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Systems in Discrete Time

Sutrisno’, Stephan Trenn

Abstract—1In this article, we study the observability and
determinability for discrete-time linear switched systems. Stud-
ies for the observability for this system class are already
available in literature, however, we use assume here that the
switching signal is known. This leads to less conservative
observability conditions (e.g. observability of each individual
mode is not necessary for the overall switched system to be
observable); in particular, the dependencies of observability
on the switching times and the mode sequences are derived;
these results are currently not available in the literature on
discrete-time switched systems. In addition to observability
(which is concerned with recovering the state from the initial
time onwards), we also investigate the determinability which
is concerned with the ability to reconstruct the state value at
the end of the observation interval. We provide several simple
examples to illustrate novel features not seen in the continuous
time case or for unswitched systems.

I. INTRODUCTION

We study the observability and determinability of a class
of switched systems where each mode is a discrete-time
linear system. We consider the following general form:

z(k+1) = Ag(k)l‘(k) + Bg(k)u(k) (1a)

y(k) = Ca(k)x(k:) + Dcr(k)u(k) (1b)

where & € N is the time instant, z(k) € R" is the state,

u(k) € R™,m € N is the input, y(k) € RP,p € N is the

output, o : N — {0,1,2,...,p}, p € N is the switching signal

determining which mode o (k) is active at a time instant k,
Ai € R**", B; € Rrxm, Cz € RP*™ and D, e RPxm,

The system class (1) indicates that we assume the switch-
ing is triggered only by the time and neither by the state
nor the input nor the output. We furthermore assume in this
study that the switching signal o is fully known and fixed.
This assumption means that (1) can be seen as a specially
structured time-varying linear system, and there are many
switched systems which can be modelled in that framework
(see e.g. [11, [21], [3], [4], [5], [6D).

To be specific, since there are several observability notions
for switched systems studied in literature, for example,
path-wise observability that requires observability for every
path (switching signal) with some length [7], and mode
observability that recovers a certain number of first modes
in a switching signal [8], in this paper, we focus on the state
observability notion, i.e. the ability to reconstruct the initial
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value from output measurement for a fixed and fully known
switching signal.

In continuous time domain, studies about observability
for linear switched systems have been addressed in an
extensive number of papers (see e.g. [9], [10], [11], [12]).
In discrete time domain, not so many papers are found in
the literature. In some of existing studies, the observability
condition for system (1) is commonly written in a Gramian
form by checking the kernel of the corresponding Gramian
observability matrix which is a huge matrix and is not
computational-friendly form (see e.g. [13], [14]). Another
form has been presented in a geometrical approach but is
also not in a computational-friendly form (see e.g. [15]). An
important point in discrete time systems is that, in general, it
cannot be observable within too short observation time and
hence a sufficiently large dwell time for each mode is needed.
However, this is not enough to preserve the observability
if the switching time(s) is changed and thus it becomes
dependent on the switching time(s). Apart from our own
study of the single-switch case [16], the dependency of
observability on (multiple) switching times seems not to be
discussed yet in any reference and therefore is a novel aspect
we study in this paper.

Furthermore, the observability characterizations we will
present are based on a geometric approach and are more
friendly in terms of computational aspects. Additionally, a
new geometric approach for determinability characterizations
will be presented.

This paper is structured as follows. In Section II, we first
observe that it suffices to consider the homogeneous version
of (1); some new notations will also be introduced here. The
main results will be presented in Section III for observabil-
ity characterizations, and in Section IV for determinability
characterizations including some counter- and illustrating
examples.

II. PRELIMINARIES

A. System’s description and its solution

Under the assumption that the switching signal is known,
it is easily seen that the ability to recover the state of (1)
from the values of the external signals (input and output) is
independent on how the input influences the state-dynamics.
The forthcoming observability and determinability notions
therefore do not depend in the input coefficient matrices
B; and D; and, consequently, we will only consider the
homogeneous version of the Linear Switched System (LSS)
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(1) given by
z(k+1) ZAJ(k)x(k’), k=0,1,... (2a)
y(k) =Coyx(k), keN (2b)
where the initial value x(0) is unknown and y(k) is the
output measurement. By {(Ao, Co), (A1,C1),...(4p,Cp)}
we denote the family of the system’s matrix pairs of all
modes involved in (2). All solutions of (2) satisfy

z(k) = ©,(k,h)x(h), Vk,h e N with k > h,
where @, (k,h) = Agp—1) - Ao is so called the state

transition matrix. With initial value z(0) = zo € R",
system (2) has the unique solution
z(k) = ©,(k,0)xog, keN. 3)

For the rest of this paper, we restrict the switching signal
to a fixed and known switching signal given via a fixed mode
sequence (o) en as follows (see also Fig. 1)

o(k)=o;ifk e[k, ki), j€{0,1,2,..}, 4
where kj € N denotes the switching time with k§ = O,
k5., =K+1,and 0; € {0,1,...,p}. Here K > 0 denotes
the final time of interest and J > 0 is the number of switches
in the interval [0, K].

a(k)
01
=y
- I I I I I k
0 kf—1%k ky—1 k5 K

Fig. 1: Mode sequence (4)

We refer to oy as the initial mode and we assume
that the switching times k7 are strictly increasing, i.e.
kj 1 > ki Vj, which means that each mode is active at
least one time instant when it is active. This also means
that there is no mode that is never active (e.g. due to
collapsed) over the time interval [0, K]. One may wonder
that {(Ao, Co), (A1,C1),...(Ap,Cp)} may produce many
possible mode sequences; however, by the definition of the
switching signal (4), the study in this paper corresponds to
only one fixed mode sequence and therefore to examine a
different mode sequence, one should repeat the calculation
except in some specific situations. This is a limitation of the
study in this paper.

We also use the term so-called “dwell-time” which was
introduced in [17]. For a positive constant 7p, let Slol pe
the set of all fixed and known mode sequences given by (4)
with interval between two consecutive switching times no
smaller than 7. We refer to 7 as the (fixed) dwell-time.
Furthermore, by S{gz]{] we denote the set of all switching
signals o € SI7P] defined on the time interval [0, K.

Under a fixed switching signal we can write the solution
at any switching time k7 by using the formula given in the
following lemma.

Lemma 2.1: Under a fixed switching signal (4), the solu-
tion of linear switched systems (2) at any switching time k7
is given by

£(K5) = o (4.0)2(0) )

where for j = 0,1, ...
Go(3,0) = A0 AT AR ()
Proof: Extracting the solution from (3) at the switching
time k7 proves (5). [ ]
We refer to matrix (6) as the state transition matrix at the
switching time k7. Moreover, for every j, (6) can be rewritten
in a recursive form as L
6o (3;0) = Ag, 7 o (j — 1,0) )
with ¢,(0,0) = I,. This is more computational-friendly
compared to (6).

B. Observability and Determinability Definitions

In this paper, we study the observability (and also the
determinability) for a finite observation time interval [0, K]
where the number of switches is as many as J and the
number of the output measurements available to reconstruct
the state is as many as K + 1.

Intuitively, system (2) is observable on [0, K| with respect
to (w.r.t.) a fixed switching signal o if the knowledge of
the output measurements {y(0), y(1),...,y(K)} is sufficient
to determine the state on this interval. This can be defined
mathematically as follows.

Definition 2.2 (Observability): Linear switched system
(2) is called observable on [0, K] w.rt. a fixed switching
signal given by (4) if for all solutions on [0, K] the following
implication holds:
yt =y = 2t =22 )

Due to linearity, we can reduce the observability condition
(8) as zero-observability as in the following proposition.

Proposition 2.3 (Zero-observability): Linear switched
system (2) is observable on [0, K] w.rt. a fixed switching
signal given by (4) if, and only if, for all solutions on [0, K]
the following implication holds:

y=0=2=0. )]
Proof: The proof is straightforward and is omitted. W

By the fact that using (2), the knowledge of the state on
[0, K] can be derived recursively if we know xz(0), then
we can rewrite the observability definition as follows: (2)
is observable on [0, K] w.r.t a fixed switching signal o if
the knowledge of the output sequence {y(0),y(1),...,y(K)}
is sufficient to determine z(0). Furthermore, since z = 0
on [0, K] if, and only if, 2(0) = 0, then the observability
condition (9) can be reduced to

y(k) =0Vk € [0, K] = z(0) = 0. (10)
Finally, we say system (2) is (globally) observable if there
exists such positive integer K.

For non-switched systems it is well known that even if
the pair (A4, C) is observable (i.e. the corresponding Kalman
observability matrix has full rank) the initial state may not
be observable if the output is not measured long-enough. It
is however easily seen that never more than n output mea-
surements are necessary to extract all the information about
the n-dimensional state. For switched systems this means
that if the dwell time is smaller than the state-dimension, we
can expect a loss of observability just because of the fact,
that we didn’t remain long enough in a mode to extract all
available information of the state. A novel aspect of switched
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systems is however, that even if each mode remains active
long enough (i.e. no more information about the state can be
obtained by staying longer in that mode) the observability
may still depend on how long each mode remains active.
Switched systems where this dependence does not occur are
of special interest and justifies the following definition.

Definition 2.4 (Constant Observability): Consider the lin-
ear switched system (2) with fixed mode seqeunce (o). The
observability of this system is called constant (under slow
switching) if it is either observable or unobservable for every
o€ SF&] k) With fixed mode sequence (o).

In other words, constant observability means that the
observability does not depend on the switching time(s), and
changing the switching time(s) does not change the observ-
ability (provided each mode remains active long enough). In
particular, constant observability indicate a certain robustness
of the fundamental system property of observability with
respect to the switching times. Furthermore, from the def-
inition, if K = Jn i.e. there is only one possible switching
signal with the dwell time at least n on [0, K], then the
observability is trivially constant; however, for K > Jn
constant observability depends in general on the specific
matrices (A;,C;) and the mode sequence (o).

In a situation where the state on the time interval [0, K]
cannot be reconstructed by the given output measurement,
one may want to reconstruct the state at the final time
instant K. Once we know the state at K, we could iterate
the system’s model to obtain the solutions at the future
time instants, for instance to design a state feedback. Based
on this motivation, we study in the following the deter-
minability concept which was initially introduced in [18]
for continuous time. Note that in this study, the switching
signal is already known and fixed. If the switching signal
is fully or partially unknown, one may refer to the switch
observability/determinability study discussed in [19], [20].

Once we have a time instant KX > 0 where we can
determine z(K) from the output measurement, we say that
the system is determinable. To be precise, we define the de-
terminability in a mathematically intuitive form by defining
the determinability on a time interval [0, K| as follows.

Definition 2.5: The linear switched system (2) is called
determinable on [0, K] w.r.t. a fixed switching signal given
by (4) if the knowledge of the output measurements
{y(0),y(1),...,y(K)} is sufficient to determine z(K).

Let yjo,x] := {¥(0),%(1),...,y(K)}. The determinability
definition above can be brought into the following final-state-
sustainability definition.

Definition 2.6: The linear switched system (2) is deter-
minable on [0, K] w.r.t. a fixed switching signal given by (4)
if the following implication holds:

Yo.x) = Yok = o (K) = 2*(K). (11)

Similar to the observability, we can also bring the de-
terminability definition above into a zero-determinability
condition as follows.

Proposition 2.7: The linear switched system (2) is deter-
minable on [0, K] w.r.t. a fixed switching signal given by (4)

if, and only if, the following implication holds:
Y[o,K] EO?SL’(K) =0. (12)
Proof: The proof is straightforward and is omitted. H
Thus, the system (2) is determinable if, and only if there
exists K € N such that (11) holds. In other words, it is
determinable if, and only if there exists K € N such that (12)
holds. We use the latter condition in the characterizations.
Remark 2.8: When the matrices A; for all 4 in (2) are in-
vertible, then determinability and observability are equivalent
since (2) can be rewritten in a backward dynamical system.
However, in general, observability implies determinability
on the same time interval but the converse is not always
true. Furthermore, if the switched system is determinable,
i.e. z(K) can be reconstructed, then the state of the future
time instants can be determined. This is why it is also called
as “forward observable” in [21].

IIT. OBSERVABILITY

Under a single switch switching signal, the observability
characterization for (2) has been covered in [16]. We present
in the following the results regarding the observability char-
acterizations for general switching signals.

Theorem 3.1: The linear switched system (2) is observ-
able on [0, K|, K € [k%,k%,,) w.rt. to the fixed switching
signal (4) if, and only fif]

J _ .
Mo (G.0) 71Oz = {0} (13)
=0

where 1, (j,0) is given by (6) and

OF :=ker[C]", (C;A)T,... . (C:AHTIT.  (14)

Proof: Taking the kernel of the observability ma-
trix over the time interval [0, K] and using the fact that
ker | MI:II\143:| = ker My N [M3]~'ker M, for any matrices
M proves the observability condition (13). |

Note that [¥]~! denotes the preimage and not the inverse.
The observability condition (13) above for any sufficient slow
switching signal o € S[" can be reduced to

0,K]
J
([, 0]~ (05,) = {0} (15)
§=0
where O, = Og;l. This means that if each mode is

active long enough (at least n time steps) and there is no
switch after K then the observability will depend only on
the switching time and thus (15) is the condition for global
observability.

Remark 3.2: In general, system (2) is defined on [0, 00).
In this situation, the observability condition is not dependent
on K anymore and it is dependent only on the switching
times k:jé Moreover, it is clear that an observable initial mode
on [0,k — 1] implies global observable but an observable
subsequent mode on the corresponding time interval doesn’t
always imply global observable.

Next, we study the dependence of the observability on
the switching times k7. For any dimension of the state z,
if the first subspace in (15) equals {0} then clearly the
observability is constant i.e. observable for any kj. We
consider first the result for one-dimensional states in the
following proposition.
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Proposition 3.3: The observability of (2) with one-
dimensional states is constant for any switching signal.
Proof: Let (a;,c;) be the individual mode. Its unob-
servable space is

kS—kf—1 kS—1
a;

kS —1
ker[eg, coayt T, c3as ]T

PRI

= ker[c1] N ker[CQalfi_l] N ker[63a§§_ki_1alfi_l} Nn....

For any k7, the unobservable space is equal to R if ¢; =
0 Vi, or is equal to {0} if ¢; # 0 for some i i.e. it is
either unobservable or observable for any given k7. Thus
the observability is always constant. [ ]

Proposition 3.3 can be explained intuitively by the fact
that, in one-dimensional space, it is impossible to have
different unobservable spaces with different switching times
since we will always get either {0} or R from (13). How-
ever, already in two dimension this argument is not valid
anymore and indeed the following example shows that the
observability property depends in general on the switching
times.

Example 3.4: Consider the linear switched system (2)
composed by the following two modes

(e o)
(A3, Cy) = ({‘1) (ﬂ [0 o]) .

The system starts from mode-1 and switches to mode-2 at
time instant k§ and switches again to mode-1 at time instant
k5. When k5 — ki is odd then mode-2 is active for an odd
number of time instants. In this situation, all information
can be completely deduced from the output measurements
(see Fig. 2a). On the other hand, if k5 — k7 is even, some
information will be lost (see Fig. 2b). This means that when
k5 —k3 is even, the switched system is unobservable, because
the initial value z(0) = w39 will never be visible in the
output.

e:T10 e T20 °: 0

z2
Tl e s s s
yl | | | | |

T T T T T T k

0 ki—1 kI kS+1 kS —1 kS

(a) k5 — ki is odd

Y

I I I I | I k

0 kf—1 k§ ki+1 k3 —1 k3

(b) k5 — ki is even
Fig. 2: Solution of the switched system in Example 3.4

Moreover, when the system starts from mode-2 and
switches to mode-1 and switches again to mode-2, the
switched system is always unobservable for arbitrary switch-
ing times ki and k3 i.e. its observability is constant. This
showed that the constant observability property is not pre-
served under permutation of the switching sequence. o

10 =X

J
L ]
J
b

ks
~
X
X

5re X X not-observable |
®  observable
4 N L L L L L
2 3 4 5 6 7 8

ki
Fig. 3: Switching time vs observability Example 3.4

This example showed that the switching time dependence
in the observability characterization (15) even for dwell-
time switching signals cannot be removed in general. For
multiple-switching this switching time-dependence is also
present in the continuous time case and we believe that it
is possible to derive sufficient or necessary conditions for
observability in a similar way as in [18, Sec. IV], however,
for switching signals without a dwell time, these conditions
may be more complicated or may not exist at all; this is
ongoing research.

From the observability condition (13), and confirmation
derived from the Example 3.4, in general, the observability
of the LSS (2) depends on the switching times and on how
long each mode is active. This is similar to the result for
LSSs in continuous time as discussed in [11]. Indeed the
dependence occurs even for LSSs with only two modes as
illustrated by the following example.

Obs. +

Unobs. g~ 4~ 4~ 444~ — 4449

1 2 3 4 5 6 7 8 9 10 11

Fig. 4: Observability characterization results of Example 3.5

Example 3.5: Consider the linear switched system (2)
composed by two modes with

2900
(A0, Co)=(|g110].[0001]
0111
1000
1110
0011

o= (1] 002)

We observe here for the time interval [0, 12]. As individual
systems, both modes are not-observable since

o[ 1]) v ][]}

The observability p?‘operty of the switched system w.r.t. the
single switch switching signal given by the mode sequence
(0j) = (0,1) or (1,0) with varying switching times k, €
[1,11] are illustrated in Fig. 4.

For the first mode sequence (o;) = (0,1) the switched

2477



system remains unobservable independently of the switching
time. However, for the reversed switching sequence (o;) =
(1,0) it turns out the switched system is observable if the
switching times are sufficiently far away from the time-
interval boundaries. In fact, if the switching time is too
early so the initial mode is active too short, or too late
(close enough to the end time K), the switched system gets
unobservable also for the switching sequence (1, 0). o

Although the observability property of the previous exam-
ple clearly depends on the switching time, it does satisfy the
definition of constant-observability because the observability
properties remains constant when each mode is active long
enough. Inspired by the single-switch result for the contin-
uous time case, one may conjecture that also in the discrete
time case the dependence of the observability property on the
switching time in the single-switch case can only come from
not obtaining enough information from the individual modes.
We have already investigated this question in [16] in the
context of singular systems, but we were only able to show
the constant observability property under some additional
subspace assumptions. Here we are now able to state the
constant observability without any further assumptions; the
result is based on the following technical lemma.

Lemma 3.6: For any invertible matrix A € R™*", and
C € R™*" the following equation holds for every k € Z
and every n > n

C CAF
CA CAMtk
ker . = ker (16)
C An—1 C Aﬁ71+k
Proof: Employing the Cayley-Hamilton theorem and
some basic algebra proves this lemma. [ ]

Proposition 3.7: Consider the LSS (2) defined on [0, K]
under a single switch switching signal, and assume that each
mode is active for at least n time steps. Then, its observability
is constant, i.e. the observability property does not depend
on the switching time ks € [n, K —n + 1].

Proof: Assume first Ag is nonsingular, the observability
condition (15) is equivalent to
A 0y N0, = {0}). (17)
where AKOy = Oy Vk € N with k;, > n (by Cayley-
Hamilton), i.e. the observability does not depend on k°.

Assume now Ajg is singular. Then we can rewrite Ag in
the Jordan canonical form Ay = Sy [Aéo ,ZOO] Sy 1 where
So € R™ ™ is invertible, Ny € R"*"° is a nilpotent
with nilpotency index at most n, and Ay € R(n—no)x(n=no)
is invertible. By state transformation Z(k) = S, 'a(k) the
observability condition becomes

CoSo
No 0
CUSO[ 00 go} 0 0
ker N ker (01 l:O A’gs]) = {O}
COSO[Z\(/;O ;‘)O}n 1

(18)
Utilizing Lemma 3.6 proves that it is not possible to have
different observability properties with different switching
times, which is omitted due to space limitation. [ ]

This result is indeed stronger than the result presented
in [16, Corr. 3.4] where we have now confirmed that the
observability of LSSs, with any dimensional states and under
a single switch switching signal, is always constant as long
as each mode is long enough active.

IV. DETERMINABILITY

We present in this section the determinability characteriza-
tion for systems (2). We first characterize the determinability
for single switch switching signals. The result is given by the
following lemma. The understanding for this simple case is
used to characterize the cases with multiple switches.

For the single switch switching signal given by the mode
sequence (0,1), we define the following sequence of sub-
spaces on [0, K| with the initial subspace Q° = ker Cj

QF =ker Co(p) N Ap(o-)Q !, k=1,2,... k.. K.
(19)
The interpretation of this sequence is that zj, € OF if, and
only if, there exists a solution with y(i) = 0 for i € [0, k]
and z(k) = xg.

Lemma 4.1: The linear switched system (2) is deter-
minable on [0, K], K > k° w.r.t. the mode sequence (0,1)
if, and only if,

QF = {0} (20)

Proof: Necessity: By construction of QF it follows that

for all z;, € QF we have Co(kyrr = 0 and that there exists

zp—1 € QF 1 with x, = A, (;_12k—1. Hence by assuming

that Q¥ # {0} we can pick zx € Q¥ \ {0} and a sequence

TR, TK_1,..., T, T1,To With 2, € QF such that z(-) given

by z(k) := xj is a solution of (2) on [0, K] with y(k) =
Co(kyTr = 0. This shows that (2) is not determinable.

Sufficiency: Consider a solution z(-) of (2) and assume that

y(k) =0 for all k € [0, K]. We will show that then z(k) €

QF for all k € [0,K] and hence determinability follows
from Q¥ = {0}. It is clear that y(k) = 0 implies z(k) €
ker Cy (1) Vk. Next, from y(0) = 0 it follows that x(0) €
ker Cy = QU. Inductively, assume that z(k) € QF, then for
k < K we have that z(k + 1) = A, x)z(k) € A, ) Q" and
hence z(k + 1) € ker Cpxy N Ag(i) QF = QFt1 Thus we
can conclude that z(K) € Q¥ = {0} as desired. |

Remark 4.2: If T' < k*® then the condition for the deter-
minability on [0,7] is equivalent to non-switched systems
since we have only the initial mode that actives on that time
interval. Finally, (2) is determinable if we can find such T’
so that it is determinable on [0, 7.

The following example illustrates the determinability.

Example 4.3: Consider the linear switched system (2)
with the following system’s matrices

(T
(Al,Cl):<[8 ﬂ,[o 1}).

With the mode sequence o = (0,1), the switched system
is unobservable on [0,12] for 2 < k% < 9. Surprisingly,
it is always determinable. This shows that even though the
switched system is not-observable, it could be determinable.
Moreover, the smallest time instant / such that the switched
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system is determinable on [0, K] depends on the switching
time; it needs to be two time instants after the switching time
in order to be determinable. o

We study now the determinability for a multiple switches
switching signal given by (4). By straightforward generaliza-
tion from the single switch case above, we now define the
sequence of subspaces (19) for j = 1,2,...,J and for k €
(K5, k3,1 —1). We can now characterize the determinability
through the following theorem.

Theorem 4.4: The linear switched system (2) is deter-
minable on [0, K], K € [k%, k%, ;) wr.t. the fixed switching
signal (4) if, and only fif]

o = {0}
where QF is given by (19).

Proof: The proof is straightforward generalization from
the single switch case given by the Lemma 4.1 and is
therefore omitted. [ ]

As in the observability, the determinability, in general,
depends on the switching time, and furthermore, also de-
pends on the number of the modes occuring on [0, K]. We
probably have some situations where the determinability does
not depend on the switching times; this is our future study.

Example 4.5: Recall the Example 3.4. We check the de-
terminability on [0,20] and the result with some various
switching times is shown in Fig. 5. In this example, the
determinability characterization result is just the same to
the result in the observability characterization (see Fig. 3).
Compared to the result in the Example 4.3, in contrast, the
determinability property in this Example depends on the

2L

switching time. o

10 =% ; * , e , 5

9r X X X 4

8rX X X 1

KA X X 1

6 X X 1

5! % X undeterminable | |

determinable

4 N L L L L L L
2 3 4 5 6 7 8

ki

Fig. 5: Switching time vs determinability Example 4.5

V. SUMMARY AND FUTURE WORKS

The observability and determinability characterizations
were considered in this paper. Necessary and sufficient
conditions for observability and determinability both under
single switch and multiple switches switching signals were
presented. Moreover, some specific situations where the
observability is constant were also investigated.

In our upcoming works, we will extend the concepts
presented in this paper to singular linear switched systems.
We expect that some results in non-singular systems will
also occur in singular systems. Moreover, some new studies

will also be discussed for singular systems because of the
presence of the one-step-map which is a special feature of
singular system.
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