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T
hermodynamics has been the subject of intense 
scientifi c debate throughout its long history (see 
“Summary”). The following famous quote from 
Albert Einstein’s autobiographical notes express-
es his admiration for the theory of classical, mac-

roscopic thermodynamics [1]: 
A theory is more impressive the greater the simplic-
ity of its premises, the more different things it re-
lates, and the more extended its area of applicability. 
Hence the deep impression that classical thermody-
namics made upon me. It is the only physical theory 
of universal content concerning which I am con-
vinced that, within the framework of the applicabil-
ity of its basic concepts, it will never be overthrown.
On the other hand, there are other (and less favorable) 

opinions. The eminent Russian mathematician Vladimir I. 
Arnold stated [2]

Every mathematician knows that it is impossible to 
understand any elementary course in thermody-
namics. The reason is that the thermodynamics is 
based,—as Gibbs has explicitly proclaimed—, on a 
rather complicated mathematical theory, on the con-
tact geometry.
Although Arnold attributed the difficulty in under-

standing thermodynamics to an inherent mathematical 
difficulty, others often criticized the imprecise and mathe-
matically outdated presentation of thermodynamics. The 
perhaps most salient opinion in this regard was expressed 
by the American mathematician and natural philosopher 
Clifford Truesdell, who described the formulation of the 
theory of thermodynamics as a “dismal swamp of obscu-
rity” [3, p. 6]. Quoting from [4], in a desperate attempt to try 
to make sense of the writings of De Groot et al., he (Trues-
dell) goes on to state that there is [5, p. 134] “something 
rotten in the (thermodynamic) state of the Low Countries.” 
Clearly, the author of the present article feels addressed by 
this last statement.

The purpose of this article is to make clear (and demystify) 
the basic concepts of classical thermodynamics from a sys-
tems and control perspective. The purpose is also to argue 
that systems and control theory provides a natural context 
for the formulation and understanding of classical thermo-
dynamics. This is not so surprising, as historically, classical 
thermodynamics is firmly rooted in (control) engineering 

problems such as the maximal efficiency of steam engines. 
Furthermore, thermodynamics deals from the very start 
with systems in interaction with their surroundings (by 
heat flow, mechanical work, and flow of matter). As shown 
later, there are many points of close contact between ther-
modynamics on the one hand and systems and control on 
the other. In particular, (cyclo-)dissipativity theory (as 
founded by Willems in [6], with thermodynamics as one of 
its motivations) is key to the formulation and interpretation 
of the first and second law of thermodynamics. Further-
more, it provides the right angle to the understanding of 
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the classical Carnot cycle, the interpretation of Clausius’ 
inequality, and a clear macros copic definition of entropy. 
Conversely, thermo dynamics motivates challenging control 
problems, such as the (maximal) conversion of one type of 
energy into another. Another emphasis of this article, in line 
with (nonlinear) geometric control, is the geometric (coordi-
nate-free) view on the state properties and dynamics of 
thermodynamic systems, thereby unifying different repre-
sentations and facilitating their structural analysis (such 
as controllability and observability). 

Thermodynamics also motivates paradigm shifts within 
systems and control; in particular, the use of nonminimal 
state-space formulations. Furthermore, although systems 
and control theory has been primarily based on linear 
systems with quadratic cost criteria (in line with basic 
system models in electrical and mechanical engineering, 
such as RLC-circuits and mass-spring-damper systems), 
thermodynamics necessitates going beyond this linear-
quadratic paradigm. Finally, from a direct control appli-
cations perspective, thermodynamics has always been 
important in chemical engineering and related areas. Deal-

ing with thermal behav-
ior is becoming highly 
important in many other 
advanced engineering 
problems as well (for 
example, thermal defor-
mations in high-precision 
systems, smart materials, 
and ge nera l  control 
problems in energy har-
vesting and conversion). 
Although the present 
article does not explicitly 
address such problems, 
it  paves the way for 
incorporating (in a nat-
ural and unified way) 
thermodynamics in sys-
tem s model i ng a nd 
cont rol  f ra mework s 
f o r  solving such con-
trol problems.

WHAT THIS ARTICLE IS NOT ABOUT
Thermodynamics is a theory relating many areas in the 
physical sciences, from gases, and chemical reactions, to radi-
ation [7]–[9] (in accordance with the aforementioned quote by 
Albert Einstein on the universality of thermodynamics). The 
present article is not about all these different application 
areas, and the presented examples are simple and do not
illustrate the power and intricacies of the theory when 
applied to complex physical situations. Instead, this article 
confines itself to the conceptual and mathematical structure 
of the theory of classical thermodynamics, as seen from a 

systems and control perspective. Furthermore, the article con-
centrates on macroscopic thermodynamics, without making 
any connection to statistical physics, or middle-ground theo-
ries, as in [10]. This is a part of the beauty and power of classi-
cal, macroscopic, thermodynamics: it can be presented as a 
self-contained theory, purely based on macroscopic quanti-
ties and the postulates of the first and second law. Only in 
“Other Views on Entropy” will the connections to other defi-
nitions of entropy be briefly noted. Moreover, the article is 
about the lumped-parameter case, although much is extend-
able to mesoscopic (that is, in between macroscopic and 
microscopic) thermodynamics. Also, no attempt was made to 
provide a balanced view of the large amount of literature on 
the subject (see [7], [9], and [10] for a wealth of references). 
Finally, the article reflects the author’s personal journey in 
understanding classical thermodynamics from a systems 
and control perspective, and as such inevitably presents a 
biased view on this multifaceted subject.

Basic Terminology
A possible obstacle in understanding classical thermody-
namics is the terminology used. This section aims to 
explain, in an informal manner and without claiming full 

Summary

From its very start, thermodynamics has been motivated 

by engineering questions such as the maximal efficien-

cy of engines for converting heat into work. Furthermore, 

thermodynamics considers systems that are in interaction 

with their surroundings by heat flow, mechanical work, flow 

of matter, and so on. Hence, it may not come as a surprise 

that classical, macroscopic thermodynamics can be natu-

rally understood from a systems and control perspective. In 

particular, the first and second laws of thermodynamics are 

rightfully formulated using cyclo-dissipativity theory, with 

energy and entropy appearing as storage functions. Next, 

the extensive variables, including energy and entropy, to-

gether with the intensive variables such as temperature 

and pressure, define a nonminimal state space, called the 

thermodynamic phase space. The constitutive properties 

of any thermodynamic system are specified by a subset of 

this thermodynamic phase space with natural geometric 

properties. Dynamics respects the geometry of the ther-

modynamic phase space and leaves invariant the subset 

specifying the constitutive properties. This geometrization 

is essential for the integration of thermodynamics within 

modern frameworks for modeling and control of complex 

multiphysics systems. In particular, it provides the theory 

for addressing advanced engineering problems in, for ex-

ample, high-precision systems, smart materials, chemical 

engineering, and general control problems in energy har-

vesting and conversion.

Authorized licensed use limited to: University of Groningen. Downloaded on March 14,2022 at 12:12:55 UTC from IEEE Xplore.  Restrictions apply. 



34  IEEE CONTROL SYSTEMS  »  OCTOBER 2021

Other Views on Entropy

In “The Second Law of Thermodynamics” section, the clas-

sical way of defining entropy (going back to Clausius and 

rooted in the Carnot cycle) is discussed. As shown, this defi-

nition of entropy (based on Clausius’ inequality) allows for a 

natural formulation within cyclo-dissipativity theory. Further-

more, the Carnot cycle has a control engineering motivation 

of optimal conversion of heat into work. Other developments 

within thermodynamics have moved away from this engineer-

ing background. A crucial development is the definition of 

entropy from a statistical and microscopic perspective (as 

given by Boltzmann and Gibbs and briefly discussed at the 

end of this section). Another approach, within classical ther-

modynamics, was initiated by Carathéodory and advocated 

by Born. The basic idea is as follows [S1]. Consider a simple 

thermodynamic system (the argument can be quite easily ex-

tended to more complicated situations). By the first law, it is 

known that there exists a function E(x) of the state x of the 

thermodynamic system that represents the stored energy. 

Consider the one-form

	 : .dE PdVb = + � (S1)

The considerations in “Carnot and Caloric Theory” demon-

strate that, in general, b is not an exact one-form (that is, 

there does not exist a state function Q, such that dQb = ). 

However, one can proceed as follows. Note that by the first 

law, b  evaluated at a tangent vector equals the heat flow 

q. The curves on the state space whose tangent (velocity) 

vectors at every point of the curve are in the kernel of b 

are called adiabatic curves. Next, replace the formulation 

of the second law of thermodynamics by Kelvin, as given 

in “The Second Law of Thermodynamics” section with the 

following alternative statement: “Near any state x, there ex-

ist arbitrarily close states that cannot be joined to x by an 

adiabatic curve.” By Carathéodory’s theorem on one-forms 

[S1], it follows that there exist functions of the state called 

S (entropy) and x, such that .dSb x=  Equating x with the 

absolute temperature T yields Gibbs’ fundamental relation, 

expressed by defining that the one-form

	 dE PdV TdS+ - � (S2)

is zero on the state space. Note, however, the differences 

with the definition of entropy by Clausius (as revealed in “The 

Second Law of Thermodynamics” section): 1) The alternative 

formulation of the second law is different from the classical 

formulation of the second law, as expressed by Kelvin (or the 

equivalent formulation given by Clausius [20]); 2) the heat flow 

in the Born–Carathéodory approach to thermodynamics is a 

derived concept (in contrast with the theory of Clausius as well 

as cyclo-dissipativity theory); and 3) irreversible thermody-

namics is not covered. 

Another view on entropy in macroscopic thermodynamics 

was advocated by Callen [S2] and followed up on by many 

others [11]. In it, the second law of thermodynamics is re-

placed by the following postulate about the existence of the 

entropy as a function of the state and the entropy maximum 

principle [S2]: 

There exists a function (called the entropy) of the exten-

sive variables of any composite system, defined for all 

states and having the following property: the values as-

sumed by the extensive variables in the absence of an 

internal constraint are those that maximize the entropy 

over the manifold of constrained states.

A basic illustration of this postulate is a composite sys-

tem consisting of two parts, with energies E1  and E2  that 

are constrained by the requirement that E E1 2+  is constant, 

together with the internal constraint that the wall between 

the two parts is nonconducting. The maximization of S over 

all E1  and E2  yields the values of E1  and ,E2  which are 

obtained when the two parts are connected by a conduct-

ing wall.

In statistical mechanics (outside the realm of macroscopic 

thermodynamics), entropy was defined by Ludwig Boltzmann. 

His definition can be motivated, in a very rudimentary way, 

as follows. Obviously, ( / )d dt S q$ /T  implies that the entropy 

of a thermodynamic system without external heat flow can 

only increase. On the other hand (in accordance with statisti-

cal considerations), it is plausible that, from a microscopic 

perspective, the (very high-dimensional) state will converge 

to the state of highest probability. This led Boltzmann to es-

tablish his fundamental relationship ,logS k r=  where π de-

notes the number of microscopic states corresponding to the 

macroscopic thermodynamic state, and k is the Boltzmann 

constant. Boltzmann’s definition of entropy inspired the defi-

nition of entropy in information theory, as given by Shannon. 

This provides another connection with systems and control 

theory. In general, control can be interpreted to entail two 

complementary aspects: 1) the shaping and routing of energy 

and 2) information gathering and processing. It is tempting to 

assume that thermodynamics may provide the key to unify 

both aspects.

Finally the work in [10] and its review [4] present a middle-

ground theory of thermodynamics (that is, a foundational 

framework, which is in between macroscopic and statistical 

thermodynamics). It is based on deterministic large-scale dy-

namical systems theory and dissipativity theory and aimed at 

rigorously defining entropy and its related notions, making use 

of equipartition concepts.

REFERENCES
[S1] P. Bamberg and S. Sternberg, A Course in Mathematics for Stu-
dents of Physics. New York: Cambridge Univ. Press, 1990.
[S2] H. Callen, Thermodynamics. New York: Wiley, 1960.
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correctness, some of this terminology to a systems and con-
trol audience (see [7], [9], and [11] for a much extensive back-
ground). First, a closed thermodynamic system is a system 
that does not exchange matter but can exchange energy 
(through heat or work) with its surroundings. If it can 
exchange both energy and matter, it is called an open 
system. A closed thermodynamic system that also does not 
exchange energy is called an isolated system. Thus, a gas 
confined in a closed vessel whose volume is controlled by a 
piston is a closed system, while it is an isolated system if it is 
thermally isolated and the piston does not perform work on 
the surroundings. Note that this is different from the termi-
nology in systems and control theory, where an isolated 
thermodynamic system is called a closed system and an open 
system if there is exchange with the surroundings (either by 
matter or energy flow). 

Variables that are proportional to the amount of matter are 
called extensive variables, and their value for the overall system 
is the summation of their values for the parts into which the 
system is divided. Extensive variables thus scale with the size 
of the system. Examples of extensive variables are volume, 
energy, and mass. In contrast, intensive variables are not matter 
dependent in nature and do not depend on the total size of the 
system. Examples of intensive variables are temperature, pres-
sure, and chemical potentials. One may draw analogies to elec-
trical network theory. The charge in a capacitor could be called 
an extensive variable, while the voltage is an intensive variable. 
Similarly, the momentum of a point mass would be an exten-
sive variable, while velocity is an intensive variable. There is 
also some relationship to the use of “through” and “across” 
variables in physical systems modeling. Across variables are 
similar to intensive variables, while the time integrals of 
through variables are extensive variables. 

Although intensive variables such as temperature and pres-
sure may spatially vary within the thermodynamic system, we 
will restrict our attention to thermodynamic systems, where 
the intensive variables are either spatially constant, or the spa-
tial domain can be split into a finite number of parts on each of 
which the intensive variables are constant. The first situation is 
often referred to as a homogeneous system and the second as a 
nonhomogeneous (or composite) system consisting of a number 
of homogeneous parts. Whenever intensive variables vary 
with the spatial position, distributed-parameter (partial differ-
ential equations) models are required (which is outside the 
scope of the present article). A state of equilibrium is character-
ized by the temperature and other intensive variables being 
uniform throughout the system. If the temperature and other 
intensive variables are not uniform but are well defined locally, 
this is often referred to as local equilibrium. This terminology is 
confusing since a local equilibrium is not an equilibrium in the 
sense of dynamics. In fact, local equilibria give rise to irreversible 
(or nonequilibrium) thermodynamics.

Thermodynamic systems whose intensive variables are a 
single temperature T and pressure P will be referred to in this 
article as simple thermodynamic systems. A typical example is a 

single-constituent gas in a container with volume V (an 
extensive variable of the system), where the variables ,V  ,P  
and T  are related through an equation ( , , ) ,f V P T 0=  called 
the equation of state. For example, an ideal gas satisfies the 
equation of state ,PV NRT=  with N being the number of 
moles of the gas and R representing the universal gas con-
stant. The thermodynamic processes or transformations of a 
simple thermodynamic system are the conversion of one 
state [that is, a triple (V, P, T) satisfying the equation of the 
state] to another. Thermodynamic processes are the result of 
an interaction with the surroundings (for example, a piston 
changing the volume, or the absorption of heat from an exter-
nal heat source). However, they may also be due to an inter-
nal local equilibrium (for example, two heat compartments 
with different temperatures connected by a conducting wall). 
A source of confusion in the exposition of thermodynamics is 
the use of terminology such as quasi-reversible, infinitesimally 
slow, or more recently, horse-carrot transformations. Remark 2 
argues that such terminology can be avoided from a systems 
and control perspective.

Notation
The notations in this article are fairly standard. Given a 
function X:H R"  for some n-dimensional manifold X  
(for example, ),Rn  denote by ( )( / )H x x2 2  the n-dimensional 
column vector of partial derivatives and by ( / )( )H x x2 2 <  the 
n-dimensional row vector of partial derivatives. Likewise, 
vectors v are column vectors, with v<  denoting its trans-
pose (a row vector).

THE FIRST LAW OF THERMODYNAMICS
The first law of thermodynamics expresses two fundamental 
properties: 1) The different types of interaction of a thermo-
dynamic system with its surroundings (for example, heat 
flow, mechanical work, or the flow of chemical species) all 
result in an exchange of a common quantity called energy. 2) 
There exists a function of the state of the thermodynamic 
system that represents the internal energy stored in the system, 
and the increase of this function during any time interval is 
the sum of the energies supplied to the system by the differ-
ent forms of interaction with the surroundings during this 
time interval (conservation of energy). Thus, energy may mani-
fest itself in different physical forms, which are equivalent, 
and to a certain extent, exchangeable. Note to a “certain extent” 
because a thermodynamic system cannot freely convert one 
form of energy into another. In fact, there are restrictions to 
this conversion expressed by the second law of thermody-
namics, as discussed in “The Second Law of Thermodynam-
ics” section.

Although the concept of energy may seem evident at 
this moment in the history of science, one should not 
underestimate the leap in abstraction that lies behind the 
formulation of the first law. Energy cannot be directly mea-
sured, unlike macroscopic thermodynamic quantities such 
as volume, pressure, and temperature. In particular, the 
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formulation of the equivalence of heat with other forms of 
energy took form rather late—around the middle of the 
19th century—slowly replacing the caloric theory of heat 
fluid. For a brief historical perspective on the birth of the 
first law, see [7 Ch. 2] and “Carnot and Caloric Theory.” 

How can the first law be expressed in a precise mathe-
matical formulation using dissipativity theory? Consider a 
simple thermodynamic system described by volume V, 
pressure P, and temperature T. The mechanical power (rate 
of mechanical work) provided by the surroundings to the 
thermodynamic system is given by ,PuV-  where :u VV = o  is 
the rate of volume change. The usual sign convention in 
thermodynamics for the pressure P follows the physics 
convention, where PuV  is the rate of mechanical work 
exerted by the system on the surroundings. Thus, the 
mechanical work done by the surroundings on the system 
during time interval [ , ]t t1 2  is

	 ( ) ( ) ( ) ( ) .P t u t dt P t dV t
t

t
V

t

t

1

2

1

2
- = -# # � (1)

The second type of interaction with the surroundings is 
through heat delivered to the system by a heat source. Denote 
by q the heat flow (heat per second) from the heat source 
into the system. The first law is expressed by the existence 
of a function E(x) of the thermodynamic state x [for exam-
ple, (V, P, T) satisfying the equation of state], such that along 
all the possible trajectories of the thermodynamic system,

	 ( ( )) ( ( )) ( ) ( ) ( )E x t E x t q t P t u t dtV
t

t
2 1

1

2
- = -6 @# � (2)

for all initial conditions ( )x t1  and all .t t1 2#  That is, the 
increase of the total energy E of the thermodynamic system 
is equal to the incoming heat flow (through the thermal 

port) minus the mechanical work performed by the system 
on its surroundings (through the mechanical port). Cyclo-
dissipativity theory (as explained in “Cyclo-Dissipativity 
Theory”) immediately yields the right formalism to express 
the first law of thermodynamics. Namely, the first law 
amounts to the system being cyclo-lossless for the supply rate 

( , , )s q P uV = ,q PuV-  with storage function E. Furthermore, 
in case E is bounded from below (and thus can be turned 
into a nonnegative storage function by adding a suitable 
constant), the thermodynamic system is lossless. Moreover, 
this could start from external cyclo-losslessness and then 
infer E as the unique (up to a constant) storage function. 
The formulation of the first law can be directly extended 
from simple thermodynamic systems to more involved 
ones; for example, if (apart from mechanical and thermal 
interaction with the surroundings) there is a mass inflow of 
chemical species, then the supply rate q PuV-  is extended 
to .q PuV k kkn oR- +  Here, ,/dN dtk ko =  with Nk  being the 
mole number of the kth chemical species and kn  represent-
ing its chemical potential [12].

By using energy as the lingua franca among different 
physical domains (such as mechanical, thermal, electrical, 
and chemical), the first law is at the heart of the modeling 
of complex multiphysics systems. The first law also empha-
sizes the role of multiphysics systems for energy conversion; 
energy from one physical domain can be converted into 
energy in another domain. Electrochemical devices (such 
as batteries) and electromechanical systems (such as elec-
trical motors and generators) are among the many other 
examples whose origins already date back to the 19th 
century or earlier [7]. A second wave of research interest 
in multiphysics systems based on the exchange of energy 
was initiated around the middle of the 20th century, with 

Carnot and Caloric Theory

Interestingly [7], [S3], Sadi Carnot started his investigations 

into the maximal efficiency of steam engines based on ca-

loric theory (instead of the first law). The scientists before him, 

like Benjamin Franklin [S3], believed that heat flows through 

material by some (almost) weightless caloric fluid and that the 

amount of caloric fluid is conserved. In the same spirit, Car-

not’s initial idea [S3] was that, just as water flows downhill, ca-

loric fluid flows from hot to cold, and the steam engine utilizes 

this caloric flow to produce work (just as a water wheel takes 

energy from falling water). As a consequence, Carnot originally 

believed that in his Carnot cycle, the amount of heat Qh  ab-

sorbed from the hot reservoir is equal to the amount of heat 

Qc-  released to the cold reservoir. It seems that he realized 

only later the fallacy of this idea [7]. By the time his work was 

made public (only in 1878; although Clapeyron used Carnot’s 

ideas in his description of the Carnot cycle in 1834, following 

Carnot’s death in 1832), the first law was already fully accepted 

(notably through the work of Joule and others; compare [7]). 

From a mathematical perspective (without worrying about 

the physics), suppose that the caloric fluid is conserved and 

there exists a function Q of the state of the thermodynamic 

system (Q being the amount of caloric stored in the system), 

such that ( / ) ,d dt qQ =  where q is the caloric (heat) flow. 

Then, if additionally the first law ( / )d dt E q PuV= -  holds, this 

would imply the existence of a third function W of the state, 

defined as :W E Q= -  and satisfying ( / ) .d dt W PuV= -  Said 

otherwise, the energy E would be the sum of two functions 

Q and W, which are storage functions for the supply rates q 

and ,PuV-  respectively. Typically, this can only be the case 

if the thermodynamic system consists of two separate parts: 

one for heat storage and one purely mechanical.

REFERENCE
[S3] M. Fowler, “Teaching heat: The rise and fall of caloric theory,” Univ. 
of Virginia, July 2003. [Online]. Available: http://galileoandeinstein 
.physics.virginia.edu/more_stuff/TeachingHeat.htm
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an emphasis on the development of unified mathemati-
cal modeling and simulation languages for multiphysics 
systems. This led to the theory of port-based modeling, 
bond graphs [13]–[15], and eventually, port-Hamiltonian 
systems [16]–[19].

Even though the first law emphasizes the lossless con-
version of one form of energy into another, it was realized 
from the very start of the development of thermodynamic 
theory that there are intrinsic limitations to this energy con-
version. In particular, that heat cannot simply be converted 
into mechanical work. This is the origin of the second law of 
thermodynamics, directly motivated by the design of steam 
engines. While the first law prohibits the existence of a per-
petuum mobile of the first kind (energy cannot be created), 
the second law prohibits the existence of a perpetuum 
mobile of the second kind (heat cannot be freely converted 
into mechanical work). This is the topic of the next section.

THE SECOND LAW OF THERMODYNAMICS
The cyclo-dissipativity interpretation of the second law of 
thermodynamics is much more involved than that of the 
first law. Note to begin with the formulation of the second 
law, as given by Lord Kelvin [20]:

A transformation of a thermodynamic system whose 
only final result is to transform into work heat ex-
tracted from a source which is at the same tempera-
ture throughout is impossible.

As the work done by the thermodynamic system during 
time interval [ , ]t t1 2  is equal to y y( ) ( ) ( ) ( )P t dV t P t u t dtt t

V1

2

1

2=t t

(where V uV=o  is the rate of volume change), Kelvin’s formu-
lation immediately implies that whenever the temperature 
is kept constant, any thermodynamic system is cyclo-passive
with respect to the supply rate .PuV-  Thus, for each con-
stant temperature T at its thermal port, any thermodynamic 
system is cyclo-passive at its mechanical port. However, the 
second law is stronger. Namely, Kelvin’s formulation also 
forbids the conversion into work of heat extracted from a 
source at constant temperature for all the transformations 
in which the system also interacts with a second heat source 
at a different temperature as long as the net heat taken from 
this second heat source is zero.

Carnot Cycle
The interaction with heat sources at different temperatures 
is crucial for the conversion of heat into mechanical work, as 
demonstrated by the famous Carnot cycle (due to Sadi Carnot, 
1824). It can be described as follows. Consider a simple ther-
modynamic system (for example, a gas) with volume V, pres-
sure P, and temperature T (interpreted as a heat engine). The 
system can be controlled in two ways: 1) via isothermal trans-
formations, where heat is supplied to (or taken from) the 
system at a constant temperature (classically described as the 
interconnection of the thermodynamic system with an infi-
nite heat reservoir at the temperature of the isothermal pro-
cess); and 2) via adiabatic transformations, where the only 

interaction with the surroundings is via work supplied to (or 
taken from) the system (classically described as the movement 
of a piston that changes the volume of the system, with a pres-
sure equal to the pressure of the gas). Note that although 
during adiabatic transformations there is no heat absorbed or 
expelled (but only mechanical work is done), in isothermal 
transformations, the thermodynamic system is interacting 
with the surroundings both by heat and mechanical work 
(but in such a way that the temperature remains constant). 

Consider a heat engine with two heat reservoirs: one at 
temperature Th (hot) and the other at temperature Tc

(cold), as in Figure 1. A cycle of the heat engine consists of 
two isothermal transformations and two adiabatic trans-
formations. First, an isothermal transformation at temper-
ature Th taking the system from an initial state to another 
state. Second, an adiabatic transformation lowering the 
temperature of the system to .Tc  Third, an isothermal 
transformation at temperature Tc  taking the system to 
another state. Fourth, an adiabatic transformation that 
takes the system back to its original, initial state (see 
Figure 2). Denote the heat supplied to the system during 
the first isothermal transformation at temperature Th  by 

,Qh and the heat supplied to the system during the other 
isothermal transformation at temperature Tc  by Qc  (in 
case heat is released from the system, this means that Qc  is 
negative). Such a cycle will be denoted by ( , ; , ) .Q T Q Th h c c

For cycle ( , ; , )Q T Q Th h c c  being a Carnot cycle, it is assumed 

Hot Reservoir
Th

Cold Reservoir
Tc

W

Qh –QcHeat
Engine

FIGURE 1 A heat engine with two heat reservoirs. 

P

V

W

Qh, Th

Qc, Tc

Isothermal
Expansion

Adiabatic
Expansion

Adiabatic
Compression

Isothermal
Compression

FIGURE 2 The Carnot cycle. 
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Cyclo-Dissipativity Theory

D issipativity theory originates from the seminal work of 

Willems [6], continued by Hill and Moylan [32] and others; 

see [19] for an updated and extended exposition. The notion 

of dissipativity was relaxed to cyclo-dissipativity in [S4] and 

further explored in [S5], with recent extensions in [S6]. In the 

present context of thermodynamics, it is appropriate to em-

phasize cyclo-dissipativity. Consider a system with vector of 

state variables Xx !  and vector of external variables Ww !  

(comprising the inputs u and outputs y). Furthermore, consider 

a supply rate : .Ws R"

Definition 14

A system is cyclo-dissipative (for supply rate s) if

	 ( ( )) 0s w t dt
t

t

1

2
$# � (S3)

for all t t2 1$  and all external trajectories w( ∙ ), such that 

( ) ( ) .x t x t2 1=  In case (S3) holds with equality, the system is 

cyclo-lossless. Furthermore, the system is cyclo-dissipative 

with respect to x)  if (S3) holds for all t t2 1$  and all external 

trajectories w( ∙ ), such that ( ) ( ) .x t x t x2 1= = )  Finally, it is cyclo-

lossless with respect to x)  if this holds with equality.

Interpreting s(w) as the “power” provided by the surround-

ings to the system, cyclo-dissipativity means that for any cyclic 

trajectory, the net amount of “energy” supplied to the system 

is nonnegative, and zero in the case of cyclo-losslessness. 

Hence, a cyclo-dissipative system cannot generate (but only 

dissipates) “energy” when returning to its initial state. In the 

special case of the supply rate ( , )s u y y u= <  (with the equally 

dimensioned vectors of inputs u and outputs y composing 

the vector of external variables w), “cyclo-dissipativity” is re-

ferred to as cyclo-passivity. Aside from the requirement that 

the state of the system follows a cyclic process, Definition 

14 entails an external characterization of cyclo-dissipativity. 

To relate this external characterization to the internal-state 

dynamics, dissipation (in)equality and storage function are 

introduced.

Definition 15

Given a supply rate s, a function :XF R"  is called a storage 

function if it satisfies the dissipation inequality

	 ( ( )) ( ( )) ( ( ))F x t F x t s w t dt
t

t
2 1

1

2
#- # � (S4)

for all ,t t2 1$  all initial conditions ( ),x t1  and all external trajec-

tories w( ∙ ) where ( )x t2  is the state at time t2  corresponding 

to initial condition ( )x t1  and external trajectory w( ∙ ). Equation 

(S4) with equality is called the dissipation equality. 

Interpreting as before ( )( )s w t  as “power” supplied to the 

system at time t, and ( )( )F x t  as stored “energy” while the sys-

tem is at state x(t), the existence of a storage function means 

that an increase of the stored energy can only occur due to 

externally supplied power. The following theorem [S6] extends 

the results in [S5] and shows the equivalence between the 

external characterization of cyclo-dissipativity and cyclo-loss-

lessness and the existence of storage functions.

Theorem 16

Consider a system with supply rate s. If there exists a storage 

function :XF R" , then the system is cyclo-dissipative. It is 

cyclo-lossless if F satisfies (S4) with equality. Assume that the 

system is reachable from some ground-state x)  and control-

lable to this same state x) . (It is immediate that this property 

is independent of the choice of x) .) Define the (possibly ex-

tended) functions :XF Rac " ,3  and :F X Rrc " ,3-  as

	

( ) ( ( )) ,

( ) ( ( )) ,

sup

inf

s

s

F x w t dt

F x w t dt

,
( ) , ( )

, |
( ) , ( )

ac
|

rc

T

T

T
T

T

T

w
x x x x

w
x x x x

0

0
0

0 0

0

= -

=
$

$
= =

- = =
-

)

)

#

#
�

(S5)

where the supremum and infimum are taken over all external 

trajectories w( ∙ ) and ,T 0$  satisfying ( ) , (T)x x x x0 = = )  and 

(respectively) ( , ( ) .T)x x x x0- = =)  Then, the system is cyclo-

dissipative with respect to x)  if and only if

	 ( ) ( ),  for all .XF x F x xac rc# ! � (S6)

Furthermore, if the system is cyclo-dissipative with respect to 

x) , then :XF Rac "  and : ,XF Rcr "  and they define the stor-

age functions (implying the system is cyclo-dissipative). Fur-

thermore, ( ) ( )F x F x 0ac rc= =) )  while any other storage function 

F satisfies

	 ( ) ( ) ( ) ( ) .F x F x F x F xac rc# #- )

If the system is cyclo- lossless with respect to x) , then 

( ) ( ), XF x F x xac rc !=  [implying uniqueness (up to a constant) of 

the storage function].

Note that the first statement of this theorem (the existence of 

a storage function implies cyclo-dissipativity) is obvious: Simply 

substitute ( ) ( )x t x t1 2=  into (S4). For the proof of the rest of this 

theorem, refer to [S6].

Apart from the cyclo-lossless case, the storage functions of 

dissipative systems are far from unique. The following proposi-

tion from [S6] ensures uniqueness by imposing a weakened 

form of cyclo-losslessness.

Proposition 17

Suppose that the system is reachable from and controllable to 

x)  and cyclo-dissipative with respect to x) . Assume addition-

ally that for every x, there exists a solution (xl( ∙ ), wl( ∙ )) on some 

time interval [ , ],T0 l  such that ( ) ( )Tx x x0l ll= = )  and ( )x xl x =  

for some [ , ]T0 l!x  satisfying
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	 ( ( )) .s w t dt 0
T

l
0

l

=# � (S7)

Then, ( ) ( )F x F xac rc=  for all ,Xx !  and the storage function is 

unique up to a constant and given by

	 ( ) ( ( )) ( ( )) ,F x s w t dt s w t dt
T

l l
0

l

= = -
x

x
# # � (S8)

where ( )x xl x =  and ( ) ( ) .Tx x x0l l l= = )

Note that (S7) means that the system is weakly cyclo-loss-

less with respect to x) , in the sense that for every x there exists 

at least one cyclic trajectory passing through x and x)  satis-

fying (S3) with equality. The other cyclic trajectories passing 

through x and x)  may satisfy (S3) only with inequality.

Remark 18

With little effort, Proposition 17 (as proved in [S6]) can be gen-

eralized as follows. Suppose that the system is reachable from 

and controllable to x) . Then, the system is cyclo-dissipative 

with respect to x)  with a unique (up to a constant) storage 

function if and only if for every x,

	 ( ( )) ,inf s w t dt 0
t

t

1

2
=# � (S9)

where the infimum is taken over all trajectories through x with 

( ) ( ) .x t x t x1 2= = )

The stronger notion of dissipativity [6], historically intro-

duced before the notion of cyclo-dissipativity, starts from the 

dissipation inequality (S4) and is restricted to nonnegative 

storage functions. See [S7] for further information.

Definition 19

A system is dissipative (for the supply rate s) if there exists a non-

negative storage function F. As the addition of an arbitrary constant 

to a storage function again leads to a storage function, the require-

ment of nonnegativity of F can be relaxed to F being bounded from 

below. Furthermore, the system is lossless if there exists a non-

negative storage function F satisfying the dissipation inequality (S4) 

with equality.

Nonnegative storage functions are candidate Lyapunov 

functions for the internal-state dynamics for s(w) = 0 [6], [19], 

[32]. In this way, dissipativity theory connects the external 

stability properties of the system to internal Lyapunov stabil-

ity properties. An external characterization of dissipativity is 

obtained as follows [6].

Theorem 20

The system is dissipative (for the supply rate s) if and only if

	 ( ) : ( ( ))supF x w t dts
,T

T
a

w 0 0
31= -

$

# � (S10)

for every x, where the supremum is taken over all external tra-

jectories w( ∙ ) of the system corresponding to initial condition 

( )x x0 =  and all .T 0$  Obviously, ( ) .F x 0a $  Furthermore, if 

( )F xa 31  for every x, then Fa  is a nonnegative storage function 

and is the minimal nonnegative storage function. Additionally, 

if the system is reachable from some ground-state x) , then it is 

dissipative if and only if ( ) .F xa 31)

Interpreting again s(w) as the “power” supplied to the sys-

tem, ( )F xa  is the maximal “energy” that can be extracted from 

the system at initial condition x. Thus, Theorem 20 states that 

the system is dissipative if and only if from any initial state x, 

only a finite amount of “energy” can be extracted. This should 

be contrasted with the external characterization (S3) of cyc-

lo-dissipativity, stating that the system is cyclo-dissipative if 

and only if the net “energy” supplied to the system along any 

cyclic trajectory is greater than or equal to zero. In the case 

where the system is a cyclo-dissipative system, it may still be 

possible to extract an infinite amount of “energy” (namely, if 

the storage function is not bounded from below). The storage 

functions not bounded from below are not uncommon in physi-

cal systems modeling; for example, the gravitational energy 

between two masses is proportional to ,r1-  with r 0$  being 

the distance between the two masses (and is thus not bound-

ed from below).

Remark 21

For reachable linear systems with quadratic supply rates, dis-

sipativity is often equivalent to ( ) ,F 0 0a =  yielding the familiar 

external characterization ( ( ))w t dts 0
T

0
$#  for all the trajecto-

ries starting from ( )x 0 0=  [19].

Finally, by assuming differentiability of the storage function, 

the dissipation inequality can be replaced by an (easier) differ-

ential version. Consider the input-state-output system

	
( , ),
( , ),

x f x u
y h x u

=

=

o
� (S11)

with state Xx !  and vector of external variables ( , ),w u y=  

where u is the vector of inputs and y the vector of outputs. Con-

sider a supply rate s(u, y). The differentiable function :XF R"  

satisfies the dissipation inequality (S4) (and thus is a storage 

function) if and only if it satisfies the differential dissipation in-

equality [6], [19], [32]

	 ( ) ( , ) , ( , ) ,   for all , .x
F x f x u s u h x u x u
2
2 # ^ h � (S12)

It satisfies the dissipation equality if (S12) holds with equality.
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that ( , ; , )Q T Q Tc c h h- -  is a feasible cycle as well. Thus, a 
Carnot cycle can be reversed, leading to the same initial 
state. This is referred to as a reversibility, although it is often 
understood in a stronger sense: The path in the state space 
of the thermodynamic system resulting from applying the 
four transformations can also be followed in the reverse 
direction [9]. In the present relaxed definition of revers-
ibility, it is only required that the amounts of heat supplied 
or released are the negative of those of the original cycle. 
This is called heat supply reversibility and is summarized  
as follows.

Definition 1
Consider a simple thermodynamic system. A cycle 
( , ; , )Q T Q Th h c c  is the sequence of an isothermal (with tem-
perature Th  and supplied heat ),Qh  adiabatic, isothermal 
(with temperature Tc  and supplied heat ),Qc  and a final 
adiabatic transformation (which returns the system to its 
initial state). It is called a Carnot cycle if there also exists a 
cycle ( , ; , ) .Q T Q Tc c h h- -

Remark 2
Unfortunately, the exposition of the Carnot cycle is often 
obscured by the use of terminologies such as “infinitesi-
mally slow,” “quasi-reversible,” and “such that the system 
remains at equilibrium.” This is largely due to a scientific 
tradition that thinks about the interaction of the system 
with its surroundings in a different way than in systems 
and control. For example, an isothermal transformation is 
regarded as the result of the “real” physical action of a force 
exerted by a piston on the gas (implying that the pressure 
delivered by the piston could be different from the pressure 
of the gas). Furthermore, during the time when the system 
is actuated by the piston, it is in “real” physical contact with 
a heat reservoir at a certain temperature (and thus the tem-
perature of the heat reservoir could differ from that of the 
gas). In contrast, within systems and control (or, for exam-
ple, electrical network theory), it has become common use 
to the concept of an “ideal” control action, where the pres-
sure and temperature are directly controlled. This ideal-
ized systems and control perspective is very appropriate 
for the description of the Carnot cycle. There is a good 
reason for this; the fundamental problem of Carnot was to 
give an answer to the control problem of optimal conversion 
of heat into work.

A crucial step in the deduction of the consequences of 
the second law is to show that for Carnot cycles ( , ; , ),Q T Q Th h c c  
the quantity

	 Q
Q

c

h

-
� (3)

depends only on the temperatures Th  and .Tc  This will lead 
to the celebrated Clausius (in)equality, and ultimately, the 
definition of entropy. The following indicates the main line 

of reasoning, based on the elegant exposition (in a slightly 
different setting) in [20]. First note the following observa-
tion, based on an additional (but very reasonable) assump-
tion: If we bring two heat reservoirs with temperatures T Th c2  
into contact, then any positive amount of heat can be disposed 
from the reservoir with temperature Th  to that with temperature 

.Tc  Consider now a cycle ( , ; , )Q T Q Th h c c  from a given initial 
state. Assume that the mechanical work : z ( ) ( )W t dV tP=  
done by the thermodynamic system on the surroundings 
during this cycle is positive (that is, ).W 02  Then, by invok-
ing the aforementioned assumption, any cycle ( , ; , )Q T Q Th h c c  
with T Th c2  is such that ,Q 0h2  Q 0c1  (that is, the thermo-
dynamic system absorbs heat during the isothermal trans-
formation corresponding to the high temperature ,Th  and it 
expels heat during the isothermal transformation corre-
sponding to the low temperature ) .Tc  Assume, on the con-
trary, that .Q 0c $  Complement cycle ( , ; , )Q T Q Th h c c  with 
the flow of an amount of heat from the hot ( )Th  to the 
cold ( )Tc  reservoir, which is equal to .Qc-  Then, the net 
amount of heat absorbed by the cold reservoir is zero, 
and thus, by Kelvin’s formulation of the second law, the 
mechanical work W satisfies W 0#  (yielding a contradic-
tion). Thus, necessarily, .Q 0c1  Furthermore, by the first 
law, .W Q Qc h= +  Hence, as W 02  and ,Q 0c1  it follows 
that Q 0h2  (as claimed).

Remark 3
Consequently, for a Carnot cycle ( , ; , )Q T Q Th h c c  with ,W 02  
the reversed cycle ( , ; , )Q T Q Tc c h h- -  sat isf ies ,Q 0c2-  

.Q 0h1-  Furthermore, the work done by the system 
on the surroundings during this reversed cycle equals 

Q Qc h- - = .W 01-  This corresponds to a refrigerator or 
heat pump, where mechanical work is done on the system 
to transfer heat from the cold heat reservoir to the hot 
heat reservoir.

Now, to show that the quantity in (3) depends only on 
,Th  and ,Tc  let ( , ; , )Q T Q Th h c c  be a Carnot cycle. Consider 

another cycle ( , ; , )Q T Q Th h c cl l  (from the same initial state); 
also with ,Q 0h2l  .Q 0c1l  First assume that the fraction 

/Q Qh hl  is a nonnegative rational number, that is,

	 Q
Q

N
N

h

h
=
l

l � (4)

for some nonnegative integers ,N  .Nl  Consider the total 
transformation consisting of N cycles ( , ; , )Q T Q Tc c h h- -  
and Nl cycles ( , ; , ).Q T Q Th h c cl l  Then the total amount of heat 
absorbed from the hot reservoir Th  is, by construction, zero. 
Therefore, by Kelvin’s formulation of the second law, the 
total work W done by the system satisfies .W 0#  Alter-
nately by the first law, ( )W N Q N Qc c= - + l l  (and thus, 

) .N Q NQc c#l l  Together with (4), this yields

	 .Q
Q

Q
Q

c

h

c

h
$

- - l
l

� (5)
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As any real number /Q Qh hl  can be approximated arbi-
trarily well by a rational number, the inequality (5) holds 
for any Carnot cycle ( , ; , )Q T Q Th h c c  and any other cycle 
( , ; , )Q T Q Th h c cl l  from the same initial state with ,Q 0h2l  

.Q 0c1l  Furthermore, if ( , ; , )Q T Q Th h c cl l  is a Carnot cycle as 
well, then by exchanging the two Carnot cycles in the afore-
mentioned reasoning, the opposite inequality is obtained, 
thus proving

	 .Q
Q

Q
Q

c

h

c

h

-
=

- l
l

� (6)

Hence, the fraction /Q Qh c-  is the same for all Carnot 
cycles between the temperatures ,Tc  and ,Th  and thus,

	 ( , )Q
Q

f T T
c

h
c h-

= � (7)

for some function f. Involving a third, arbitrary tempera-
ture T0  and heat ,Q0  the aforementioned arguments can be 
repeated, yielding

	 ( , ), ( , ).Q
Q

f T T Q
Q

f T Tc
c

h
h

0
0

0
0-

=
-

= � (8)

Defining :( ) ( , ),T f T T0x =  this implies

	 ( )
( )

.Q
Q

T
T

c

h

c

h

x

x

-
= � (9)

The function ( )Tx  amounts to a rescaling of the tempera-
tures (in fact, it corresponds to the absolute thermodynamic 
scale of temperature [8], [20]). For convenience, the same 
notation T is used for the rescaled temperature ( ).Tx  Thus, 
for any Carnot cycle ( , ; , ),Q T Q Th h c c

	 Q
Q

T
T

c

h

c

h

-
= � (10)

or equivalently,

	 .T
Q

T
Q

0
h

h

c

c
+ = � (11)

Furthermore, in view of (5) and (11), an arbitrary (not 
necessarily Carnot) cycle ( , ; , )Q T Q Th h c cl l  satisfies

	 .T
Q

T
Q

0
h

h

c

c
#+

l l
� (12)

Remark 4
The second law is a statement about all thermodynamic 
systems; not just a particular system (as is the norm in sys-
tems and control). This allows for consideration of thermo-
dynamic processes consisting of a cycle of one system and 
a reversed Carnot cycle of a second one. In particular, this 
universality implies that the rescaling of the temperature 
holds for all thermodynamic systems in the same way, 
leading to a uniform absolute temperature.

Maximal Efficiency of the Carnot Cycle
The efficiency of a cycle is defined as the performed mechan-
ical work divided by the absorbed heat at high tempera-
ture, given as

	 .Q
W

Q
Q Q

Q
Q

1
h h

h c

h

c
=

+
= -

-
� (13)

It follows from (5) that Carnot cycles enjoy maximal effi-
ciency among all cycles, and by (6), this efficiency is inde-
pendent of which Carnot cycle is taken (and as described 
Remark 4, independent of the system considered). Further-
more by (11), the efficiency of a Carnot cycle is equivalently 
given as

	 .T
T

T
T T1

h

c

h

h c- = - � (14)

In particular, this means that to increase efficiency, it is 
most advantageous to lower .Tc  On the other hand, in many 
applications (such as the classical the steam engine), Tc  is just 
the temperature of the environment (which cannot be con-
trolled). The “Kelvin and the Limits to Energy Conversion” 
section addresses the control problems suggested by the 
second law and the Carnot cycle in the general context of 
energy conversion.

Clausius’ Inequality
The fundamental equality (11) for a Carnot cycle ( , ; , )Q T Q Th h c c  
and the inequality (12) for an arbitrary cycle ( , ; , )Q T Q Th h c cl l  
can be generalized as follows (see [20] for more details). Con-
sider a complex cycle ( , ; ; , )Q T Q Tn n1 1 f  consisting of n 
isothermals at temperatures Ti  and absorbed heat quanti-
ties ,Qi  , , , ,i n1 2 f=  and interlaced by n adiabatics. 
Such a complex cycle ( , ; ; , )Q T Q Tn n1 1 f  is called heat-sup-
ply reversible if ( , ; ; , )Q T Q Tn n 1 1f- -  is also a feasible cycle 
(returning to the same state). Now consider an auxiliary 
heat source with temperature T0  and n Carnot cycles 
( , ; , )Q T Q T,i i i 0 0  operating between the temperatures Ti   

, ,i n1 f=  and .T0  According to (11),

	 .Q T
T Q,i

i
i0

0- = � (15)

Consider the total transformation consisting of the com-
plex cycle ( , ; , , ),Q T Q Tn n1 1 f  together with the heat supply 
reversed Carnot cycles ( , ; , ),Q T Q T,i i i0 0- -  , , .i n1 f=  The 
net exchange of heat with each of the sources with tempera-
tures , ,T Tn1 f  is zero, while the auxiliary source at tem-
perature ,T0  in view of (15), absorbs a total heat

	 .Q T T
Q

,
i

n

i
i

i

i

n

1
0 0

1
- =

= =

/ / � (16)

By Kelvin’s formulation of the second law, this quantity 
should be less than or equal to zero, or equivalently,

	 .T
Q

0
i

i

i

n

1
#

=

/ � (17)
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Furthermore, if the complex cycle ( , ; ; , )Q T Q Tn n1 1 f  is 
heat-supply reversible, then the opposite inequality is anal-
ogously proven, thus yielding

	 .T
Q

0
i

i

i

n

1
=

=

/ � (18)

A slight extension [approximating continuous heat flow 
time-functions ( )q $  by step functions with step values 

, , ]Q Qn1 f  then yields the celebrated Clausius inequality

	 ( )
( )

T t
q t

dt 0## � (19)

for all cyclic processes ( ( ),q $  ( ) ,)T $  and

	 ( )
( )

T t
q t

dt 0=# � (20)

for heat-supply reversible cyclic processes.

FROM CLAUSIUS’ INEQUALITY TO ENTROPY
From the perspective of cyclo-dissipativity theory (see 
“Cyclo-Dissipativity Theory”), the Clausius inequality 
(19) is exactly the same as the cyclo-dissipativity of any 
thermodynamic system with respect to the supply rate 

( / )q T-  (where q is the heat flow into the thermodynamic 
system, and T is the temperature). Thus, assuming 
reachability from and controllability to some ground-
state ,x)  this means that there exists a storage function F 
of the state, such that ( ( )) ( ( ))F x t F x t2 1# +  y ( ( )/ ( ))Tq t t dtt

1

2 -t  
(see Theorem 16 in “Cyclo-Dissipativity Theory”). Equiv-
alently, the function :S F= -  satisfies

	 ( ( )) ( ( )) ( )
( )

,S x t S x t T t
q t

dt
t

t
2 1

1

2
$- # � (21)

and its differential version (assuming S to be differentiable) is

	 .dt
d S T

q
$ � (22)

The function S was called entropy by Clausius, from the 
Greek word oxt rh  for “transformation.” The dissipativity 
formulation (21) of the second law already appears in [6] 
(see also [10] and [21]); however, it is assumed that F is 
bounded from below (and thus, S is bounded from above), 
corresponding to dissipativity instead of cyclo-dissipativ-
ity. Physically, there is generally no reason why the entropy 
S should be bounded from above.

From the perspective of (cyclo-)dissipativity theory, the 
storage function F need not be unique. To guarantee the 
uniqueness of F, and therefore of the entropy S (which is 
very desirable from a physics perspective), Proposition 17 
in “Cyclo-Dissipativity Theory” may be exploited. Once it 
is assumed that (given some ground-state) for every ther-
modynamic state, there exists a cyclic transformation 
through this state and the ground-state satisfying

	 ( )
( )

,T t
q t

dt 0=# � (23)

then by Proposition 17, entropy S is unique (up to a con-
stant). The uniqueness of S is (explicitly or implicitly) 
always assumed in the expositions of classical thermody-
namics. Cyclo-dissipativity theory thus provides a solid 
basis for this assumption.

According to [7], Clausius interpreted the term /q T  as 
the part of the infinitesimal transformation ( / ) ,d dt S  which 
is compensated by the opposite rate of change ( / )q T-  of the 
entropy of the surroundings; that is, of the heat reservoir 
supplying the heat to the thermodynamic system. The 
remaining part,

	 : ,dt
d S T

q
0$v = - � (24)

was called the uncompensated transformation by Clausius 
(“unkompensierte Verwandlung” in German) [7]. Thus, the 
second law implies that the uncompensated transforma-
tion is always nonnegative. The quantity 0$v  is also 
called the irreversible entropy production, and it is the start-
ing point for a broader discussion of irreversible thermody-
namics in the “Irreversible Thermodynamics” section. 
Note that if v  is nonzero, then ( ( )/ )z dtq t T 01  along any 
cyclic path with constant temperature T. Hence, the thermo-
dynamic system expels a positive amount of heat to its sur-
roundings due to an irreversible conversion of (for example, 
mechanical) energy into heat.

Remark 5
It follows from Theorem 20 in “Cyclo-Dissipativity Theory” 
that the thermodynamic system is dissipative instead of 
being just cyclo-dissipative (with respect to the supply rate 

( / ))q T-  if and only if for all states x,

	 ( ) ( )
( )

,supF x T t
q t

dta 31= # � (25)

where the supremum is taken over all heat flow functions 
( )q $  and corresponding temperature profiles ( )T $  resulting 

from ( ) .x x0 =  Furthermore, if (25) holds, then Fa-  is maxi-
mal among all the nonpositive functions satisfying (21). See 
[21] for an investigation of the existence of a nonnegative 
storage function based on a combination of the energy and 
entropy functions.

Back to the Carnot Cycle
The introduction of the entropy S sheds new light on the 
Carnot cycle [8], [9]. Indeed, the closed curve in the (V, P) dia-
gram consisting of two isothermals interlaced with two adia-
batics corresponds in the (S, T) diagram to a very simple 
rectangular curve (see Figure 3), where S2 − S1 = Qh/Th = − Qc/
Tc. Furthermore, the resulting map from the (S, T) to the (V, P) 
diagram is area-preserving: The area within the rectangular 
closed curve in the (S, T) diagram (the net amount of absorbed 
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heat )Q Qh c+  is, by the first law, equal to the area in the (V, P) 
diagram circumscribed by the Carnot cycle (the amount of 
work W done by the system on the surroundings). 

The discussion of the Carnot cycle ( , ; , )Q T Q Th h c c  is closed 
with an intriguing reinterpretation of the fundamental equal-
ity (11). See [22] for an account of similar reasoning in the orig-
inal work of Clausius. Rewrite (11) as

	 ,T
Q

T
Q

T
Q Q

Q T T0 1 1
h

h

c

c

h

h c
c

c h
= + =

+
+ -c m � (26)

or equivalently,

	 .T
Q Q

Q T T
1 1

h

h c
c

c h

+
= - -c m � (27)

Note that Qc-  is the net amount of heat flowing from the 
hot heat source to the cold one, while ( / ) ( / )T T1 1c h-  is 
known as the thermodynamic force between the two heat 
sources (see the “Irreversible Thermodynamics” section). 
Furthermore, Q Qh c+  is the total heat supplied by the two 
sources to the thermodynamic system (which, by the first 
law, equals the work W performed by the system on its 
surroundings) and corresponds to the left part of the 
upper isothermal in the Carnot cycle in Figure 4. Hence, 
(27) means that the entropy increase )( /Q Q Th c h+  due to 
the supplied heat during the left part of the upper iso-
thermal is equal to the change in entropy due to a direct 
heat flow Qc-  from hot to cold (the falling caloric flow in 
the original interpretation of Carnot; see “Carnot and 
Caloric Theory”).

Finally, there exist other interesting cycles aside from 
the aforementioned ones, consisting of isothermals and 
adiabatics. Like the Carnot cycle originates from the steam 
engine, most of these alternative cycles derive from the 
operation of other types of engines. For example, the Otto 
cycle is described in the (V, P) diagram by two adiabatics 
and two isochores (constant volume), the Diesel cycle by 
two isobars (constant pressure) and two adiabatics, and the 
Stirling cycle by two isothermals and two isochores. An 

extensive discussion of them is given in [9]. The use of such 
cycles for energy conversion and harvesting poses several 
interesting control problems (see also the next section).

Kelvin and the Limits to Energy Conversion
It was previously noted that Kelvin’s formulation of the 
second law implies that the thermodynamic system (when 
kept at constant temperature T) is cyclo-passive with respect 
to the supply rate PuV-  corresponding to mechanical work. 
By the main theorem of cyclo-dissipativity (see the Theo-
rem 16 in “Cyclo-Dissipativity Theory”), this means that for 
each constant temperature T, there exists a function FT  of 
the state x of the thermodynamic system satisfying

	 ( ( )) ( ( )) ( ) ( ) .F x t F x t P t u t dtT T
t

t
V2 1

1

2
#- -# � (28)

This expresses the property that no thermodynamic 
system can convert thermal energy from a heat source at a 
constant temperature into mechanical work while return-
ing to its original state. From a general system-theoretic 
perspective, this leads to the following question. Consider 

P T

V S

a
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b

b

c c
d

d

W W
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Qh
Th

Tc

S1 S2

Qc, Tc

Qh, Th

FIGURE 3 The Carnot cycle in the (V, P) and (S, T) diagrams.

P

V
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–Qc, Th
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FIGURE 4 The Carnot cycle reinterpreted. 
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a system (as in Figure 5) with two ports, denoted as ( , )u y1 1  
and ( , ),u y2 2  which is cyclo-passive with respect to the 
supply rate ( , , , ) .s u u y y y u y u1 2 1 2 1 1 2 2= + <<  That is, there 
exists a state function F such that

	 .dt
d F y u y u1 1 2 2# + << � (29)

Under which conditions is it not possible to transform 
energy at port 1 into energy at port 2 while keeping y1  con-
stant? Stated differently, what is so special about thermo-
dynamic systems, and are there any systems other than 
thermodynamic systems that cannot transform energy 
from one port into the other while keeping the output at the 
first port (temperature T in the thermodynamic case) con-
stant? The answer to this question is yes, there are quite a 
few other systems sharing this property of limits to energy 
conversion. In fact, sufficient (and often necessary) condi-
tions on the system for this to happen are discussed in [23], 
together with several examples from different areas (for 
example, synchronous machines, dc machines, and capaci-
tor microphones). Conversely, for such systems, this 
directly motivates the consideration of cycles (classical or 
generalized) that do convert energy from one port into the 
other. Similar to cycles in the thermodynamic realm, this 
leads to (open) questions of maximal efficiency of energy 
conversion. Returning to the original dissipation inequal-
ity (28), note that even if the storage function FT  for each T 
is unique, it is so only up to a constant, which may arbitrarily 
depend on T. This is intimately related to the fact that 
Kelvin’s formulation of the second law is stronger than just 
cyclo-passivity for every T. The right choice of FT  for every 
T is provided by the Helmholtz free energy; one of the ther-
modynamic potentials that is discussed in the “Gibbs and 
the Thermodynamic Phase Space” section.

IRREVERSIBLE THERMODYNAMICS
Recall the dissipation inequality ( / ) ( / ),d dt q TS $  equiva-
lently rewritten as

	 , ,dt
d S T

q
0$v v= + � (30)

where : ( / ) ( / )Sd dt q Tv = -  is the irreversible entropy produc-
tion [7] (“uncompensated transformation,” in the terminol-
ogy of Clausius). Irreversible thermodynamics is concerned 
with the dynamics of thermodynamic systems in case v  is 

different from zero, implying an autonomous (independent 
from external heat flow) increase of the entropy S. Some-
times it is also referred to as nonequilibrium thermodynamics 
because it results from (internal) nonequilibrium condi-
tions. Perhaps the simplest example of irreversible dynam-
ics and irreversible entropy production is offered by the 
heat exchanger. Consider two heat compartments, with tem-
peratures Th  and Tc  (“hot” and “cold”), connected by a 
heat-conducting wall. In the absence of the conducting 
wall, these are two separate systems with entropies Sh  and 

,Sc  satisfying

	 , .dt
d S T

q
dt
d S T

q
h

h

h
c

c

c
= = � (31)

Due to the conducting wall, there is a heat flow q from 
the hot to the cold compartment, which (in view of the first 
law) is such that .q q qh c= - =  Hence, the total entropy 

:S S Sh c= +  satisfies

	 ,dt
d S T

q
T
q

T T q1 1
h c c h

= - + = -c m � (32)

where (using Fourier’s law for heat conduction) ( )q T Th cm= -  
for some positive constant .m  This yields the following ex-
pression for the irreversible entropy production ( / )d dt Sv =  
(note that there is no external heat flow):

	 ( )
( )

.T T T T T T
T T1 1 0

c h
h c

h c

h c
2

$v m m= - - =
-c m � (33)

A second simple example refers to the adiabatics in the 
classical Carnot cycle of a gas in a volume controlled by a 
piston. If the pressure P of the gas is not considered to be 
the direct control variable (but instead, one distinguishes 
between a pressure Ppiston  on the piston and a pressure Pgas  
of the gas), then, during the expansion phase leading to the 
irreversible entropy production, v  is given by

	 ,T
P P

Jgas piston
v =

-
� (34)

where J is the rate of volume change. Typically, J will be 
positively proportional to the difference ,P Pgas piston-  imply-
ing that .0$v

Chemical Reaction Networks
A more involved example of irreversible thermodynamics 
is the dynamics of (nonisothermal) chemical reaction net-
works (see [7] for further thermodynamic background). 
Consider for simplicity an isolated chemical reaction net-
work (no incoming or outgoing mass flow and no external 
heat flow), with m chemical species and r reactions. Disre-
gard volume and pressure and model the state of the chem-
ical reaction network accordingly by the vector x Rm!  of 
concentrations of the chemical species. Then the dynamics 
takes the form

	 ( ),x Nv x=o � (35)

Cyclo-Passive
System

u1

y1

u2

y2

FIGURE 5 A two-port cyclo-passive system. 
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where N is an m r#  matrix (called the stoichiometric matrix), 
and v Rr!  is the vector of reaction fluxes. The stoichiomet-
ric matrix N, which consists of positive and negative integer 
elements, captures the basic conservation laws of the reac-
tions. Chemical reaction network theory, originating from 
[24]–[26], identifies the edges of the underlying directed 
graph with the chemical reactions and the nodes with the c 
complexes of the chemical reactions (that is, all the different 
left- and right-hand sides of the reactions in the network). 
This means [27], [28] that the stoichiometric matrix N is fac-
torized as ,N ZB=  with B denoting the rc#  incidence 
matrix of the graph of complexes, and Z being the m c#  
complex composition matrix (a matrix of nonnegative inte-
gers) whose tht  column captures the expression of the tht  
complex in the m chemical species. It is shown in [27] that 
the dynamics ( )x Nv x=o  of a large class of chemical reaction 
networks (including detailed-balanced mass-action kinet-
ics networks) can be written as

	 ( ) ,x Z RT Z x1ExpL n= - <o ` j � (36)

where :Exp R Rc c"  is the vector exponential mapping 
( ) ( , , ) ,exp expz z zExp c1 f= <  R is the gas constant, T is the 

temperature, and n  is the m-dimensional vector of 
chemical potentials of the chemical species (for which, in 
the case of detailed-balanced mass-action kinetics, an 
explicit expression is available). Furthermore, the matrix 

: KB BL = <  in (36) defines a weighted Laplacian matrix for 
the graph of complexes, with the diagonal elements of 
the diagonal matrix K  given by the so-called conduc-
tances , , r1 fl l  (which are dependent on temperature T 
and the reference state). This leads to the following fun-
damental property [27]:

 , .B0 0 0Exp for all Exp iffL R Lc$ !c c c c c c= =< < < � (37)

The entropy S expressed as a function of x and the total 
energy E satisfy by Gibbs’ fundamental thermodynamic 
relation

	 ( , ) , ( , ) .x
S x E T E

S x E T
1

2
2

2
2n

= - = � (38)

This implies that for an isolated chemical reaction network 
(no external heat or matter flow; hence, constant energy E),

	 : ,dt
d S T Z RT

Z1 0ExpL $n
n

v= =<
<

c m � (39)

with equality if and only if B Z N 0n n= =< <<  (that is, if and 
only if the affinities N n<  of the reactions are all zero). Hence, 
the equilibria of the system correspond to states of minimal 
(that is, zero) entropy production ,v  in accordance with the 
theory of irreversible thermodynamics [7]. By using S-  
as a Lyapunov function, it follows, under the standard 

assumption that trajectories will not converge to the bound-
ary of the positive orthant Rm

+ , that any initial vector, of 
concentrations in the positive orthant will converge to one 
of these equilibria [27], [29], [30]. Note [28] that this consti-
tutes an example of nonlinear consensus dynamics: If the 
graph of complexes is connected, then convergence takes 
place in a state where the elements of the vector of complex 
affinities Zd n= <  are equal.

Thermodynamic Forces and Flows and  
Factorization of the Dissipation Inequality
In irreversible thermodynamics, it is normally postulated 
[7], [31] that the irreversible entropy production can be rep-
resented as

	 ,F J 0k
k

s

k
1

$v =
=

/ � (40)

where Fk  are the thermodynamic forces and Jk  are the thermo-
dynamic flows (or fluxes) in such a way that

	 , , , .F k s0 0 1k+ fv = = = � (41)

The examples illustrate this postulate. In the heat-exchanger 
example, the thermodynamic force is ( / ) ( / ),T TF 1 1c h= -  
while the thermodynamic flow is ( ) .q T Th cm= -  Note that 

0v =  if and only if ,F 0=  that is, .T Th c=  In the piston example, 
the thermodynamic force is ( ) ,( / )F P P T1gas piston $= -  and the 
flow is u FV n=  for some .02n  In the case of chemical reaction 
networks, the vector of thermodynamic forces F is given as 

( / )TF N1 n= <  (the vector of chemical affinities is divided by 
temperature T). Moreover, the vector of thermodynamic flows J 
is given as

	 K ,J B RT
Z

Exp
n

= <
<

� (42)

implying that ,F J v=<  with v  given by (39). J is also equal 
to the vector of the rates of extent of each reaction. It follows 
from (37) that 0v =  if and only if .F 0=

From a systems and control perspective, the factoriza-
tion (40) of ( / ) ( / )d dt q TSv = -  is closely related to the fac-
torization of the differential dissipation inequality (S12) in 
(cyclo-)dissipativity theory [6], [21], [32]. For example, in the 
case of linear systems with quadratic supply rates, the stor-
age function is also quadratic, and the differential dissipa-
tion inequality amounts to a linear matrix inequality 
[which can be factorized as in (40)]. Similarly, in linear irre-
versible thermodynamics [7], it is assumed that the vector F 
of thermodynamic forces and the vector J of thermody-
namic flows are linearly related as

	 , .J OF O O= = < � (43)

This relation, and especially the symmetry of the 
matrix O, is the celebrated Onsager reciprocal relation [7]. 
They lead to the symmetric factorization .F J F OFv = = <<  
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Note that in the piston example, the thermodynamic flow 
J is expressed as J Fn=  and is (trivially) satisfying the 
Onsager relation. However, the heat exchanger is not of 
this form. In fact, the thermodynamic flow ( )q TTh cm= -  
cannot be expressed as a function of the thermodynamic 
force ( / ) ( / )T TF 1 1c h= -  (although q 0=  if and only if 

).F 0=  Similarly, chemical reaction networks are not of 
this form. The relationship between F and J, in this case, 
is not linear, and in most cases, J [as in (42)] cannot be 
expressed as a function of F. Conversely, it is shown in 
“Cyclo-Passive Systems as Irreversible Thermodynamic 
Systems” how a general cyclo-passive control system 
(thus satisfying a dissipation inequality), can be embedded 
in an irreversible thermodynamic formulation. This is 
done by introducing an extra state variable (representing 
entropy) and adding an internal energy, depending on 
this entropy.

GIBBS AND THE THERMODYNAMIC PHASE SPACE
This section marks the transition to the geometrization of 
classical thermodynamics. Gibbs’ fundamental thermody-
namic relation (between the extensive and intensive vari-
ables) defines the constitutive relations (state properties) of 
thermodynamic systems. This naturally leads to a contact-
geometric formulation (initiated by Gibbs and first explic-
itly stated by Hermann [33]) and entails a paradigm shift 
toward nonminimal systems modeling by the introduction 
of the thermodynamic phase space.

Gibbs’ Fundamental Thermodynamic 
Relation and Thermodynamic Potentials
Consider a simple thermodynamic system with variables 
V, P, T. The equation of state is an equation ( , , )f V P T 0=  for 
some scalar function f. Any (V, P, T) satisfying ( , , )f V P T 0=  
is called a state of the thermodynamic system (see also the 

Cyclo-Passive Systems as Irreversible Thermodynamic Systems

Consider a standard input-state-output system

	
( ) ( ) , ,

( ), ,

x f x g x u u

y h x y

R

R

m

m

!

!

+=

=

o
�

(S13)

where x is in some n-dimensional state-space manifold X,  

which is assumed to be cyclo-passive (see “Cyclo-Dissipativ-

ity Theory”). This means that there exists a state function H, 

such that ( / ) ,d dt H y u# <  that is,

	 ( ) ( ) : ( ) , ( ) ( ) ( ) .
x
H x f x x

x
H x g x h x0

2
2

2
2#t= - =<

<
< � (S14)

All such systems can be formulated as irreversible thermo-

dynamic systems by defining an extra state variable S (inter-

preted as the entropy of the system), together with an “internal 

energy” U(S) with ( ) .U S 02l  Namely, consider the total energy 

( , ) : ( ) ( )E x S H x U S= +  and extend the system (S13) to

	

( ) ( )

( )
( )

( ) .

x f x g x u

S U S
x

h xy

t

= +

=

=

l

o

o �

(S15)

This extended system satisfies

	 ( ) ( ) ( )
( )

,dt
d E dt

d H dt
d U x y u U S U S

x
y ut

t
= + = - + + = << l

l
� (S16)

and thus it is cyclo-lossless (satisfying the first law). Further-

more,

	 ( )
( )

: ,dt
d S U S

x
0$

t
v= =

l
� (S17)

corresponding to the second law. The choice of the internal 

energy function U(S) is rather arbitrary, with ( )T U S 02= l  

defining “temperature.” One possible choice is ( ) ,U S T S0=  

corresponding to an infinite heat reservoir at constant tem-

perature .T 002  Note that from a thermodynamic perspective, 

the extended system (S15) has the structural property that 

the dynamics of x is independent of S. This is a common fea-

ture of port-based systems modeling [14], [15] as well as of 

port-Hamiltonian systems [16]–[19]. In fact, the factorization 

(40) of the dissipation inequality becomes most clear if the 

cyclo-passive system (S13) can be cast into port-Hamiltonian 

form,

	
( ) ( ),

) ( ) ( ) ( ) ( ) ( )J(x

y

x x
H x g x R g x x

H x g x u

g x x
H x

R R

2
2
2
2

2
2=

=

- +

<

<o c m
�

(S18)

for some mapping R satisfying ( )z R z 0$<  for all vectors 

( )( ( ),z / )g x H x xR 2 2= <  a skew-symmetric matrix ( ),J x  and ma-

trices ( ), ( ) .g x g xR  The term ( ) ( ( ) ( ) ( ))/ xg x R g x H xR R 2 2- <  models 

energy dissipation (without taking into account the heat pro-

duced). Note that any port-Hamiltonian system (S18) is cyclo-

passive with storage function H as the requirement ( )z R z 0$<  

implies ( / ) .d dt H y u# <  Considering, as before, an additional 

entropy variable S and internal energy U(S), the irreversible 

entropy production v takes the form

	 ( ) ( ) ( ) ( ) ( ) ,
x
H x g x R g x x

H x U S
1 0R R $

2
2

2
2 $v = <

< lc m � (S19)

which is already in factorized form F J<  with

	 ( ) ( ) · ( ) , ( ) ( ) .F g x x
H x U S J R g x x

H x1
R R2
2

2
2= = <<

l c m � (S20)

If R is a symmetric linear mapping, then the Onsager recip-

rocal relation (43) in the “Thermodynamic Forces and Flows,  

and Factorization of the Dissipation Inequality” section are  

satisfied.
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“Basic Terminology” section). Throughout, assume that the 
set of states of the thermodynamic system is a 2D submanifold 
M of .R3  The first and second laws provide defined functions 

:E M R"  (energy) and :S M R"  (entropy). Here, E is unique 
up to a constant, while S is unique up to a constant under the 
additional assumption (compare Proposition 17 in “Cyclo-
Dissipativity Theory”) that, given some ground state, there 
exists for any state a cyclic path through this state and the 
ground state satisfying [compare (23)]

	 ( )
( )

.T t
q t

dt 0=# � (44)

This will be a standing assumption throughout. Hence 
we may equally well represent the set of states M R31  by 
the 2D submanifold ,L R51  given as

	
: u( , , , , ) ( , , ) ,

( , , ), ( , , ) .
L E S V T P f V P T

E E V P T S E V P T

0= =

= =

"
, �

(45)

Note that, with some abuse of notation, the extra vari-
ables E, S are introduced, denoted by the same letters that 
are used for the functions defined previously. The ambient 
space R5  consisting of all the variables E, S, V, T, P is called 
the thermodynamic phase space. Furthermore (under reason-
able assumptions), L can be parameterized by the extensive 
variables S and V, that is,

	
: u( , , , , ) ( , ), ( , ),

( , )
L E S V T P E E S V T T S V

P P S V

R5!= = =

=

"
, �

(46)

for some functions ( , ),E S V  ( , ),T S V  ( , ) .P S V  Thus, the 
extensive variable E and the two intensive variables T and 
P are expressed as functions of the remaining extensive 
variables S, V, which serve as coordinates for L. By the first 
law, ( / ) .( / )d dt E P d dt V q= - +  Furthermore, by (44), there 
exists for any state a path through this state and the ground 
state such that

	 .dt
d E P dt

d V T dt
d S= - + � (47)

This implies that the Gibbs’ one-form on R5  defined as

	 dE TdS PdV- + � (48)

is zero restricted to L. This is called Gibbs’ fundamental ther-
modynamic relation. It implies that the submanifold L is 
actually given as

	
: u( , , , , ) ( , ),

( , ), ( , ) .

L E S V T P E E S V

T S
E S V P V

E S V
2
2

2
2

= =

= - =

"
. �

(49)

Thus, L is completely described by the energy function 
E(S, V), hence the name energy representation. On the other 
hand, the submanifold L may be equally well parameteriz-
able by the variables T, V, instead of by S, V. Define the partial 
Legendre transform of E(S, V) with respect to S as

	 :( , ) ( , ) , ( , ),A T V E V S TS T S
E S V
2
2= - = � (50)

where S is solved from ( / )( , )E ST S V2 2=  as a function of (T, 
V). It can be verified that L parameterized by T, V is given as

	
: u( , , , , ) ( , ) ( , ),

( , ), ( , ) .

L E S V T P E A T V T T
A T V

S T
A T V P V

A T V

2
2

2
2

2
2

= = -

= - - =

$

.
�

(51)

The function A(V, T) is called the Helmholtz free energy 
and is one of the thermodynamic potentials [derived from 
E(S, V)] that also describe the submanifold L. For example, 
in the case of an ideal gas [7], [20],

	 ( , ) ,E S V C e
R

V
S

V

V
=

C

C

Ve
� (52)

where ( / )/( / )E S E SCV
2 22 2 2 2=  denotes the heat capacity (at 

constant volume), and R is the universal gas constant, a 
partial Legendre transform E(S, V) with respect to S yields 
the Helmholtz free energy A(T, V), given as [20]

	 ( , ) ( ),ln lnA T V C T W T C T R V aV V= + - + + � (53)

for constants a (the entropy constant of the gas) and W (an 
integration constant). Apart from the Helmholtz free energy 
A(T, V), there are two more thermodynamic potentials that 
can be obtained from E(S, V) by a partial Legendre transform:

( , )

( , )

( , ) ,

( , ) ,
,

,

 ,  

H S P

G T P

E S V PV

H S P TS

S P L

T P L

enthalpy,

Gibbs
free energy

coordinates for

coordinates for\

=

=

+

-

� (54)

Despite these different ways to parameterize L by two coor-
dinates (corresponding to the various thermodynamic 
potentials as described previously), the situation is very 
simple from a geometric perspective. There is just one 2D 
submanifold L describing the set of states of the thermo-
dynamic system, which is such that the Gibbs form 
dE TdS PdV- +  is zero restricted to it. The appropriate geo-
metric (coordinate-free) formulation of this is contact geom-
etry (as previously alluded to in the aforementioned Arnold 
quote). The Gibbs one-form defines a contact form, and the 
thermodynamic phase space R5  equipped with this contact 
form is called a contact manifold. The basic notions of contact 
geometry are discussed in “Contact Geometry.” The 
explicit use of contact geometry for the geometrization of 
thermodynamics was advocated in [33]–[37] (see [38] for a 
survey on recent developments). The use of contact geom-
etry for thermodynamic systems from a control perspec-
tive was initiated in [39] and further explored in [40]–[42]. 

Aside from the aforementioned options used to pa
rameterize the submanifold L with different sets of coordi-
nates [corresponding to the various thermodynamic 
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potentials derivable from the energy E(S, V)], there is 
still an alternative way of describing the set L of thermo-
dynamic states. This alternative starts, not with E(S, V), 
but with the expression of the entropy as a function S(E, V).  
This alternative option is also motivated from a model-
ing perspective [41]. In many situations (especially in 
chemical engineering), thermodynamic systems are for-
mulated by first listing the balance laws for the extensive 
variable V and the mole numbers Nk  of the chemical spe-
cies as well as the energy E. Subsequently, the entropy is 
expressed as a function of these extensive variables. For 
a simple thermodynamic system, this leads to the entropy 
representation of the submanifold ,L R51

	
u: ( , , , , ) ( , ),

( , ), ( , ) .

L E S V T P S S E V

T E
S E V T

P
V
S E V1

2
2

2
2

= =

= =

"
. �

(55)

Starting from this entropy representation, one may then 
define (as in the energy representation) other thermody-
namic potentials obtained by partial Legendre transforms 
of S(E, V), corresponding to different parameterizations of 
L. Geometrically, the entropy representation corresponds 
to the one-form

	 dS T dE T
P dV1- - � (56)

being zero on L. This one-form is obtained from the Gibbs 
one-form dE TdS PdV- +  by dividing by −T, and it leads to 
a similar (although different) contact-geometric description. 
Gibbs’ fundamental thermodynamical relation (as well as 
the formulation of various thermodynamic potentials) is 
immediately extended to more general situations. For 
instance, in the case of multiple chemical species with mole 
numbers , ,N Nm1 f  and chemical potentials , , ,m1 fn n  it 
amounts to the extended Gibbs one-form

	 dE TdS PdV dNk
k

m

k
1
n- + -

=

/ � (57)

being zero on a submanifold L of the form (in energy repre-
sentation)

: u( , , , , , , , , , , )
( , , , , ), ( , , , , ),

( , , , , ), ( , , , , ) .
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k i i k

1 1

1 1

1 1

f f

f f

f f

n n

n n

=

= =
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,
�

(58)

See [12] for a careful derivation. This implies that 

: u( , , , , , , , , , , ) ( , , , , ),

( , , , , ), ( , , , , ),

( , , , , ), , , ,
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(59)

with ( , , , , )E S V N Nk1 f  being the energy function. By the 
partial Legendre transforms of ( , , , , ),E S V N Nk1 f  the ther-
modynamic potentials corresponding to other parameter-
izations of L are obtained. Similarly, by expressing the 
entropy as ( , , , , ),S S E V N Nk1 f=  the entropy representa-
tion of L is obtained.

A Paradigm Shift in Systems Modeling
The state space of a simple thermodynamic system is 
described by a 2D submanifold of the 3D space of macro-
scopic quantities V, P, T: one extensive and two intensive. 
Then (based on the first and second laws of thermodynam-
ics), two extra extensive variables, E, S, are introduced, and 
the state space is equivalently described as a 2D submanifold 
L of ;R5  the thermodynamic phase space of the three exten-
sive variables, E, S, V, and the two intensive variables T, P. The 
submanifold L defines the constitutive relations of the thermo-
dynamic system (that is, the state properties of the system). The 
characterizing property of L is that it is a maximal submani-
fold on which the Gibbs’ one-form is zero. Such manifolds are 
called Legendre submanifolds; see “Contact Geometry.” In prin-
ciple, any Legendre submanifold L defines possible constitutive 
relations. For example, the Legendre submanifold L corre-
sponding to an ideal gas is different from the Legendre sub-
manifold L corresponding to a van der Waals gas [20]. 

In general, the thermodynamic phase space is the total 
space of all the involved variables (extensive and intensive; 
one more extensive variable than intensive), and care should 
be taken to regard this as the state space. Instead, the mini-
mal state space of the thermodynamic system is the Legen-
dre submanifold L of the thermodynamic phase space, 
defining the constitutive relations of the system at hand. An 
(admittedly incomplete) analogy outside of the thermody-
namic realm is the following. Consider a capacitor with 
charge Q and voltage V across it. The constitutive relations 
of the capacitor are specified by an energy function E(Q), 
which defines the 1D submanifold

	 u( , ) ( ) .N Q V V dQ
dE Q R21= =u ' 1 � (60)

Any dynamics of a thermodynamic system should respect the  

geometric structure of the thermodynamic phase space and its  

homogeneous symplectic extension. 
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Q is an extensive variable and V an intensive variable. 
By introducing the energy E as an extra extensive variable, 
this leads to the equivalent description of the capacitor by 
the 1D submanifold

	 u( , , ) ( ), ( ) ,N E Q V E E Q V dQ
dE Q R31= = =' 1 � (61)

in the extended space of two extensive variables E, Q, and a 
single intensive variable V. The submanifold N defines a 
maximal submanifold of R3  restricted to which the one-
form dE VdQ-  is zero (that is, a Legendre submanifold), 
analogously to the Legendre submanifold L of a simple ther-
modynamic system. Thus, for a capacitor, the “thermody-
namic phase space” is ( , , ) ,E Q V R3!" ,  while the constitutive 

Contact Geometry
s discussed in the “Gibbs and the Thermodynamic Phase 

Space” section, the state properties of a simple thermody-

namic system with extensive variables E, S, V and intensive 

variables T, P are described by a 2D submanifold ,L R51  which 

is such that the Gibbs form

	 dE TdS PdV- + � (S21)

is zero restricted to L (that is, at any point of L, the Gibbs form 

annihilates every tangent vector to L at this point). This is an 

example of contact geometry. In general [44], [45], a con-

tact manifold M is an odd-dimensional manifold endowed 

with a contact form i. Without going into detail, a one-form 

i on a ( )n2 1+ -dimensional manifold M is a contact form 

if and only around any point in M one can find coordinates 

, , , , , ,z z zn n0 1 1f fc c" , for M, such that

	 .dz dzk
k

n

k0
1

i c= -
=

/ � (S22)

Thus the Gibbs one-form dE TdS PdV- +  is a contact form on 

the contact manifold .M R5=

Remark 22

In the actual definition [44] of a contact manifold, the contact 

form i needs only be defined locally. What counts is the con-

tact distribution, the 2n-dimensional subspace of the tangent 

space at any point of M defined by the kernel of the contact 

form i at this point.

A Legendre submanifold of the contact manifold ( , )M i  

is a submanifold of maximal dimension restricted to which 

the contact form i is zero. The dimension of any Legendre 

submanifold of a ( )n2 1+ -dimensional contact manifold is 

equal to n. In particular, the state-space manifold of a sim-

ple thermodynamic system is a 2D Legendre submanifold 

of ( , ) .dE TdS PdVR5 - +  Any Legendre submanifold can be 

locally represented by a generating function (and usually in 

many ways).

Proposition 23

Consider a contact manifold ( , ),M i  with i locally given by 

(S22). Then there exists a partitioning { , , } ,n I J1 ,f =  with 

,I J+ Q=  and locally, a generating function ( , ),F zI Jc  with zI  

denoting the coordinates zi  with ,i I!  and Jc  denoting the co-

ordinates jc  with ,j J!  such that L is given as

	
( , , , , , , )z z z c cfL = g

, , .z F F z F
z
F

n n

J
J

J
J

I
I

0 1 1

0 2
2

2
2

2
2c

c c
c= - =- =

'

1 � (S23)

Conversely, any submanifold as in (S23) is a Legendre 

submanifold. Furthermore, the different generating func-

tions can be obtained from each other by a partial Leg-

endre transform.

In the context of thermodynamics, the different possible 

choices of ( , )F zI Jc  correspond exactly to the thermodynamic 

potentials, as discussed in the “Gibbs and the Thermodynamic 

Phase Space” section. For example, in the energy represen-

tation of a simple thermodynamic system, the generating 

function is the energy E(S, V) (with J void) while F(T, V) is the 

Helmholtz free energy. This can be immediately extended to 

the one-form

	 ,dE TdS PdV dNk
k

m

k
1

n- + -
=

/ � (S24)

where Nk  is the mole number of the kth chemical species and 

kn  its chemical potential, as well as to more general one-forms 

corresponding to other physical cases [7].

Finally, a vector field X on a contact manifold ( , )M i  is called 

a contact vector field if (with LX  denoting the Lie derivative 

with respect to the vector field X)

	 LXi ti= � (S25)

for some scalar function t on M. Note that this means that X 

leaves the contact distribution invariant. The function ( )Xi-  

is called the contact Hamiltonian of the contact vector field. 

Conversely, to any function on M, there exists a corresponding 

contact vector field. The expression of a contact vector field in 

local coordinates is somewhat complicated [38], [39]. Instead, 

this article focuses on the easier, homogeneous Hamiltonian 

vector fields on the symplectic extension of the contact mani-

fold, which project to contact vector fields (see “Homogeneous 

Symplectic Geometry”).

A
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relations are defined by N or, equivalently, by the energy 
function E(Q).

FROM THERMODYNAMIC PHASE SPACE 
TO HAMILTONIAN DYNAMICS
Thermodynamics, as discussed so far, is basically thermostat-
ics. The first and second laws do not define dynamics but 
instead impose constraints on any possible dynamics. Fur-
thermore, they lead to the definition of the extensive vari-
ables energy and entropy. The combination of the first and 
second laws implies Gibbs’ fundamental thermodynamic 
relation, which characterizes all the Legendre submanifolds 
L defining possible constitutive relations. This implies that 
any dynamics should be such that the constitutive relation of 

the system are respected (that is, any dynamics defined on 
the thermodynamic phase space should leave the Legendre 
submanifold L, characterizing the constitutive properties of 
the system, invariant). This can be formulated within contact 
geometry by a contact vector field with a contact Hamiltonian 
that is zero on L (see “Contact Geometry”). However, the next 
section uses one more abstraction step, which will simulta-
neously resolve some problems in the contact-geometric for-
mulation of thermodynamic systems as well as simplify the 
representations and computations. This step will also be cru-
cial for the definition of thermodynamic interaction ports in 
the “Port-Thermodynamic Systems” section. This abstrac-
tion step moves from contact geometry to homogeneous sym-
plectic geometry.

Homogeneous Symplectic Geometry

Here we discuss how contact geometry (as briefly described 

in “Contact Geometry”) can be formulated as homogeneous 

symplectic geometry by adding one dimension. This correspon-

dence is known in differential geometry [44], [45]. Its relevance 

for the geometric description of thermodynamics was first advo-

cated in [46] (primarily for uniting the energy and entropy repre-

sentation) and followed up on in [47]. Start with the collection of 

all the extensive variables (that is E, S) and all of the remaining 

extensive variables (such as , , , , ).V N Nm1 f f  The vector of all 

the extensive variables will be denoted by ( , , , ) ,Zz z z zn0 1 f !=  

with Z  being the manifold of the extensive variables. Next con-

sider the cotangent bundle without its zero section, denoted as 

.T Z)  Given the coordinates z for ,Z  there are natural coordi-

nates for the cotangent space denoted by ( , , , ),p p p pn0 1 f=  

leading to natural coordinates ( , ) ( , , , , , )z p z z p pn n0 0f f=  for 

.T Z)  In the case of thermodynamics,

	 ( , , , , , , ), ( , , , , , , ).z E S V N N p p p p p pm E S V N N1 m1f f f f= =

� (S26)

T Z)  is endowed with a natural one-form a  (called the Liou-

ville form), in the aforementioned coordinates (z, p) given as

	 .p dz p dz p dzn n0 0 1 1 ga = + + + � (S27)

For each Zz !  and each cotangent space ,ZTz
)  consider the 

projective space ( ),ZTP z
)  given as the set of rays in ZTz

)  (that 

is, all the nonzero multiples of a nonzero cotangent vector). The 

projective space ( )ZTP z
)  has dimension n, and there is a ca-

nonical projection : ( ),T Z ZTPz z z"r ) )  where T Zz)  denotes 

the cotangent space without the zero vector. The fiber bundle 

of the projective spaces ( ),Z ZT zP z !) , over the base manifold 

Z  will be denoted by ( ),ZTP )  and it defines a contact mani-

fold of dimension n2 1+  (one less than the dimension of ;T Z))  

compare [44] and [47]. Informally, whenever ,p 00 !  divide the 

Liouville form a  in (S27) by p0-  to obtain the contact form

	 , .dz dz dz p
p

n n i
i

0 1 1
0

|gi c c c= - - =
-

� (S28)

Furthermore, if p0  is zero, then divide by another p 0i !-  (just 

as in the transition from energy to entropy representation). The 

contact manifold ( )ZTP )  defines the canonical thermodynamic 

phase space. Because each cotangent space (minus the zero 

vector) T Zz)  projects under zr  to the projective space ( ),ZTP z
)  

this defines a total projection : ( ).T Z ZTP"r ) )  All of the rel-

evant objects on the contact manifold ( )ZTP )  (such as func-

tions, Legendre submanifolds, and contact vector fields) can be 

shown [47] to correspond to objects on T Z)  with an additional 

property of homogeneity in the cotangent variables p in such a 

way that they project under r  to an object on the contact mani-

fold ( ).ZTP )  Start with the homogeneity of functions, character-

ized by Euler’s theorem.

Definition 24

Let .r Z!  A function : T ZK R")  is called homogeneous of 

degree r (in p) if

	 ( , ) ( , ), .K z p K z p 0for allr !m m m= � (S29)

Theorem 25 (Euler’s Homogeneous Function Theorem)

A differentiable function : T ZK R")  is homogeneous of de-

gree r (in p) if and only if

	 ( , ) ( , ), ( , ) .T Zp p
K z p rK z p z p for alli

i

n

i0 2
2 != )

=

/ � (S30)

Furthermore, if K is homogeneous of degree r, then its de-

r ivatives ( / ) ( , ), , , , ,K p z p i n0 1i2 2 f=  are homogeneous of 

degree .r 1-

Obviously, a function : T ZK R")  that is homogeneous 

of degree zero in p projects to a function on the thermody-

namic phase space ( ).ZTP )  Next consider homogeneous 

Lagrangian submanifolds. Recall that a Lagrangian sub-

manifold L T Z1 )  is a maximal submanifold of ,T Z)  such 

that .d 0L;a =  A Lagrangian submanifold is called homoge-

neous if, whenever ( , ) ,Lz p !  then also ( , ) Lz p !m  for any 

.0 R! !m
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From Contact to Homogeneous  
Symplectic Geometry
Despite being directly motivated by Gibbs’ fundamental 
thermodynamic relation, the contact-geometric view on 
thermodynamics has the following three shortcomings:

1)	 Switching from the energy representation ( , )E E S V=  
to the entropy representation ( , )S S E V=  corre-
sponds to dividing the Gibbs form dE TdS PdV- +  
by ,T-  leading to the new contact form ( / )TdS dE1- - 
( / ) ,P T dV  with new intensive variables ( / ), ( / ).T P T1  
Obviously, L is a Legendre submanifold for this new 
contact form as well. However, it leads to a different 
contact-geometric description.

2)	 The contact-geometric approach does not make a 
clear distinction between extensive and intensive 
variables: Given a contact form ,i  there are many Dar-
boux coordinates [as in (S22) in “Contact Geometry”].

3)	 Computations in contact geometry tend to be involved, 
especially when dynamics is concerned.

The way to solve these problems is to extend contact mani-
folds by one extra dimension to symplectic manifolds (cotan-
gent bundles) with an added homogeneity structure. For a 
simple thermodynamic system with extensive variables E, S, 
V and intensive variables T, ,P-  this amounts to replacing the 
intensive variables T, P-  in the energy representation with 
their homogeneous coordinates ,pE  ,pS  pV  with ,p 0E !  that is,

Proposition 26

A submanifold L T Z1 )  is a homogeneous Lagrangian 

submanifold if and only if 0L;a =  and it is maximal with re-

spect to this property. For any homogeneous Lagrangian 

submanifold ,L T Z1 )  there exists a Legendre submanifold 

( Z)L TP1 )  such that ( ).L L1r= -  Conversely, for any Legen-

dre submanifold Z , L ZLL T TP 11 1r=) )- ^^ hh  is a homoge-

neous Lagrangian submanifold.

Thus, Legendre submanifolds L of the contact manifold 

( )ZTP )  (the canonical thermodynamic phase space) corre-

spond to homogeneous Lagrangian submanifolds L  of .T Z)  

Furthermore, let ( , ),F zI Jc  with { , , } ,n I J I J1 , +f 4= =  being a 

generating function for the Legendre submanifold ( )ZL TP1 )  

(compare “Contact Geometry”). Then, a generating function 

for the corresponding homogeneous Lagrangian submanifold 

L T Z1 )  [such that ( )],L L1r= -  is given by

	 ( , , ) ,G z p p p F z p
p

I J I
J

0 0
0

=-
-

,c m � (S31)

in the sense that

	 , , , .L z p q p
G q p

G p q
G

J
J

I
I

0
02

2
2
2

2
2= =- =- =^ h' 1 � (S32)

For dynamics, recall that for any function : ,T ZK R")  the 

Hamiltonian vector field XK  on T Z)  is defined by the standard 

Hamiltonian equations

	 ( , ), ( , ), , , .z p
K z p p z

K z p i n0 1i
i

i
i2

2
2
2 f= =- =o o � (S33)

Now impose on the Hamiltonians : T ZK R")  the condi-

tion that they are homogeneous of degree one in p, that is, 

( , ) ( , )K q p K q pm m=  for all .0!m

Proposition 27

If : T ZK R")  is homogeneous of degree one in p, then its 

Hamiltonian vector field XK  is such that (LX  denotes the Lie 

derivative with respect to the vector field X)

	 .0LXKa = � (S34)

Conversely, if ,0LXa =  then ,X XK=  where the function 

( )K X| a=  is homogeneous of degree one in p.

Hamiltonians : T ZK R")  that are homogeneous of de-

gree one in p and their corresponding Hamiltonian vector fields 

XK  will be called homogeneous. Any homogeneous Hamil-

tonian vector field projects to a contact vector field XKt  with 

contact Hamiltonian Kt  on the thermodynamic phase space 

( ).ZTP )  Conversely, any contact vector field on ( Z)TP )  is the 

projection of a homogeneous Hamiltonian vector field on T Z)  

[47]. As the state properties of the thermodynamic system 

are specified by a Legendre submanifold ( )ZL TP1 )  (Gibbs’ 

fundamental relation) or its corresponding homogeneous La-

grangian submanifold ,L T Z1 )  any dynamics of a thermody-

namic system should leave L  invariant. This is elegantly char-

acterized as follows.

Proposition 28

A homogeneous Hamiltonian vector field XK  leaves a homo-

geneous Lagrangian submanifold L  invariant if and only if K 

is zero on .L

Remark 29

A similar statement holds for the corresponding Legendre sub-

manifold L: The contact vector field leaves L invariant if and 

only if its contact Hamiltonian is zero on L.

Finally, [47] notes that the Poisson bracket of two homo-

geneous Hamiltonian functions is homogeneous, and that the 

Lie bracket of two homogeneous Hamiltonian vector fields on 

T Z)  is homogeneous. This allows for establishing a Lie-alge-

braic theory for verifying the controllability and observability of 

port-thermodynamic systems [47], [S8].

REFERENCE
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	 , ,T p
p

P p
p

E

S

E

V
=

-
- =

-
� (62)

as well as to expressing the intensive variables ( / ), ( / )T P T1  
in the entropy representation as

	 , .T p
p

T
P

p
p1

S

E

S

V
=

-
=

-
� (63)

In this way, the two Gibbs one-forms (dE TdS PdV+l  and 
( / ) ( / ) )T P TdS dE dV1- -  are replaced by a single symmetric 

expression (namely, the Liouville one-form),

	 .p dE p dS p dVE S V+ + � (64)

The Liouville one-form is the canonical one-form on the 
cotangent bundle ,T R3)  with R3  being the space of extensive 
variables E, S, V, with cotangent space coordinates ,pE  ,pS  .pV  
By the definition of homogeneous coordinates, the vector ( ,pE  

,pS  )pV  is different from the 0-vector, implying that the space 
( , , , , , )E S V p p pE S V" , is the cotangent bundle T R3)  minus its 

zero section. Furthermore, replacing the intensive variables 
with their homogeneous coordinates, the 2D Legendre sub-
manifold L is replaced with the 3D submanifold L ,T R31 )

	 L u( , , , , , ) , , , , .E S V p p p E S V p
p

p
p

LE S V
E

S

E

V
!=

- -
c m' 1 � (65)

Note that L is a Lagrangian submanifold, which is, moreover, 
homogeneous in the sense that whenever ( , , , , , )E S V p p pE S V ! L,  
then L( , , , , , )E S V p p pE S V !m m m  for any nonzero .R!m  Such 
homogeneous Lagrangian submanifolds are fully character-
ized as maximal manifolds restricted to which the Liouville 
one-form p dE p dS p dVE S V+ +  is zero (see “Homogeneous 
Symplectic Geometry”). In this way, the first two disadvan-
tages of the contact geometry formulation (the difference 
between energy and entropy representation, and the lack of a 
clear distinction between extensive and intensive variables) 
are resolved. As explained in “Homogeneous Symplectic 
Geometry,” this “symplectization” of contact manifolds (by 
adding one extra dimension to the space of intensive vari-
ables) has clear computational advantages as well. All of the 
computations become standard operations in Hamiltonian 
dynamics. In the words of Arnold [43]: One is advised to cal-
culate symplectically (but to think, rather, in terms of contact 
geometry). The symplectization of contact manifolds is 
known in differential geometry [44], [45]. Within a thermody-
namics context, its use was first advocated in [46] and fol-
lowed up on in [47].

Homogeneous Hamiltonian Dynamics
Consider a simple thermodynamic system with extensive 
variables ( , , ) .E S V R3!  Also consider the cotangent bundle 
T R3)  minus its zero section, with coordinates E, S, V, ,pE  ,pS  

.pV  For any function : ,K T R R3 ")  the standard Hamilto-
nian differential equations are

	

( , , , , , )
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( , , , , , )
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E p
K E S V p p p

S p
K E S V p p p

V p
K E S V p p p

p E
K E S V p p p

p S
K E S V p p p

p V
K E S V p p p

E
E S V

S
E S V

V
E S V

E E S V

S E S V

V E S V

2
2

2
2

2
2

2
2

2
2

2
2

= -
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=
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=
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Impose the condition that K is homogeneous of degree 
one in p, that is, 

( , , , , , ) ( , , , , , ), .K E S V p p p K E S V p p p 0for allE S V E S V !m m m m m=

� (67)

For such K, the Hamiltonian differential equations (66) 
project to a contact vector field on the contact manifold with 
coordinates (in the energy representation) , , , , .E S V T P-  
Conversely, any contact vector field is the projection of a 
Hamiltonian dynamics with homogeneous Hamiltonian K. 
The same holds for the entropy representation E, S, V, 
( / ),T1  ( / ).P T  The generalities concerning this are dis-
cussed in “Homogeneous Symplectic Geometry.” The 
Hamiltonian differential equations for homogeneous K 
respect the structure of T R3)  (as captured by its Liouville 
form). Furthermore, they leave invariant the homogeneous 
Lagrangian submanifold L  (specifying the state properties 
of the thermodynamic system) if and only if K is zero on L. 
It follows that any Hamiltonian dynamics generated by a 
function K that is 1) homogeneous of degree one in p and 2) 
zero on L,  is a feasible dynamics for the thermodynamic 
system. This will be the starting point for the definition of 
port-thermodynamic systems in the next section.

Interestingly, although the Hamiltonians in the formu-
lation of mechanical systems represent total energy, the 
Hamiltonians K in this section are dimensionless (in the 
sense of dimensional analysis). Together with the earlier 
observation that the dynamics of a thermodynamic system 
are captured by the dynamics restricted to the invariant 
homogeneous Lagrangian submanifold, this emphasizes 
that the Hamiltonian dynamics (66) has a rather different 
interpretation than in the standard Hamiltonian formula-
tion of mechanical (or other physical) systems. Another 
context where the same phenomena occur is optimal control; 
see “Digression on Optimal Control and Homogeneous 
Symplectic Geometry.”

PORT-THERMODYNAMIC SYSTEMS
As argued in the previous section (see [47] for additional 
information), any dynamics of a thermodynamic system 
should respect the geometric structure of the thermody-
namic phase space and its homogeneous symplectic exten-
sion. Furthermore, it should leave invariant the Legendre 
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Digression on Optimal Control and Homogeneous Symplectic Geometry

I t was recently shown in [S9] and [S10] how Pontryagin’s Maxi-

mum principle naturally leads to contact geometry. This stems 

from the fact that the vector of costate variables in the Mayer 

formulation of an optimal control problem is a separating vector, 

which can be arbitrarily scaled. The purpose of this digression is to 

highlight the initial homogeneous symplectic formulation, already 

implicitly present in [S9] and [S10]. This sheds additional light on 

the abnormal case in optimal control. Consider the optimal control 

problem of minimizing for fixed final-time x  the cost criterion

	 ( ( ), ( )) ,L x t u t dt x Rn

0
!

x# � (S35)

over all input functions : [ , ]u 0 Rm"x  for the dynamics ( , )x f x u=o  

with given initial condition x(0). The first step is to define an ad-

ditional state variable ,x0  such that ( , ), ( ) .x L x u x 0 00 0= =o  This 

converts the optimal control problem into the “Mayer problem” of 

minimizing ( )x0 x  over the augmented dynamics

	
( , ),
( , ),

( )
( )  .

x L x u
x f x u

x
x

0 0
0 given  

0 0=

=

=o

o � (S36)

Next define the pseudo-Hamiltonian : TH R R Rn m1 "#) +  as

	 ( , , , , ) ( , ) ( , ).H x x u f x u L x u0 0 0m m m m= +< � (S37)

By construction, H is homogeneous of degree one in ( , ) .Rn
0

1!m m +  

The corresponding homogeneous Hamiltonian vector field XH  

(parameterized by u) is

	

( , )

( , )

( , ) ( , )
.

x L x u

x f x u

x
f x u

x
L x u

0

0

0

02
2

2
2

m

m m m

=

=

=

=- -<<

o

o

o

o

�

(S38)

In the first two lines of (S38), the original augmented dynamics 

(S36) is recovered. As H does not depend on ,x0  it follows that 

0m  is constant (with 00m =  corresponding to the so-called ab-

normal case). Here, ( , ) Rn
0

1!m m +  should be understood as a 

vector of homogeneous coordinates for the cotangent spaces 

to the state-space manifold with coordinates ( , ).x x0  Hence, for 

,00 !m  the standard costate variables are defined as

	 ,
0

|c
m
m=

-
� (S39)

resulting in the differential equations of Pontryagin’s Maximum 

principle

	

( , )

( , )

( , ) ( , )

x L x u

x f x u

x
f x u

x
L x u

0

2
2

2
2c c

=

=

=- +<
<

<

o

o

o

�

(S40)

(where the equation for x0o  could be omitted as well). As not-

ed in [S9] and [S10], the dynamics (S40) are a contact vec-

tor field (parameterized by u) on the odd-dimensional con-

tact manifold with coordinates , ,x x0 c  and the contact form 

.dx dxi
n

i i0 1cR- =  

Alternatively (from a homogeneous symplectic perspec-

tive,) (S40) is the projection of the homogeneous Hamilto-

nian vector field (S38). Thus, the differential equations of 

Pontryagin’s Maximum principle can be understood as aris-

ing from the choice of the “intensive” variables ( / )0c m m= -  

in case the constant 0m  is different from zero (the “normal” 

case). In the abnormal case where ,00m =  the differential 

equations of the Maximum principle are most easily given 

in the form

	
( , )
( , )

( , ).

x L x u
x f x u

x
f x u

0

2
2m m

=

=-

=
< <

o

o

o

�

(S41)

On the other hand, note that this does not correspond to a choice 

of “intensive variables,” such as ( , , , ) ( / ).1n0 2 1$fc m m m m= -<u  

This explains the peculiar form of the differential equations of 

the Maximum principle in the abnormal case.

Furthermore, note that for the infinite-horizon " 3x^ h opti-

mal control problem, the stationary Hamilton–Jacobi–Bellman 

equation corresponds to a homogeneous Lagrangian subman-

ifold L T Rn 11 ) +  with generating function ( ),V x0m-  where V is 

Bellman’s value function, that is,

	 , , , , .L x x x V x x
V x0 0 0 0 2
2m m m m= = =-^ ^ ^h h h' 1 � (S42)

The minimum of H on L  with respect to u is zero:

	 , , , , ,minH V x x x
V x u 0

u
0 0 2

2m m- =c ^ ^h h m � (S43)

thus implying that L  is invariant. See also [S11] for an interest-

ing connection between the contact-geometric formulation of 

the Maximum principle in optimal control and the maximum 

entropy maximum principle of Callen [S2].
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submanifold of the thermodynamic phase space (or equiva-
lently, the corresponding Lagrangian submanifold of the 
homogeneous symplectic extension). This section adopts the 
same generality and notation as in “Contact Geometry” and 
“Homogeneous Symplectic Geometry,” where the space 
of all the extensive variables is denoted by Z,  the symplectic 
extension by T Z)  with coordinates (z, p), and the thermody-
namic phase space by Z( ).TP )  For instance, in a simple ther-
modynamic system, Z  is R3  with coordinates E, S, V, T Z)  
has coordinates E, S, V, ,pE  ,pS  ,pV  while the coordinates for 

Z( )TP )  are E, S, V, T, P-  (energy representation) or E, S, V, 
( / ),T1  ( / )P T  (entropy representation). Because of its sim-
plicity (and because it allows for defining, in a natural way, 
ports), this section emphasizes the description of the sym-
plectic extension T Z.)  See [47] for details on the resulting 
projection to the thermodynamic phase space Z( ) .TP )  

Consider a thermodynamic system with constitutive 
relations (state properties) specified by a homogeneous 
Lagrangian submanifold L T Z.1 )  Respecting the geometric 
structure of the symplectic extension T Z)  means that the 
dynamics is a Hamiltonian vector field XK  on T Z,)  with K 
homogeneous of degree one in the p variables. According to 
“Homogeneous Symplectic Geometry,” any such vector 
field leaves the Liouville form on T Z)  invariant. Further-
more, XK  leaves the homogeneous Lagrangian submanifold 
L  invariant if and only if K restricted to L  is zero. Finally, K 
is split into two parts, that is,

	 , .K K u u Ra c m!+ � (68)

T Z:K Ra ")  is the homogeneous Hamiltonian corre-
sponding to the autonomous dynamics due to internal 
equilibrium conditions. Furthermore, ( , , )K K Kc c

m
c

1 f=  is a 
row vector of homogeneous Hamiltonians (called control or 
interaction Hamiltonians) corresponding to the dynamics 
arising from interactions with the surroundings of the 
system. This second part of the dynamics is affinely param-
eterized by a vector u of control or input variables [see, how-
ever, Example 12 (Mass-Spring-Damper System) for a 
nonaffine dependency on u]. As K is homogeneous of 
degree one in p and zero on L  for all ,u Rm!  this simply 
means that all the ( )m 1+  functions , , ,K K Ka c

m
c

1 f  are 
homogeneous of degree one in p and zero on L. Invoking 
Theorem 25 (Euler’s Homogeneous Function Theorem) in 
“Homogeneous Symplectic Geometry” implies that
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K p p
K p p
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(69)

where the partial derivatives /K pa
i2 2  as well as / ,K pj i

c2 2  
, , ,j m1 f=  for , , ,i n0 1 f=  are all homogeneous of degree 

zero in the p variables. (Note that this does not necessarily 
mean these functions are independent of p; although, of 
course, this is an important special case.)

There are two more constraints on ,Ka as imposed by the 
first and second laws. As the energy and entropy variables 
E, S are among the extensive variables , , , ,z z zn0 1 f  take 

,E z0=  .S z1=  With this convention, the internal dynamics 
XKa  have ./E K pa

02 2=o  Hence, by the first law, the energy of 
the system should be conserved if there is no interaction 
with the surroundings (that is, ,)u 0=  implying that neces-
sarily u( / ) .K p 0L

a
02 2 =  Similarly, /K pa

12 2  is equal to So  in 
the internal dynamics .XKa  Hence by the second law of 
thermodynamics, u( / ) .K p 0L

a
12 2 $  See [37] for a related 

(although different) perspective within a contact geometry 
setting. These additional constraints do not hold for the 
control (interaction) Hamiltonians ,K j

c  , , .j m1 f=  The con-
trol Hamiltonians may be utilized to define natural output 
variables conjugated to the inputs u. The first option is to 
define the m-dimensional row vector

	 y p
K

p

c

02
2= � (70)

with the subscript p in yp  representing power. It follows that 
along the dynamics XK  on L  with ,K K K ua c= + 	

	 ,dt
d E y up= � (71)

and thus, yp  is the vector of power-conjugate (passive) out-
puts corresponding to the input vector u. The pair ( , )u yp  is 
called the power port of the system. Similarly, by defining 
the m-dimensional row vector (ef for “entropy flow”)

	 ,y p
K

ef

c

12
2= � (72)

it follows that along the dynamics XK  on L,

	 .dt
d S y uef$ � (73)

Hence, yef  is the output vector that is conjugate to u in 
terms of entropy flow. The pair ( , )u yef  is called the entropy flow 
port of the system. Note that one could also define the out-
puts that are conjugated to u for other extensive variables. 
This will lead to other types of ports [compare the Example 
10 (Chemical Reaction Networks) on chemical reaction net-
works at the end of this section]. This is summarized in the 
following definition of a port-thermodynamic system [47].

Definition 6
Consider the space of extensive variables Z.  A port-
thermodynamic system is a pair L( , ),K  where L T Z1 )  is 
a homogeneous Lagrangian submanifold describing the 
state properties, and ,K K K ua c= +  u Rm!  is a Hamiltonian 
on T Z)  that is homogeneous of degree one in p and zero 
on L. Let ( , , , ),z z z zn0 1 f=  with z E0 =  (energy), and z S1 =  
(entropy). Then K additionally satisfies u( / )K p 0L

a
02 2 =  and 

u( / ) .K p 0L
a

12 2 $  Furthermore, the power-conjugate output 
is defined as / ,K py c

p 02 2=  and the entropy flow-conjugate 
output is defined as / .y K pc

ef 12 2=
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Note that by the correspondence between contact geome-
try and homogeneous symplectic geometry, any port-ther-
modynamic system on T Z)  corresponds to a system on the 
thermodynamic phase space Z( )TP )  (which can be repre-
sented either in energy or entropy representation). The 
following examples, partly taken from [47], illustrate the 
definition of a port-thermodynamic system. As mentioned 
previously, the Hamiltonian K is dimensionless. On the other 
hand, the contact Hamiltonian Kt  of its projected dynamics has 
the dimension of power in the case of the energy representa-
tion and the dimension of entropy flow in the case of the 
entropy representation.

Example 7 (Heat Compartment)
Consider a heat compartment that exchanges heat with its 
surroundings. Its thermodynamic properties are described 
by the extensive variables S (entropy) and E (internal energy), 
with E expressed as a function ( )E E S=  of S, and ( ) .E S 0$l  
Its state properties are given by the homogeneous Lagrang-
ian submanifold

	 L ( , , , ) ( ), ( ) ,uE S p p E E S p p E SE S S E= = = - l" , � (74)

corresponding to the generating function ( ) .p E SE-  As 
there are no internal dynamics, Ka  is absent. Hence, taking 
u as the entropy flow corresponds to considering the homo-
geneous Hamiltonian

	 ( , , , ) ( ),K E S p p p p E Sc
E S S E= + l � (75)

which is zero on L. This yields the dynamics on L,  entail-
ing energy and entropy balance,
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p p E S uu
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=
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=

=
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o

o

o

o
�

(76)

with power-conjugate output yp  equal to ( ).E Sl  Note that 
/p pS Ec = -  is the temperature T, and the projected dynam-

ics on the thermodynamic phase space ( )TP R2)  is

	
( )

( ) .

E E S u

S

T p
p

E S u

u

E

S
- =

=

=

=

l

m

o

o

o
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(77)

This is a contact vector field (see “Contact Geometry”) 
with contact Hamiltonian ( , , ) ( ),K E S T T E Sc = - lt  which 
leaves the Legendre submanifold

	 u( , , ) ( ) ( ), ( )L E S T T R E E S T E SP 2!= = =) l" ,� (78)

invariant. Alternatively, if we take instead the incoming 
heat flow as input v, then the Hamiltonian is given by

	 ( , , , ) ( ) ,K E S p p p E S p v1
E S S E= +

lc m � (79)

leading to the entropy flow-conjugate output ,yef  given by 
the reciprocal temperature ( )./y E S1ef = l

Example 8 (Mass-Spring-Damper System)
This is an example that normally would not be considered a 
thermodynamic system. Nevertheless, in view of the dissi-
pation of energy due to the damper, there is a thermody-
namic component (namely, the heat irreversibly produced by 
the damper). Consider a mass-spring-damper system in 1D 
motion composed of a mass m with momentum ,r  linear 
spring with stiffness k and extension w, and linear damper 
with damping coefficient d. To take into account the thermal 
energy and the entropy production arising from the heat 
produced by the damper, the variables of the mechanical 
system are augmented with an entropy variable S and inter-
nal energy U(S), with ( ) .U S 02l  For instance, if the system 
is isothermal (that is, in thermodynamic equilibrium with a 
thermostat at temperature ),T0  the internal energy is 

( ) .U S T S0=  This leads to the total set of extensive variables 
w, ,r  S, E, with ( / ) ( )( / )E kw U Sm1 2 22 2r= + +  (total energy). 
The state properties of the system are described by the 
homogeneous Lagrangian submanifold L  with the generat-
ing function (in energy representation)

	 ( )p kw m U S2
1

2E
2

2r- + +c m� (80)

defining the state properties

	
L ( , , , , , , , )| ( ),

, , ( ) .
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1
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(81)

The dynamics are given by the following homogeneous 
Hamiltonian (zero on L),

( ) ,K p m p kw d m p U S

d m p p m uw S E

2

r r
r

r= + - - + + +r rl`
`

`j
j

j
� (82)

where u is an external force. The power-conjugate output 
/myp r=  is the velocity of the mass.

Example 9 (Gas-Piston-Damper System)
Consider a gas in a thermally isolated cylinder closed by a 
piston. Assuming the thermodynamic properties of the 
system are covered by the properties of the gas, the system 
is completely analogous to the previous example, replac-
ing w with volume V and the partial energy ( / ) ( )kw U S1 2 2 +  
with the internal energy U(S, V) of the gas. The dynamics 
of the gas-piston-damper system (with the piston actuated 
by a force u) is given by the Hamiltonian

,K p m p V
U d m p

S
U

d m p p m uV S E

2

2
2

2
2

r r
r

r= + - - + + +r r`
`

`j
j

j � (83)
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where the power-conjugate output /myp r=  is the velocity 
of the piston.

Example 10 (Chemical Reaction Networks)
Consider a chemical reaction network in entropy represen-
tation, as in the “Chemical Reaction Networks” section. 
Thus, the entropy S is represented as a function ( , )S S E x=  
of the energy E and the vector of chemical concentrations x. 
The homogeneous Lagrangian submanifold describing the 
state properties of the reaction network is

	
L u( , , , , , ) ( , ), ( , ),

( , ) ,

E S x p p p S S E x p p E
S E x

p p x
S E x

E S x E S

x S

2
2

2
2

= = = -

= -

$

.
�
(84)

with ( ) ( , ) ( / ),/ x TS E x2 2 n= -  ( ) ( , ) / ./ E TS E x 12 2 =  The inter-
nal dynamics of the chemical reaction network are gener-
ated by the following Hamiltonian (homogeneous of 
degree one in ( , , ),p p pE S x  and zero on L),

	 ( , ) ( , ) .K p p x
S E x Z R

Z
x
S E xExpLa

x S 2
2

2
2= - + -< <

` j � (85)

The control Hamiltonian

	 ( , ) ,K p E
S E x pc

S E2
2= + � (86)

corresponds to a heat flow input, and an entropy flow-con-
jugate output ( , )( )/y S x EEef 2 2=  equal to the reciprocal tem-
perature. Another possible choice is

	 ( , ) .K p x
S E x pc

S
i

xi2
2= + � (87)

This corresponds to material in/outflow of the ith 
chemical species, and an entropy flow-conjugate output 

( ) ( , )/y S xx Eef i2 2=  which is given by the chemical poten-
tial in  of the ith chemical species divided by −T. 

In this last example, the internal dynamics is a first-
order dynamics that converges irreversibly to a state 
where the elements of the vector of complex affinities 

( )/Z S x2 2<  are equal (and thus, in the kernel of ,L  com-
pare [27] and [28]). In the prior two examples (mass-
spring-damper system and gas-piston-damper system), 
this is different. Although there is an irreversible increase 
of entropy due to the damper action, there is also an 

internal dynamics corresponding to the oscillatory trans-
formation of kinetic energy into potential energy and, 
conversely, that leads to second-order dynamics. Thus, the 
internal dynamics of thermodynamic systems do not nec-
essarily correspond to irreversible dynamics.

In composite, nonhomogeneous, thermodynamic sys-
tems (compare the “Basic Terminology” section), there is 
typically no single energy or entropy. The constraints on 
the internal dynamics are different: The sum of the ener-
gies must be conserved. Likewise, the sum of the entropies 
must be increasing. A simple example is the following (see 
[47] for further information).

Example 11 (Heat Exchanger)
Consider a heat exchanger (as depicted in Figure 6) com-
posed of two heat compartments, as in Example 7 (Heat 
Compartment). There is heat flow from the hot to the cold 
compartment through a conducting wall, according to Fou-
rier’s law. The three extensive variables are ,S1  S2  (entro-
pies of the two compartments), and E (total internal energy). 
The state properties are described by the homogeneous 
Lagrangian submanifold

	
L u( , , , , , ) ( ) ( ),

( ), ( ) ,
S S E p p p E E S E S

p p E S p p E S
S S E

S E S E

1 2 1 1 2 2

1 1 2 2

1 2

1 2

= = +

= - = -l l

"
, �

(88)

corresponding to the generating function ( ( )p E SE 1 1- + 
( )),E S2 2  with ,E1  E2  being the internal energies of the two 

compartments. The internal dynamics of the heat exchanger 
are given by the homogeneous Hamiltonian

	 ( ) ( ) ( ( ) ( )),K E S E S p E S p E S1 1a
S S

1 1 2 2
2 2 1 11 2m= - -

l l
l lc m � (89)

with m  Fourier’s conduction coefficient. The total entropy 
on L  satisfies

	 ( ) ( ) ( ) ( ( ) ( )) .dt
d S S E S E S E S E S1 1 01 2

1 1 2 2
2 2 1 1 $m+ = - -

l l
l lc m � (90)

Note that this can be generalized to heat conduction in 
solids [48].

Comparison With Port-Hamiltonian Formulation
The definition of a port-thermodynamic system (Definition 6) 
is distinctly different from the standard definition of a 
port-Hamiltonian system [17]–[19]. Although they both 
involve Hamiltonian dynamics, the interpretation of the 
Hamiltonian dynamics and the Hamiltonian function in 
both formulations is different. In port-Hamiltonian sys-
tems, the Hamiltonian is given by the total stored energy 
(as in classical Hamiltonian mechanics), while the Hamilto-
nian K in the homogeneous Hamiltonian dynamics (66) is a 
dimensionless quantity. Furthermore, port-thermodynamic 
systems inherently constitute a nonminimal state-space 

E1, S1

T1 = E1 (S1)′
E2, S2

T2 = E2 (S2)′

FIGURE 6 A heat exchanger.
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representation in which a homogeneous Lagrangian (or 
Legendre) submanifold is left invariant by the dynamics. 
This Lagrangian submanifold specifies the constitutive 
relations including the energy expression of the thermody-
namic system. 

In a comparison of the two definitions, the Hamiltonian 
function in a port-Hamiltonian system corresponds to the 
homogeneous Lagrangian submanifold in a port-thermo-
dynamic system. On the other hand, the Hamiltonian of a 
port-thermodynamic system covers the interconnection 
structure of the system (which in the port-Hamiltonian for-
mulation is expressed by a Poisson or Dirac structure). As 
shown in “Cyclo-Passive Systems as Irreversible Thermo-
dynamic Systems,” any port-Hamiltonian system can be 
embedded in an irreversible thermodynamic system by 
including entropy as an extra extensive variable. By lifting 
the dynamics of the extensive variables (the state variables 
of the port-Hamiltonian system plus the entropy and 
energy) to the cotangent bundle, this leads to a port-ther-
modynamic system. Finally, note that the definition of port-
thermodynamic systems not only allows for power ports 
(as is the case for port-Hamiltonian systems) but also for 
entropy flow ports.

It is emphasized that the port-Hamiltonian formalism is 
not broad enough to cover general thermodynamic systems 
[49]. This was one of the motivations for the definition of port-
thermodynamic systems in [47]. The insufficiency of the stan-
dard port-Hamiltonian framework for thermodynamic 
systems modeling has already been suggested by the irrevers-
ible thermodynamic formulation of port-Hamiltonian systems 
(compare “Cyclo-Passive Systems as Irreversible Thermo-
dynamic Systems”), where the dynamics of the state variable 
x is independent of the entropy. More directly, it is illustrated 
by the example of the heat exchanger whose formulation as 
a port-thermodynamic system was given previously in 
Example 11 (Heat Exchanger). The heat exchanger can also be 
represented as
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where :( , ) ( ) ( )E S S E S E S1 2 1 1 2 2= +  is the total energy. This is 
a quasi-port-Hamiltonian formulation: Although the 
2 2#  matrix in (91) is skew symmetric (and thus, the con-
servation of energy E is guaranteed), it does not define a 
proper Poisson structure on the state space R2  with coor-
dinates ,S1  .S2  The reason is that this matrix does not 
directly depend on the state variables ,S1  ,S2  but instead 
through the temperatures ( ),E S1 1l  ( ) .E S2 2l  Alternatively, 
the dynamics in (91) are nonlinear in ( ) ,/E S E S1 1 12 2=l  

( ) /E S E S2 2 22 2=l  (as opposed to the standard definition of 
a Hamiltonian vector field). Note that this nonlinear depen-
dence is key to the crucial property ( / ) S Sd dt 01 2 $+^ h  
(increase of total entropy). This observation has given 
rise to the alternative notion of irreversible port-Hamilto-
nian systems [49].

Equivalent Parameterizations of the Dynamics
As discussed in the “A Paradigm Shift in Systems Mod-
eling” section, Gibbs’ fundamental thermodynamic relation 
leads to the consideration of nonminimal state-space repre-
sentations, namely, the thermodynamic phase space con-
sisting of all the extensive and intensive variables. The 
minimal state space is a Legendre submanifold L specify-
ing the state properties of the thermodynamic system. In 
the same way, the definition of a port-thermodynamic 
system entails dynamics on the whole thermodynamic 
phase space (or equivalently, its symplectic extension), leav-
ing invariant the Legendre submanifold L (or the homoge-
neous Lagrangian submanifold L). This means that the 
dynamics on L can be parameterized in different ways, 
either by extensive or intensive variables (or by mixtures of 
them). This is similar to the use of the various thermody-
namical potentials used to describe L (see the “Gibbs and 
the Thermodynamic Phase Space” section). Conversely, 
these different parameterizations of the dynamics are over-
arched by the dynamics on the whole thermodynamic 
phase space or its symplectic extension. 

Specifically, consider a port-thermodynamic system 
with homogeneous Hamiltonian dynamics XK  on T Z)  
with natural coordinates (z, p), where K K K ua c= +  is zero 
on the homogeneous Lagrangian submanifold L. As before, 

,z E0 =  ,z S1 =  and ,p pE0 =  .p pS1 =  The simplest parameter-
izations of the dynamics on L  are obtained by considering 
the dynamics of the extensive variables , ,z zn1 f  [corre-
sponding to the energy representation ( , , )],E E z z zn1 2f=  
or the dynamics of , , ,z z zn0 2 f  [corresponding to the 
entropy representation ( , , , )].S S z z zn0 2 f=  The dynamics 
can be parameterized equally well by considering the 
dynamics of the intensive variables , , n1 fc c  obtained from 
the coextensive variables ( , , , ) .p p p pn0 1 f=  For example, in 
the energy representation, the intensive variables are

	 , , ,p
p

p
p

n
n

1
0

1

0
fc c=

-
=

-
� (92)

which when restricted to L  are equal to

	 ( , , ), , ( , , ) .z
E z z z

E z zn
n

n
1

1 12
2 f f

2
2 f � (93)

Denote : ( , , )z z zn1 f= <u  and ( , , ) .n1 fc c c= <  Then, (93) 
defines a mapping

	 ( ) .z z
E z7
2
2

c =u
u
u � (94)
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Assuming the n n#  Hessian matrix ( )( )/E z z2 22 2u u  to be 
invertible, define the Legendre transform ( )E c)  of the function 

( ),E zu  which satisfies 
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E z z E
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E z E
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2 1
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) ) -

u
u u

u
u c m � (95)

These equalities allow for rewriting the dynamics of the 
n extensive variables zu  into dynamics of the n intensive vari-
ables c  as

	 ( ) .E z2

2

2
2
c

c c =
)

o uo � (96)

A very simple example was previously provided in 
Example 7 (Heat Compartment) (77). The dynamics on L  
are described by S u=o  or ( ) ,E S uc = mo  where the extensive 
variable S (entropy) is related to the intensive variable Tc =  
(temperature) by ( ) .E Sc = l  A more involved case is in 
Example 9 (Gas-Piston-Damper System). For simplicity, let 
d 0=  (no damping). The dynamics on L  are parameterized 
by the extensive variables S, V, r  as
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The dynamics expressed in the intensive variables 
/U S1 2 2c =  (temperature), /U V2 2 2c =  (minus the pres-

sure), and /m3c r=  (velocity) can be computed as
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This can be written fully in terms of c  by computing 
the Legendre transform ( , )U 1 2c c)  of U(S, V) and using 
the fact that the Hessian matrix of U is the inverse of the 
Hessian matrix of ,U)  compare (95). Similar computa-
tions can be performed to obtain a parameterization of 
the dynamics on L  in terms of the intensive variables 
corresponding to the entropy representation. In general, 
the transformation of the dynamics in extensive vari-
ables into the description of the dynamics in intensive 
variables is similar to the transformation of port-Hamil-
tonian dynamics in energy variables to its description in 
coenergy variables [18]. This is also closely related to the 
(generalized) Brayton–Moser formulation of physical 
systems [18], [50].

PORTS AND INTERCONNECTIONS
The definition of ports enables the interconnection of ther-
modynamic systems so as to obtain complex systems from 

simpler building blocks. Start with the case of power-port 
interconnections of port-thermodynamic systems, corre-
sponding to energy flow exchange. This is the standard 
situation considered in the physical network modeling of 
interconnected systems, especially in port-based modeling 
theory and port-Hamiltonian systems [15], [18]. Take two 
port-thermodynamic systems, with input vectors ,u1  and 

,u2  and the power-conjugate outputs ,yp1  yp2  (as introduced 
in the definition of port-thermodynamic systems). Con-
sider interconnection constraints satisfying the power con-
servation property

	 ,y u y u 0p p1 1 2 2+ =<< � (99)

in accordance with the first law. More generally, in the case 
of an additional external power port with variables u, ,yp  
consider the power-conserving interconnection constraints 
satisfying

	 .y u y u y u 0p p p1 1 2 2+ + =< << � (100)

Example 12 (Mass-Spring-Damper System)
This example demonstrates that the thermodynamic formu-
lation of the system in Example 8 (Mass-Spring-Damper 
System) also results from the interconnection of its three 
subsystems: mass, spring, and damper. The same analysis 
applies (mutatis mutandis) to the system presented in Exam-
ple 9 (Gas-Piston-Damper System).

1)	 Mass subsystem (excluding irrelevant entropy): The 
state properties are given by the homogeneous 
Lagrangian submanifold

	 L u( , , , ) , ,p p m p p m2m

2
l r l

r r= = = -l r r l' 1 � (101)

with energy l  (kinetic energy), momentum ,r  and 
dynamics generated by the Hamiltonian

	 K p m p um m
r= +l r` j � (102)

corresponding to ,umr =o  ./y mm r=

2)	 Spring subsystem (again excluding irrelevant entropy): 
The state properties are given by

	 L u( , , , ) , ,P w p p P kw p p kw2
1

s P w w P
2= = = -$ . � (103)

with energy P (elastic energy), spring extension w, 
and dynamics generated by the Hamiltonian

	 ( )K p kw p us P w s= + � (104)

corresponding to ,w us=o  .y kws =

3)	 Damper subsystem: The state properties are given by

	 L u( , ) ( ), ( ) ,U S U U S p p U Sd S U= = = - l" , � (105)
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with the entropy S and an internal energy U(S), while 
the dynamics are generated by the Hamiltonian

	 ( ) ,K p p U S du1
d U S d

2= +
lc m � (106)

with d the damping constant and power-conjugate 
output :y dud d=  equal to the damping force.

Now interconnect the three subsystems via their power 
ports ( , ),u ym m  ( , ),u ys s  ( , )u yd d  as

	 , .u y y u y um s d s m d= - - = = � (107)

This results (after setting )p p pP U= =l  in a port-thermo-
dynamic system with total Hamiltonian K K Km s d+ +  equal 
to the Hamiltonian Ka  [as obtained previously in (82)].

Interconnection via entropy flow ports is different, as by 
the second law, the total entropy flow is not necessarily 
zero but greater than or equal to zero. This is illustrated by 
the following example.

Example 13
The heat exchanger of in Example 11 (Heat Exchanger) (as 
depicted in Figure 6) can be modeled as the interconnection 
of two heat compartments [as in Example 7 (Heat Com-
partment)] via their entropy flow ports ( , ),v yi ef i  where 

/ ( ),y E S1ef i i= l  , .i 1 2=  The interconnection (correspond
ing to the conducting wall) is defined as v v1 2= - =

(( / ) ( / )),y y1 1ef ef2 1m -  with 02m  Fourier’s conduction coef-
ficient. This interconnection does not conserve entropy, but 
instead corresponds to its increase

	 ( ) .y v y v y y y y1 1 0ef ef
ef ef

ef ef1 1 2 2
2 1

1 2 $m+ = - -c m � (108)

(The reader is referred to [47] for a more elaborate treatment.)

CONCLUSION
The emphasis of this article was on two aspects: a clear cyclo-
dissipativity interpretation of classical macroscopic thermo-
dynamics and a geometric (coordinate-free) formulation of 
the state properties of a thermodynamic system and its 
dynamics (through contact and homogeneous symplectic 
geometry). Both aspects are considered essential in aligning 
thermodynamics with modern systems and control theory 
as well as in the integration of thermodynamics in unified 
frameworks for complex systems modeling for control. This 
underlines the engineering motivation and background of 
classical thermodynamics and its relevance for advanced 
control engineering. 

One of the benefits of the discussed geometric formu-
lation of thermodynamic systems is the definition of 
interaction ports of thermodynamic systems. This allows 
for a compositional modeling of complex multiphysics 
systems, including thermal behavior. It also provides a 
starting point for control by interconnection of such systems 

by interconnecting a given plant thermodynamic system 
with a controller thermodynamic system. Another venue 
for control is the “shaping by feedback” of the port-ther-
modynamic system into another port-thermodynamic 
system with desired characteristics [51]. This line of 
research continues and extends similar approaches in 
passivity-based control and port-Hamiltonian systems. 
Note that the transformation of a port-thermodynamic 
system not only entails energy shaping and power flow 
routing, but may also include “entropy shaping” and “rout-
ing of entropy flow.” 

As mentioned previously, a major research challenge 
lies in the connection of thermodynamics with information 
theory aimed at uniting control strategies based on energy 
shaping and power flow routing with an information pro-
cessing perspective. Many other aspects of thermodynam-
ics and their implications for systems and control were not 
discussed in this article. The maximum entropy principle 
(using the concavity of the entropy function), the stability 
analysis of forced equilibria of nonequilibrium thermody-
namic systems by minimal irreversible entropy production 
[7], and mesoscopic thermodynamics [52] seem to be espe-
cially relevant for systems analysis and control.
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