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A B S T R A C T

A counterexample is presented showing that it is not possible to define a restriction for distributions.
. Introduction

For a scalar function 𝑓 ∶ R → R it is straightforward to define a
estriction (or truncation) to an interval  ⊆ R as follows

 (𝑡) ∶=

{

𝑓 (𝑡), 𝑡 ∈ ,
0, 𝑡 ∉ .

n fact, this restriction can be defined for any subset  ⊆ R and not just
or intervals. In contrast to the domain-changing restriction (usually
enoted by 𝑓 ||

|

 ∶  → R) the above defined restriction is still defined
n the whole domain. This has the major advantage that the vector
pace properties of the corresponding function space remains intact,
n particular, functions restricted to different intervals can be added in
he usual way. For example, with this definition it is very easy to define
he set of piecewise-smooth functions simply as the set of all functions
hich are the (locally finite) sum of smooth functions each of which is

estricted to an interval.
An important property of this function restriction is that for an

nterval  which is the disjoint union of two smaller intervals, i.e.
= 1∪̇2, it holds

 = 𝑓1 + 𝑓2 ;

or more general, if  is the countable union of pairwise disjoint inter-
vals, i.e.,  =

⋃

𝑖∈N 𝑖, then

𝑓 =
∑

𝑖∈N
𝑓𝑖 .

In the context of inconsistent initial values for differential-algebraic
equations (DAEs) it was observed that it is necessary to consider
solutions in a more general solution space including Dirac impulses
(and their derivatives thereof) together with a well defined restriction
operator to intervals, for details see e.g. the survey [1].

E-mail address: s.trenn@rug.nl.
1 The author was supported by the NWO, Netherlands vidi grant 639.032.733.

Since Dirac impulses are elements of Schwartz’ distribution space
[2], this motivates the general question: Is it possible to define a restric-
tion of distributions to intervals?

To be more precise: Let D denote the space of distribution (see Sec-
tion 2 for the formal definition and recollection of important properties)
and  ⊆ R be some interval, is there a restriction map

 ∶ D → D, 𝐷 ↦ 𝐷 ,

which satisfies some natural properties?
The somewhat surprising answer to the above question is: NO. This

can be seen by considering the following counterexample, which is a
‘‘bad’’ distribution which cannot be restricted to the interval (0,∞).

Counterexample. For 𝑛 ∈ N>0 let 𝑑𝑛 ∶= (−1)𝑛∕𝑛 and

𝐷𝑛 ∶=
𝑛
∑

𝑖=1
𝑑𝑖𝛿𝑑𝑖 ,

where 𝛿𝑑𝑖 is the Dirac impulse with support at 𝑑𝑖, see also Fig. 1. Then

𝐷 ∶= lim
𝑛→∞

𝐷𝑛 (1)

is a distribution for which the restriction 𝐷(0,∞) cannot be well defined.

The problem of a distributional restriction was investigated in the
authors PhD-thesis [3] in the context of inconsistent initial values for
differential–algebraic equations and some of the conclusions without
complete proofs have appeared in [4] and in the survey [1].

However, the answer to the question whether there exists a well-
defined distributional restriction in the form of a nice counter example
(including the full technical details) has not appeared elsewhere, but
may be of interest to the general mathematical audience.

The remainder of this note will provide the corresponding details to
back up this claim; in particular, 1) that 𝐷 as defined above is indeed
https://doi.org/10.1016/j.exco.2021.100023
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Fig. 1. Illustration of ‘bad’ distribution 𝐷 =
∑∞

𝑖=1 𝑑𝑖𝛿𝑑𝑖 , where a Dirac impulse is
pictured as a red line whose (directed) length is the corresponding magnitude.

a distribution, 2) formulating the ‘‘natural’’ properties of a restriction
and, finally, 3) showing that the restriction of 𝐷 to the interval (0,∞)
cannot satisfy these natural properties of a restriction and at the same
time is a well defined distribution. Afterwards some possibilities to
avoid this dilemma are presented.

2. Preliminaries: Distribution theory

Following Schwartz [2] the space of distribution D is defined as the
dual space of the space of test functions ∞

0 , i.e.

D ∶=
{

𝐷 ∶ ∞
0 → R |

|

|

𝐷 is linear and continuous
}

,

where ∞
0 is the space of all functions 𝜑 ∶ R → R which are

smooth (arbitrarily often differentiable) and have compact support, i.e.
supp𝜑 ∶= {𝑡 ∈ R |𝜑(𝑡) ≠ 0 } is bounded. For a proper definition of
ontinuity it is necessary to specify a topology on ∞

0 , however, in
he following this topology will not be used, instead the following well
nown characterization of continuity of a linear map 𝐷 ∶ ∞

0 → R will
be used:

Lemma 1 (see e.g. [5, Sätze 12.7 and 14.5]). A linear map 𝐷 ∶ ∞
0 → R

is continuous if, and only if, lim𝑛→∞ 𝐷(𝜑𝑛) = 0 for all sequences (𝜑𝑛)𝑛∈N in
∞
0 which converge to zero in the following sense:
(C1) ∃ compact 𝐾 ⊆ R ∀𝑛 ∈ N ∶ supp𝜑𝑛 ⊆ 𝐾 and
(C2) ∀𝑖 ∈ N ∶ lim𝑛→N

‖

‖

‖

𝜑(𝑖)
𝑛
‖

‖

‖∞
= 0 where ‖ ⋅ ‖∞ denotes the supremum

orm.

All locally integrable functions 𝑓 ∶ R → R induce a distribution
iven by

D ∶ ∞
0 → R, 𝜑 ↦ ∫R

𝜑𝑓 ;

he space of all such induced distributions is called regular distributions.
his embedding in the form of an injective homomorphism 𝑓 ↦ 𝑓D of
fairly large function space into the space of distribution is also the

eason why distributions are also called generalized functions.
The most famous non-regular distribution is the Dirac impulse given

by

𝛿 ∶ ∞
0 → R, 𝜑 ↦ 𝜑(0),

or, more general, the Dirac impulse at some 𝑡 ∈ R:

𝛿𝑡 ∶ ∞
0 → R, 𝜑 ↦ 𝜑(𝑡).

Note that supp 𝛿𝑡 = {𝑡} where the support of a general distribution
𝐷 ∈ D is defined to be the complement of the union of all open sets on
which 𝐷 vanishes, i.e.

supp𝐷 ∶= R
\

⋃

{

𝑂 ⊆ R
|

|

|

|

|

𝑂 open and 𝐷(𝜑) = 0
∀𝜑 ∈ ∞

0 with supp𝜑 ⊂ 𝑂

}

.

By definition, the support of a distribution is always a closed set.
The main advantage of distribution (and the reason they play such

an important role in differential equations) is the fact, that they are
arbitrarily often differentiable, where the derivative 𝐷′ of a distribution
𝐷 ∈ D is given by

𝐷′(𝜑) ∶= −𝐷(𝜑′).
2

This differentiation rule is motivated by the partial integration rule for
functions, in fact, for any differentiable function 𝑓 ∶ R → R it holds
that

(𝑓D)′ = (𝑓 ′)D.

It is easily seen that the Dirac impulse is the derivative of the Heaviside
step function 1[0,∞).

Another important property of distribution is the fact that for a
sequence of distributions (i.e. a sequence of linear and continuous
operators) pointwise converges already implies that the limit operator
is again linear and continuous, i.e. a distribution.

Lemma 2 (see e.g. [5, Sätze 28.1, 28.2 and 28.3]). Consider a sequence
(𝐷𝑛)𝑛∈N of distributions for which the limit 𝐷(𝜑) ∶= lim𝑛→∞ 𝐷𝑛(𝜑) exists
for all 𝜑 ∈ ∞

0 . Then 𝐷 ∈ D.

The section concludes with proving that the Counterexample is
indeed a distribution.

Lemma 3. The limit 𝐷 given by (1) is a distribution.

Proof. Due to Lemma 2 it suffices to show that for every 𝜑 ∈ ∞
0

the sequence 𝐷𝑛(𝜑) =
∑𝑛

𝑖=1 𝑑𝑖𝜑(𝑑𝑖) converges to a finite value in R as
𝑛 → ∞. Invoking the Mean-Value Theorem, there exists for any 𝜑 ∈ ∞

0
a sequence (𝜉𝑖)𝑖∈N in R such that

𝜑(𝑑𝑖) = 𝜑(0) + 𝑑𝑖𝜑
′(𝜉𝑖).

Consequently,

𝐷𝑛(𝜑) = 𝜑(0)
𝑛
∑

𝑖=1
𝑑𝑖 +

𝑛
∑

𝑖=1
𝜑′(𝜉𝑖)𝑑2𝑖 .

Due to the Leibniz’ alternating series test, ∑𝑛
𝑖=1 𝑑𝑖 =

∑𝑛
𝑖=1(−1)

𝑖∕𝑖 con-
verges to a finite value in R as 𝑛 → ∞. Furthermore, it is well known
that ∑𝑛

𝑖=1 𝑑
2
𝑖 =

∑𝑛
𝑖=1 1∕𝑖

2 converges absolutely to 𝜋2∕6, which implies
that the sum ∑𝑛

𝑖=1 𝜑
′(𝜉𝑖)𝑑2𝑖 converges absolutely, because 𝜑′ is bounded

and
𝑛
∑

𝑖=1

|

|

|

𝜑′(𝜉𝑖)𝑑2𝑖
|

|

|

≤ ‖𝜑′
‖∞𝜋2∕6. □

3. Desired properties of distributional restriction

In this section some desired properties of a distributional restriction
 ∶ D → D, 𝐷 ↦ 𝐷 , for any interval  ⊆ R are formulated:

R1 The following implications hold for all 𝐷 ∈ D and all 𝜑 ∈ ∞
0 :

(i) supp𝐷 ∩  = ∅ ⟹ 𝐷 = 0,
(ii) supp𝜑 ⊆  ⟹ 𝐷 (𝜑) = 𝐷(𝜑),

(iii) supp𝜑 ∩  = ∅ ⟹ 𝐷 (𝜑) = 0,
(iv) supp𝜑 ∩ supp𝐷 = ∅ ⟹ 𝐷 (𝜑) = 0.

R2 Let  =
⋃

𝑖∈N 𝑖 be a pairwise disjoint union of a countable family
of intervals, then, for any 𝐷 ∈ D,

𝐷 =
∞
∑

𝑖=1
𝐷𝑖 ;

in particular,

𝐷1∪̇2 = 𝐷1 +𝐷2 .

If such a distributional restriction exists, it is possible to conclude
the following important property concerning the restriction of Dirac
impulses to an interval.

Lemma 4. For any interval  ⊆ R and any 𝑡 ∈ R it follows that

(𝛿𝑡) =

{

𝛿𝑡, 𝑡 ∈ 
0, 𝑡 ∉ 
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Proof. Consider first the case that 𝑡 ∉ . Then supp 𝛿𝑡 ∩  = {𝑡} ∩  = ∅
nd from R1(i) it follows that (𝛿𝑡) = 0. If 𝑡 ∈  choose two (unbounded

or empty) intervals 𝑙 ,𝑟 ⊆ R such that R = 𝑙∪̇∪̇𝑟, then by R1(ii)
𝛿𝑡 = (𝛿𝑡)R = (𝛿𝑡)𝑙 ∪̇∪̇𝑟 , which implies by R2 that

(𝛿𝑡) = 𝛿𝑡 − (𝛿𝑡)𝑙 − (𝛿𝑡)𝑟 .

Since by construction 𝑡 ∉ 𝑙 and 𝑡 ∉ 2 it follows as above that
(𝛿𝑡)𝑙 = 0 = (𝛿𝑡)𝑟 and the proof is complete. □

Remark 1. In [3] some more desired properties for a distributional
restriction are formulated, for example the property that  ∶ D →

D is a projector (i.e. linear and idempotent) and that for regular
distributions 𝑓D the distributional restriction generalizes the function
restriction, i.e.

(𝑓 )D = (𝑓D) .

However, a careful analysis of the upcoming proof of nonexistence
reveals that it is indeed enough to require the properties R1 and R2
o arrive at a contradiction. On the other hand, conditions R1(i) and
1(iv) are not mentioned in [3], but they seem to be needed to arrive
t the non-existence result.

emark 2. Property R2 involves a limiting process, however, it is
mportant to note that this limit is with respect to the domain and
oes not correspond to a sequence of distributions. In fact, one may be
nclined to require the following property for a converging sequence of
istributions (𝐷𝑛)𝑛∈N with a limit 𝐷 as in Lemma 2:

𝐷 = lim
𝑛→∞

(𝐷𝑛) .

But this requirement immediately runs into a contradiction, because it
is easy to see that both of the two sequences

(

(𝑓 𝑟
𝑛 )D

)

𝑛∈N and
(

(𝑓 𝑙
𝑛)D

)

𝑛∈N
given by

𝑓 𝑟
𝑛 (𝑡) ∶=

{

𝑛, 𝑡 ∈ (0, 1∕𝑛),
0, otherwise,

and

𝑓 𝑙
𝑛(𝑡) ∶=

{

𝑛, 𝑡 ∈ (−1∕𝑛, 0),
0, otherwise,

converge to the Dirac impulse 𝛿. However, (𝑓 𝑟
𝑛 )(0,∞) = 𝑓 𝑟

𝑛 and (𝑓 𝑙
𝑛)(0,∞) =

0, so the limit of the restriction would in one case be 𝛿 and in the other
case zero.

4. Restriction for counterexample not possible

Finally, it will now be shown, that a restriction satisfying the
properties given in Section 3 does not exist.

Theorem 1. A distributional restriction to any interval  ⊆ R of the form
 ∶ D → D, 𝐷 ↦ 𝐷 , satisfying R1 and R2 does not exist.

Proof. Consider the ‘bad’ distribution 𝐷 given by the Counterexample
and the interval  = (0,∞).
Step 1: It is shown, that if 𝐷 is well defined, than 𝐷 =

∑∞
𝑘=1 𝑑2𝑘𝛿2𝑘.

Step 1a: In order to utilize R2 a suitable family (𝑘)𝑘∈N is defined.
For 𝑘 ∈ N>0 let

𝑘 ∶=
[ 1
2 (𝑑2(𝑘+1) + 𝑑2𝑘),

1
2 (𝑑2𝑘 + 𝑑2(𝑘−1))

)

,

with the convention that 𝑑0 ∶= +∞. Then  =
⋃

𝑘∈N 𝑘 and 𝑑𝑖 ∈ 𝑘
if, and only if, 𝑖 = 2𝑘. In particular, by Lemma 4, (𝛿2𝑘)𝑘 = 𝛿2𝑘 and
(𝛿𝑖)𝑘 = 0 for all 𝑖 ≠ 2𝑘 and all 𝑘 ∈ N.
Step 1b: It is shown that 𝐷 = 𝑑 𝛿 .
𝑘 2𝑘 2𝑘 t

3

Fig. 2. Illustration of 1in (green), 1out (blue) and 1rest (red).

Consider an arbitrary 𝜑 ∈ ∞
0 ; it must be shown that 𝐷𝑘 (𝜑) =

𝑑2𝑘𝜑(2𝑘). Decompose 𝜑 as 𝜑 = 𝜑in + 𝜑out + 𝜑rest where

𝜑(𝑑2𝑘) = 𝜑∈(𝑑2𝑘),

supp𝜑in ⊆ 𝑘,

supp𝜑out ∩ 𝑘 = ∅,

supp𝜑rest ∩ supp𝐷 = ∅.

These requirements can easily be achieved by choosing 𝜑in = 1in𝜑,
𝜑out = 1out𝜑, 𝜑rest = 1rest𝜑, where the smooth functions 1in, 1out, 1rest
add up to identical one and are chosen as illustrated in Fig. 2.

It then follows that

𝐷𝑘 (𝜑in)
R1 (ii)
= 𝐷(𝜑in) = 𝑑2𝑘𝜑in(𝑑2𝑘) = 𝑑2𝑘𝜑(𝑑2𝑘),

𝐷𝑘 (𝜑out)
R1 (iii)
= 0,

𝐷𝑘 (𝜑rest)
R1 (iv)
= 0.

Hence, due to linearity, 𝐷𝑘 (𝜑) = 𝑑2𝑘𝜑(𝑑2𝑘) which is the claim of Step
1b.
Step 1c: The claim of Step 1 is shown.

Invoking R2 for the disjoint countable family of intervals (𝑘)𝑘∈N it
now follows that 𝐷 =

∑∞
𝑘=1 𝑑2𝑘𝛿2𝑘.

Step 2: It is shown that ∑∞
𝑘=1 𝑑2𝑘𝛿2𝑘 is not a distribution.

Consider a test function 𝜑 ∈ ∞
0 such that 𝜑(𝑡) = 1 for all 𝑡 ∈ [0, 1∕2].

Then

𝐷 (𝜑) =
∞
∑

𝑘=1
𝑑2𝑘 𝜑(𝑑2𝑘)

⏟⏟⏟
=1

= 1
2

∞
∑

𝑘=1

1
𝑘
= ∞.

This shows that 𝐷 cannot be a distribution. □

5. Resolving the dilemma

As mentioned above one motivation for studying a distributional
restriction is the problem of inconsistent initial values for differential–
algebraic equations (DAEs) of the form

𝐸�̇� = 𝐴𝑥 + 𝑓, (2)

where 𝐸,𝐴 ∈ R𝑚×𝑛 and 𝑓 ∶ R → R𝑛 is some inhomogeneity. By
definition, an inconsistent initial value 𝑥(0−) for (2) can only occur
when the past is not governed by the DAE (2), this intuition can be
formalized by the following initial trajectory problem (ITP):

𝑥(−∞,0) = 𝑥0(−∞,0),

(𝐸�̇�)[0,∞) = (𝐴𝑥 + 𝑓 )[0,∞),
(3)

here 𝑥0 ∶ R → R𝑛 is a given past trajectory. It was observed in
he context of electric circuits [6] that an inconsistent initial value
hould result in a Dirac impulse in the solution; the presence of a Dirac
mpulse in a solution in response to an inconsistent initial value can also
e motivated by considering a limiting process [7]. Hence a rigorous
olution framework for (2) needs to consider distributional solutions 𝑥
nd a well-defined restriction operator.

The dilemma that it is not possible to define a distributional restric-
ion operator (which is necessary so that the expression used in (3) are
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t

actually well defined objects), can be resolved in the context of DAEs
in two ways.

5.1. Comparing distributions on intervals

As mentioned in the introduction, instead of considering a restric-
tion operator which results in a distribution again defined on the whole
space, one could also consider a restriction which restricts the domain
of the operator, i.e. for some interval  and some 𝐷 ∈ D consider the
domain-changing restriction 𝐷|

|

|
as follows

𝐷|

|

|
∶
{

𝜑 ∈ ∞
0

|

|

|

supp𝜑 ⊆ 
}

→ R, 𝜑 ↦ 𝐷(𝜑).

Now the ITP could be reformulated as

𝑥||
|(−∞,0)

= 𝑥0||
|(−∞,0)

(𝐸�̇�)||
|[0,∞)

= (𝐴𝑥 + 𝑓 )||
|[0,∞)

.
(4)

The problem with this approach is that there is no difference between a
restriction to an open or closed interval, in particular, 𝛿||

|[0,∞)
= 0 which

is in many situations an undesired result and also prevents a suitable
distributional solution theory for DAEs. This problem was resolved
in [8] by redefining the inhomogeneity to

𝑓ITP ∶= (𝐸�̇�0 − 𝐴𝑥0)(−∞,0) + 𝑓[0,∞)

and considering the reformulated ITP

𝑥||
|(−∞,0)

= 𝑥0||
|(−∞,0)

𝐸�̇� = 𝐴𝑥 + 𝑓ITP.
(5)

Under the assumption that 𝑥0 and 𝑓 are such that 𝑓ITP is well defined
(as a function), all expressions in the ITP (5) are now well defined.
However, in the context of switched DAEs (see e.g. [9]), which can be
interpreted as a family of repeated inconsistent initial value problems,
the assumption that 𝑥0 is not a distribution (so that the restriction to
the interval (−∞, 0) is well defined) is too restrictive in general.

5.2. Considering a subspace of distributions

The underlying problem for the non-existence of a distributional
restriction is the fact, that the space of distribution is just too big
and contains very ‘nasty’ objects (including the Counterexample). To
resolve this issue, it was suggested in [10] to introduce the space
of piecewise-continuous distributions which can be understand as the
subspace of distributions which are composes of a piecewise-continuous
function and Dirac-impulse (and their derivatives) at isolated time
points. In particular, an accumulation of Dirac impulse as in the Coun-
terexample is excluded. A similar idea was proposed in [8] where
the space of impulsive-smooth distributions is proposed for studying
DAEs2; however, Dirac impulses (and their derivates) are only allowed
at 𝑡 = 0, and although the generalization to more location is mentioned,
the details are not worked out (in particular, the Counterexample is
not formally ruled out). The PhD-thesis [3] combines all the different
approaches and proposes the space of piecewise-smooth distributions

Dpw∞ ∶=

⎧

⎪

⎨

⎪

⎩

𝐷 = 𝑓D +
∑

𝑡∈𝑇
𝐷𝑡

|

|

|

|

|

|

|

𝑓 is piecewise-smooth,
𝑇 ⊆ R is discrete
∀𝑡 ∈ 𝑇 ∶ supp𝐷𝑡 ⊆ {𝑡}

⎫

⎪

⎬

⎪

⎭

2 In fact, the space of impulsive-smooth distributions can be traced back
o [11].
4

for which a distributional restriction can be defined in a straightfor-
ward way for 𝐷 = 𝑓D +

∑

𝑡∈𝑇 𝐷𝑡 ∈ Dpw∞ as

𝐷 ∶= (𝑓 )D +
∑

𝑡∈𝑇∩
𝐷𝑡.

In addition to the desired properties of a distributional restriction
discussed in Section 3, it also satisfies the following nice property for
all open intervals  ⊆ R and all 𝐹 ,𝐺 ∈ Dpw∞ :

𝐹 = 𝐺 ⟺ 𝐹 |

|

|
= 𝐺|

|

|
.

Furthermore, the space Dpw∞ is closed under differentiation (similar to
the space of impulsive-smooth distributions as in [8], but in contrast to
the space of piecewise-continuous distributions as introduced in [10]),
hence it inherits a crucial property of the space of distributions, which
made them so attractive as a solution space for differential equations
in the first place.

6. Conclusion

After formulating some desired properties of a distributional re-
striction it was shown via a counterexample that it is impossible to
define a distributional restriction satisfying these properties. It was also
briefly discussed how this dilemma could be resolved in the context of
differential–algebraic equations and inconsistent initial values.
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