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Abstract—Artificial intelligence (AI), especially deep learning,
requires vast amounts of data for training, testing, and validation.
Collecting these data and the corresponding annotations requires
the implementation of imaging biobanks that provide access to
these data in a standardized way. This requires careful design and
implementation based on the current standards and guidelines
and complying with the current legal restrictions. However, the
realization of proper imaging data collections is not sufficient to
train, validate and deploy Al as resource demands are high and
require a careful hybrid implementation of AI pipelines both on-
premise and in the cloud. This chapter aims to help the reader
when technical considerations have to be made about the Al
environment by providing a technical background of different
concepts and implementation aspects involved in data storage,
cloud usage, and Al pipelines.

Index Terms—Cloud Computing, Artificial Intelligence, Fed-
erated Learning, Distributed Learning, Data Storage, Biobank,
Imaging Biobank, AI Pipeline.

I. INTRODUCTION

It is a well-known fact that Artificial Intelligence (AI)
performance depends heavily on the availability of data and
the corresponding annotations or labels that define the ground
truth about the (clinical) question at hand. To obtain this data,
they need to be made available by multiple institutions geo-
graphically distributed worldwide. One option is to centralize
data, which requires de-identification and informed consent
that includes the possibility of wide distribution and sharing
of the acquired data [1]. A second option is to apply federated
learning principles in which data does not have to move
but does require wide distribution of the AI application and
computing resources [2]. In both options, gathering extensive
collections of imaging data of the same pathology or disease
and a pre-defined population is a challenging task, and many
projects suffer from the limitations of a small dataset. Not only
because of the limited availability of the data but also because
the willingness of healthcare institutes to share medical data
is low. To tackle this problem and enable the collection of
large imaging databases, careful technical considerations are
required concerning the IT infrastructure. Three essential parts
of this IT infrastructure that can help drive Al forward are data
storage, cloud usage, and Al pipeline implementation. This

chapter will dive into these three more prominent topics by
addressing more specific topics such as imaging biobanking,
cloud storage, and computing, federated learning, and different
implementation versions of the Al pipeline in medical imag-
ing.

II. DATA STORAGE

In 2010 the Quantitative Imaging Network (QIN) performed
a questionnaire among their members to explore informatics
methods in imaging research [3]. One of their goals was to
share data among institutes to accelerate quantitative imaging
research. Significant findings were a considerable variation in
tools used for the de-identification, local image file storage
was varying from XNAT and (commercial) Picture Archiving
and Communication System (PACS) solutions to open con-
sumer platforms such as Dropbox and local image meta-data
databases varied from dedicated tools like RedCAP to simple
spreadsheets on a local hard drive or USB stick.

A. Imaging Biobanking
According to the ESR position paper on imaging biobanks,
a biobank is an “Organised database of medical images and
associated imaging biomarkers (radiology and beyond) shared
among multiple researchers and linked to other bioreposito-
ries” [4]. The key points resulting from this work were:
o Imaging biobanks are “shared databases of imag-
ing biomarkers, linked to biorepositories”
« Exploitation of traditional and imaging biobanks is mean-
ingful for “personalised medicine”
« A European imaging biobank network would significantly
boost research in the imaging domain
The immediate purpose of an imaging biobank is to allow
the generation of imaging biomarkers for use in research stud-
ies (either using ‘conventional’ techniques or Al/Deep Learn-
ing) and to support biological validation of existing and novel
imaging biomarkers. The long-term scope of imaging biobanks
is the creation of a network/federation of such repositories.
An imaging biobank can exist in different scenarios. First, an
imaging biobank could contain clinical research data gathered
in clinical research/trials. Second, it could contain disease-
specific data from clinical practice or screening programs



(e.g., breast, lung, and colon cancer) based on disease char-
acteristics. These data collections are not necessarily directly
connected to a clinical research question. Third and final, an
imaging biobank can contain general population data. In this
case, data is collected from the general population (not only
patients or population at risk), with no specific goal or disease-
oriented approach. This usually involves the collection of long-
term longitudinal data.

Imaging biobanks can exist as a single entity with central-
ized data collection or storage, but federations of biobanks
are also possible to exchange data or research questions. Such
a federated setup of imaging biobanks requires a centralized
database or catalog of data collections present at different local
imaging biobanks [4], preferably using Findable Accessible
Interoperable and Reusable (FAIR) data principles [5]. Utiliza-
tion of the data in such a federated environment could involve
collecting the imaging data at the site where they are needed
when needed, but also to have the data remain at the site of
acquisition or collection and allowing software tools to access
that data to perform analysis with only returning the analysis
results [6].

A standard FAIR data model is required to allow the

merging of (imaging) data collected from multiple biobanks.
This shared data model should include typical data schemes,
standard nomenclatures, references to common ontologies, etc.
Furthermore, access policies should be implemented to request
and grant access to data collections for specific research
projects.
The ESR Position paper on Imaging Biobanks [4] lists several
requirements for the appropriate implementation and use of
imaging biobanks: The aim should be to achieve an eco-
system with a central and federated approach where query,
analysis, and retrieval across multiple data repositories should
be possible. Data access should be secure and permission-
based. Proper de-identification of both imaging and meta-
data should be in place. Standard information models and
terminologies should be used.

The Quantitative Imaging Network proposed a system archi-
tecture to enable data sharing, collaborative experimentation,
and translation of methods to clinical practice [3]. This system
architecture proposes a four-layer design. It includes informat-
ics tools to support data repositories in a data storage layer
(in blue) based on standard information models and shared
semantics (in red).

The data repositories in the storage layer can be accessed
by different processing and analysis in the Research Methods
layer. Nowadays, this layer is extended by the training, val-
idation, and deployment of AI systems. Finally, the clinical
systems layer provides the clinical users with the tools to
access the data in the underlying layers, including the results
from the algorithms in the research methods layer. Although
this model was proposed in 2012, it still holds and provides a
clear picture of the information used in the imaging domain.

Quite a large body of work exists on the design and
implementation of data environments for medical imaging,
both for research and clinical practice [6] [7] [8]. Commonly
used open-source tools are XNAT (imaging) and RedCap
(metadata), but also other environments and implementations,
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both commercial and open-source, [6] [7], exist. One common
denominator of the environments is that they can all operate
in the ‘cloud’ of the world wide web. Known advantages of
cloud usage are economy of scale, improved performance,
data portability, increased and flexible storage capacity, data
migration, and patient-centric connected systems [9].

B. Data storage: Challenges and Considerations

In order for Al pipelines to work properly, data must be

annotated which introduces the challenge of obtaining a proper
ground truth. Ground-truth images in imaging biobanks are
discrepant most of the times as medical experts are not fully
concordant in their annotations.
Also, the quality of the data collection is vital, and several
aspects have to be considered when collecting and storing data.
In medical imagining domain, numerous scanners, imaging
protocols and parameter choices exist, which results in images
of significantly different distributions. It is important to store
the provenance of the images, i.e. by which protocol, scanners,
parameters they were obtained, whether they contain missing
slices or artefacts etc. It enables Al algorithms to decide what
data to query and to avoid improper samples. As an example,
motion corrupted MR images cause substantial problems in Al
algorithms for diagnosis or segmentation [10]; whereas they
are useful for motion-correction Al models.

III. CLOUD USAGE

The National Institute of Standards and Technology (NIST)
defines cloud computing as follows

“Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction.” [11].
In the NIST special publication on cloud computing, five
essential characteristics, three service models, and four de-
ployment models are defined (figure 2) [11] [9].

A. Essential Characteristics

The first parts of the NIST cloud model are the Essential
Characteristics: on-demand self-service, broad network access,
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Fig. 2: Summary of the NIST Cloud Model
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resource pooling, rapid elasticity, and measured service. A
cloud implementation should include all of these character-
istics.

On-demand self-service is about the ability of a consumer
or user to provide the required computing capabilities (such
as server time or network storage) by themselves on-demand
and automatically without requiring human intervention from
the server provider side. Next, broad network access means
that easy access should be provided through network access
by using standard mechanisms. This broad access also refers
to the requirement that it should be accessible through a wide
variety of different thin or thick client platforms ranging from
smartphones and tablets to laptops and workstations.

The characteristic of resources pooling refers to the fact
that the provider is running pooled computing resources that
can be used to serve multiple customers using a so-called
multi-tenant model. The assignment of virtual resources is
dynamically executed based on the consumer’s requirements.
This also means that the user is not knowledgeable about the
exact location of the provided resources (e.g., which server
or rack is providing the resources). However, because of legal
restrictions that might occur, most providers do allow a user
to select a designated location on a higher abstraction level
to limit the resource location to, for example, a particular
country, state, or datacenter. The resources that the cloud
provider can provide and dynamically assign are multiple and
include storage capacity, CPU and GPU processing, memory,
and network bandwidth.

The term rapid elasticity is used to describe the character-
istic of the cloud that rapid on-demand scaling of resources is
possible within the virtual environment of the consumer. This
scaling could be done automatically based on specific triggers
when additional resources are needed. This kind of scaling
gives a sense of unlimited resources available to the user.

B. Service Models

The service models describe three different variations of
cloud services that provide software, platform or infrastructure
through cloud access.

Software as a Service (SaaS) In short, Software as a
Services, or SaaS, deals with running specific applications
through a cloud service. This means that a provider provides
access to a single application through the cloud service. Al
management and control of the underlying infrastructure such
as the servers, operating system, storage, etcetera is fully
controlled by the provider of the service without any influence

on this by the user. A typical example is a web-based e-mail
service such as Gmail.

Platform as a Service (PaaS) Expanding on the SaaS, a
Platform as a Service (PaaS), provides a suite of applications,
programming languages and other user tools through a cloud
service. This means that a user is able to deploy required
applications either own or acquired to a cloud service. The
underlying cloud infrastructure is still fully controlled by the
cloud provider, but the user has influence on what applications
should be deployed in the environment.

Infrastructure as a Service (IaaS) Finally, Infrastructure
as a Services (IaaS) provides the most flexible solution by
providing access to fundamental computing resources. In this
service model the underlying cloud infrastructure is provided
by the cloud provider, but the user can control and configure
the operating system, storage, and application deployment.
Also limited control over selected networking component, for
example hosting a firewall, could be granted to the user.

C. Deployment Models

The Deployment Models proposed by NIST range from
Private via Community to Public cloud and allow for Hybrid
solutions combining private and public cloud technology. The
private cloud is the most closed — and assumed most secure
— deployment model. In this model, a single organization will
be granted exclusive use for multiple consumers belonging to
that organization. This does not mean it needs to be owned,
managed, and operated by that organization, and all hardware
must exist on-premise. Third parties could be involved in one
or multiple of these points.

In the case of a community cloud, the use is not exclusive
to one organization but to multiple organizations part of a
community. In most cases, such a community will exist of
a group of organizations with shared concerns, such as, for
example, a group of hospitals in a region or country. Again,
ownership, management, and operation can be shared with a
third party, and the actual hardware may be on or off-premises.

A public cloud is a cloud infrastructure that is open for
use by the general public. This will, in most cases, physically
exist on-premise with the cloud provider, which can be a
single or combination of several companies, universities, and
government organizations.

In a hybrid cloud, the cloud infrastructure is deployed
consisting of a combination of cloud models. The different
environments are unique entities but can share and exchange
data and applications.

IV. AI PIPELINE

Because of the complex nature of the process of Al and the
different steps involved, research is ongoing to develop more
automated and integrated Al pipelines that support the whole
process from data collection to deployment [8]. Depending
of the situation, each step in such an AI pipeline is prone
to automation thus eliminating as many of the manual steps
as possible. In most cases, there is a distinction between a
development and a deployment pipeline. The development



pipeline consists of the steps of data collection, data anno-
tation or labelling, data cleansing, training and validation.
In a deployment pipeline one or more trained networks will
be included to receive (imaging) data and produce a final
prediction which again needs to be integrated into the (clinical)
database [8].

A. Local implementation

When implementing Al locally it can be part of the current
PACS or EMR environment or run as a private cloud or on-
premise service.

1) Networking: Local networks consist of data storage
systems, processors, and deployment systems. These com-
ponents are interdependent, i.e., each system is unable to
operate unless it receives a response from other systems.
This interdependency makes communication a crucial factor
in developing Al pipelines. The ultimate goal of a local
network should be to minimize latency and to synchronize
the processing among different nodes. If communication in
a network is sub-optimal, the network with its costly hard-
ware resources becomes under-utilized and inefficient. Several
techniques can enhance communication efficiency in a locally
implemented network. The first effective technique in high-
performance computing is reducing model precision. In many
cases, data and model parameters are stored with double
precision, which could be converted to a single floating point
or less. Since medical data are not required to have double
floating-point precision, this conversion does not hurt the
model performance. Removing additional integers could help
save bandwidth, reduces model size and network burden. [12]
Another helpful technique to improve data exchange speed is
the compression of data transferred between different nodes.
This is especially important in (medical) infrastructures where
network bandwidths are limited. Some compression techniques
utilize lossless methods, i.e., data is fully recoverable after
decompression but has limited capacity to save bandwidth
usage. Instead, lossy methods are utilized more frequently.
One method in deep learning-based Al applications to perform
compression is to limit the values of gradient updates to binary
values. This method ensures that gradient updates are in the
correct direction and transferred data will be as low as one bit.
Another technique is to neglect insignificant, small gradient
update values and convey only significant gradients. Tao et
al. implemented this method for federated systems, applicable
in medical Al pipelines [13]. An Al pipeline consisting of
multiple components requires each component to participate
actively, exchange data, and allow access to other components
when necessary. Nevertheless, most PACS systems are unable
to operate within an active environment. They might, for exam-
ple, fail when changing IP, hostname, and DICOM attributes
since these are hardcoded to work on a pre-defined situation
with limited options and minimum flexibility [14].

2) GPU and CPU: Early Al pipelines and deep learning
deployments used CPUs to perform computations. Al pipelines
were dependent on clusters of CPUs to parallelize computing
and improve model efficiency. However, state-of-the-art deep
learning pipelines are nowadays relying on GPUs instead of

CPUs. For many medical institutes acquiring GPUs is a crucial
step in deploying Al pipelines, for both local and cloud-based
implementations. To build an Al pipeline, both CPU and GPU
nodes are needed, and tasks are divided between them to reach
the optimal point of cost-efficiency. Since GPUs maximize
performance, not latency, they have worse latency than CPUs.
Hence, GPU nodes are mostly used in the training phase, and
CPU nodes are mostly used in the deployment phase when
the latency becomes an important factor. Thus, when building
large local sites for Al in healthcare, a combination of GPU
and CPU devices is preferred.

3) Data Management: Having high volumes of data
requires careful data preparation, storage, processing
and exchange between systems when developing local
Al pipelines. Data should also be well integrated into
existing hospital IT systems in both development and
deployment stages. Developing DL models on existing
hospital image archiving systems requires a good integration.
This interoperability may be hampered by the co-existence
of multiple imaging databases (PACS) in the hospital
environment. During development, the DL model can be
trained on a data dump of DICOM images to avoid using
PACSs in the process. After deployment, it could be needed
to ensure all systems within a local/cloud network have the
same PACS version, or that PACSs are connected with an
intermediary web-based protocol which allows to integrate
data from different PACS systems. Al systems, similar to
clinical experts, require various types of patient data to obtain
comprehensive knowledge about a medical situation. For
example, in radiology, additional patient EMR data might be
required, and Al models cannot be trained properly until they
integrate all relevant data. This requires data exchange between
different departments within the same hospital. Protocols
and data type standardizations should thus be developed for
all the relevant departments to facilitate information exchange.

4) AI Models: In addition to training datasets, trained Al
models should also be stored in the medical IT environment.
Al researchers might need future access to the trained models
for testing, deployment, enhancement, and migration to a
new framework. Thus, models must be accessed, queried,
and analyzed efficiently through hospital systems. In larger
networks, model interoperability is another concern. Each
system might have its own DL framework, which is a burden to
develop an Al pipeline. Research is being done to facilitate the
interoperability of DL models trained on different frameworks
by introducing standardized exchange formats. One popular
framework is ONNX [15], which enables various DL frame-
works, including Pytorch, Tensorflow, Caffe, MXNET, and
CNTK, to share their model properties and co-operate within
the same network.

For Al pipelines implemented locally, there is a risk for
Al models to be prone to various kinds of bias, including
demographic bias (gender, age) or data bias (annotation, equip-
ment, acquisition), thus having limited capacity for generaliza-
tion. Solutions include using distributed datasets and transfer
learning. Current DL models might be designed to work with
limited data types (e.g., one modality or annotation protocol).



However, with the current pace in imaging techniques, any
change has to be expected in model design. Models are
required to handle new data formats with minimal interruption.
Thus, it is better to avoid static AI models for medical usages
and design flexible models.

B. Cloud implementation

1) Development phase: In the development phase of the
Al pipeline, the cloud can be employed to provide compute
power (cloud-based learning), data science workspaces, crowd-
sourced annotation, or distributed learning. The process of
annotation or labelling of imaging data can be quite time-
consuming and difficult to organize because of the low avail-
ability of busy healthcare professionals that are needed for
expert annotation. Cloud implementations could help in such
cases to provide an online annotation environment where
experts from all over the world can provide their annotations
on the imaging data [7]. Important in such a process is to
have a transparent annotation procedure in place which is well
documented and uses guidelines to ensure the annotation from
different users is uniform [1].

With cloud-based learning, the cloud is used to train the
deep learning network by utilizing cloud-provisioned CPU or
GPU computation power. The programming and implemen-
tation of the deep learning network is done locally and the
High-Performance Computing (HPC) environment in the cloud
is used to perform the iterative learning process.

Data science workspaces provide access to a full data
science environment and allow all development steps to be
performed in the cloud. In this case the full programming
environment is provided through a virtual machine in the
cloud and access to the HPC cloud facilities is also provided.
Because of the move to the cloud it has also become feasible
to not limit the learning phase in the development to a single
location but to distribute the work over multiple locations and
even with different databases at those different locations. This
distributed or federated learning is a novel area that could
solve issues concerning the limited sharing of data and data
privacy, it will be described in more detail separately in the
next section.

2) Deployment Phase: The deployment phase introduces
possibilities such as a single Al algorithm in the cloud,
compute power in the cloud, federative deployment of Al and
Al platforms [16].

Many Al applications are provided by the vendor as a
single Al algorithm in the cloud. This means that the imaging
data will be sent to a cloud-based DICOM receiver from the
PACS or an upload through a web interface is done. After
processing of the data, a report or other generated output
(e.g. segmentation files, processed imaging data, etc) will be
returned to the user uploading the data. In a 2020 report,
Mehrizi et al. showed that of 269 Al applications on the
market 32 % were offered as a cloud- only solution and 46%
offer a choice to be either cloud-based or on-premise [17].
Besides commercial implementations, these kind of cloud-
based solutions for online Al applications are also available
from research institutions in order to support research. The

RECOMIA platform is an example of such a research-based
Al application provider that also aims to expand and function
as a research marketplace for Al applications developed by
other research groups [7]. In the deployment phase, compute
power in the cloud could also be used if the required HPC
facilities are not available on-premise.

Several federative deployments of Al can be envisioned.
One possible solution is the one proposed by the Early Lung
Imaging Confederation (ELIC) [6]. They proposed and tested a
federative environment where imaging data is distributed over
the world at the locations where the data were obtained. A
central database is updated on the content of these different
systems. Software tools (Al or other) that perform tasks on the
decentralized images will be distributed to the relevant nodes
in the federative network where automated image analysis
is performed. All resulting quantitative measurements are
collected on the central HUB where further analysis can be
done on the aggregated database.

Al platforms can also provide a centralized environment to
manage and run multiple applications that can be accessed
by the user through some sort of online marketplace [16]. In
such a cloud-based marketplace of Al tools, developers can
distribute their tools (after approval by the marketplace holder)
to a large customer base without the requirement of their own
sales and deployment team [16]. The deployment only needs
to be done in the environment of the marketplace, saving the
costly and tedious in-hospital connectivity challenges. Also, all
workflow and user-interaction is covered through the platform,
ensuring that the Al tool developer only needs to focus on the
core technology and the API connection to the platform.

For the user, such a platform removes the burden of in-
stalling a multitude of different Al applications all performing
their own task, application selection and implementation of Al
is also simplified to a large extent. The platform will handle
the data transfer and ensures the right data is sent to the
right application and ensures the data transfer security. The
organisation using the platform only has the concern itself
with the configuration and implementation of the required data
connections once. When connecting to the platform, all Al
tools will rely on that single data connection to obtain data.
Furthermore, maintenance and future changes will also be
limited to that single platform connection (e.g. when migrating
to a new PACS or changes in imaging modalities) and updates
and upgrades of the Al tools themselves will be handled by the
platform provider. The Al tools provided can either be from
one specific vendor or from a variety of suppliers including
scientific institutions that provide access to research outcome.
The platform provider will select Al tools based on pre-defined
criteria concerning the legal status of the tools and the quality
of the results. A variety of these marketplaces already exist,
in their technography study Mebhrizi et al. reported 10 of such
marketplaces that provide access to other applications in 2019
[17].

V. DISTRIBUTED / FEDERATED LEARNING

Training deep learning models requires finding optimal
values for millions of parameters, and this is time-consuming.



Sometimes it is important to distribute the processing on
parallel machines, to reduce the training time and improve
network efficiency. Besides, there might be privacy consid-
erations and challenges regarding data governance. In such
cases, distributed/federated deep learning allows researchers to
develop an Al pipeline, without having direct access to data
from other institutions.

A. Parallelization methods

Data parallelization In data parallelization, each worker
(e.g. GPU machine) is given an identical copy of a DL model,
and part of the data. To avoid duplication of tasks, data
should be split into non-overlapping batches (figure 3). After
each model finished its processing, the DL parameters for
all workers will be updated. Hence, a strong synchronization
among workers is required.
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Fig. 3: Data parallelism

Model parallelism In model parallelism, processors are
parallelized to perform operations of a certain part of a deep
neural network (figure 4). For example, a neural network can
be divided into multiple sections, each processor assigned
to one section, and processors exchange information in both
forward and backward propagation. A major concern in model
parallelism is how to split the network into multiple sections
so that the processors work together properly.

DL model is split

Each part is assigned to a worker

Fig. 4: Model parallelism

Pipeline parallelism is a combination of model and data
parallelism and has the benefits of both methods. In pipeline
parallelism, data is divided into non-overlapping mini-batches,
and neural network is divided into sections and each section
is assigned to a processor (figure 5). In backpropagation, the
gradient of a certain mini-batch is propagated through layers
and gradient processing is performed on GPUs, associated to
those layers.

For more complex networks that consist of many layers and
complex network architectures, dividing the network or data to
distinct parts might not be feasible or reasonable. Thus, large
distributed deep learning projects which deal with complex
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Fig. 5: Pipeline parallelism

networks, mostly apply Hybrid parallelism - a combination of
model, data and pipeline parallelism.

B. Synchronization

One of the most important questions in distributed deep
learning is when to synchronize parameters among workers.
Synchronization strategies exert a trade-off between network
speed and performance and is challenging.

Synchronous training, workers share their updates after
they processed one batch (i.e. after each iteration). This
method is widely used in distributed deep learning plat-
forms and has better convergence that other synchronization
paradigms. However, synchronous training has the straggler
problem; the network speed will be determined by the speed
of the slowest worker, and other workers have to wait until
the last worker finishes its processing.

Bounded synchronous training, workers train on stale pa-
rameters, and parameters resulting from bounded-synchronous
training are an approximation of the parameters of syn-
chronous training. However, to prevent that the approximation
harms the model accuracy and convergence, the staleness
should be bounded. This allows more freedom of the model,
and better efficiency, while avoiding the straggler problem.
[19] Another way to update a model is by updating parameters
independently or asynchronous, i.e., the model is updated once
one worker finishes its batch and sends the gradients to the
network, regardless of other workers. This approach might
cause problems in convergence. However, the model will be
considerably more flexible and training proceeds faster.

C. System architectures

Having a large number of workers, another major challenge
in designing a distributed deep learning architecture is how to
synchronize parameters among different workers. Many inter-
connected workers exchange considerable amounts of informa-
tion with each other. The performance of each processors is
dependent on the parameters it receives from other processors.
Thus, if the system architecture is not designed properly,
failure in one worker causes interruption of the whole system.
Different system architectures will be discussed in this section.

Centralized architectures are architectures in which every
node or worker reports its parameters to a central node, (or
nodes), called parameter server (PS). One approach is to
divide the model parameters into a few chunks and send



parameters belonging to each chunk to a PS. Thus, letting
model processors and PSs work in parallel. Notable systems
using PS architecture are GeePS [20], DistBelief [21], and
Tensorflow [22].

Decentralized architectures work without a parameter
server. Processors in decentralized networks, communicate
directly with each other (in a fully connected network), or
communicate through other processors. In a fully connected
network, in which every single worker is connected to all
other workers, communication is a major concern. However,
alternative topologies exist. For example, a ring topology is
implemented in the widely used Horovod [23] framework
from Uber. The major drawback of all topologies other than
fully connected topology is that communication between nodes
might require involvement of the other nodes and processing
time is substantially increased.

Decentralized topologies are much easier to deploy than
centralized topologies. There is no need to set-up a PS and
complexities of PS planning are avoided. Another advantage
is that decentralized topologies are more robust to failure
since there is no central hub on which the existence of the
network depends. Instead, in decentralized networks, other
workers can easily take over other failed workers’ duties,
and the network goes on without interruption. Decentralized
architectures also have disadvantages. Communication is a
major problem in decentralized networks. Changing topology
from fully connected also introduces other complexities and
trade-offs.

Both centralized and decentralized topologies assume that
data is available for all workers, and the network data and
model parameters are being controlled, either by a central
server or by individual nodes. However, in some scenarios,
especially in the medical domain, data and model parameters
might not be visible to other workers or PS.

Federated learning topology is used in such cases, which
is commonly the only available option of distributed deep
learning in the medical domains. In federated learning, data is
kept locally on each worker and a global network is trained
based on the data stored in each server. Each worker reports
the updated model parameters based on its dataset to the
whole network. This topology is also beneficial for networks
with limited bandwidth, because in federated learning, heavy
training data is not exchanged in network and only parameters
are propagated.

Common topologies of Federated learning are the aggrega-
tion server metho, peer-to-peer method, and sequential meth-
ods. In the aggregation server method, a server initializes the
model between different workers, each worker computes its
gradients and sends them back to the central server. After all of
the workers computed their gradients, the model is aggregated
and updated from the aggregation server, and the new model
is sent back to continue training the next iteration.

Peer-to-peer topology avoids using a server to save the
whole model. Instead, a model is initialized from one node,
each worker starts training based on its own data. After
each node computed its gradients, it reports the calculated
parameters to all other nodes. The model is then updated after
all of the workers reported their own updates.

Sequential methods, a model is trained on data from one
institution and is then adapted to new institutions, with dif-
ferent scanners and protocols. Two forms of sequential meth-
ods are domain adaptation and lifelong learning. In domain
adaptation, a model is trained on a source domain with rich
data. It then will be trained again (fine-tuned) on new samples
from the target domain to learn the new distribution. Since
the goal of domain adaptation is maximizing performance on
the new domain, the model might not be able to preserve
its performance on the source domain. Lifelong learning is
another variant of sequential methods, aiming to solve this
issue. In lifelong learning, a pre-trained model sees a few
samples from the new domain, learns the new distribution,
while maintains the model’s capability on previous data. This
can be done by learning batch normalization parameters for
different domains and sharing the convolutional filters [24].

D. Discussion on Distributed Learning

Deep learning models trained on large-scale datasets ensure
better clinical performance, generalizability and allows to
make less biased decisions. Federated learning helps to provide
access to high-quality diagnosis and treatment even in remote
locations and the benefit of using data from other institutions.
This advantage is significant, especially when dealing with
rare diseases. Furthermore, hospitals retain control over their
own data, limiting concerns about data leakage or data misuse
by third parties although some concerns remain such as what
one might learn from the updates to the Parameter Server. For
researchers, federated learning helps them to train their models
based on a vast amount of diverse data from multiple insti-
tutions. This is especially important since even the strongest
DL models fail when trained on inadequate data.

However, heterogeneity of data might also have major
consequences. For example, the global optimal point might not
be the optimal point for each institution, since each institution
has a particular group of patients and has some bias in favour
of that group. But if an FL framework is trained at multiple
institutions, it converges to an optimal point for all parties. And
some institutions might not be interested in a global optimal
point since they want to serve a specific group. Federated
Learning training ensures some levels of privacy, but it does
not guarantee full security of the model. Some techniques
can be applied, but they all add their own complexities to
the model and cause trade-offs. Hence, when designing a
federated learning paradigm, the desired level of security and
performance should always be considered, and an optimal
trade-off should be designed based on the level of trust in
other institutions, legal limitations, etc.

FL models are also prone to information leakage, even
though they do not share direct information from training
data. For example, techniques like model inversion, gradient
leakage, and adversarial attacks can extract confidential data
from the model. If adversaries can track the gradient updates,
for example, the values of gradients of a single institute,
data from that institute can be stolen. A high level of safety,
reproducibility, and traceability is critical in federated net-
works. In centralized and local DL models, all the data and



systems are in control of a master system. This means that
model history, hardware configurations, and hyperparameters
are all accessible. As a consequence, faults can be debugged
and tracked easily. However, in large scale federated set-ups,
not all of the above properties are trackable. Each institution
has its own settings, software, network, and infrastructure.
One solution to ensure model traceability and integrity is to
compel all parties to declare their hyperparameters and training
settings.

Finally, in federated topologies, secure data transmission
is a necessity. For most strict cases, an additional operator
might be required as a ‘trusted broker’ to transmit data
between nodes. It exerts an extra cost on the system, which
sometimes is undesirable. Encryption of transmitted data is
also crucial. Secure data transmission prevents third-parties to
access network parameters.

VI. DISCUSSION

Although very promising in healthcare data exchange, cloud
solutions still have to cope with fear and unease about the tech-
nology by hospital IT leadership. On the level of performance
this fear is about image latency because of low bandwidth, de-
lay in image access and cloud service disruption by downtime.
But also, security issues such as DDoS or hacking attacks and
confidential data leakage are major concerns.

That this is still an issue in the current cloud environments
of medical imaging was shown by the Health IT Security
report in November 2019: about 1.19 billion images were
accessible through a very large number of PACS systems
that were connected to the cloud and easily accessed by
unauthorized users [25].

Security issues prominent in the cloud are secure transfer —
including for example data encryption — privacy, confidential-
ity and integrity of the (imaging) data. The cloud design and
implementation should be such that it takes these four points
into careful consideration.

Besides security, cloud implementations should also con-
sider safety by providing backup or redundant storage to
avoid data loss, high availability with low downtime, and
restricted and tracked access by implementation of role-based
access and extensive user activity tracking and audit trails.
Although the concerns about security and safety are valid
and important, the need to establish imaging biobanks and
integrate them with existing biobanks is of utmost importance
to facilitate the development of Al-based tools and to increase
quantitative, patient centred healthcare. Cloud-based imaging
biobanks will help drive Al and deep learning development
and the developed tools can be used to further annotate and
label other imaging biobanks.

The implementation of data sharing using imaging biobank-
ing and cloud solutions still has to cope with technical, legal
and societal challenges. To overcome these, a number of
conditions have to be met. One of these is the standardization
of communication, data format, and lexicons or terminologies
which is essential to achieve environments with a high level
of interoperability. Interchanging data between cloud solutions
and standardization of APIs is still limited [9]. In medical

imaging common data standards like DICOM and HL-7 could
help in this, together with workflow definitions as provided by
the IHE.

Al solutions are a step towards solving many existing
problems in the area of healthcare. They provide a strong
tool for healthcare experts. Distributed Al solutions, especially
federated learning have the capability to provide accurate, safe,
privacy-preserving and unbiased models for clinical usage.
However, when designing distributed Al pipelines, many con-
siderations should be taken into account. Proper infrastructure,
data preparation, and Al model design are necessary for
accurate training. How to perform parallelization, and how to
enable efficient and secure communication among workers is
another challenge which should be addressed.

Other issues to cope with are originating from the legal
frameworks as defined by the HIPAA in the United States
and the General Data Protection Regulation (GDPR) in the
European Union. As an example, the GDPR has a large impact
on safety and security of data stored in Imaging Biobanks and
Biobanks and requires explicit informed consents of the data
subjects, includes the right to be forgotten and requires cross
border data transmission and sharing.

VII. CONCLUSION

We need to enable sharing within an institution, between
institutions and with patients. To realize this, the cloud plays
an important role in fostering better models for fluent exchange
of images and information and cloud based medical image
sharing and multicentre databases has many advantages. It
can be cost effective because of the economy of scale and
can improve performance. Furthermore, with online patient
health records, it is easier to access and share data between
patients and doctors and between doctors. Cloud also offers
an increased and more flexible storage capacity. PACS in-
dependent storage in the cloud could remove the necessity
of tedious data migration projects when moving to another
PACS vendor. And finally, consolidating and storing medical
image information in single centralized repository in the cloud
instead of multiple PACS in different sites means health care
providers can quickly access and share images across various
departments and organizations resulting in a more patient-
centric environment.
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