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Abstract: As shown before, skew-adjoint linear differential operators, mapping efforts into
flows, give rise to Dirac structures on a bounded spatial domain by a proper definition of
boundary variables. In the present paper this is extended to pairs of linear differential operators
defining a formally skew-adjoint relation between flows and efforts. Furthermore it is shown how
the underlying repeated integration by parts operation is streamlined by the use of two-variable
polynomial calculus. Dirac structures defined by formally skew adjoint operators together with
differential operator effort constraints are treated within the same framework. Finally it is
sketched how the approach can be also used for Lagrangian subspaces on bounded domains.
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factorization, Lagrangian subspaces

1. INTRODUCTION

Dirac structures are an essential ingredient of port-
Hamiltonian systems theory; see e.g. van der Schaft and
Maschke (1995), van der Schaft and Jeltsema (2014), van
der Schaft (2017). They capture the power-conserving in-
terconnection structure in port-based modeling of com-
plex physical systems. Dirac structures for the modeling
of distributed parameter physical systems with bounded
spatial domain were first introduced in van der Schaft
and Maschke (2002). In the case of two coupled balance
laws the relation between the distributed flows and ef-
forts is given by a first-order differential operator. Using
Stokes’ theorem this leads to the definition of boundary
flows and efforts. The resulting Dirac structure, called the
Stokes-Dirac structure, involves the flows and efforts on
the spatial domain and the boundary flows and efforts on
the boundary of the spatial domain. In the case of lin-
ear distributed parameter systems and a one-dimensional
spatial domain consisting of a finite interval the Stokes-
Dirac structure was generalized in Le Gorrec et al. (2005).
Starting from a general skew-adjoint linear differential
operator, which is mapping the distributed efforts to the
distributed flows, boundary flows and efforts are defined
through repeated integration by parts. The present paper
generalizes the set-up considered in Le Gorrec et al. (2005)
to Dirac structures defined by pairs of linear differen-
tial operators relating the distributed flows and efforts.
Furthermore, instead of relying on ’brute force’ repeated
integration by parts, we utilize two-variable polynomial
calculus to define the boundary variables. This calcu-
lus was originally introduced in Willems and Trentelman
(1998) for optimization and dissipativity analysis of finite-
dimensional linear systems. It was also used for spectral
factorization Trentelman and Rapisarda (1999), while in
van der Schaft and Rapisarda (2011) it was shown how

this calculus admits to compute state maps from higher-
order differential equations (in time) in input and out-
put variables. In the present paper the time variable is
replaced by the (scalar) spatial variable, and state maps
become boundary maps, defining the boundary variables
of the resulting Dirac structure. Furthermore it is shown
how this construction can be extended to the definition
of differential operator Lagrangian subspaces on spatial
domains with boundary.

2. RECALL OF TWO-VARIABLE POLYNOMIAL
MATRIX CALCULUS

In this section we will recall some relevant basics of two-
variable polynomial calculus from Willems and Trentel-
man (1998); see also Trentelman and Rapisarda (1999);
van der Schaft and Rapisarda (2011). A p× q two-variable
polynomial matrix Φ(ζ, η) is an expression in two indeter-
minates ζ and η of the form

Φ(ζ, η) :=
M∑

k,l=0

Φk,lζ
kηl (1)

for certain p×q matrices Φk,l. The infinite matrix Φ̃ whose
(k, l)-th block is the matrix Φk,l, k, l = 0, . . . ,M, and is
zero everywhere else, is called the coefficient matrix of
Φ(ζ, η). Associated to Φ(ζ, η) and its coefficient matrix

Φ̃ is the bilinear differential operator 1 DΦ defined as

DΦ(v, w)(z) =

M∑
k,l=0

[
dk

dzk
v(z)

]�
Φk,l

dl

dzl
w(z), (2)

acting on vector-valued functions v : R → Rp, w : R →
Rq. A p × p two-variable polynomial matrix Φ(ζ, η) is
called symmetric if Φ(ζ, η) = Φ�(η, ζ), or equivalently

1 Called bilinear differential form in Willems and Trentelman (1998).
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∗∗ Université Claude Bernard Lyon 1, CNRS, LAGEP, France
(e-mail: bernhard.maschke@univ-lyon1.fr)

Abstract: As shown before, skew-adjoint linear differential operators, mapping efforts into
flows, give rise to Dirac structures on a bounded spatial domain by a proper definition of
boundary variables. In the present paper this is extended to pairs of linear differential operators
defining a formally skew-adjoint relation between flows and efforts. Furthermore it is shown how
the underlying repeated integration by parts operation is streamlined by the use of two-variable
polynomial calculus. Dirac structures defined by formally skew adjoint operators together with
differential operator effort constraints are treated within the same framework. Finally it is
sketched how the approach can be also used for Lagrangian subspaces on bounded domains.

Keywords: Dirac structures, boundary control systems, two-variable polynomial matrices,
factorization, Lagrangian subspaces

1. INTRODUCTION

Dirac structures are an essential ingredient of port-
Hamiltonian systems theory; see e.g. van der Schaft and
Maschke (1995), van der Schaft and Jeltsema (2014), van
der Schaft (2017). They capture the power-conserving in-
terconnection structure in port-based modeling of com-
plex physical systems. Dirac structures for the modeling
of distributed parameter physical systems with bounded
spatial domain were first introduced in van der Schaft
and Maschke (2002). In the case of two coupled balance
laws the relation between the distributed flows and ef-
forts is given by a first-order differential operator. Using
Stokes’ theorem this leads to the definition of boundary
flows and efforts. The resulting Dirac structure, called the
Stokes-Dirac structure, involves the flows and efforts on
the spatial domain and the boundary flows and efforts on
the boundary of the spatial domain. In the case of lin-
ear distributed parameter systems and a one-dimensional
spatial domain consisting of a finite interval the Stokes-
Dirac structure was generalized in Le Gorrec et al. (2005).
Starting from a general skew-adjoint linear differential
operator, which is mapping the distributed efforts to the
distributed flows, boundary flows and efforts are defined
through repeated integration by parts. The present paper
generalizes the set-up considered in Le Gorrec et al. (2005)
to Dirac structures defined by pairs of linear differen-
tial operators relating the distributed flows and efforts.
Furthermore, instead of relying on ’brute force’ repeated
integration by parts, we utilize two-variable polynomial
calculus to define the boundary variables. This calcu-
lus was originally introduced in Willems and Trentelman
(1998) for optimization and dissipativity analysis of finite-
dimensional linear systems. It was also used for spectral
factorization Trentelman and Rapisarda (1999), while in
van der Schaft and Rapisarda (2011) it was shown how

this calculus admits to compute state maps from higher-
order differential equations (in time) in input and out-
put variables. In the present paper the time variable is
replaced by the (scalar) spatial variable, and state maps
become boundary maps, defining the boundary variables
of the resulting Dirac structure. Furthermore it is shown
how this construction can be extended to the definition
of differential operator Lagrangian subspaces on spatial
domains with boundary.

2. RECALL OF TWO-VARIABLE POLYNOMIAL
MATRIX CALCULUS

In this section we will recall some relevant basics of two-
variable polynomial calculus from Willems and Trentel-
man (1998); see also Trentelman and Rapisarda (1999);
van der Schaft and Rapisarda (2011). A p× q two-variable
polynomial matrix Φ(ζ, η) is an expression in two indeter-
minates ζ and η of the form

Φ(ζ, η) :=
M∑

k,l=0

Φk,lζ
kηl (1)

for certain p×q matrices Φk,l. The infinite matrix Φ̃ whose
(k, l)-th block is the matrix Φk,l, k, l = 0, . . . ,M, and is
zero everywhere else, is called the coefficient matrix of
Φ(ζ, η). Associated to Φ(ζ, η) and its coefficient matrix

Φ̃ is the bilinear differential operator 1 DΦ defined as

DΦ(v, w)(z) =

M∑
k,l=0

[
dk

dzk
v(z)

]�
Φk,l

dl

dzl
w(z), (2)

acting on vector-valued functions v : R → Rp, w : R →
Rq. A p × p two-variable polynomial matrix Φ(ζ, η) is
called symmetric if Φ(ζ, η) = Φ�(η, ζ), or equivalently

1 Called bilinear differential form in Willems and Trentelman (1998).

Differential operator Dirac structures

Arjan van der Schaft, Bernhard Maschke ∗∗

Bernoulli Institute for Mathematics, Computer Science and AI,
Jan C. Willems Center for Systems and Control,

University of Groningen, the Netherlands
(e-mail: a.j.van.der.schaft@rug.nl)
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its coefficient matrix Φ̃ is symmetric, and defines the
quadratic differential operator DΦ(v, v)(z), cf. Willems
and Trentelman (1998).

An important fact in the calculus of bilinear differential
operators is the following, cf. Willems and Trentelman
(1998). The derivative of a bilinear differential operator
DΦ defines another bilinear differential operator

d

dz
(DΦ(v, w)) (z) =: DΨ(v, w)(z) , (3)

where Ψ(ζ, η) is the p× q two-variable polynomial matrix

Ψ(ζ, η) = (ζ + η)Φ(ζ, η) (4)

This equality is the two-variable polynomial matrix version
of the product rule of differentiation, or (in integral form)
of ’integration by parts’.

Any p × q two-variable polynomial matrix Φ(ζ, η) can be
factorized as a product Φ(ζ, η) = X(ζ)�Y (η) of (single-
variable) polynomial matrices X(ζ) (of dimension k ×
p) and Y (η) (of dimension k × q). Such a factorization
corresponds in a one-to-one manner to a factorization

Π̃ = X̃�Ỹ of the coefficient matrix Φ̃ of Φ(ζ, η). Here

X̃, Ỹ are coefficient matrices of X(ζ) and Y (η): let X(ζ) =∑M
k=0 Xkζ

k then X̃ is the infinite row matrix with k-th

block given by Xk, k = 0, 1, · · · ,M , and similarly for Ỹ .

Proposition 1. Let Φ ∈ Rp×q(ζ, η), with Φ̃ its coefficient
matrix. Any factorization Φ(ζ, η) = X(ζ)�Y (η) corre-

sponds to a factorization Φ̃ = X̃�Ỹ , where X̃, Ỹ are the
coefficient matrices of X(ζ), respectively Y (η).

Factorizations which correspond to the minimal value

k = rank(Φ̃), are called minimal. They are unique up to
premultiplication by a nonsingular matrix (Willems and
Trentelman (1998), Trentelman and Rapisarda (1999)).

3. DIFFERENTIAL OPERATOR DIRAC
STRUCTURES OVER THE INFINITE SPATIAL

DOMAIN

Consider a finite-dimensional linear space F := Rm; called
the flow space, with elements denoted by f . Consider the
dual space E = F∗; called the effort space, with elements
denoted by e. Denote the duality product between F and
E by < e|f >. Identifying f ∈ F and e ∈ E with vectors
f, e ∈ Rm obviously < e|f >= e�f . Then the bond space
B = F × E is endowed with the symmetric bilinear form

< (f1, e1), (f2, e2) >:=< e1|f2 > + < e2|f1 > , (5)

which has the matrix representation

Qe =

[
0m Im

Im 0m

]
. (6)

Note that Qe has singular values +1 and −1, both with
multiplicitym. Hence the bilinear form< ·, · > is indefinite
and symmetric, as well as non-degenerate. Furthermore, <
·, · > gives rise to the following symmetric bilinear form on
the set C∞(R,F×E) of smooth functions (f, e) : R → F×E
with compact support:

〈〈(f1, e1), (f2, e2)〉〉 :=∫ ∞

−∞
< (f1(z), e1(z)), (f2(z), e2(z)) > dz

(7)

This is a non-degenerate form on C∞(R,F×E), in the sense
that if 〈〈(f1, e1), (f2, e2)〉〉 = 0 for all compact support
(f1, e1), then (f2, e2) = 0. A subspace D of the space
of functions (f, e) : R → F × E of compact support is
called a Dirac structure if D = D⊥⊥ where ⊥⊥ denotes the
orthogonal companion with respect to the form 〈〈·, ·〉〉.
Equivalently, D is a Dirac structure if 〈〈·, ·〉〉 is zero
restricted to D, and moreover D is maximal with respect
to this property.

We will show that such infinite dimensional Dirac struc-
tures can be generated by pairs of linear differential oper-
ators 2 . Indeed, consider systems of differential equations
over the spatial domain R given by

F (
d

dz
)f(z) + E(

d

dz
)e(z) = 0, z ∈ R, (8)

where F ( d
dz ) and E( d

dz ) are square linear differential
operators. Denote the corresponding m × m polynomial
matrices by F (s) and E(s) in the indeterminate s. Now
let F (s) and E(s) satisfy

[E(s) F (s)]

[
0m Im

Im 0m

][
E�(−s)

F�(−s)

]
= 0, ∀s ∈ C, (9)

together with the maximal rank assumption

rank [F (s) E(s)] = m, ∀s ∈ C (10)

Hence

ker [F (s) E(s)] = im

[
E�(−s)

F�(−s)

]
, ∀s ∈ C (11)

As a result the kernel representation (8) of SD can be
equivalently replaced by the image representation

[
f(z)

e(z)

]
=



E�(− d

dz
)

F�(− d

dz
)


 �(z), (12)

with vector of latent variables �(z) ∈ Rm ranging through
the set of C∞ functions. Furthermore, it follows from
Willems and Trentelman (1998); van der Schaft and Rapis-
arda (2011) 3 that the set SD of solutions with compact
support of (8) satisfies∫ ∞

−∞
< (f1(z), e1(z)), (f2(z), e2(z)) > dz = 0 (13)

for all (f1, e1), (f2, e2) ∈ SD. Hence SD ⊂ S⊥⊥
D . Further-

more, assuming for the moment that the rational matrix
G(s) := −E−1(s)F (s) is proper, it follows from standard
linear system realization theory that the behavior SD is
generated by a minimal ’state’ space system of the form

d

dz
b(z) = Ab(z) +Bf(z)

e(z) = Cb(z) +Df(z)
(14)

with ’state’ vector b(z) ∈ Rn, where n is the McMillan de-
gree of G(s), and A,B,C,D are appropiately dimensioned
matrices. Here ’state’ has been denoted with quotation
marks, since actually b corresponds to the boundary vector
of the behavior S as we will see in the next section. (In or-
dinary realization theory the spatial variable z is replaced
by the time variable t.) Then, following the techniques

2 An abstract algebraic theory about Dirac structures defined by
pairs of differential operators can be found in Dorfman (1993).
3 Here the spatial variable z ∈ R is replaced by the time variable t.
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quadratic differential operator DΦ(v, v)(z), cf. Willems
and Trentelman (1998).

An important fact in the calculus of bilinear differential
operators is the following, cf. Willems and Trentelman
(1998). The derivative of a bilinear differential operator
DΦ defines another bilinear differential operator

d

dz
(DΦ(v, w)) (z) =: DΨ(v, w)(z) , (3)

where Ψ(ζ, η) is the p× q two-variable polynomial matrix

Ψ(ζ, η) = (ζ + η)Φ(ζ, η) (4)

This equality is the two-variable polynomial matrix version
of the product rule of differentiation, or (in integral form)
of ’integration by parts’.

Any p × q two-variable polynomial matrix Φ(ζ, η) can be
factorized as a product Φ(ζ, η) = X(ζ)�Y (η) of (single-
variable) polynomial matrices X(ζ) (of dimension k ×
p) and Y (η) (of dimension k × q). Such a factorization
corresponds in a one-to-one manner to a factorization

Π̃ = X̃�Ỹ of the coefficient matrix Φ̃ of Φ(ζ, η). Here

X̃, Ỹ are coefficient matrices of X(ζ) and Y (η): let X(ζ) =∑M
k=0 Xkζ

k then X̃ is the infinite row matrix with k-th

block given by Xk, k = 0, 1, · · · ,M , and similarly for Ỹ .

Proposition 1. Let Φ ∈ Rp×q(ζ, η), with Φ̃ its coefficient
matrix. Any factorization Φ(ζ, η) = X(ζ)�Y (η) corre-

sponds to a factorization Φ̃ = X̃�Ỹ , where X̃, Ỹ are the
coefficient matrices of X(ζ), respectively Y (η).

Factorizations which correspond to the minimal value

k = rank(Φ̃), are called minimal. They are unique up to
premultiplication by a nonsingular matrix (Willems and
Trentelman (1998), Trentelman and Rapisarda (1999)).

3. DIFFERENTIAL OPERATOR DIRAC
STRUCTURES OVER THE INFINITE SPATIAL

DOMAIN

Consider a finite-dimensional linear space F := Rm; called
the flow space, with elements denoted by f . Consider the
dual space E = F∗; called the effort space, with elements
denoted by e. Denote the duality product between F and
E by < e|f >. Identifying f ∈ F and e ∈ E with vectors
f, e ∈ Rm obviously < e|f >= e�f . Then the bond space
B = F × E is endowed with the symmetric bilinear form

< (f1, e1), (f2, e2) >:=< e1|f2 > + < e2|f1 > , (5)

which has the matrix representation

Qe =

[
0m Im

Im 0m

]
. (6)

Note that Qe has singular values +1 and −1, both with
multiplicitym. Hence the bilinear form< ·, · > is indefinite
and symmetric, as well as non-degenerate. Furthermore, <
·, · > gives rise to the following symmetric bilinear form on
the set C∞(R,F×E) of smooth functions (f, e) : R → F×E
with compact support:

〈〈(f1, e1), (f2, e2)〉〉 :=∫ ∞

−∞
< (f1(z), e1(z)), (f2(z), e2(z)) > dz

(7)

This is a non-degenerate form on C∞(R,F×E), in the sense
that if 〈〈(f1, e1), (f2, e2)〉〉 = 0 for all compact support
(f1, e1), then (f2, e2) = 0. A subspace D of the space
of functions (f, e) : R → F × E of compact support is
called a Dirac structure if D = D⊥⊥ where ⊥⊥ denotes the
orthogonal companion with respect to the form 〈〈·, ·〉〉.
Equivalently, D is a Dirac structure if 〈〈·, ·〉〉 is zero
restricted to D, and moreover D is maximal with respect
to this property.

We will show that such infinite dimensional Dirac struc-
tures can be generated by pairs of linear differential oper-
ators 2 . Indeed, consider systems of differential equations
over the spatial domain R given by

F (
d

dz
)f(z) + E(

d

dz
)e(z) = 0, z ∈ R, (8)

where F ( d
dz ) and E( d

dz ) are square linear differential
operators. Denote the corresponding m × m polynomial
matrices by F (s) and E(s) in the indeterminate s. Now
let F (s) and E(s) satisfy

[E(s) F (s)]

[
0m Im

Im 0m

][
E�(−s)

F�(−s)

]
= 0, ∀s ∈ C, (9)

together with the maximal rank assumption

rank [F (s) E(s)] = m, ∀s ∈ C (10)

Hence

ker [F (s) E(s)] = im

[
E�(−s)

F�(−s)

]
, ∀s ∈ C (11)

As a result the kernel representation (8) of SD can be
equivalently replaced by the image representation

[
f(z)

e(z)

]
=



E�(− d

dz
)

F�(− d

dz
)


 �(z), (12)

with vector of latent variables �(z) ∈ Rm ranging through
the set of C∞ functions. Furthermore, it follows from
Willems and Trentelman (1998); van der Schaft and Rapis-
arda (2011) 3 that the set SD of solutions with compact
support of (8) satisfies∫ ∞

−∞
< (f1(z), e1(z)), (f2(z), e2(z)) > dz = 0 (13)

for all (f1, e1), (f2, e2) ∈ SD. Hence SD ⊂ S⊥⊥
D . Further-

more, assuming for the moment that the rational matrix
G(s) := −E−1(s)F (s) is proper, it follows from standard
linear system realization theory that the behavior SD is
generated by a minimal ’state’ space system of the form

d

dz
b(z) = Ab(z) +Bf(z)

e(z) = Cb(z) +Df(z)
(14)

with ’state’ vector b(z) ∈ Rn, where n is the McMillan de-
gree of G(s), and A,B,C,D are appropiately dimensioned
matrices. Here ’state’ has been denoted with quotation
marks, since actually b corresponds to the boundary vector
of the behavior S as we will see in the next section. (In or-
dinary realization theory the spatial variable z is replaced
by the time variable t.) Then, following the techniques

2 An abstract algebraic theory about Dirac structures defined by
pairs of differential operators can be found in Dorfman (1993).
3 Here the spatial variable z ∈ R is replaced by the time variable t.
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exploited in van der Schaft and Polyuga (2009) (again in
a time-domain setting), it follows that actually S⊥⊥

D ⊂ SD,
thus yielding equality S⊥⊥

D = SD, proving that the solution
set SD of (8) is actually a Dirac structure.

Proposition 2. Consider F (s), E(s) satisfying (9) and (10).
Let SD be the set of smooth solutions of (8) with compact
support within the spatial domain R. Then SD is a Dirac
structure with respect to the bilinear form (7).

Note furthermore that by (9) the ’transfer matrix’ G(s)
satisfies G(s) = −G�(−s). Therefore the system (47) is
cyclo-lossless in the sense that there exists an invertible
matrix Σ = Σ� satisfying

A�Σ+ ΣA = 0, B�Σ = C, D = −D� (15)

Hence by defining the skew-symmetric matrix J := AΣ−1

the system (47) can be rewritten into port-Hamiltonian
form

d

dz
b(z) = JΣ b(z) +Bf(z)

e(z) = B�Σ b(z) +Df(z)
(16)

with Hamiltonian 1
2b

�Σb. In case G(s) is not proper, the
same results continue to hold. This follows from the fact,
see Bloch & Crouch (1999); van der Schaft and Jeltsema
(2014) for the constant case, that there always exists a
partitioning {1, · · · , n} = I ∪ Ic such that by defining the

polynomial matrix F̂ (s) as the matrix with k-th column
given by the k-th column of F (s) whenever k ∈ I, and
equal to the k-th column of E(s) whenever k ∈ Ic, and

similarly Ê(s) as the matrix with k-th column given by
the k-th column of E(s) whenever k ∈ I, and equal to

the k-th column of F (s) whenever k ∈ Ic, then Ĝ(s) =

−Ê−1(s)F̂ (s) is proper. Hence by realization theory we
obtain a system as in (47) with inputs fk, k ∈ I, ek, k ∈ Ic,
and outputs ek, k ∈ I, fk, k ∈ Ic.

4. DIFFERENTIAL OPERATOR DIRAC
STRUCTURES OVER A BOUNDED INTERVAL

In this section we will show how the Dirac structure
SD over the infinite spatial domain R turns into a new
Dirac structure when restricting to any finite spatial do-
main [α, β] ⊂ R, involving boundary variables at the
end points α, β. This idea was first introduced in the
context of Stokes-Dirac structures on a bounded domain
(for arbitrary dimensions) in van der Schaft and Maschke
(2002). Subsequently this was extended in Le Gorrec et
al. (2005) to Dirac structures on a finite interval induced
by skew-adjoint linear differential operators. The present
paper extends this to Dirac structures induced by pairs
of linear differential operators F ( d

dz ), E( d
dz ) on a finite

interval, satisfying (9), (10). Furthermore, the treatment is
extended and simplified by the use of two-variable polyno-
mial matrix calculus. In fact, the mathematics employed
in this section is similar to the one in van der Schaft and
Rapisarda (2011).

Consider the differential operators F ( d
dz ) and E( d

dz ) sat-
isfying (9) and (10), defining a differential operator Dirac
structure over R. Obviously (9) is the same as

F (s)E�(−s) + E(s)F�(−s) = 0 (17)

It follows that the two variable expression F (ζ)E�(η) +
E(ζ)F�(η) is zero for ζ+η = 0, and thus, cf. Willems and
Trentelman (1998); van der Schaft and Rapisarda (2011),

F (ζ)E�(η) + E(ζ)F�(η) = (ζ + η)Π(ζ, η) (18)

for some two-variable symmetric polynomial matrix Π(ζ, η).
By using the theory of factorization of two-variable poly-
nomial matrices, cf. Section 2, it follows that we can write

Π(ζ, η) = Z�(ζ)ΣZ(η) (19)

for some polynomial matrix Z(s) and invertible symmetric
matrix Σ. Hence, following the developments in van der
Schaft and Rapisarda (2011), the differential operator
Z( d

dz ) defines a minimal boundary map such that b(z)
in(16) is determined as

b(z) = Z(
d

dz
)�(z), (20)

where �(z) is the vector of latent variables of the image
representation (12).

Proposition 3. Consider F ( d
dz ), E( d

dz ) satisfying (9), (10).
Consider the factorization (18), (19), (20). Then for any
α, β ∈ R the space of functions f(z), e(z), z ∈ [α, β], and
vectors b(α), b(β), which are solutions of

[
f(z)

e(z)

]
=



E�(− d

dz
)

F�(− d

dz
)


 �(z),

b(α) = Z(
d

dz
) �(α), b(β) = Z(

d

dz
) �(β),

(21)

defines a Dirac structure with respect to the bilinear form∫ β

α

< (f1(z), e1(z)), (f2(z), e2(z)) > dz

− b�1 (β)Σ b2(β) + b�1 (α)Σ b2(α)

(22)

Note that by using two-variable polynomial calculus we
do not have to rely on the ’state’ space realization of the
’transfer’ matrix G(s), but we may directly construct the
’state’ b(z) and the matrix Σ in (16) from the factorization
(18); mirroring the treatment (in the time-domain!) in van
der Schaft and Rapisarda (2011). In particular, we do not

have to rely on G(s) (or Ĝ(s)) being proper.

A special case is provided by formally skew-adjoint dif-
ferential operators, corresponding to E(s) = Im (hence
e(z) = �(z)), and F�(s) = −F (−s).

Example 4. (Stokes-Dirac structure). The simplest exam-
ple of a differential operator Dirac structure is the one
defined by the formally skew-adjoint differential operator

F (s) =

[
0 s

s 0

]
, E(s) =

[
1 0

0 1

]
(23)

In this case (18) amounts to

F (ζ) + F�(η) = (ζ + η)

[
0 1
1 0

]
, (24)

with Σ =

[
0 1
1 0

]
and boundary map Z(s) =

[
1 0
0 1

]
.

This is the scalar spatial domain version of the Stokes-
Dirac structure introduced in van der Schaft and Maschke
(2002).

Remark 5. The Stokes-Dirac structure as introduced in
van der Schaft and Maschke (2002) is defined on spatial

domains of arbitrary dimension, by replacing the scalar
spatial differentiation d

dz by the exterior derivative d. Sim-
ilarly, much of the theory developed in the present paper
can be extended to higher-dimensional spatial domains by
replacing d

dz by d, and considering polynomials in d.

A very important case in the definition of the boundary
variables b(z) occurs if Σ has as many positive singular
values as negative singular values. In this case we can
always take Σ to be in the canonical form

Σ =

[
0 Ip

Ip 0

]
, 2p = n (25)

Then by denoting[
fδ
eδ

]
:= b(z) = Z(

d

dz
)�(z), fδ, eδ ∈ Rp, (26)

we have

e�1 f2 + e�2 f1 =
d

dz

(
e�δ1fδ2 + e�δ2fδ1

)
(27)

Equation (27) has an immediate interpretation in terms of
power balance. Indeed, in integral form it amounts∫ β

α

e�1 (z)f2(z) + e�2 (z)f1(z)dz =

e�δ1(β)fδ2(β)+e�δ2(β)fδ1(β)−e�δ1(α)fδ2(α)−e�δ2(α)fδ1(α)
(28)

for any interval [α, β] ⊂ R. In particular, by taking f :=
f1 = f2, e := e1 = e2, fδ := fδ1 = fδ2, eδ := eδ1 = eδ2, this
implies the power balance∫ β

α

e�(z)f(z)dz = e�δ (β)fδ(β)− e�δ (α)fδ(α), (29)

where the left-hand side is the incoming power on the
interval (α, β), and the right-hand side is the difference
of the outgoing power at the right-end β and the outgoing
power at the left-end α. The variables fδ, eδ are called
boundary power variables, since e�δ fδ equals power.

The condition that Σ has as many positive as negative
singular values can be verified as follows. Consider the
two-variable polynomial matrix Π(ζ, η) in (18) obtained
from dividing F (ζ)E�(η) + E(ζ)F�(η) by ζ + η. Then

Proposition 6. (Trentelman and Rapisarda (1999)). (Prop.
2.1) Σ has as many positive as negative singular values if

and only if the coefficient matrix Π̃ of Π(ζ, η) has.

Remark 7. This should be compared with the approach
taken in Le Gorrec et al. (2005), where boundary variables
similar to fδ, eδ are defined in general. However, this is
enforced at the expense of ’mixing’ the values at the
left boundary α and the right boundary β; in this way
extending the matrix Σ to a matrix of double dimension[
Σ 0
0 −Σ

]
, which always has as many positive as negative

singular values.

The boundary map b(z) = Z( d
dz )�(z) can be given the

following interpretation. Consider f1(z), e1(z) satisfying
(8) on an interval [α, γ] and f2(z), e2(z) satisfying (8) on an
interval [γ, β]. When does the concatenation of f1(z), e1(z)
and f2(z), e2(z), i.e., f, z on [α, β] defined as

f(z) = f1(z), z ∈ [α, γ), f(z) = f2(z), z ∈ (γ, β]

e(z) = e1(z), z ∈ [α, γ), e(z) = e2(z), z ∈ (γ, β]

satisfy (8) on [α, β] in a weak sense? This holds if and only
if

b1(γ) = b2(γ), bi(z) = Z(
d

dz
)

[
fi(z)
ei(z)

]
, i = 1, 2 (30)

Thus in general b(γ) provides exactly the information
needed to extend a solution f(z), e(z) on an interval [α, γ]
to a larger interval [α, β]. This has been discussed in more
detail in the related context of linear partial differential
equations involving both spatial and time variables in van
der Schaft and Rapisarda (2013).

4.1 Differential operator effort constraints

Another interesting case to be considered concerns differ-
ential operator Dirac structures arising from skew-adjoint
differential operators and differential operator constraints
on the effort variables e. This case is well-motivated from
an applications point of view. Let J( d

dz ) be a linear differ-
ential operator which is formally skew adjoint, i.e., J(s) =
−J�(−s). Consider the linear space of functions f(z), e(z)
satisfying the implicit set of differential equations

{(f(z), e(z)) | ∃λ(z) such that

f(z) = J(
d

dz
)e(z) +G�(− d

dz
)λ(z), G(

d

dz
)e(z) = 0}

(31)
where G( d

dz ) is a linear differential operator representing

the effort constraints G( d
dz )e(z) = 0. The vector λ(z)

represents a vector of Lagrange multiplier functions. For
any such fi(z), ei(z), i = 1, 2, belonging to the set (31) for
some λi(z), i = 1, 2, we compute

< (f1(z), e1(z)), (f2(z), e2(z)) >=

f1(z)
�e2(z) + e1(z)

�f2(z) =

e�2 [J(
d

dz
)e1 +G�(− d

dz
)λ1] + e�1 [J(

d

dz
)e2 +G�(− d

dz
)λ2]

= e�2 J(
d

dz
)e1 + e�1 J(

d

dz
)e2+

e�2 G
�(− d

dz
)λ1 + e�1 G

�(− d

dz
)λ2

(32)
The integral of the term e�2 J(

d
dz )e1 + e�1 J(

d
dz )e2 over

any finite interval [α, β] can be computed as follows.
Integration by parts and use of J(s) = −J�(−s) yields

∫ β

α

[e2(z)
�J(

d

dz
)e1(z) + e1(z)

�J(
d

dz
)e2(z)]dz =

[ZJ(
d

dz
)e1(z)]

�ΠJZJ(
d

dz
)e2(z)|βα,

(33)

where the differential operator ZJ(
d
dz ) and the matrix ΣJ

are obtained by the two-variable polynomial factorization

J(ζ) + J�(η) = (ζ + η)Z�
J (ζ)ΣJZ(η) (34)

Analogously, the integral of e�2 G
�(− d

dz )λ1+e�1 G
�(− d

dz )λ2

over [α, β] yields by integration by parts
∫ β

α

[e�2 G
�(− d

dz
)λ1 + e�1 G

�(− d

dz
)λ2]dz =

[ZG(
d

dz
)e2(z)]

�ΠGVG(
d

dz
)λ1(z)+

[ZG(
d

dz
)e1(z)]

�ΠGVG(
d

dz
)λ2(z)|βα,

(35)
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domains of arbitrary dimension, by replacing the scalar
spatial differentiation d

dz by the exterior derivative d. Sim-
ilarly, much of the theory developed in the present paper
can be extended to higher-dimensional spatial domains by
replacing d

dz by d, and considering polynomials in d.

A very important case in the definition of the boundary
variables b(z) occurs if Σ has as many positive singular
values as negative singular values. In this case we can
always take Σ to be in the canonical form

Σ =

[
0 Ip

Ip 0

]
, 2p = n (25)

Then by denoting[
fδ
eδ

]
:= b(z) = Z(

d

dz
)�(z), fδ, eδ ∈ Rp, (26)

we have

e�1 f2 + e�2 f1 =
d

dz

(
e�δ1fδ2 + e�δ2fδ1

)
(27)

Equation (27) has an immediate interpretation in terms of
power balance. Indeed, in integral form it amounts∫ β

α

e�1 (z)f2(z) + e�2 (z)f1(z)dz =

e�δ1(β)fδ2(β)+e�δ2(β)fδ1(β)−e�δ1(α)fδ2(α)−e�δ2(α)fδ1(α)
(28)

for any interval [α, β] ⊂ R. In particular, by taking f :=
f1 = f2, e := e1 = e2, fδ := fδ1 = fδ2, eδ := eδ1 = eδ2, this
implies the power balance∫ β

α

e�(z)f(z)dz = e�δ (β)fδ(β)− e�δ (α)fδ(α), (29)

where the left-hand side is the incoming power on the
interval (α, β), and the right-hand side is the difference
of the outgoing power at the right-end β and the outgoing
power at the left-end α. The variables fδ, eδ are called
boundary power variables, since e�δ fδ equals power.

The condition that Σ has as many positive as negative
singular values can be verified as follows. Consider the
two-variable polynomial matrix Π(ζ, η) in (18) obtained
from dividing F (ζ)E�(η) + E(ζ)F�(η) by ζ + η. Then

Proposition 6. (Trentelman and Rapisarda (1999)). (Prop.
2.1) Σ has as many positive as negative singular values if

and only if the coefficient matrix Π̃ of Π(ζ, η) has.

Remark 7. This should be compared with the approach
taken in Le Gorrec et al. (2005), where boundary variables
similar to fδ, eδ are defined in general. However, this is
enforced at the expense of ’mixing’ the values at the
left boundary α and the right boundary β; in this way
extending the matrix Σ to a matrix of double dimension[
Σ 0
0 −Σ

]
, which always has as many positive as negative

singular values.

The boundary map b(z) = Z( d
dz )�(z) can be given the

following interpretation. Consider f1(z), e1(z) satisfying
(8) on an interval [α, γ] and f2(z), e2(z) satisfying (8) on an
interval [γ, β]. When does the concatenation of f1(z), e1(z)
and f2(z), e2(z), i.e., f, z on [α, β] defined as

f(z) = f1(z), z ∈ [α, γ), f(z) = f2(z), z ∈ (γ, β]

e(z) = e1(z), z ∈ [α, γ), e(z) = e2(z), z ∈ (γ, β]

satisfy (8) on [α, β] in a weak sense? This holds if and only
if

b1(γ) = b2(γ), bi(z) = Z(
d

dz
)

[
fi(z)
ei(z)

]
, i = 1, 2 (30)

Thus in general b(γ) provides exactly the information
needed to extend a solution f(z), e(z) on an interval [α, γ]
to a larger interval [α, β]. This has been discussed in more
detail in the related context of linear partial differential
equations involving both spatial and time variables in van
der Schaft and Rapisarda (2013).

4.1 Differential operator effort constraints

Another interesting case to be considered concerns differ-
ential operator Dirac structures arising from skew-adjoint
differential operators and differential operator constraints
on the effort variables e. This case is well-motivated from
an applications point of view. Let J( d

dz ) be a linear differ-
ential operator which is formally skew adjoint, i.e., J(s) =
−J�(−s). Consider the linear space of functions f(z), e(z)
satisfying the implicit set of differential equations

{(f(z), e(z)) | ∃λ(z) such that

f(z) = J(
d

dz
)e(z) +G�(− d

dz
)λ(z), G(

d

dz
)e(z) = 0}

(31)
where G( d

dz ) is a linear differential operator representing

the effort constraints G( d
dz )e(z) = 0. The vector λ(z)

represents a vector of Lagrange multiplier functions. For
any such fi(z), ei(z), i = 1, 2, belonging to the set (31) for
some λi(z), i = 1, 2, we compute

< (f1(z), e1(z)), (f2(z), e2(z)) >=

f1(z)
�e2(z) + e1(z)

�f2(z) =

e�2 [J(
d

dz
)e1 +G�(− d

dz
)λ1] + e�1 [J(

d

dz
)e2 +G�(− d

dz
)λ2]

= e�2 J(
d

dz
)e1 + e�1 J(

d

dz
)e2+

e�2 G
�(− d

dz
)λ1 + e�1 G

�(− d

dz
)λ2

(32)
The integral of the term e�2 J(

d
dz )e1 + e�1 J(

d
dz )e2 over

any finite interval [α, β] can be computed as follows.
Integration by parts and use of J(s) = −J�(−s) yields

∫ β

α

[e2(z)
�J(

d

dz
)e1(z) + e1(z)

�J(
d

dz
)e2(z)]dz =

[ZJ(
d

dz
)e1(z)]

�ΠJZJ(
d

dz
)e2(z)|βα,

(33)

where the differential operator ZJ(
d
dz ) and the matrix ΣJ

are obtained by the two-variable polynomial factorization

J(ζ) + J�(η) = (ζ + η)Z�
J (ζ)ΣJZ(η) (34)

Analogously, the integral of e�2 G
�(− d

dz )λ1+e�1 G
�(− d

dz )λ2

over [α, β] yields by integration by parts
∫ β

α

[e�2 G
�(− d

dz
)λ1 + e�1 G

�(− d

dz
)λ2]dz =

[ZG(
d

dz
)e2(z)]

�ΠGVG(
d

dz
)λ1(z)+

[ZG(
d

dz
)e1(z)]

�ΠGVG(
d

dz
)λ2(z)|βα,

(35)
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where ZG(
d
dz ), VG(

d
dz ) and the matrix ΠG are obtained by

the two-variable polynomial factorization

G�(−η)−G�(ζ) = (ζ + η)Z�
G (ζ)ΠGVG(η) (36)

Thus two sources for boundary terms are arising. The first
one defined by ZJ(

d
dz ) and ΣJ , resulting from the formally

skew-adjoint linear differential operator J( d
dz ), and the

second defined by ZG(
d
dz ), VG(

d
dz ) and ΠG, resulting from

the effort constraints G( d
dz )e(z) = 0 in (31). By including

these boundary terms one then obtains a differential
operator Dirac structure on any spatial domain [α, β].

Proposition 8. Consider a formally skew-adjoint differen-
tial operator J( d

dz ) and a differential operator G( d
dz ) defin-

ing the effort constraints G( d
dz )e(z) = 0. Consider the two

variable polynomial factorizations (34), (36).
Then for any α, β ∈ R the space defined by (31) and the
boundary variables

bJ(z) = ZJ(
d

dz
)e(z)

bG(z) = ZG(
d

dz
)e(z), cG(z) = VG(

d

dz
)λ(z)

(37)

defines a Dirac structure with respect to the bilinear form∫ β

α

< (f1(z), e1(z)), (f2(z), e2(z)) > dz

− b�J1(β)ΣJ bJ2(β) + b�J1(α)ΣJ bJ2(α)

− b�G2(β)ΠG cG1(β) + b�G2(α)ΠG cG1(α)

− b�G1(β)ΠG cG2(β) + b�G1(α)ΠG cG2(α)

(38)

Furthermore, we conjecture that any differential operator
Dirac structure defined by a pair F ( d

dz ), E( d
dz ) as above

can be also represented as a differential operator Dirac
structure defined by a skew-adjoint operator J( d

dz ) and

some G( d
dz ); analogously to the finite-dimensional case

exposed in van der Schaft and Maschke (2018).

5. DIFFERENTIAL OPERATOR LAGRANGIAN
SUBSPACES

Consider again F × E , where E = F∗. In view of applica-
tions we will replace the notation F = Rm by X = Rm,
with X standing for a linear state space. In fact, in port-
Hamiltonian systems theory the flow space F is actually
the tangent space to the space of energy variables X . In the
present linear case F obviously can be identified with X .
Apart from the bilinear form < ·, · > in (5) there is another
canonically defined bilinear form on X × E , defined as

[(x1, e1), (x2, e2)] :=< e1|x2 > − < e2|x1 > , (39)

which has the matrix representation

Je =

[
0m Im
−Im 0m

]
(40)

As in the case of the bilinear form < ·, · >, the skew-
symmetric bilinear form [·, ·] with matrix representation Je
on X×E = R2m gives rise to the following bilinear form on
the set C(R,X ×E) of smooth functions (x, e) : R → X ×E
with compact support:

[[(x1, e1), (x2, e2)]] :=

∫ ∞

−∞
[(x1(z), e1(z)), (x2(z), e2(z))]dz

This is again a skew-symmetric non-degenerate form, in
the sense that if [[(x1, e1), (x2, e2)]] = 0 for all compact

support (x1, e1), then (x2, e2) = 0. Thus it defines a sym-
plectic form on C(R,X ×E). Recall that a subspace L of a
linear space V with symplectic form ω is called Lagrangian
if L = L⊥ where ⊥ denotes the orthogonal complement
with respect to the symplectic form ω. Equivalently, L is
Lagrangian if ω is zero when restricted to L, and more-
over L is maximal with respect to this property. This
leads to the following definition of a differential operator
Lagrangian subspace over the infinite spatial domain R.
Consider systems of differential equations over R given by

S�(− d

dz
)x(z) = P�(− d

dz
)e(z), z ∈ R, (41)

where P ( d
dz ) and S( d

dz ) are square linear differential opera-
tors. Denote the correspondingm×m polynomial matrices
by P (s) and S(s). Now let P (s) and S(s) satisfy

[
P�(−s) S�(−s)

]
[
0m Im

−Im 0m

][
P (s)

S(s)

]
= 0, ∀s ∈ C,

(42)
together with the maximal rank assumption

rank

[
P (s)
S(s)

]
= m, ∀s ∈ C (43)

Similar as before, it follows that

ker
[
−S�(−s) P�(−s)

]
= im

[
P (s)
S(s)

]
, (44)

and thus the kernel representation (41) can be replaced by
the image representation

[
x(z)

e(z)

]
=



P (

d

dz
)

S(
d

dz
)


 �(z) (45)

Furthermore, cf. van der Schaft and Rapisarda (2011), the
set SL of solutions with compact support of (41) satisfies∫ ∞

−∞
[(x1(z), e1(z)), (x2(z), e2(z))]dz = 0 (46)

for all (x1, e1), (x2, e2) ∈ SL. Hence SL ⊂ S⊥
L . By the same

reasoning as in the differential operator Dirac structure
case it follows that SL = S⊥

L , and thus SL is an infinite-
dimensional Lagrangian subspace.

Proposition 9. Consider P (s), S(s) satisfying (42) and
(43). Let SL be the set of smooth solutions of (41) with
compact support within R. Then SL is a Lagrangian sub-
space with respect to the bilinear form (7).

Also, assuming for the moment that the rational matrix
K(s) := −S−�(s)P�(s) is proper, it follows from standard
linear system realization theory that the behavior SL is
generated by a minimal ’state’ space system of the form

d

dz
c(z) = Ac(z) +Bx(z)

e(z) = Cc(z) +Dx(z)
(47)

with ’state’ vector c(z) ∈ Rn, where n is the McMillan
degree of K(s). Furthermore, by (42) the ’transfer matrix’
K(s) satisfies K(s) = K�(−s). Therefore the system (47)
is an input-output Hamiltonian system (van der Schaft and
Jeltsema (2014)) in the sense that there exists an invertible
matrix Ji = −J�

i satisfying

A�Ji + JiA = 0, B�Ji = C, D = D� (48)

In case K(s) is not proper, the results continue to hold
as before. By two-variable polynomial calculus the skew-
symmetric matrix Ji can be directly inferred from the fact
that by (42) P�(−s)S(s)− S�(−s)P (s) = 0, and thus

P�(ζ)S(η)− S�(ζ)P (η) = (ζ + η)WT (ζ)ΠW (η) (49)

for some polynomial matrix W (s) and full-rank skew-
symmetric matrix Π. Hence, without loss of generality
(note that this is fundamentally different from the Dirac
structure case!) we can take

Π =

[
0 Ip

−Ip 0

]
=: Ji (50)

Then by defining the image representation

[
x
e

]
=



P (

d

dz
)

S(
d

dz
)


 �,

[
xδ

eδ

]
= W (

d

dz
)�, (51)

we have

x�
1 e2 − x�

2 e1 =
d

dz

(
x�
δ1eδ2 − x�

δ2eδ1
)

(52)

Proposition 10. Consider P ( d
dz ), S(

d
dz ) satisfying (42), (43).

Consider the factorization (49), (50), (51). Then for any
α, β ∈ R the space of x(z), e(z), b(α), b(β) satisfying

[
x(z)

e(z)

]
=



P (

d

dz
)

S(
d

dz
)


 �(z), z ∈ [α, β]

[
xδ(α)

eδ(α)

]
= W (

d

dz
) �(α),

[
xδ(β)

eδ(β)

]
= W (

d

dz
) �(β)

(53)

defines a Lagrangian subspace with respect to∫ β

α

[(x1(z), e1(z)), (x2(z), e2(z))]dz

+x�
δ1(β)eδ2(β)− e�δ1(β)xδ2(β)

−x�
δ1(α)eδ2(α) + e�δ1(α)xδ2(α)

(54)

A special case of the above is provided by P (s) = Im
and S( d

dz ) a formally self-adjoint differential operator, i.e.,

S�(−s) = S(s). All of this will be further investigated
in Maschke and van der Schaft (2021). In particular, in
Maschke and van der Schaft (2021) the exposed theory of
differential operator Dirac structures will be combined with
the theory of differential operator Lagrangian subspaces
in order to give a general definition of port-Hamiltonian
systems defined by differential operators This combination
is based on coupling a differential operator Dirac structure
with elements (f(z, t), e(z, t)) with a differential operator
Lagrangian subspace with elements (x(z, t), e(z, t)) by
setting f(z, t) = −ẋ(z, t) ; in the spirit of the theory of
linear DAE port-Hamiltonian systems exposed in van der
Schaft and Maschke (2018), Beattie et al. (2017); see van
der Schaft and Maschke (2020) for the nonlinear extension.

6. CONCLUSIONS

It has been shown how, by using two-variable polynomial
matrix calculus, differential operator Dirac structures can
be defined on finite intervals, starting from general pairs of
linear differential operators defining a Dirac structure on
the whole real line. Of particular interest for applications is

the closely related class of Dirac structures with boundary
variables derived from formally skew-adjoint operators to-
gether with differential operator effort constraints. In order
that the boundary variables can be split into boundary
flow and effort variables an extra condition is identified on
the coefficient matrix of a two-variable polynomial matrix.
Using a different canonical bilinear form it is shown how
the same construction can be also used for the definition
of Lagrangian subspaces on bounded intervals.
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In case K(s) is not proper, the results continue to hold
as before. By two-variable polynomial calculus the skew-
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that by (42) P�(−s)S(s)− S�(−s)P (s) = 0, and thus

P�(ζ)S(η)− S�(ζ)P (η) = (ζ + η)WT (ζ)ΠW (η) (49)

for some polynomial matrix W (s) and full-rank skew-
symmetric matrix Π. Hence, without loss of generality
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structure case!) we can take

Π =
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linear DAE port-Hamiltonian systems exposed in van der
Schaft and Maschke (2018), Beattie et al. (2017); see van
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the whole real line. Of particular interest for applications is
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variables derived from formally skew-adjoint operators to-
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