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Online Data-driven Stabilization of Switched Linear Systems

Monica Rotulo, Claudio De Persis, Pietro Tesi

Abstract— We consider the stabilization problem of a
discrete-time system that switches among a finite set of un-
known linear subsystems under unknown switching signal. To
this end, we propose a method that uses data to directly design
a control mechanism without any explicit identification step.
Our approach is online, meaning that the data are collected
over time while the system is evolving in closed-loop, and are
directly used to iteratively update the controller. A major benefit
of the proposed online implementation is therefore the ability
of the controller to automatically adjust to changes in the
operating mode of the system. We show that the proposed
control mechanism guarantees exponential stability of the
closed-loop switched system under sufficiently slow switching.
The effectiveness of the approach is illustrated via a numerical
example.

I. INTRODUCTION

Switched linear systems consist of a finite number of
subsystems described by linear dynamics, together with a
switching signal that coordinates the switching between
these subsystems. In practical applications, such systems are
widely used in many field as power systems, automotive
industry, aircraft and traffic control [1].

In the literature, switched systems have been extensively
studied during the past decade, and stability issues have
always been a major focus in the control community. In fact,
the stability of the switched systems depends not only on the
dynamics of each subsystem but also on the properties of the
switching signals. Among the large variety of problems, one
can study the existence of a switching signal that ensures
stability of the switched system. Alternatively, one can
assume that the switching signal is not known a-priori and
look for stability results under arbitrary switching sequences
[2]. In this regard, [3] shows that a common Lyapunov
function for all subsystems guarantees stability under an
arbitrary switching signal. On the other hand, certain classes
of switched systems may be stable when restrictions on the
switching signals are imposed. For example, by imposing a
bound on the time interval between two successive switch-
ings [4], [5]. For switched systems under restricted switching,
the multiple Lyapunov-like function approach has proven to
be more efficient in demonstrating stability of the system
[6]. The reader is referred to the survey paper [7] and the
references cited therein for further discussion.
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Most of the existing work relies on the knowledge of a
model of the switched system, which usually involves some
identification steps [8]. However, identifying a switched
linear system from a collection of input-output data is often
computationally demanding. The main challenge is that the
data are available only as a mixture of observations generated
by a finite set of different interacting linear subsystems
so that one does not know a-priori which subsystem has
generated which data. In fact, this identification step is
known to be NP-hard [9], [10].

More recently, data-driven control methods seek to avoid
the identification step by synthesizing a controller directly
from experimental data. Various efforts have been made in
this direction, and we refer the interested reader to [11]
for a survey on data-driven contributions. In the context of
switched systems, [12] presents an extension of the virtual-
reference feedback tuning method [13]. However, the pro-
posed work relies on a reference model and cannot formally
guarantee closed-loop stability.

For discrete-time linear systems, the extensive work of
[14] revisits a result by Willems and coauthors [15]. Essen-
tially, [15] stipulates that all possible trajectories of a linear
time-invariant system can be obtained from any given single
trajectory whose input component is persistently exciting.
Among many, this result has been applied in various control
problems, including robust state feedback control [16], data-
enabled predictive control [17], set-invariance control [18],
nonlinear control [19], [20] and time-delay systems [21]. To
the best of our knowledge, the only work currently available
in the context of switched linear systems is [22]. In particular,
stabilization under arbitrary switching is possible at the
expense of assuming the existence of a common polyhedral
Lyapunov function for the systems as well as having access
to the switching signal.

Contribution. In this paper, we consider the data-driven
control problem of switched linear systems with unknown
subsystems dynamics and unknown switching signals. In
particular, we propose a data-driven control mechanism
where the controller is itself parametrized through data. The
data are collected over time while the system is evolving in
closed-loop, and are directly used for updating the controller.
This way, we are able to capture any changes in the dynam-
ics of the system and adjust the controller accordingly to
stabilize the overall closed-loop system. The main features
of the proposed online implementation are twofold. First,
we guarantee that the data generated online are persistently
exciting. Second, we analytically prove that the proposed
control mechanism exponentially stabilizes the closed-loop
switched system when the switching is slow enough. This
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result shows the potential of the data-driven paradigm in
solving problems that could not be solved using conventional
control schemes. The proofs are omitted for space reasons
and will appear somewhere else.

The paper is organized as follows. Section II provides
preliminaries on the data-driven framework and introduces
the problem of interest. In Section III, the proposed online
data-based control mechanism is presented and the stability
analysis of the closed-loop system is provided. A practical
numerical example is discussed in Section IV. The paper
ends with some concluding remarks in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

We denote the set of real numbers, integers, and nat-
ural numbers including 0 by R, Z, and N, respectively.
Throughout the paper, for simplicity of the notation, we write
[i, j] to denote the discrete interval [i, j] ∩ Z. The standard
Euclidean norm is denoted by ‖ · ‖. Given a matrix A,
the notations A � 0 and A � 0 respectively denote that
A = A> ∈ Rn×n is positive definite and semi-definite. For
A � 0, λmin(A) and λmax(A) stand for the minimal and
maximum eigenvalue of A, respectively. Given a sequence
z(i), z(i+1), . . . ∈ Rσ , we denote its Hankel matrix of depth
` as

Zi,`,j :=

 z(i) · · · z(i+ j − 1)
...

. . .
...

z(i+ `− 1) · · · z(i+ `+ j − 2)

 ,
where i ∈ Z, and `, j ∈ N. For ` = 1, we can simply write

Zi,j :=
[
z(i) z(i+ 1) · · · z(i+ j − 1)

]
.

Definition 1. The signal z(i), . . . , z(i + T − 1) ∈ Rσ
is persistently exciting of order L if the Hankel matrix
Zi,L,T−L+1 has full row rank σL.

For a signal to be persistently exciting of order L, it must
be sufficiently long in the sense that T ≥ (σ + 1)L− 1.

B. Preliminaries on data-driven framework

Consider the linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), k ∈ N (1)

with state x(k) ∈ Rn and input u(k) ∈ Rm. Let the pair
(A,B) be controllable. During an experiment of duration
T > 0, a sequence ud(0), . . . , ud(T −1) of inputs is applied
to the system and the corresponding values xd(0), . . . , xd(T )
of the state response are measured. The subscript d empha-
sizes that these are offline data. These data are organized in
Hankel matrices as

U0,T :=
[
ud(0) ud(1) . . . ud(T − 1)

]
,

X0,T :=
[
xd(0) xd(1) . . . xd(T − 1)

]
,

X1,T :=
[
xd(1) xd(2) . . . xd(T )

]
.

A main observation that emerges from [14] is that con-
trollers can be directly parametrized in terms of data provided
the following condition is satisfied:

rank

[
U0,T

X0,T

]
= m+ n. (2)

Condition (2) guarantees that any T -long input-state trajec-
tory of the system can be expressed as a linear combination
of the collected input-state data. It is possible to guarantee (2)
when persistently exciting inputs are injected to the system.

Lemma 1. [15, Corollary 2] Let system (1) be controllable.
If the input sequence ud(0), . . . , ud(T − 1) is persistently
exciting of order n+ 1, then condition (2) holds.

In the context of stabilization, condition (2) enables a
data-based parametrization of all stabilizing state feedback
controllers in the form u = Kx. In particular, [23] for-
mulate the Linear Quadratic Regulator (LQR) problem as
an H2 problem and derive a data-based solution based on
convex programming. Specifically, consider the problem of
designing a state feedback controller K that renders A+BK
Hurwitz and minimizes

trace(P ) + trace(KPK>), (3)

where P is the unique solution to

(A+BK)P (A+BK)> − P + I = 0. (4)

It is known [24, Sec. 6.4] that the state feedback controller
minimizing the H2-norm of (3), here denoted by Kopt,
is unique. The work in [23] establishes that Kopt can
be parametrized directly in terms of data. Specifically, we
formulate the following semidefinite program (SDP)1:

min(γ,Q,P,L) γ
subject to

X1,T QP
−1Q>X>1,T − P + I � 0

P � I
X0,TQ = P

L− U0,T QP
−1Q> U>0,T � 0

trace(P ) + trace(L) ≤ γ

(5)

which is only based on data.

Lemma 2. [23, Thm. 1] Let condition (2) holds.
Then problem (5) is feasible. Also, any optimal solution
(γo, Qo, Po, Lo) satisfies Kopt = U0,TQoP

−1
o , where Kopt

is the unique state feedback controller that minimizes (3).

Lemma 2 establishes that problem (5) is an equivalent
data-based formulation of the classic LQR problem, where
by “equivalent” we mean both problems yield the same
solution. For a discussion on the properties related to this
formulation the interested reader is referred to [23].

1With some abuse of terminology we refer to (5) and subsequent deriva-
tions as an SDP, with the understanding that by using standard manipulations
they can be written as SDP.
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C. Problem formulation

We consider the discrete-time switched linear system

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) (6)

where x(k) ∈ Rn and u(k) ∈ Rm. The switching signal
σ : N → I is a piecewise constant function of time that
selects its values in the finite set I := {1, 2, . . . ,M}, with
M > 1 being the number of modes. Here, (Aσ(k), Bσ(k))
are constant matrices of appropriate dimensions which are
allowed to take values, at an arbitrary discrete time, in the
finite set

{
(Ai, Bi) : i ∈ I

}
.

Throughout this note, the following assumption holds.

Assumption 1. The pairs (Ai, Bi) for i ∈ I are controllable.

We denote by ks the time instants of the s-th switching,
i.e. k0 = 0 and ks+1 := min{k > ks : σ(k) 6= σ(ks)} for
all s ∈ N. We formulate the following problem.

Problem 1. Consider the switched system (6). The pairs
(Ai, Bi) for all i ∈ I, the switching signal σ(·) and the
switching instants ks are assumed to be unknown. Design
a data-driven feedback control law to ensure exponential
stability of the origin of the closed-loop switched system.

III. MAIN RESULTS

In this section, we address Problem 1 by applying the
data-driven framework in an online setting. By “online” we
refer to the operation of collecting new data and accordingly
modifying the control law while the system is evolving.

A. Online data-driven control

We propose the following feedback control law:

u(k) = K(k)x(k) + ε(k)‖x(k)‖, (7)

where K(k) ∈ Rm×n is the state feedback gain and ε(k) ∈
Rm is an auxiliary input signal that belongs to the ball

Bδ := {ε ∈ Rm : ‖ε‖ ≤ δ}

for every k and some δ > 0. At each time k ≥ 0, the
following matrices of data are available:

Uk−1 :=U k−T,T

=
[
u(k − T ) u(k − T + 1) . . . u(k − 1)

]
,

Xk−1 :=X k−T,T

=
[
x(k − T ) x(k − T + 1) . . . x(k − 1)

]
,

Xk :=X k−T+1,T

=
[
x(k − T + 1) x(k − T + 2) . . . x(k)

]
.

In the above definitions, we shift the window of the dataset
one-step ahead, where an old data sample is discarded each
time a new one is added. Note that the state response is
generated according to (6) interconnected with (7). If the
index of the sample is negative, it refers to data obtained
from some offline open-loop experiments, that is without
having (7) in the loop. In particular, we apply to system
(6) an initial input sequence u(−T ), . . . , u(−1) and collect
the corresponding state sequence x(−T ), . . . , x(0). Hence,

at time k = 0 we construct the initial matrices of data
X−1, U−1, X0.

Throughout the paper, the following condition plays an
important role:

rank

[
Uk−1
Xk−1

]
= m+ n, (8)

for all k ≥ 0. Condition (8) guarantees that as long as the
T -long data matrices Uk−1, Xk−1 are generated by a sin-
gle controllable subsystem, they encode all the information
regarding the dynamics of that subsystem. On the path of
guaranteeing this rank condition, inspired by Lemma 1, we
require the sequence u(k−T ), . . . , u(k−1) to be persistently
exciting of order n + 1 for any k. Without the auxiliary
input ε in the structure of (7), this persistence of excitation
condition would not necessarily hold. The reason is that
the input signal at each time k would be merely restricted
to u(k) = K(k)x(k). Note that this relation can result
in loosing the persistence of excitation condition since the
role of K(k) is solely to stabilize the closed-loop system.
Therefore, the auxiliary input ε is added to overcome the
possible lack of excitation caused by the feedback. This is
stated in the following lemma.

Lemma 3. For any k ≥ 0 let the input sequence u(k −
T ), . . . , u(k− 1) be persistently exciting of order n+ 1 and
‖x(k)‖ 6= 0. Then, there exists some ε(k) ∈ Bδ such that the
sequence u(k − T + 1), . . . , u(k) with u(k) = K(k)x(k) +
ε(k)‖x(k)‖ is persistently exciting of order n+ 1.

Proof. See the Appendix.

Lemma 3 shows that for any k ≥ 1 there exists some ε(k−
1) ∈ Bδ such that the input sequence u(k − T ), . . . , u(k −
1) is persistently exciting of order n + 1. To satisfy the
requirement of the Lemma for k = 0, we choose the initial
input sequence u(−T ), . . . , u(−1) persistently exciting of
order n + 1. Note that the condition ‖x(k)‖ 6= 0 is not
restrictive since the origin is the equilibrium of the closed-
loop system.

We now exploit the rank condition (8) for designing
the state feedback gain at the next step. We formulate the
following SDP:

min(γ,Q,P,L) γ
subject to

XkQP
−1Q>X>k − P + I � 0

P � I
Xk−1Q = P

κ2I − Uk−1QP−1Q>U>k−1 � 0

L− Uk−1QP−1Q> U>k−1 � 0

trace(P ) + trace(L) ≤ γ

(9)

where κ > 0 is a design parameter. Then the corresponding
controller is computed as:

K(k) =

{
Uk−1Q

∗(k)P ∗(k)−1 if (9) is feasible,
K(k − 1) otherwise,

(10)
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where the tuple (γ∗(k), Q∗(k), P ∗(k), L∗(k)) is any optimal
solution to (9).

Remark 1 (Implementation of (9)). Problem (9) can be
written in the equivalent SDP form:

min(γ,Q,P,L) γ
subject to

[
I − P XkQ

Q>X>k −P

]
� 0[

κ2I Uk−1Q

Q>U>k−1 P

]
� 0[

L Uk−1Q

Q>U>k−1 P

]
� 0

Xk−1Q = P

trace(P ) + trace(L) ≤ γ

(11)

B. Stability analysis

We now investigate the stability of the switched system (6)
under the feedback law (7). In this regard, we will exclude
fast switchings. Thus we assume having a minimum interval
between any two consecutive switchings, which is known in
the literature as dwell time [4]. Formally, we define the dwell
time as τ := mins∈N ks+1 − ks. To guarantee that during
each switching interval we correctly collect T samples of
the active subsystem, we will assume that the switching is
sufficiently slow such that τ > T .

Consider any switching interval [ks, ks+1−1] with s ≥ 0.
We refer to [ks, ks +T − 1] as the transient interval. Within
the transient interval, recalling the definition of Uk−1, Xk−1,
and Xk, the Hankel matrices contain data generated by both
the active subsystem σ(ks) and the subsystem active at the
previous switching interval, i.e., subsystem σ(ks−1). Because
of the inconsistent dataset, there is no guarantee that problem
(9) is feasible or provides stabilizing controller. By the
second and fourth constraints in (9), we enforce ‖K(k)‖ ≤ κ
to guarantee that the system state remains bounded during
the transient interval. In particular, the system is evolving as

x(k + 1) = (Aσ(k) +Bσ(k)K(k))x(k) +Bσ(k)ε(k)‖x(k)‖,

which implies

‖x(k+1)‖ ≤
(
‖Aσ(k)+Bσ(k)K(k)‖+‖Bσ(k)ε(k)‖

)
‖x(k)‖.

Let
C := max

i∈I

(
‖Ai‖+ ‖Bi‖(κ+ δ)

)
. (12)

It then follows from ‖K(k)‖ ≤ κ and ε(k) ∈ Bδ that

‖x(k + 1)‖ ≤ C‖x(k)‖.

Consider now [ks+T, ks+1−1]. In this interval, T samples
of the current subsystem are finally collected into the corre-
sponding data matrices. Noting Assumption 1 and Lemma
3, it follows from an analogous argument to Lemma 1,
presented in [15], that condition (8) holds. Then, choosing

a suitable design parameter κ guarantees that problem (9)
is feasible and returns a stabilizing controller for the pair
(Aσ(ks), Bσ(ks)). We formalize this in the following Lemma.

Lemma 4. Let i ∈ I denote the active subsystem in the
time interval [ks, ks+1 − 1], i.e. σ(ks) = i, and consider
k ∈ [ks + T, ks+1 − 1]. Then, there exists some κ̄ >
0 such that for all κ ≥ κ̄ problem (9) is feasible and
any optimal solution (γ∗(k), Q∗(k), P ∗(k), L∗(k)) satisfies
Ki
opt = Uk−1Q

∗(k)(P ∗(k))−1, where Ki
opt is the unique

LQR controller of subsystem i.

Lemma 4 shows that, by choosing κ sufficiently large, in
the interval [ks + T, ks+1 − 1] the solution of problem (9)
returns the unique LQR controller for the active subsystem
i. For the rest of the paper, we assume that κ ≥ κ̄. Hence,
for k ∈ [ks + T, ks+1 − 1] the controller is

u(k) = Ki
opt x(k) + ε(k)‖x(k)‖. (13)

We can now tackle the stability analysis of the closed-
loop system. In particular, the finite set {Ki

opt : i ∈ I}
allows us to approach the stability analysis by using multiple
Lyapunov functions [6]. The key point of this approach is to
construct a set of Lyapunov functions {Vi : i ∈ I} such that,
considering suitable choice of design parameters, the value
of Vi decreases on each time interval [ks + T, ks+1 − 1]
where the i-th subsystem is active. Then, the closed-loop
switched system is exponentially stable under sufficiently
slow switching. This is discussed in the following Theorem.

Theorem 1. Consider the switched system (6) with unknown
(Ai, Bi) for all i ∈ I, unknown switching law σ(·) and
unknown switching instants ks. Also, consider the data-based
feedback law (7) with the state feedback gain as in (10).
Then, there exist some δ̄ > 0 and τ̄ > 0 such that if δ ≤ δ̄
and τ > τ̄ , the closed-loop system is exponentially stable.

In the present work, δ̄ and τ̄ depend on some knowledge
of the norms ‖Ai‖ and ‖Bi‖ for i ∈ I. We do not need to
rely on the knowledge of Ai and Bi, but one can assume
to work under the condition that these quantities belong to
a set whose norm bounds are known to the system designer.
The relaxation of such knowledge is left for future work.

IV. ILLUSTRATIVE EXAMPLE

In this section we consider the problem of stabilizing
a continuous stirred tank reactor (CSTR) with arbitrary
switching between two modes [25]. Using a sampling rate of
h = 0.2s, we write the CSTR in the form of a discrete-time
switched linear system (6). Without causing confusion, we
will refer to the time instant k instead of kh. We consider
M = 2 subsystems with the matrices:

A1 =

[
1.1052 0.2103

0 1

]
, A2 =

[
1.4918 0.2459

0 1

]
,

B1 = B2 =

[
0.0207
0.2000

]
.

Note that all the subsystems are controllable and open-loop
unstable. Our purpose is to design a data-based control
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mechanism structured as (7) to stabilize the closed-loop
switched system under unknown switchings.

We generate an initial T -long set of data with random
initial condition and by applying an initial T -long sequence
of input u in the form of (7) with initial controller gain
K(0) =

[
0 0

]
. In addition, we add to the control input u the

term ε‖x‖ with ε as a random variable uniformly distributed
on [−δ, δ] = [−0.001, 0.001]. We organize the samples into
appropriate Hankel matrices of length T . We consider T = 5
since a necessary condition to have persistently exciting input
data as in Definition 1 is T ≥ (m+ 1)n+m (see [14]).

Once the first T samples are collected into the Hankel
matrices, we solve (9) by using CVX [26]. In particular, for
the case study in hand, we fix the norm bound to κ = 50. The
computed controller is then applied to the system following
the structure in (7). At every iteration k, the Hankel matrices
are updated by removing the oldest sample each time a new
measurement is added. Based on this online stream of data,
the data-based convex program (9) is solved online as well.

We generate the arbitrary switching signal σ by choosing
randomly the switching instants between subsystems 1 and 2.
In particular, we impose the restriction τ > T . We simulate
the switched system under the switching signal σ with τ >
3T . The corresponding state response is shown in Figure 1.

We additionally perform multiple simulations with differ-
ent arbitrary switching signals. Here we relax the concept
of dwell time, allowing the possibility of switching fast
occasionally, provided this does not occur too frequently. The
concept of average dwell time from [5] serves this purpose.
We say that σ has average dwell time τavg if there exist two
positive numbers N0 and τavg such that

Nσ(t2, t1) ≤ N0 +
t2 − t1
τavg

, ∀ t2 ≥ t1 ≥ 0,

where Nσ(t2, t1) denotes the number of discontinuities of σ
on an interval [t1, t2]. In our example, we set τavg > 3T .
Figure 2 shows the convergence of the norm of the state.
The arbitrary switching signals are constructed such that
on average the dwell time between any two consecutive
switchings is no smaller than τavg .

V. CONCLUSIONS

We have considered the design of a data-based feedback
controller for switched discrete-time linear systems. The
dynamics of each subsystem and the switching signal are as-
sumed to be unknown. We have proposed a framework which
requires no intermediate identification steps and provides
stability guarantees. The key idea relies on an online scheme
where input-state data are collected over time as the system
is evolving. The control mechanism is directly parametrized
through data and iteratively updated via a computationally
tractable data-dependent semidefinite program. The resulting
controller is guaranteed to exponentially stabilize the closed-
loop system under sufficiently slow switching.

APPENDIX

Proof of Lemma 3. Without loss of generality, consider
k = 0. Let u(−T ), . . . , u(−1) be persistently exciting of
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Fig. 1: State response of the closed-loop switched system
under arbitrary switching signal σ and dwell time τ = 3.2s.
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Fig. 2: We perform 5 simulations for arbitrary switched
signals σ with average dwell time τavg = 3.2s. The plot
shows the norm of the states.

order n+ 1, meaning that the corresponding Hankel matrix
U−T,n+1,T−n has full rank m(n+1). We partition this matrix
as follows

U−T,n+1,T−n =
[
U−T,n+1,1 S

]
=

[
U−T,1,T−n

R

] (14)

where

S :=

[
U1−T,n,T−n−1
U1−T+n,1,T−n−1

]
R :=

[
U1−T,n,T−n−1 U−n,n,1

]
.

It follows that rank(R) = mn and

m(n+ 1)− 1 ≤ rank(S) ≤ m(n+ 1), (15)

Consider u(0) = K(0)x(0) + ε(0)‖x(0)‖ with ε(0) ∈ Bδ .
We aim to show that there exists some ε(0) ∈ Bδ such that
rank(U1−T,n+1,T−n) = m(n+ 1). We use the definition of
S and partition this matrix as

U1−T,n+1,T−n =

[
S

U−n,n,1
u(0)

]
.
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Noting (15), we consider two cases: (i) rank(S) = m(n+1)
and (ii) rank(S) = m(n + 1) − 1. For (i), it follows from
the above equation that U1−T,n+1,T−n is full rank for any
ε(0) ∈ Bδ . For (ii), we have

m(n+ 1)− 1 ≤ rank(U1−T,n+1,T−n) ≤ m(n+ 1).

We now proceed by contradiction. Suppose that
U1−T,n+1,T−n has rank m(n + 1) − 1 for all ε(0) ∈ Bδ .
This means that for all points inside the ball Bδ , the last
column of U1−T,n+1,T−n must lie inside the column space
of the matrix S, i.e.,[

U−n,n,1
f0 + ε0‖x(0)‖

]
∈ imS, ∀ε0 ∈ Bδ, (16)

where imS denotes the image of S and f0 := K(0)x(0),
which implies for ε0 = 0 that[

U−n,n,1
f0

]
∈ imS.

Let some 0 < ρ ≤ δ‖x(0)‖, then any point ρ
‖x(0)‖ei with ei

the i-th unit vector of Rm belongs to the ball Bδ . Therefore,
it follows from (16) that[

U−n,n,1
f0 + ρei

]
∈ imS, ∀i = 1, . . . ,m.

We then deduce that the augmented matrix[
S

U−n,n,1
f0

U−n,n,1 . . . U−n,n,1
f0 + ρe1 . . . f0 + ρem

]
has rank equal to m(n + 1) − 1. By elementary column
operations, the rank of the following matrix

M :=

[
S

U−n,n,1
f0

0
ρIm

]
,

is equal to m(n+ 1)− 1 as well. We use the definitions of
S and R to get

M =

[
R 0[

U1−T+n,1,T−n−1 f0
]

ρIm

]
.

Note that the above matrix is block lower triangular and
rank(M) = rank(R)+m = m(n+1). Thus we have reached
to a contradiction, which means that U1−T,n+1,T−n is full
rank for ε(0) ∈ Bδ . By similar reasonings, it holds that for
any k > 0 and any input sequence u(k − T ), . . . , u(k −
1) such that Uk−T,n+1,T−n has full rank, there exists some
ε(k) ∈ Bδ such that the Hankel matrix Uk−T+1,n+1,T−n has
full row rank, i.e. the input sequence u(k−T +1), . . . , u(k)
with u(k) = K(k)x(k)+ε(k)‖x(k)‖ is persistently exciting
of order n+ 1 which concludes the lemma.
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