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Wasserstein Distributionally Robust Look-Ahead
Economic Dispatch

Bala Kameshwar Poolla , Member, IEEE, Ashish R. Hota , Saverio Bolognani ,
Duncan S. Callaway , Member, IEEE, and Ashish Cherukuri , Member, IEEE

Abstract—We consider the problem of look-ahead economic
dispatch (LAED) with uncertain renewable energy generation. The
goal of this problem is to minimize the cost of conventional energy
generation subject to uncertain operational constraints. The risk
of violating these constraints must be below a given threshold for
a family of probability distributions with characteristics similar
to observed past data or predictions. We present two data-driven
approaches based on two novel mathematical reformulations of this
distributionally robust decision problem. The first one is a tractable
convex program in which the uncertain constraints are defined
via the distributionally robust conditional-value-at-risk. The sec-
ond one is a scalable robust optimization program that yields
an approximate distributionally robust chance-constrained LAED.
Numerical experiments on the IEEE 39-bus system with real solar
production data and forecasts illustrate the effectiveness of these
approaches. We discuss how system operators should tune these
techniques in order to seek the desired robustness-performance
trade-off and we compare their computational scalability.

Index Terms—Chance-constrained optimization, conditional-
value-at-risk, data-driven approaches, distributionally robust
optimization, optimal power flow.

I. INTRODUCTION

THE electricity grid is witnessing an increasing penetration
of renewable energy sources (such as solar photovoltaic

and wind) [1]. In sharp contrast with conventional sources of
electricity (such as coal-fired or nuclear power plants), the en-
ergy produced from renewable energy sources is highly variable,
intermittent, and not fully dispatchable. Thus, efficient integra-
tion of renewable energy sources so as to meet the demand for
electricity while respecting the operational constraints (such as
line flow limits and ramp constraints) is a fundamental challenge
for modern power grids [2].
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The problem of determining the cost-efficient dispatch sched-
ule for (conventional) generators in order to meet the forecast
demand subject to operational constraints is referred to as the
optimal power flow (OPF) or economic dispatch (ED) prob-
lem [2], [3]. Both single-period as well as multi-period version−
referred to as the look-ahead economic dispatch (LAED), have
been investigated [3], [4].

In this work, we investigate the multi-period LAED problem
in the presence of uncertain renewable energy generation. In
practical terms, the multi-period decision process allows the
operator to take strategic decisions (such as ramping-up the
most economical conventional generation) several hours ahead
of real-time operation in order to ensure sufficient controllability
of the system for a range of possible realizations of the uncertain
renewable generation [5].

This dispatch problem under uncertain renewable energy gen-
eration results in a robust or a stochastic optimization problem.
The decision-maker either requires the uncertain constraints
to hold for all realizations of the uncertainty (leading to a
robust/worst-case optimization formulation) or with a high prob-
ability (leading to a chance-constrained program) [6]. The latter
yields less conservative solutions, but requires the decision-
maker to know the distribution of the uncertainty. Some early
works have modeled the distribution of (forecast error in) wind
power generation as Gaussian [7] or Beta [8]. However, both
these models were challenged in subsequent works, e.g., [9].
Other distributions, such as Laplace [10], Cauchy [11], and
Levy alpha-stable [12] were also proposed. Nevertheless, as
discussed in [13], there is no probability distribution that is
suitable to describe all wind energy generation data. Analogous
observations have been made in [14] regarding solar energy
generation. Furthermore, climate change also induces subtle
shifts in renewable energy generation compared to historical
data [15].

This lack of a suitable distribution that describes renewable
energy generation on one hand, and availability of historical
and numerical forecast data on the other, have been one of the
primary motivations behind the rise of distributionally robust
approaches to solve various operational problems in modern
power systems. In a distributionally robust chance-constrained
program (DRCCP), the goal is to find a solution which satisfies
the chance-constraints for a suitably defined family of distri-
butions of the uncertain parameters (as opposed to learning
a single distribution that best captures the observed data and
requiring the chance-constraint to be satisfied for this learned
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distribution). The family of distributions is referred to as an
ambiguity set. Thus, this approach enables the decision-maker to
robustify dispatch decisions to slow trends, seasonal variations,
and non-ergodicity in the renewable generation data and avoid
overfitting to observed data.

A. Related Works

Early work on distributionally robust (DR) OPF considered
moment-based ambiguity sets which comprise of all distribu-
tions with an identical mean and covariance as the uncertain
parameters [16]–[18]. However, this requires to infer the mean
and covariance of the uncertain parameters from the empirical
data in order to construct the ambiguity set. In contrast, recent
papers have considered the Wasserstein distributionally robust
optimization paradigm in power systems applications such as
unit commitment1 [19], [20] and optimal power flow [21]–[23].

The definition of ambiguity sets via the Wasserstein distance,
directly utilizing the observed samples, brings several attrac-
tive properties in terms of finite sample guarantees, tractable
reformulations, and asymptotic consistency. In Section III-C,
we briefly review the underlying assumptions and rigorous finite
sample guarantees established for Wasserstein ambiguity sets in
prior work [24]–[26] (and also for the scenario approach, which
requires milder assumptions).

Our contribution builds upon earlier works, in particular [21],
[23], [26]. The authors in [26] were the first to propose finite-
dimensional reformulations of distributionally robust optimiza-
tion problems with uncertain cost functions over Wasserstein
ambiguity sets; however [26] does not deal with distribution-
ally robust chance or risk-constrained optimization problems.
In [21], the reformulations developed in [26] were applied to
the multi-period OPF problem. While [21] (as well as [22])
notes that the operational constraints (such as line flow and
voltage magnitude limits) in the OPF problem are uncertain
under renewable energy generation, they treat these constraints
as penalty terms in the cost function. This allows them to use the
results of [26]. However, handling constraints by moving them
to the objective function via penalty terms does not guarantee
that the constraints will be satisfied at the optimum.

In [23], uncertain operational constraints are treated as dis-
tributionally robust individual chance-constraints under Wasser-
stein ambiguity sets. As a consequence of their modeling choice,
on each constraint, the uncertainty takes the form of a scalar ran-
dom variable, which is the basis for their reformulations. How-
ever, solutions obtained under individual chance-constraints
lack the desired robustness of the solutions obtained under joint
chance-constraints.

B. Summary of Contributions

In this work, we study the LAED problem where the op-
erational constraints are required to hold jointly with a high
probability for all distributions that are “close” to the empirical

1The unit commitment problem is an instance of an integer program which
belongs to a different class of optimization problems than the OPF or LAED
problem considered here (with continuous decision variables).

distribution induced by the observed data or by the available
forecasts, as measured by the Wasserstein metric. However,
chance-constrained programs are computationally intractable
except for a special class of distributions and constraints, even
when the distribution of the uncertain parameters is known.
Accordingly, past work has focused on developing tractable
convex approximations of the chance-constrained OPF prob-
lem [16], [27], [28]. Sample-based methods, inspired by the
so-called scenario approach [29] and its variations, have also
been investigated in this context [30]–[32]. We adopt a similar
approach here and develop two tractable approximations for
Wasserstein DRCCPs.

First, we observe that conditional-value-at-risk (CVaR)-
constraints act as convex inner approximations to chance-
constraints [33]. Furthermore, CVaR is a widely used coher-
ent risk measure [34] which guarantees that the constraints
not only hold with high probability, but also the magnitude
of constraint violation is small in expectation. We present a
convex finite-dimensional reformulation of distributionally ro-
bust CVaR-constrained programs (DRCVP) under Wasserstein
ambiguity sets for constraint functions that are affine in the
decision variables and the uncertain parameters.2

However, the number of constraints of the DRCVP problem
increases with the number of samples, leading to high dimen-
sionality, despite the convexity. Therefore, we develop a scalable
approach to approximately solve DRCCPs under Wasserstein
ambiguity sets inspired by a similar approach proposed in [36]
for chance-constrained programs. We leverage a recently pro-
posed exact reformulation of DRCCPs in [35] and approximate
the problem via a two-dimensional DRCCP for each component
of the uncertainty and a master robust optimization problem
whose size does not depend on the number of samples.

These tractable reformulations apply not only to the LAED
problem, but to any distributionally robust chance or CVaR-
constrained optimization problem over Wasserstein ambiguity
sets, as long as the constraint function is affine in the decision
variables and uncertainty. We present rigorous proofs of our
theoretical results which make the paper self-contained.

Finally, we carry out an extensive empirical evaluation of the
proposed formulations by solving the LAED problem for the
IEEE 39-bus transmission grid with real solar irradiation and
forecast data. In particular, we consider two settings:

1) the operator has access to an ensemble of forecasts of the
solar irradiation for the next day;

2) the operator has access to past data on solar generation.
For both settings, we discuss why the theoretical guarantees

available in the literature cannot be used to tune the size of
the ambiguity set, specifically because the renewable genera-
tion data does not consist of i.i.d. samples from an underlying
distribution (see Section III-C4 for a detailed discussion). In-
stead, we empirically evaluate the trade-off between robustness
(out-of-sample constraint satisfaction) and performance as a

2This reformulation appeared in a preliminary version of this work [35]
without proof. Here, we include the complete proof of this result. We show that
the duality results derived in [26] are not directly applicable for our problem,
but under relatively mild conditions, a finite-dimensional tractable reformulation
can be derived.
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function of the size of the ambiguity set.3 Finally, we discuss how
these approaches scale with network size and highlight several
interesting avenues for future research.

II. LOOK-AHEAD ECONOMIC DISPATCH UNDER UNCERTAINTY

In this section, we define the look-ahead economic dispatch
(LAED) problem. Our formulation is inspired by a similar
structure in [31]. The objective of the LAED problem is to
minimize the total cost of generation over a time-horizon of
length T , while satisfying operational constraints and the fore-
casted power demand in an appropriate sense in the presence
of uncertain power generation from renewable (solar and wind)
energy sources (RESs). With a slight abuse of notation, let G,R,
andL denote the set of conventional generators, RESs, and loads
as well as the corresponding nodes in the power network, and let
|G| = Ng, |R| = Nr, and |L| = N�. The sets G and R need not
be disjoint, i.e., a node may have both conventional generation
and RESs.

We denote by pi[t], wj [t], and �k[t] the power generation
of the conventional generator i ∈ G, the RES j ∈ R, and the
power consumed by a load k ∈ L at time t, respectively. The
corresponding aggregate quantities in vector form are denoted
by p[t] ∈ RNg , w[t] ∈ RNr , and �[t] ∈ RN� , respectively. Now,
let ci[t] denote the per-unit cost of power generation for the
conventional power plant i ∈ G at time t. We assume that the
marginal cost of renewable energy generation is zero. Let T :=
{t0 + 1, . . . , t0 + T} be the optimization horizon (for example,
the day ahead setting). We assume that the generation set-points
p[t0] at the starting time t0 are known (as they are part of today’s
schedule). The LAED problem with starting time t0 and horizon
T is mathematically expressed as

min
{p[t]}t∈T

∑
t∈T

∑
i∈G

ci[t]pi[t] (1a)

s. t. RDi[t] ≤ pi[t]− pi[t− 1] ≤ RUi[t], ∀i ∈ G, (1b)

Pi[t] ≤ pi[t] ≤ Pi[t], ∀i ∈ G, (1c)∑
i∈G

pi[t] +
∑
j∈R

wj [t] ≥
∑
k∈L

�k[t], (1d)

− F ≤Λ [Bpp[t] +Bww[t]−B��[t]]≤F , (1e)

where the constraints (1b), (1c), (1d), and (1e) hold for t ∈ T .
The power generation of the conventional generators are

the decision variables, the power consumed by the loads are
assumed to be known, and the power generation of the RESs are
treated as uncertain parameters. The parameter RDi[t] (respec-
tively, RUi[t]) denotes the ramp-down (respectively, ramp-up)
capacity and Pi[t] (respectively, Pi[t]) denotes the lower bound
(respectively, upper bound) of the conventional generator i at
time t. Thus, the constraints (1b) and (1c) are deterministic.
Although written as deterministic for ease of representation, (1d)
and (1e) have uncertain or stochastic parameters w[t], t ∈ T .

3Prior applications of Wasserstein distributionally robust optimization in
power systems such as [20], [37] have also primarily relied on empirical
evaluation of the trade-off between robustness and performance.

The constraint (1d) ensures sufficient generation and can be
adapted to account for the available reserves (see Remark 2.1).

The inequality (1e) requires line power flows to be within per-
missible limits with the vector of line flow limits denoted by F .
The flows in the transmission lines are computed by leveraging
the so-called Power Transfer Distribution Factor (PTDF) matrix
Λ, a linear sensitivity that represents the marginal change of the
active power flow on a line if we apply a marginal increase of
the power injection at a node. More specifically, let Ns and Ne

be the total number of nodes and lines (edges) in the network
and Bg ∈ RNs×Ng , Br ∈ RNs×Nr , and B� ∈ RNs×N� denote
appropriate matrices.4 The vector of line flows at time t can
be expressed as F [t] = ΛP [t] where Λ ∈ RNe×Ns is the PTDF
matrix and

P [t] := Bgp[t] +Brw[t]−B��[t], (2)

denotes the vector of power injections at the nodes. We refer the
reader to [31], [38], [39] for analytical and [40] for numerical
approaches to compute PTDF matrices.

For ease of exposition, we equivalently represent (1) as

min
x∈Rnx

c�x (3a)

s. t. Ax ≤ b, (3b)

Dx+ Eω ≤ f, (3c)

where x ∈ Rnx is a compact representation of the decision
variables {pi[t]}i∈G,t∈T with nx = TNg , ω ∈ Rnw denotes the
stochastic power generation by RESs {wj [t]}j∈R,t∈T withnω =
TNr, and c, A, b,D,E, f are vectors and matrices of appropriate
dimensions. In particular, we denote the dimension of f by K,
i.e., f ∈ RK . Although ω is stochastic in nature, we retain the
representation as introduced in (1) for readability. Furthermore,
let d�k and e�k denote the kth row of the matrices D and E,
respectively. Then, the constraint (3c) is equivalent to the scalar
constraint

Z(x, ω) := max
k∈K

d�kx+ e�kω − fk ≤ 0. (4)

Our goal is to solve the above optimization problem where
the uncertain constraint (3c) (a compact representation of (1d)
and (1e)) is modeled as a chance-constraint or via a suitable risk
measure. In the former, the chance-constraint is stated as

P (Z(x, ω) ≤ 0) ≥ 1− α, α ∈ (0, 1), (5)

where P denotes the distribution of the random variable ω and
α is the desired violation probability. The chance-constraint (5)
ensures that all the uncertain operational constraints will be
satisfied simultaneously with a probability of at least 1− α.

As discussed in the Introduction, we also consider a
well-established convex risk measure conditional value-at-risk
(CVaR) for the uncertain constraints, which is defined as

CVaRP
α(Z(x, ω)) := inf

t∈R

[
1

α
EP (Z(x, ω)− t)++t

]
≤ 0. (6)

4The matrix Bg is constructed such that {i, j}-th entry is 1 only if the j-th
element of vector p is connected to the i-th node of the network, else it is 0. A
similar process is followed for the other two matrices Br , B�.
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Note that the chance-constrained program where (3c) is replaced
by (5), is non-convex except for a restrictive class of distribu-
tions. On the other hand, the CVaR-constrained optimization
problem (with (3c) replaced by (6)) is a convex conservative
approximation of the chance-constrained counterpart [33]. In
the definition (6), t is interpreted as the smallest value such that
P (Z(x, ω) ≥ t) ≤ α, and CVaRP

α(Z(x, ω)) denotes the ex-
pected value of Z(x, ω) subject to Z(x, ω) exceeding t. Hence,
CVaR captures the mean of the magnitude of the violation of the
chance-constraint.

Remark 2.1: We formulate the power balance via the inequal-
ity constraint (1d), by following the typically accepted conven-
tion in the security-constrained OPF (SCOPF) literature (see for
example [5]). While a number of mechanisms are available in
the grid to counteract disturbances in real-time (e.g., frequency
control mechanisms), their range of action is often limited and
their activation may be expensive. As a result, the operator
may need to take strategic actions (e.g., ramping-up traditional
generation) several hours ahead of the real-time operation to
ensure a greater degree of system controllability.

An alternative approach would be to model the dispatch
decisions in terms of (affine disturbance) feedback policies
determined by future renewable energy generation. From a
methodological perspective, our formulations (discussed be-
low) can be applied to optimize the coefficients of an affine
disturbance feedback policy. In practical terms, this implies
co-design of the day-ahead schedule and real-time mechanisms.
While this approach is interesting, it departs from the modular
architecture that is currently adopted by most operators, where
scheduling and real-time operations are only coordinated via the
procurement of reserves. Further investigations along these lines
remains an interesting avenue for future research. •

III. WASSERSTEIN DISTRIBUTIONALLY ROBUST LAED

We now describe the data-driven distributionally robust tech-
niques to solve the LAED problem formulated above with
chance or CVaR-constraints. Throughout, we assume that
the decision-maker has access to a set of samples Ω̂N :=
{ω̂1, ω̂2, . . . , ω̂N} of the uncertain parameters with ω̂k ∈ Rnω .
In the LAED problem, each ω̂k denotes a (non-negative) vector
of power generation by the RESs over an interval of lengthT . We
use [N ] and [K] to denote the sets {1, . . . , N} and {1, . . . ,K},
respectively.

A. Distributionally Robust CVaR-Constrained LAED

We first consider the distributionally robust CVaR-
constrainted program (DRCVP) for the LAED problem. In
particular, we require the CVaR-constraint (6) to hold for a
family of distributions, referred to as an ambiguity set, defined
directly from observed samples via the Wasserstein metric. The
corresponding optimization problem is given by

min
x∈Rnx

c�x (7a)

s. t. Ax ≤ b, (7b)

sup
P∈Mθ

N

inf
t∈R

[
1

α
EP (Z(x, ω) + t)+ − t

]
≤ 0, (7c)

where Mθ
N is the Wasserstein ambiguity set defined using the

samples Ω̂N . Specifically,

Mθ
N := {μ ∈ P1(Ω) | W1(μ, P̂N ) ≤ θ}, (8)

contains all distributions with a finite first-moment and support
Ω (represented by the set P1(Ω)) within a distance θ, measured
by the Wasserstein metric, from the empirical distribution con-
structed from the observed samples P̂N := 1

N

∑N
i=1 δω̂i

(δω̂i
is

the unit point mass at ω̂i). The Wasserstein metricW1 is formally
defined in [35]. The optimization problem (7) is potentially
infinite-dimensional due to the supremum over a set of probabil-
ity distributions. Next, we present a tractable finite-dimensional
convex reformulation of (7) when the support of the uncertain
parameters is a polyhedral subset of Rnω .

Proposition 3.1 (Tractable DRCVP): Let the set Ω be defined
as Ω := {ω ∈ Rnω |Gω ≤ h}. Then, (7) is equivalent to the
program

min
x,λ,t,s,η

c�x (9a)

s. t. Ax ≤ b, (9b)

λθ +
1

N

N∑
i=1

si ≤ tα, (9c)

d�kx−fk+ t+(ek −G�ηik)
�ω̂i + η�ikh ≤ si,

(9d)

‖ek −G�ηik‖ ≤ λ, ηik ≥ 0, (9e)

t ∈ R, λ ≥ 0, si ≥ 0, (9f)

where the inequalities involving si and ηik hold for every i ∈
[N ], k ∈ [K], and t has an analogous interpretation as in (6).

We present the proof in Appendix A. If the support of the un-
certain parameters is not known or is unbounded, i.e.,Ω = Rnω ,
then the tractable reformulation of (7) is obtained by setting
G = 0, h = 0, and without considering the decision variables
η in (9). Further, note that any feasible dispatch solution to
problem (9) satisfies the CVaR-constraints for all distributions
within a distance θ of the empirical distribution and having a
support specified by the polytope. Thus, in practical terms, if
the support of the uncertainty is polyhedral and known to the
decision-maker, then the optimal solution obtained by solving
the problem that makes use of the information regarding the
support will be less conservative than the solution obtained by
solving the problem where the support is set to be unbounded.

B. Scalable Approximation of Distributionally Robust
Chance-Constrained LAED Via Robust Optimization

We recall from the earlier discussion that the CVaR-constraint
(6) acts as a convex conservative approximation to the chance-
constraint (5). Note, however, that the size of the above optimiza-
tion problem increases with the number of samples, leading to
a large computational burden. Furthermore, chance-constrained

Authorized licensed use limited to: University of Groningen. Downloaded on February 25,2022 at 07:08:40 UTC from IEEE Xplore.  Restrictions apply. 



2014 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 3, MAY 2021

programs, and hence distributionally robust chance-constrained
programs (DRCCPs) are in general non-convex. Therefore, we
now present a scalable approach to approximately solve the
DRCCP counterpart of the LAED problem over the ambiguity
set Mθ

N .
The DRCCP corresponding to the problem (3) for the ambi-

guity set Mθ
N (defined in (8)) can be stated as

min
x∈Rnx

c�x (10a)

s. t. Ax ≤ b, (10b)

inf
P∈Mθ

N

P [Dx+ Eω ≤ f ] ≥ 1− α, (10c)

i.e., we require the uncertain constraints to hold jointly for all
distributions in the ambiguity set.

Our approach extends an analogous approach developed
in [36] for chace-constrained programs to DRCCPs. First, for
each component j of the uncertain parameter ω, we obtain
upper and lower bounds such that ωj lies within those bounds
with a high probability for all distributions in the ambiguity set.
Thus, we first solve nω DRCCPs each with a two-dimensional
decision variable. Once the bounds are computed, we construct a
hyper-rectangleΩ� and formulate a robust optimization problem
where we require the uncertain constraints to hold for allω ∈ Ω�.
The size of this robust program does not increase with the
number of data points. Furthermore, it can be shown that any
feasible solution of the robust optimization problem is feasible
for the DRCCP (10), i.e., the robust optimization problem is an
inner approximation of the DRCCP, by resorting to Bonferroni’s
inequality.

1) Distributionally Robust Bounds on Each Component ofω:
Let wj be the j-th component of the uncertain random vector ω.
Consider the DRCCP problem

min
y:=(y,y)∈R2

y − y (11a)

s. t. 0 ≤ y ≤ y, (11b)

sup
P∈Mθ

N

P
[
ω �∈ [y, y]

]
≤ α

nω
, (11c)

where ω stands for the random variable wj with support R≥0.
An optimal solution y�j is such that

P
[
wj ∈ [y�

j
, y�j ]

]
≥ 1− α

nω
, ∀P ∈ Mθ

N .

However, the problem (11) involves optimization over proba-
bility distributions and is infinite-dimensional. In the following,
we present a finite-dimensional reformulation of (11).

Proposition 3.2 (Distributionally robust bounds): The op-
timization problem (11) for the j-th component of ω can be
equivalently stated as

min
y,y,λ,s

y − y (12a)

s. t. 0 ≤ y ≤ y, (12b)

λθ +
1

N

N∑
i=1

si ≤
α

nω
, (12c)

si ≥ 1− λmax{0, y − ω̂ij} (12d)

si ≥ 1− λmax{0, ω̂ij − y} if y > 0 (12e)

λ ≥ 0, si ≥ 0, ∀i ∈ [N ], (12f)

where ω̂ij is the j-th component of the sample ω̂i.
The proof of Proposition 3.2 (which we present in Ap-

pendix B) relies on the exact reformulation of DRCCPs under
Wasserstein ambiguity sets as stated in [35]. One of the key
reasons behind the intractability of this class of problems is the
necessity to compute the minimum distance of the observed
sample to the complement of the feasibility set (i.e., the terms
comprising the summation term in (22) in Appendix B). Even for
“well-behaved” (e.g., convex) feasibility sets, the complement is
usually non-convex and consequently, computing the projection
to a non-convex set is often intractable. Our proof exploits
the special structure of box constraints in (11c) to obtain the
reformulation in (12). While other classes of uncertainty sets
(such as polyhedral or ellipsoidal) may lead to less conservative
solutions compared to the hyper-rectangle based uncertainty sets
considered here, obtaining finite-dimensional tractable reformu-
lations for such sets is a challenging problem and remains a
promising direction for future research.

Remark 3.3: Although (12) is an exact reformulation of the
DRCCP (11), it is still non-convex. However, since the decision
variable is two-dimensional, it can be solved by nonlinear op-
timization solvers or via suitably designed heuristics based on
line search methods up to a reasonable degree of accuracy. For
the purpose of simulations, we solve the problem by adaptively
updating the upper and the lower bounds y and y, such that
(12c)–(12f) is feasible at each step. •

2) Robust Optimization Formulation: Let [y�
j
, y�j ]

� be the
optimal bounds obtained by solving (12) for wj , and let y� and
y� be the vectors that collect all these distributionally robust
bounds. We can now solve a robust optimization problem where
the constraints are required to hold for every possible realization
of the uncertain vector in the hyper-rectangle

Ω� := Πnω
j=1[y

�
j
, y�j ].

The resulting optimization problem is stated below.
Proposition 3.4 (Scalable approximated-DRCCP): The ro-

bust optimization problem

min
x∈Rnx

c�x (13a)

s. t. Ax ≤ b, (13b)

d�kx+max{0, e�k} y�+min{0, e�k} y� ≤ fk∀k∈ [K],

(13c)

where the max and min are intended as element-wise operators,
is a conservative approximation of the DRCCP (10).

Note that the size of the robust optimization problem (13)
is independent of the number of samples used to compute the
bounds in (12). While the size of (12) increases with the number
of samples, it is a much smaller problem (see Section IV-D).
Through an argument analogous to [36, Proposition 1], it can
be shown that any feasible solution of (13), where [y�

j
, y�j ]

� is
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feasible to (12), is feasible for the DRCCP (10). The proof is
omitted in the interest of space.

C. Discussion on the Proposed Formulations

1) Generality: The tractable reformulations presented above
are applicable for any Wasserstein distributionally robust chance
and CVaR-constrained programs, as long as the constraint func-
tion is affine in both the decision variables as well as the
uncertainty. In particular, the presented methods are applicable
in formulations of the LAED problem that include curtailment
factors or when the the dispatch decisions are modeled as outputs
of affine disturbance feedback policies that are functions of
future renewable energy generation.

2) Correlations and Handling Joint Chance-Constraints:
By computing separate bounds for each component of the un-
certainty, the proposed DRCCP approach ignores the correlation
between them and does not exploit this information available in
the data. This is the price we pay in order to obtain a scalable
formulation. A related work [23] considered a similar robust ap-
proach to solve the DRCCP version of the OPF problem, where
the upper and lower bounds were computed after normalizing
the random vector by the covariance matrix, thereby preserv-
ing the spatial and temporal correlation. However, the authors
in [23] consider individual chance-constraints (equivalent to
transforming the joint chance-constraints in (10c) to individual
chance-constraints by applying Bonferroni’s inequality). As a
result, the uncertainty takes the form of a scalar random variable
on each constraint, which is key in ensuring the scalability
of their approach. This approach from [23] is not applicable
for joint chance constraints as it would require enumerating
the vertices of a higher-dimensional hyper-rectangle to find the
extremal realization of the uncertainty, which is computationally
prohibitive.5 Developing scalable approximations that preserve
the correlation among the components of a random vector in
joint chance-constraints is a challenging open problem and a
promising avenue for future research.

We also note a subtle difference in the way joint chance-
constraints are handled in [23] and in our work. The applica-
tion of Bonferroni’s inequality in [23] requires the individual
chance-constraints to hold with probability α/n where n is the
number of operational constraints in (10c). This scales with
the size of the network, as operational constraints include line
flow limits, among others. In contrast, our construction of the
distributionally robust uncertainty set requires us to divide α by
nω (in (11)) which is the length of the random vector (number
of renewable energy generators times the time horizon). Fur-
thermore, in [23], the authors construct an uncertainty set for
each individual chance-constraint separately; in contrast, Ω∗ is
agnostic to the constraints.

3) Significance of the Radius of the Ambiguity Set: The
Wasserstein radius θ is a principled way of evaluating the
trade-off between robustness and performance for the above

5We will likely encounter a similar technical challenge if we define the
decision variables to be the coefficients of a suitably defined policy as opposed to
the conventional power generation vector and enforce power balance constraints
at all time steps.

formulations. In the robust formulation, tuning a number of
different bounds on the uncertain parameters directly can be
cumbersome, while the Wasserstein radius is a scalar parameter
that controls the degree of distributional robustness.

For larger values of θ, we require the chance or CVaR-
constraints to hold for a larger set of distributions. This is useful
in instances where the number of available samples is small.
While other sample-based approaches would suffer from over-
fitting of the solution to the available data, under the proposed
approaches, the decision-maker may choose a larger value of θ
to improve the robustness of the solution to yet-to-be-realized
uncertain parameters. On the other hand, when a large volume
of past data is available, the empirical distribution tends to
be a good representation of the uncertain parameters and the
decision-maker may reduce θ to incur a smaller optimal cost. The
above characteristics are highlighted in the numerical results in
Section IV.

4) Finite Sample Guarantees: When the samples are drawn
i.i.d. from an underlying data-generating distribution, prior
works have established rigorous bounds on the Wasserstein dis-
tance between the empirical distribution and the data-generating
distribution [24], [25]. However, the renewable energy data is
not necessarily being drawn in an independent manner from any
underlying distribution, as discussed earlier in the Introduction.
Therefore, these guarantees are not necessarily applicable for
the LAED problem considered in this work. Nevertheless, in
order to give a complete picture of the methods proposed in this
work, we briefly review some of the guarantees and assumptions
reported in the literature below.

When the data-generating distribution P is light-tailed (i.e.,
there exists a > 1 such that A := EP [e

‖ξ‖a ] < ∞), then [24]
establishes that for a given radius θ, the probability with which
the ambiguity set Mθ

N contains the data-generating distribution
grows exponentially towards unity with the sample size N . This
result prescribes a way to select the radius θ of the ambiguity
set Mθ

N . Specifically, [26] showed that for nω > 2, a given β ∈
(0, 1), and N , the radius θ can be chosen as

θN (β) :=

⎧⎪⎨⎪⎩
(

log(c1β
−1)

c2 N

)1/nω

, if N ≥ log(c1β
−1)

c2
,(

log(c1β
−1)

c2 N

)1/a

, if N < log(c1β
−1)

c2
,

(14)

which comes with the guarantee that

PN
(
W1(P , P̂N ) ≤ θN (β)

)
≥ 1− β. (15)

Here, c1, c2 are positive constants that only depend on a,A,
and nω . The results show that when N is small, the rate of
convergence is of the order of N−1/a where a is a constant that
depends on the distribution but is independent of the dimension
of the uncertainty nω . When the sample size is large, a slower
convergence rate of the order N−1/nω is observed. In a recent
work [25], authors establish similar rates of convergence while
clearly specifying, for a wide of class of distributions, the
constants defining the rates of convergence.

The above guarantees are on the Wasserstein distance between
the true and empirical distribution and as such do not depend
on the distributionally robust optimization problem. Due to
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Fig. 1. The benchmark IEEE 39-bus test case, modified to include 3 PV
sources, indicated in red. The power lines highlighted in yellow are prone to
congestion when solar generation is abundant.

this generality, these theoretical guarantees are often not tight
compared, for instance, to the guarantees on the probability with
which the optimal solution of the scenario program satisfies
original chance-constraint [29].6 Consequently, a much smaller
value of θ (compared to the one stated in (14)) often have the
desired empirical performance. Section IV provides a detailed
empirical study on the out-of-sample constraint satisfaction for
varying values of θ, and highlight the robustness-performance
trade-off.

IV. NUMERICAL EXPERIMENTS

A. Test Case Description

We consider the IEEE 39-bus “New England” transmission
grid test case [41] for the numerical experiments in this section.
Three renewable sources (solar farms) have been connected to
the grid, as shown in Fig. 1. The remaining traditional generators
have different marginal costs depending on their type: fossil fuel,
import from the grid interconnection, nuclear, and hydro (in de-
creasing order of cost). As the renewable generators are located
in the proximity of cheap power generators, the Transmission
System Operator (TSO) will strive to maximize the power flow
from these buses to the rest of the grid and to ramp down the
expensive sources, when possible. All computations are carried
out in MATLAB with MATPOWER [42] and MOSEK, on a
personal computer with 16 GB of memory.

B. Distributionally Robust Dispatch With Limited Samples

We first consider the case in which the transmission system
operator has access to third party forecasts for the next-day

6The guarantees for the scenario program hold when the samples are drawn
i.i.d. from the data-generating distribution, but do not require the latter to be a
light-tailed distribution nor do they depend on any exogenous constants.

Fig. 2. Frequency of violation of the constraints and operational cost for the
two approaches DRCVP and DRCCP for varying the radius θ of the ambiguity
set. The worst-case (WC) approach is also marked on the axis for comparison.
In all cases, the desired violation probability α is set to 0.01.

Fig. 3. Statistical use of one of the most congested branches in the grid for
different levels of θ, in contrast to the worst-case approach.

irradiation at the locations of the solar farms. Such a forecast is
often provided in the form of an ensemble of hourly irradiation
profiles. Each element of the ensemble is obtained by performing
numerically intensive simulations under various meteorological
models of the weather for the next day. They are, therefore,
expensive to obtain and generally available in limited number.
All the elements of the ensemble are to be considered as equally
probable realizations and together they provide an indication of
the reliability of the forecast (based on how closely they agree).
Examples of these ensembles is reported in Fig. 4.
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Fig. 4. Illustration of the effect of the tuning parameters θ and α. In all plots,
the thin gray lines represent forecasts, the red line represents the measured
irradiation, and the thick gold lines represent the lower and upper bounds y, y
used in the DRCCP algorithm.

TABLE I
WEATHER FORECASTS AND OBSERVATIONS PROVIDED BY METEOBLUE AG

Further details about these data sources are available in [43].

For this simulation, we acquired 17 hourly-irradiation fore-
casts based on the models listed in Table I, for the last 75 months
and for three locations in continental Europe. For the same
time period and for the same locations, we also considered the
satellite irradiation at hourly measurements. We then compared
three possible approaches that the TSO may employ to schedule
the day-ahead power generation in order to achieve a desired
violation probability α smaller than 1%:

1) in the worst-case approach, we assume that the LAED
problem is solved in order to guarantee satisfaction of
the grid constraints for all the possible scenarios in the
ensemble;

2) in the DRCVP approach, the Distributionally Robust
CVaR-Constrained LAED problem formulated in Propo-
sition 3.1 is solved;

3) in the DRCCP approach, the Distributionally Robust
Chance-Constrained LAED problem is solved employing
the scalable approximation proposed in Proposition 3.4.

We compared these three approaches with respect to the re-
sulting empirical frequency of constraint violations (based on the
real irradiation measurements and the DC power flow solution)
and with respect to the resulting operational cost for the grid.
As a benchmark, we consider the oracle solution, the OPF that
the TSO would compute if it had access to the exact irradiation
profile for the next day. Fig. 2 shows how both DRCVP and
DRCCP can be employed by the TSO to generate schedules that
are safer (lower violation probability) at a small additional cost.
It also shows that, given the low number of samples available
in the forecast ensemble, the worst-case approach yields unsat-
isfactory guarantees (26% violation probability). Fig. 2 further
shows that for values of θ smaller than 0.01, there is no significant
change in the violation frequency or the optimal cost. Thus, our
result shows that the solution under the DRCVP approach tends
to be more robust (i.e., with a smaller violation frequency and a
larger optimal cost) when θ is relatively large.

The practical implication of Fig. 2 is that an operator can
robustify their decision to uncertain solar energy generation (as
the true realized irradiation will differ from the ones included
in the ensemble of forecasts) by tuning the Wasserstein radius
θ which is a scalar parameter. The plot in the top panel allows
a TSO to decide what value of θ should be employed in order
to meet the desired violation probability and to understand the
consequent cost. The plot in the bottom panel shows how both
the DRCVP and the DRCCP approaches lie on the same Pareto-
optimal front: none of the methods outperforms the other by
producing schedules which have lower violation probability at
the same cost (or, vice-versa, lower cost for the same violation
probability).

A TSO may also perform a similar statistical analysis to
identify the desired level of robustness (i.e., the desired θ)
based on the violation of specific operational constraints. Fig. 3
provides an example of such an analysis for DRCVP (DRCCP
yields similar results): the histogram shows the empirical dis-
tribution of the power flow on an critical branch for different
LAED approaches. The worst-case dispatch, in which constraint
satisfaction is ensured for all elements of the forecast ensemble,
yields frequent violations of the line rating. In contrast, a suitably
chosen value of θ produces a distribution of line flows which lies
on the left of the line limit.

An intuitive interpretation of the roles played by θ and α
in these algorithms is offered in Fig. 4, where we plotted the
distributionally robust bounds obtained via (12) (for scalable
approximation of DRCCP). The first row shows how a larger θ
allows to be robust with respect to realizations that fall outside of
the envelope defined by the few available forecasts. The second
row shows how a larger α allows to tolerate some violation
probability (in exchange for a better cost).

Thus, our results provide compelling insights on how the
distributionally robust approaches can be leveraged to take dis-
patch decisions ahead of time and satisfy operational constraints
under uncertain weather forecast (available in the form of few
samples). When few predictions are available, increasing the
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Fig. 5. Correlation of solar generation between consecutive days.

Fig. 6. Empirical distribution of solar generation for different months.

radius θ can result in robust dispatch decisions, i.e., with a
smaller likelihood of constraint violation.

C. Distributionally Robust Dispatch With Historical Data

We now consider the case where the transmission operator has
access to historical power injection data collected from the field.
A TSO may be interested in using this source of data because, in
contrast to third-party irradiation forecasts, they are specific of
their system (for example, they factor the efficiency of their solar
farms, the concurrent effect of irradiation on consumer power
demand, etc.).

In order to investigate such a setting, we consider the data col-
lected by the National Renewable Energy Laboratory (NREL)
from the Sacramento Municipal Utility District (Anatolia) dur-
ing the period 23 April – 21 July 2012, at a one-minute time
resolution from 5AM to 7PM [44]. Hourly data have then been
generated by decimating the minute-scale measurements for
different intra-hour offsets, obtaining 60 separate time series.
These historical data have two key characteristics:

1) In Fig. 5, we plot the correlation of solar generation
between consecutive days. As illustrated, the data is highly
correlated with a mean correlation coefficient of 0.99.

2) On a slower time-scale, Fig. 6 shows that the distribution
of solar generation at the same time of the day in two
30-day time periods are fairly different.

Fig. 7. Frequency of violation of the constraints and operational cost for the
two approaches DRCVP and DRCCP for θ varying between 0.0002 and 0.2
(the latter marked with a square), along with the Scenario approach (SA). In the
upper plot, 200 samples are used. In all cases, α = 0.05.

Based on these observations, the data cannot be assumed to
be independently drawn from an underlying distribution. As a
result, we resort to empirical analysis of constraint violation
as opposed relying on finite sample guarantees which hold
under the assumption that samples are i.i.d., according to a
true distribution. Similarly, the guarantees provided under the
scenario approach [31] are not necessarily applicable.

The LAED problem is solved using the DRCVP and DRCCP
approaches, for different numbers of samples uniformly drawn
from the entire dataset. As benchmarks for these methods, we
consider the scenario approach, where LAED is solved to ensure
satisfaction of the constraints for a subset of samples of the same
size, and the worst-case LAED solution that ensures constraint
satisfaction for all 5340 available samples. Note that, compared
to the experiment in Section IV-B where very few samples were
available, the worst-case approach is now expected to be very
conservative.

In order to empirically evaluate the frequency of constraint
violations, a set of 1200 samples is used as a validation dataset
against which all three approaches are compared. Our main
findings are illustrated in Fig. 7 where we consider a violation
probability ofα = 0.05 and vary the parameter θ to compare the
robustness (frequency of constraint violation) and performance
(improvement in optimal cost compared to the worst-case solu-
tion). In the top panel of Fig. 7, the % violation and improvement
in optimal cost for the DRCCP and DRCVP approaches are
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TABLE II
MEMORY FOOTPRINT AND COMPUTATION TIME OF DIFFERENT PROBLEM

INSTANCES (IEEE 118-BUS NETWORK WITH 18 PVS)

plotted as a function of the Wasserstein radius for a training set
of 200 samples. We note that both these approaches result in an
acceptable violation probability (i.e., 5%). The results obtained
under the DRCVP are comparable to the those obtained under
the scenario approach when θ is sufficiently small. Furthermore,
a steep decrease in the violation frequency is observed beyond
θ = 0.01 for both approaches.

Nevertheless, we emphasize that our results in this section
are based on the empirical frequency of violation and do not
have any associated theoretical robustness guarantees since the
renewable generation data is not necessarily drawn from any
underlying data-generating distribution (see Section III-C4 for
a detailed discussion).

The Pareto-optimal fronts for 100 and 400 training data
samples (violation frequency is computed against the same set
of 1200 samples as before) are presented in the bottom panel
of Fig. 7. We note that the solutions under both DRCVP and
DRCCP follow similar trends and have a significant overlap
for the same number of samples. As the number of samples
increases, the solution becomes more robust but at a larger
dispatch cost. We, however, note that increasing the number
of samples is computationally expensive (especially for the
scenario and the DRCVP approach – in the next section, where
we discuss the benefits of DRCCP in this regard).

D. Scalability of the Proposed Approaches

In this section, we report some observations which help us to
gauge the scalability of the proposed LAED methods. To this
end, we consider a modified IEEE 118-bus network with an
additional 18 renewable sources. For this modified benchmark,
the number of decision variables, constraints, runtime, and sub
problems are listed in Table II. As before, all computations
were carried out in a MATLAB environment with MOSEK on a
personal computer with 16 GB of memory. Table II shows that as
the number of samples increases, both the scenario approach and
DRCVP scale very poorly in terms of memory footprint. While
methods to remove redundant constraints exist, they typically
carry a significant computational cost. In contrast, the number
of constraints of DRCCP does not increase with the number of
samples. The DRCCP approach requires the solution of a fixed
number of non-convex two-dimensional subproblems (Propo-
sition 3.2), whose size increases with the number of samples.

However, due to their low dimension, the total runtime remains
practically constant (a few seconds), making DRCCP well suited
for large problems.

V. CONCLUSION

In this paper, chance and risk-constrained multi-period eco-
nomic dispatch problems are studied, and two tractable distri-
butionally robust optimization formulations are developed in a
mathematically rigorous manner. The numerical results illustrate
robustness-performance trade-off of the proposed techniques.
This work lays the foundation for further exploration of data-
driven distributionally robust optimization techniques in power
systems.

Several open, interesting and challenging problems have been
discussed in the paper, including (1) co-design of the day-ahead
schedule and real-time balancing mechanisms under uncertainty
by modeling dispatch decisions as policies that depend on
future renewable energy generation, (2) developing tractable
reformulations for a broader class of distributionally robust
uncertainty sets, and (3) developing scalable robust approxi-
mations of DRCCPs that preserve the correlations among the
components of a random vector in joint chance-constraints. Sim-
ilarly, there have been limited investigations of distributionally
robust semi-definite programs which are quite relevant for OPF
problems. We hope this work stimulates further research in the
above-mentioned topics.

APPENDIX A
PROOF OF PROPOSITION 3.1

Proof: We first evaluate the constraint (7c) as

sup
P∈Mθ

N

inf
t∈R

[EP (Z(x, ω) + t)+ − tα]

= inf
t∈R

sup
P∈Mθ

N

[EP (Z(x, ω) + t)+ − tα]

= inf
t∈R

inf
λ≥0

[
λθp − tα

+
1

N

N∑
i=1

sup
ω∈Ω

[(Z(x, ω) + t)+ − λ‖ω − ω̂i‖]
]
. (16)

The first equality follows as a consequence of the min-max the-
orem in [45]. The second equality is a consequence of the strong
duality theorem in [46], which also shows that the infimum over
λ ≥ 0 is attained. On introducing auxiliary variable si for each
term in the above summation, it can be easily shown that the
feasibility set of (7) is equivalent to the set

Πx

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x ∈ Rnx ,
λ ≥ 0,
t ∈ R,
{si}Ni=1,

∣∣∣∣∣∣∣∣∣∣

Ax ≤ b,

λθp +
1

N

∑N
i=1 si ≤ tα,

si ≥ (sup
ω∈Ω

(Z(x, ω) + t

−λ‖ω − ω̂i‖)+, ∀i ∈ [N ]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (17)

where Πx gives the x-component of the argument.
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We now focus on reformulating the constraints involving
si∀i ∈ [N ]. In particular, we have si ≥ 0 and

si ≥ sup
ω∈Ω

{
max
k∈[K]

{d�kx+e�kω −fk}+ t− λ‖ω − ω̂i‖
}

= max
k∈[K]

{
d�kx−fk + t+ sup

ω∈Ω
{e�kω − λ‖ω − ω̂i‖}

}
,

≥ d�kx−fk + t+ sup
ω∈Ω

{e�kω − λ‖ω − ω̂i‖}, (18)

for all k ∈ [K]. In the above expressions, the second equality
interchanges the sup and the max. We now compute

sup
ω∈Ω

{e�kω − λ‖ω − ω̂i‖}

(a)
= sup

ω∈Ω

{
e�kω − sup

‖zik‖≤λ

z�ik(ω − ω̂i)
}

(b)
= inf

‖zik‖≤λ

{
z�ikω̂i + sup

ω∈Ω
{(ek − zik)

�ω}
}

(c)
= inf

‖zik‖≤λ

{
z�ikω̂i + inf

ηik≥0,zik=ek−G�ηik

η�ikh
}

= inf
ηik≥0

‖ek−G�ηik‖≤λ

{
(ek −G�ηik)

�ω̂i + η�ikh
}
. (19)

Here, (a) uses the definition of the norm, (b) follows by inf-sup
interchange due to [47, Corollary 37.3.2], and (c) writes the dual
form of the inner linear program (with Ω = {ω ∈ Rnω | Gω ≤
h}). On substituting (19) in (18), we obtain

si ≥ d�kx−fk + t+ inf
ηik≥0

‖ek−G�ηik‖≤λ

{
(ek −G�ηik)

�ω̂i + η�ikh
}
,

(20)

∀k ∈ [K]. It remains to be shown that the above inequality along
with si ≥ 0hold if and only if there exists ηik ≥ 0 for allk ∈ [K]
such that,

si ≥ d�kx−fk + t+ (ek −G�ηik)
�ω̂i + η�ikh,

‖ek −G�ηik‖ ≤ λ, si ≥ 0, for all k ∈ [K]. (21)

The “if” part in the above statement is straightforward. For the
“only if” part consider two cases for any k ∈ [K]: either the inf
in (20) is attained or it is not. In the former, the optimizer of the
inf satisfies (21). In the latter, the optimal value of inf is −∞ in
which case the constraint (20) is reduced to si ≥ 0. Thus, one
can find ηi,k such that the expression on the right-hand side of
the first inequality in (21) is negative, thereby, reducing (21) to
si ≥ 0. This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 3.2

Proof: On drawing parallels between the notation here

and that of [35, Theorem 3.1], we have x =
[
y y

]�
, c =[

−1 1
]�

, X = {y ∈ R2|0 ≤ y ≤ y}, ξ = ω, and the con-

straint function F (y, ω) = max(ω − y,−ω + y). However, we
have the support of the uncertaintyΩ = R+ in contrast with [35]
where the support was R.

We proceed in an analogous manner as [35] and evaluate

sup
P∈Mθ

N

P (F (y, ω) > 0) = sup
P∈Mθ

N

EP [1cl(ω∈Ω:F (y,ω)>0)]

= inf
λ≥0

λθ +
1

N

N∑
i=1

sup
ω∈Ω

[1(ω∈Ω:F (y,ω)>0)−λd(ω, ω̂ij)], (22)

where 1 is the indicator function, d(ω, ω̂ij) is the Euclidean
distance. The first equality follows from [46, Proposition 4] and
the second equality is a consequence of the strong duality theo-
rem [46, Theorem 1].7 Now let Ω1 = cl(ω ∈ Ω : F (y, ω) > 0)
and Ω2 = Ω \ Ω1. Specifically,

Ω1 :=

{
[0, y] ∪ [y,∞), if y > 0,

[y,∞), if y = 0,
(23)

and thus,Ω1 is non-empty for every y ∈ R2 such that 0 ≤ y ≤ y.
For each term in the summation (22), we introduce an auxiliary
variable as

si = sup
ω∈Ω

[1(ω∈Ω:F (y,ω)>0) − λd(ω, ω̂ij)]

= max{supω∈Ω1
[1− λd(ω, ω̂ij)], supω∈Ω2

−λd(ω, ω̂ij)}.

Note that if ω̂i ∈ Ω1, the first term above is 1 while the second
term is non-positive and consequently, si = 1. On the other
hand, if ω̂i ∈ Ω2, the second term is 0. Therefore,

si = max{0, 1− λ inf
ω∈Ω1

d(ω, ω̂ij)}.

Finally, following the definition of Ω1 in (23), we have

inf
ω∈Ω1

d(ω, ω̂ij) =

{
max(0,min(y−ω̂ij , ω̂ij−y)), if y>0,

max(0, y − ω̂ij), if y = 0.

The proof follows with some rearrangement of terms. �
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