
 

 

 University of Groningen

Using multiple attribute-based explanations of multidimensional projections to explore high-
dimensional data
Tian, Zonglin; Zhai, Xiaorui; van Driel, Daan; van Steenpaal, Gijs; Espadoto, Mateus; Telea,
Alexandru
Published in:
Computers and Graphics (Pergamon)

DOI:
10.1016/j.cag.2021.04.034

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Tian, Z., Zhai, X., van Driel, D., van Steenpaal, G., Espadoto, M., & Telea, A. (2021). Using multiple
attribute-based explanations of multidimensional projections to explore high-dimensional data. Computers
and Graphics (Pergamon), 98, 93-104. https://doi.org/10.1016/j.cag.2021.04.034

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1016/j.cag.2021.04.034
https://research.rug.nl/en/publications/6fb8cd8b-9f7d-402e-96ec-679fa988a481
https://doi.org/10.1016/j.cag.2021.04.034


Computers & Graphics 98 (2021) 93–104 

Contents lists available at ScienceDirect 

Computers & Graphics 

journal homepage: www.elsevier.com/locate/cag 

Special Section on EuroVA 2020 

Using multiple attribute-based explanations of multidimensional 

projections to explore high-dimensional data 

Zonglin Tian 

a , Xiaorui Zhai b , Daan van Driel b , Gijs van Steenpaal a , Mateus Espadoto 

b , c , 
Alexandru Telea 

a , ∗

a Department of Information and Computing Sciences, Utrecht University, Utrecht, 3584 CC, Netherlands 
b Bernoulli Institute, University of Groningen, Groningen, 9747 AG, Netherlands 
c Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-090, Brazil 

a r t i c l e i n f o 

Article history: 

Received 14 November 2020 

Revised 1 April 2021 

Accepted 22 April 2021 

Available online 7 May 2021 

Keywords: 

Dimensionality reduction 

Explanatory techniques 

High-dimensional data analysis 

a b s t r a c t 

Multidimensional projections (MPs) are effective methods for visualizing high-dimensional datasets to 

find structures in the data like groups of similar points and outliers. The insights obtained from MPs 

can be amplified by complementing these techniques by several so-called explanatory mechanisms. We 

present and discuss a set of six such mechanisms that explain MPs in terms of similar dimensions, local 

dimensionality, and dimension correlations. We implement our explanatory tools using an image-based 

approach, which is efficient to compute, scales well visually for large and dense MP scatterplots, and 

can handle any projection technique. We demonstrate how the provided explanatory views can be com- 

bined to augment each other’s value and thereby lead to refined insights in the data for several high- 

dimensional datasets, and how these insights correlate with known facts about the data under study. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multidimensional Projections (MPs) are among the methods of 

hoice for visualizing high-dimensional data, as they scale well in 

erms of the number of data points and data dimensions that they 

an show on a given screen space. They are useful in exploring the 

ata structure, specifically in identifying similar sets of points and 

utlier points. However, understanding what, in terms of data val- 

es, ranges, or relations between dimensions, makes these struc- 

ures appear in the projection (and thus, in the data) is not triv- 

al. Several mechanisms exist to this end, as follows. Global ex- 

lanations, such as biplot axes [1,2] and axis legends [3,4] show 

ow dimensions influence an entire projection, and as such can- 

ot, in general, explain the formation of local patterns like clus- 

ers. Linked views and tooltips show local explanations, but require 

ne to manually select structures of interest in the projection [5–

] . Image-based techniques [8–10] display local explanations every- 

here on the projection, not requiring one to select specific point 

ubsets. They scale well visually and computationally, are clutter- 

ree, and can generically handle any high-dimensional dataset. 
∗ Corresponding author: Tel.: +31-30-253-4170. 

E-mail address: a.c.telea@uu.nl (A. Telea). 
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Da Silva et al. [11] proposed an image-based explanation that 

olors every projection point by the dimension that contributes 

ost to the similarity of data points in that neighborhood. Pre- 

ious work [12] extended this approach with additional explana- 

ions. First, principal component analysis (PCA) is used to analyze 

oint neighborhoods to deduce and depict the local (intrinsic) di- 

ensionality of the data. This allows users to separate regions of 

igh intrinsic dimensionality in the projection (hard to explain by a 

ew dimensions) from low-dimensionality regions where such ex- 

lanations are feasible. Secondly, point neighborhoods are analyzed 

o detect and depict strong linear relationships between dimen- 

ions. These techniques complement existing mechanisms for pro- 

ection explanation, can be computed efficiently on the GPU, and 

an be applied generically on any high-dimensional dataset visual- 

zed by any MP technique. 

The joint work in [12] and [11] offers five explanatory views 

distance contribution, variance, dimensionality, correlation) to ex- 

lore MPs, arguing that more explanations would provide more 

nsights in the data. Yet, the work in [12] offers a single exam- 

le of a non-synthetic dataset where only two views are combined 

o extract insights. How the five views can be combined, in prac- 

ice, to explore real-world data, and how the obtained findings 

atch ground-truth information about such data, are open ques- 

ions. Also, the parameters of the five views are not discussed in 
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etail. In this paper, we refine and extend this previous work with 

he following contributions: 

• We provide additional examples of how the five explanatory 

views in [12] and [11] can be combined in a visual analytics 

fashion to find relevant insights in high-dimensional datasets 

that cannot be found using a single view; 
• We illustrate the above process on five non-synthetic datasets, 

and correlate the obtained insights with ground-truth informa- 

tion independently extracted by other researchers from three of 

these datasets; 
• We present a new method, variance ratio, for computing local 

dimensionality; 
• We discuss how our explanatory views depend on their param- 

eter settings and on the used projection techniques. 

The structure of this paper is as follows. Section 2 presents re- 

ated work. Section 3 details the five explanatory views [11,12] and 

resents a new method for computing local dimensionality. 

ection 4 shows how the total set of six views can shed insights 

n projections of non-synthetic datasets, which we next correlate 

ith available ground-truth information. Section 5 discusses our 

echniques. Section 6 concludes the paper. 

. Related work 

We start introducing a few notations. Let D = { x i } ⊂ R 

n , 1 ≤
 ≤ N, be a n -dimensional dataset with points x i = (x 1 

i 
, . . . , x n 

i 
) ,

lso called samples or observations. We call the vectors X j = 

x 
j 
1 
, . . . , x 

j 
N 
) T , 1 ≤ j ≤ n , the dimensions of D , also known as vari-

bles or attributes. Hence, D can be seen as a matrix of N rows 

samples) and n columns (dimensions). A projection is a function 

 : D → R 

m , m � n , which maps a high-dimensional point x to a

ow-dimensional one P (x ) . In practice, m ∈ { 2 , 3 } , so projecting an

ntire dataset D , denoted by P (D ) = { P (x ) | x ∈ D } , yields a 2D or

D scatterplot. Projections aim to place points that are similar in D 

lose to each other in P (D ) to enable users to recover the structure

f D from the scatterplot P (D ) . Similarity can be computed based

n R 

n distances [6,13,14] or R 

n neighborhoods [15,16] . Recent sur- 

eys provide more details on the technicalities of MPs [17,18] . In 

ur work next, P can be any projection technique chosen by the 

ser as desired or demanded by one’s application context. 

Explanatory techniques for projections aim to enrich the bare 

catterplot P (D ) with additional information that guides the user 

n interpreting P (D ) . We classify such techniques in observation- 

entric, dimension-centric, and hybrid, as follows. 

.1. Observation centric explanations 

These techniques aim to provide information about specific pro- 

ection observations P (x ) . Many such techniques aim to show the 

rrors produced by the projection function P measured by e.g. nor- 

alized stress [6,10] , correlation [19] , Shepard diagrams [6] , trust- 

orthiness [20] , continuity [20] , neighborhood hit [21] , distance 

onsistency [22] , ranking discrepancy [23,24] , projection precision 

core [9] , stretching and compression [8,25] , and class consistency 

etrics [26] . Continuity and trustworthiness are closely related to 

he so-called missing neighbors, respectively false neighbors, of a 

rojected point P (x ) [10] . For a recent survey that discusses most

bove metrics, we refer to [17] . 

Error metrics can be computed at three aggregation levels. 

lobal errors generate a single (scalar) value for an entire scatter- 

lot P (D ) , so they help gauging the quality of such a scatterplot,

ut do little in explaining it. Point pair errors quantify the pro- 

ection error of a point pair (P (x ) , P (y )) ∈ P (D ) × P (D ) and can be

endered as Shepard diagrams [6] or line plots simplified by edge 
94 
undling [10] . Point neighborhood errors quantify the projection er- 

or of a point P (x ) ∈ P (D ) with respect to all its neighbors in P (D )

r, alternatively, all neighbors of x ∈ D . These are further visualized 

sing heatmaps [9,10] or Voronoi diagrams [8,25] , thereby inform- 

ng the user about projection problems at the location of every 

catterplot point. This further assists one in determining where, 

nd how much, one can trust a projection. However, such tech- 

iques cannot explain why certain points are projected close to 

ach other (or not). 

.2. Dimension centric explanations 

These techniques show how the dimensions X j of a dataset D re- 

ate to the scatterplot. The simplest, and still most used, dimension 

entric explanation colors a scatterplot by the values of a selected 

imension X j . This explains specific groups of points in the scat- 

erplot by that dimension’s values. Several dimensions can be used 

ia interaction or small multiples. Yet, this approach cannot easily 

andle more than a few dimensions, leaving their selection to the 

ser. Biplot axes [1,2] involve all dimensions in the explanation by 

rawing n lines atop of the scatterplot P (D ) , each indicating the 

mbedding of one of the dimensions X j in the projection space 

 

m . Axis legends [3,27] take a different route, by explaining how 

he n dimensions map to the 2D scatterplot’s x and y axes using 

ar charts. Both biplots and axis legends have been generalized to 

xplain also 3D projections and nonlinear projections [4] . 

All above dimension centric explanations act as generalizations 

f the classical axis labels present in 2D Cartesian scatterplots –

hat is, they allow users to see which are the values of one or 

ultiple dimensions that determine the overall projection shape. 

owever, they do not explicitly connect the explanations to indi- 

idual scatterplot points or point groups, leaving this to be done 

visually) by the user. In contrast, observation centric techniques 

xplicitly mark individual points by the provided explanations ( e.g. , 

rrors); however, such techniques do not involve dimensions in the 

xplanation. 

.3. Hybrid explanations 

Hybrid techniques aim to join the strengths of observation cen- 

ric and dimension centric ones. The simplest form involves brush- 

ng points to show their attributes in a tooltip. More involved 

echniques involve interactively selecting and/or modifying specific 

oints S in the projection. By next arranging P (D ) \ S around S, 

ne can explain P (D ) \ S in terms of (known) attribute values of 

. The VIBE system [28] allows selecting and placing points of in- 

erest (POIs) in the 2D projection space according to one’s men- 

al map of how the respective data samples relate to each other. 

he remaining data points are projected based on their similarity 

o POIs. A similar approach is proposed in [6] and by the Force- 

PIRE text visualization system [29] . The “dust and magnets” tech- 

ique [30] extends these interaction metaphors by allowing users 

o interact with both POIs and data points, using animation to 

ap the data-to-POI similarities. Interaction also supports navigat- 

ng through a space of 2D scatterplots (whose axes are directly ex- 

lained by their dimensions) created from the high-dimensional 

ata [31,32] . Pagliosa et al. propose a ‘projection inspector’ that 

ffers several such interactive exploratory mechanisms. Interactive 

echniques are very powerful in providing ‘details on demand’ (on 

oth observations and dimensions) to the user. However, they re- 

uire interaction effort, and also cannot explain an entire projec- 

ion, but rather the point(s) interacted with. 

Image-based techniques , also known as dense maps, are a dif- 

erent hybrid approach. These rasterize the 2D projection space 

 

2 and synthesize, for each pixel p , an explanation based on the 

oints in P (D ) nearest to p . This space-filling approach allows a 
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Table 1 

Definitions of local dimensionality and confidence. 

Definition Dimensionality δ Confidence κ

Total variance min δ
∣∣ ∑ δ

i =1 αi ∑ n 
i =1 αi 

≥ θ 1 −
∑ δ

i =1 αi −α∑ n 
i =1 αi 

Minimal variance 

∣∣∣
{ 

αi ∑ n 
j=1 α j 

≥ θ, 1 ≤ i ≤ n 

} ∣∣∣
∑ δ

i =1 αi ∑ n 
i =1 αi 

Variance ratio 1 + min δ
∣∣ ∑ δ

i =1 �λi ∑ n 
i =1 �λi 

≥ θ 1 −
∑ δ

i =1 �λi ∑ n 
i =1 �λi 
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a  
arge amount of information to be conveyed; and removes issues 

f observation-centric techniques caused by overlapping points in 

 (D ) . Da Silva et al. [11] create dense maps where pixel hues en-

ode the dimension that best explains the similarity of points in 

 (D ) close to each pixel, and brightness encodes the explanation 

onfidence. Van Driel et al. [12] extend this technique with expla- 

ations of the local dimensionality of data and dimension correla- 

ions. We detail both above techniques in Section 3 . 

Dense maps have been used to explain projection er- 

ors [9,10,25] ). Rodrigues et al. used dense maps to visualize the 

ecision zones of classifiers of high-dimensional data [33] . Like us 

nd [11,12] , they also use pixel hues and luminances to encode 

 classifier’s decision, respectively decision confidence, at a data 

oint x mapping to a pixel P (x ) . Our goals are different, as we aim

o explain a dataset in terms of its dimensions , rather than a clas- 

ifier in terms of its decisions . 

. Explanatory mechanisms 

The image-based explanatory techniques introduced in 

ection 2.3 exploit the distance or neighborhood preservation 

roperty of MPs: Let νi ⊂ P (D ) , νi = { y ∈ P (D ) | ‖ y − y i ‖ ≤ ρ}, be a

eighborhood of size ρ of scatterplot points y centered at y i . Since 

oints in νi are, by construction, close, and since P is expected to 

reasonably) preserve similarities, the points μi ∈ D that project to 

i are expected to be similar. Hence, it makes sense to compute an 

xplanation of μi and next visually encode this on all scatterplot 

oints y i . 

Da Silva et al. [11] propose two such explanations. Let λ j 

x , x ′ = 

 x j − x ′ j ‖ 2 
1 
/ ‖ x − x ′ ‖ 2 n be the contribution of dimension j to the

istance between two points x and x ′ in D , where ‖ · ‖ k is Eu-

lidean distance in R 

k . This point-pair contribution is extended to 

eighborhoods μi by averaging the local contributions of x i and all 

ts neighbors, as λ
j 

i = 

∑ 

x ∈ μi 
λ j 

x , x i 
/ | μi | , where | · | denotes set size.

hese average contributions are next normalized as 

j 
i 
= 

λ
j 

i /γ
j 

∑ n 
j=1 

(
λ

j 

i /γ
j 

) , (1) 

here the normalization γ j is the contribution λ
j 

of dimension j

f the full dataset D with respect to its centroid. Since normalized, 
j 
i 

∈ [0 , 1] , with lower values telling dimensions that contribute lit- 

le to distances in μi , i.e. , explain well why points in μi are similar .

n alternative to Eq. 1 is to compute the relative variance ω 

j 
i 

of 

imension j over the neighborhood μi as 

 

j 
i 

= 

LV 

j 
i 
/GV 

j 

∑ n 
j=1 (LV 

j 
i 
/GV 

j ) 
, (2) 

here LV 
j 

i 
is the variance of dimension j for all points in μi , nor- 

alized by the variance GV j of the same dimension j over all 

oints in D . Just as λ j 
i 
, ω 

j 
i 

∈ [0 , 1] , with lower values telling dimen-

ions that vary little in a neighborhood. 

The scatterplot P (D ) is explained by color-coding its points by 

he C dimensions that have overall low values of λ j 
i 

(or ω 

j 
i 
, de- 

ending on the user’s choice) over all points. C is set to a low 

alue, e.g. 8, since categorical colormaps should be small. Lumi- 

ance is used to encode the confidence in the visual explanation: 

f j is the dimension picked to color point i , confidence κ is com- 

uted as the sum of λ j 
i 

(or ω 

j 
i 
) values for all points in the neigh-

orhood μi , normalized by the sum of the same terms over all di- 

ensions over μi . If neighbors of point i are best explained by the 

ame dimension j as i , the color will appear bright, and conversely. 

e render the scatterplot by drawing radial splats of R pixels ra- 

ius, textured with color and luminance computed as above, and 
95 
sing a opacity (alpha) varying from fully opaque in the center 

o slightly transparent at the borders, to smoothly blend neighbor 

plats. Setting R is discussed further in Section 5 . 

Fig. 1 a,b show a 3K point dataset spread over three faces of an 

xis-aligned cube (with added noise), projected with PCA to 2D, 

xplained by dimension contribution, respectively variance. Points 

n each cube face share very similar values of a dimension, so are 

right and colored by the respective dimension. It is important to 

ee that these are the original data dimensions ( x , y , z), and not

atent dimensions synthesized by PCA (eigenvectors). Points along 

ube edges are dark, since two (or three, for the cube corner) di- 

ensions are needed to explain their similarity with neighbors. 

ence, their color coding in the visualization and corresponding 

egend. Although these two explanations are practically identical 

or the cube dataset, we will see later on that they can subtly 

iffer, thus both bringing in added value in the projection under- 

tanding process. 

.1. Adding dimensionality explanation 

Da Silva et al. ’s explanations ( Eqs. 1 and 2 ) cannot provide full

nsights into the structure of high-dimensional data. Take e.g. a 

on-axis-aligned cube like in Fig. 1 a and embed it into a high- 

imensional space. While the data structure stays the same, both 

istance contributions and variances cannot select a single dimen- 

ion to explain the cube’s faces, since all dimensions contribute to 

he data structure. 

We improve this by explaining the data’s local (or intrinsic) di- 

ensionality . For each neighborhood μi of a point x i ∈ D , we com- 

ute the n eigenvalues αi of its covariance matrix, sorted decreas- 

ngly. From these, we compute the local dimensionality δ of μi and 

ts confidence κ in three different ways (see also Table 1 ). 

otal variance (TV): We define dimensionality δ as the minimal 

umber of largest eigenvalues α1 ≥ . . . ≥ αδ needed to explain a 

ser-set fraction θ of the data variance in μi . The confidence κ
quals how much the sum of these largest δ eigenvalues deviates 

rom the mean of all n eigenvalues. 

inimal variance (MV): The TV model works well when eigen- 

alues significantly drop. However, take the (limit) case where all 

igenvalues are equal. TV then computes δ = θ/n , even though lo- 

ally the data is truly n -dimensional. To capture this, we define δ
s the number of eigenvalues larger than a minimal user-set vari- 

nce θ , and confidence κ as the sum of these divided by TV, simi- 

ar to Kaiser’s criterion used in explanatory factor analysis [34,35] . 

ariance ratio (VR): Several metrics are known in 3D diffusion 

ensor analysis to describe the shape of local neighborhoods [36] . 

e generalize these to n D data and compute dimensionality δ
y summing differences of consecutive eigenvalues �λi = λi − λi +1 

ormalized by the largest one, λ1 . Each difference captures a sig- 

ificant ‘drop’ in consecutive eigenvalues, and the sum accounts 

or the effect of all drops. Thresholding this sum by a user-set 

yields the local dimensionality. Besse and Falguerolles [37] and 

orth et al. [38] save described similar models of local dimension- 

lity. Note that, in the definition of δ for VR ( Table 1 ), we define
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Fig. 1. Explanatory techniques illustrated on a synthetic cube dataset. The (a) dimension contribution and (b) variance color points by the dimension (X, Y, Z) that makes 

them most similar to their neighbors. The local dimensionality with total (c), minimal (d), and variance ratio (e) color points by their local intrinsic dimensionality (2D or 

3D). The (f) dimensions correlation colors points to indicate the strongest-correlated dimension pair (X-Y, Y-Z, X-Z) close to each point. Bars in the legends show the number 

of points explained by each dimension (a,b), dimensionality (c,d,e), and dimension pair (f). See Section 3 . 
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n +1 = 0 . Also, if λ1 > θ , we set δ = 1 ; if λ1 < θ , we set δ = 0 (the

hole dataset is concentrated in a single n -dimensional point). 

Figs. 1 c-e show the total, minimal, and variance ratio explana- 

ions for the noisy cube. The thresholds θ are listed in the fig- 

re and discussed next in Section 5 . The explanations are color- 

oded on the projection points, as detailed in the legends. The leg- 

nd bars’ sizes tell how many points are assigned a given expla- 

ation (dimensionality). The cube’s faces are blue, meaning that 

hese points are locally in δ = 2 dimensional neighborhoods em- 

edded in n D. Close and on the cube edges, green tells that δ = 3

imensions are needed to explain the data here. The blue and 

reen area are separated by (thin) dark bands, indicating projec- 

ion areas where the confidence of assigning a dimensionality of 

= 2 or δ = 3 ) is low – these are the transition areas between the

lue ( δ = 2 ) and green ( δ = 3 ) areas. The three local dimensional-

ty explanations are very similar to each other, indicating that the 

CA-based analysis underlying all three computations makes sense. 

or more complex datasets, the explanations can slightly differ and 

onvey interesting insights, similar to the differences between the 

istance contribution and variance explanations discussed earlier 

see Fig. 1 a,b). 

.2. Adding correlation explanation 

High-dimensional data is often explained by how its dimen- 

ions correlate . Yet, assessing global correlation over an entire 

ataset is of limited value when the underlying phenomenon is a 

ix of local (linear) patterns. To address this, we compute and de- 

ict correlations over neighborhoods. For each point neighborhood 

i , we compute the K = n (n + 1) / 2 Pearson or Spearman corre-

ations between all dimension-pairs ( j, k ) ∈ � 1 , n � × � 1 , n � . We sort

hese pairs in descending correlation-strength order, and select the 

top-ranked pairs that are most frequent over all points i . This 

esembles selecting the explaining dimensions in [11] , but now 

e select dimension-pairs rather than individual dimensions. We 

how these C pairs via a categorical colormap, using luminance to 

ap the absolute correlation values. Fig. 1 f shows this for the noisy 

ube. The legend tells that the three faces map to strong correla- 

ions of the three dimensions x , y , and z, as expected. The edges

rthogonal to faces show the same correlation. Indeed, for the face 

y , for instance, the orthogonal edge has near-constant x and y , and

trongly varying z, values, so x and y are correlated along it. 
96 
This visualization can only show the C top-ranked, most fre- 

uent, correlations from all possible K ones. However, users may 

ant to examine the presence (or absence) of specific correlations. 

or this, we show the entire set of K dimension-pairs using a ma- 

rix view . To illustrate how this works, we consider next a real, 

on-synthetic, dataset example. 

.3. Concrete dataset 

This dataset [39,40] has 1030 samples measuring how 8 in- 

redients influence concrete strength. The independent dimensions 

re cement, blast furnace slag ( BFSlag ), fly ash water ( FlyAsh ), su-

erplasticizer ( Splastic ), coarse aggregate ( Caggr ), fine aggregate 

 Faggr ), each in kg per cubic meters; and the concrete age, mea- 

ured in days. One is interested to understand which independent 

imensions influence concrete strength. 

Fig. 2 a shows the matrix view next to the t-SNE projection 

f this dataset. Matrix cells are colored by the same colormap as 

sed in the projection. Dark blue tells all dimension-pairs whose 

orrelations have a frequency higher than zero but lower than the 

top-ranked pairs. To see where, on the projection, a pair corre- 

ates, the user clicks a dark blue cell, e.g. the FlyAsh - Caggr one in

ig. 2 a. The color used for the C th top dimension-pair ( Water - Caggr ,

yan) is then used for the clicked pair and the C th pair is made

ark blue. Doing this shows a single cyan spot in the projection 

 Fig. 2 b, dashed circle) – the only place where FlyAsh and Caggr 

trongly correlate. 

The matrix view supports two other tasks. The cells of the 

op C (strongest correlated) dimension-pairs are outlined in white, 

elping one to easily return to the original color mapping after 

aving selected some other dimension-pairs to explain. Rows and 

olumns having many cells with the non-default (dark blue) color 

ell groups of strongly correlated variables. For instance, the sec- 

nd top row in Fig. 2 a, for the Faggr dimension, shows four such 

ells that indicate Faggr ’s strong correlation with Cement (yellow), 

FSlag (green), FlyAsh (orange), and Caggr (purple), respectively. 

Da Silva [41] also used this dataset, also projected with t-SNE, 

o find attributes that predict high concrete strength. For this, they 

olored the projection by each of the 8 independent dimensions, 

nd next by the dependent dimension (concrete strength). Fig. 2 b 

same as Fig. 5.10 in [41] ) shows the dependent dimension, allow- 

ng one to find two high-concrete-strength clusters. By manually 
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Fig. 2. Matrix view, concrete dataset. Clicking on the FlyAsh-Caggr cell (a) allocates a color to it, showing where in the t-SNE projection these two variables are strongly 

correlated. To make room for this, the weakest-correlated pair Water-Caggr is removed from the explanation (c) Additional insight is obtained by color-coding the dependent 

dimension (c), the variance explanation (d), and correlation views using smaller neighborhood sizes ρ (e,f). See Section 3.3 . 
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omparing the values of all independent dimensions over these 

lusters, Da Silva found that BFSlag also had high values in these 

reas. However, this manual comparison of color-coded dimensions 

s quite tedious. 

We next show how our explanatory views help refining the 

bove insights. In Fig. 2 a,c, we see a correlation between cement 

nd BFSlag attributes in the selected region. Now, if cement and 

FSlag correlate with each other, and BFSlag correlates with high 

oncrete strength, cement likely correlates to concrete strength as 

ell. To search for additional correlations over subsets of points in 

he selected region (smaller neighborhoods), we next decrease the 

adius ρ used to compute the correlation view. In Fig. 2 e, com- 

uted with ρ = 0 . 05 , we see a BFSlag - Faggr correlation (pink up-

er cluster), and also a water - Faggr correlation (green lower clus- 

er). Also, the cement - BFSlag correlation stays strong in the mid- 

le (yellow) cluster. In Fig. 2 f, computed with ρ = 0 . 03 , we see the

ement - BFSlag and water - Faggr correlations in the purple, respec- 

ively green, clusters; the red upper cluster shows an additional 

aggr - Faggr correlation. Now, because BFSlag was found to corre- 

ate with Faggr in this region, Faggr might be related to high con- 

rete strength (especially in combination with large BFSlag values). 

nd because Faggr might be correlated, and we found a water - 

aggr correlation and a Caggr - Faggr correlation, both water and 

aggr might explain high concrete strength. 

We now use the variance view ( Fig. 2 d) to get extra insights in

he selected region. The entire region is yellow, i.e. , points there 

ave a small FlyAsh variance. Also, FlyAsh varies little also far be- 

ond the region borders. Putting it all together: BFSlag , cement , 

aggr , water , and Caggr (but not FlyAsh ) might together help shap-
97 
ng a regressive model for high concrete strength. Wu et al. [42] in- 

ependently studied this dataset for of predictive modeling, show- 

ng the Pearson correlation coefficients between the data attributes 

Table II in [42] ). They found a relatively strong positive cement - 

FSlag correlation (0.29), inverse correlations of BFSlag - Caggr (- 

.31) and BFSlag - Faggr (-0.31), and an inverse Faggr - water corre- 

ation (-0.44). Our findings, obtained via our correlation views, are 

onsistent with these results – except that we do not visualize the 

ign of the correlation. 

.4. Parameters 

Our explanations depend on the following user parameters: 

eighborhood size: Given as a fraction of the projection size (so 

∈ [0 , 1] ), ρ tells the scale of the visual structures we want to ex-

lain. Fig. 4 illustrates this for the variance explanation of the wine 

ataset. Smaller ρ values explain finer-grained structures, but can 

reate noisy visualizations, since, in the limit, every (small) neigh- 

orhood can be potentially best explained by a different dimen- 

ion; since we usually do not have as many categorical colors as 

he dataset’s number of dimensions n , many such neighborhoods 

ill not receive an explanation (see Section 3 ). Large ρ values will 

ttempt to explain large visual structures by a single dimension, 

hich, in the limit, when ρ equals the projection’s size, amounts 

o showing the dimension having globally least variance, which is 

ot insightful. Good values for ρ range around 0.1 of the projec- 

ion’s size. This is the default value used in all the views in this 

aper unless otherwise specified. Indeed, for a dataset having a 
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ew thousand samples, this ρ value yields a few tens of samples 

er neighborhood νi , which is sufficient, as a lower bound, to reli- 

bly compute all the proposed explanations. 

imensionality threshold: The value θ ∈ [0 , 1] ( Table 1 ) specifies 

ow much of the data’s local dimensionality we want to explain. 

or TV and VR, a high θ value explains more of the local di- 

ensionality, but can lead to projections where most points are 

arked as high-dimensional, which is not very useful. A too low 

value can generate false confidence that the 2D projection cap- 

ures all the intrinsic dimensionality of the data. For MV, θ behaves 

ppositely – low values explain more of the intrinsic data dimen- 

ionality. We empirically found that θ ∈ [0 . 6 , 0 . 9] (for TV and VR),

espectively θ ∈ [0 . 05 , 0 . 1] (for MV) yield an informative, but not

oo strict, visualization. 

plat radius: The value R gives the size, in pixels, of the splats 

hat render the explanation and its confidence ( Section 3 ). Small 

 values create discrete-looking scatterplots, where the colors of 

eighbor points do not visually merge, thereby breaking the color- 

nd-luminance gradients which are key to explaining regions in the 

catterplot. High R values create too much overlap between neigh- 

or points, so regions smaller than R cannot be visually distin- 

uished. R and the neighborhood radius ρ act as dual scale pa- 

ameters – ρ controls the scale at which we compute explanations, 

nd R controls the scale at which we render them. We studied sev- 

ral options of setting R automatically, e.g. , based on the average 

ocal density of scatterplot points, following similar work in [10] . 

e found such automatic methods risky, as they tend to indis- 

riminately ‘fill in’ gaps of all sizes in a projection, including those 

hich separate faraway point clusters. Hence, we leave R as a pa- 

ameter for the user to set. A good preset for R is the average

istance-to-the-closest-neighbor in the projection, which amounts 

o ρ ∈ [0 . 03 , 0 . 05] of the image size for the figures in this paper. 

. Applications 

We show next how the six explanatory views – distance con- 

ribution, variance, correlation, and local dimensionality computed 

y total variance, minimal variance, and variance ratio – can be 

ombined to extract insights from four non-synthetic datasets. We 

lso correlate these insights with ground truth extracted by inde- 

endent research that studied the same datasets. 

.1. Wine quality dataset 

We first consider the wine dataset, which has 6497 samples of 

ortuguese vinho verde [43] , each with n = 12 physicochemical at- 

ributes such as acidity, residual sugar, and alcohol rate. Fig. 3 a 

hows the raw projection of this dataset using LAMP [6] . Besides 

 dense-point cluster bottom-right, there is not much else this im- 

ge tells us. While other projection methods, e.g. t-SNE, may show 

etter separated clusters, the question still remains how to explain 

hese. 

Fig. 3 b-c show the contribution and variance explanations re- 

pectively. These are quite similar and split the projection roughly 

nto four areas, explained by small variations of alcohol (purple), 

hlorides (yellow), sugar (red), and acidity (beige), respectively. The 

orrelation view ( Fig. 3 d) brings additional insights: We see a large 

urple area bottom-right that matches well the area earlier ex- 

lained by small variations of chlorides, alcohol, and acidity. Over 

his purple area, the legend of image (d) tells that sugar and den- 

ity strongly correlate. Also, we see that the red area in Figs. 3 b-c,

here sugar has a low variation, is now roughly split in Fig. 3 d

nto smaller areas – red (fixed acidity-citric acid correlation), yel- 

ow (fixed acidity-pH correlation), beige (fixed acidity-density cor- 

elation), and brown (chlorides-density correlation). Note that the 
98 
ontribution-variance and correlation explanations are complemen- 

ary : They cannot, when taken separately, split the projection into 

ne-grained local explanations, but do so when combined . Indeed, 

he red area in Figs. 3 b-c is further split (explained) by using cor- 

elation, as explained above; conversely, the purple area in Fig. 3 d 

s further split (explained) by using contribution or variance. 

At this point, the analyst may wonder which projection areas 

re sufficiently explained by the above views. The dimensionality 

iew helps here. Fig. 3 e shows the local dimensionality of the 

rojected data, computed by total variance ( Section 3.1 ). We see 

ow increasingly more dimensions are needed to capture increas- 

ng fractions θ ∈ [0 . 3 , 0 . 9] of the total variance – in the limit, we

eed all n = 12 dimensions to explain θ = 100% of the variance. 

ore interestingly, we see in Fig. 3 e a gradient of local dimension- 

lity, from highest in the bottom-right area (red-purple colors for 

≥ 0 . 85 ) to blue in the top-left area (blue for θ ≤ 0 . 75 ). Besides

olor hue, the local dimensionality gradient is also visible in the 

rightness, which tells the confidence κ that the color-coded num- 

er of dimensions locally explain θ percent of the variance. The ef- 

ect is very similar to the enridged contour maps used to visualize 

calar fields [44] : The visual nesting of the ‘cushions’ created by 

arying brightness conveys the absolute value of the encoded sig- 

al, i.e. , the local dimensionality. The way we compute these cush- 

ons ( Section 3.1 ) is, however, completely different to [44] . 

The local dimensionality view helps interpreting the 

ontribution-variance and correlation views as follows: As we 

ave seen, local dimensionality is high in the bottom-right (red- 

urple) area, where we need 7 to 9 dimensions to explain θ = 0 . 85

f the data variance. In this area, the contribution-variance and 

orrelation views jointly give us information about only five vari- 

bles – alcohol, chlorides, acidity, sugar, and density. Hence, these 

wo views do not fully explain this area, so we need to search for 

ore explanations here. In contrast, the local dimensionality is 

ow in the top-left (blue) area, where we can explain θ = 0 . 75 of

he data variance by a single dimension. From the contribution- 

ariance views, we see that this area is well explained by a small 

ariance of sugar. Hence, in this area, sugar’s low variance is 

ufficient to explain the data. 

Fig. 3 f shows the local dimensionality computed by VR as op- 

osed to TV ( Fig. 3 e, for the three largest θ values. While the 

xact borders of the explained regions differ, we see overall the 

ame pattern, i.e. , low dimensionality to the left, respectively high 

imensionality to the right, of the projection. The insights de- 

cribed above – obtained with TV dimensionality – stay the same. 

he actual dimensions assigned to comparable regions in the two 

xplanations are similar – for instance, the blue areas in Fig. 3 f 

 θ = 0 . 75 ), of local dimensionality 1 and 2, match well the blue-

nd-green areas in Fig. 3 e ( θ = 0 . 75 ) which are also of dimension-

lity 1 and 2. 

Beh and Holdsworth [45] studied this dataset by correspon- 

ence analysis, multiple regression analysis, classification, and 

isual evaluations. Using the classification technique of Cortez 

t al. , [43] , they examined the mean value of each attribute for 

he classification as scored by assessors. They found a relation- 

hip between low sugar, density, fixed acidity and volatile acid- 

ty, and higher-quality white wine. Also, stronger values of alco- 

ol, pH and sulfur are implied to lead to higher-quality wine. For 

ed wine, high levels of alcohol and sulfur are also found to be 

 strong quality indicator, while low chloride levels can lead to 

igher quality red wine. Residual sugar and density are found to 

e statistically irrelevant in predicting red wine quality. If we com- 

are Fig. 3 to these findings, checking for value ranges by brush- 

ng the projection, we find several matches: The high-quality wines 

brown area, Fig. 3 b) have indeed high sulfur (brown area, Fig. 3 c)

nd are in a region of high sugar-density correlation (both these 

ttributes having low values, confirmed by brushing – purple area, 
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Fig. 3. Explanation of wine dataset. The contribution and variance views (b,c) split the projection in four main clusters, characterized by similar values of sugar (red), 

chlorides (yellow), and alcohol (purple). The correlation view (d) further explains the yellow and red clusters by the correlation of sugar with density (similar interpretations 

exist for the red cluster). The dimensionality views (e,f) tells that the blue area, which falls inside the red zone in (b,c), can be explained by a single dimension, which is 

thus the earlier-identified sugar dimension. See Section 4.1 . 

Fig. 4. Variance explanation for the wine dataset, projected by LAMP, for eight values of ρ (as fraction of the projection size). rho functions as a scale parameter: As it 

increases, the computed explanation becomes coarser, and small-scale details are removed. See Section 4.1 . 
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ig. 3 c). We confirm the additional layer behind sugar-density cor- 

elation (purple area, Fig. 3 c), specifically in regions where similar- 

ty is explained by chlorides and alcohol (purple and yellow areas, 

igs. 3 b,c), as all these attributes add to predicting wine quality. In 

he purple area in Fig. 3 c, the sugar-density correlation is roughly 

f 0.9. This is in line with the sugar-density correlation of 0.83 re- 

orted for all the samples of this dataset by earlier studies [46] . 

.2. Software quality dataset 

This dataset contains 6773 software projects from SourceForge 

ritten in C [47] . Each project has 10 independent dimensions, 
99 
hese being metrics used in software engineering to gauge soft- 

are quality: coupling between modules, complexity, lack of cohe- 

ion, number of source files, number of lines of code, number of 

unction parameters, number of public variables, number of meth- 

ds, number of data members, and structural complexity. Two ad- 

itional dimensions measure the number of downloads and num- 

er of developers of a given software project. 

Fig. 5 a shows the dataset projected with LAMP. As for the wine 

ataset ( Section 4.1 ), the raw projection is not very informative. 

ig. 5 b,c show the projection explained by contribution, respec- 

ively variance. As for the wine dataset, these two explanations 

re very similar: The purple and yellow regions in both Fig. 5 b,c 
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Fig. 5. Explanation of software dataset. The contribution (b) and variance (c) views show two purple lobe-like clusters corresponding to small, respectively large, systems. 

The correlation view (d) shows that large systems also have their method and parameter counts correlated. The local dimensionality views (e) shows that the two lobes can 

be explained by about three dimensions, while the area connecting them requires more effort to explain. See Section 4.2 . 
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how software systems which are mostly similar due to size (lines 

f code), respectively complexity. The two disjoint purple regions 

ndicate two groups of systems which are similar due to two dif- 

erent value ranges of lines of code. Brushing the image shows that 

rojection is roughly split into a left lobe consisting of small soft- 

are systems, and a right lobe containing large systems. However, 

he contribution and variance explanations are not identical : The 

ed region in Fig. 5 b shows systems which are similar in number 

f members. This region matches very well the union of the red 

nd beige regions in the variance explanation ( Fig. 5 c), i.e. , systems

ith similar number of parameters or files. Hence, the number of 

embers, parameters, and files appear to be correlated in this re- 

ion. 

The correlation view ( Fig. 5 d) adds more insights: The large 

urple area indicates systems which have correlated numbers of 

ethods and parameters. From the earlier correlation/variance 

nalysis, we know that these are large systems. Upon further study 

f the names of these systems in the original data [47] , we find

hat these are mainly software libraries – for which, indeed, the 

otal number of methods and total parameter count are correlated, 

ince, in libraries (APIs), methods have typically similar parame- 

er counts. The left lobe of the projection, i.e. , the small software 

ystems, are yellow and red, indicating correlated lack-of-cohesion 

nd complexity, respectively correlated lack-of-cohesion and num- 

er of files. Like for the wine dataset, such findings are only pos- 

ible when joining the three different explanatory views. The cor- 

elated lack-of-cohesion with complexity is also a known signal in 

oftware quality analysis: Poor quality software is very often inco- 

esive and complex [48] . 

We now examine the dimensionality of the projected data. 

ig. 5 e shows this for four different values of θ . Overall, these 

iews tell us that the extremities of the two projection lobes are 

uite low-dimensional, being well explained by about three dimen- 

ions. In contrast, the area connecting the lobes requires five to six 

imensions to explain. This area roughly corresponds to the red, 
P

100 
espectively red-and-beige, regions in the contribution, respectively 

ariance, views. The dimensionality view tells us that more expla- 

ations are needed in this central area since the projection is there 

ot sufficiently well explained by the number of members, respec- 

ively lack-of-cohesion and number of parameters dimensions. 

We next compare our findings with those of Meirelles 

t al. [47] . They found high correlations of complexity vs lack of 

ohesion (Pearson: 0.786, the highest correlation of all dataset 

imension-pairs; Spearman: 0.773; Kendall tau: 0.597); and num- 

er of methods vs parameters (Pearson: 0.762; Spearman: 0.765; 

endall tau: 0.596). They also found a strong correlation between 

omplexity and lines of code (Pearson: 0.6 6 6; Spearman: 0.685; 

endall tau: 0.497), the third strongest correlation for complex- 

ty, and a correlation between lack of cohesion and lines of code 

Pearson: 0.472; Spearman: 0.490; Kendall tau: 0.341), the second 

trongest for the lack-of-cohesion attribute. These two correlations 

ombined match our finding of complexity and lack of cohesion 

orrelated ( Fig. 5 d, yellow areas) over a region of similar lines-of- 

ode values ( Fig. 5 b, left purple lobe). Their strong-reported corre- 

ation of number of methods vs number of parameters noted above 

atches the purple lobe in Fig. 5 d, on which we found a correla- 

ion of roughly 0.92. Note that the findings of Meirelles et al. are 

verages over the entire dataset. Our correlation view refines such 

nsights by showing local correlations over subsets of the data. 

.3. City pollution dataset 

This dataset, from the UCI Machine Learning repository, con- 

ains 420768 measurements of 6 air pollutants (PM2.5, PM10, SO2, 

O2, CO, O3) and 6 meteorological variables (temperature, pres- 

ure, dew point temperature, rain, wind direction, and wind speed) 

easured hourly from March 2013 to February 2017 at 12 sites in 

eijing [49] . We removed the time dimension (aggregating all mea- 

urements together) and projected the resulting dataset using both 

CA and t-SNE. 
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Fig. 6. Explanation of city pollution data, PCA and t-SNE projections. The variance views (a,c) show that both projections split the data into clusters with similar explanations. 

The dimensionality views show that PCA needs more additional dimensions to explain its clusters (b) than t-SNE (d). See Section 4.3 . 
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We use this dataset to contrast how our explanations work for 

ifferent projection types. Fig. 6 a shows the variance explanation 

or PCA. This projection is split into four similar-size regions ex- 

lained by the temperature, CO, O3, and PM2.5 dimensions. The di- 

ensionality explanation of the PCA projection ( Fig. 6 b, θ = 0 . 75 )

hows that we need five to seven dimensions to explain the pro- 

ection, with more dimensions needed in the center thereof. The 

-SNE projection is also split into similar-variance zones explained 

y the same variables (temperature, CO, O3, and PM2.5). Interest- 

ngly, these regions are placed relatively to each other quite sim- 

larly to their counterparts in the PCA projection. The dimension- 

lity explanation of the t-SNE projection ( Fig. 6 d, θ = 0 . 75 ) is very

ifferent from PCA’s one: We do not see the low-to-high dimen- 

ionality gradient present in Fig. 6 b; rather, the projection is locally 

ither 4-dimensional (green) or 5-dimensional (red). Hence, t-SNE 

chieves a better ‘spread’ of the high-dimensional dataset in 2D 

han PCA. More interestingly, the red-green borders in Fig. 6 match 

elatively well the borders of the red and pink regions in Fig. 6 c.

his tells us that the dew-point and O3 explained regions in that 

gure are five-dimensional, whereas the CO, PM2.5, and tempera- 

ure explained regions are four-dimensional, respectively. 

.4. Air quality dataset 

This dataset, also from the UCI repository, has 9358 samples 

f air quality measurements (CO, NOx, NO2, benzene, and non- 

etanic hydrocarbons (NMHC)) done by both an experimental sen- 

or and a reference ground-truth (GT) analyzer. Apart from these, 

emperature, relative humidity (RH) and absolute humidity (AH) 

re measured. Data were recorded from March 2004 to February 

005 in a highly polluted area of an Italian city [50] , and its au-

hors outline significant differences between the experimental sen- 

or and GT values. 

As for the city pollution dataset, we use our views to explain 

he PCA and t-SNE projection of this data (aggregating the time 

imension). Fig. 7 a shows the variance explanation of the PCA 

rojection. This projection shows five visually separable clusters 

dashed outlines A-E). Cluster D is actually an overlap of three 

lusters explained by the dimensions CO(GT) – pink, AH – yellow, 

nd NMHC (GT) – red. The dimensionality view ( Fig. 7 b, θ = 0 . 68 )

ncreases the confidence in the variance explanation: Clusters A, B, 

nd C, which showed little overlap of explanations, are intrinsically 

wo-dimensional, so we can trust the PCA projection here. Clus- 
101 
er E, which has a line structure, is intrinsically one-dimensional, 

o its explanation by the single dimension NOx (GT) in Fig. 7 a is

omplete. In contrast, cluster D is two-to-three dimensional, which 

s exactly what its explanation by three ‘overlapping’ dimensions 

n Fig. 7 a tells us. Fig. 7 c shows the variance explanation of the

-SNE projection. We see here six visually distinct clusters (A 

′ -F ′ ). 
pon closer inspection, by brushing, we found that A 

′ corresponds 

oughly to the union of A, B, and the pink part of D; B 

′ corre-

ponds to the red part of D; D 

′ and F ′ correspond to the yellow 

art of D; C 

′ corresponds to C; and E ′ corresponds to E. Saliently, 

he colors in Fig. 7 c correspond almost perfectly to visually dis- 

inct clusters. We also see no dark points in this figure, meaning 

hat the confidence of the explanation is very high. Hence, the t- 

NE projection both groups similar-value points better than PCA 

see the pink points), and separates different-value points better 

see the red, yellow, and green points). The dimensionality view 

 Fig. 7 d, θ = 0 . 68 ) confirms this: except a tiny red area, all points

ndicate neighborhoods of intrinsic dimensionality of one (blue) or 

wo (green). Since this is a 2D projection, this tells us that t-SNE 

id a very good job in preserving the high-dimensional data struc- 

ure, and in any case, better than PCA. 

. Discussion 

We detail several aspects of our method, as follows. 

enericity and scalability: Our method can handle any type of 

uantitative data projected by any MP technique. Correlations and 

CA are computed with Eigen [51] . Since explanations are com- 

uted and rendered independently on local point neighborhoods, 

e parallelized this using multithreading on the CPU. We gener- 

ted all images in this paper in seconds for datasets up to tens 

f thousands of points, tens of dimensions, on a modern PC (3.6 

hz CPU, GeForce 900 GPU). Table 2 shows timing measurements 

or several datasets having a wide range of dimensions n , samples 

, and sizes ρ of the neighborhoods νi , sorted ascendingly on the 

otal attribute count n · N. 

ombining explanations: The examples in Sections. 3 and 4 show 

hat no single explanation suffices. One has to combine the partial 

nsights of different explanations from the total six ones (distance 

ontribution, variance, three local dimensionality variants, and di- 

ensions correlation) to arrive at relevant, stronger, findings. In 

his process, one can (a) use explanations of the same type, e.g. 
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Fig. 7. Explanation of air quality dataset, PCA and t-SNE projections. Colors in the variance views (a,c) help finding the main variable explaining what makes points in a 

cluster similar. The local dimensionality views (b,d) tell us how many extra variables we need to fully explain these clusters. See Section 4.4 . 

Table 2 

Computational performance of explanatory views 

Dataset Dimensions Samples Total Time (secs) 

n N n · N ρ = 0 . 1 ρ = 0 . 2 ρ = 0 . 3 

D1 17 143 2431 0.013 0.016 0.016 

D2 20 740 14800 0.025 0.028 0.029 

D3 32 520 16640 0.016 0.019 0.019 

D4 11 4177 45947 00.68 0.069 0.082 

D5 25 2584 64600 0.046 0.045 0.047 

D6 11 6497 71467 0.133 0.136 0.165 

D7 179 11500 2058500 2.611 3.168 5.033 

D8 64 41188 2636032 0.845 3.082 13.884 

l
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Table 3 

Quality metrics for all projections and datasets in this paper. 

Dataset Projection Continuity Trustworthiness Shepard 

Concrete t-SNE 0.99810535 0.99517108 0.53527163 

( Fig. 2 ) 

Wine LAMP 0.84132354 0.92384026 0.79137224 

( Figs. 3,4 ) 

Software LAMP 0.90646675 0.98470294 0.91487058 

( Fig. 5 ) 

City pollution PCA 0.93095898 0.99232401 0.95164997 

( Fig. 6 ) t-SNE 0.99888747 0.98818749 0.84766134 

Air quality PCA 0.94080419 0.99208358 0.97113638 

( Fig. 7 ) t-SNE 0.99916219 0.99601412 0.56614243 

t

n

q

F

p

t

b

fi

o

w

m

L

m

c

t

r

t

ocal dimensionality, which, where matching, strengthen the ob- 

ained findings; or (b) explanations of different types, e.g. correla- 

ion and variance, which performs ‘logical AND’ like operations on 

heir partial insights. 

rojection quality: Our explanations rely on the assumption that 

oints close in P (D ) correspond to points close in D – that is, that

he projection exhibits high values of trustworthiness [20] . In other 

ords, our explanations require that the neighborhoods shown in a 

rojection are meaningful . If they are, then we can explain them. 

f not, then we will produce wrong explanations, but arguably any 

se of such a projection will be flawed, not only our explanations, 

ince the projection contains errors. The extent to which various 

P techniques realize this neighborhood preservation varies [18] . 

ne way to address this is to use projection error views [10] to ex-

lude neighborhoods which do not respect this condition [33] , or 

efine their computation by e.g. using larger radii ρ . To address this 

ssue, Table 3 shows the continuity, trustworthiness, and Shepard 

orrelation quality metrics computed for all the datasets and all 
102 
he projections discussed earlier in this paper. For the exact defi- 

itions of these metrics, we refer, for brevity, to Table 5 in [18] . 

Table 3 shows that all the computed projections are of high 

uality, their values being very close to the maximum value of 1. 

or t-SNE, the Shepard correlation is relatively lower, but this is ex- 

ected, as this metric quantifies the preservation of distances and 

he t-SNE technique does not aim to preserve distances, but neigh- 

orhoods. All in all, the projections shown in this paper are of suf- 

ciently high quality to vouch their visual exploration by means 

f our explanatory techniques, and also to trust their computation 

hich relies on the assumption of high trustworthiness already 

entioned above. 

imitations: While we can technically handle datasets of any di- 

ensionality n , we need more variables for the explanation as lo- 

al dimensionality grows. Also, the correlation is O (n 2 ) in compu- 

ation and space needed for the dimension matrix (see Fig. 2 and 

elated text). Our method works well up to 20 dimensions in prac- 

ice; it does not target datasets with hundreds of dimensions such 
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s from deep learning. Yet, such datasets have abstract dimensions 

hich do not have a meaning for users, so using them to ex- 

lain projections is likely not desirable. Our method scales visually 

ell even for many dimensions, since it uses only the top ranked 

nes which contribute to explaining most of the projected points 

 Section 3 ). 

One can ask whether using n D point neighborhoods ξi = { x ∈ 

 | ‖ x − x i ‖ ≤ ρ} , P (x i ) = y i , instead of 2D neighborhoods νi (and

heir correspondents μi in n D), is a valid option. Doing this is 

echnically trivial, but we argue against it: We aim to explain the 

oint-groups one sees in a projection (2D scatterplot) and not the 

oint-clusters that exist in n D, but may not be visible in 2D due 

o e.g. projection continuity issues [20] . Also, setting the neighbor- 

ood size ρ would be tricky for ξi , as one has to assess what is the

natural’ scale of patterns in n D. This motivates our choice to use 

D neighborhoods as a basis for our explanations. 

A separate limitation involves color coding, which is used to 

reate categorical color maps (contribution, variance, and correla- 

ion plots) and also ordered color maps (dimensionality plot). As 

xplained in Section 4 , several such plots are to be used together 

o arrive at a good understanding of a projection. This may poten- 

ially confuse users since the respective colormaps contain simi- 

ar colors. The problem can be partly alleviated by designing col- 

rmaps with a smaller overlap in terms of such colors. However, as 

e next aim to extend our approach with additional explanatory 

iews, this alleviation strategy is not a full solution. For now, we 

rominently display the respective color legends next to each ex- 

lanatory plot, aiming thereby to attract the attention of the user 

f the particular meaning of colors in that plot. 

ser perception: As our techniques aim to explain the patterns 

ne sees in a projection, they should be tested in experiments 

here subjects use them to to perform some explanatory tasks. 

arlier studies [52] provide good guidelines of perceptual cues and 

isual tasks that users address with projections. We aim to extend 

his work by making such tasks more specific to include explana- 

ions that refer to the names of involved dimensions. With this set 

f tasks, we can next present various combinations of datasets D 

nd projections P (D ) , computed by several projection techniques 

 to the users, to find which are the dataset and/or projection- 

echnique aspects that best suit our explanatory techniques. A sim- 

lar study can be used to find optimal parameters for our explana- 

ory techniques. 

. Conclusions 

We have presented a set of visualizations for explaining the vi- 

ual patterns present in 2D projections of high-dimensional data 

n terms of the underlying data dimensions. We extended the ex- 

lanations proposed in earlier work [11] by three ways to evalu- 

te the local data dimensionality and a technique to detect and 

nspect local dimension correlations. We show that the combined 

isual analysis of all these explanatory techniques can lead to non- 

rivial insights in the data that correlate well with independent 

ndings obtained using other methods. We illustrate our approach 

n five experimental datasets. Our methods are simple to use, have 

 few parameters with good presets and clear effects, and scale 

ell computationally to datasets of hundreds of thousands of sam- 

les and 10..20 dimensions. 

Several extensions to our work are possible. Adding more expla- 

ation types, such as inverse correlation, correlation of more than 

wo dimensions, or the presence of specific n D data patterns, is a 

ow hanging fruit. We aim to compute, in parallel, a wide range of 

ocal explanations based on a pattern library, and next show the 

ost salient ones in the final view, thereby enriching the current 

ontribution, variance, correlation, and dimensionality views. This 
103 
ould perform a scagnostics-like [53] local analysis of the projec- 

ion, but using patterns described by the high-dimensional data 

ather than by the scatterplot. Computing a hierarchical explana- 

ion, where projection regions are recursively split by additional 

xplanations, is another direction we aim to pursue. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Zonglin Tian: Methodology, Software, Formal analysis, Val- 

dation, Investigation, Writing - original draft. Xiaorui Zhai: 

ethodology, Formal analysis, Data curation, Validation, Investiga- 

ion, Writing - original draft. Daan van Driel: Conceptualization, 

ethodology. Mateus Espadoto: Methodology, Software, Visual- 

zation, Writing - original draft. Alexandru Telea: Methodology, 

onceptualization, Supervision, Writing - original draft. 

cknowledgments 

Z. Tian was supported by the China Scholarship Council under 

rant 201906080046 . 

eferences 

[1] Greenacre M . Biplots in practice. Fundacion BBVA, Bilbao; 2010 . 

[2] Gower J , Lubbe S , Roux N . Understanding biplots. Wiley; 2011 . 
[3] Broeksema B , Baudel T , Telea A . Visual analysis of multidimensional categorical 

datasets. Computer Graphics Forum 2013;32(8):158–69 . 
[4] Coimbra D , Martins R , Neves T , Telea A , Paulovich F . Explaining three-

-dimensional dimensionality reduction plots. Information Visualization 

2016;15(2):154–72 . 
[5] Pagliosa P , Paulovich F , Minghim R , Levkowitz H , Nonato L . Projection inspec-

tor: Assessment and synthesis of multidimensional projections. Neurocomput- 
ing 2015;150:599–610 . 

[6] Joia P , Coimbra D , Cuminato JA , Paulovich FV , Nonato LG . Local affine multidi-
mensional projection. IEEE TVCG 2011;17(12):2563–71 . 

[7] Rauber P , da Silva R , Feringa S , Celebi M , Falcao A , Telea A . Interactive image

feature selection aided by dimensionality reduction. In: Proc. EuroVA; 2015. 
p. 97–101 . 

[8] Aupetit M . Visualizing distortions and recovering topology in continuous pro- 
jection techniques. Neurocomputing 2007;10(7-9):1304–30 . 

[9] Schreck T , von Landesberger T , Bremm S . Techniques for precision-based visual
analysis of projected data. Information Visualization 2010;9(3):181–93 . 

[10] Martins R , Coimbra D , Minghim R , Telea AC . Visual analysis of dimension-

ality reduction quality for parameterized projections. Computers & Graphics 
2014;41:26–42 . 

[11] da Silva R , Rauber P , Martins R , Minghim R , Telea A . Attribute-based visual ex-
planation of multidimensional projections. In: Proc. EuroVA; 2015. p. 97–101 . 

[12] van Driel D , Zhai X , Tian Z , Telea A . Enhanced attribute-based explanations of
multidimensional projections. In: Proc. EuroVA. Eurographics; 2020 . 

[13] Tenenbaum JB , De Silva V , Langford JC . A global geometric framework for non-

linear dimensionality reduction. Science 20 0 0;290(550 0):2319–23 . 
[14] De Silva V , Tenenbaum JB . Sparse multidimensional scaling using landmark 

points. Tech. Rep.. Stanford University; 2004 . 
[15] van der Maaten L , Hinton GE . Visualizing data using t-SNE. JMLR 

2008;9:2579–605 . 
[16] McInnes L., Healy J., Melville J.. UMAP: Uniform manifold approximation and 

projection for dimension reduction. 2018. ArXiv:1802.03426v2 [stat.ML]. 

[17] Nonato LG , Aupetit M . Multidimensional projection for visual analytics: Link- 
ing techniques with distortions, tasks, and layout enrichment. IEEE TVCG 

2018;25(8):2650–73 . 
[18] Espadoto M , Martins R , Kerren A , Hirata N , Telea A . Towards a quan-

titative survey of dimension reduction techniques. IEEE TVCG 2019 . 
Doi:10.1109/TVCG.2019.2944182 

[19] Geng X , Zhan D , Zhou Z . Supervised nonlinear dimensionality reduc- 
tion for visualization and classification. IEEE Trans Syst Man Cybern 

2005;35(6):1098–107 . 

20] Venna J , Kaski S . Visualizing gene interaction graphs with local multidimen- 
sional scaling. In: Proc. ESANN; 2006. p. 557–62 . 

[21] Paulovich FV , Nonato LG , Minghim R , Levkowitz H . Least square projection: A
fast high-precision multidimensional projection technique and its application 

to document mapping. IEEE TVCG 2008;14(3):564–75 . 

https://doi.org/10.13039/501100004543
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0001
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0002
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0003
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0004
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0008
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0009
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0011
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0013
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0014
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0019
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0020
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0021


Z. Tian, X. Zhai, D. van Driel et al. Computers & Graphics 98 (2021) 93–104 

[  

[

[  

[  

[  

[  

[  

[  

[  

 

[  

[  

[

[

[

[  

[  

[

[

[  

[  

[  

[  

[

 

[

[  

[

[  

[  
22] Sips M , Neubert B , Lewis J , Hanrahan P . Selecting good views of high-
dimensional data using class consistency. Comp Graph Forum 

2009;28(3):831–8 . 
23] Lee JA , Verleysen M . Quality assessment of dimensionality reduction: 

Rank-based criteria. Neurocomputing 2009;72(7):1431–43 . 
24] Lueks W , Gisbrecht A , Hammer B . Visualizing the quality of dimensionality

reduction. Neurocomputing 2013;112:109–23 . 
25] Lespinats S , Aupetit M . CheckViz: Sanity check and topological clues for linear

and non-linear mappings. Comp Graph Forum 2011;30(1):113–25 . 

26] Tatu A , Bak P , Bertini E , Keim D , Schneidewind J . Visual quality metrics and hu-
man perception: An initial study on 2D projections of large multidimensional 

data. In: Proc. AVI. ACM; 2010. p. 49–56 . 
27] Oeltze S , Doleisch H , Hauser H . Interactive visual analysis of perfusion data.

IEEE TVCG 2007;13(6):1392–9 . 
28] Olsen K , Korfhage R , Sochats K . Visualization of a document collection: the

VIBE system. Inform Process Manag 1993;29(1):69–81 . 

29] Endert A , Flaux P , North C . Semantic interaction for visual text analytics. In:
Proc. ACM CHI; 2012. p. 324–33 . 

30] Yi J , Melton R , Stasko J . Dust & magnet: multivariate information visualization
using a magnet metaphor. Inform Visual 2005;4(4):239–56 . 

[31] Piringer H , Kosara R , Hauser H . Interactive F + C visualization with linked
2D/3D scatterplots. In: Proc. IEEE CMV; 2004. p. 49–60 . 

32] Elmqvist N , Dragicevic P , Fekete J-D . Rolling the dice: multidimensional visual

exploration using scatterplot matrix navigation. IEEE TVCG 2008;14(8):1141–8 . 
33] Rodrigues FCM , Espadoto M , Hirata R , Telea A . Constructing and vi-

sualizing high-quality classifier decision boundary maps. Information 
2019;10(9):280–97 . 

34] Cliff N . The eigenvalues-greater-than-one rule and the reliability of compo- 
nents. Psychological Bulletin 1988;103(2):276–9 . 

35] Jolliffe IT . Principal Component Analysis. Springer; 2002 . 2 nd edition 

36] O’Donnell LJ , Westin CF . An introduction to diffusion tensor image analysis. 
Neurosurg Clin N Am 2011;22(2):185–96 . 

37] P PB , Falguerolles A . Application of resampling methods to the choice of di-
mension in principal component analysis. In: Computer Intensive Methods in 

Statistics. Springer; 1993. p. 167–76 . 
38] North GR , Bell TL , Cahalan RF , Moeng FJ . Sampling errors in the estimation of

empirical orthogonal functions. Mon Weather Rev 1982;110:699–706 . 
104 
39] Yeh I-C . Modeling of strength of high performance concrete using artificial 
neural networks. Cement and Concrete Research 1998;28(12):1797–808 . 

40] Lichman M.. UCI machine learning repository. 2013. http://archive.ics.uci.edu/ 
ml . 

[41] da Silva R . Visualizing multidimensional data similarities – improvements and 
applications. University of Groningen, Netherlands; 2016 . 

42] Wu S , Li B , Yang J , Shukla S . Predictive modeling of high-performance concrete
with regression analysis. In: Proc. IEEE Intl. Conf. on Industrial Engineering and 

Engineering Management; 2010 . 

43] Cortez P , Cerdeira A , Almeida F , Matos T , Reis J . Modeling wine preferences
by data mining from physicochemical properties. Decision Support Systems 

2009;47(4):547–53 . 
44] van Wijk JJ , Telea A . Enridged contour maps. In: Proc. IEEE Visualization; 2001.

p. 69–74 . 
45] Beh EJ , Holdsworth CI . A visual evaluation of a classification method for inves-

tigating the psysicochemical properties of Portugese wine. Current Anal Chem 

2012;8(2):205–17 . 
46] Zeng L.. The wine dataset analysis. 2021. https://rpubs.com/Li2019/Wine . 

[47] Meirelles P , Santos C , Miranda J , Kon F , Terceiro A , Chavez C . A study of the
relationships between source code metrics and attractiveness in free software 

projects. In: Proc. Brazilian Symposium on Software Engineering (SBES); 2010. 
p. 11–20 . 

48] Richter C . Designing Flexible Object-Oriented Systems with UML. New Riders 

Publishing; 1999 . 
49] Zhang S, Guo B, Dong A, He J, Xu Z, Chen S. Cautionary tales on air-quality

improvement in Beijing. Proc Royal Society A 2017;473(2205):20170457 . https: 
//archive.ics.uci.edu/ml/datasets/Beijing+Multi- Site+Air- Quality+Data 

50] Vito SD, Massera E, Piga M, Martinotto L, Francia GD. On field calibration 
of an electronic nose for benzene estimation in an urban pollution moni- 

toring scenario. Sensors and Actuators B: Chemical 2008;129(2):750–7 . https: 

//archive.ics.uci.edu/ml/datasets/Air+Quality 
[51] Eigen numerical library. 2020. http://eigen.tuxfamily.org . 

52] Etemadpour R , Motta R , de Souza Paiva J , Minghim R , Oliveira MD , Linsen L .
Perception-based evaluation of projection methods for multidimensional data 

visualization. IEEE TVCG 2014;21(1):81–94 . 
53] Wilkinson L , Arland A , Grossman R . Graph-theoretic scagnostics. In: Proc. Info-

Vis; 2005. p. 157–64 . 

http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0022
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0025
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0028
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0039
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0044
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0045
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0045
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0045
https://rpubs.com/Li2019/Wine
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0047
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0048
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0048
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Air+Quality
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0052
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0053
http://refhub.elsevier.com/S0097-8493(21)00076-5/sbref0053

	Using multiple attribute-based explanations of multidimensional projections to explore high-dimensional data
	1 Introduction
	2 Related work
	2.1 Observation centric explanations
	2.2 Dimension centric explanations
	2.3 Hybrid explanations

	3 Explanatory mechanisms
	3.1 Adding dimensionality explanation
	3.2 Adding correlation explanation
	3.3 Concrete dataset
	3.4 Parameters

	4 Applications
	4.1 Wine quality dataset
	4.2 Software quality dataset
	4.3 City pollution dataset
	4.4 Air quality dataset

	5 Discussion
	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References


