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Normalization of clonal diversity 
in gene therapy studies using shape 
constrained splines
L. Del Core 1,2*, D. Cesana2, P. Gallina2, Y. N. Serina Secanechia2, L. Rudilosso2, E. Montini2, 
E. C. Wit3,4*, A. Calabria2,4* & M. A. Grzegorczyk1,4*

Viral vectors are used to insert genetic material into semirandom genomic positions of hematopoietic 
stem cells which, after reinfusion into patients, regenerate the entire hematopoietic system. 
Hematopoietic cells originating from genetically modified stem cells will harbor insertions in specific 
genomic positions called integration sites, which represent unique genetic marks of clonal identity. 
Therefore, the analysis of vector integration sites present in the genomic DNA of circulating cells 
allows to determine the number of clones in the blood ecosystem. Shannon diversity index is adopted 
to evaluate the heterogeneity of the transduced population of gene corrected cells. However, 
this measure can be affected by several technical variables such as the DNA amount used and the 
sequencing depth of the library analyzed and therefore the comparison across samples may be 
affected by these confounding factors. We developed an advanced spline-regression approach that 
leverages on confounding effects to provide a normalized entropy index. Our proposed method was 
first validated and compared with two state of the art approaches in a specifically designed in vitro 
assay. Subsequently our approach allowed to observe the expected impact of vector genotoxicity on 
entropy level decay in an in vivo model of hematopoietic stem cell gene therapy based on tumor prone 
mice.

Gamma retroviral and Lentiviral Vectors (LVs) are widely adopted in Gene Therapy (GT) thanks to their ability 
to insert therapeutic transgenes in the host cell genome of hematopoietic stem/progenitor cell (HSPC). After 
transplantation into the patient the HSPCs reconstitute the entire hematopoietic system and correct the genetic 
defect. Therefore, vector integration ensures the maintenance of gene correction during self-renewal of HSPCs as 
well as its transmission to their cell  progeny1. These vectors integrate semi-randomly within the human genome, 
and then each transduced cell harbours a vector integration in a distinct genomic position (integration site, IS) 
that can be adopted as a genetic mark to distinguish each engrafted clone. The retrieval of IS from transduced 
cells can be done by using PCR protocols that allow to specifically amplify the vector/genome junctions from 
their genomic DNA. Sequencing and mapping on the target cell reference genome allow to identify IS that can 
be univocally used for clonal identity. Therefore, the analysis of vector IS from DNA of blood cells harvested at 
specific time points after transplant from GT patients provide information on number of hundreds to thousands 
of clones present in circulation and their relative abundance. For this reason, IS studies are required for safety 
and long-term efficacy assessment in preclinical and clinical  studies2–8.

The Shannon entropy index, a well-established measure of species diversity in  ecology9, has become one of 
the most widely used measure of IS diversity in HSC-GT  applications10. This measure has been positively cor-
related to high levels of genetic modification and engraftment of genetically modified cells while low levels of 
entropy were associated to poor levels of genetic modification, or oligoclonality due to poor engraftment or even 
the appearance of highly dominant clones resulting from malignant  transformation11. Indeed, the complexity of 
a given DNA sample is computed considering both the total number of different IS obtained and their relative 
abundance. Thus, highly polyclonal samples characterized by large number of IS whose abundance is evenly 
distributed will have a higher Shannon diversity index than oligoclonal samples with a relatively smaller number 
of IS and/or characterised by the presence of highly dominant clones. However, the Shannon diversity index does 
not consider variations in sample size (amounts of DNA analyzed) or the efficiency in species retrieval (different 
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PCR protocols for IS retrieval, sequencing platforms and sequencing depth) of complex ecosystems, such as the 
population of vector integrations sites in the  genome12.

Thus, while Shannon diversity index provides an objective measure of the clonal complexity of any given IS 
sample, these confounding factors should be taken in account when the clonal complexity of different samples 
is compared. Since longitudinal studies of GT patients for IS monitoring could require the analysis of several 
samples collected under heterogeneous technical conditions, a method aimed at removing confounding effects 
in diversity index is needed. To remove confounding factors in the estimations of ecosystem diversity, several 
methods have been applied. Random subsampling without replacement, called “rarefying”13, is among the most 
popular methods for the normalization of species count data in ecology as well as for next generation sequenc-
ing (NGS) data in microbiology. Given a predefined sequence depth (total count, SD), a subsample from each 
library is generated by randomly picking reads without replacement, until the selected total number of counts 
is reached. Although rarefying has become the state-of-the-art tool for NGS data  analysis14, some limitations 
have been recognized.  Indeed15, demonstrated that rarefying is statistically inadmissible and should be avoided. 
Furthermore,  in16 it was highlighted that estimates of species diversity in sites/habitats at local scale, namely the 
α-diversity17, for rarefied microbiome count data may be strongly biased. This is mainly due to the rare species 
which may be over- (or under-) represented in the samples that have been normalized to a smaller depth by 
rarefaction. An alternative normalization to rarefying is scaling, which adjusts the size of all samples by scal-
ing their counts to the same total amount. Scaling preserves the relative frequencies of the species and keeps 
the species richness unchanged. Therefore, simple scaling does not remove the effect provided from the library 
depth neither on species richness nor on species diversity.  Beule18 introduces a novel normalization method for 
species count data called scaling with ranked subsampling (SRS) and the authors demonstrate its suitability for 
the analysis of microbial communities.

The growing number of normalization and scaling approaches highlights that a robust method has not been 
developed yet. In this work we show that all proposed methods have limitations. In particular they miss of a 
precise quantification of the effect of each confounding variable on the Shannon entropy. Furthermore, we also 
show that the rescaled Shannon entropy index obtained by either rarefying or scaling with ranked subsampling 
still suffers from the effect of the confounders. We propose a spline-regression approach aimed to explain and 
remove those effects from the diversity indexes. The effect of the confounders is measured using a B-spline term 
whose shape is restricted according to a biological-sustained hypothesis. We test our framework by analysing 
a novel in-vitro dataset properly designed to simulate the same clonality state under different combinations of 
technical conditions. We also compare our method with the previously proposed methods from the literature in 
terms of efficiency according to hypothesis testing. That is, we consider a rescaling method to be more efficient if 
there is more evidence for the corresponding rescaled measure being independent from the effect of the candidate 
confounders. Finally, our rescaling approach allowed to unmask the expected impact of vector genotoxicity on 
entropy level decay in an in vivo model of hematopoietic stem cell gene therapy based on tumor prone  mice19,20.

Next generation sequencing of clonal tracking data from gene therapy studies
There are several high-throughput systems capable to quantitatively track cell types repopulation from an indi-
vidual stem cell after a gene therapy  treatment21–23. Tracking cells by random labeling is one of the most sensi-
tive  systems24. In HSC-GT applications, haematopoietic stem cells (HSCs) are sorted from the bone marrow of 
the treated subject and uniquely labeled by the random insertion of a viral vector inside its genome. Each label, 
called clone, or integration site (IS), is defined as the genomic coordinates where the viral vector integrates. 
After transplantation, all the progeny deriving through cell differentiation inherits the original labels. During 
follow-up, the labels are collected from tissues and blood samples using Next Generation Sequencing (NGS)25–28. 
NGS is a recent approach for DNA and RNA sequencing, which consists of a complex interplay of chemistry, 
hardware, optical sensors and  software29–32. In gene therapy applications NGS does allow identifying, quantify-
ing and tracking clones arising from the same HSC ancestor. Over the past decades, clonal tracking has proven 
to be a cutting-edge analysis capable to unveil population dynamics and hierarchical relationships in vivo33–36. 
Clonal diversity, measuring how many distinct clones are collected and how they distribute, can address some 
of these aspects. Loosely speaking, the less distinct clones the lower the clonal diversity and in turn the less the 
system is being repopulated in that particular cell compartment. Furthermore, under the same number of dif-
ferent clones collected, the more their distribution is far from the uniform, the lower the clonal diversity and the 
more the dominance of few clones, thus suggesting the possible occurrence of an adverse event. The Shannon 
entropy  index37, a well-established measure of population diversity in ecology  studies9, nowadays is hugely used 
as a proxy of clonal diversity in gene therapy  applications10.  Following37, the Shannon entropy index is defined as

where X has possible realisations x1, . . . , xn which occur with probabilities P(x1), . . . ,P(xn) . Therefore, Shan-
non entropy is a special case (up to a change in sign and a multiplicative factor 1/n) of the Kullback-Leibler 
 divergence38

when the reference Q is the uniform distribution on x1, . . . , xn.

(1)h(X) = −

n∑

i=1

P(xi) logP(xi)

(2)DKL(P�Q) =

n∑

i=1

P(xi) log
P(xi)

Q(xi)
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Potential limitations of entropy-based measures in gene therapy applications are related to the heterogene-
ous nature of NGS  data39–43. Indeed due to sampling and technical conditions, such as the amount of the host 
DNA being sequenced and the PCR being adopted, the number of reads obtained per library can span orders 
of  magnitudes12 which may affect the cellular counts and in turn their Shannon entropy. These differences in 
magnitude of library size/depth mainly depends on unequal pooling of PCR products before sequencing. In order 
to pool PCR products from individual samples in equimolar  amounts44, DNA concentrations are commonly 
determined by ultraviolet-visible (UV) or fluorescence spectroscopy, real-time PCR or digital  PCR45. Although 
these methods are very  effective46, an identical library size across samples is difficult to achieve. Nonetheless, 
if we define the multiplicity of infection (MOI) as the average ratio between the number of virus particles and 
the number of target cells present in a defined space, then the actual number of viruses that will integrate on 
any given cell can be described by a stochastic process, such as some cells may absorb more than one infectious 
agent while others may not absorb any of them. Typically, the probability P(n|m) that a cell will absorb n virus 
particles when inoculated with an MOI of m can be modelled as a Poisson variable with rate m,

Therefore, by definition, it is possible to increase the expected number of vector copies per cell (VCN) by properly 
tuning the MOI in the design of the experiment/treatment. As a result, the VCN may affect the number of IS 
collected and in turn the Shannon entropy.

In Fig. 1 we show the behaviour of the Shannon entropy index as a function of the DNA amount, the VCN 
and the sequencing depth (SD) in the case of an in-vitro assay described in “In-vitro assay” Section. 

Figure 1 suggests that the Shannon entropy index strongly depends on the quantitative confounders, until it 
reaches a steady-state. These features motivate us to use shape constrained splines (SCS) in order to model the 
effect of the candidate confounders on the entropy measurements.

Methods: shape constrained splines
Definition of the model. Shape-constrained splines (SCS) for fitting, smoothing and interpolation 
have been explored and proposed in various works, such  as47–52. In this work we follow the cone-projection 
 approach51,52. We model the logarithmic observed entropies hi’s, for i = 1, . . . , n , as a function of a SCS-bases 
C
k
i  for every potential confounder k = 1, . . . ,K plus a term Fji for any other additional feature of interest 

j = 1, . . . , J , so that

where β0 is the intercept, Ck
i  is the basis of a quadratic spline for the k-th confounder used for observation i for 

which we assume a saturation state at the right boundary knot and a monotone increasing concave shape. For 
our applications, the boundary knots of a spline basis associated to a variable x are defined as the minimal and 
maximal value of x. The term Fji corresponds to the i-th observation of a basis describing the j-th additional 
component, such as the time or the cell type. The corresponding parameter vectors are βk

c and β j
f  respectively. 

Finally we assume for the noise variable:

Therefore, the model can be compactly written as

P(n|m) =
mne−m

n!

(3)log(hi) = β0 +

K∑

k=1

C
k
i β

k
c +

J∑

j=1

F
j
iβ

j
f + εi i = 1, . . . , n

εi
iid
∼ N(0, σ 2) i = 1, . . . , n
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Figure 1.  From left to right: Scatter plot of the Shannon entropy index against the DNA amount, the vector 
copy number (VCN) and the sequencing depth (SD) for all the samples included in the in-vitro assay. Only a 
single amount of DNA has been taken for every sample. The total amount of integrations found in a sample, 
namely the total number of sample’s sequencing reads, has been used as proxy for the sample’s sequencing depth 
(SD).
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where the number of features K and J depend on the project and/or the specific research questions that must be 
addressed. Quadratic splines are characterized by the discontinuity of the second-order derivative, which makes 
their treatments harder than cubic splines. This applies already to unconstrained spline fitting and interpolation. 
In particular, the definition of quadratic penalised/smoothing splines is not straightforward. Therefore, in general, 
cubic splines should be preferred over quadratic splines. Despite this, in our in-vitro assay (VA) application only 
three distinct values of both the DNA amount and the vector copy number (VCN) are available. Therefore, in 
order to get a good trade-off between bias and variance as well as in order to obtain a full-rank design matrix, we 
chose quadratic splines with one interior knot for both the DNA amount and the vector copy number (VCN), and 
a quadratic spline with two interior knots for the sequencing depth. In Sect. S.4.1 of the supplementary material 
we compare the fits of quadratic and cubic splines (cf. Fig. S.1). For consistency, we also use quadratic splines 
in the mice study on genotoxicity, where our goal is to evaluate the  impact of the vector design on the entropy 
decay; cf. Section “Viral vector safety in a mouse genotoxicity study”.

Shape-constrained splines (SCS) normalization of Shannon entropy. For simplicity, we set K = 1 
and J = 0 in (4), namely we consider only one confounder and no additional factors of interest. The general case 
can be obtained straightforwardly. Here we  follow53 and we represent an (r + 1)-th order B-spline as

where, for j = 1, . . . , q , the bases are iteratively computed as

for a given sequence of evenly spaced knots ξ1 ≤ ξ2 ≤ · · · ≤ ξq+r+2 , where q is the number of basis functions 
and βj ’s are the corresponding coefficients. The first order derivative of (5) can be written as

where δ is the distance between two adjacent knots. Since all B-spline basis functions are nonnegative by defini-
tion, a sufficient condition for m′(x) ≥ 0 , and in turn for the monotone-increasing shape of m(x), is

Furthermore, the second order derivative of Eq. (5) can be written as

Then a sufficient condition for m′′(x) ≤ 0 and in turn for the concavity of the spline in (5) is

The monotonicity and concavity constraints can be written respectively as

where

If both monotonicity and concavity constraints must be satisfied, the first q− 2 constraints/rows of V  are 
redundant, as stated by the following Lemma.

(4)
log
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(5)m(x) =

q
∑

j=1

βjB
r
j (x)

(6)Brj (x) =
x − kj

kj+r+1 − kj
Br−1
j (x)+

kj+r+2 − x

kj+r+2 − kj+1
Br−1
j+1 (x),

(7)B−1
j (x) =

{
1, kj ≤ x ≤ kj+1

0, otherwise

(8)m′(x) =
1

δ

q
∑

j=2

Br−1
j (x)(βj − βj−1)

(9)βj − βj−1 ≥ 0 j = 2, . . . , q

(10)m′′(x) =
1

δ2

q
∑

j=3

Br−2
j (x)(βj − 2βj−1 + βj−2)

(11)βj − 2βj−1 + βj−2 ≤ 0 j = 3, . . . , q

(12)Vβ ≥ 0 Wβ ≥ 0 β =
[
β1 · · ·βq

]′

(13)V =








−1 1
− 1 1

. . .

− 1 1







∈ R

(q−1)×q; W =








−1 2 − 1
− 1 2 − 1

. . .
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Lemma 1 If βj − 2βj−1 + βj−2 ≤ 0 ∀j = 3, . . . , q and βq − βq−1 ≥ 0 , then βj − βj−1 ≥ 0 ∀j = 2, . . . , q− 1.

Proof j = q − 1 : βq − 2βq−1 + βq−2 ≤ 0 and −βq + βq−1 ≤ 0 hold, which together imply βq−1 − βq−2 ≥ 0 . 

j = k + 1 ⇒ j = k : βk+1 − 2βk + βk−1 ≤ 0 and −βk+1 + βk ≤ 0 hold, which together imply 

βk − βk−1 ≥ 0 .   �

Therefore by Lemma 1, if both constraints V  and W are applied, the whole matrix of constraints reduces to

Furthermore, we need to consider that sampling might be characterised by a sequencing saturation level due 
to technical limitations. In this case, the saturation level can be included by considering a steady-state/stationary-
point at the right boundary knot ξq+r+2 , namely by setting

where ∂1B is the first derivative of the spline basis

Our R code implementation allows to switch between the presence and absence of the saturation level by the 
additional logical input parameter SATU RAT ION. By default this parameter is set to TRUE, but it can be switched 
to FALSE if the user prefers not to implement a saturation level (or a steady state) w.r.t. a particular predictor 
variable. In our case of quadratic degree ( r = 1 ), the constraint (15) reduces to

which can be written compactly using the following affine transformation

where nX is the number of rows of X.

Estimation procedure. Given n observations (xi , yi) of one predictor x and a response y, the restricted least 
squares estimate β̂RLS of β subject to the constraints (14) and (16) can be obtained as

where

Therefore, using (17)–(18) we can directly include the linear equality constraint

inside the objective function, and the optimisation problem (19) reduces to

(14)Z =









− 1 1
−1 2 − 1

− 1 2 − 1

. . .

− 1 2 − 1









(15)∂1B(ξq+r+2)β = 0

B =
[
Br1 · · · Brq

]

(16)βq = −
∂B[ξq+r+2, q− 1]

∂B[ξq+r+2, q]
βq−1

(17)A : RnX×q → R
nX×(q−1),X �→ XA

(18)A =
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∈ R
q×(q−1);

(19)β̂RLS = argmin
β∈S

(y − Bβ)′(y − Bβ)

S =
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β ∈ R
q;β ≥ 0;Zβ ≥ 0;βq = −
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βq−1

}
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subject to only linear inequality constraints, where

Since f is a quadratic function, we solve (20) using quadratic optimization. To this end we use the function 
solve.QP() from the R package quadprog. Once the restricted least squares estimate β̂

∗

RLS is obtained, we 
follow the cone projection  approach52 and we define a point-wise confidence interval (CI) with 1− α/2 cover-
age for b′pAβ̂

∗

RLS as

where bp = B(xp) is the B-spline basis B(x) evaluated at the prediction point xp and the variance is estimated as

where d is the dimension of the cone’s face where the projection of y onto

lands on. The dimension d of F  can be computed using the Hinge algorithm implemented in the R package 
coneproj54. The matrix Ĝ is computed as the following weighted average

with the (q− 1)× (q− 1) matrix Ĝ(I) defined as

where XI are the columns of BA indexed by I  . Each weight p̂I represents the estimated probability that the 
projection of y lands on the cone’s face corresponding to I  . The probabilities p̂I are obtained by simulating many 
normal random vectors with mean vector ŷ = BAβ̂

∗

RLS and covariance matrix σ̂ 2
RLSIn , and recording the resulting 

sets I ’s, along with their frequencies. In case additional unconstrained components are present, the definition of 
(22) can be  extended52. Furthermore, if we need to select from a set of candidate models featuring different covari-
ates, we use information  criteria55. For our analyses we use the corrected Akaike Information Criterion (AICc)

for model selection, where L(β|y) is the likelihood of model M and p the number of parameters of M, which is 
equal to d in our set-up. In case some models have similar AICc values, we follow Burnham et al.55 and we aver-
age across all ones using the frequentist model average estimator

where β̂ l is the parameter vector estimated under the l-th candidate model, and �l the corresponding weight 
which can be computed as

where BICj is the Bayesian Information Criterion (BIC) associated with the j-th model. In case of model averag-
ing, the BIC is preferred over AIC/AICc, since it provides a better estimation of the marginal  likelihood55. From 
a Bayesian perspective, {�j}j can be interpreted as an estimator of the posterior probabilities

of the candidate models under a uniform prior {p(Mj)}j , where

(20)β̂
∗

RLS = argmin
β∗∈S∗







−2β∗BAy + β∗(BA)′BAβ∗
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f







β∗ = (β1, . . . ,βq−1)
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{
β∗ ≥ 0;ZAβ∗ ≥ 0

}
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′
pAβ̂

∗
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√

σ̂ 2
RLS(b

′
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′Ĝb
′
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Ĝ
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is the marginal  likelihood55.

Ethics oversight. All procedures were performed according to protocols approved by the Animal Care and 
Use Committee of the San Raffaele Institute (IACUC 619) and communicated to the Ministry of Health and local 
authorities according to Italian law. All experiments were performed in accordance with relevant guidelines and 
regulations. The reporting in the manuscript follows the recommendations in the ARRIVE guidelines.

Applications of SCS in NGS data
In-vitro assay. To evaluate the reliability and sensitivity of the SCS rescaling method, we generated an IS 
dataset originating from an EBV-transformed B cell line transduced with a LV at Multiplicity of Infection (MOI) 
of 0.1, 1 and 10 to obtain DNA samples with increasing levels of polyclonality. Therefore, by increasing the MOI 
at each transduction we expect an increase in the vector copy number (VCN). As expected, the different vector 
doses resulted in different VCNs (see Supplementary Table S.3). Different amounts of DNA (5, 20 and 100 ng) 
were used for IS retrieval. LV ISs were retrieved by Sonication Linker-mediated (SLiM) - PCR (see Sect. S.1 of the 
supplementary material). Briefly, DNA material was sheared by sonication, subjected to end-repair and adenyla-
tion and then split in 3 technical replicates. Each replicate was ligated to a different barcoded linker cassette and 
subjected to two rounds of PCR allowing the amplification of the cellular genomic portion close to the vector 
IS. The different barcoded PCR products from each sample were assembled in libraries and sequenced by using 
Illumina platform. After sequencing, reads were processed by a dedicated bioinformatic  pipeline56 to identify 
for each PCR/sample the different vector integration sites. For each IS the clonal abundance was determined by 
the R package SonicLength57 using the corresponding fragment length distribution. A varying number of 
ISs, ranging from 22 to 40575, was obtained from each sample (see Supplementary Table S.1) and, as expected, 
the number of IS retrieved from each sample increased proportionally to the vector dose (see Supplementary 
Table S.2). The total number of sample’s sequencing reads was used as proxy for the sample’s sequencing depth 
(SD). The magnitude of VCN, DNA amount and SD affects the clonality so that the samples are incomparable. 
Indeed Fig. 1 clearly shows a positive trend between the Shannon entropy index and the potential confounders. 
With the VA we are able to really understand the impact of the variables (confounding factors) to the entropy 
index, thus allowing a robust integrated analysis. We used the VA as “ground-truth” to compare our SCS-resca-
ling method with the competitor approaches (RAR  and SRS). In our SCS method we took in consideration the 
DNA amount, VCN and SD as potential confounders.

In this case the number of candidate confounders is K = 3 with no additional factors of interest ( J = 0 ) and, 
according to the general formulation of Eq. (4), the model was defined as

where we used two equidistant interior knots and the range of values as boundary knots for every SCS term in C . 
We report the corresponding fitted surface in Fig. 2 . In Fig. 2 we also show the rescaled values, i.e. the residuals 
that remain after having adjusted for the confounders. That is, according to the model definition in Eq. (4), we 
used the residuals

as the rescaled values, where β̂c is the vector of the fitted parameters.
We compared our method with the two previously proposed in literature, such as the rarefaction (RAR )13 and 

the ranked subsampling (SRS)18 approaches. We assessed the efficiency of the rescaling methods by correlation 
p-values for the two-sided test problem:

where ρ(X1,X2) is the Spearman’s rank correlation between two random vectors X1 and X2 . We preferred Spear-
man’s rank correlation over Pearson correlation since we assumed that the relationships are monotonic and 
possibly non-linear. Low p-values give statistical evidence for dependencies and thus for unsolved confound-
ing effects. For the comparison, the total amount of reads of the sample with the lowest SD has been chosen as 
rarefaction level with 1000 replications for both the standard rarefaction (RAR ) and its ranked version (SRS). 
We report the results in Fig. 3. These pictures show that our SCS method outperformed both RAR  and SRS 
methods in terms of correlation test p-values between the rescaled entropy and every potential confounder. 
Indeed, for all three confounders our new approach yields high p-values (0.37, 0.15 and 0.31 for DNA, VCN and 
SD respectively), so that we have no indication to reject the null hypothesis that the rescaled entropies and the 
confounder values are not correlated. For each of the two competing approaches we got 2-3 very low p-values 
( ≪ 0.01 ), so that statistically significant amounts of correlations are left.

Subsequently, we also checked whether our SCS-rescaling method unveils comparable clonal levels among the 
samples. A proper rescaling method should return similar clonal diversities independently from the confounders. 
Indeed, Figs. 2 and 4 show that our SCS-rescaling method drastically reduced the variability of the observed 

(27)p(y|Mj) =

∫

�j

p(y|Mj;�j)p(�j|Mj)d�j

(28)
log(h) = 1β0 +

[
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]

︸ ︷︷ ︸
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[
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βsd

]
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+ε

(29)h
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(
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)

(30)H0 : ρ(X1,X2) = 0 vs H1 : ρ(X1,X2) �= 0
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entropies due to the effect of the confounders and, in turn, that the clonal level of the VA samples, measured by 
the SCS-rescaled Shannon entropy index, is approximately the same.

It can be seen from Fig. 4 that the competitor methods RAR  and SRS are also able to reduce the variability 
of the observed entropies. However, unlike our new SCS-rescaling method, the competing methods did not 
remove the effect of the confounders, as confirmed by the p-values of Spearman’s rank correlation tests provided 
in Fig. 3. While the SCS-rescaling method made all (rank) correlations insignificant, the competing methods 
RAR  and SRS left significant rank correlations (=dependencies) between confounders and the entropy. For 
more explanations and illustrations we refer to Sect. S.4.2 and Fig. S.2 of the supplementary material.

Viral vector safety in a mouse genotoxicity study. We analysed the IS data collected from an estab-
lished hematopoietic stem cell gene therapy model previously used to demonstrate how the genotoxic impact 
of integrating vectors is strongly modulated by their  designs19,20. In this experimental setup Cdkn2a−/− tumor 
prone Lin− cells were ex-vivo transduced with two different LVs expressing GFP: the highly genotoxic LV vector, 
LV.SF.LTR (hereinafter referred to as LTR) and the non-genotoxic SIN.LV.PGK.GFP.PRE (hereinafter referred 
to as PGK). Transductions protocol and culture conditions were reported  in19,20 and further details can be found 
in Sect. S.3 of the supplementary material. Twenty-four hours after transduction, vector- and mock- transduced 
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Figure 2.  Observed (left) and SCS-rescaled (right) entropies (dot symbols) as a function of the confounders, 
together with the corresponding shape constrained (bivariate) splines (green surface). Top panels show the slices 
for the DNA and the VCN. Bottom panels show the slices for the SD and the VCN.
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Figure 3.  Each panel shows the absolute value of the Spearman’s rank ρ correlation coefficient 
ρ(h,confounder) (y-axis) between a confounder and the observed or rescaled Shannon entropies (different 
bars). For every correlation coefficient, we performed the two-sided Spearman’s rank correlation test of Eq. (30) 
for checking the hypotheses H0 : ρ(h,confounder) = 0 vs H1 : ρ(h,confounder) �= 0 . The number of 
leading zeros after the decimal point of the p-values are reported on top of each bar as white stars.
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cells (5-7.5× 105 cells/mouse) were transplanted into lethally irradiated wild-type mice by tail vein injection 
(Mock-control, N=19; LV.SF.LTR, N=24 and SINLV.PGK, N=23). Six days after transduction the percentages of 
GFP+ cells were assessed by Fluorescence Activated Cell Sorting (FACS) analysis and ranged from 90 to 95% 
for the all vector and conditions. Engraftment level of transduced cells was assessed by measuring the percent-
age of GFP-expressing cells in the peripheral blood at 8 weeks post transplantation and were 80.8± 2.9 % and 
46.2± 4.8 % in the group of mice transplanted with PGK and LTR vector respectively. As expected, mice trans-
planted with Cdkn2a−/− Lin− cells transduced with the the LTR vector developed tumors and died significantly 
earlier compared to mock-treated mice ( p < 0.0001 , Log-rank Mantel-Cox test, median survival time: 282 and 
149.5 days for mock-control and LTR- transduced group respectively). Mice transplanted with PGK-transduced 
cells did not show any acceleration of tumor onset compared to the mock-control group (median survival time: 
289 days). All data are in agreement with the one previously  published19,20. For the retrieval of vector insertion 
sites (ISs), peripheral blood was collected on a monthly basis from transplanted animals receiving transduced 
cells. Lymphoid B and T cells as well as myeloid cells were isolated by fluorescence activated cell sorting. To 
recover enough DNA material, equal amounts of blood from two or three mice belonging to the same experi-
mental group were pooled before the sorting procedure. The composition of pools was maintained constant 
during the whole experiment, so that each pool is composed by the same mice over time. ISs were then retrieved 
by SLiM-PCR58 at different time points from sorted T (CD3+) and B (CD19+) lymphocytes, from myeloid cells 
(CD11b+) and unsorted blood cells (total MNC). From the DNA purified from all the different sorted samples, 
we also measured the VCN by ddPCR. Overall, a higher amount of ISs were retrieved from the group of mice 
transplanted with Lin− cells transduced with PGK, reflecting the higher level of VCN observed in PGK versus 
LTR group of transplanted animals. Few statistics on the number of IS collected in each treatment/condition, 
along with the corresponding VCN, are reported in Table 1. The Shannon entropy index was then computed 
from each IS sample and the application of a simple spline without shape constraints and without considering 
any technical confounder yielded the results shown in Fig. 5.

From Fig. 5 we cannot see a clear separation between the entropy profiles of the two vectors PGK and LTR. 
The prediction intervals overlap so that the differences in the profiles do not appear to be statistically significant. 
Henceforth, we cannot draw the conclusion that PGK is safer than LTR. However, the high variability of DNA 
amount (in nanograms), VCN, and the SD used for IS retrieval has a clear impact on the entropy measurements, 
as suggested by Fig. 6.

Furthermore, since some mice died faster, the size of each pool (PS) decreased over time, leading to varia-
tion in the cell counts and in turn in the Shannon diversity index calculations (see Fig. 6). Few statistics of these 
quantites are reported in Table 1 separately for each vector treatment.

This suggests that initial results of Fig. 6 might be biased by the presence of these confounding factors. The 
heterogeneity of these factors may affect the estimate of the cell counts and in turn the corresponding Shannon 
entropies. We therefore applied our shape-constrained spline approach of “Methods: shape constrained splines”, 
including the DNA amount, VCN, SD and PS as potential confounders.

We proceeded as follows: We used the general formulation of Eq. (4), including a shape constrained spline 
(SCS) term with two interior knots for every confounder, plus a spline term w.r.t. the time decay for every com-
bination of cell lineage/marker (L) and viral vector (V) as additional factors of interest. In this way we described 
the entropy decays separately for each combination of cell marker and treatment (viral vector) while removing 
the bias provided by the potential confounders. We also set the vector specific intercept V to zero to make sure all 
the individuals have the same clonal diversity before the treatments. Therefore, following the general formulation 
of Eq. (4), the model it has been explicitly defined as

where C binds all the confounder’s SCS bases and βc is the vector with all the corresponding parameters stacked 
together. Alike, F is a block-diagonal matrix where each block Slt is defined as

(31)
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rescaled Shannon entropies using the SCS, RAR and SRS approaches.
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Figure 5.  Observed Shannon entropies (y-axis) over time (x-axis) in each treatment (different colors), along 
with a simple spline without any shape constraints and confounder adjustments for every combination of cell 
marker and viral vector. Quadratic splines are fitted using the standard lm() and bs() R functions.
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Figure 6.  From top left to bottom right: Scatter plot of the raw (unscaled) Shannon entropy index computed 
from the entire dataset ( n = 242 IS samples) versus the DNA amount, the vector copy number(VCN), the pool 
size (PS) and the sequencing depth (SD).



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3836  | https://doi.org/10.1038/s41598-022-05837-0

www.nature.com/scientificreports/

and each sub-block Sl,vt  , corresponding to the l-th cell lineage and the viral vector v, is the basis of a monotone 
decreasing quadratic spline w.r.t. the time t for which we assume a steady-state to the left of the second right 
boundary knot. Indeed, each mouse pool started with 2-7 mice, which then successively died, until no mouse 
was left, so that no measurements could be taken anymore and therefore we do not expect any further change in 
the entropy thereafter. For this purpose we use again the affine transformation defined in Eqs. (17)–(18). Finally, 
we refer to β f  as the vector with all the corresponding parameters stacked together. Therefore in this case the 
number of confounders is K = 4 and the number of additional factors of interest is J = 8 , namely a spline basis 
for the time-decay for every combination of the two treatments and the four cell lineages.

In order to identify the most important confounders among the candidates, we have fitted our model for each 
of the 24 − 1 = 15 possible confounder subsets. Each candidate model included always F as fixed term and fea-
tured at least one SCS term in C for the confounders. Then we averaged across the most likely models according 
to the frequentist criterion defined in Eqs. (24)–(25) and we reported in Fig. 7 the posterior distribution, along 
with the marginal inclusion probabilities of the four individual confounders.

Results from model averaging suggest that the posterior distribution is mainly dominated by three models 
namely: PS + SD (4th model), VCN + SD (6th model), and SD (8th model). The remaining 12 models get 
substantially lower posterior probabilities and thus have only negligible effects on the model averaging estimator. 
Therefore, after computing the frequentist model averaging estimator

of Eq. (24), we used the residuals

corresponding to the confounder terms as the rescaled values. Rescaled entropies are shown in Fig. 8 together 
with the lineage×vector-specific spline decays with a confidence interval of 0.95 coverage.

Thanks to the SCS-rescaling approach, a significant difference in the entropy decay for MNC, T-cells (CD3+) 
and Myeloid cells (CD11b) was observed depending on the genotoxicity level of the vector adopted. Whereas in 
the B-cell compartment no major differences in the entropy decay under the two vector treatments were observed. 
Indeed, consistently with the previous  results19,20, the B-cell compartment is less affected by the genotoxicity of 
the LTR vector. In Sect. S.4.2 of the supplementary material we show that the RAR and the SRS approaches are 
less efficient than the proposed SCS approach, cf. Figs. S.5 and S.6 of the supplementary material.

Discussion
We have shown that the Shannon entropy index, a widely used measure of genetic variability, is strongly affected 
by the variability of technical factors. We have introduced a shape-constrained splines (SCS) approach aimed 
to quantitatively measure and remove the effect of confounders from the target of interest. In particular we 
have shown that our approach can remove confounding effects from the Shannon entropy index. We also have 
shown that our SCS approach outperforms all the state of the art rarefaction approaches like the RAR 13 and its 
ranked-subsampling  version18. That is, using a correlation test, we have found statistical evidence that the SCS-
rescaled diversity measure does not significantly depend on the effect of the confounders anymore. Furthermore, 
our method is useful for genetic applications, as it provides an unbiased and more affordable measure of clonal 
diversity, and in turn it avoids to draw misleading results. As an example, the entropy decay of treatment-specific 
longitudinal studies may be erroneously interpreted if we do not take into account that the changes in the entropy 
increments may depend more on the confounders than on the biological treatments. Our method allows to 
discriminate between the two effects and to remove the one that comes from the confounders.

Since our approach is spline-regression based, its main limitation could be related to the available sample size. 
This is a potential problem when the number n of libraries is too low to define a spline basis. For the same reason 
the degree of the splines and the number of its knots should be chosen carefully. In particular, for the case of only 
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Table 1.  Mice study: Quartiles and range of the DNA amount, VCN, PS, SD and nIS for the n = 242 samples 
and separately for PGK (left) and LTR (right) treatment conditions.

DNA VCN PS SD nIS DNA DNA PS PS nIS

PGK LTR

Min. 8.64 1.31 1.000 60 35.0 Min. 8.64 0.240 1.000 189 35.0

1st Qu. 106.56 10.90 2.000 1969 433.0 1st Qu. 94.50 5.320 1.000 1130 217.0

Median 200.00 13.59 2.000 5881 720.0 Median 200.00 6.300 2.000 2973 383.0

Mean 181.07 12.80 1.964 9351 989.3 Mean 222.88 6.219 2.104 4695 731.9

3rd Qu. 200.25 13.90 2.000 14055 1220.0 3rd Qu. 222.50 7.800 3.000 7390 873.0

Max. 973.00 27.00 3.000 49853 4324.0 Max. 973.00 10.500 7.000 15375 3213.0
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one library/sample it would be possible to rescale its diversity only using the parameters inferred from an external 
controlled environment, like the VA explored in Sect. 4.1, with a sufficient library size n. This is the main price 
we pay if we switch from a rarefaction-based rescaling approach to a spline-regression based one. Our model 
averaging approach allows also to rank the impact of the confounders according to their approximated posterior 
probabilities. We perform model averaging by means of the Bayesian Information Criterion which allows us to 
get an estimate of the marginal likelihood of each candidate model, and in turn, of the corresponding marginal 
confounder inclusion posterior probabilities. One possible methodological extension of this framework could 
be the implementation of a more precise method to estimate the marginal likelihood. This could, for example, 
either be done by Laplace Integration or by Bayesian thermodynamic integration.

Data availability
The data that support the findings of this study are openly available in the GitHub repository SHARES at https:// 
github. com/ calab rialab/ SHARES.
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Figure 7.  Approximated posterior distribution distribution (left) of the 15 candidate models according to the 
frequentist model averaging method of Eqs. (24)–(25), and the marginal posterior probabilities of the 4 potential 
confounders (right).
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Code availability
The R code used to produce all the analyses of this work is openly available at the GitHub repository https:// 
github. com/ delco re- luca/ SCS.
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