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Quantum versus classical dynamics in spin models: Chains, ladders, and square lattices
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We present a comprehensive comparison of spin and energy dynamics in quantum and classical spin models
on different geometries, ranging from one-dimensional chains, over quasi-one-dimensional ladders, to two-
dimensional square lattices. Focusing on dynamics at formally infinite temperature, we particularly consider the
autocorrelation functions of local densities, where the time evolution is governed either by the linear Schrédinger
equation in the quantum case or the nonlinear Hamiltonian equations of motion in the case of classical mechanics.
While, in full generality, a quantitative agreement between quantum and classical dynamics can therefore not
be expected, our large-scale numerical results for spin-1/2 systems with up to N = 36 lattice sites in fact
defy this expectation. Specifically, we observe a remarkably good agreement for all geometries, which is best
for the nonintegrable quantum models in quasi-one or two dimensions, but still satisfactory in the case of
integrable chains, at least if transport properties are not dominated by the extensive number of conservation
laws. Our findings indicate that classical or semiclassical simulations provide a meaningful strategy to analyze
the dynamics of quantum many-body models, even in cases where the spin quantum number S = 1/2 is small

and far away from the classical limit § — oo.

DOI: 10.1103/PhysRevB.104.054415

I. INTRODUCTION

Understanding the properties of quantum many-body sys-
tems out of equilibrium is a notoriously difficult task with
relevance to various areas of modern physics, ranging from
fundamental aspects of statistical mechanics [1,2] to more
applied issues in material science and quantum information
technology. Quantum spin systems are of particular impor-
tance in this context, since they describe the magnetism of
certain compounds in nature [3], can be realized in new ex-
perimental platforms [4,5], or can be simulated on already
available or future quantum computers [6,7].

From a theoretical point of view, quantum spin sys-
tems routinely serve as test beds to study concepts such as
the eigenstate thermalization hypothesis [8—12] or the phe-
nomenon of many-body localization [13,14]. Moreover, in
the case of one-dimensional chain geometries, the integrabil-
ity of certain spin models, accompanied by the existence of
an extensive set of (quasi)local conserved charges [15-17],
paves the way to obtain analytical insights, e.g., regarding
their transport and relaxation behavior in the thermodynamic
limit [18-21]. At the same time, the development of so-
phisticated numerical techniques [22-24] has significantly
advanced our understanding of out-of-equilibrium processes
in quantum spin models. Yet, most of these methods are
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best suited for (quasi-)one-dimensional situations, while the
numerical treatment of spin systems in higher dimensions
continues to be a hard task due to the exponentially growing
Hilbert space and the fast buildup of entanglement [25-30].

As opposed to quantum systems, the phase space of
classical systems grows only linearly with the number of
constituents, such that simulations of systems with several
thousands of lattice sites pose no problem and higher dimen-
sions are feasible with today’s machinery as well. In fact,
ranging back to the seminal work by Fermi, Pasta, Ulam,
and Tsingou [31], numerical simulations of equilibration and
thermalization in classical many-body systems have a long
history [32,33]. In particular, most relevant in the context of
the present work, transport of spin and energy in classical
spin models has been scrutinized extensively over the past
decades [34-50]. However, within the large body of literature
on classical spin systems [34-55], less attention has been
devoted to a quantitative comparison of dynamics in classical
and quantum spin models [56,57]. Such a comparison is in the
center of the present paper.

On one hand, in the case of quantum dynamics, the
time evolution is governed by the linear Schrodinger equa-
tion and, for certain one-dimensional models, integrability
can strongly impact their dynamics, leading to nondecaying
currents and ballistic transport due to overlap with the exten-
sively many conservation laws. On the other hand, classical
spin systems evolve according to the nonlinear Hamiltonian
equations of motion, and (except for some notable exam-
ples [46,58]) even one-dimensional chains are nonintegrable
and highly chaotic [59]. While it seems likely that quantum

©2021 American Physical Society
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FIG. 1. Magnetization and 1D chain. Decay of the equal-site
correlation C™)(¢) in different quantum cases (S = 1/2, 1, and 3/2)
and in the classical case (S = o0o), shown in a (a) lin.-lin. plot and
(b) log.-log. plot. In all cases, we have length L, = 14 and anisotropy
A = 1. In (a), curves are shifted for better visibility. In (b), a power
law ot =23 and the expected long-time value C(t — o0) = 1/L, are
indicated.

and classical systems become more and more similar if the
spin quantum number S is successively increased from S =
1/2,1,... [60,61] towards the classical limit S — oo, it still
is a nontrivial question whether and to which degree their
dynamics agree with each other. While substantial differences
most likely emerge at low temperatures 7, a quantitative
agreement between quantum and classical dynamics can, in
full generality, not be expected at high temperatures either,
especially when considering the most quantum case S = 1/2.
In particular, integrability of certain S = 1/2 models reflects
itself in their dynamics even at T — oco. Moreover, certain
phenomena, such as the onset of many-body localization in
strongly disordered quantum systems, have no classical coun-
terpart such that an agreement between quantum and classical
dynamics is unlikely in these cases [57,62].

In this paper, we explore the question of quantum
versus classical dynamics in spin systems by analyzing
time-dependent autocorrelation functions of local densi-
ties [as defined below in Eq. (5)], which are intimately
related to transport processes in these models and have
been studied before, both in the classical and the quantum
case [34-36,45,49,57,63]. Our main finding is exemplified
in Fig. 1, which shows the temporal decay of infinite-
temperature spin autocorrelation functions C™(¢) in isotropic
Heisenberg chains with different quantum numbers S =
1/2,1,3/2 and S = oo (classical). As becomes apparent
from Fig. 1(a), quantum and classical dynamics agree very
well with each other on short as well as long time scales
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FIG. 2. Overview over the different models and observables con-
sidered. Top row: (a) One-dimensional (1D) chain, (b) quasi-1D
two-leg ladder, and (c) two-dimensional (2D) square lattice. Middle
and bottom row: Corresponding local (d)-(f) magnetizations and

(g)—(i) energies.

and for all values of S shown here. While the agreement
is slightly better for larger S, it is still convincing for
S =1/2, where the quantum chain is integrable whereas
the classical model is not. Moreover, plotted in a double-
logarithmic representation [Fig. 1(b)], we find that the
hydrodynamic power-law tail C™(¢) oc = at intermediate
times is well described by o ~ 2/3, which suggests su-
perdiffusive transport within the Kardar-Parisi-Zhang (KPZ)
universality class [18,19,58,60,64,65] (for more details see
Sec. IV A 1 below).

The remarkable agreement of quantum and classical dy-
namics in Fig. 1 provides the starting point for the further
explorations in this paper. Specifically, while Fig. 1 shows
results for short chains with L = 14 (which is already quite
demanding for § = 3/2), we particularly focus on a more
in-depth comparison between S = 1/2 and S = oo using
large-scale numerical simulations of XXZ models on different
lattice geometries, which range from one-dimensional (1D)
chains, over quasi-1D two-leg ladders, to two-dimensional
(2D) square lattices; see Fig. 2. Relying on an efficient
typicality-based pure-state propagation [66,67], we treat spin-
1/2 systems with up to N = 36 lattice sites and study the
agreement of quantum and classical spin and energy dynamics
depending on the exchange anisotropy of the XXZ model and
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QUANTUM VERSUS CLASSICAL DYNAMICS IN SPIN ...

PHYSICAL REVIEW B 104, 054415 (2021)

the lattice geometry chosen. In doing so, we find a remarkably
good agreement for all lattice geometries, which is best for
nonintegrable quantum models in quasi-one or two dimen-
sions, and (as already indicated in Fig. 1) still convincing for
integrable quantum chains, at least in cases where transport is
not ballistic due to the extensive set of conservation laws.

The rest of this paper is structured as follows. First, we
introduce in Sec. II the considered models and observables
in the quantum case and discuss their classical counterparts
as well. Here, we also comment on the diffusive decay of
equal-site autocorrelations. Then, we describe in Sec. III
the numerical techniques used by us, where we focus on
the concept of dynamical quantum typicality. Eventually, we
present our numerical results in Sec. IV and compare classical
and quantum dynamics of local magnetization and energy
in different lattice geometries. We summarize and conclude
in Sec. V.

II. MODELS AND OBSERVABLES
A. Models

In this paper, we consider the anisotropic Heisenberg
model (XXZ model) on a rectangular lattice with periodic
boundary conditions (PBC), consisting of N = L, x L, sites
in total, where L, and L, are the lattice extension in the x and
y direction, respectively. The Hamiltonian is given by

H=J hr,r’s (])
)

(r,r’

where the sum runs over all bonds (r,r’) of nearest-
neighboring sites r = (i, j) and r' = (i, j’). The antiferro-
magnetic exchange coupling constant J > 0 is set to J = 1
in the following. The local terms in Eq. (1) read

hew = SESy + SUSY, + ASZS, 2

r~r’
where A parametrizes the anisotropy in the z direction and

the components S¥, i € {x, y, z} are spin-S operators at site r,
which fulfill the usual commutator relations (& = 1)

[SK, Sp1 =1 8er €02 Sy, 3

r°~r

where 6, is the Kronecker-Delta symbol and ¢,,, is the
antisymmetric Levi-Civita tensor. For the specific case of
S = 1/2, these components can be expressed in terms of Pauli
matrices, St = o' /2.

While total energy is naturally conserved, i.e., [H, H] = 0,
‘H is also invariant under rotation about the z axis, i.e., the total
magnetization in this direction is preserved for all A,

[$°,H] =0, §=) S )

In this paper, we consider the spin- and energy-transport prop-
erties of H depending on the lattice geometry, the value of A,
and the model being quantum or classical. In particular, we
study three special cases of the L, x L, lattice: (i) L, = 1, i.e.,
a one-dimensional chain; (ii) L, = 2, i.e., a quasi-1D two-leg
ladder; (iii) Ly, = Ly, i.e., a two-dimensional square lattice;
see the sketch in Fig. 2. Concerning integrability, it is well
known that the spin-1/2 chain is integrable in terms of the
Bethe ansatz independent of the value of A [68,69], while in-
tegrability is broken for models with either S > 1/2or D > 1.

This integrability will play a crucial role for our comparison of
quantum and classical dynamics below. Specifically, it is well
known that energy transport is purely ballistic in the integrable
quantum chain, which will be in stark contrast to the dynamics
of the chaotic classical chain. At the same time, integrability
as such not necessarily rules out that quantum and classical
transport properties can agree with each other. For instance,
as demonstrated below, both the quantum and classical chain
show diffusive spin transport for A > 1.

B. Observables

As one of the simplest quantities, we focus on the dynamics
of local densities p,, which can be either magnetization or
energy, as defined below in detail. More precisely, we consider
the time-dependent density-density correlation function,

Cew (1) = (pe(®)pr), ®)
where (o) = tr[exp(—fH)e]/Z with Z = tr[exp(—BH)] is
a canonical expectation value at inverse temperature f =
1/T (kg = 1), and the time argument of an operator has
to be understood w.r.t. the Heisenberg picture, p.(t) =
exp(tHt) pr exp(—1Ht).

In the following, we discuss the equal-site autocorrelation
function, i.e., r = r’ in Eq. (5). Due to our choice of PBC, the
autocorrelation function does not depend on the specific site
r = (i, j) and we can concisely write C(¢) = C; ,(¢). More-
over, we here focus on the limit of high temperatures § — 0
for which exp(—8H)/Z — 1/D, such that C(t) is given by

trlor(2)0r]

COy=—5—: (6)

where D = (25 + 1)V is the Hilbert-space dimension, e.g.,
D = 2% for § = 1/2. Note that for our numerical results, we
always consider the dynamics in the full Hilbert space, i.e., we
average over all sectors of fixed S°.

Next, we define the local densities o, and start with the case
of magnetization. While such a definition is not unique and
depends on the chosen unit cell, we use the natural definition,

531 ID (L, =1)
pi) =187, + 87, quasi-1D (L, =2), (7
S50 2D (L, = Ly)

see the sketch in Fig. 2. In the case of energy, a natural
definition is

E
Pi(,j) =J h1),i+1.1) (8)

for a 1D chain, i.e., just a single bond, and,

E
/Oi(,j) = J[hin.6+1.1) + he2).6+1.2)]

J
+ 3 (R 1),6.2) + B, 0,641,201, 9

for a quasi 1D two-leg ladder, i.e., a plaquette consisting of
one bond for each leg and two rungs. Note that the factor 1/2
appears, since the sum over all local energies must be identical
to the total energy. For the 2D square lattice, we define,

J
B) _
pij = 5 hi-1.p.6.i) + hij.i)]

J
+ 3 (ha,j—1).a, ) + ha jy, i+ (10)
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see the sketch in Fig. 2 again.

We note that for each local density defined above, the sum
rule C(r = 0) can be calculated analytically. For instance, in
the case of local magnetization, we have for § = 1/2,

1/4, ID (L, = 1)
C™Me=0)=11/2, quasi-1D (L, = 2). (11)
1/4, 2D (L, = L)

Assuming that the system thermalizes at long times, this initial
value also determines the long-time value (although there can
be subtleties in some cases, see Sec. IV B),
Cit=0
C(t — oo)=¥, (12)
n

where n is the total number of unit cells, i.e., n = L, in 1D
or quasi-1D and n = L, x L, in 2D. Therefore, only in the
thermodynamic limit n — oo, we can expect a full decay
C(t - 00)=0.

C. Classical limit

The quantum spin models discussed so far also have a
classical counterpart, which results by taking the limit of both
Planck’s constant 7 — 0 and spin quantum number S — oo,
under the constraint 7./S(S 4+ 1) = const. In this limit, the
commutator relations in Eq. (3) then turn into

{S¥, Sp} = Sre€pn Sy, (13)

where {e, o} denotes the Poisson bracket [70], and the spin op-
erators become real three-dimensional vectors S, of constant
length, |S;| = 1. In particular, all symmetries mentioned be-
fore carry over to the classical case. The relations in Eq. (13)
lead to the Hamiltonian equations of motion, which read

d oH

dtsr =35, X Sy (14)
and describe the precession of a spin around a local mag-
netic field resulting from the interaction with the neighboring
spins. The equations (14) form a set of coupled differ-
ential equations, which is nonintegrable by means of the
Liouville-Arnold theorem [53,70]. Therefore, they can be
solved analytically only for a small number of special initial
configurations, and solving them for nontrivial initial states
requires numerical techniques.

The infinite-temperature density-density correlation in

Eq. (6) can be obtained in the classical case by taking (e) as
an average over trajectories in phase space,

1 R
Cty~ = pr()pr(0), (15)

r=1

where the initial configurations p,(0) are drawn at random for
each realization r, and R >> 1 has to be chosen sufficiently
large to reduce statistical fluctuations. For the values of R
chosen by us, see the discussion in Sec. III B.

In this paper, our central goal is to compare classical and
quantum dynamics. Thus, for a fair comparison, we have to
take into account that the sum rule C(r = 0) is different. For
instance, in the case of local magnetization, the classical sum

rule is
1/3, ID (L, = 1)
CM¢ =0)={2/3, quasi-1D (L, = 2), (16)
1/3, 2D (Ly = Ly)

and differs from the one in Eq. (7). Thus, we always consider
the rescaled data C(¢)/C(0), cf. Fig. 1. Moreover, we have
to rescale the time entering the quantum simulations by a
factor [57],

§S=VSE+1, a7

in order to account for the different length of quantum and
classical spins (S =1 in the classical case). However, for § =
1/2, this factor is § = /3/4 ~ 0.87 and rather close to 1.

D. Diffusion

In both the classical and the quantum case, the time evo-
lution of the autocorrelation function C(¢) follows from the
underlying microscopic equations of motion and naturally
depends on the specific model and its parameters. Thus, a
precise statement on the functional form of this time evolution
requires to solve the given many-body problem analytically or
numerically. Due to the conservation of total energy and mag-
netization, however, one generally expects that the dynamics
of local densities acquire a hydrodynamic behavior at suffi-
ciently long times. In particular, in a generic nonintegrable
situation, one might expect the emergence of normal diffusive
transport.

In the context of the autocorrelation function C(¢), the
emergence of hydrodynamics reflects itself in terms of a
power-law tail [18],

Ct) xt™, (18)

where normal diffusive transport corresponds to o = D/2,
where D is the lattice dimension, i.e., « = 1/2 in 1D or
quasi-1D, and o = 1 in 2D. In contrast to the case of normal
diffusion, anomalous superdiffusion (cf. Fig. 1) and subdif-
fusion go along with an exponent « > D/2 and o < D/2,
respectively, while ballistic transport is indicated by « = D.
Clearly, such a hydrodynamic power-law decay can only
set in for times ¢t > T after some mean-free time t. Moreover,
due to the saturation at a value C(t — 00) > 0 in any finite
system, diffusion must break down for long times. Thus, in
our numerical simulations below, the power-law decay in
Eq. (18) can only be expected to appear in an intermediate
time window, as already demonstrated in Fig. 1 above. While
the analysis of the particular type of transport for a given
model and lattice geometry is not the main aspect of this
paper, it naturally arises while comparing the spin and energy
dynamics of quantum and classical systems in Sec. IV.

III. NUMERICAL TECHNIQUES

Next, we discuss the methods used in our numerical sim-
ulations, both for the quantum and the classical case. In the
former, we particularly employ the concept of dynamical
quantum typicality (DQT) which gives access to autocorre-
lation functions for comparatively large system sizes beyond
the range of full exact diagonalization.

054415-4
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A. Dynamical quantum typicality

DQT essentially relies on the fact that even a single pure
state |y) can imitate the full statistical ensemble. More pre-
cisely, the pure-state expectation value of an observable is
typically close to the one in the statistical ensemble [71-74].
This fact can be utilized to calculate the time dependence
of correlation functions, e.g., the one of the density-density
correlator in Eq. (5), by replacing the trace by a scalar product
between two auxiliary pure states |@g(?)) and |®g(t)) [75-77],

(@@ | Pp(1))
(08(0)lgp(0))

where the two auxiliary pure states are given by

Ct)= +e(y), 19)

lpp(t)) = e e P2 |y, (20)

@) = e pr ey, @
involving the reference pure state,

D

W) =D (ax +1bo)lk). (22)

k=1

This reference pure state is drawn at random from the full
Hilbert space according to the unitary invariant Haar mea-
sure [78]. In practice, for any given orthogonal basis |k), the
coefficients a; and b are drawn randomly from a Gaussian
probability distribution with zero mean.

While the statistical error e(|¥)) in Eq. (19) depends on the
specific realization of the random |y), the standard deviation
of this statistical error can be bounded from above [67],

o(e) < b (23)

1
VDesr.
where D, = tr{exp[—B(H — Ep)]} denotes an effective di-
mension and E is the ground-state energy of 7. Thus, at
high temperatures § — 0, Dy, —> D = (2S5 + Y and o (¢)
is negligibly small for the finite but large system sizes we
are interested in. In turn, the typicality-based approximation
in Eq. (19) is very accurate even for a single |¢), and no
averaging is required.

In the high-temperature limit 8 — 0, the correlation func-
tion C(¢) can also be approximated on the basis of just one
auxiliary pure state [79],

, Vortcly)

W) =Y 24
(Wly)

where |¢) is again the reference pure state in Eq. (22) and

the constant ¢ is chosen in such a way that p. 4+ ¢ has non-

negative eigenvalues. Then, the correlation function can be

rewritten as a standard expectation value [7,57,80],

Ct) = (Y Olpely' @) + e(1¥)), (25)

where we have employed tr[p,] = 0. From a numerical point
of view, Eq. (25) is more efficient than Eq. (19) as only one
state has to be evolved in time. It is crucial, however, that
the square root of the operator in Eq. (24) can be carried out.
In the case of local magnetization, this task is trivial, at least
in the Ising basis. In the case of local energy, the task also

[/ () = e M |y (0)),

is feasible and requires only a local basis transformation,
involving a few lattice sites.

The central advantage of the typicality approximations in
Egs. (19) and (25) is the fact that the time dependence appears
as a property of the pure states. In particular, this time evo-
Iution can be obtained by an iterative forward propagation in
real time,

[/t + 81)) = e |y (1)), (26)

where 6¢ < J is a small discrete time step. Note that, even
though not required for our purposes as we focus on g = 0,
the action of exp(—B#H/2) in Egs. (20) and (21) can be
obtained by an analogous forward propagation in imaginary
time [81].

While various sophisticated methods exist to approximate
the action of the matrix exponential in Eq. (26), the massively
parallelized simulations on supercomputers used by us rely
on both Trotter decompositions and Chebyshev-polynomial
expansions [82,83]. Since the matrix-vector multiplications
required in these methods can be carried out efficiently w.r.t.
memory, it is possible to treat systems as large as N = 36
spins or even more [84].

B. Classical averaging

In the classical case, we solve the Hamiltonian equations
of motion in Eq. (14) numerically by means of a fourth-order
Runge-Kutta scheme (RK4), with a small time step é¢. In
particular, &¢ is chosen small enough such that the total energy
and the total magnetization of H are conserved to very high
accuracy during the time evolution. (For other algorithms, see
Ref. [85].)

Since classical mechanics is not concerned with the expo-
nential growth of the Hilbert space with system size N, much
larger systems can be accessed in this case. In fact, as the
phase space increases only linearly with N, several thousands
of sites or more pose no problem. While we indeed present re-
sults for such large systems, we also consider classical chains
with fewer sites N < 36 to ensure a fair comparison with the
quantum case.

Importantly, there is no analog of typicality in classical
mechanics. Hence, to obtain the correlation function C(t),
just a single random initial configuration is not sufficient
and an average over many samples R > 1 is needed instead,
see Eq. (15). As a consequence, the computational cost is
mainly set by R and not so much by N. For instance, in our
numerical simulations below, we will use as many samples as
R = O(10°) to ensure that the calculation of the correlation
function goes along with small statistical errors. Note that
the choice of a proper R also depends on the considered
time scale, i.e., a good signal-to-noise ratio at long times,
where C(¢) has already decayed substantially, requires a larger
value of R.

IV. RESULTS

‘We turn to the discussion of our numerical results and start
in Sec. IV A with the dynamics of local magnetization, where
we particularly compare our classical and quantum results
for the different cases of 1D chains (Sec. IV A 1), quasi-1D
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FIG. 3. Magnetization and 1D chain. Decay of the equal-site
correlation C™(¢) in a single quantum case (S = 1/2) and in
the classical case (S = oo) for different anisotropies (a) A = 0.5,
(b) A =1.0,and (c) A = 1.5, shown in a log.-log. plot. In all cases,
we have length L, = 32 and indicate the expected long-time value
C(t — o0) = 1/L, as well as power laws oz ™. Classical data for a
much larger L, = 1024 are additionally depicted.

two-leg ladders (Sec. IVA?2), and 2D square lattices
(Sec. IV A 2). Corresponding results for the dynamics of local
energy are then presented in Sec. IV B.

A. Dynamics of local magnetization
1. 1D chain

We start with the dynamics of magnetization in a 1D chain.
In Fig. 1 above, we have already presented results for the
autocorrelation function C™)(¢) at the isotropic point A = 1,
where we have found that quantum dynamics for all quantum
numbers S = 1/2, 1, 3/2 agree remarkably well with the dy-
namics of the classical chain.

Next, we discuss the role of the anisotropy A, where we
focus on the comparison between the most quantum case
S = 1/2 and the classical case S = co. Thus, compared to
Fig. 1, we are able to access larger system sizes L, = 32 > 14.
In Fig. 3, we summarize results for C™)(¢) for anisotropies
A =0.5, 1, and 1.5, in a double-logarithmic plot. For A = 1
in Fig. 3(b), the situation is like the one in Fig. 1(b) discussed
before. Due to the larger L,, the long-time saturation value be-
comes smaller and the power-law behavior persists on a longer
time scale. Furthermore, when calculating classical data for a

much larger L, = 1024, this range further increases. In partic-
ular, the data are still consistent with an exponent« = 2/3. On
one hand, in the case of the quantum chain, this superdiffusive
behavior is by now well established at the isotropic point (see
Ref. [19] and references therein). On the other hand, in the
case of the classical chain, the nature of spin transport at
the isotropic point has been quite controversial [34—40]. While
some recent works argue that the nonintegrability eventually
causes the onset of normal diffusion with @ = 1/2 when going
to sufficiently large systems and long time scales [45,49,60],
Ref. [86] provides compelling arguments that the power-law
tail of C™)(¢) additionally acquires logarithmic corrections.
Numerically, these scenarios are naturally very hard to
distinguish.

For the larger A = 1.5 in Fig. 3(c), we also observe a very
good agreement between quantum and classical dynamics.
Compared to A = 1, the main difference is a change of the
exponent « from 2/3 to 1/2. Hence, this value indicates a
diffusive decay, which is by now well known to occur in the
regime A > 1, even in the case of the integrable quantum
system [18]. The results in Figs. 3(b) and 3(c) demonstrate
that integrability of the quantum model as such not necessarily
prevents that its dynamics are well approximated by a simula-
tion of a classical system instead.

For the smaller A = 0.5 in Fig. 3(a), we find a worse
agreement between quantum and classical data, with oscilla-
tory behavior for S = 1/2. While one might be tempted to
conclude that the power-law decay of quantum and classical
dynamics is similar at short times ¢ < 10, such a conclusion
is certainly not correct at longer times. On one hand, as
shown in Fig. 3(a), classical dynamics for a long chain of
length L, = 1024 is diffusive with o = 1/2. On the other
hand, quantum dynamics must be ballistic (¢ = 1) in the
thermodynamic limit, which has been proven rigorously using
quasilocal conserved charges [15-17]. Thus, in such cases,
where the quantum dynamics is dominated by the exten-
sive set of conservation laws, the remarkable correspondence
between quantum and classical dynamics necessarily has to
break down.

2. Quasi-1D two-leg ladder and 2D square lattice

Next, we move from 1D chains to lattice geometries of
higher dimension, i.e., quasi-1D two-leg ladders and 2D
square lattices. By doing so, we break the integrability of the
quantum system with § = 1/2. This nonintegrable situation is
certainly more generic and might be seen as a fair test bed for
the comparison between the dynamics in models with § = 1/2
and S = oco. As before, we focus on the decay of local mag-
netization and consider different values of the anisotropy A.

For the quasi-1D two-leg ladder, we show in Fig. 4 the
equal-site correlation C M) for A = 0.5, 1, and 1.5, where
we fix the length of the ladder to L, = 16. In contrast to the
integrable case discussed before, we find a convincing agree-
ment between quantum and classical relaxation for all three
values of A. In particular, the time dependence of C™)(z) at
intermediate times turns out to be well described by a power
law = with the same diffusive exponent o = 1/2 [84]. For
L, = 16, this power-law behavior can be seen more clearly
for larger A while, for classical systems with a much larger
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FIG. 4. Magnetization and quasi-1D two-leg ladder. Relaxation
of the equal-site correlation C™(¢) in the quantum case (S = 1/2)
and in the classical case (S = oo) for different anisotropies (a) A =
0.5, (b) A = 1.0, and (c) A = 1.5, depicted in a log.-log. plot. In all
cases, we have length L, = 16 and indicate the expected long-time
value C(t — 00) = 1/L, as well as a power law o¢~'/2. Classical
data for a much larger L, = 512 are also shown.

L, =512, it becomes even more pronounced. In view of
nonintegrability, the qualitative similarity of quantum and
classical mechanics might not be too surprising. However, it
is quite remarkable that the curves in Fig. 4 agree even on a
quantitative level to high accuracy.

For the 2D square lattice, we summarize in Fig. 5 the decay
of C™)(¢) for the same values of A and a fixed edge length
L, =L, =5. The overall situation appears to be similar to
the one for the quasi-1D two-leg ladder, e.g., the relaxation
is well described by a power law r~* with a diffusive expo-
nent «, which is = 1 in this 2D case [7]. For A = 0.5 in
Fig. 5(a), this power-law behavior cannot be seen at all for
L, =L, =5 due to finite-size effects, both for the quantum
and the classical system. However, when calculating classical
data with a substantially larger L, = L, = 32, the diffusive
decay eventually develops clearly also for A = 0.5.

B. Dynamics of local energy

Finally, we turn to the dynamics of local energy. In this
way, we want to ensure that the good agreement between
quantum and classical dynamics is not restricted to the trans-
port of local magnetization discussed above. For simplicity,
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FIG. 5. Magnetization and 2D square lattice. Time dependence
of the equal-site correlation C™(¢) in the quantum case (S = 1/2)
and in the classical case (S = oo) for different anisotropies (a) A =
0.5, (b) A =1.0, and (c¢) A = 1.5, shown in a log.-log. plot. In all
cases, we have edge length L, = L, = 5 and indicate the expected
long-time value C(t — o0) = 1/(L.L,) as well as a power law ot !,
Classical data for a much larger L, = L, = 32 are also depicted.

let us focus on the isotropic point A = 1 and study the impact
of different lattice geometries.

In Fig. 6, we show the time dependence of C®®)(¢) for a
1D chain, a quasi-1D two-leg ladder, and a 2D square lattice,
where we compare the dynamics of S =1/2 and S = 00 in
finite systems. For the quasi-1D and 2D cases in Figs. 6(b)
and 6(c), we observe very good agreement between quantum
and classical relaxation. However, for the 1D case in Fig. 6(a),
substantial differences can be clearly seen. In fact, these dif-
ferences must occur as energy dynamics is ballistic (¢ = 1)
for § = 1/2 due to integrability [87], while the classical chain
exhibits diffusive energy transport instead (¢ = 1/2). Hence,
Fig. 6(a), just like Fig. 3(a), constitutes a counterexample
to our typical observation that the decay of quantum and
classical density-density correlations agree qualitatively and
quantitatively.

As a technical side remark, we note that the energy-energy
correlation functions saturate at a long-time value which dis-
agrees with the naive prediction in Eq. (12),

(E)
C®B — 00) # ¢ n(o). 27

054415-7



DENNIS SCHUBERT et al.

PHYSICAL REVIEW B 104, 054415 (2021)

= e S=1/2 o
g i 1/2 classical —
a=1/2
S 01,
= i
T - (a) chain
© 001 R
0.1 1 10 100
1 -
s
a :
© o1}
% - (b) ladder (L, =18)
001 L
0.1 1 10 100
1 ¢
5 g
B i
S oo
s ~
= - (c) square (L,=L,=06)
O o1 LT

0.1 1 10 100

tS

FIG. 6. Energy. Relaxation of the equal-site correlation C®(z)
in the quantum case (S = 1/2) and in the classical case (S = 00)
for different lattice geometries, (a) 1D chain, (b) quasi-1D two-leg
ladder, and (c) 2D square lattice, depicted in a log.-log. plot. In all
cases, we have anisotropy A = 1 and indicate a power-law ot ~%/2.
[Due to overlaps of local energies, the long-time value C(r — 00)
differs from 1/n.] Classical data for a much larger N =L, x L, =
1024 are also shown.

This fact can be seen most clearly for the 2D square lattice
in Fig. 6(c). However, this observation should not be misun-
derstood as a breakdown of equipartition or thermalization. In
fact, the prediction for the long-time value of C(¢) in Eq. (12)
generally is

1
Clt — 00) =~ {pe pr), (28)

r

where the reference site r is fixed. We note that Eq. (28)
is only identical to Eq. (12) if there is no overlap (or or)
between local densities at different sites. Such overlaps occur
however naturally, given the definitions of the local energies in
Eqgs. (8)—(10). For instance, for our choice of the local energy
in 2D, the density ,oi(? on site r = (i, j) shares a common

bond with each of the four neighboring local energies ,OI(EI),

with i =i+ 1, j' = j £+ 1, see Fig. 2(i). Hence, these bonds
contribute to Eq. (28) and give rise to a correction by a factor
of 2,1.e.,

_ Cp©

CH(t — oo) >

, (29)

which is indicated in Fig. 6(c) and coincides with the nu-
merical simulation. Similar corrections apply to the long-time
value of C®)(¢) in chains and ladders as well, albeit they are
less pronounced in these cases.

V. SUMMARY

In this paper, we have addressed the question whether and
to which degree the dynamics in spin systems with § = 1/2
and S = oo agree, focusing on the limit of high temperatures
T — o0o. We have explored this question by studying XXZ
models on different lattice geometries of finite size, ranging
from 1D chains, over quasi-1D two-leg ladders, to 2D square
lattices. In particular, we have analyzed the temporal decay
of autocorrelation functions of local spin or energy densities,
which are intimately related to transport properties in these
models. In order to mitigate finite-size effects, we have relied
on a combination of supercomputing and the typicality-based
forward propagation of pure states, which has allowed us
to treat quantum systems with up to N = 36 in total. As a
main result, we have unveiled a remarkably good agreement
between quantum and classical dynamics for all lattice ge-
ometries considered, which has been most pronounced for
nonintegrable quantum systems in quasi-one or two dimen-
sions. Still, the agreement has turned out to be satisfactory
also in the integrable quantum chain, at least in cases where
the quantum dynamics is not ballistic due to the presence
of additional conservation laws. Based on these findings, we
conclude that classical or semiclassical/hybrid simulations
might provide a meaningful strategy to investigate the quan-
tum dynamics of strongly interacting quantum spin models,
even if S is small and far away from the classical limit.

While the numerical advantage of such classical simula-
tions is obvious due to the substantially larger system sizes
treatable, we have yet neither a rigorous argument for the good
agreement observed nor an analytical estimate for the dif-
ferences remaining. On one hand, an approximate agreement
between the quantum and classical versions of C(¢) might not
be too surprising in cases where the quantum chain exhibits
normal diffusive transport, as the emerging hydrodynamics
on a coarse-grained level should be effectively describable as
a classical phenomenon. On the other hand, notwithstanding
these arguments, the nice agreement between S = 1/2 and
S = oo on a quantitative level, and on all time scales (even
before the onset of hydrodynamics), remains remarkable to
us.

Our work raises a number of questions. First, it is not
clear if a similar agreement between quantum and classi-
cal dynamics is expected for other observables beyond local
densities or other out-of-equilibrium quantities beyond cor-
relation functions. Secondly, another interesting direction of
research is to clarify how far this agreement carries over
to finite temperatures. Yet, it is clear that there should be
some low-energy scale, where the specific excitations of a
given quantum model become most relevant and likely cause
large differences to the classical counterpart. Eventually, it
would be interesting to compare the dynamics of quantum
and classical models in the presence of disorder. While
strongly disordered one-dimensional quantum models are be-
lieved to undergo a many-body localization transition, such a
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FIG. 7. Magnetic spectral function C™(w) in a single quan-
tum case (S = 1/2) and in the classical case (S = oo) for different
lattice geometries, (a) 1D chain, (b) quasi-1D two-leg ladder, and
(c) 2D square lattice, shown in a lin.-lin. plot. In all cases, we have
anisotropy A = 1. Data are obtained by Fourier transforming C™(¢)
up to a cutoff time g S = 107, yielding a frequency resolution
sw/S =0.1.

comparison would be particulary interesting in higher dimen-
sions, where the fate of many-body localization is less clear.
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APPENDIX: FREQUENCY SPACE

In the main text, we have focused on a comparison of
quantum (S = 1/2) and classical (S = co) mechanics in the
time domain. This comparison could be done equally well in
the frequency domain. Thus, in addition to the data for the
correlation function C(¢) presented in Sec. IV, we present here
data for the corresponding spectral function C(w), which can
be obtained from the Fourier transform

C(w) = / " dt e () (A1)

Tmax

with a finite cutoff time #,,,x, < 00, yielding a frequency reso-
lution w = 7 /tmax. In Fig. 7, we exemplary depict the Fourier
transform for the case of magnetization and anisotropy A = 1.
We do so for the 1D, quasi-1D, and 2D lattice geometry.
Apparently, the agreement between quantum and classical
mechanics is very good in the frequency domain as well.
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