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ABSTRACT

Introduction: Pain is the unpleasant sensation
and emotional experience that leads to poor
quality of life for millions of people worldwide.
Considering the complexity in understanding
the principles of pain and its significant impact
on individuals and society, research focuses to
deliver innovative pain relief methods and
techniques. This review explores the clinical
uses of machine learning (ML) for the diagnosis,
classification, and management of pain.
Methods: A systematic review of the current
literature was conducted using the PubMed
database library.
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Results: Twenty-six papers related to pain and
ML research were included. Most of the studies
used ML for effectively classifying the patients’
level of pain, followed by use of ML for the
prediction of manifestation of pain and for pain
management. A less common reason for per-
forming ML analysis was for the diagnosis of
pain. The different approaches are thoroughly
discussed.

Conclusion: ML is increasingly used in pain
medicine and appears to be more effective
compared to traditional statistical approaches
in the diagnosis, classification, and manage-
ment of pain.

Keywords: Machine learning; Algorithms;
Pain; Pain classification; Pain manifestation;
Pain diagnosis; Pain management; Supervised
learning; Unsupervised learning

Key Summary Points

Machine learning techniques for
classifying patients’ levels of pain are
effective.

Machine learning techniques can be used
for the classification, manifestation,
diagnosis, and management of pain.

Machine learning is increasingly used in
pain medicine.
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INTRODUCTION

Pain is a complex somatic and emotional phe-
nomenon. Causes of pain are numerous and
include traumas, medical diseases, and genetic
disorders [1-4]. The universality of pain as a
human experience and the high prevalence of
pain underscore the significance of this symp-
tom, while its complexity attracts significant
attention from the research community to fully
comprehend this experience.

A variety of pharmacological and non-phar-
macological approaches have been used for the
treatment of pain. Most pain management
practices are put in place by medical and nurs-
ing staff. This highlights the imperative need to
inform this community of professionals on
innovative pain relief methods and techniques.

Machine learning (ML) is the use of data and
algorithms to imitate the process of human
thinking and learning. ML uses a set of methods
to automatically detect patterns in big data to
gradually inform and improve the algorithm’s
accuracy. Then the patterns are used to classify,
predict, or extract information from future data
from which the algorithm derives new knowl-
edge. In particular, algorithms are trained to
produce classifications or predictions, uncover-
ing Kkey insights in data mining projects
through the use of statistical methods. Subse-
quently, these insights influence decision-mak-
ing impacting key growth metrics. It is worth
mentioning that these are accomplished utiliz-
ing supervised (i.e., labelled data), semi-super-
vised (i.e., within a large amount of unlabelled
data, a small amount of data are labelled),
unsupervised (i.e., unlabelled data), or rein-
forcement (i.e., develops patterns based on trials
and errors) learning, which indicates the ability
of the algorithm to independently discover,
adapt, and respond to unscripted patterns and
groups of data [5-7]. On the basis of the nature
of the data, different techniques are used in ML
analysis. The most common techniques are
classification for supervised data (e.g., predict
and categorize specific data, like the type of
pain) or regression for semi-supervised and
unsupervised data (e.g., predict a reaction that
can cause pain, without having a prior

knowledge of that reaction). The most common
ML algorithms discussed in this review are pre-
sented in Table 1.

With this systematic review, we are mostly
interested in exploring the clinical uses of ML
related to pain. For the purpose of this review,
the following specific research questions were
addressed:

1. Is ML an effective solution for classifying,
predicting manifestation, and managing
pain?

2. What are the ML techniques mostly used in
pain medicine?

3. What are the future directions of ML?

METHODS

Protocol Registration

This review was registered in PROSPERO (regis-
tration number CRD42021248001), an interna-
tional database of prospectively registered
systematic reviews in the context of health and
social care.

Compliance with Ethics Guidelines

This article is based on previously conducted
research and does not contain any studies with
human participants performed by any of the
authors. Therefore, ethical approval was not
required.

Literature Review Strategy

A systematic literature search of the PubMed
database was performed on 15 July 2021 using
three Medical Subject Heading (MeSH) terms
that had to be present in the title. Term A was
“Machine Learning” OR “Support Vector
Machines” OR “Neural Networks” OR “Deep
Learning” OR “Multi-Layer Perceptrons” and
term B was “Pain” OR “Painful”. No filter was
applied. The reference lists of articles that met
the eligibility criteria were further perused to
identify additional studies that may fall within
the scope of this review.
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Table 1 Machine learning algorithms that have been used in pain medicine to date

Machine learning algorithm

Characteristics

Bayes [17, 19, 20, 22]

Boosting: functional data boosting (FDboost) [13]; gradient
boosting (GB) [24, 28]; extreme gradient boosting
regression (XGBoost) (27, 31]

Deep learning neural network (DLNN)
[10, 11, 14, 16, 18, 34, 35]

Decision trees (DT) [14, 22, 29, 34]

k-means clustering [14]

k-nearest neighbors (kNN) [10, 22, 24, 27, 29, 32]

Multilayer perceptron (MLP) [9, 22]

Random forest (RF) [14, 15, 28, 29, 31, 32]

Regression: kernel ridge regression (KRR), [30]; elastic net
(EN) [23, 28]; generalized linear mixed-models (GLMMs)
based on repeated data points, Lasso [15, 24]; least square
(LS) [28]; linear regression (LiR) [27, 33]; logistic
regression (LoR) [10, 15, 29, 31, 32]; ridge regression (RR)
(28]

Support vector machine (SVM)
(9, 12, 15, 21, 22, 25-27, 29, 32, 34]

Multi-subject dictionary learning (MSDL) [16]

Estimates the probability of data patterns belonging to a

specific class

Merges weak classifiers into strong ones

Similarly to multiple linear regression it contains layers of
interconnected nodes. A subclass of NN is the

convolutional neural network (CNN)

Gradually reject classes assigned into multistage decision
systems to accept a final class. In pain medicine, decision
trees algorithms such as classification and regression trees

have been used

Divides a number of data points into a number of clusters

based on the nearest mean

Assigns data patterns to a class on the basis of the distance to

the training patterns of a certain class

Trains on a set of input data patterns to predict/classify the

output class

Builds and merges multiple decision trees to provide a more

accurate prediction

Predicts the probability of agreement using continuous data

points

Creates a hyperplane to separate two classes. The hyperplane

is found by optimizing a cost function

It is a feature learning method where a training example is
represented as a linear combination of basic functions, and

is assumed to be a sparsc matrix

Inclusion and Exclusion Criteria

Studies eligible to be included in this review had
to meet the following inclusion criteria: (1)
human subjects were involved; (2) the full

article was written in English; (3) papers studied
ML in pain medicine.

The exclusion criteria were (1) publications
where the study of pain was not the primary
aim of the study; (2) publications that were not
original studies (i.e., review articles, letters,
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medical hypotheses, etc.); (3) publications
where ML method was not used for pain
assessment; (4) publications presented trials
with fewer than ten patients per treatment arm;
(5) publications presented trials studying sub-
jects less than 18 years old; (6) duplicate publi-
cations or studies referring to the exact same
population; (7) publications whose abstract was
not accessible; (8) publications whose full text
could not be obtained.

Data Collection Process

Following identification of the eligible publica-
tions, all relevant data were collected in a
structured coding scheme using an Excel file.
On the basis of the aim of each study, included
papers publications that used ML for pain were
grouped into the following categories: (1) pain
classification; (2) pain diagnosis; (3) prediction
of pain manifestation; (4) pain management.
The data collected included demographics, the

type of pain, the ML technique, the input data
size, the instruments, the results, and the level
of accuracy in each ML approach. When there
was uncertainty regarding how the data should
be interpreted or utilized, a cross reliability test
between three authors was performed.

Data Synthesis

This study used aggregated data where possible,
in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [8].

RESULTS

Search Results

This search strategy resulted in the identifica-
tion of 100 articles. After the eligibility assess-
ment, 78 articles were excluded. A further four

Term A Term B
Machine Learning or Support Vector Machines or Neural
Networks or Deep Learning or Multi-Layer Perceptrons pain OR painful

100 publications identified by the systematic search
through PubMed database

[

&

58 publications excluded at the abstract screening process ]

]

29 publications where pain was not the primary aim
21 publications were not original papers

1 publications where abstract was not available

4 publications studied underage population

3 publication not studying human subjects

(oo o)

42 full-text publications retrieved for full text eligibility
assessment

&

20 publications excluded at the full-text screening process ]

4 articles were identified

7 publications where pain was not the primary aim
3 publications studied other types of methods (not ML)
2 publications studied underage population

o)

through screening the reference ]
lists of included papers J

1 publication with less that10 subjects

1 publication not studying human subjects

1 publication was not in English

2 publications was referring to the same population

[ 26 publications included in the review

3 publication where full text was not available

—

Fig. 1 PRISMA chart
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articles were identified through manually
perusing the reference lists of the included
articles. In total, 26 papers met the inclusion
criteria and were used for this review [9-34].
These studies were published between 2015 and
2021. Figure1 (PRISMA chart) illustrates the
study selection process.

Effectiveness of ML in Pain Classification,
Diagnosis, Manifestation,
and Management

Table 2 presents the characteristics of the stud-
ies, including the ML method that was applied
and the respective results.

ML techniques for classifying the intensity of
pain were found to be effective in patients with
low back pain (LBP) [9, 12, 13, 16], osteoarthritis
[21], ankylosing spondylitis [30], spinal cord
injury [26], thoracic pain[29], sickle cell disease
(SCD) [32], evoked heat pain [25, 27], and other
types of pain [15]. In their case-controlled
study, Abdollahi et al. classified pain based on
quantitative kinematic data. In their case-con-
trolled study, Liew et al. collected electromyo-
graphic and kinematic data which were used to
classify pain [13]. Brain functional imaging and
autonomic activity (i.e., heart rate variability)
data were collected by Lee et al. after back pain
exacerbation maneuvers to measure pain
intensity with the aid of support vector
machine (SVM) [12]. In their case controlled
study, Santana et al. used functional magnetic
resonance imaging (fMRI) data in 60 patients
with chronic pain (36 subjects with fibromyal-
gia and 24 subjects with low back pain) and 98
pain-free controls in order to compare the per-
formance of different ML models in pain clas-
sification and found that CNN, which assessed
data using the MSDL probabilistic atlas, was the
most efficient with balanced accuracy ranging
from 69% to 86% [16]. In two studies, EEG data
have been wused for pain classification in
patients with osteoarthritis [21] and in patients
with pain due to spinal cord injury [26]. Overall,
the results of these studies suggested that
supervised ML algorithms can accurately clas-
sify the intensity of pain regardless of its type.
For more accurate results, it was suggested to

compare patients’ responses with responses
collected by healthy individuals [26]. In a case
series study, Rojas-Mendizabal et al. performed
an analysis of 27 variables, which included
demographic and clinical parameters, in order
to evaluate the origin of thoracic pain and
determine a possible correlation between these
parameters and the presence of cardiac pain,
managing to obtain a mean accuracy of 96%
[29]. Rogachov et al. acquired resting-state
functional MRI and quantified frequency-
specific regional low-frequency oscillations
(LFOs) in patients with chronic pain and anky-
losing spondylitis and, using an ML approach,
found that higher frequencies can be used to
make generalizable inferences about patients’
average pain ratings (trait-like pain) but not
current (i.e., state-like) pain levels [30]. These
results were also validated with healthy indi-
viduals, revealing higher brain signal variability
in the dynamic pain connectome [30].
Pouromran et al. evaluated electrophysiological
data of evoked heat pain from healthy subjects
via different ML methods in order to predict the
pain intensity and found that electrodermal
activity using a support vector regression (SVR)
model gave the best performance with an
accuracy of 83% [27]. In their study, Gruss et al.
using biopotential data and an SVR model esti-
mated the evoked heat pain intensity and
characterized the pain patterns with an accu-
racy of over 90% [25]. Yang et al. used physio-
logical measurements for 40 patients with SCD
to predict their pain intensity by applying dif-
ferent ML methods [32]. Multinomial logistic
regression (MLR) illustrated the best perfor-
mance on pain prediction with a mean accuracy
of 0.578 at the intra-individual level and a mean
accuracy of 0.429 at the inter-individual level.
Finally, a study suggested that to increase the
positive outcomes of ML on pain, the predictive
models of pain should consider other variables
like sleep patterns which can be associated with
the experience of pain, offering an accuracy of
81% [14].

Grauhan et al. used CNN for the effective
diagnosis of the cause of shoulder pain on 2700
plain radiographs (X-rays) with the best accu-
racy to be for osteoarthritis (87%), even when
presented with poor image quality [30]. Santra
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Table 2 Summary characteristics of pain studies included in this review

Study Type of pain Study population Use of ML  Main findings
Abdollahi Low back 94 patients, age Classification ML can effectively classify pain intensity based on
2020 [9] 20-50 years quantitative kinematic data
Lee 2019 [12] Low back 53 patients, age Classification ML can effectively classify intensity of evoked pain
18-60 years
Liew 2020 Low back 33 patients and 16 Classification ML can effectively classify pain intensity using
[13] controls, age electromyographic and kinematic data
18-55 years
Rahman 2018 Various causes 782 patients Manifestation ML can effectively measure and predict pain
[15] volatility
Santana 2019 Low back 60 patients and 98  Classification ML can effectively classify pain intensity using
[16] fibromyalgia  controls, age fMRI data
18-55 years
Snyder 2021  Low back 10 subjects Manifestation ML can classify the relative risk of low back pain
[18] due to lifting activities, using gyroscope and
accelerometer data
Kimura 2021  Osteoarthritis 23 patients, age Classification ML can effectively classify pain using EEG data
[21] 44-80 years
Levitt 2020 Spinal cord 37 patients and 20 Classification ML can effectively classify pain using EEG data
[26] injury controls, age
> 25 years
Rojas- Thoracic 256 patients Classification ML can effectively classify pain using demographic
Mendizabal and clinical data
2021 [29]
Gruss 2015 Evoked heat 85 subjects, age Classification ML can effectively classify evoked pain using
[25] pain 18-65 years biopotential data
Santra 2020 Low back 30 patients Diagnosis ML can effectively diagnose the cause of low back
(17] pain
Rogachov Ankylosing 71 patients and 62 Classification ML can effectively classify pain using fMRI data
2018 [30] spondylitis controls, age
18-61 years
Grauhan Shoulder 2442 patients Diagnosis ML can effectively diagnose the cause of shoulder
2021[11] pain analysig plain X-rays
Darvishi 2017 Low back 92 patients and 68  Manifestation ML can predict development of work-related low
[10] controls, age back pain
29-50 years
Miettinen Various causes 277 patients, age Classification ML can effectively predict pain based on sleep
2021 [14] 18-77 years patterns

A\ Adis



Pain Ther (2021) 10:1067-1084

1073

Table 2 continued

Study Type of pain Study population  Use of ML Main findings

Fernandes Osteoarthritis 1822 subjects, age ~ Manifestation ML can effectively predict pain manifestation in
2017 [20] 40-79 years community-based population using clinical data

Lotsch 2020  Rheumatoid 288 patients, age Manifestation ML can effectively predict pain manifestation using
[22] arthritis 18-70 years demographic and clinical data

Tighe 2020 Post-surgery 8071 subjects, age Manifestation ML can effectively predict acute pain manifestation
[24] > 21 years using clinical data

Tan 2020 Labor 20,716 subjects Manifestation ML can effectively predict pain manifestation
[31] during labor using clinical data

Juwara 2020 Cancer 195 subjects, mean  Manifestation ML can effectively predict manifestation of
(28] age 56 years neuropathic pain using clinical data

Goldstein Low back 65 patients, age Manifestation ML can effectively predict pain manifestation
2020 [33] pain 21-70 based on clinical data

Yang 2018 Sickle cell 40 patients Classification ML can predict pain intensity using physiological
[32] disease parameters

Pouromran Evoked heat 87 subjects, age Classification ML can predict pain intensity using
2021 [27] pain 18-65 years electrophysiological parameters

Parthipan Post-surgery 4306 subjects, mean Management ML can effectively predict the required opioids
2019 [23] age 58 years dose for pain management

Ahn 2018 Osteoarthritis 40 patients, age Management ML demonstrated the effect of transcranial direct
[19] 50-70 years current stimulation (¢DCS) in the management

of pain

Wang 2021 Cancer 746 subjects Management ML can effectively predict whether patients should

[34] receive local treatment for pain due to bone

metastases

et al. used Bayesian networks to resolve diag-
nostic conflicts for the cause of LBP [17].
Prediction of manifestation of pain was also
one of the commonest reasons for performing
ML analysis. In a case control study, Darvishi
et al. compared the neural network model
approach with the logistic regression model
approach in 92 workers with LBP and 68 heal-
thy workers and showed that the former can
predict more effectively the development of LBP
[10]. Goldstein et al. built a mobile platform to
predict patients’ pain levels after a period of
2 weeks based on self-reported pain ratings and
emotional state and found that a previous

history of pain and fatigue are good predictors
of pain [33]. In an open-label trial, Snyder et al.
used a deep CNN model with which they used
gyroscope and accelerometer data and classified
the relative risk that lifting activities have for
the development of back pain and injury,
achieving an accuracy of 91% compared to an
alternative CNN and multilayer perceptron
(MLP) [18]. ML techniques were found to be
effective in predicting even in real-time pain
occurrence in a large cohort of postoperative
patients, using numerous clinical variables
retrieved through surgical records [24], which
accurately helped the clinicians to provide the
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patient with appropriate pharmacological anal-
gesics [24, 31]. This was done via self-reported
data such as pain intensity scales, emotional
responses, quality of life, and an indication of
the pain areas. Fernades et al., using a Bayesian
modelling approach, developed a risk predic-
tion model based on clinical parameters for the
development of knee pain, regardless of under-
lying structural changes of knee osteoarthritis,
which appeared to work well in a community-
based population [20]. Lotsch et al. analyzed
demographic, patient-rated, and objective clin-
ical factors and using ML identified early
parameters that provided information about a
future development of persistent pain in
rheumatoid arthritis [22]. Juwara et al. identi-
fied baseline clinical data as predictive factors
for neuropathic pain after breast cancer surgery
using machine learning [28]. Finally, one study
focused on measuring and predicting pain
volatility, which was defined as the mean of
absolute changes between two consecutive self-
reported pain severity scores recorded via a
mobile application [15].

Lastly, it was also demonstrated that ML for
pain management has also been a key sector
since it is empowering the reduction of negative
body sensations and pain. Parthipan et al.
studied the treatment of pain via prediction and
prescription of the required opioid dose for
managing pain due to osteoarthritis or post-
surgery [23]. In their study, Ahn et al. used ML
to demonstrate the effect of transcranial direct
current stimulation (tDCS) in the management
of pain [19]. In their study, Wang et al. devel-
oped and tested ML models to predict which
patients with lung cancer and pain due to bone
metastases should receive local treatment and
found that a decision tree (DT) model was the
most effective and accurate method for that aim
[34].

ML Techniques

In the studies evaluated, a wide variety of ML
algorithms were used. Most of these algo-
rithms were supervised classification or regres-
sion techniques to address issues related to pain.
The selected studies used mostly classical ML

algorithms, such as SVM
[9, 12, 15, 21, 22, 25-27], and random forest
(RF) [14, 15, 28, 29, 31, 32] followed by Bayes
[17, 19, 20, 22] techniques to classify tasks by
assigning a predefined class label to an
observation.

Numerous types of regression ML algorithms
were also used by the reviewed studies
(10, 15, 23, 27, 28, 30, 32]. This type of ML
algorithm outputs continuous numerical val-
ues, rather than assigning a predefined class
label to a data pattern.

Most of the reviewed studies used this ML
technique to classify the patient’s intensity of
pain [9, 12, 14, 15, 21, 22, 28]. On the other
hand, most of the reviewed studies which used
the regression ML algorithms mostly predicted
pain occurrence, probability, volatility, and
management response, via a continuous set of
data [10, 15, 23, 27, 28, 30, 32].

The best performing ML algorithms were a
boosting (i.e., FDboost), a regression (i.e., Elastic
Net), and a neural network (NN), all three of
which achieved a classification accuracy of
more than 90% [10, 13, 23]. The worst per-
forming ML algorithm was a k-nearest neigh-
bors (kNN), which achieved a 52% accuracy
[32]. Table 3 presents the data sources and size
along with the ML methods and their accuracy.

DISCUSSION

More than half of the studies included in this
review were published since 2020, which indi-
cated that the use of ML for pain has increased
over time. ML has been shown to be successful
in learning how to map complex features to a
known class.

The large number of papers in this literature
review shows that the use of ML in research on
pain has been of great importance and is con-
sidered to be highly beneficial for classifying,
predicting, diagnosing, and managing pain This
is because the amount of health-related data is
rapidly expanding and large amounts of data
are stored in clinical systems (i.e., a result of the
advances in health technologies deployed in
the medical sector) and personal consumer
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L2 %D ’:5; —§ Epg health devices such as mobile applications and
< _ T o —; il £ wearables.
) g o é ERCE To improve the management and treatment
£ 2 g ;S; °Z‘ £ 5|28 g} of pain it is essential to be able to identify per-
ZS| 2 50 = B 52’ E g sonalized healthcare treatment patterns. ML is
£7F & considered to be beneficial because it succeeds
“ % 5 é g= at recognizing and predicting patterns, links,
'% 5 ;‘;‘; % S > and relationships throughout big and complex
el 2 3 . & g datasets, independently of human supervision.
S : - %4 N B As a result, ML was found to predict, classify,
%» § ; and suggest potential treatments of pain.
_: £ 3 This review revealed that a wide variety of
9 gg 3 ML techniques have been employed in pain
I = S gy medicine. Most of these methods involve
& & % 5 = supervised classification or regression algo-
é’_ ZS g 2 rithms and contributed to the management of
« 28 pain.
gb ‘2 E Our results should be interpreted with some
. I% g caution given the limitations of our design.
B g 3 _§ First, there was a great deal of heterogeneity
) g B between the studies, involving different inter-
k> = o 52 ventions and different populations. Second, we
<§ ZB 51 S & only searched for publications in PubMed—al-
& ;ﬁ E beit the largest medical database—and we
% t g therefore might have missed a few more papers
N 2 E g that are indexed only in other databases.
23| '
e A CONCLUSION
28| T
= 3| A -
= g g Our review highlights the need for further use
2 j. B E'P on ML in pain research in order to develop more
2 28 x algorithms that will be able to accurately predict
E ‘g =2 o= ig’ and assist medical personnel in efficient diag-
- E% 9: nosis, successful decision-making, and effective
5 N N treatment of pain. Furthermore, it is expected
& % .Eb that explainable artificial intelligence systems
£ =525 will be developed to support decision-making
g 2 ‘é f § —§ § [35] so that the medical personnel can better
‘g 5| = Sl ‘g 5 & handle pain management.
3 g R SSE s
S - -2 [~ Eb—g
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