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Chapter 3
Resilient Control Under
Denial-of-Service: Results and Research
Directions

Claudio De Persis and Pietro Tesi

Abstract The question of security is becoming central for the current generation of
engineering systems which more and more rely on networks to support monitoring
and control tasks. This chapter addresses the question of designing network control
systems that are resilient to Denial-of-Service, that is to phenomena which render a
communication network unavailable to use. We review recent results in this area and
discuss some of the research challenges.

3.1 Introduction

Security is becoming central for modern engineering systems which more and more
rely on networks to support monitoring and control tasks [1]. The main concern is
that networks, especially wireless networks, can exhibit unreliable behavior as well
as security vulnerabilities, and their malfunctioning can severely affect the systems
which our society crucially relies on [2].

Denial-of-Service (DoS) is one of the most common, yet severe, malfunctions
that a network can exhibit. By DoS, one usually refers to the phenomenon by which
a communication network becomes unavailable to use, meaning that data exchange
cannot take place. It is a general term incorporating different types of malfunctions
(all causing network unavailability) such as congestion, devices de-authentication
and jamming interference [3, 4], and it can be generated by unintentional or inten-
tional sources in which case, the latter, one often uses the term DoS attacks. Due to
its disruptive effects and common occurrence, DoS has become a central research
theme in the context of networked control systems [5].
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This chapter addresses the question of designing DoS-resilient networked control
systems. The literature on this topic is vast and diverse, and covers linear [6–9],
nonlinear [10–12] and distributed systems [13–15]. In this chapter, we will review
some of the results in this area, building on the framework developed in [8]. The
objective here is not to provide a comprehensive literature review, which is an almost
impossible task. Rather, the objective is to discuss, for three macro areas, basic
results, and research challenges.

In Sect. 3.2, we consider a centralized framework where controller and plant
exchange data through a network which can undergo DoS. For a given controller,
we characterize frequency and duration of DoS under which closed-loop stability
is preserved. Related to this problem, we review other DoS models considered in
the literature, and discuss two open problems in this area: optimality and the role
of transmission scheduling. In Sect. 3.3, we focus the attention on the problem of
designing control systems that maximize robustness against DoS. We show that his
problem has clear connections with the problem of designing finite time observers,
and discuss challenges that arise when the control unit is placed remotely from the
plant actuators. In Sect. 3.4, we finally consider distributed systems, the area which
currently poses most of the research challenges. We first discuss DoS-resilient con-
sensus, which is as a prototypical distributed control problem [16]. Subsequently, we
discuss some of the challenges that arise when dealing with networks having more
complex dynamics, as well as the problem of identifying critical links in networks
with peer-to-peer architecture. The chapter ends with some concluding remarks in
Sect. 3.5.

Themain focus of this chapter is on linear systems. In fact,while nonlinear systems
have their own peculiarities [10–12], most of the issues arising with DoS are shared
by linear systems as well. In this chapter, we will mostly consider control problems.
Yet, a large and fruitful research line has been developed also for remote estimation
problems, that is problems in which the objective is to reconstruct the process state
through network measurements [17, 18]. In this chapter, the focus is on methods
to achieve resilience against DoS. In the context of DoS attacks, research has been
carried out also to determine optimal attack scheduling [19, 20]. Albeit not central
to our discussion, we will further elaborate on this point in Sect. 3.2 when discussing
optimality issues.

We finally point out that DoS is only one of the aspects that affect the security
of networked control systems. In the last years, a large amount of research has been
carried out on this topic, mostly in connection with security against attacks, which
include for instance, bias injection, zero dynamics, and replay attacks. We refer the
interested reader to [2, 5, 21] for a general overview of security issues in networked
cyber-physical systems.
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Fig. 3.1 Schematic
representation of the
networked control system

3.2 Stability Under Denial-of-Service

3.2.1 Basic Framework

Consider a dynamical system given by

ẋ(t) = Ax(t) + Bu(t) + w(t), (3.1)

where t ≥ 0 is the time; x ∈ R
nx is the state, u ∈ R

nu is the control signal, and
w ∈ R

nx is a disturbance; A and B are matrices with (A, B) is stabilizable. The
control action is implemented over a communication network, which renders the
overall control system a networked control system.

Let K be a controller designed in such a way that Φ := A + BK is Hurwitz (all
the eigenvalues of Φ have negative real part), and let Δ > 0 be a constant spec-
ifying the desired update rate for the control signal. Ideally, the control signal is
then u∗(t) := Kx(kΔ) for all t ∈ [kΔ, (k + 1)Δ) with k = 0, 1, . . ., as in classic
sampled-data control. Throughout this chapter, the sequence {kΔ}k=0,1,... will be
referred to as the sequence of transmission times or more simply transmissions, that
is t is a transmission time if and only if t = kΔ for some k. Due to the presence of
a communication network some of the transmissions can fail, that is u(t) �= u∗(t).
Whenever transmissions fail, we say that the network is under Denial-of-Service
(DoS). In general, DoS can have a genuine or malicious nature, in which case we
refer to DoS attacks. A schematic representation of the networked control system is
reported in Fig. 3.1.

Remark 3.1 Throughout this chapter, we do not distinguish whether transmissions
fail because communication is not possible (for instance, when transmission devices
are disconnected from the network) of because data are corrupted (and discarded)
due to interference signals [3, 4]. In fact, from a control perspective it is sufficient
to interpret DoS as a mechanism inducing packet losses (cf. Sect. 3.2.2.1). �
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3.2.1.1 Stability in DoS-Free Networks

Even in the ideal situation in which the network is DoS-free, the transmission times
must be carefully chosen. The following result addresses this point and is key for the
results of Sect. 3.2.2.

Given any positive definite matrix Q = Q�, let P be the unique solution to the
Lyapunov equation

Φ�P + P Φ + Q = 0, (3.2)

Let α1 and α2 be the smallest and largest eigenvalue of P , respectively. Let γ1 be the
smallest eigenvalue of Q and let γ2 := ‖2PBK‖. Given a square matrix M , let μM

be its logarithmic norm, that is μM := max{λ| λ ∈ spec{(M + M�)/2}}, and let

Δ :=

⎧
⎪⎪⎨

⎪⎪⎩

(
σ

1 + σ

)
1

max{‖Φ‖, 1} , μA ≤ 0

1

μA
log

[(
σ

1 + σ

)
1

max{‖Φ‖, 1}μA + 1

]

, μA > 0
(3.3)

where σ ∈ (0, γ1/γ2).

Definition 3.1 (cf. [22]) Consider a dynamical system ẋ = f (x,w), and let L∞
denote the set of measurable locally essentially bounded functions. We say that the
system is input-to-state stable (ISS) if there exist a KL -function β and a K∞-
function γ such that, for all x(0) and w ∈ L∞,

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ (‖w‖∞) (3.4)

for all t ≥ 0, where ‖w‖∞ := sups≥0‖w(s)‖. If (3.4) holds when w ≡ 0, then the
system is said to be globally asymptotically stable (GAS). �

Lemma 3.1 ([8]) Consider the system Σ given by (3.1) with u(t) = Kx(kΔ) for
all t ∈ [kΔ, (k + 1)Δ), k = 0, 1, . . ., and where K is such that Φ = A + BK is
Hurwitz. Suppose that the network is DoS-free. Then, Σ is ISS with respect to w for
every Δ ≤ Δ. �

According to Lemma 3.1, Δ should be then interpreted as an upper bound on the
transmission times under which ISS is guaranteed.

3.2.2 Input-to-State Stability Under DoS

We now turn the attention to the question of stability in the presence of DoS.
Let {hn} with n = 0, 1, . . . and h0 ≥ 0 be the sequence of DoS off/on transitions,

that is the time instants at which DoS changes from zero (transmissions succeed)
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to one (transmissions fail). Then Hn := {hn} ∪ [hn, hn + τn) represents the nth DoS
time interval, of duration τn ≥ 0, during which all the transmissions fail. Given non-
negative reals τ and t with t ≥ τ , the symbol

Ξ(τ, t) :=
⋃

n

Hn

⋂
[τ, t] (3.5)

represents the subset of the interval [τ, t], where transmissions fail. Accordingly,
Θ(τ, t) := [τ, t] \Ξ(τ, t) represents the subset of [τ, t], where transmissions suc-
ceed. Let now {sr }with r = 0, 1, . . . denote the sequence of successful transmissions,
that is t = sr for some r if and only if t = kΔ for some k and t ∈ Θ(0, t). Then the
control signal is given by

⎧
⎨

⎩

u(t) = Kz(t)
ż(t) = 0, t �= sr
z(t) = x(t), t = sr

(3.6)

with z(0−) = 0. In simple terms, the control signal behaves in a sample-and-hold
fashion according to the last successful transmission. Here, the notation z(0−) = 0
implies that the controller has zero initial conditions if no data is received at t = 0,
that is z(0) = 0 if s0 > 0.

The main question now is to determine the amount of DoS that the control system
can tolerate before undergoing instability. Such an amount is obviously not arbitrary
(the extreme case is when the network is constantly under DoS and no transmission
can succeed). The result which follows stipulates that, in order to get stability, both
DoS frequency and duration should be sufficiently small.

Given τ, t ∈ R≥0 with t ≥ τ , let υ(τ, t) be the number of DoS off/on transitions
occurring on the interval [τ, t).
Assumption 3.1 (DoS frequency). There exist constants η ≥ 0 and τD > 0 such
that

υ(τ, t) ≤ η + t − τ

τD
(3.7)

for all τ and t with t ≥ τ . �

Assumption 3.2 (DoS duration). There exist κ ≥ 0 and T > 0 such that

|Ξ(τ, t)| ≤ κ + t − τ

T
(3.8)

for all τ and t with t ≥ τ . �

Theorem 3.1 ([8]) Consider the system Σ given by (3.1) with control signal (3.6),
where K is such that Φ = A + BK is Hurwitz. Let the inter-transmission time Δ be
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chosen as in Lemma 3.1. Then,Σ is ISS for every DoS pattern satisfying Assumption
3.1 and 3.2 with arbitrary η and κ , and with τD and T such that

Δ

τD
+ 1

T
<

ω1

ω1 + ω2
(3.9)

where ω1 := (γ1 − γ2σ)/2α2 and ω2 := 2γ2/α1, and where α1, α2, γ1 and γ2 are as
in Lemma 3.1. �

Limiting the DoS frequency and duration is necessary in order to render stability a
feasible task. We note in particular that (3.9) requires T > 1, otherwise, the network
would be always in a DoS status. Limiting the duration of DoS is not sufficient
since stability may be destroyed also by DoS patterns with short duration but having
high frequency. In this respect, condition τD > Δ in (3.9) captures the fact that DoS
cannot occur at the same rate as the transmission rate. We will further elaborate on
the role of the transmission rate in Sect. 3.2.3.1.

3.2.2.1 Models of DoS

Other DoS models have been proposed in the literature, mostly in connection with
discrete-time formulations. While these models sometimes originate from different
approaches, they all stipulate that, in order to get stability, the DoS action must be
constrained in time.

In discrete-time setting, a natural counterpart of Assumptions 3.1 and 3.2 is to
require that there exist positive constants c ≥ 0 and λ > 0 such that

k1−1∑

k=k0

(1 − θk) ≤ c + k1 − k0
λ

(3.10)

for all integers k0 and k1 with k1 > k0, where θk = 0 when there is DoS at time k and
θk = 1 otherwise. Similar to (3.10), other formulations focusing on finite-horizon
control problems [6] consider constraints of the type

T∑

k=0

(1 − θk) ≤ c (3.11)

where T is the control horizon of interest, while probabilistic variants of (3.10) have
been proposed in [23, 24].

All these models are high-level models in the sense that they abstract away the
rule according to which the network undergoes DoS. This approach is useful when
there is little knowledge regarding the type of DoS and the network characteristics.
When more information is available other models can be used. For instance, [17]
considers DoS in wireless networks caused by jamming signals. For this setting, a
transmission at time k is successful with probability
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1 − 2Q

(√

α
pk

ωk + σ 2

)

, (3.12)

where Q(x) = 1√
2π

∫ ∞
x e−η2/2dη, and α is a parameter. This model dictates that the

probability that a transmission at time k is successful depends on the ratio between
the transmission power pk and the interference power ωk (the source of DoS) which
is added to the noise power σ 2 of the channel. Constraints on DoS are expressed in
a similar way as (3.11), for example, by imposing

∑T
k=0 ωk ≤ c.

A detailed comparison among these several other models has been recently
reported in [25, 26], to which the interested reader is referred to. In this respect,
it is worth noting that the majority of the DoS models considered in the literature
differ from the packet-loss models, for instance, Bernoullimodels, considered in the
classic literature on networked control [27]. The latter, in fact, are more effective in
characterizing the quality of the network in normal operating condition, while DoS
models account for abnormal situations such as prolonged periods of time where no
transmission can succeed.

3.2.3 Research Directions: Scheduling Design and Min–Max
Problems

Theorem 3.1 is a prototypical result which shows that network control systems with
suitably designed transmission rates enjoy some level of robustness against DoS.
The result discussed here has been extended in several directions, which include for
instance nonlinear systems and output feedback [10–12, 29], as well as robustness
to transmission delay [28] and quantization [29]. While much remains to be done
also in these areas, especially for nonlinear systems, in the sequel, we will focus on
other aspects which we perceive as much less explored.

3.2.3.1 Transmission Scheduling

The preceding analysis rests on the assumption that the transmission rate is constant.
This assumption can be easily relaxed by replacing the constraint Δ ≤ Δ with the
constraintΔk ≤ Δ for all k ≥ 0. In this case, Theorem 3.1 continues to hold provided
that in (3.9) we replace Δ with supk Δk [8].

This opens the way to the use of a more sophisticated transmission Policies, for
instance, event-triggered policies [30]. The event-triggered paradigm in particular
advocates the idea that transmissions should take place only when strictly needed,
and this can play an important role in the context of DoS. In fact, especially for
distributed systems (cf. Sect. 3.4), aggressive transmission policies can exacerbate
DoS by inducing congestion phenomena. Limiting the amount of transmissions can
therefore help to maintain a satisfactory network throughput.
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It might be argued that low-rate transmissions render stability much more fragile
in the sense that with low-rate transmissions stability can be destroyed by low-rate
DoS. This fact is captured in Theorem 3.1 where the fulfillment of (3.9) becomes
more difficult to satisfy as Δ increases. Yet, at least in the context of DoS attacks,
the implication “low-rate transmissions =⇒ more vulnerability” need not apply. In
fact, unless an attacker can access the sensor logic, event-triggered logics can render
difficult for an attacker to predict when transmissions will take place, thus to learn
the transmission policy. The idea of rendering the transmissions less predictable has
been explored in [31], where the transmission times are randomized, but not in the
context of event-triggered control. Understanding the amount of information needed
to predict the transmission times associated with an event-triggered logic could lead
to the development of control schemes that ensure low-rate transmissions along with
low predictability of the transmission times.

3.2.3.2 Optimality

The preceding analysis does not take DoS into account at the stage of designing the
controller. In the next section, we will focus on the question of robustness. Hereafter,
we make some considerations on the design of optimal control laws.

The design of control laws that are optimal in the presence of DoS is for sure one
of the most challenging problems. A simple instance of this problem is as follows.
Consider a finite-horizon optimal control problem where the goal is to minimize
the desired cost function, say

∑T
k=0 f (x(k), u(k)). In the presence of DoS, a classic

minimization problem of this type turns out to be a “minmax” problem in which
the objective is to minimize the cost function overall possible DoS patterns within
a certain class C (for instance all DoS patterns such that

∑T
k=0(1 − θk) ≤ c, where

θk = 0 when there is DoS at time k and θk = 1 otherwise), that is

min
u

max
C

T∑

k=0

f (x(k), u(k))

Only a few papers have addressed this or similar problems; see for instance [6, 17,
32, 33] for DoS-resilient state estimation. Problems of this type are naturally cast in
a game-theoretic framework. The main difficulty is that, depending on the objective
function, pure Nash equilibria may not exist.

3.3 Robust Control Design

In the preceding section, we considered a basic formulation in which the problem
is to determine the amount of DoS that a given control system can tolerate. In this
section, we consider the question of designing the control system so as to maximize
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robustness against DoS. Later in Sect. 3.3.1, we will discuss some open problems in
this research area.

In connection with the model of DoS considered in Sect. 3.2.2, the question of
designing robust control systems amounts to searching for control laws that ensure
stability for all DoS patterns satisfying

Δ

τD
+ 1

T
< α (3.13)

with α as closest as possible to 1. We notice that α = 1 is the best possible bound
since for α > 1 there would exist DoS patterns that satisfy (3.13) but for which
no control system can guarantee stability. As an example, for α > 1 the DoS pat-
tern characterized by (τD, T ) = (∞, 1) satisfies (3.13) but causes the network to be
always in a DoS status; as another example, for α > 1 the DoS pattern character-
ized by (τD, T ) = (Δ,∞)with hn = nΔ, n = 0, 1, . . ., satisfies condition (3.13) but
destroys all the transmissions since the occurrence of DoS is exactly synchronized
with the transmission times tk = kΔ, k = 0, 1, . . ..

3.3.1 Control Schemes Based on Finite-Time Observers

A natural way for increasing robustness against DoS is to equip the controller with
a “copy” of the system dynamics so as to compensate for the lack of data, that is to
use observer-based controllers. To fix the ideas, suppose that the whole state of the
system is available for measurements, and consider the following controller (recall
that {sr } denotes the sequence of successful transmissions):

⎧
⎨

⎩

u(t) = Kz(t)
ż(t) = Az(t) + Bu(t), t �= sr
z(t) = x(t), t = sr

(3.14)

with z(0−) = 0. In simple terms, this controller runs a copy of the system dynamics
and its state is reset whenever a new measurement becomes available. Intuitively, in
the ideal case where there are no process disturbances a single measurement x(sr ) is
sufficient to get stability since, starting from sr , one has z(t) ≡ x(t). In the sequel, we
consider the general case where one only has partial state measurements, assuming
that the system to control is disturbance-free. The case of disturbances is discussed
later in Sect. 3.3.1.

Consider a stabilizable and observable system

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(3.15)
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where y ∈ R
ny is the output (the measurement signal). LetS denote the set of suc-

cessful transmissions, and let {vm}m=0,1,... be the sequence of successful transmissions
preceded by μ − 1 consecutive successful transmissions, that is such that

{vm, vm − Δ, . . . , vm − (μ − 1)Δ} ∈ S (3.16)

where μ is a positive integer. The following result establishes an important property
related to the frequency at which consecutive successful transmissions occur, and is
independent of the system and the controller.

Lemma 3.2 ([28]) Consider any DoS pattern satisfying Assumptions 3.1 and 3.2
with

Δ

τD
+ 1

T
< 1 − (μ − 1)

Δ

τD
, (3.17)

where Δ is the inter-transmission time and μ is an arbitrary positive integer. Then,
v0 ≤ Q + (μ − 1)Δ and vm+1 − vm ≤ Q + Δ for all m, where

Q := (κ + μηΔ)

(

1 − 1

T
− μΔ

τD

)−1

, (3.18)

with κ and μ as in Assumptions 3.1 and 3.2. �
Lemma 3.2 essentially says that, for any positive integer μ, if (3.17) holds then

we always have μ consecutive successful transmissions. The idea then is to equip
the controller with a finite-time observer which is able to reconstruct the state of
the system in μ steps; in turn, condition (3.17) ensures that the process state will
be reconstructed in finite time, enabling the control unit to apply correct control
signals even if the network subsequently undergoes large periods of DoS. We will
now formalize these considerations.

Letμ denote the observability index of (C, eAΔ) (note that if (C, A) is observable
then also (C, eAΔ) is observable for generic choices ofΔ), and consider the following
controller:

⎧
⎨

⎩

u(t) = Kz(t)
ż(t) = Az(t) + Bu(t), t �= vm
z(t) = ζ(t), t = vm

(3.19)

where
{

ζ̇ (t) = Aζ(t) + Bu(t), t �= sr
ζ(t) = ζ(t−) + M(y(t) − Cζ(t−)), t = sr

(3.20)

with z(0−) = ζ(0−) = 0, and where M is selected in such a way that Rμ = 0 with
R := (I − MC)eAΔ. 1

1Note that M always exists if (C, A) is observable. In fact, Rμ = 0 amounts to requiring that
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The functioning of (3.19)–(3.20) is as follows. System (3.19) runs a copy of (3.15),
and its state is reset to ζ wheneverμ consecutive successful transmissions take place.
In turn, (3.20) gives a finite-time estimate of x , which is correct after μ consecutive
successful transmissions. In case of full state measurements μ = 1, {vm} = {sr } and
the controller (3.19)–(3.20) reduces to (3.14).

Theorem 3.2 ([28]) Consider a stabilizable and observable system as in (3.15)
with the controller (3.19)–(3.20). Let Δ be the inter-transmission time. Then, the
closed-loop system is GAS for any DoS pattern satisfying Assumptions 3.1 and 3.2
with arbitrary η and κ , and with τD and T satisfying

Δ

τD
+ 1

T
< 1 − (μ − 1)

Δ

τD
(3.22)

where μ is the observability index of (C, eAΔ). �

Whenμ = 1,which holds in case of full statemeasurements and can be enforced if
C is a design parameter, (3.22) reduces to the ideal bound 1/T + Δ/τD < 1. Notice
that in this case, by Lemma 3.2 at least one successful transmission is guaranteed to
occur. On the other hand, for any given μ > 1 (C is a problem constraint), one can
get close to 1/T + Δ/τD < 1 by decreasing Δ, and the limit is only dictated by the
maximum transmission rate allowed by the network.

3.3.2 Performant Observers and Packetized Control

The control scheme (3.19)–(3.20) relies on the use of a finite-time observer with state
resetting. In this section, we discuss two peculiarities of this control scheme which
deserve special attention.

3.3.2.1 Robustness of Finite-Time Observers

Theorem 3.2 relies on a finite-time observer which ensures fast state reconstruction.
Interestingly, to the best of our knowledge, it is not possible to obtain similar results
by means of asymptotic observers. This suggests that, as far as stability is concerned,
estimation speed is the primary factor.

rank

⎡

⎢
⎢
⎢
⎣

CeAΔ

Ce2 AΔ

.

.

.

CeμAΔ

⎤

⎥
⎥
⎥
⎦

= nx (3.21)

Since eAΔ is regular, this is equivalent to the fact that (C, eAΔ) is μ-steps observable. The detailed
procedure for constructing M can be found for instance in [34, Sect. 5].



52 C. De Persis and P. Tesi

In the presence of disturbance or measurement noise, however, using finite-time
observers can negatively affect the control system performance. In order to illustrate
this point, consider a variant of system (3.15) given by

{
ẋ(t) = Ax(t) + Bu(t) + d(t)
y(t) = Cx(t) + n(t)

(3.23)

where d and n represent disturbance and measurement noise, respectively. One can
extend the analysis also to such situation [28, Theorem 1], but the estimation error
e(vm) = z(vm) − x(vm) at the times vm turns out to be

e(vm) =
μ−1∑

k=0

RkMn(zm − kΔ) +
μ−2∑

k=0

Rkv(zm − kΔ),

where

v(t) := −(I − MC)

∫ t

t−Δ

eA(t−s)d(s)ds

Albeit stability in an ISS sense is preserved, this implies that one can have a large
noise amplification, which is a well-known fact for deadbeat observers.

An important investigation in this area concerns the development of observers
that guarantee robustness to noise and disturbance while preserving the properties
of finite-time observers in the ideal case where noise and disturbance are zero. This
research line has recently attracted an independent renewed interest in the context of
hybrid systems [35]. Achievements in this area could contribute not only to control
problems but also to estimation problems, another extremely active research area in
the context of DoS [17, 18, 35].

3.3.2.2 Robustness in Remote Control Architectures

Another peculiarity of the control system (3.19)–(3.20) is that it requires that the
control unit is co-located with the process actuators, which is needed to continuously
update the control signal (Fig. 3.2). In case the control unit is instead placed remotely
the situation is inevitably more complex.

For remote systems, a possible approach is to emulate co-located architectures
through buffering /packetized control [36, 37]. In simple terms, the basic idea is
that at the transmission times the control unit should transmit not only the current
control update but also the predictions of future control updates to be stored at the
process side and to be used during the periods of DoS. In [38], for the case of full
state measurements, it was shown that the ideal bound 1/T + Δ/τD < 1 achievable
through co-location becomes

Δ

τD
+ 1

T
< 1 − ω2(κ + ηΔ)

(ω1 + ω2)hΔ − ω2Δ
(3.24)
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Fig. 3.2 (Left) Remote control framework. (Right) Co-located control framework

where h ≥ 1 is the buffer size, and all the other quantities are as in Theorem 3.1. The
ideal bound is thus recovered as h → ∞.

Depending on the problem at hand, large values of h might be needed to get close
enough to the ideal bound 1/T + Δ/τD < 1. This brings the issue of burdening the
network traffic due to sending a potentially large amount of data per transmission,
which might exacerbate congestion phenomena. To mitigate this issue, it becomes
imperative to develop transmission mechanisms able to make a parsimonious use
of the network (cf. Sect. 3.2.3.1). In this context, self-triggered control2 represents a
promising approach since it enables to jointly computing control input predictions
and transmission times at the controller side.

3.4 Distributed Systems

Research on DoS-resilient control systems have originally developed for centralized
architectures. The last couple of years have instead witnessed tremendous efforts
to extend analysis and design methodologies to distributed systems which are the
quintessential form of network systems. Most of the research in this area has been
developed for consensus-like problems [13–15, 40–43]. In this section, we first
present a distributed consensus algorithm which is resilient to DoS, and then we
discuss some of the (many) open problems in this area.

2In self-triggered control [39], the update times are not selected on the basis of a continuous
monitoring of the process state. Rather, they are based on predictions using previously received
data and knowledge of the plant dynamics.
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Fig. 3.3 Schematic
representation of a
distributed consensus
algorithm

3.4.1 DoS-Resilient Distributed Consensus

Consider a connected undirected graph G = (I, E), where I = {1, 2, . . . , n} is the
set of nodes and E ⊆ I × I is the set of edges. For each node i ∈ I , we denote by
Ni the set of its neighbors, and by di its degree, that is, the cardinality of Ni . The
consensus problem consists in developing distributed control algorithms with which
the nodes, each starting from some initial value, say xi , eventually converge to a
common value by exchanging data with their neighbors (Fig. 3.3).

3.4.1.1 Consensus Algorithm

In this section, we describe the consensus algorithm. We consider the same model
of DoS considered in Sect. 3.2. In this respect, we recall that given nonnegative reals
τ and t with t ≥ τ , we denote by Ξ(τ, t) the subset of the interval [τ, t] during
which the network is under DoS, and by Θ(τ, t) := [τ, t] \Ξ(τ, t) the subset of
[τ, t] during which the network is DoS-free.

Each node is modelled as a hybrid dynamical system Σi that obeys continuous
evolution and discrete updates, which occur when the node communicates with its
neighbors. The continuous evolution of node i is given by

⎧
⎨

⎩

ẋi (t) = ui (t)
u̇i (t) = 0
θ̇i (t) = −1

(3.25)

where xi , ui , θi ∈ R, i ∈ I .When the clock variable θi reaches zero, a discrete update
occurs: node i polls its neighbors and update its control signal according to
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi (t) = xi (t−)

ui (t) =
{
signε

(
avei (t)

)
, t ∈ Θ(0, t)

0, otherwise

θi (t) =
{

fi (t), t ∈ Θ(0, t)
ε

4di
, otherwise

(3.26)

Here, the function signε : R → {−1, 0,+1} is given by sign(z) if |z| ≥ ε and zero
otherwise, where ε > 0 is a sensitivity parameter which is used at the design stage
to trade-off frequency of the control updates vs. accuracy of the consensus region;
the function avei : Rn → R is given by

avei (t) :=
∑

j∈N i

(x j (t) − xi (t)). (3.27)

and represents the local average that node i forms with its neighbors; finally, the
function fi : Rn → R>0 is given by

fi (x(t)) :=

⎧
⎪⎨

⎪⎩

|avei (t)|
4di

, |avei (t)| ≥ ε

ε

4di
, otherwise

In simple terms, at each update time node i polls its neighbors. If the transmission
succeeds (there is no DoS) then node i computes its own local average that provides
information on the nodes disagreement, and the control law is updated accordingly;
otherwise, the control signal is set to zero, meaning that node i remains at its current
value. At the same time, node i computes, through the function fi , the next time
instant at which an update will occur. For this reason, the control logic is referred to
as self-triggered. The use of this logic for consensus in DoS-free networks has been
first proposed in [44].

3.4.1.2 Resilience Against DoS

The result which follows characterizes the robustness properties of (3.25)–(3.26) in
the presence of DoS. Let

E := {x ∈ R
n : |

∑

j∈N i

(x j − xi )| < ε ∀ i ∈ I } (3.28)

Theorem 3.3 ([13]) Consider a connected undirected graphwhere the nodes follow
the logic (3.25)–(3.26). Consider any DoS pattern satisfying Assumptions 3.1 and
3.2 with η and κ arbitrary, and with τD and T satisfying
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Δ

τD
+ 1

T
< 1 (3.29)

where Δ := ε/(4dmin) with dmin := mini∈I di . Then, for every initial condition, the
nodes converge in finite time to a point belonging to the set E in (3.28). �

This consensus algorithm has some interesting features that make it appealing in
distributed control: (i) it is fully distributed, also with respect to the clocks of the
nodes which do not have to be synchronized; (ii) it achieves finite-time convergence,
where the accuracy of consensus depends on a design parameter ε which can be used
to trade-off frequency of the control updates and consensus accuracy; (iii) it relies
on a transmission logic in which the updates take place only when strictly needed.
Like in event-based control, this feature helps to reduce the communication burden
which is especially important in distributed settings.

Other features of the algorithm are discussed in the section which follows.

3.4.2 Complex Network Systems and Critical Links

Developing DoS-resilient distributed control algorithms is probably the topic where
most of the research challenges are concentrated. In the sequel, we will discuss two
important topics where results are lacking.

3.4.2.1 Networks with Complex Dynamics

As mentioned at the beginning of Sect. 3.4, most of the research in this area has been
developed for consensus-like problems [13–15, 40–43]. Problems of this type are
somehow“manageable” in the sense that they involve systemswith stableorneutrally
stable dynamics (like integrators in the context of consensus), which considerably
simplifies analysis and design. For instance, in the consensus algorithm discussed in
the previous section, one takes advantage of the fact that the dynamics are integrators.
This makes it possible to “stop” the state evolution in the presence of DoS, which is
instrumental to prevent the nodes from drifting away, simply by zeroing the control
input. This is in general not possible with more complex network dynamics.

Networks having more complex (even linear time-invariant) dynamics arise in
many other distributed control problems, for instance, in the context of distributed
stabilization of large-scale systems where the dynamics are those associated to the
physical systems to control (rather than deriving from the control algorithm). As an
example, consider a network of physically coupled systems with dynamics

ẋi (t) = Ai xi (t) + Biui (t) +
∑

j∈N i

Hi j x j (t),
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where xi is state of subsystem i , ui is its local control signal, and where Hi j defines
how subsystem i physically interacts with neighboring processes. A communication
network is used to enable the design of distributed control laws

ui (t) = Ki xi (t
i
k) +

∑

j∈N i

Li j x j (t
j
k )

that should regulate the state of each subsystem to zero, where t ik is the kth update
time of the control law for subsystem i .

The problem of designing DoS-resilient control schemes for this class of systems
has been preliminary studied in [45]. Compared with consensus problems, however,
the analysis becomes more complex and the stability conditions more conservative,
requiring the subsystems to satisfy suitable small-gain properties on their couplings.
The reason is that during DoS it is in general not possible to “stop” the evolution
of xi (as done in consensus) since the evolution of xi does not depend solely from
ui but also on the various x j . As a consequence, one needs strong conditions on the
coupling matrices Hi j in order to ensure that the subsystems do not get far from the
origin during DoS. This is an example of distributed control problems where even
analysis tools are largely lacking.

3.4.2.2 Determining Critical Links

The consensus problem considered in Sect. 3.4.1, assumes that DoS simultaneously
affects all the network links. This assumption is reasonable for networks where the
data exchange is carried through a single access point. For peer-to-peer networks, this
assumption need not be realistic. Concerning the consensus problem, it is possible
to show that a result analogous to Theorem 3.3 holds provided that condition (3.29)
is replaced with

δi j := Δ

τ
i j
D

+ 1

T i j
< 1 (3.30)

where τ
i j
D and T i j characterize DoS frequency and duration affecting the link (i, j).

This result was proven in [13]. Even more, the same conclusions continue to hold
even when δi j ≥ 1 for some network links (meaning that communication over the
link (i, j) is never possible). This happens whenever removing such links does not
cause the graph to be disconnected. Specifically, if X is any set of links such that
GX := (I, E\X) remains connected, then consensus is preserved whenever δi j < 1
for all (i, j) ∈ E\X ; see [13].

For consensus-like networks, one can introduce a simple notion of “critical” links
as the links (or the minimum number of links) causing the network to disconnect,
and one can identify such links by using classic tools like the Stoer–Wagner mincut
algorithm [46]. For networks involving more complex dynamics such as the one
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discussed in the previous subsection, the situation is instead much more involved. In
particular, the loss of a link may render the network unstable even if the underlying
graph remains connected. Developing efficient methods to identify and minimize the
number of critical links through topology and control design is another key aspect
to achieve DoS resilience.

3.5 Conclusions

In this chapter, we reviewed some recent results on DoS-resilient networked control.
While much has been done in this area, there remain several problems of paramount
importance which are yet not fully understood. We mention in particular the design
of DoS-resilient optimal control laws, the design of robust control laws for remote
control architectures and the design of DoS-resilient distributed control algorithms,
the latter being the area where most of the results are lacking.

The present discussion is by no means exhaustive. We refer the interested reader
to [2, 5, 21] for additional references on this topic, as well as for a more general
overview of security issues in networked systems.
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