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Abstract—We show that every parabolic orbit of a two-degree-of-freedom integrable system
admits a C"°°-smooth Hamiltonian circle action, which is persistent under small integrable C'*®
perturbations. We deduce from this result the structural stability of parabolic orbits and show
that they are all smoothly equivalent (in the non-symplectic sense) to a standard model. As a
corollary, we obtain similar results for cuspidal tori. Our proof is based on showing that every
symplectomorphism of a neighbourhood of a parabolic point preserving the first integrals of
motion is a Hamiltonian whose generating function is smooth and constant on the connected
components of the common level sets.
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Keywords: Liouville integrability, parabolic orbit, circle action, structural stability, normal
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1. INTRODUCTION

Parabolic orbits and associated cuspidal tori are one of the simplest degenerate singularities
of integrable systems, which often appear in concrete integrable models, including rigid body
dynamics [2, 3] and systems admitting rotational symmetry [6, 9] (see also [7, 8, 10]). Such
singularities have been extensively studied in the literature from different points of view, ranging
from topological and stability properties [10, 13, 16] to symplectic geometry and semi-classical
analysis [1, 4]. Nevertheless, some of the fundamental questions about these singularities, such as
the ones addressed in this and our related work [14], have remained (or remain) open until now.

A typical example of a parabolic orbit is given by the (singular) fibration induced by the energy-
momentum map

F=(HJ):R>x S = R? (1.1)

where H = 2% — 3> + Ay and J = X; here z,y, A are Euclidean coordinates on R3. If ¢ denotes the
standard angle coordinate on S', then the symplectic structure can be of the form

wo =dz ANdy + d\ A dp

or, more generally,

w=g(x,y,\)dz ANdy + d\ A (dgp + A(z,y, \)dx + B(z,y, )\)dy), (1.2)
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SMOOTH CIRCLE ACTION NEAR PARABOLIC ORBITS AND CUSPIDAL TORI 733

where g, A and B are smooth functions!). Note that in many mechanical systems parabolic orbits
lie on compact critical fibers, called cuspidal tori. A simple fibration with compact fibers can be
given by considering

F:(ﬁ:x2—y3+)\y+y4,J) (1.3)
instead of F' (with the symplectic structure as above). The cuspidal torus is then F ~1(0,0); it
contains the parabolic orbit x =y = A = 0.

The singular fibration F': R? x S — R? is schematically shown in Fig. 1, together with the
corresponding bifurcation diagram, which is the set of the critical values of F', and the bifurcation

compler — the space of the connected components of the pre-images F~1(f), f € R? (the local
bifurcation diagram and the bifurcation complex of F' are essentially the same as those of F).

xS

A
T
A<0
-y
(H,J)
H
J
bifurcation

bifurcation complex
diagram

Fig. 1. The singular Lagrangian fibration (top), the bifurcation diagram (bottom left) and the bifurcation
complex (bottom right) of the energy-momentum map (H,J).

As we will show in this paper, the fibration F': R? x ST — R2? is, in fact, a “standard” model of
a parabolic orbit in the sense that a neighbourhood of such an orbit can always be put into the
form (1.1)—(1.2) (similarly, (1.2)—(1.3) is a standard model of a cuspidal torus).

Remark 1. This smooth normal form result can be compared with [5], where a similar approach
of bringing the singular fibration to a “standard form” is used. If we fix the symplectic structure
to be canonical instead, that is, if w = wp = dox A dy + dA A dp, then we get that every parabolic
orbit arises (up to a fiberwise C'*° symplectomorphism) from an energy-momentum map

F=(H,J=)):RxS" > R?

UIn this paper, we consider integrable systems that are of the C°° differentiability class; in particular, the
Hamiltonian and the first integrals as well as the symplectic form are always assumed to be smooth.
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734 KUDRYAVTSEVA, MARTYNCHUK

where H is a smooth function in (z,,\) such that 3 = (0,0,0) x S is a parabolic orbit in the
sense of [1, Definition 2.1]). These two (“preliminary”) normal forms are, in fact, equivalent (see
the proof of Theorem 3 below), but the first one has the advantage that it immediately implies

that all parabolic orbits are fiberwise C'*° diffeomorphic (in general, H is no longer of the form
x? — 3 + \y by [1, 14)).

We note that our normal form result mentioned above is well-known when we make the additional
assumption that the integrable system admits a smooth and free Hamiltonian circle action near a
parabolic orbit. (In the above models (1.1)—(1.2) and (1.2)—(1.3), the Hamiltonian circle action is
given by the periodic integral J.) It is also known that parabolic orbits admitting a Hamiltonian
circle action are smoothly structurally stable in the space of integrable systems with such an action;
see [13, 16]. The main motivation for the present work is to remove the extra assumption on the
existence of a smooth circle action in the above results.

We note that it is not difficult to show that in a neighborhood of a parabolic orbit (resp., cuspidal
torus), excluding the orbit itself, a smooth circle action always exists. Indeed, it is given by the
flow of the 2m-periodic first integral

1
= 1.4
J . /Coz, (1.4)

where « is a primitive one-form for the symplectic structure and ¢ C F~!(f) is a cycle homologous
to the parabolic orbit. The smoothness of J (equivalently, of the circle action) follows [5, 17] from
the non-degeneracy of co-rank 1 singularities on the complement of the parabolic orbit. The main
problem is therefore to prove the smoothness of the periodic integral J near the parabolic orbit
itself. We remark that in the analytic category, the corresponding result is known: J and the circle
action are analytic in the case when the integrals and symplectic form are analytic [23]. It follows
that the analytic equivalence of parabolic orbits and their analytic structural stability hold without
the additional assumption on the existence of a circle action [1, 15, 23]. The same can be said
about the topological equivalence and topological structural stability [13, 16] (one can show this
independently, even without proving the existence of a C? circle action). What has remained open
until now is whether or not the corresponding results are also true in the smooth C°° situation.

In the present paper, we prove that this is indeed the case. More specifically, we show that every
parabolic orbit of an integrable two-degree-of-freedom system admits a smooth system-preserving
free Hamiltonian circle action. We deduce from this result that

i) from the smooth point of view, all parabolic orbits are equivalent, i.e., any two such orbits
admit fiberwise diffeomorphic neighbourhoods (which is the direct product of a “standard”
3-dimensional Poincaré cross-section and a circle; see Fig. 1). Note that this implies directly
the existence of a C'°° circle action by the explicit formula (1.4), so the existence of such a
circle action is, in fact, necessary and sufficient for this statement;

ii) parabolic orbits are smoothly structurally stable in the space of all smooth 2-degree-of-
freedom integrable systems (this means that a small integrable C'*° perturbation of a parabolic
singularity is again a parabolic singularity, which is moreover fiberwise diffeomorphic to the
unperturbed one).

As a corollary, we obtain similar results for cuspidal tori. Specifically, there always exists a smooth
circle action in a neighbourhood of a cuspidal torus, all cuspidal tori are C'*° equivalent and they
are also C'*° structurally stable.

The main ingredient in our proof is to show that any F-preserving symplectomorphism of a
neighbourhood of a parabolic point? (and therefore also of a parabolic orbit) is, in fact, a Hamil-
tonian symplectomorphism whose generating function is constant on the connected components of
the common level sets {F = f}, f € R2. This implies that any such symplectomorphism is smoothly
isotopic to the identity in the class of F-preserving symplectomorphisms.

?This is a rank-one singular point that locally admits the (non-canonical) coordinates (z, ¥, A, ¢) as above.
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We note that a similar result is known for elliptic, non-degenerate co-rank 1, and focus-focus
singularities [5, 11, 17, 21]. However, it is false in general: the symplectomorphism (z,y) — (—y, )
of (R?,dx A dy) preserves the function H = z* + y*, but the corresponding generating function is
not smooth (not even C? differentiable) at the origin. This means that this symplectomorphism
cannot be included into a smooth H-preserving Hamiltonian flow. In fact, it cannot be connected
to the identity by a smooth (or even C3) H-preserving homotopy. This shows that, in the context
of integrable systems, the problem of the inclusion of a smooth or analytic (symplectic) map into a
smooth/analytic flow (cf. [18, 19] and references therein) does not admit a universal solution, even
in the case of polynomial first integrals.

2. MAIN RESULTS

In this section, we prove that a neighbourhood of a parabolic orbit of a two-degree-of-freedom
system admits a free Hamiltonian circle action (and, in particular, a periodic integral) in the smooth
C° case. Such a result will be used in a subsequent work on the symplectic classification of parabolic
orbits and cuspidal tori in the smooth category [14]; cf. work [1] for the analytic case.

Let (H,G): U — R? be an integrable system with a parabolic orbit 8 (for a formal definition
of a parabolic orbit, see [1, Definition 2.1]). Assume dG is non-zero along . Then (due to [1, 16])
near each point P € 3, one can introduce (non-canonical) coordinates (x,y, A, ) € D* centred at
this point (note that here ¢ is only a local coordinate) and a smooth function H(H,G) with
07H(0,0) # 0 such that

H(H,G) =2* — 4>+ \y and G = £\ + const
and the symplectic structure has the form
g(x,y, Ndx ANdy + d\ A (de + Az, y, N)dx + B(z,y, \)dy).

The Hamiltonian flow of G gives rise to the first return map p: D? — D3, where D? is a cross-section
given by ¢ = 0. The map p is smooth. Our goal is to first prove the following.

Theorem 1. The first return map pu can be written as the time-1 map of a smooth family of
Hamiltonian vector fields (with respect to the symplectic structure g(x,y, N)dz A\ dy) that are tangent
to the level curves H(x,y,\) = h. Here X is regarded as a parameter.

Proof. Step 1. Consider the family of Lagrangian sections:
Ly= {(xvyv)‘): €= 0}
and its image under p. Since p is a diffeomorphism preserving the functions H and G, the fixed
point set of y contains the parabola {z = 0,3y? — A = 0}; see Fig. 1.
Let p* and p¥ denote the z- and the y-components of u, respectively. It can be shown (using
that p preserves the functions H and G, and that the y-axis and, hence, its u-image are “squeezed”

between the two branches of the invariant level set {A\ = H = 0}, see Fig. 2) that p¥(0,y, ) is
monotone with respect to y for all small (y, \). The monotonicity implies that the following formula

w(y, \) =1 / WU gy /8 = M+ Ay — 3, 1, N)dt
’ y 213 — A+ Ay — o3

where 1 = sign(p®(0, %, \)), is well defined for A # 3y?; see Fig. 3. We claim that u = u(y, ) extends
to a smooth function in a neighbourhood of the origin; this is the content of Lemma 1 below.

Observe that u = u(y, A) admits a natural extension to a function @ = u(x,y, \) that is constant
on the connected components of H = h for fixed A; the function @ is defined by the condition
w(0,y,\) = u(y, A). We claim that & = au(x,y, \) is also smooth. The required family of Hamiltonian
vector fields is then defined by

9

ﬂ(d}7 Y, )‘)XH7

where X7 denotes the Hamiltonian vector field of the function H with respect to the symplectic
structure g(x, y, \)dz A dy; recall that here A appears as a parameter. Indeed, outside the parabola
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NI

Fig. 2. The slice of the singular Lagrangian fibration for A = 0.

Fig. 3. The slice of the singular Lagrangian fibration for fixed A > 0 and the p-image of the y-axis.

{z =0,3y> = A}, a(x,y,\) is the time needed to reach yu(x,y,\) from a point (z,y,\) along the
flow of Xp.

Step 2. To show that @ = u(x,y,\) is smooth, observe that it can be written as u(H, \) and
Uo(H,\) on the closures of each of the two open strata of the bifurcation complex; see Fig. 1.
We will first show?) in steps 2 and 3 that the functions @(H,\) and ,(H,)\) are smooth on
these closures (in the sense that each of these functions admits a smooth extension to an open

neighbourhood of the closure of the corresponding stratum, or equivalently, to R?). Moreover,
we shall show that the corresponding partial derivatives of 4 and %, coincide on the “common

boundary” (A > 0, H = 2(\/3)3/2) of the two strata.
Consider the stratum that is not the swallow-tail domain, and let a(H, A) be the corresponding
function defined on it. The smoothness of @(H, A) follows readily from the formula
HEBA) g(V13 — N — Y3 + Ay, t, Nt
2/t — M — 33 + Ay
recall that p¥ is the y-component of u. Indeed, the right-hand side is smooth as a function of

(y,A\) since = =€ > 0. Furthermore, at the point (z =¢,y = e2/3 )\ = 0), we have H =0, but
OyH = X — 3y* # 0. So we can take H as a local coordinate instead of y.

iy NN = [

Now consider the swallow-tail stratum, on which 4, (H, \) is defined. Then we have smoothness at
least in the open half-plane A > 0 (in the above sense), since the singularities are 2D non-degenerate;
cf. [5] and [17, Corollary 3.5]. Indeed, near the elliptic family, this can be shown separately, and
near the hyperbolic family, this can be shown using the Lagrangian section y = 0 transversal to the
fibers. We note that, using the section y = 0, we also have that the partial derivatives of @ and 4,
coincide on the set (A > 0, H = 2()\/3)3/?).

31n fact, to prove that @ is smooth, we will need less information from ,: it suffices to show that . is smooth for
A > 0 and that its partial derivatives have a continuous limit at (H = 0, A = 0). We will still need the well-known
property of non-degenerate singularities that all partial derivatives of @ and @, (more precisely, their limits) exist
and coincide on the hyperbolic branch (A > 0, H = 2(\/3)%/2), while all partial derivatives of @, continuously
extend to the elliptic branch (A > 0, H = —2(\/3)%/?) of the bifurcation complex.

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 2021



SMOOTH CIRCLE ACTION NEAR PARABOLIC ORBITS AND CUSPIDAL TORI 737

Step 3. Let us now prove that the partial derivatives of u,(H, \) extend continuously to the
origin. We will then use this to prove that @ is smooth (and also that the function u.(H, \) admits
a smooth extension, which, as we have noticed earlier, is not really needed for our purposes).

To this end, consider again the case A > 0 and observe that

Oy = Onio| (a2 (—3U2 +A), —2¢/A/3 <y < /A/3,
OHTU|(—y3 42y (—3y*> +A),  otherwise,

where the left-hand side is a smooth function for all (y, ) by Lemma 1. It follows that

Oyu =0 for A = 3y2.

Hence, yu = A(y, A)(A — 3y?) for some smooth function A = A(y, A) (this follows from a parametric
version of Hadamard’s lemma, which is the integral form of the first-order remainder term in Taylor’s
formula; see also Malgrange’s preparation theorem [12]). The function A must then satisfy

8Ha°|(—y3+>\y,>\)’ _2\/)‘/3 <y< \/)\/37

8Ha|(—y3+)\y,)\) , otherwise.

A=

We thus get that 0y, extends continuously to (H = 0, A = 0), with the same limit as that of dy.
Similarly one can prove the continuity of all partial derivatives. We note that Whitney’s extension
theorem [22] now implies an even stronger form of differentiability, namely, that u,(H, \) admits
a smooth extension to an open set, but we do not need this to prove that a(z,y,\) is a smooth
function.

Step 4. To show that @ = u(x,y,\) is smooth, it is left to observe that, for each (x,y,\),
(w,y, \) = a(x? — y> + Ay, A) or do(x? —y3 + Ay, \). Indeed, outside the origin (0,0,0), the
smoothness of @ follows since @ and ., are smooth and the restrictions of (the extensions of)

the partial derivatives to (A > 0, H = 2(\/3)%/2) coincide. Moreover, all of the partial derivatives
of 4 will extend continuously to (0,0,0) since we have proved that the partial derivatives of @

and 1, extend continuously to (H = 0, A = 0). This implies (see, for example, [22, Section 3]) that
ue C™. O

In steps 1 and 3 of the proof, we used the following lemma.

Lemma 1. The function

wly. ) = n/“y(ovy’*) g(n/t3 — M — 33 + Ny, t, \)dt
’ y W —A—y3+Ay

where n = sign(p®(0,y, \)) and X # 3y, admits a smooth extension to a neighbourhood of the origin.
Proof. Let t =y + 22(u¥(0,y,\) — y). Denote the difference 1¥(0,y,A) — y by v. Then, for v # 0,

/1 g(nz/z43 4+ 32202y 4 3vy2 — v,y + 220, N)dz
u=nv .
0 V243 4+ 32202y 4 3uy? — W

Observe that v(3y% — \) > 0. Clearly,

23 +3220% + 3vy — A =v(3y® — (1 + 3y2y_ )\(z41/ + 32%))
and
o /vy = A) _ny/v(3y? - )
S —N) BN 32 — A

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 2021



738 KUDRYAVTSEVA, MARTYNCHUK
Hence, for \ # 3y? (including the case v = 0, A # 3y?),
Vv (3y2 — \) /1 g(nz/z43 4+ 32202y + 3uy2 — v,y + 220, N)dz
U= )
3y2 - A 0 1%
\/1 + 32 — /\(241/ +32%y)

Now, v = v(y, \) is a smooth function that is zero on 3y = \. By Hadamard’s lemma,

+1/2

and (14 (ztv + 3z2y)) ,

v
3yz — A
which are well defined for A # 3y?, admit smooth extensions to a small neighbourhood of the origin
(when (y,A) are small enough).

Next, observe that upon substitution of z = 1 in the expression

v
3yz — A

nzy/Z48 4+ 32202y + vy — A = nz/v(3y? — )\)\/1 + z4v + 322y)

N
3y? — A
we get £®(0,y, \), which is smooth. Tt follows that 11/v(3y2 — \) (and hence also the expression

itself) is smooth. Moreover, 74/v(3y2 —\) vanishes when 3y?> — X =0 since p%(0,y,)\) does.
Applying Hadamard’s lemma again, we get that

1y/v(3y? = A)
3y — A
admits a smooth extension to A = 3y2. We conclude that u = u(y, \) extends to a smooth function
(as a product of functions admitting a smooth extension). g

After we have shown that p is the time-1 map of 4 Xz, we can consider a smooth fiberwise
isotopy on D? x [0,e] C D* connecting Id with p (it is given by the smooth family of vector fields
a(p)u Xy with a a bump function). This shows the existence of a smooth fibration by circles lying
on the common level sets of the first integrals of a neighborhood of a parabolic orbit and hence a
smooth periodic integral J. We have thus proven the following result.

Theorem 2. A parabolic orbit of an integrable two-degree-of-freedom Hamiltonian system F: U —

R? admits a smooth 2m-periodic first integral. More specifically, there exists a free F-preserving C™
Hamiltonian circle action in a neighbourhood of such an orbit.

Remark 2. Theorem 2 implies that one of the action variables of F': U — R? is non-singular in a
neighbourhood of the parabolic orbit, i.e., it is C'"* smooth in the whole neighborhood, including
all singular fibers therein, and defines a free circle action on this neighbourhood. We note that

this result implies that the same is true in a neighbourhood of a cuspidal torus: if F: U — R?
is proper and admits a parabolic orbit 8 on a critical fiber F~!(fy) (a cuspidal torus) such that

dF has rank 2 on the complement F~!(fy)\ 3, then the smooth 27-periodic integral existing by
Theorem 2 generates a free C°° Hamiltonian circle action in a neighbourhood of the whole cuspidal
torus F~1(fy).

3. SMOOTH STRUCTURAL STABILITY AND NORMAL FORM

An important consequence of Theorem 2 is the existence of a smooth (“preliminary”) normal
form of a parabolic singularity. Specifically, we get the following

Theorem 3. Let ' = (H,G): U — R? be an integrable two-degree-of-freedom Hamiltonian system
with a parabolic orbit . Then there exist:

(i) a small neighbourhood V-C U of B diffeomorphic to a solid torus D3 x S*,
(ii) smooth coordinates (z,y,\,¢) on V, with o being an angle coordinate and 3 = (0,0,0) x S*,

(iii) smooth functions H and J on V that are constant on the connected components of F~1(f),

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 2021



SMOOTH CIRCLE ACTION NEAR PARABOLIC ORBITS AND CUSPIDAL TORI 739

such that H=x%>—vy34+ ) y and J =\ is a 2mw-periodic first integral. Moreover, the symplectic
structure can be written as

w=g(z,y,\)dz Ndy + d\ A (dp + A(z,y, \)dx + B(x,y, \)dy).

Proof. First note that the existence of a 2m-periodic first integral J in a neighbourhood of a
parabolic orbit allows us to bring the symplectic form to the canonical form; this is essentially
the Darboux— Carathéodory theorem, see also [15, Theorem 3.4(a)]. Indeed, by the Darboux-—

Carathéodory theorem, we can include the function J into a set (Z,7,J = \,®) of canonical
coordinates in a neighbourhood of a parabolic point P € . Since the Hamiltonian flow of J is
2m-periodic, we can extend these coordinates to a neighborhood of the parabolic orbit 3, using this
flow. Thus, we get extended coordinates

(Z,79,J =\@): V—=D3x S ¢eS=R/27Z,

on a small neighbourhood V of 3 such that, in these coordinates, the symplectic structure has the
canonical form

w = d& Adj+ d\ A dp.
In particular, H is a function of (Z,9, 5\) only.

Next, we can assume that G = J. Applying a parametric Morse lemma and the versality theorem
(see [1] and references therein), one shows that there exists a suitable change of coordinates

v =2(2,9,\), y=y(&,7,\), \==+X\+ const, ¢ = +¢
(on a possibly smaller neighbourhood V' C V) such that
H==£(2" —y* + Ae(\y + a(N))

for some smooth germs a = a(\) and ¢ = ¢(X\) with ¢(0) > 0. It is left to apply a quasi-homogeneous
rescaling (cf. [15, §4], where this rescaling was also used) z — z/c**(\), y — y/c/2(\), H —
(+£H — a()\))/c*/?(\) and rename the variables accordingly. Note that

w=g(z,y,\)dx Ndy + d\ A (dp + A(z,y, \)dz + B(z,y, \)dy)

is then automatically satisfied. O

A direct consequence of Theorem 3 is that all parabolic singularities are locally, i.e., near a
parabolic orbit, fiberwise C'* diffeomorphic to each other. In view of Remark 2, we get that the
same is true semi-locally, i.e., near a cuspidal torus (one can use a similar proof as in, e.g., [10],
since we have proven the existence of a C*° circle action). As a corollary, using that parabolic points
are structurally stable under small integrable perturbations [16], we obtain the following stability
result.

Corollary 1. Let F: U — R? define an lntegmble two-degree-of-freedom system with a parabolic
orbit B C U. Then every mtegmble system F: U — R2 suﬁ?czently close to F' in the C*° topology

also admits a parabolic orbit 8 C U. The fibration induced by F is locally fiberwise C*° diffeomorphic
to the fibration induced by F in a small neighbourhood of the orbit j.

In the semi-local case, we similarly have the following. Assume that F is proper and that the
parabolic orbit B is the only singularity of F' on the critical fiber F~Y(F(B)) (so that F~Y(F(B)) is
a cuspidal torus). Then every mtegmble perturbation F sufficiently close to F in the C° topology
also admits a cuspidal torus F~'(F(B)). The fibration induced by F is semi-locally fiberwise C'™
diffeomorphic to that of F in a small neighbourhood of the cuspidal torus F~(F(B)). O
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4. DISCUSSION

In this paper, we have shown that, in a neighbourhood of a parabolic point of a two-degree-of-
freedom integrable system F': U — R2, every F-preserving symplectomorphism is Hamiltonian with
a smooth generating function that is constant on the connected components of {F = f}, f € R2.
We deduced from this result the existence of a C'>° Hamiltonian circle action near parabolic orbits
and cuspidal tori as well as a smooth (“preliminary”) normal form and structural stability results;
see Theorem 3 and Corollary 1.

We conjecture that more is true in fact, and that “uniform” versions of Theorem 3 and Corollary 1
hold as well. In particular, this would imply that the fiberwise diffeomorphism in Corollary 1 can
be chosen to be close to the identity. These results would follow from a “uniform” version of the
versality theorem (similar to [20, §8.1]) and the continuous dependence of the smooth periodic first
integral J on the system in the C'°® topology.
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