta-
bility architectural smells, in: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2016, pp. 433–437, http://dx.doi.org/10.
1109/ICSME.2016.33.

[48] L. Xiao, Y. Cai, R. Kazman, R. Mo, Q. Feng, Identifying and quantifying archi-
tectural debt, in: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016, pp. 488–498, http://dx.doi.org/10.1145/2884781.
2884822.

[49] Z. Li, P. Liang, P. Avgeriou, Architectural technical debt identification based on
architecture decisions and change scenarios, in: 2015 12th Working IEEE/IFIP
Conference on Software Architecture, 2015, pp. 65–74, http://dx.doi.org/10.
1109/WICSA.2015.19.

[50] A. Martini, J. Bosch, An empirically developed method to aid decisions on
architectural technical debt refactoring: Anacondebt, in: 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C), 2016,
pp. 31–40, http://dx.doi.org/10.1145/2889160.2889224.

[51] N.A. Ernst, On the role of requirements in understanding and managing technical
debt, in: 2012 3rd International Workshop on Managing Technical Debt, MTD
2012 - Proceedings, 2012, pp. 61–64, http://dx.doi.org/10.1109/MTD.2012.
6226002.

[52] V. Lenarduzzi, D. Fucci, Towards a holistic definition of requirements debt, in:
International Symposium on Empirical Software Engineering and Measurement,
Vol. 2019-Septemer, IEEE Computer Society, 2019, http://dx.doi.org/10.1109/
ESEM.2019.8870159.

[53] Z.S.H. Abad, G. Ruhe, Using real options to manage technical debt in require-
ments engineering, in: 2015 IEEE 23rd International Requirements Engineering
Conference, RE 2015 - Proceedings, Institute of Electrical and Electronics
Engineers Inc., 2015, pp. 230–235, http://dx.doi.org/10.1109/RE.2015.7320428.

[54] M. Razavian, B. Paech, A. Tang, Empirical research for software architecture
decision making: An analysis, J. Syst. Softw. 149 (2019) 360–381, http://dx.doi.
org/10.1016/j.jss.2018.12.003.

[55] A. El Malki, U. Zdun, Guiding architectural decision making on service mesh
based microservice architectures, in: Lecture Notes in Computer Science, in:
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Springer Verlag, 2019, pp. 3–19, http://dx.doi.org/10.1007/
978-3-030-29983-5{_}1.

[56] S. Malakuti, T. Goldschmidt, H. Koziolek, A catalogue of architectural decisions
for designing iIoT systems, in: Lecture Notes in Computer Science, in: (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), Springer Verlag, 2018, pp. 103–111, http://dx.doi.org/10.1007/978-3-
030-00761-4{_}7.

[57] A. Zalewski, K. Borowa, A. Ratkowski, On cognitive biases in architecture
decision making, in: Lecture Notes in Computer Science, in: (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), Springer Verlag, 2017, pp. 123–137, http://dx.doi.org/10.1007/978-3-319-
65831-5{_}9.

[58] A. Tang, F. Bex, C. Schriek, J.M.E. van der Werf, Improving software design
reasoning–a reminder card approach, J. Syst. Softw. 144 (2018) 22–40, http:
//dx.doi.org/10.1016/j.jss.2018.05.019.

http://dx.doi.org/10.1016/j.jss.2017.09.007
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://dx.doi.org/10.1109/WICSA.2016.13
http://dx.doi.org/10.1109/WICSA.2016.13
http://dx.doi.org/10.1109/WICSA.2016.13
http://dx.doi.org/10.1109/ICSA.2018.00019
http://dx.doi.org/10.1016/j.jss.2009.01.039
http://dx.doi.org/10.1016/j.jss.2009.01.039
http://dx.doi.org/10.1016/j.jss.2009.01.039
http://dx.doi.org/10.1007/978-3-319-65831-5{_}10
http://dx.doi.org/10.1007/978-3-319-65831-5{_}10
http://dx.doi.org/10.1007/978-3-319-65831-5{_}10
http://dx.doi.org/10.1109/ICSA.2017.31
http://dx.doi.org/10.1007/978-3-642-39031-9{_}20
http://dx.doi.org/10.1007/978-3-642-39031-9{_}20
http://dx.doi.org/10.1007/978-3-642-39031-9{_}20
http://dx.doi.org/10.1016/j.infsof.2015.04.001
http://dx.doi.org/10.1016/j.infsof.2015.04.001
http://dx.doi.org/10.1016/j.infsof.2015.04.001
http://dx.doi.org/10.3102/0013189X022004016
http://dx.doi.org/10.3102/0013189X022004016
http://dx.doi.org/10.3102/0013189X022004016
http://journals.sagepub.com/doi/10.3102/0013189X022004016
http://journals.sagepub.com/doi/10.3102/0013189X022004016
http://journals.sagepub.com/doi/10.3102/0013189X022004016
http://dx.doi.org/10.1109/METRICS.2005.24
http://dx.doi.org/10.1109/METRICS.2005.24
http://dx.doi.org/10.1109/METRICS.2005.24
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://dx.doi.org/10.1007/978-3-030-58923-3{_}14
http://dx.doi.org/10.1007/978-3-030-58923-3{_}14
http://dx.doi.org/10.1007/978-3-030-58923-3{_}14
https://link.springer.com/chapter/10.1007/978-3-030-58923-3_14
https://link.springer.com/chapter/10.1007/978-3-030-58923-3_14
https://link.springer.com/chapter/10.1007/978-3-030-58923-3_14
http://dx.doi.org/10.1109/TechDebt.2019.00009
https://ieeexplore.ieee.org/document/8785063/
http://dx.doi.org/10.1109/MTD.2015.7332628
http://dx.doi.org/10.1109/MTD.2015.7332628
http://dx.doi.org/10.1109/MTD.2015.7332628
http://dx.doi.org/10.1109/TechDebt.2019.00026
http://dx.doi.org/10.1109/TSE.2018.2797899
http://dx.doi.org/10.1109/ICSME.2016.33
http://dx.doi.org/10.1109/ICSME.2016.33
http://dx.doi.org/10.1109/ICSME.2016.33
http://dx.doi.org/10.1145/2884781.2884822
http://dx.doi.org/10.1145/2884781.2884822
http://dx.doi.org/10.1145/2884781.2884822
http://dx.doi.org/10.1109/WICSA.2015.19
http://dx.doi.org/10.1109/WICSA.2015.19
http://dx.doi.org/10.1109/WICSA.2015.19
http://dx.doi.org/10.1145/2889160.2889224
http://dx.doi.org/10.1109/MTD.2012.6226002
http://dx.doi.org/10.1109/MTD.2012.6226002
http://dx.doi.org/10.1109/MTD.2012.6226002
http://dx.doi.org/10.1109/ESEM.2019.8870159
http://dx.doi.org/10.1109/ESEM.2019.8870159
http://dx.doi.org/10.1109/ESEM.2019.8870159
http://dx.doi.org/10.1109/RE.2015.7320428
http://dx.doi.org/10.1016/j.jss.2018.12.003
http://dx.doi.org/10.1016/j.jss.2018.12.003
http://dx.doi.org/10.1016/j.jss.2018.12.003
http://dx.doi.org/10.1007/978-3-030-29983-5{_}1
http://dx.doi.org/10.1007/978-3-030-29983-5{_}1
http://dx.doi.org/10.1007/978-3-030-29983-5{_}1
http://dx.doi.org/10.1007/978-3-030-00761-4{_}7
http://dx.doi.org/10.1007/978-3-030-00761-4{_}7
http://dx.doi.org/10.1007/978-3-030-00761-4{_}7
http://dx.doi.org/10.1007/978-3-319-65831-5{_}9
http://dx.doi.org/10.1007/978-3-319-65831-5{_}9
http://dx.doi.org/10.1007/978-3-319-65831-5{_}9
http://dx.doi.org/10.1016/j.jss.2018.05.019
http://dx.doi.org/10.1016/j.jss.2018.05.019
http://dx.doi.org/10.1016/j.jss.2018.05.019

	Architectural design decisions that incur technical debt — An industrial case study
	Introduction
	Study design
	Research questions
	Cases and units of analysis
	Subjects from embedded software
	Subjects from enterprise applications

	Data collection
	1st step: Background knowledge
	2nd step: Individual interviews to discuss architectural design scenarios
	3rd step: Reflection on meaning

	Data analysis
	Applying grounded theory qualitative analysis
	Ensuring agreement on annotations

	RQ1 - Types of DADDs
	Existence DADDs
	Existence ADDs which incur requirements debt
	Existence ADDs which incur architectural debt

	Technology DADDs
	Executive technology DADDs
	Build-versus-reuse technology DADDs

	RQ2 - Making deliberate DADDs
	Step 1: Determine maintainable architectural solution
	Step 2: Determine debt-incurring architectural solution
	Step 3: Analyse and tentatively select an architectural solution
	Step 4: Agree and decide upon architectural design decision with stakeholders
	Agreement with software developers on DADDs
	Agreement with managers on DADDs

	Step 5: Document and plan maintainable architectural solution

	RQ3: Understanding the manifestation of inadvertent DADDs
	Root causes of inadvertent DADDs
	Root cause - Wrong assumptions
	Root cause - Shallow architectural analysis due to agile and experimental approaches
	Root cause - Lack of architectural skills
	Root cause - Lack of suitable technology alternatives
	Root cause - Software trends and sales over-claims
	Root cause - Lack of support from technology providers
	Root cause - Lack of documentation about design decision rationale
	Root cause - Not considering knowledge and skills of other software engineers regarding architectural solutions

	Triggers of inadvertent DADDs
	Trigger - Introducing unexpected architecture-significant requirements
	Trigger - Discovering technology drawbacks, which hinder fulfilling ASRs
	Trigger - Changes in development team

	Examples of inadvertent DADDs

	RQ4 - Dealing with DADDs
	Discussion
	Capturing architectural knowledge
	Implications for researchers
	Implications for practitioners

	Making DADDs
	Implications for practitioners
	Implications for researchers

	Limitations and threats to validity
	External validity
	Construct validity
	Reliability

	Related work
	Technical debt
	Evidence-based studies on technical debt
	Architectural technical debt

	Requirements debt
	Architectural design decisions

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

