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A B S T R A C T   

Background: Central sensitization (CS) is often present in patients with chronic low back pain (CLBP). Gait im-
pairments due to CLBP have been extensively reported; however, the association between CS and gait is un-
known. The present study examined the association between CS and CLBP on gait during activities of daily living. 
Method: Forty-two patients with CLBP were included. CS was assessed through the Central Sensitization In-
ventory (CSI), and patients were divided in a low and high CS group (23 CLBP- and 19 CLBP+, respectively). 
Patients wore a tri-axial accelerometer device for one week. From the acceleration signals, gait cycles were 
extracted and 36 gait outcomes representing quantitative and qualitative characteristics of gait were calculated. 
A Random Forest was trained to classify CLBP- and CLBP + based on the gait outcomes. The maximum Youden 
index was computed to measure the diagnostic test’s ability and SHapley Additive exPlanations (SHAP) indexed 
the gait outcomes’ importance to the classification model. 
Results: The Random Forest accurately (84.4%) classified the CLBP- and CLBP+. Youden index was 0.65, and 
SHAP revealed that the gait outcomes’ important to the classification model were related to gait smoothness, 
stride frequency variability, stride length variability, stride regularity, predictability, and stability. 
Conclusions: CLBP- and CLBP + patients had different motor control strategies. Patients in the CLBP- group 
presented with a more “loose control”, with higher gait smoothness and stability, while CLBP + patients pre-
sented with a “tight control”, with a more regular, less variable, and more predictable gait pattern.   

1. Introduction 

Chronic low back pain (CLBP) is one of the most prevalent chronic 
musculoskeletal pains [1]. It is responsible for high treatment costs, sick 
leave and individual suffering and it represents a significant socioeco-
nomic burden [2]. For 85%–90% of patients with CLBP, the relation 
between pathoanatomical and clinical presentations is absent [3] and, 
therefore, it is classified as nonspecific CLBP [4]. In CLBP, and other 
chronic musculoskeletal disorders, central sensitization (CS) might be 
present (reviewed in Ref. [5]). CS is defined as “increased responsive-
ness of nociceptive neurons in the central nervous system to their normal 
or subthreshold afferent input” [6] and manifests as mechanical hy-
persensitivity, allodynia and hyperalgesia [7]. A considerable number of 
people need treatment for CLBP. Although the overall efficacy of CLBP 
rehabilitation programs is positive, but the effect sizes are modest [8]. 

Correctly recognizing the physical and psychosocial factors perpet-
uating pain and physical disability of patients with CLBP remains a 
challenge [9]. Altered motor control of patients with CLBP could 
possibly contribute to the persistence of CLBP [10]. Altered motor 
control could affect daily-living activities, as patients with CLBP often 
exhibit altered movement patterns and motor control strategies; prob-
ably to avoid painful movement, such as walking [11]. Many clinicians 
may intuitively identify “abnormal” gait patterns in patients with CLBP, 
but identification and objectifying of specific “abnormal” gait outcomes 
is challenging. During walking, it is suggested that patients often adopt a 
“protective guarding” or “splinting” strategy [12] to avoid painful 
movements of the spine. These adaptations may lead to a slower and less 
flexible gait pattern [13]. Evidence for this, however, is ambiguous. 
Studies between patients with CLBP and healthy controls, observed 
inconsistent evidence regarding preferred walking velocity [13,14], 
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stride length [15,16], and stride-to-stride variability [17,18]. 
A possible explanation for these inconsistencies might be an un-

known heterogeneity within the samples, such as the presence of CS. CS 
could plausibly be related to the inconsistent results, because the pres-
ence of high CS levels is associated with long-lasting chronic pain [19] 
and movement may be changed due to pain. Also, general gait outcomes 
such as walking speed and stride length, might not be sensitive enough 
to detect small differences between patients with low or high levels of 
CS. In addition to stride related parameters, gait outcomes that reflect 
gait quality in terms of regularity, synchronization, smoothness, local 
stability, and predictability, are sensitive to detect differences in gait 
performance. These gait outcomes were successfully used to detect the 
differences between age groups [20], older adults with and without fall 
risk [21], and patients with and without Parkinson’s disease [22]. Even 
though the effects of CLBP on gait have been frequently investigated in 
controlled laboratory studies, there are no studies about the relationship 
between CS levels and gait performance under daily-living environment 
circumstances. 

Advances in wearable technology and machine learning approaches 
offer new opportunities in gait data collection and analysis. Wearable 
technology allows researchers to record patients’ physical activities in 
unobserved, daily-living environments over extended periods of time. 
This data can reflect the real gait performance of the patients, since 
being observed may change the performance of patients under the 
controlled laboratory environment [23]. The successful employment of 
machine learning approaches in gait analysis makes it possible to extract 
the most informative gait outcomes from the accelerometer sensor data 
[20]. If patients with low and high levels of CS walk differently, machine 
learning approaches will be able to successfully recognize these differ-
ences and can classify patients with low and high CS level based on their 
gait outcomes. Many gait outcomes are not independent and interact 
with each other, such as gait speed and step regularity. Machine learning 
approaches such as Random Forest (RF), are able to process high 
dimensional and non-linear data structures and take the interrelation 
and interaction of the gait outcomes into consideration [20]. 

Therefore, the aim of this study was to analyze whether and how the 
presence of CS is related to differences in gait performance of patients 
with CLBP during daily life by using a machine learning approach. It was 
hypothesized that patients with CLBP and higher CS levels show dif-
ferences in daily life gait performance, compared with those with lower 
CS levels. 

2. Methods 

2.1. Patients 

This study included patients with primary CLBP who were recruited 
from the outpatient Pain Rehabilitation Department of the Center for 
Rehabilitation of the University Medical Center Groningen (CvR- 
UMCG). Primary CLBP is defined as low back pain persistent for more 
than three months, with pain not being the result of any other diagnosis. 
The patients were selected according to the following inclusion criteria: 
(a) age between 18 and 65 years old at the time of recruitment; (b) 
admitted to the interdisciplinary pain rehabilitation program; (c) could 
follow instructions; (d) signed informed consent. Additionally, patients 
were excluded if they: (a) had a specific diagnosis that would better 
account for the symptoms (e.g. cancer, inflammatory diseases and/or 
spinal fractures); (b) had neuralgia and/or radicular pain in the legs; (c) 
were pregnant; (d) in an acute phase of pain. 

The study was approved by the Medical Research Ethics Committee 
of the University Medical Center Groningen (METc 2016/702) and 
conducted according to the principles expressed in the Declaration of 
Helsinki. The data used in this paper was derived from a larger study, of 
which protocol details were described elsewhere [19]. 

2.2. Data collection 

Demographics were collected and standard clinical test were applied 
as part of the usual care of CLBP patients that are referred to the 
outpatient Pain Rehabilitation Department of the Center for Rehabili-
tation. Assessments included: Visual Analogue Scale for pain intensity 
(VAS Pain; 0–10), the Dictionary of Occupational Titles (DOT, the Pain 
Disability Index (PDI; 0–70), the physical functioning subscale of the 
Rand36 questionnaire (Rand36-PF; 0–100), the Pain Catastrophizing 
Scale (PCS, 0–52), the Injustice Experience Questionnaire (IEQ, 0–48), 
and the Brief Symptom Inventory (BSI global severity index t-score 
(GSIT))(see Table 3). 

Central sensitization (CS). The presence of CS-related manifestations 
was assessed with section A of the Central Sensitization Inventory (CSI) 
[24]. Section A has 25-items to assess the presence of common 
CS-related symptoms. Scores can range from 0 to 100 where a higher 
scoring represents a higher level of CS. A score lower than 40 indicates 
lower CS levels (CLBP- group) and a score of 40–100 is interpreted as 
higher CS levels (CLBP + group) [25]. 

Accelerometer data. The accelerometer data were collected between 
2017 and 2019. Patients were instructed to wear a tri-axial accelerom-
eter (ActiGraph GT3X, Actigraph Corporation, Pensacola, FL) at all 
times for about one week, excluding sleeping or bathing times. The 
accelerometer was worn at the front right hip of the patient (at the 
anterior superior iliac spine). Assuming a standing and upright position, 
the Y-axis pointed to the ground (vertical direction, V), Z-axis faced the 
walking direction (anteroposterior direction, AP), and the X-axis was 
perpendicular to the walking direction, pointing from a patient’s right to 
left (mediolateral direction, ML). These directions are approximate only. 
The sampling frequency of the accelerometer was set to 100 Hz and the 
dynamic range was ± 6 gravity. 

2.3. Data processing and analysis 

2.3.1. Raw data segmentation 
Accelerometer data of each patient was segmented into 24 h span 

data segments (from 12:00 p.m. to next day 11:59 a.m.) to represent the 
activities during the days. Because the measurement started at 12:00 p. 
m., to make full use of the data, the 24 h span was between 12:00 p.m. 
until next day 12:00 p.m. Data that did not completely covered this 24 h 
span was discarded from the analysis. Because of technical errors or 
personal reasons, a full week of data could not be collected from all 
patients. To compare the data between different patients fairly, 4 seg-
ments (representing 4 days) of each patient were included in the anal-
ysis. Therefore, 7 patients who had less than 4 segments, were excluded. 
From patients with more than 4 segments, 4 segments were randomly 
sampled. Fig. 1a graphically shows the process of the raw data 
segmentation. 

2.3.2. Walking bouts extraction 
The accelerometer data of the 4 segments were first smoothed by a 

low-pass filter with a 2nd order Butterworth and a 20 Hz cut-off fre-
quency. Subsequently, potential walking events were detected by the 
Fast Fourier Transform (FFT) based method [26], which identified pe-
riods with 0.5–3.0 Hz power spectrum values. To remove false walking 
events from the potential walking periods, the zero-cross method [27] 
was employed. If the time interval between any two adjacent walking 
events was shorter than 2 s, these two walking events were merged into 
one walking bout. Finally, the walking bouts in each segment were 
extracted and their gait outcomes were calculated. Fig. 1b presents the 
walking bouts as the yellow vertical bars in the rectangle. 

2.3.3. Gait outcomes 
All walking bouts in one 24 h segment were used to determine the 

total duration of walking, the total number of steps, the maximum 
duration of a walking bout and the maximum number of steps of a 
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walking bout. Subsequently, all walking bouts exceeding 10 s were 
selected and cut into non-overlapping 10 s windows [28]. From the 
segment, each 10 s window was used to calculate different gait out-
comes, and these values were averaged over all 10 s windows in the 
segment representing the patient’s gait performance on that day. 

Gait outcomes were divided into two categories, quantitative and 
qualitative gait outcomes. From one segment, we obtained one gait 
outcome vector, including 36 gait outcomes, based on the walking bouts 
(see Fig. 1c). The detailed descriptions of the quantitative and qualita-
tive gait outcomes are presented in Table 1 and Table 2 –for extended 
explanation of variables see Ref. [29]. 

Pearson-coefficient was calculated to examine relationship of gait 
outcomes between weekdays and weekend. The Pearson-coefficient 
ranges from − 1 to 1, where 1 represents a perfect correlation. 

The Mann-Whitney U test was used to statistically test the differences 
between CLBP- and CLBP + groups for demographics and CSI scores. To 
separate CLBP- and CLBP + groups by gait outcomes, RF was used. 

2.3.4. Random Forest classifier 
RF is considered as the optimal machine learning classification 

approach for the present data, because it performs well with (a) 
nonlinear and linear data; (b) high dimensional data; and (c) unbalanced 
and small datasets [30]. Apart from this, a comparison of different 
machine learning classifiers was performed to help to select RF as the 
best classifier for this study (details in Appendix A). 

The input data of this approach was < S, L >. S represents the gait 
outcome vectors of all patients and L was its corresponding label. The 
definition of S is: S = {s1, s2, …, si,…, sm} and si = [d1,…., dk], where si 
represents a gait outcome vector i and m is the number of all gait 
outcome vectors, d represents a gait outcome and k = 36. L = l1,….,

lm, where l ∈ {CLBP − , CLBP + }. 
RF is constructed in four steps. Step one: Randomly sample n gait 

outcome vectors from S and n corresponding labels from L, with 
replacement. These new set of gait outcome vectors and labels are called 
Sb  and  Lb. In Sb, si may appear more than one time or not appear. Step 

Fig. 1. The data processing and analysis: (a) raw data segmentation, (b) walking bouts extraction, (c) gait outcome vectors, (d) training and testing data preparation, 
(e) Random Forest classifier, (f) accuracy evaluation, (g) feature importance. 

Table 1 
Quantitative gait outcomes.  

Catalog Gait characteristic Description and method 

Pace Total duration of walking in 
the day 

The accumulated time (in seconds) of 
the walking bouts in one segment. 

Total number of steps in the 
day 

The accumulated steps of walking 
bouts in one segment. 

Maximum duration of a 
walking bout 

Duration (in seconds) of longest 
walking bout in one segment. 

Maximum number of steps of a 
walking bout 

Maximum number of steps of one 
walking bout in one segment. 

Walking speed (WS; mean, 
variability) 

WS = D/T, where D is the distance (in 
meters) and equals to the accumulated 
of step length; T is the corresponding 
time (in seconds). 

Stride length (SL; mean, 
variability) 

SL = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lh − h2

√
, where h is the 

change in height (in meters), l equals 
leg length (in meters). h was calculated 
by a double integration of the 
accelerometer signal in vertical 
direction. SL is the sum of the adjacent 
two step lengths. 

Stride time (ST; mean, 
variability) 

ST = n/f, where f is the sample 
frequency (in Hertz) and n is the 
number of samples per dominant 
period derived from autocorrelation. 
SF = f/n. 

Stride frequency (SF; mean, 
variability-V/ML/AP) 

Root mean square of the 
variability of the amplitude of 
accelerations (RMS), 

RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
(x2 + y2 + z2)

2

√

, where x, y,

z represent the accelerometer signal 
(in meters per second squared) in x, y, 
z axis and n is the number of samples.  
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two: In Sb, randomly sample j (j ≤ k) gait outcomes from s. Therefore, 
s′i = d′

1,…., d′

j and S′

b = s′1, …, s′n. Step three: Training a decision tree fb 

on S′

b, Lb. Step four: Repeat steps one to three 1000 times and combine 
the decision trees into an ensemble, called RF, that predicts by voting 
(see Fig. 2). 

Before training RF, 80% of patients were randomly selected and their 
4 corresponding gait outcome vectors were used as the training data. 
The gait outcome vectors of the remaining 20% of patients were used as 
the testing data. To avoid overfitting of the hyperparameters, a 5-fold 
cross-validation approach was used to estimate them, as shown in 
Fig. 1d. Four folds were used to train the model and the rest fold was 
used to estimate the performance of the current hyperparameters in RF. 
The performance reported by the 5-fold cross-validation was the average 
of the values computed in the 5 splits. After the best hyperparameters 
were determined, the testing dataset was used to evaluate the 

generalizability of the model. 

2.3.5. Accuracy evaluation 
Accuracy, sensitivity, specificity, precision, F1-score, and maximum 

Youden index were calculated to evaluate the performance of the clas-
sification (Fig. 1f). In this study, CLBP+ was considered as the positive 
case and CLBP- was the negative case. Correct predictions of CLBP+ and 
CLBP- patients are called true positives (TP) and true negatives (TN), 
respectively. Incorrect classifications of CLBP- patients as CLBP + or of 
CLBP + patients as CLBP-, are called false positives (FP) and false neg-
atives (FN) respectively. 

Accuracy was the proportion of all the correct classification results. 

accuracy =
TP + TN

TP + FP + TN + FN
(1) 

Sensitivity represents the proportion of positive cases that are 
correctly assigned (true positive rate). 

sensitivity =
TP

TP + FN
(2) 

Specificity refers to the rate of correctly predicted negative cases in 
all negative cases (true negative rate). 

specificity =
TN

TN + FP
(3) 

Precision is the ratio of the correctly predicted positive cases in all 
predicted positive cases. 

precision =
TP

TP + FP
(4) 

F1-score is the harmonic mean (average) of the precision and 
sensitivity. 

F1 =
2 × precision × sensitivity

precision + sensitivity
(5) 

The receiver operating characteristic (ROC) curve was calculated to 
evaluate the performance of RF. The Y-axis of this curve represents the 
true positive rate (sensitivity) and the X-axis means false positive rate (1- 
specificity). The overall classification performance of RF was evaluated 
by the area under the ROC curve (AUC). A classification model with a 
larger AUC value has a higher correct rate, and AUC = 1 represents 
perfect performance. The maximum Youden index was computed to 
measure the diagnostic test’s ability. 

J(c) = Max{sensitivity(c) − (1 − specificity(c))} (6)  

where c is the cut-point. When the value J is maximum, the corre-
sponding c is the optimal cut-point. 

2.3.6. Feature importance 
SHapley Additive exPlanations (SHAP) [31] was used to assess the 

gait outcomes’ importance to the classification model. SHAP connects 
optimal credit allocation with local explanations using the classic 
Shapley values from game theory. Shapley values, ∅i, explains the 
importance of gait outcome i for RF and is defined as: 

∅i =
1

|N|!

∑

{i}∈s and s⊆N

(|s| − 1)!(|N| − |s|)![R(s) − R(s − {i})] (7)  

where N is the size of the full set of gait outcomes, s is the subset that 
includes i in N, and R( ) is the accuracy of RF of the input gait outcomes. 
Since computing the exact Shapley values is computationally expensive, 
SHAP uses a tree explainer to exploit the information stored in the tree 
structure to calculate the SHAP values which are highly approximate 
Shapley values. Therefore, higher SHAP values represent higher impact 
to classify CLBP- and CLBP + groups. 

Table 2 
Qualitative gait outcomes.  

Catalog Gait characteristic Description and method 

Regularity Stride regularity (SR; V, 
ML, AP, All) 

SR is computed by using the unbiased 
autocorrelation coefficient: 

Ad(m) =
1

N − |m|

∑N− |m|

i=1
Acc(i)⋅Acc(i +

m), where is the sample acceleration 
signal, Acc(i) the number of samples, 
and N the number of time lag. The first 
peak of m is Ad(m) and it represents the 
stride regularity. Higher values 
(maximum 1.0) reflect repeatable 
patterns between strides. 

Gait symmetry index 
(GSI) 

GSI quantifies the ratio of the first and 
second peak of the Adm, as Ad1/Ad2. It 
is a measure of the degree of symmetry 
of the left and right lower limbs during 
walking. 

Smoothness Index of harmonicit 
(IH; V, ML, AP, All) 

IH =
P0

∑6
i=0Pi

. It is the ratio of the 

power spectral density of the 
fundamental frequency P0 and the sum 
of the power spectral density of the first 
six frequency Pi. IH quantifies gait 
smoothness., with higher values 
representing a smoother (max 1.0) gait 
pattern. 

Harmonic ratio (HR; V, 
ML, AP) HR =

∑
Pa

∑
Pb

. In VT and AP directions, 
∑

Pa = the sum of even power spectral 
and 

∑
Pb = the sum of odd power 

spectral. In ML direction, Pa is odd and 
Pb is even. It reflects the rhythmicity of 
the walking patterns. Higher values 
mean more rhythmic. 

Predictability Sample entropy (Sen; V, 
ML, AP) Sen = − ln

(
A
B

)

, with A = d[Accm+1(i),

Accm+1(j)]〈r, B = d[Accm(i),Accm(j)]〈r.
Accm(i) means the accelerometer signal 
vector from time i to m + i − 1. d[ ] is the 
Chebyshev distance, and r was set to 
0.3. Sen quantifies the predictability of 
a time series. Smaller values (minimum 
0) indicate better synchronization 
between acceleration signals. 

Stability Maximal Lyapunov 
exponent (max LyE; V, 
ML, AP) 

Max LyE, as calculated by the 
Rosenstein algorithm, quantifies the 
local stability of trunk acceleration 
patterns. The fitting window length was 
60/100*f, where f is the sample 
frequency, and the embedding 
dimension was set to 7. The overall max 
LyE were calculated and normalized by 
per stride. Higher values represent 
greater sensitivity to local 
perturbations. 

Maximal Lyapunov 
exponent normalized 
per stride by time (max 
LyE per stride; V, ML, 
AP)  
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3. Results 

Demographic characteristics are provided in Table 3. Out of a total of 
60 patients, 11 were excluded because essential parts of their dataset 
were incomplete (CSI scores or/and accelerometry data), 7 were 

excluded because they had less than 4 segments data (3 had 1 segment, 2 
had 2 segments, and 2 had 3 segments). Therefore, 42 patients were 
included in the data analysis. Differences between CLBP+ and CLBP- 
group characteristics (Table 3) were not statistically significant (p >
0.05), with exception of CSI score (p < 0.001) and BSI (p = 0.01). 

Because 42 patients (23 CLBP- and 19 CLBP+) were included, and for 
every patient 4 segments were randomly selected, the total accelerom-
eter data segments were 168. Therefore, the scales of training and 
testing dataset were 136 and 32. The mean Pearson-coefficient between 
workdays and weekend was 0.983, indicating almost perfect correlation. 

Testing data were used to evaluate the generalizability of RF and the 
confusion matrix is shown in Fig. 3. From the confusion matrix, accu-
racy, sensitivity, specificity, precision, and the F1-score were calculated 
to evaluate the performance metrics of the model. RF achieved an ac-
curate classification-result (84.4% accuracy), and the sensitivity and 
specificity were 75.0% and 93% respectively. The precision was 92% 
and the F1-score was 82.6%. The ROC curve is presented in Fig. 4 
showing that RF achieved a 0.83 AUC and the maximum Youden index 
was 0.69. 

The importance of the gait outcomes for RF is shown in Fig. 5. Based 
on the SHAP values, the 10 gait outcomes (above the red line in Fig. 5) 
were considered as important to the classification model. For the gait 
outcomes below the red line, the SHAP values were too low. Important 
gait outcomes are IH-V, SF variability-ML/AP, SR-ML, Max LyE-V/ML, 
Sen-AP, Max LyE per stride-V, HR-ML and SL variability. 

Fig. 6 shows the violin-box plot of the 10 important gait outcomes. 
Violin-box plot is a hybrid of a kernel density plot and a box plot, and the 
dots show the individuals data. A box plot contains a set of whiskers, a 
box and a horizontal line in the middle of the box, representing the 
minimum, maximum, first quartile, third quartile and median of the 
data respectively. From this figure, it is easy to distinguish the differ-
ences of the median between groups. It shows that CLBP- group has 
higher IH-V, HR-ML (better smoothness); higher SF-variance-ML, SF- 
variance-AP, SL-variance (higher variability); lower SR-ML (lesser reg-
ularity), lower Max LyE-V, Max LyE-per-stride-V, slightly lower Max 
LyE-ML (better stability); and slightly higher Sen-AP (lesser predict-
ability). Although the differences of medians between 2 groups in Sen- 
AP and Max LyE-ML are small, their distributions are different. In Sen- 
AP, data of CLBP- had a wider distribution and CLBP + shows more 
data at the bottom. In the Max LyE-ML, data of CLBP- is concentrated 
around the median, while CLBP + has a wide distribution and a lower 
peak. For other gait outcomes, the distributions are also different. In IH- 
V, distributions of CLBP- and CLBP + all showed a bimodal distribution, 
but the peaks of distribution are different. In SF Variability-ML and SF 
Variability-AP, CLBP + has a larger peak at the bottom while CLBP- has a 

Fig. 2. Architecture of the Random Forest classifier.  

Table 3 
Patient characteristics (n = 42).   

CLBP- (n 
= 23) 

CLBP+ (n 
= 19) 

All (n =
42) 

P-Value 

Gender 15 W/8 M 12 W/7 M 27 W/ 
15 M  

Age, years 40.8 ±
12.8 

38.1 ±
12.7 

39.6 ±
12.6  

Height, cm 173.5 ±
10.6 

175.7 ±
8.8 

174.5 ±
9.8  

Weight, kg 87 ± 17.7 85.4 ±
15.1 

86.3 ±
16.4  

Body mass index, kg/m2 28.9 ±
5.3 

27.7 ± 4.4 28.3 ±
4.9  

Central Sensitization 
Inventory (0–100) 

31 ± 4.8 48.7 ± 8.7 39.0 ±
11.2 

<0.0001 

Time since pain onset (years) 4.5 ± 6.1 3.5 ± 3.1 4.1 ±
4.9  

Educational Level 17S/6H 10S/9H 26S/ 
15H  

Physical demands at work 
(DOT; Se/Li/Me/He) 

3/11/8/1 4/7/7/1 7/18/ 
15/2  

Patient-reported Pain 
Intensity (VAS, 0–10) 

5.5 ± 2 5.2 ± 1.8 5.4 ±
1.9  

Disability (PDI, 0–70) 33.6 ±
11.2 

26.8 ±
11.9 

31.0 ±
11.7  

Work Ability (WAS, 0–10) 4.5 ± 2.3 4.9 ± 2.8 4.6 ±
2.5  

Physical Functioning 
(Rand36-PF, 0–100) 

49.8 ±
22.3 

63.3 ±
16.1 

54.7 ±
21.1  

Catastrophizing (PCS, 0–52) 16.3 ±
8.9 

20.3 ±
11.1 

18.1 ±
10  

Injustice (IEQ, 0–48) 15.2 ±
8.9 

18.5 ± 8.5 16.7 ±
8.8  

Psychological traits Screening 
(BSI, t-score) 

34.4 ±
4.9 

41.5 ± 5.8 37.6 ±
6.4 

= 0.01 

Except gender, all results represent mean ± standard deviation. CLBP-, CLBP+: 
Patients with chronic low back pain with low (− ) and high (+) central sensiti-
zation levels. W: Women; M: Men. H: Higher education; S: Secondary education. 
Se: Sedentary; Li: Light; Me: Medium; He: Heavy. DOT: Dictionary of Occupa-
tional Titles. VAS: Visual Analogue Scale. PDI: Pain Disability Index. WAS: Work 
Ability Score. Rand36-PF: Rand 36-Physical Functioning subscale. PCS: Pain 
Catastrophizing Scale. IEQ: Injustice Experience Questionnaire. BSI: Brief 
Symptom Inventory. 
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Fig. 3. Classification results for Random Forest, and the mean accuracy was 84.4%. CLBP-, CLBP+: Patients with chronic low back pain with lower (− ) and higher 
(+) central sensitization levels. 

Fig. 4. The receiver operating characteristic (ROC) curve (in red) for Random Forest classifier. AUC: area under the curve.  
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wide range distribution. Similarly, in SR-ML, CLBP + has a concen-
trating distribution while the peak of CLBP- is lower. In Max LyE-V and 
Max LyE per stride -V, CLBP- shows a log-normal distribution while 
CLBP + shows a wider distribution. In HR-ML and SL Variability, the 
distributions are similar but CLBP + has more outliers. 

4. Discussion 

The aim of this study was to analyze whether and how the presence 
of CS was related to differences in gait performance of patients with 
CLBP during daily life by using a machine learning approach. Based on 
quantitative and qualitative gait outcomes, using a RF, the two groups 
(CLBP- and CLBP+) could be classified with a high accuracy. The clas-
sification results indicated that CLBP- patients walk differently from 

CLBP + patients. Furthermore, the SHAP values showed that the dif-
ferences between CLBP- and CLBP + groups were present in gait out-
comes that represented smoothness, stability, predictability, regularity, 
and variability. 

In the present study, we addressed the walking measurement of pa-
tients with CLBP in a daily-living environment. Walking in a controlled 
laboratory or during a clinical assessment is different from self-initiated 
gait, during activities of daily living. Walking in daily life, might be 
subject to environmental perturbations, quick changes while performing 
a task, and often involves the performance of several actions at the same 
time [32], e.g. walking when carrying a cup of coffee. These influences 
on gait are not present in controlled studies and are not captured by 
conventional gait outcomes that average outcomes over stride cycles, 
such as mean step length, mean step time, and number of steps. 

Fig. 5. Features importance of Random Forest clas-
sifier. The 10 gait outcomes above the red line are: 
index of harmonicity in vertical direction (IH–V), 
variability of stride frequency in mediolateral/ante-
roposterior direction (SF variability-ML/AP), stride 
regularity in mediolateral direction (SR-ML), 
Maximal Lyapunov exponent in vertical/medio-
lateral direction (Max LyE-V/ML), sample entropy in 
anteroposterior direction (Sen-AP), Max LyE-V: 
Maximal Lyapunov exponent per stride in vertical 
direction, harmonic ratio in mediolateral direction 
(HR-ML) and variability of stride length (SL vari-
ability). The remaining gait outcomes below the red 
line are: WS variability: variability of walking speed, 
IH-ML: index of harmonicity in mediolateral direc-
tion, WS: mean walking speed and SL: mean stride 
length. ABS: absolute value. SHAP: SHapley Additive 
exPlanations.   

Fig. 6. Violin-box plot for the 10 gait out-
comes. Dots show the individuals data. 
CLBP-, CLBP+: Patients with chronic low 
back pain with low (− ) and high (+) CS 
levels. IH-V: index of harmonicity in vertical 
direction, SF variability-ML/AP: variability 
of stride frequency in mediolateral/ante-
roposterior direction, SR-ML: stride regular-
ity in mediolateral direction, Max LyE-V/ML: 
Maximal Lyapunov exponent in vertical/ 
mediolateral direction, Sen-AP: sample en-
tropy in anteroposterior direction and HR- 
ML: harmonic ratio in mediolateral 
direction.   
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Therefore, the present study included gait outcomes that take into ac-
count the interdependency of gait cycles and how gait cycles evolve over 
time, e.g., using sample entropy as a measure of predictability of the gait 
pattern, the maximal Lyapunov exponent as quantification of local sta-
bility and correlation-based measures [33]. 

The accuracy value of 84.4% shows that RF has a high classification 
accuracy. The specificity scores of RF reveals that 93% of the samples 
(15 samples, true negative) are correctly classified as member of the 
CLBP- without a high CS level, but it misses 7% (1 sample, false posi-
tive). The sensitivity scores show that 75% of the samples (12 samples, 
true positive) of the CLBP + group were assigned to this group, however 
25% were wrongly classified as belonging to the CLBP- group (4 sam-
ples, false negative). Decreasing the possibility of false positive will in-
crease the possibility of false negative, and vice versa. The F1-score was 
calculated to take false positive and false negative into consideration at 
the same time by computing their harmonic mean. The high F1-score 
(82.6%) of RF implies that the model has a good and balanced perfor-
mance. The Youden Index (0.69) was higher than 0.5 which means that 
RF has a diagnostic test’s ability to balance sensitivity and specificity. 
The AUC indicates that RF has a 83% chance to distinguish CLBP+ and 
CLBP- correctly. Based on these performance measures of RF, this study 
leads us to concluded that the CLBP- and CLBP + had different gait 
patterns, and that the gait outcomes important to the classification 
model identified by SHAP are trustworthy. 

In the present study RF was applied for classification, among the 
many available machine learning approaches, such as K-nearest neigh-
bors (KNN), Naive Bayes (NB), Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM). In general, machine learning approaches 
can take the interaction of gait outcomes into consideration. KNN and 
NB are instance-based learning approaches which imply they do not 
learn from training data [34]. Our choice for RF was based on the results 
of a previous study that compared RF, ANN, and SVM to classify 
different age groups on similar gait outcomes. The results of this study 
showed that all approaches had a good overall classification accuracy 
[20]. Moreover, for the current dataset, our preliminary empirical work 
in which we compared the performance of different machine learning 
classifiers, showed that RF and ANN had the best performance compared 
to SV, NB and KNN (details were in Appendix A). A drawback of ANN is 
that it requires a large data set to find the optimal activation function 
and avoid overfitting [35]. With a limited scale of dataset, both SVM and 
RF are good choices. Considering the clinical aim of the study, namely to 
investigate the relationship between CLBP, CS, and gait patterns, it is 
important that the results of the machine learning can be translated into 
meaningful outcomes that can support clinical decision making. SVM 
can deal with non-linear data by using kernel functions; however, 
choosing an appropriate kernel function could be difficult for clinicians. 
Additionally, it implicitly maps gait outcomes to a high-dimensional 
features space. This mapping changes the structure of gait outcomes 
and makes it hard to explain which gait outcomes contribute most to the 
classification model. Similarly, ANN uses various of activation functions 
(e.g., Tanh, Sigmoid), and makes the interactions of the gait outcomes 
invisible. On the contrary, RF is an ensemble of decision trees. Decision 
trees can incorporate gait outcomes interactions naturally in the clas-
sification process. For example, a decision tree with depth 2 from a RF, 
with the father node IH-V and the son node Sen-AP, can describe an 
interactive gait pattern: if IH-V >* and Sen-AP >*, the data belong to 
CLBP-. Because RF includes multiple decision trees it can capture the 
complex interaction of gait outcomes with good accuracy. Each tree is 
built based on a random subset of gait outcomes and the samples in the 
dataset can be repeatedly selected when training. Consequently, it can 
help to reduce the chance of overfitting and provide a generalized 
model. RF can incorporate gait outcomes interactions naturally in the 
classification process. SHAP can use this information that stores in the 
tree structure to disclose which gait outcomes are different between 
CLBP- and CLBP + groups. These differences in terms of gait regularity, 
smoothness, and stability are meaningful to the clinicians. 

In this study, SHAP was used to evaluate the importance of each gait 
outcome, instead of the conventionally used Gini impurity and infor-
mation entropy. The value of Gini impurity is based on the tree structure 
in RF and information entropy reflects the level of "information" of a gait 
outcome. Gait outcomes are interrelated and interact in a complex 
nonlinear manner [33]. SHAP is based on the game theory and evaluates 
the contribution of each gait outcome to the classification accuracy by 
computing all possible combinations between gait outcomes. Therefore, 
SHAP provides a good method to explain the importance of gait out-
comes to RF. The SHAP values suggest that the differences between 
CLBP- and CLBP + groups are reflected in smoothness, stability, pre-
dictability, regularity, and variability of gait. Compared with CLBP- 
group, CLBP + group exhibited lower smoothness and local stability of 
gait, while the CLBP + group exhibited a more regular, less variable, and 
more predictable gait pattern. 

Gait patterns of patients with CLBP, are usually compared with the 
gait pattern of healthy persons. To the best of our knowledge, this is the 
first study in patients with CLBP that addresses the difference in gait 
pattern between two CLBP groups based on low and high CS levels, 
which makes a direct comparison with other studies intricate. The re-
sults of different gait patterns between low and high CS levels support 
the notion that within the heterogenous CLBP group, different motor 
control strategies are adopted. Two motor control strategies on a con-
tinuum have been suggested with “tight control” and “loose control” at 
each end, and normal trunk control in the middle [36]. 

The gait patterns of CLBP + group might suggest that patients with 
CLBP + adopt a more “tight control”. The “tight control” involves 
increased trunk muscle activation and enhanced muscle co-contraction, 
might enhance control over trunk posture and movement [36]. 
Increased muscle activation and enhanced co-contraction would help 
individuals to maintain the stability of lumbar spine [37] by restricting 
the movement amplitude of lumbar spine. However, in a complex 
daily-living environment, this strategy might impair patients’ ability to 
maintain balance during walking because of the unstable surfaces and 
environmental perturbations [38], and therefore has a lower gait sta-
bility (compared with CLBP- patients). Increased co-contraction would 
reduce the demand for the intricate control of the sequences of muscle 
activation. It might avoid the potential error raised by inaccurate sen-
sory feedback of CLBP [36]. This might allow patients to control their 
trunks’ movement precisely [39] and, therefore, result in a lower vari-
ability and a higher regularity of gait of CLBP + patients. Our results 
might infer thus that the CLBP + group exhibited a more “tight control”. 
Therefore, the lower stability and variability, higher regularity and 
predictability in gait of the CLBP + group could be the result of the 
adoption of “tight control”. 

The gait patterns of CLBP- group, on the other hand, might be 
explained by “loose control” strategy. The “loose control” that involves 
reduced muscle excitability, might reduce the control over trunk 
movements [36]. The spine of which each spinal unit has 6◦ of freedom, 
is controlled by its surrounding musculature. Reduced muscular excit-
ability, leads to a reduced control over the spinal muscle, to larger 
amplitude movements, and to more movement variability during 
repeated tasks [36]. The increased variability in gait of CLBP- group 
might support this finding. Additionally, increased variability would 
lead to a lower regularity in gait which was also found in the CLBP- 
group. Apart from this, increased motor variability might probably 
prevent muscle fatigue [40] because it allows sharing the load between 
different structures or tissues. Motor variability makes it possible to 
explore new pain-free motor control solutions [41]. This is a possible 
explanation for the higher smoothness in gait of CLBP- patients, because 
it allowed them to flexibly adapt to the complex daily-living environ-
ment by using different movement solutions. So, the higher variability 
and smoothness, and lower regularity in gait patterns might hint that 
CLBP- group adopted a more “loose control” compared with CLBP +
group. 

Although the “tight control” adapted strategy might have short-term 
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benefits, it may also contribute to a higher level of CS. The “tight con-
trol” present in CLBP + patients presumably increase muscle activation 
and co-contraction, and lead to larger forces acting on the spine and 
higher spinal loading. Moreover, it has been shown that even when 
patients are at rest, muscle co-contraction can be continuous [42]. These 
long-lasting peripheral noxious stimuli might explain the development 
and/or persistence of CS [43]. Additionally, it has been reported that a 
“tight control” strategy relates to negative pain cognitions [44], a psy-
chological process that also might contribute to the higher CS scores of 
the CLBP + group. 

Clinically, the gait outcomes identified as important to the classifier, 
may assist clinicians in providing them with a more accurate under-
standing of the gait performance of patients with CLBP, with low or high 
CS levels, and a with an explicit operationalization of the observed 
“abnormal” gait pattern of patients with chronic pain. Whether 
“abnormal” should be interpreted as a functional or a dysfunctional 
motor control strategy in the short or long term, remains to be studied. 
RF and SHAP used in this study have presented a novel way to identify 
interacting features, and therefore, can be used for further studies. The 
presented accurate classification could become meaningful if this would 
lead to effective treatment approaches. The differences in gait patterns 
of CLBP- and CLBP + groups could be the results of the different motor 
control adapted strategies and the different motor control adapted 
strategies could be the causes, consequences, or both, of differences in 
CS levels on patients with CLBP. While this cross-sectional study has 
objectified a relation between CS and gait outcomes, the causality of this 
relation is unknown. Follow-up studies would benefit from a longitu-
dinal design with multiple measurements to help further unraveling of 
this relation, as well as the relation to disability. 

In line with most studies on walking and CLBP, we used cross- 
sectional data, thus we are not allowed to infer causality between 
motor control changes, CS and CLBP. Some patients had analgesic or 
anti-inflammatory treatment at the beginning of the study, and how 
these medicines interact with CS and gait outcomes is unknown. 
Moreover, we labeled the groups based on CSI score and the cut-off 
values from a previous study [25]. It should also be noted that a gold 
standard measure to diagnose CS is unavailable. The CSI is regarded as 
an indirect measure of CS, because higher scores are associated with the 
presence of CS syndromes [25]. In addition to gait assessment, it would 
be interesting to explore differences in physical activities between CLBP- 
and CLBP + groups, because several studies reported that relationship 
between CLBP and physical activity levels is heterogeneous [45]. 

5. Conclusion 

The present study analyzed gait data during daily living of CLBP 
patients with low and high CS levels. RF and SHAP were applied for 
classification and for assessing the contribution of gait outcomes to the 
model. This analytic approach demonstrated that RF has the ability to 

accurately classify subgroups of patients with CLBP and low or high CS 
levels based on differences in gait outcomes. The results of SHAP showed 
that the differences of gait outcomes between low and high CS levels 
were in gait regularity, variability, predictability, smoothness, and sta-
bility. This may imply that patients with low and high CS levels adopted 
different motor control strategies. Patients with CLBP and low CS level 
(CLBP-) use a “loose control” and, therefore, exhibited more smoothness 
and stability in gait patterns. Patients with CLBP and high CS level 
(CLBP+) adopted a “tight control” and showed a more regular, less 
variable and more predictable gait pattern. 

The results of this study may contribute to a better understanding of 
gait characteristics in patients with CLBP, its association with CS, and 
may in the future assist in better-personalized rehabilitation in-
terventions [46]. 
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Appendix A 

We did empirical work of comparing often applied approaches for classification: Random Frost (RF), Artificial Neural Network (ANN), Support 
Vector Machine (SVM), Naive Bayes (NB), and K-Nearest Neighbors (KNN). As can be seen in the Table below, RF and ANN had the best performance 
compared to SV, NB, and KNN. RF performed better in precision and specificity, while ANN performed better in sensitivity.  

Table 
Classification performance comparison   

RF ANN SVM NB KNN (n = 3) 

Accuracy 84.4% 81.2% 68.8% 62.5% 62.5% 
Sensitivity 75% 93% 56% 50% 50% 
Specificity 93% 68.8% 81.3% 75% 75% 
Precision 92% 75% 75% 66.7% 66.7% 
F1-score 82.6% 83% 64.1% 57% 57% 
AUC 0.83 0.85 0.67 0.62 0.62 
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