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ARTICLE OPEN

Magnetic particles and strings in iron langasite
Evgenii Barts 1✉ and Maxim Mostovoy 1

Magnetic topological defects can store and carry information. Replacement of extended defects, such as domain walls and
Skyrmion tubes, by compact magnetic particles that can propagate in all three spatial directions may open an extra dimension in
the design of magnetic memory and data processing devices. We show that such objects can be found in iron langasite, which
exhibits a hierarchy of non-collinear antiferromagnetic spin structures at very different length scales. We derive an effective model
describing long-distance magnetic modulations in this chiral magnet and find unusual two- and three-dimensional topological
defects. The order parameter space of our model is similar to that of superfluid 3He-A, and the particle-like magnetic defect is
closely related to the Shankar monopole and hedgehog soliton in the Skyrme model of baryons. Mobile magnetic particles
stabilized in non-collinear antiferromagnets can play an important role in antiferromagnetic spintronics.

npj Quantum Materials (2021)6:104 ; https://doi.org/10.1038/s41535-021-00408-4

INTRODUCTION
The topology of defects in ordered states of matter is governed by
the order parameter describing spontaneous symmetry breaking
at a phase transition1. As the number of variables required to
characterize an ordered state increases, so does the diversity and
complexity of topological defects. A wide variety of defects is
found in superfluid 3He with the order parameter describing
orbital momentum, spin, and phase of the condensate2,3.
Nontrivial topology does not necessarily make defects stable: a

competition between interactions with different properties under
the scaling transformation, x→ Λx, is required to prevent the
collapse of the defect4. Thus isolated Skyrmion tubes in chiral
magnets with a diameter of 10–100 nm are stabilized by
Dzyaloshinskii–Moriya (DM) interactions5,6 favoring non-collinear
spins, which compete with the Zeeman and magnetic anisotropy
energy favoring uniform states7–9. The small size and high
stability of Skyrmion tubes in bulk chiral magnets and magnetic
multilayers, as well as their dynamics, driven by applied electric
currents, make them promising information carriers in magnetic
memory and data processing devices10–12. Even smaller sky-
rmions have been recently observed in centrosymmetric mag-
nets13–15, where they are stabilized by magnetic frustration and/
or long-ranged interactions between spins mediated by conduc-
tion electrons16–20.
Here, we discuss a realistic material that can host three-

dimensional (3D) magnetic Skyrmions—non-singular defects
which, unlike the Skyrmion tubes, have a finite size in all three
spatial directions. These magnetic particles can transfer informa-
tion in all directions, stimulating the design of three-dimensional
spintronic devices. 3D Skyrmions originally emerged as solitons in
the non-linear meson model of T.H.R. Skyrme21. The parameter
space of this model, formed by four meson fields, is three-sphere
S3 parametrized by three angles. A closely related defect, Shankar
monopole, was predicted to exist in the A-phase of superfluid
3He22,23. The order parameter describing this phase is an SO(3)
matrix, and the collection of all possible ordered states is
projective three-sphere RP3. Shankar monopole has been recently
realized in the Bose–Einstein condensate of trapped spin-1
particles by application of time-dependent and spatially

inhomogeneous magnetic fields24. This defect is, however,
unstable and has a short lifetime.
Higher-dimensional order parameter spaces can also be realized

in magnetic materials, in particular, antiferromagnets with
triangle-based spin lattices showing a non-collinear 120° ordering
of spins in the triangles described by an SO(3) matrix25,26. Non-
collinear antiferromagnetic (AFM) orders give rise to electron and
magnon bands with non-trivial topology and Weyl fermions27–31

resulting in large anomalous Hall and Nernst effects32,33 that can
be controlled electrically34.
We show that 3D skyrmions can naturally occur in the iron

langasite, Ba3TaFe3Si2O14. This fascinating material is both
magnetically frustrated and chiral. The Fe-langasite spin lattice is
built of triangles formed by the Fe3+-ions in the ab layers (see
Fig. 1) with AFM Heisenberg exchange interactions between spins
in the triangles resulting in a 120° spin ordering35. Furthermore,
competing exchange interactions between spins of neighboring
triangles, stacked along the c-axis, give rise to a helical spiral
modulation of the 120°-ordering with the period of ~7 lattice
constants along the c-axis. The direction of the spin rotation in the
spiral is governed by the chiral nature of the langasite crystal35–38

that, otherwise, has little effect on the spin structure. However,
when the magnetic anisotropy is effectively reduced by an applied
magnetic field, DM interactions give rise to an additional spiral
modulation with a period of about 2000 Å along a direction
perpendicular to the c-axis39. We show that the same DM
interactions can stabilize more complex modulated states as well
as unusual topological magnetic defects, in particular, the
magnetic particles carrying 3D Skyrmion topological charge and
an associated Hopf number.

RESULTS
Effective model
The 120° order of the classical unit spins S1, S2, S3 in triangles can
be described by two orthogonal unit vectors, V1 and V2

39,40: S1=
V1, S2 ¼ �1

2V1 þ
ffiffi
3
p
2 V2 and S3 ¼ �1

2V1 �
ffiffi
3
p
2 V2, so that S1+ S2+

S3= 0. Spatial rotations of the frame formed by V1, V2 and n=
V1 × V2 are described by SO(3) matrix R parametrized by three
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Euler angles, ϕ, θ, and Ψ41:

V1;2 ¼ RVð0Þ1;2 ¼ RzðϕÞRyðθÞRzðΨÞ Vð0Þ1;2; (1)

where Rz and Ry are the matrices of rotations around the z and y
axes, respectively, θ and ϕ are the polar and azimuthal angles of
the unit vector n ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞT describing the
direction of the vector chirality of the 120° spin order (see Fig. 2),
Vð0Þ1 ¼ x̂ and Vð0Þ2 ¼ ŷ.
The short-period spiral ordering observed in Fe-langasite in zero

magnetic field originates from the competing exchange interac-
tions between the spin triangles stacked along the c direction
(see Fig. 1b). Importantly, the isotropic Heisenberg exchange
interactions determine the spiral wave vector Q∥c36: tanQc ¼ffiffiffi
3
p ðJ5 � J3Þ

ð2J4 � J3 � J5Þ ; but not the orientation of the spiral plane
described by the vector chirality n. The latter is governed by
DM interactions between spins in the triangles,

Dz S1 ´ S2 þ S2 ´ S3 þ S3 ´ S1ð Þz ¼
3

ffiffiffi
3
p

2
Dznz; (2)

favoring a helical spiral with the helicity sign(nzQ)35 and by an
easy-plane magnetic anisotropy, which are two orders of
magnitude weaker than the exchange interaction in the
triangles37,38,42. On the other hand, the inter-triangle DM
interactions in this chiral magnet tend to induce ‘slow’ variations
of n and Ψ giving rise to a long-period magnetic superstructure
observed under an applied magnetic field39. The competition
between the magnetic anisotropy favoring a unique direction of n
and the tendency to large-scale modulations, both being relatively
weak relativistic effects, can also stabilize topological magnetic
defects that are superimposed on the fast spin rotations with the
propagation vector along the c direction.
To obtain an effective model describing long-period magnetic

superstructures in Fe-langasite, we separate fast and slow
variations of the order parameter by introducing a slowly varying
angle ψ(r): Ψ(r)=Qz+ ψ(r). The energy is then expanded in
powers of gradients of the three slowly varying angles θ, ϕ, and ψ,
and averaged over the fast spin rotations (technical details of the
derivation can be found in Supplementary Note 1). The energy

density of the effective model is

E ¼ Jz
2 ð∂znÞ2 þ 2ðDzψÞ2
h i

þ J?
2

P
μ¼x;y

ð∂μnÞ2 þ 2ðDμψÞ2
h i

þ K1ð1� cos θÞ þ K2
2 ð1� cos2θÞ � χ

2 ðH � nÞ2
þ λ cos2θð�sinϕ ∂xθþ cosϕ ∂yθÞ þ ðn � ∂?Þ ψ

� �
;

(3)

where the first term originates from the interlayer
Heisenberg exchange interactions (see Fig. 1b) and

Jz ¼ 3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J4 � J3 � J5Þ2 þ 3ðJ3 � J5Þ2

q
. The second term with J? ¼ffiffi

3
p
2 J2 results from the exchange interactions between the Fe-
triangles in the ab layers (Fig. 1a). The distances in the direction
parallel(perpendicular) to the c-axis of the hexagonal lattice are
measured in units of the lattice constant, c(a). Diψ ¼ ∂iψþ
cos θ ∂iϕ is the covariant derivative of ψ (i= x, y, z) invariant under
an arbitrary global rotation of spins. The third term in Eq. (3),
playing the role of an internal magnetic field, originates from
DM interactions between spins in the triangles [see Eq. (2)] and
the fourth term is the magnetocrystalline anisotropy. The next
term is the coupling of the spiral ordering to an applied magnetic
field H, which favors n∥H (χ > 0) since the magnetic susceptibility
is the largest for spins rotating in the plane perpendicular to the
field vector. The last term in Eq. (3) is a Lifshitz invariant (LI)6,7

allowed by the chiral nature of the langasite crystal, ∂⊥ being
gradient along with the in-plane directions (the derivation of LIs
for this non-collinear antiferromagnet is discussed in the
“Methods” section).

Phase diagram
In zero field, the anisotropy terms with K1, K2 > 0 confine spins to
the ab plane and stabilize the spiral state called uniform (U), as in
this state nz=+1 and ψ ¼ const. In enantiopure samples of Fe-
langasite studied in experiments nz=−135–37. The sign of nz does
not affect the phase diagram. An applied magnetic field H⊥ c
tends to re-orient the spiral plane, eventually turning it
perpendicular to the field (n∥H). The re-orientation of n, which
resembles the spin–flop transition in collinear antiferromagnets,
activates LI that can stabilize two very different states with
additional large-scale modulations.
Assuming that n and ψ in the modulated states vary along a

vector ξ ¼ ðcosϕξ ; sinϕξ ; 0Þ in the ab plane (this assumption is
verified by numerical simulations), we exclude ψ from Eq. (3) using
∂ξψ ¼ �cos θ∂ξϕ� λ

2J?
ðξ � nÞ and obtain the energy that only

depends on n,

E ¼ J?
2 ð∂ξnÞ2 þ K1ð1� cos θÞ þ K2

2 ð1� cos2θÞ
� χH2

2 n2x � λ2

4J?
ðξ � nÞ2 � λ sin2θ sinðϕ� ϕξÞ ∂ξθ;

(4)

for H∥x (see Fig. 1a).

Fig. 1 The Fe-langasite crystal structure. a Spin triangles in the
crystallographic ab plane formed by Fe3+ ions (blue spheres). Blue
lines mark the bonds between the spins in the triangles with the
relatively strong AFM exchange interaction J1. The triangles form a
hexagonal lattice with the AFM coupling J2 between the triangles.
b Stacking of the spin triangles along the c axis with the competing
AFM interactions J3, J4, and J5 between the spins in neighboring
triangles.

Fig. 2 The 120° spin order. The order parameter is described by the
polar and azimuthal angles, θ and ϕ, of the vector chirality
n ¼ 2

3
ffiffi
3
p S1 ´ S2 þ S2 ´ S3 þ S3 ´ S1ð Þ, and the angle Ψ of the spin

rotation around n.
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Figure 3 shows the phase diagram in the (K1, H) plane. In
contrast to collinear antiferromagnets, the order parameter n does
not abruptly flop but rotates continuously away from the z-axis in
the xz plane. For H > HR: χH2

R ¼ jK1j þ K2 � λ2

2J?
, the rotation angle

is given by

cos θ ¼ K1

χH2 þ λ2

2J?
� K2

: (5)

While n is constant, the angle ψ varies monotonically, ψ= q(r ⋅ ξ)
with q ¼ � λ

2J?
sin θ, corresponding to an additional rotation of

spins around n (see Fig. 4b) recently observed in Fe-langasite
above HR ~ 4 T39. The wave vector q increases as the field strength
grows and n approaches the field direction. This ‘tilted spiral’ (TS)
state with n tilted away from the c-axis has both helical and
cycloidal components.
In another kind of modulated state, the domain wall array

(DWA) shown in Fig. 4a, ψ is constant whereas n rotates in the xz
plane along the y-axis perpendicular to the applied field
(ϕ� ϕξ ¼ π

2). This state only appears for relatively small K1 (see
Fig. 3). At a critical field, Hc1, the energy of the domain wall, across
which θ varies by 2π, vanishes, which marks the transition from
the uniform spiral state to the DWA state. As H increases further,
the domain wall energy becomes negative, and the domain walls

form an array with the period that decreases with the field. This
state is similar to the ‘mixed state’ in collinear antiferromagnets43,
except that in our case n rotates through the angle 2π across the
wall, since the uniform states with nz= ±1 have different energies
for K1 ≠ 0. At the second critical field, Hc2, the transition between
the DWA and TS states occurs and the modulation direction
described by ξ rotates abruptly through 90°.
Although the energy of all states in the phase diagram Fig. 3

can be found analytically (see Supplementary Note 3), we also
performed numerical simulations of the model Eq. (3) re-
written in terms of two orthogonal unit vectors, V1 and V2 (see
the “Methods” section), which confirm the phase diagram
Fig. 3. We also found metastable multiply periodic states: the
vortex array with a square lattice (Fig. 5a, b), the vortex chains
(Fig. 5c, d) and the hexagonal crystal of coreless vortices
(Fig. 5e, f), which can be stabilized by thermal fluctuations at
elevated temperatures.

Topological magnetic defects in two spatial dimensions
Singular topological defects in a model with an SO(3) order
parameter in two spatial dimensions—Z2 vortices with energy
logarithmically diverging with the system size—have been
discussed in ref. 25. Here we study non-singular finite-energy
defects in the uniform ground state. One might think that,
similarly to magnetic Skyrmions, such defects can be classified by
the topology of n(x, y)-textures after the angle ψ is integrated out
from Eq. (3), as it was done for one-dimensional states. However,
in two spatial dimensions, the resulting energy functional, E[n],
contains long-ranged Coulomb interactions between the ‘electric’
charges induced by spatial variations of n. These interactions
suppress Skyrmions, which are ‘charged’ and have an infinite
‘electrostatic’ energy.
The electrostatic potential, φel, is a variable dual to ψ

Dμψþ λ

2J?
nμ ¼ �ϵμν∂νφel; (6)

where ϵμν is the antisymmetric tensor (μ, ν= x, y). The divergence
of the left-hand side is 0 as a result of the global gauge invariance:
Eq. (3) is unchanged under ψ→ ψ+ α. The electrostatic potential
satisfies Poisson equation, −Δφel= 4πρel, with the electric charge
density, ρel ¼ 1

4π ðn � ∂xn ´ ∂ynÞ � λ
8πJ?
½∇ ´ n�z ; the first term being

the Skyrmion charge density. Equation (3) can then be written in
the form

E ¼ J?
2

X
μ¼x;y
ð∂μnÞ2 � λnz½∇ ´ n�z þ UðnÞ þ 1

2ϵ
φelρel; (7)

where UðnÞ ¼ K1ð1� cos θÞ þ
K2� λ2

2J?

� �
2 sin2θ � χ

2 ðH � nÞ2 and the
last term is the positive electrostatic energy with the ‘dielectric’

Fig. 3 Magnetic phase diagram of the model. The competing
phases are: the ‘uniform’ (U) spiral state with n∥z and ψ= 0, the
modulated ‘tilted spiral’ (TS) state and the domain wall array
(DWA). Solid black(dashed red) phase transition lines are
obtained analytically(numerically), the difference being a finite-size
effect in numerical calculations. Color indicates the average nz.

k1;2 ¼ K1;2=
λ2

2J

� �
and the dimensionless magnetic field, h, is defined

by χH2 ¼ h2 λ2

2J. This calculation was performed for k2= 1.25, λ= 0.4
and J= 1.0.

Fig. 4 Modulated states induced by H∥x. a The domain wall array, in which the angle θ rotates in the xz plane along the y-axis normal to the
field vector. b The ‘tilted spiral’ state with n∥H and ψ varying along the field direction. The figures show the vector chirality n and the
corresponding angle ψ is shown in the insets. In-plane components of n are indicated with arrows; nz and ψ are color-coded.
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constant ϵ ¼ 1
8πJ?

. Finite-energy defects have zero total electric
charge,

Qel ¼
Z

d2xρel ¼ Qsk � λ

8πJ?

I
dx � n ¼ 0; (8)

where Qsk is the Skyrmion charge (Eq. (8) is similar to the
Mermin–Ho relation for the circulation of the superfluid velocity
in 3He-A44. Since for a finite-energy defect the integral over the
infinite-radius circle in Eq. (8) is 0, Qsk= 0, in agreement with
π2(SO(3))= 0.
A stable finite-energy defect in the spiral state with nkz is

shown in Fig. 6. In polar coordinates (ρ, φ), ϕ ¼ φþ π
2, ψ=−φ and

θ= θ(ρ) monotonically increases from 0 at ρ= 0 to 2π at ρ=∞.
The n-configuration shown in Fig. 6) a is that of a target
skyrmion45–47 with Qsk= 0 and the angle ψ forms a vortex with
the winding number −1 (Fig. 6b). As in the vortices in type-II
superconductors, the covariant derivative Dμψ vanishes far away
from the vortex. However, it also vanishes at ρ= 0, so that the ψ-
vortex has no core. Note that ϕþ ψ ¼ const in the vortex center,
where θ= 0, corresponds to non-rotating spins.
This defect is stabilized by the LI in Eq. (3), which favors ψ

varying along n and θ varying along the direction normal to n.
Both these trends are fulfilled in the coreless vortex. Topological
protection is ensured by the existence of a non-contractible loop
in the SO(3) manifold: π1(SO(3))= Z2. A path from the center of
the defect to infinity along any radial direction is such a loop. In
the center of the defect and at spatial infinity nz=+1, whereas

inside the green ring in Fig. 6a nz is negative, corresponding to
the reversal of both the vector chirality of spins in triangles and
the spiral helicity. The rotational symmetry of the defect turns the
calculation of θ(ρ) into a one-dimensional problem (see Supple-
mentary Note 4).

3D Skyrmion
The third homotopy group, π3 SOð3Þð Þ ¼ Z, allows for particle-like
topological defects that have a finite spatial extent in all three
directions. They are closely related to hedgehog solitons in the non-
linear meson model of T.H.R. Skyrme21 carrying an integer
topological charge identified with the baryon number,

H ¼ � 1
96π2

Z
d3x εijk tr½LiLjLk �; (9)

where εijk is the antisymmetric Levi–Civita tensor (i, j, k= x, y or z)
and Li= U†∂iU, U being an SU(2) matrix describing the four meson
fields (Φ0,Φx,Φy,Φz) on the 3-sphere (Φ2

0 þ Φ2
x þ Φ2

y þ Φ2
z ¼ 1):

U ¼ Φ01þ iΦ � σ, where σ= (σx, σy, σz) is a vector composed of
Pauli matrices. In the Skyrme’s baryon, Φ0 depends on the radius
r, varying from −1 (the south pole of the 3-sphere) at r= 0 to +1
(the north pole) at infinity, and the vector Φ= (Φx,Φy,Φz) is along
the radius vector r (a hedgehog), which guarantees that the
3-sphere formed by the meson fields wraps once around the
three-dimensional Euclidean space. This configuration was used as
the initial state for numerical studies of 3D topological excitations
in the uniform spiral state.

Fig. 6 Coreless vortex in the uniform spiral state. This topological defect consists of a target skyrmion formed by the vector chirality n (panel
b) and a vortex, in which the angle ψ varies by −2π along a closed loop around the center of the defect (panel b). Arrows show in-plane
components of n; nz and ψ are color-coded. The numerical simulation was done for J⊥= 1, λ= 0.34, K1= 0, K2= 0.1, and H= 0.

Fig. 5 Metastable modulated states. a, b The vortex array with a square lattice found at low applied magnetic fields (H < HR). c, d The
alternating strings of merons and antimerons found at large applied magnetic fields (H > HR). e, f The non-singular hexagonal vortex crystal.
The first row (panels a, c and e) shows the vector chirality n and the second row (panels b, d and f) shows the corresponding angle ψ. In-plane
components of n are indicated with arrows; nz and ψ are color-coded. The angle ψ is plotted modulo 2π and the lines in the ψ-plots are branch
cuts, across which ψ discontinuously changes by 2π.
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The collapse of Skyrme’s hedgehog is prevented by the terms
of fourth order in spatial derivatives of Φα. This stabilization
mechanism is inefficient in Fe-langasite with relatively small
fourth-order terms. 3D defects in chiral materials can be stabilized
by DM interactions. The dependence of the 3D Skyrmion energy
on the length scale R (for a fixed shape) is given by E(R)= aR−
bR2+ cR3, where the first term is the positive exchange energy,
the second term is the negative energy resulting from the LI, and
the third term is the positive anisotropy energy counted from the
energy of the uniform ground state (a, b, c > 0). The local
minimum of E(R) corresponding to a metastable Skyrmion
appears for b2 > 3ac.
Our numerical simulations with periodic boundary conditions

in all three directions show that λ required to stabilize the 3D
defect exceeds the critical value, above which the uniform spiral
state becomes unstable towards additional periodic modula-
tions, i.e., it transforms into the TS or DWA state in zero
magnetic field. However, we have found a stable 3D Skyrmion in
slabs with open boundary conditions along the z-direction,
periodic boundary conditions along the x and y directions, and a
surface anisotropy favoring n (anti)parallel to the c axis, which
suppresses the instability of the uniform state. This mechanism
is similar to the stabilization of Hopfions in films of liquid crystals
by boundary conditions48.
Figure 7a shows that the 3D Skyrmion is an axially symmetric

hedgehog elongated along the c-axis. The gray surface is a surface
of Φ0 ¼ cos θ2 cos ψþϕ

2 ¼ 0 and the arrows show the direction of
Φ ¼ ðΦx ;Φy ;ΦzÞ ¼ ðsin θ

2 sin ψ�ϕ
2 ; sin θ

2 cos ψ�ϕ
2 ; cos θ2 sin ψþϕ

2 Þ at
this surface. Φ0=−1 in the center of the 3D skyrmion and
Φ0=+1 at the periphery so that the H ¼ �1 (see also
Supplementary Note 5).
The n-configuration in the xy plane passing through the center

of the defect is the 2D target skyrmion (Fig. 7b), whereas the xz cut
through the defect (see Fig. 7c) shows a doughnut shape. In fact,
the n-part of the 3D skyrmion is a Hopfion, similar to Hopfions in
ferromagnets and liquid crystals49–53, and the 3D topological

charge equals the Hopf number of the n-texture written in terms
of the vector potential ai=− Diψ= V1 ⋅ ∂iV2 and the correspond-
ing magnetic field b= [∇ × a]54,55:

H ¼ � 1
16π2

Z
d3x ða � bÞ: (10)

Figure 7d shows the false-color plot of the angle ψ at the
nz=−1/2 surface (a torus). The angle ψ winds around the torus,
which reflects the fact that the Hopf number is the linking number
for constant-n loops54 (see Fig. 7e). The change of the angle ψ
along the loop, Δψ=− ∮dx ⋅ a=− 4π. Importantly, the 3D
Skyrmion is not merely a Hopfion, since the vector chirality n is
only a part of the order parameter.

DISCUSSION
The importance of a larger order parameter space in triangular
magnets with the 120° ordering for critical phenomena and
topological defects was noted already some time ago25. An
additional ingredient discussed in this paper is the lack of
inversion symmetry in the crystal lattice, which gives rise to DM
interactions resulting in additional long-period modulations of the
120° spin structure. The spin non-collinearity at the scale of one
crystallographic unit cell gives rise to new magnetic phases and
topological defects at a much larger length scale determined by
the strength of the DM interactions.
We derived an effective model describing large-scale spin

modulations in Fe-langasite, in particular the experimentally
observed tilted spiral phase, and showed that the three-
dimensional order parameter space of this non-collinear
antiferromagnet allows for complex spin states and unconventional
topological magnetic defects, such as the coreless vortex tube and
three-dimensional Skyrmion. The formal equivalence of the
parameter spaces of antiferromagnets with a 120° spin ordering
and superfluid 3He-A calls for a study of magnetic analogs of
the wealth of topological defects in the superfluid system2,3.

Fig. 7 Three-dimensional Skyrmion in a thin layer of Fe-langasite. a Arrows indicate the direction of Φ= (Φx,Φy,Φz) at the Φ0= 0 surface
(gray ellipsoid). The corresponding n-configuration in the xy plane passing through z= 0 (panel b) and in the xz plane passing through y= 0
(panel c). d False color plot of the angle ψ at the nz=−1/2 surface. e Linking of two closed oriented paths, Γ1,2, formed by the constant-n lines:

n ¼ ð0; ffiffiffi
3
p

=2;�1=2ÞT, for Γ1, and n ¼ ð ffiffiffi
3
p

=2; 0;�1=2ÞT, for Γ2. The numerical simulation was done for J⊥= Jz= 1, λ= 0.5, K1= 0, K2= 0.1, H= 0
and an additional surface anisotropy with Ks

2ðzÞ ¼ 0:26 � exp ð� ðz0�jzjÞ3:0 Þ, where z0= 25 is half-width of the film.
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Note, however, that 3He and the Skyrme model do not allow for LIs
stabilizing nanosized topological defects in the chiral Fe-langasite.
There are other non-collinear antiferromagnets with frustrated

exchange interactions that can host unusual topological defects,
such as manganese nitrides with the cubic inverse perovskite
crystal structure showing a variety of non-collinear spin structures
and a giant negative thermal expansion effect56–58, Pb2MnO4 with
a non-centrosymmetric tetragonal crystal lattice and a rare 90°
spin ordering59, multiferroic hexagonal manganites with a
trimerized triangular spin-lattice and strongly coupled structural,
ferroelectric and magnetic defects60–62, swedenborgites with
alternating triangular and Kagome spin lattices, which similar to
Fe-langasite are both frustrated and non-centrosymmetric40,63,
and the conducting non-collinear antiferromagnets, Mn3Ge and
Mn3Sn, showing large anomalous Hall and Nernst effects and
allowing for electric control of magnetic states27–34,64. The
unconventional topological defects discussed in this paper can
be a new avenue of research in AFM spintronics.

METHODS
The effective description of the Heisenberg model
The microscopic expression for the exchange energy with five exchange
constants (see Fig. 1b) is written in terms of V1 and V2 and then, using
Eq. (1), in terms of θ, ϕ and Ψ. Next, we use Ψ(r)=Qz+ ψ(r) and average
the exchange energy over short-period spin rotations. The resulting
expression only depends on the slowly varying variables θ, ϕ and ψ and is
expanded in powers of gradients of these three angles. Details can be
found in Supplementary Note 1.
LIs for chiral antiferromagnets with a 120° spin order, such as

swedenborgaties and langasites, can be written in terms of the two
vectors, V1 and V2, and their derivatives. They can be easily found using
one-dimensional complex representations of 3z. To this end we introduce
linear combinations of V1= (X1, Y1, Z1) and V2= (X2, Y2, Z2):

Rþ ¼ X1 þ iX2 þ iðY1 þ iY2Þ ¼ eiðϕ�ΨÞ cos θ� 1ð Þ;
R� ¼ X1 þ iX2 � iðY1 þ iY2Þ ¼ e�iðϕþΨÞ cos θþ 1ð Þ;
Z ¼ Z1 þ iZ2 ¼ � sin θ e�iΨ;

(11)

and their complex conjugates denoted by Rþ , R� and Z, respectively.
These quantities transform in a simple way under the generators of the
P321 group, 3z and 2y (see Table 1). These transformation rules follow
directly from the symmetry properties of the order parameter:

3z : ϕ! ϕþ 2π
3 ; Ψ! Ψ� 2π

3 ;

2y : ϕ! �ϕ; Ψ! π � Ψ;
(12)

and θ being invariant under these transformations.
Using these transformation properties, one obtains five independent LIs

favoring an additional modulation with an in-plane wave: Im(Rþ
 
∂þ
�!

R�), Im

(Rþ
 
∂þ
�!

R�), Im (Rþ
 
∂�
�!

Z), Im(R�
 
∂þ
�!

Z), and Im (R�
 
∂�
�!

Z), where A
 
∂±
�!

B ¼
A∂iB� B∂iA and ∂±= ∂x ± i∂y. Two LIs vanish upon average over fast spin
rotations39. Further details and the microscopic derivation of the LI from
the DMI between nearest-neighbor triangles in the ab plane can be found
in Supplementary Note 2.

Numerical simulations
We re-write the energy of the effective model Eq. (3) in terms of the unit
vectors, V1 and V2:

E ¼ Jz
2 ð∂zV1Þ2 þ ð∂zV2Þ2
h i

þ J?
2

P
μ¼x;y

ð∂μV1Þ2 þ ð∂μV2Þ2
h i

þ K1ð1� nzÞ þ K2
2 ð1� n2z Þ � χ

2 ðH � nÞ2
� λ

P
i¼1;2

Vx
i ∂yV

z
i � Vy

i ∂xV
z
i

� �þ Jort V1 � V2ð Þ2;
(13)

where n= V1 × V2, and V1 and V2 are slowly varying vectors with Ψ
replaced by ψ. The term with a large Jort > 0 is added to ensure the
orthogonality of V1 and V2. We then discretize Eq. (13) and minimize
energy by solving two coupled Landau–Lifshitz–Gilbert equations for
the unit vectors V1 and V2 with an artificially large Gilbert damping.

DATA AVAILABILITY
All data analyzed during the current study are available from the authors upon
reasonable request.

Received: 18 August 2021; Accepted: 28 November 2021;
Published online: 20 December 2021

REFERENCES
1. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys.

51, 591–648 (1979).
2. Vollhardt, D. & Woelfle, P.The Superfluid Phases of Helium, Vol. 3 (CRC Press,

2003).
3. Volovik, G. Symmetry in Superfluid 3He. Helium Three 27–134 (Elsevier, 1990).
4. Derrick, G. H. Comments on nonlinear wave equations as models for elementary

particles. J. Math. Phys. 5, 1252–1254 (1964).
5. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism.

Phys. Rev. 120, 91–98 (1960).
6. Dzyaloshinskii, I. Theory of helicoidal structures in antiferromagnets I: Nonmetals.

Sov. Phys. JETP 19, 960–971 (1964).
7. Bogdanov, A. N. & Yablonskii, D. Thermodynamically stable “vortices” in mag-

netically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68,
101–103 (1989).

8. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919
(2009).

9. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal.
Nature 465, 901–904 (2010).

10. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic sky-
rmions. Nat. Nanotechnol. 8, 899–911 (2013).

11. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8,
152–156 (2013).

12. Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. D: Appl. Phys. 53, 363001
(2020).

13. Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a fru-
strated triangular-lattice magnet. Science 365, 914–918 (2019).

14. Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a
breathing kagomé lattice. Nat. Commun. 10, 5831 (2019).

15. Khanh, N. D. et al. Nanometric square skyrmion lattice in a centrosymmetric
tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020).

16. Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of
the triangular-lattice heisenberg antiferromagnet under magnetic fields. Phys.
Rev. Lett. 108, 017206 (2012).

17. Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in
an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

18. Gao, S. et al. Spiral spin-liquid and the emergence of a vortex-like state in
MnSc2S4. Nat. Phys. 13, 157–161 (2016).

19. Hayami, S., Ozawa, R. & Motome, Y. Effective bilinear-biquadratic model for
noncoplanar ordering in itinerant magnets. Phys. Rev. B 95, 224424 (2017).

20. Gao, S. et al. Fractional antiferromagnetic skyrmion lattice induced by anisotropic
couplings. Nature 586, 37–41 (2020).

21. Skyrme, T. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569
(1962).

22. Volovik, G. & Mineev, V. Particle-like solitons in superfluid 3He phases. Zh. Eksp.
Teor. Fiz 73, 767–773 (1977).

23. Shankar, R. Applications of topology to the study of ordered systems. J. Phys. 38,
1405–1412 (1977).

Table 1. Transformation properties of R±, Z, and their complex
conjugates (see Eq. (11)) under the generators of P321 group, 3z, and
2y (here, ω ¼ ei

2π
3 and ω ¼ e�i

2π
3 ).

3z 2y

R+ ω �Rþ
Rþ ω −R+
R− 1 �R�
R� 1 −R−
Z ω �Z
Z ω −Z

E. Barts and M. Mostovoy

6

npj Quantum Materials (2021) 104 Published in partnership with Nanjing University



24. Lee, W. et al. Synthetic electromagnetic knot in a three-dimensional skyrmion. Sci.
Adv. 4, eaao3820 (2018).

25. Kawamura, H. & Miyashita, S. Phase transition of the two-dimensional heisenberg
antiferromagnet on the triangular lattice. J. Phys. Soc. Jpn. 53, 4138–4154 (1984).

26. Dombre, T. & Read, N. Nonlinear σ models for triangular quantum antiferro-
magnets. Phys. Rev. B 39, 6797–6801 (1989).

27. Chen, H., Niu, Q. & MacDonald, A. Anomalous Hall effect arising from noncollinear
antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

28. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall
effect. Europhys. Lett. 108, 67001 (2014).

29. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic
materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

30. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat.
Mater. 16, 1090–1095 (2017).

31. Li, B., Sandhoefner, S. & Kovalev, A. A. Intrinsic spin Nernst effect of magnons in a
noncollinear antiferromagnet. Phys. Rev. Res. 2, 013079 (2020).

32. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear
antiferromagnet at room temperature. Nature 527, 212–215 (2015).

33. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral
antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

34. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state.
Nature 580, 608–613 (2020).

35. Marty, K. et al. Single domain magnetic helicity and triangular chirality in struc-
turally enantiopure Ba3NbFe3Si2O14. Phys. Rev. Lett. 101, 247201 (2008).

36. Stock, C. et al. Helical spin waves, magnetic order, and fluctuations in the lan-
gasite compound Ba3NbFe3Si2O14. Phys. Rev. B 83, 104426 (2011).

37. Loire, M. et al. Parity-broken chiral spin dynamics in Ba3NbFe3Si2O14. Phys. Rev.
Lett. 106, 207201 (2011).

38. Zorko, A. et al. Role of antisymmetric exchange in selecting magnetic chirality in
Ba3NbFe3Si2O14. Phys. Rev. Lett. 107, 257203 (2011).

39. Ramakrishnan, M. et al. Field-induced double spin spiral in a frustrated chiral
magnet. npj Quantum Mater. 4, 60 (2019).

40. Reim, J. D. et al. Neutron diffraction study and theoretical analysis of the anti-
ferromagnetic order and the diffuse scattering in the layered kagome system
CaBaCo2Fe2O7. Phys. Rev. B 97, 144402 (2018).

41. Edmonds, A. R. Angular Momentum in Quantum Mechanics (Princeton University
Press, 1960).

42. Chaix, L. et al. Helical bunching and symmetry lowering inducing multiferroicity
in Fe langasites. Phys. Rev. B 93, 214419 (2016).

43. Bogdanov, A. N. & Yablonskii, D. Contribution to the theory of inhomogeneous
states of magnets in the region of magnetic-field-induced phase transitions.
Mixed state of antiferromagnets. JETP 69, 142–146 (1989).

44. Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of
superfluid Helium-3. Phys. Rev. Lett. 36, 594–597 (1976).

45. Du, H., Ning, W., Tian, M. & Zhang, Y. Magnetic vortex with skyrmionic core in a
thin nanodisk of chiral magnets. Europhys. Lett. 101, 37001 (2013).

46. Leonov, A. O., Rößler, U. K. & Mostovoy, M. Target-skyrmions and skyrmion
clusters in nanowires of chiral magnets. EPJ Web Conf. 75, 05002 (2014).

47. Zheng, F. et al. Direct imaging of a zero-field target skyrmion and its polarity
switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 119, 197205 (2017).

48. Ackerman, P. J. & Smalyukh, I. I. Static three-dimensional topological solitons in
fluid chiral ferromagnets and colloids. Nat. Mater. 16, 426–432 (2016).

49. Cooper, N. R. Propagating magnetic vortex rings in ferromagnets. Phys. Rev. Lett.
82, 1554–1557 (1999).

50. Tai, J.-S. B. & Smalyukh, I. I. Static Hopf solitons and knotted emergent fields in
solid-state noncentrosymmetric magnetic nanostructures. Phys. Rev. Lett. 121,
187201 (2018).

51. Liu, Y., Lake, R. K. & Zang, J. Binding a hopfion in a chiral magnet nanodisk. Phys.
Rev. B 98, 174437 (2018).

52. Sutcliffe, P. Skyrmion knots in frustrated magnets. Phys. Rev. Lett. 118, 247203 (2017).
53. Rybakov, F. N. et al. Magnetic hopfions in solids. Preprint at arXiv http://arXiv.org/

abs/1904.00250 (2019).
54. Whitehead, J. H. C. An expression of Hopf’s invariant as an integral. Proc. Natl.

Acad. Sci. USA 33, 117–123 (1947).
55. Kosevich, A., Ivanov, B. & Kovalev, A. Magnetic solitons. Phys. Rep. 194, 117–238

(1990).

56. Iikubo, S., Kodama, K., Takenaka, K., Takagi, H. & Shamoto, S. Magnetovolume
effect in Mn3Cu1−xGexN related to the magnetic structure: Neutron powder dif-
fraction measurements. Phys. Rev. B 77, 020409(R) (2008).

57. Kodama, K. et al. Gradual development of Γ5g antiferromagnetic moment in the
giant negative thermal expansion material Mn3Cu1−xGexN(x ~ 0.5). Phys. Rev. B
81, 224419 (2010).

58. Mochizuki, M., Kobayashi, M., Okabe, R. & Yamamoto, D. Spin model for nontrivial
types of magnetic order in inverse-perovskite antiferromagnets. Phys. Rev. B 97,
060401(R) (2018).

59. Kimber, S. A. J. & Attfield, J. P. Magnetic order in acentric Pb2MnO4. J. Mater.
Chem. 17, 4885–4888 (2007).

60. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430,
541–544 (2004).

61. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain
walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

62. Artyukhin, S., Delaney, K. T., Spaldin, N. A. & Mostovoy, M. Landau theory of
topological defects in multiferroic hexagonal manganites. Nat. Mater. 13, 42–49
(2013).

63. Kocsis, V. et al. Magnetoelectric effect and magnetic phase diagram of a polar
ferrimagnet CaBaFe4O7. Phys. Rev. B 93, 014444 (2016).

64. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in anti-
ferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

ACKNOWLEDGEMENTS
We acknowledge Vrije FOM-programma ‘Skyrmionics’ and the Peregrine high-
performance computing cluster.

AUTHOR CONTRIBUTIONS
E.B. and M.M. contributed equally to this work.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41535-021-00408-4.

Correspondence and requests for materials should be addressed to Evgenii Barts.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2022

E. Barts and M. Mostovoy

7

Published in partnership with Nanjing University npj Quantum Materials (2021) 104

http://arXiv.org/abs/1904.00250
http://arXiv.org/abs/1904.00250
https://doi.org/10.1038/s41535-021-00408-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Magnetic particles and strings in iron langasite
	Introduction
	Results
	Effective model
	Phase diagram
	Topological magnetic defects in two spatial dimensions
	3D Skyrmion

	Discussion
	Methods
	The effective description of the Heisenberg model
	Numerical simulations

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




