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On Stochastic ISS of Time-Varying Switched Systems with Generic
Lévy Switching Signals

Sandesh Hiremath† Saeed Ahmed†

Abstract— Switched systems in which switching among sub-
systems occurs at random time instants find numerous applica-
tions in engineering. Stability analysis of such systems, however,
is quite challenging. This paper investigates the stochastic input-
to-state stability of this class of switched systems. The random
switching instants are modeled by a non-decreasing, positive,
and real-valued Lévy process, which, at every time instant,
selects the active subsystem from a family of deterministic
systems. No assumption on the stability of subsystems is
presumed; they can be stable or unstable. Stochastic properties
of the switching signal are coupled with a family of Lyapunov-
like functions to obtain a sufficient condition for stochastic
input-to-state stability.

Index Terms— Stochastic input-to-state stability, randomly
switched systems, Lévy switching signal

I. INTRODUCTION

Randomly switched systems comprise a family of deter-
ministic subsystems and a switching signal modeled as a
stochastic process. These systems can be considered piece-
wise deterministic stochastic systems because deterministic
differential equations govern the dynamics between two
consecutive switching instants. These systems emerge in
many domains such as economic systems, communication
and biological systems affected by random delays, modeling
of randomly varying structures, and component failures [2].
The general framework and application of randomly switched
systems are provided in [2] and [20].

Stability analysis of randomly switched systems is chal-
lenging due to their stochastic and hybrid nature. Neverthe-
less, a few notions of stability for these systems have been
investigated in the literature. Almost sure global asymptotic
stability (GAS) for randomly switched systems with stable
subsystems is discussed in [2]. Motivated by the fact that
component failures or abrupt disturbance may destabilize
some subsystems, GAS for randomly switched systems com-
prising both stable and unstable subsystems is studied in [20].

In practice, dynamical systems should be minimally sen-
sitive to external perturbations. The notion of input-to-state
stability (ISS), introduced in [15], is a useful tool to char-
acterize a system’s tolerance to such perturbations. Initially
developed for the analysis of continuous-time systems, ISS
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was later adapted to switched systems in [19]. However,
the ISS framework developed therein remains inconclusive
for randomly switched systems because it fails to consider
information related to individual trajectories. Thus, it cannot
support the ISS of every sample path. Motivated by this, it
seems inevitable to introduce a stochastic framework of ISS
and use tools from stochastic theory to establish correspond-
ing stability properties for randomly switched systems.

The notion of a stochastic version of ISS traces back to
the introduction of γ-ISS in [17], where ISS with respect
to a deterministic perturbation is investigated, under the
effect of a secondary stochastic perturbation of Wiener type.
Another useful stochastic extension of ISS is the noise-to-
state stability (NSS) provided in [5], where the incremental
covariance of a stochastic noise is considered a perturbation.
The most natural adaptation of an ISS estimate to the
stochastic case referred to as stochastic input-to-state stabil-
ity (SISS) is proposed in [16]. This notion is consistent with
γ-ISS and generalizes NSS. SISS has not been investigated
for randomly switched systems so far. Our paper attempts
to fill this gap in the spirit of the work [16]. A preliminary
step in this direction is taken in [3] by introducing ISS in
L1 estimate at switching instants for randomly switched
systems. However, this notion is quite restrictive and fails
to conclude SISS; see [3, Section C].

In this paper, we provide a sufficient SISS condition
for switched systems in which the switching among the
subsystems occurs at random time instants. We model the
random switching instants via a non-decreasing, positive,
and real-valued Lévy process which, at each time instant,
selects the active subsystem from a family of deterministic
systems. We allow the subsystems to be stable or unstable.
To establish a sufficient SISS condition, we capture, via
a rate function, the influence of the Lévy process on the
dynamics of the deterministic subsystems given by a family
of Lyapunov-like functions and employ a pathwise analysis,
eventually leading to a condition on the semigroup operator
via Lévy symbol.

Generally, a Markov chain is employed to model the
switching signal in piecewise deterministic stochastic sys-
tems [7], [9], [12], under the assumption that the parameters
of the Markov chain are completely known. The stability
analysis of such systems employs a martingale that relies
on an infinitesimal (or extended) generator. However, this
method is not easy to apply when there is little informa-
tion about transition probabilities [2]. Moreover, it is not
easy to get exact information about transition probabilities
because of measurement inaccuracies and intrinsic random



property [10]. Therefore, to relax this assumption, a Poisson
process is introduced in [10], which only requires the infor-
mation of the dwell time of every subsystem. Compared to
Markovian switching systems, there are relatively few results
on the stability of Poissonian switching systems [4], [6], [8],
let alone Lévy switching systems. Motivated by this, we
introduce Lévy switching systems, which are generic than
the Poissonian switching systems and are not restrictive as
Markovian switching systems. To the best of our knowledge,
Lévy switching systems have not been studied before.

The motivation for studying switched systems with Lévy
switching signals also comes from their flexibility in mod-
eling various biological systems such as complex chemical
reaction networks of a cell. In such networks, Lévy process-
induced genetic toggle and genetic switches happen when a
certain gene is expressed. This gene expression then results
in the transcription of a relevant mRNA that serves as a
template for producing certain proteins. The latter being the
functional units of a cell, consequently, triggers different
chemical pathways to become active. The switching dynam-
ics of such complex reaction networks of a cell can be
modeled using a Lev́y process. On the other hand, since
a Poisson process is a particular case of the Lévy process,
our result covers switched systems with Poisson switching
that serve as suitable models for dynamic clinical trials [6]
and multi-mode multi-dimensional systems with Poissonian
sequencing [18].

It is also worth emphasizing that some notable results for
SISS of stochastic switched systems have been proposed in
[11], [21], and [22]. However, two substantial differences
exist between these results and the present paper. The first
one is the difference in the model. The stochastic switched
systems in [11], [21], and [22] are driven by Brownian
motion and do not consider the random nature of switching
instants. In the present paper, the subsystems are determin-
istic, and the stochastic effects arise from the randomness of
the switching instants. The second one is the difference in the
method. To conclude SISS, stochastic analysis methods based
on Itô formula have been proposed in [11], [21], and [22]. In
the present paper, we first identify the stability characteristics
of the deterministic subsystems via multiple Lyapunov-like
functions and then couple them with the properties of the
Lévy switching signal to conclude SISS.

Contributions of this study: We provide SISS of randomly
switched systems. To the best of our knowledge, SISS for
this class of switched systems has not been studied before.
We model the switching signals as a generic Lévy pro-
cess. Therefore, our result does not require exact transition
probability information between subsystems compared to the
Markovian switching systems and it is generic than the Pois-
sonian switching systems. Our analysis holds for randomly
switched systems that may contain some unstable subsys-
tems. This is motivated by the fact that component failures
or abrupt disturbances may destabilize some subsystems of
the switched system. Moreover, we allow the parameters of
the subsystems to be time-varying and uncertain.

The paper is organized as follows. Section II presents some

preliminaries, including necessary notation and the notion
of SISS for randomly impulsive systems. The main result
appears in Section III. A numerical example is provided in
Section IV to illustrate the result. Section V concludes the
paper and provides some future research directions.

II. PRELIMINARIES AND SISS

The sets of natural numbers, integers, and nonnegative in-
tegers are denoted by N, Z, and N0 := N∪{0}, respectively.
The sets of real numbers, non-negative real numbers, and
positive real numbers are denoted by R, R≥0, and R>0,
respectively. The set of complex numbers is denoted by C.
Let C(D) denote the set of all continuous functions with
domain D. The cardinality of a set A is denoted by #A.
The identity matrix of an appropriate dimension is denoted
by I . The usual Euclidean norm of vectors, and the induced
norm of matrices, are denoted by | · |. Let |f |I denote the
supremum of any real-valued piecewise continuous function
f on any interval I in its domain. The inner product of two
vectors x and y is denoted by 〈x, y〉. The indicator of an
event E is denoted by 1E which is equal to 1 if the event
E holds. The indicator function of the event E is denoted
by 1E(ω) which is equal to 1 if ω ∈ E and 0 otherwise. A
function α : R≥0 → R≥0 is said to belong to class K if it is
continuous, strictly increasing, and α(0) = 0; it belongs to
class K∞ if α ∈ K and α(t)→∞ as t→∞; it belongs to
class L if it is continuous, strictly decreasing, and α(t)→ 0
as t → ∞. A function β : R≥0 × R≥0 → R≥0 is said to
belong to class KL if the function β(·, t) ∈ K for each fixed
t ≥ 0, the function β(s, ·) is non-increasing for each fixed
s ≥ 0, and β(s, t)→ 0 as t→∞.

Consider a time-varying switched nonlinear system

ẋ(t) = fσ(t)(t, x(t), u(t)), t ≥ 0, (1)

where x : [0,∞) → Rn is the state, x(0) = x0 ∈ Rn is
the initial condition, and the piecewise continuous bounded
function u : [0,∞)→ Rm is the input. Let

π = (πk)k∈N0 =
{(
ik, tk

)}
k∈N0,ik∈{1,2,...,q}

be a switching sequence, where (tk)k∈N0
is a sequence

of random variables given by the realization of a non-
decreasing, positive, and real-valued Lévy process S :=
(Tt)t≥0, i.e., S is a subordinator process that models the
random switching instants of the system (1). The subordina-
tor S is defined on the complete probability space (Ω,F ,P)
with Ω being the event space, F being its sigma algebra, and
P being a probability measure. Moreover, let (Ft)t≥0 denote
the filtration generated by S and E[·] denote the expectation
functional with respect to the probability measure P. The
piecewise continuous function σ : [0,∞) → {1, 2, . . . , q}
such that σ(t) = ik when t ∈ [tk, tk+1) is called a switching
signal. The sequence π specifies the order in which the
j-th subsystem, j ∈ {1, 2, . . . , q}, is active between the
switching instants tk = Tk and tk+1 = Tk+1. We assume
that the function fj , j ∈ {1, 2, . . . , q}, is locally Lipschitz
with respect to its second argument and piecewise continuous
with respect to its other arguments.



Definition 1: Given a subordinator S = (Tt)t≥0, system
(1) is SISS if, for all ε ∈ (0, 1), there exist functions β ∈
KL and γ ∈ K∞ such that for every x0 ∈ Rn and every
piecewise continuous bounded input function u : [0,∞) →
Rm, the estimate

P{|x(t)| ≤ β(|x0|, t) + γ(|u|[0,t])} ≥ 1− ε
holds for all t ≥ 0 along the solutions of (1).

Definition 2 ( [1]): Let L = (Lt)t≥0 be a Lévy process
then the characteristic exponent η (also referred to as Lévy
symbol) of the process L is a function η : Rn → C given
by the mapping z 7→ etη(z). It can be obtained from the
characteristic function of L, i.e., E

[
ei〈z,Lt〉

]
= etη(z) for all

t ≥ 0 and z ∈ Rn.

The following lemmas are requisite to prove our main result
in the next section.

Lemma 1 ( [13]): Let (Lt)t≥0 be an Rn-valued pure-
jump Lévy process and let f : [0,∞)→ Rn be a continuous
function. Then the integral process Is,t =

∫ t
s
f(r)dLr can be

written as Is,t =
∑∞
k=1 1s≤rk≤tf(rk)∆Lrk , where ∆Lrk =

Lrk − Lr−k .

Lemma 2: Let (Lt)t≥0 be a Lévy process and let ξs,t =

h(t)
∫ t
s
f(r)dLr be an integral process. Then the (double)

integral process Is,t =
∫ t
s
ξs,rdr can be written as Is,t =∫ t

s
gr,tdLr with

gr,t := f(r)

∫ t

r

h(p)dp. (2)

Proof: Observe that

Is,t =

∫ t

s

h(p)

∫ p

s

f(r) dLr dp

=

∫ t

s

∫ t

s

f(r)h(p)1s≤r≤p(r) dLr dp

Fubini
=

∫ t

s

∫ t

s

f(r)h(p)1s≤r≤p(p) dp dLr

=

∫ t

s

gr,t dLr

with gr,t as defined in (2). This concludes the proof.

Lemma 3: Let (Lt)t≥0 be a Lévy process with symbol η
such that the mapping z 7→ η(z) is analytically extendible
to the imaginary axis {−iz |z ∈ Rn}. In particular, let η be
such that

E(e〈z,Lt〉) = etη(−iz), z ∈ Rn. (3)

Let Is,t =
∫ t
s
h(p)

∫ p
s
f(r) dLr dp be the (double) integral

process. Then

E(eIs,t) = e
∫ t
s
η(−ig)dr. (4)

Proof: Using first Lemma 2 and then Lemma 1, it

follows that
E
(
eIs,t

)
= E

(
e
∫ t
s
gr,tdLr

)
= E

(
lim
n→∞

e
∑n
k=1 1s≤rk≤tgr

k
,t∆Lrk

)
= E

(
lim
n→∞

n∏
k=1

e1s≤rk≤tgr
k
,t∆Lrk

)
= lim

n→∞

n∏
k=1

E(e1s≤rk≤tgr
k
,t∆Lrk ).

Using (3) and defining ∆rk := rk − r−k , it follows that

E(eIs,t) = lim
n→∞

n∏
k=1

1s≤rk≤te
∆rkη(−igr

k
,t)

= lim
n→∞

e
∑n
k=1 1s≤rk≤tη(−igr

k
,t)∆rk

= e
∫ t
s
η(−igr,t)dr.

This concludes the proof.
Example 1: Let Lt be a Poisson process with rate λ, its

symbol η(·) is given by η(z) = λ(eiz − 1). Then we have

e
∫ t
0
η(−ig) ds = e−λteλ

∫ t
0
egds. (5)

Example 2: When Lt is a compound Poisson process with
rate λ and associated Lévy measure µ, its symbol is given
by η(u) =

∫
R λ(eiuz − 1)µ(dz). Then we have

η(−ig) = λ

∫
R

(egz − 1)µ(dz) = λ
(∫

R
egzµ(dz)− 1

)
.

(a) For µ ∼ U(Θ), where Θ ⊂ R\{0} is a discrete countable
and finite set, η(−ig) = λ

(
1

#Θ

∑#Θ
k=1 e

gzk − 1
)

. We have

e
∫ t
0
η(−ig) ds = e−λt

#Θ∏
k=1

e
λ

#Θ

∫ t
0
egzkds. (6)

(b) For µ ∼ N (ϑ, ς2), η(−ig) = λ
(
e
ς2g2

2 +ϑςg − 1
)

,

e
∫ t
0
η(−ig) ds = e−λteλ

∫ t
0

exp
(
ς2g2

2 +ϑςg
)
ds. (7)

III. MAIN RESULT

This section provides the main result, i.e., a sufficient SISS
condition for the randomly switched system (1), but before
stating and proving it, we provide some assumptions.

Assumption 1: There exist q locally absolutely continuous
functions Vj : [0,∞) × Rn → [0,∞) for j ∈ {1, 2, . . . , q},
class K∞ functions α1 and α2, and class K∞ functions
δ1, δ2, . . . , δq such that

α1(|x|) ≤ Vj(t, x) ≤ α2(|x|) (8)

hold almost surely for t ∈ [0,∞), j ∈ {1, 2, . . . , q},
and given a Lévy process (Lt)t≥0 with symbol η and
h, f ∈ C(R), there exists an Ft−s adapted process ξs,t =

h(t)
∫ t
s
f(r)dLr, t > s ≥ 0 such that

V̇σ(tk)(t, x) ≤ κσ(tk)Vσ(tk)(t, x) + δσ(tk)(|u(t)|) (9)

holds almost surely along all trajectories of the system (1) for
almost all t ∈ [tk, tk+1), all k ∈ N0, and all choices of the
piecewise continuous bounded function u : [0,∞) → Rm,
where κσ(t) is a realization of the process ξt := ξ0,t, t ≥ 0.



Remark 1: We model the jump distribution of κσ(t) by
the background Lévy process (Lt)t≥0 in Assumption 1.
The switching instants (tk)k∈N0 = (Tk)k∈N0 of the Lévy
process (Lt)t≥0, driving the integral process kσ(t) = ξ0,t in
Assumption 1, are precisely determined by the subordinator
process S = (Tt)t≥0. Moreover, the value κσ(tk) = κj ,
j ∈ {1, 2, . . . , q}, is random during t ∈ [Tk, Tk+1), which
allows us to study systems with time-varying parameters, as
illustrated in Section IV.

Assumption 2: The functions Vj from Assumption 1 admit
a constant µ > 0 such that

Vi(t, x) ≤ eµVj(t, x) (10)

holds almost surely for all i, j ∈ {1, 2, . . . , q} and all t ∈
[0,∞).

Assumption 3: For [s, t] ⊂ [0,∞) with t − s < ∞ and
f, h ∈ C(R) with |f |, |h| < ϕ̃, let ξs,t := h(t)

∫ t
s
f(r)dLr

and Is,t =
∫ t
s
ξs,rdr =

∫ t
s
gr,tdLr be such that

E[max(eϕ
2
2(t−s)|Lt−s|, 1)] < c <∞,

where ϕ2 ≥ c1(1 + ϕ̃) for c1 > 0. Moreover, for µ > 0
as in Assumption 2, let ξµs,t := h(t)

∫ t
s
[f(r) + µ] dLr and

Iµs,t =
∫ t
s
ξµs,rdr =

∫ t
s
gµr,tdLr be such that

E(eI
µ
s,t) ≤ ϕ1e

−ζϕ2(t−s)

for some fixed ϕ1, ζ > 0.

Remark 2: Assumption 3 provides the sufficient dwell-
time condition in terms of the properties (Lévy symbol η and
function g) of the Lévy-driven process ξs,t that models the
rate function κσ(t) of the family of Lyapunov-like functions
to ensure stability of the switched system. Various examples
of ξs,t, for different cases of Lévy processes, that fulfill
Assumption 3 have been provided in Section IV.

Remark 3: For some arbitrary c > 0, taking κσ(t) = −c+

ξ0,t, we get eI
µ
0,t = e−c(t)e

∫ t
0
gµr,tdLr . We use this relation

in the illustrative example Case 1 provided in Section IV.
However, we ignore it here in the analysis since a negative
constant is a trivial extension.

For the sake of brevity, we use the following notation:

v(t, x) := Vσ(t)(t, x), ξt = κσ(t), δ̄(r) := max
1≤j≤q

δj(r),

Λ(`, t) := eI`,t , Γk := eµΛ(tk−1, tk), Λµ(`, t) := eI
µ
`,t .

Now we formally state and prove the main result.

Theorem 1: Let Assumptions 1-3 hold. Then, system (1)
is SISS.

Proof: Observe from Assumption 1 that for unique
choices of k ∈ N0 and r = {1, 2, . . . , q} such that σ(tk) = r,
the inequality

V̇r(p, x) ≤ κrVr(p, x) + δr(|u(p)|) (11)

is satisfied almost surely for every p ∈ [tk, tk+1). Multi-
plying both sides of (11) by the integrating factor e−κrp,
then moving the resulting term e−κrpκrVr(p, x) from right
side to left side, and then integrating both sides between two

instants t∗ ∈ [tk, t] and t ∈ [tk, tk+1), we get

Vr(t, x) ≤ eκr(t−t∗)Vr(t∗, x) +

∫ t

t∗

eκr(t−s)δr(|u(s)|)ds .

With the choice of t∗ = tk and using simplifying notation
v(t) to mean v(t, x), it follows that for all k ∈ N0 and all
t ∈ [tk, tk+1),

v(t) ≤ Λ(tk, t)v(tk) +

∫ t

tk

Λ(s, t)δ̄(|u(s)|)ds

≤ eµΛ(tk, t)v(t−k ) +

∫ t

tk

Λ(s, t)δ̄(|u(s)|)ds ,
(12)

where the last inequality is a consequence of (10). Now, let
us consider t ≥ 0 such that t ∈ [tk, tk+1) for some k ∈ N0

and ρ ∈ N such that [0, t0) = [tk−ρ−1, tk−ρ). We deduce
that

v(t−k ) ≤ Γkv(t−k−1) +

∫ tk

tk−1

Λ(s, tk)δ̄(|u(s)|)ds

...
v(t−k−ρ+1) ≤ Γk−ρ+1v(t−k−ρ)

+

∫ tk−ρ+1

tk−ρ

Λ(s, tk−ρ+1)δ̄(|u(s)|)ds

(13)
with

v(t−k−ρ) ≤ Λ(0, tk−ρ)v(0)

+

∫ tk−ρ

0

Λ(s, tk−ρ)δ̄(|u(s)|)ds .
(14)

We deduce from (13) that

v(t−k ) ≤ Λµ(tk−ρ, tk)v(t−k−ρ)

+

∫ tk

tk−ρ

Λµ(s, tk)δ̄(|u(s)|)ds .
(15)

Using (14) to upper bound v(t−k ) in (15), we get

v(t−k ) ≤ Λµ(0, tk)v(0) +

∫ tk

0

Λµ(s, tk)δ̄(|u(s)|)ds.
(16)

Similarly, using (16) to upper bound v(t) in (12), we get

v(t) ≤ Λµ(0, t)v(0) +

∫ t

0

Λµ(s, t)δ̄(|u(s)|)ds . (17)

Since the initial condition is deterministic, taking expectation
on both sides of (17) with with v0 := v(0), we get

E[v(t)] ≤ E
[
Λµ(0, t)

]
v0 +

∫ t

0

E
[
Λµ(s, t)

]
E
[
δ̄(|u(s)|)

]
ds

≤ ϕ1e
−ζϕ2tv0 + δ̄(|u|[0,t])

∫ t

0

ϕ1e
−ζϕ2(t−s)ds

≤ ϕ1e
−ζϕ2tv0 +

ϕ1δ̄(|u|[0,t])
ζϕ2

. (18)

Using (8) and applying Markov’s inequality [14, Chapter II,



18.1] to (18), we have

P
{
|x(t)| ≤ α−1

1

(
2ϕ1e

−ζϕ2tv0

ε

)
+ α−1

1

( 2ϕ1δ̄(|u|[0,t])
ζϕ2ε

)}
≥ 1− ε

(19)
for an arbitrary ε ∈ (0, 1). To reach the inequality (19), we
employ the property αi(a + b) ≤ αi(2a) + αi(2b) of our
functions αi ∈ K∞ for all a ≥ 0 and b ≥ 0 (which follows
by separately considering the cases a ≥ b and a < b).

Using v0 ≤ α2(|x0|) from (8) in (19), we arrive at

P
{
|x(t)| ≤ β(|x0|, t) + γ(|u|[0,t])

}
≥ 1− ε,

where

β(r, s) = α−1
1

( 2ϕ1e
−ζϕ2sα2(r)
ε

)
, γ(p) = 2α−1

1

( 2ϕ1δ̄(p)
ζϕ2ε

)
.

This concludes the proof.

IV. ILLUSTRATION

In this section, we provide a numerical example to illus-
trate the effectiveness of the main result. To this end, consider
a switched nonlinear system

ẋ(t) = fσ(t)(x(t), u(t)), σ : [0,∞)→ {1, 2, 3} (20)

with

f1(x(t), u(t)) =

[
a1(t)x1(t) + u(t) sin2 x2(t)

b1(t)x2(t)

]
f2(x(t), u(t)) =

[
a2(t)x1(t)− x3

1(t) + u(t)

b2(t)x2(t)

]
f3(x(t), u(t)) =

[
a3(t)x1(t) + 3u(t)

b3(t)x2(t)

]
,

where a` : [0,∞)→ R and b` : [0,∞)→ R for ` ∈ {1, 2, 3}
are bounded piecewise continuous functions.
Let V1(x) = 1

2 (x2
1 + x2

2), V2(x) = x2
1 + x2

2, and V3(x) =
1
4 (x2

1 + x2
2) be positive definite quadratic functions. Then

using Young’s inequality, it can be shown for V`(t) :=
V`(x(t)), ` ∈ {1, 2, 3} that the inequality

V̇`(t) ≤ κ`V`(t) + δ`||u(t)||2, t ∈ [tk, tk+1), k ∈ N0

holds almost surely, along the solutions of (20), for some
real numbers δ` > 0 and

κ` = max
t∈[tk,tk+1]

[1 + max(a`(t), b`(t))], ` ∈ {1, 2, 3}.

Let S = (Tt)t≥0 denote a Gamma subordinator, i.e. a
subordinator process with Tt ∼ Γ(t; 1, λ). Let Lt be a pure-
jump Lévy process that takes a certain value, based on its
jump distribution, at the jump instant given by Tt. Based on
Assumption 1, κσ(t) is given by ξ0,t that satisfies Assump-
tion 3. For system (20), it has the following implication: let
T `t = (T `j )j∈N0

= (Tkj )j∈N0
⊂ S be the sequence of random

switch instants when the `th sub-systems become active, then
κσ(t) = κ` = κT `t = κ

Tkj
, where

κ
Tkj

= max
t∈[Tkj ,Tkj+1]

[1 + max(a`(t), b`(t))].

Thus, due to the random switching instants and time de-
pendence of a`, b`, the upper-bound κ` is also random.
Consequently, κ` and κσ(t) are piecewise constant processes.

According to Assumption 1, the jump process κσ(t) is
driven by a Lévy process, and it is equal to ξTkj for t ∈
[Tkj , Tkj+1).

Now we consider various types of switching signals σ
by considering different functions f, h and different jump
processes (Lt) for which Assumption 3 applies and show
that the above family of randomly switched systems is SISS.
We choose λ = 4 and µ = 2 for rest of the example.

Let the switching signal σ be defined as

σ(t) :=


1, if ξ0,t ∈ (−∞,−3/2),

2, if ξ0,t ∈ [−3/2, 0),

3, if ξ0,t ∈ [0,∞).

Case 1: Let h(t) = sin(nt)e−at, f(t) := ebt with a >
b > 0, (Lt)t≥0 be a Poisson process (Nt)t≥0, and define
κσ(t) := −c+ξ0,t with c > 0. Then, for any µ ≥ 0, we have

gr,t = (µ+ f(r))
∫ t
r
h(s)ds

= (φ(nr)e−(a−b)r−φ(nt)ebr−at)
(1+n2) + (µφ(nr)e−ar−µφ(nt)e−at)

(1+n2)

≤ 1+n
(1+n2)

(
1− eb(r−t) + µ(e−ar − e−at)

)
< (1+n)(1+µ)

(1+n2)

for all 0 < r < t, where φ(nt) := sin(nt) + n cos(nt).
Now using the relation (5) and Remark 3 for λ > 1 and
c ∈ (0, 1), choosing n > µ + 2 such that (1+n)(1+µ)

(1+n2) < c
we see that Assumption 3 is fulfilled. For the simulation, we
have chosen c = 0.16, n = 20, λ = 4, a = 1.5, b = 1. The
simulation results are as shown in Figure 1a. From the plots,
we observe that initial κ is oscillating because of which the
solutions are unstable, however, as time evolves κ converges
to −c, thus indicating a stabilization effect. Also looking at
the cyan curve in the lower subplot, we see that symbol η
is consistently below zero, thus indicating the fulfillment of
sufficient condition for SISS.

Case 2: Let h(t) = 1
(a+t)2 with a ≥ 1, f(t) := t, and

(Lt)t≥0 a compound Poisson process with a jump distribu-
tion U(Θ), Θ := {5/6,−3,−3/2, 1/10,−2}. Let us define
κσ(t) := φ(t)ξ0,t, where φ being a piecewise constant func-
tion such that

∫ t
r
φ+ >

∫ t
r
φ− for all 0 < r < t and gr,t =

(f(r) + µ)
∫ t
r
φ(s)h(s)ds ≤ φ̃(r, t)

(
(r+µ)(t−r)
a2+a(t+r)+rt

)
. Then

using the relation (6), we get that EU [egz] = 1
5

∑
z∈Θ e

gz ⇒
EU [egz] < 1, which consequently ensures that Assumption
3 is fulfilled. The simulation results are as shown in Figure
1b. For the simulation, we set a = 1, and φ is obtained in
the following way: Let (sk)k∈N be the uniform discretiza-
tion of the simulation time interval [0, t], then φ(sk) ∈
U({1.3, 0.5,−0.25}) and φ(s) = φ(sk) for s ∈ [sk, sk+1).
The simulation results are as shown in Figure 1b. From the
plots, we observe that due to the oscillatory signal φ, the
mean κ (as well as its sample paths) also shows oscillation,
with jumps going above zero. However, because the symbol
η (cyan curve in lower subplot) is consistently below zero,
the solutions eventually converge to equilibrium.

Case 3: Let h be as in Case 2 with a = 2 and f(t) =
1 + t. Let (Lt)t≥0 a compound Poisson process with a jump



(a) Simulation results for case 1.(IV). (b) Simulation results for case 2.(IV). (c) Simulation results for case 3.(IV).

Fig. 1: Simulation results for all three examples. The top plot shows the evolution of the state variables (x1, x2) as a function
of time. The mean values are depicted as bold curves (green for x1 and magenta for x2), while sample paths are denoted
in yellow (x1) and orange (x2) lines. The middle plot shows the rate function κσ(t) as a function of time. Both mean (in
bold red) and sample paths (faint black) are depicted. In the lower subplots, we see the corresponding g variable appearing
in the symbol of the Lévy process. This plots clearly shows the sufficient condition (Assumption 3) for SISS.

distribution N (ϑ, ς2) with ϑ < − ςg2 . Let us define κσ(t) :=
φ(t)ξ0,t with φ(t) as in Case 2, then again we get that
EN [egz] < 1, which consequently ensures that Assumption
3 is fulfilled. The function φ is obtained analogous to Case
2 with φ(sk) ∈ U({1.3, .5,−.5}) and φ(s) = φ(sk) for
s ∈ [sk, sk+1). The other involved constants are chosen as
ϑ = −2, ς = 1.5. The simulation results are as shown in
Figure 1c. From the plots, we observe that due to oscillatory
signal φ and the Gaussian jump distribution of the driving
Lévy process, there are more instabilities in the solution. The
effects of the oscillatory signal φ can be seen as oscillations
in the mean κ (and also its sample paths), where there
are jumps going above zero, depicting unstable subsystems.
Despite of these oscillations, because the symbol η (cyan
curve in lower subplot) is consistently below zero, thus the
solutions eventually converge to equilibrium.

V. CONCLUSIONS

We provided a sufficient condition for SISS of randomly
switched systems for the challenging case when some of
the subsystems may be unstable. We modeled the random
switching instants by a non-decreasing, positive, and real-
valued Lévy process. To establish SISS, we relied on the
theory of the Lévy process and its characterization via the
Lévy symbol η to establish an upper bound on the expected
value of the semigroup operator. This approach enabled us to
generalize the applicability of the result to systems with time-
varying and uncertain parameters. We illustrated our result
via simulation-based examples for three different types of
underlying Lévy processes.

Some future extensions of this work include: (i) charac-
terizing SISS of randomly switched systems driven by a
stochastic noise, (ii) studying SISS of impulsive switched
systems with Lévy switching signals, (iii) exploring SISS
of infinite-dimensional randomly switched systems, (iv) in-
vestigating SISS for randomly switched systems with time-

varying delays, and (v) applying the results of this work to
real-world applications.
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